Measuring the Effect of RFID Technology on Movement of U.S. Army Resupply Cargo

Leigh E. Method

Follow this and additional works at: https://scholar.afit.edu/etd
Part of the Operations and Supply Chain Management Commons

Recommended Citation

Method, Leigh E., "Measuring the Effect of RFID Technology on Movement of U.S. Army Resupply Cargo" (1998). Theses and Dissertations. 5718.
https://scholar.afit.edu/etd/5718

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

ivieasuring itie errel 1 Ur krid
TECHNOLOGY ON MOVEMENT OF
U.S. ARMY RESUPPLY CARGO

THESIS
Leigh E. Method
Captain, USAF
AFIT/GTM/LA/98S-6
SOL 60018661
ymo cualuty enspiction
DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY

MEASURING THE EFFECT OF RFID TECHNOLOGY ON MOVEMENT OF U.S. ARMY RESUPPLY CARGO

 THESIS

 THESIS}

Leigh E. Method

Captain, USAF
AFIT/GTM/LA/98S-6

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

MEASURING THE EFFECT OF RFID TECHNOLOGY ON MOVEMENT OF U.S. ARMY RESUPPLY CARGO

THESIS

Presented to the Faculty of the Graduate School of Logistics and Acquisition Management of the Air Force Institute of Technology Air University
Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Transportation Management

Leigh E. Method

Captain, USAF

September 1998

Approved for public release; distribution unlimited

Acknowledgments

As my classmates and I have learned, a thesis effort is eased in proportion to the amount of support received from others. I found my own struggle aided by a number of individuals. First, thanks to my advisor, Lt Col Karen W. Currie, and my reader, Dr. William A. Cunningham. Your guidance was always helpful and insightful. Second, I would like to thank my sponsor, Mr. Andy Figueroa, HQ AFMC Transportation, Combat Readiness Branch, and Mark Reboulet in the Automated Information Technology office who helped me find and focus my research topic. Thanks to Rick Reed, José Orsini, and John Rhodes who helped me find and format my data. Thanks as well to Mary Maurer, Defense Automated Addressing System Center, and SSgt Tony Gugliotta, HQ AMC Aerial Port Operations Division, for providing a large portion of my data. Third, my classmates--especially my fellow transporters--the amount of time you spent listening to me talking about RFID for the past year is only outweighed by the indebtedness I feel to you for your feedback (and not throwing me out of the room). Finally, I would like to thank my family--Mom, Dad, Jamie, Rosanne, Auralyn, and Christopher--and my special friend, Rob Pope, for the wonderful life I have--I owe you so much more than words can say here. A big thanks to all of you.

Leigh E. Method

Table of Contents

Page

Acknowledgments ii
List of Figures v
List of Tables vi
Abstract vii
I. Introduction 1
Chapter Overview 1
General Issue 2
Supply Chain. 4
Total Asset Visibility (TAV) and In-transit Visibility (ITV) 5
Internet and Information Technology (IT). 10
Commercial Sector Use of Internet and ITV 12
Radio Frequency Identification (RFID) 13
Defense Transportation System (DTS) 14
Information System Descriptions 15
Global Air Transportation and Execution System (GATES) 15
Global Transportation Network (GTN) 15
Logistics On-Line Tracking System (LOTS) 16
Uniform Material Movement and Issue Priority System (UMMIPS) 16
Problem Statement 18
Research Questions 18
Methodology 19
Scope and Limitations 21
Chapter Summary 23
II. Data Collection 24
Chapter Overview 24
Data Requirements 24
Army Data 26
Army Population \#1 26
Army Population \#2 28
Air Force Data 29
Data Collection Challenges. 30
Chapter Summary 31
III. Methodology and Data Analysis 32
Chapter Overview 32
Calculation of Pipeline Segments 32
Elimination of Outliers 33
Comparison of Shipment Times 35
Comparison 1: Air Force versus Army Population \#2. 38
Comparison 2: Army Population \#2 versus Army Population \#1 40
Application of UMMIPS Time Standards 42
Chapter Summary 44
IV. Findings and Conclusions 45
Chapter Overview 45
Synopsis of Research 45
Summary of Findings 47
Research Question One 47
Research Question Two 48
Research Question Three 49
Research Question Four 50
Areas for Further Research 51
Conclusions 54
Appendix A: Army Population \#1 Data 57
Appendix B: Army Population \#2 Data 70
Appendix C: Air Force Population Data 74
Appendix D: Application of UMMIPS Time Standards Results 77
Appendix E: Key Definitions. 79
Appendix F: Glossary of Acronyms 82
Bibliography 84
Vita. 88

List of Figures

Figure Page

1. Routing of Army RFID-tagged Shipments 4
2. Traditional versus Seamless Supply Chain 5
3. Components of Total Asset Visibility (TAV) 6
4. Illustration of Areas for Data Analysis 21
5. GTN Cargo Query Interface 29

List of Tables

Table

1. DoD Requirements for an ITV System. 10
2. UMMIPS Time Standards for Transportation Priority 1 (TP1) Shipments 17
3. Army Population \#1 (Number of TCNs) 26
4. Army Population \#2 (Number of TCNs) 28
5. Air Force Population (Number of TCNs) 30
6. AMC Possession Time Pipeline Segments 32
7. Average Flying Time by Mission Leg - 1997 34
8. Population Sizes With/Without Outliers (Number of TCNs) 34
9. Pipeline Segment Calculations Comparing Removal of Outliers (Army \#1) 37
10. Pipeline Segment Calculations Before Removal of Outliers (Air Force vs. Army \#2) 39
11. Pipeline Segment Calculations After Removal of Outliers (Air Force vs. Army \#2) 39
12. Pipeline Segment Calculations Before Removal of Outliers (Army \#2 vs. Army \#1) 41
13. Pipeline Segment Calculations After Removal of Outliers (Army \#2 vs. Army \#1) 42
14. Comparison of Populations to UMMIPS Time Standards (Percent of Shipments Meeting/Exceeding Standards) 43
15. Column Header Definitions for Appendices A, B, and C. 57

Abstract

This research is an analysis of the effect that the added in-transit visibility (ITV) associated with applying Radio Frequency Identification (RFID) technology to Army resupply cargo makes on total cycle time (from entry into to exit from the system) within the Air Mobility Command (AMC) portion of the Defense Transportation System. Although information technology applications are known to contribute to ITV, there has been no attempt to quantify it despite a perception held by at least part of the DoD community that ITV initiatives will reduce logistics response time by improving cycle time. This study was aimed at quantifying RFID technology's contribution to cycle time by comparing a set of RFID-tagged shipments to a set of non-RFID-tagged shipments moving into the Bosnia-Herzegovina theater of operations. Although there are agencies looking at worldwide implementation of this system, the system under study is currently the only one of its kind. The major finding of this research is that RFID-tagged shipments actually took longer to move through the AMC system. Port Hold Time at the point of embarkation was 2 to 2.5 times longer for RFID-tagged shipments and had a total possession time 19 percent longer than non-RFID-tagged shipments.

MEASURING THE EFFECT OF RFID TECHNOLOGY

ON MOVEMENT OF U.S. ARMY RESUPPLY CARGO

I. Introduction

Chapter Overview

From the moment a military unit places a requisition for parts or supplies into the supply system, two things about the shipment--the status and expected arrival date--are of interest to the end user. With the proliferation of computers, information systems, the Internet, and information technology applications such as bar code readers, the visibility of this information is now possible. A powerful way for customers to gain logistics information on their requisitions currently exists on the World Wide Web--the Global Transportation Network (GTN). Now an end user of an expected part or resupply item, located in an austere environment with only a laptop, can uplink or connect with an orbiting satellite and connect to the Internet and the GTN website. Once connected, the GTN website provides detailed status and movement information as a shipment moves through the Defense Transportation System (DTS). This is the idea of in-transit visibility (ITV)--visibility of an item, person, or unit en route from origin to destination.

As the Department of Defense (DoD) Executive Agent for ITV, the United States Transportation Command (USTRANSCOM) is taking the idea of in-transit visibility one step further. The U.S. Army is moving cargo through the DTS from the Defense Depot at New Cumberland, Pennsylvania, to the Bosnia-Herzegovina theater of operations using

Radio Frequency Identification (RFID) technology. RFID technology involves a series of electronic tags (attached to the desired item and containing shipping/content information), interrogators (located at key nodes along the route of travel), and a computer-based system to collect the movement information. Shipping information is recorded on the tag at the shipment's origin and may be read by stationary or handheld interrogators using radio frequency energy to activate the tags and transmit information. Once identified by an interrogator, a date and time stamp is recorded and uploaded to an Internet server and a hosted website where it is added to previously collected information.

This research is an analysis of the effect that the added in-transit visibility associated with applying Radio Frequency Identification (RFID) technology to resupply cargo can make on total transit time within the Air Mobility Command (AMC) portion of the DTS. This chapter provides an overview of the issue of ITV, Internet and information technology (IT) applications for cargo movement and tracking, and the systems and standards involved in providing ITV. A background of the issues, the problem statement, research questions, and general methodology is presented along with the scope and limitations of this study. [NOTE: A collection of key definitions is provided at Appendix E and a glossary of acronyms is provided at Appendix F.]

General Issue

In-transit visibility (ITV) is defined by USTRANSCOM as the "ability to track the identity, status, and location of...cargo and passengers...from origin to the consignee or destination...during peace, contingencies, and war" (DoD, 1995:B-1). ITV of resupply (sustainment) material for forward-operating units is one of the most frustrating
problems for logisticians in the field. A significant problem logisticians had to wrestle with during Desert Shield/Desert Storm (DS/DS) was the inability to effectively deal with the arrival of thousands of shipping containers with little or no idea about what was in them. In fact. during DS/DS, approximately 50 percent of the 40,000 containers of military material entering the theater had to be opened, inventoried, and reinserted into the transportation system because military personnel did not know their contents (DoD, 1995:iii). The Center for Army Lessons Learned cited three main reasons for these accountability and visibility problems. Specifically, containers packed at United States depots did not have an adequate description of container contents, they arrived in Southwest Asia faster than the logistics system could process them, and there were no procedures to document arriving containers designated for specific units (GAO, 1992:12).

Recently, the DoD, through U.S. Army Europe (USAREUR) developed a transportation pipeline that uses RFID technology to track supplies from the Defense Depot at New Cumberland, Pennsylvania, to Taszar, Hungary, and Tuzla, Bosnia in support of OPERATION JOINT ENDEAVOR (OJE) and OPERATION JOINT GUARD (OJG) (Figure 1). These containerized or palletized shipments are tracked by attaching RFID tags to the cargo. These tags provide information to a system of interrogators stationed along the route of travel that transmit information through a portable control system into a database. Individual users are able to query this system via an Internet website.

Although the implementation of various IT applications are known to contribute to ITV, there has been no attempt to quantify the contribution these technologies make in terms of shipment cycle time between the requisition source and the end user. Since
there is some perception in the DoD community that "ongoing transportation initiatives, such as ITV, will (result in)...reducing logistics response time by improving transit times" (DoD, 1996a), this study was aimed at comparing the movement of a set of RFID-tagged shipments to a set of non-RFID-tagged shipments as well as a set of DoD standards for timely movement in an attempt to examine RFID technology's contribution to ITV and cycle time.

Figure 1 - Routing of Army RFID-tagged Shipments

Supply Chain

The supply chain represents the process of moving an item--material or information--from its requisition source to the customer. The number and type of activities making up the supply chain differ based on the item being moved and the origin and destination of the item. Supply chains can be contained within a single organization or spread around the globe across multiple organizations (Franciose, 1995:6). A seamless
supply chain is where movement of an item between activities is transparent to the customer and consists of a series of well-connected relationships (Figure 2). In a traditional supply chain, movement of a shipment is a sloppy process of staging the item at one activity, scheduling it for movement to the next activity, and repeating the process until it reaches the customer. Conversely, a seamless supply chain creates a free-flowing pipeline for the item to move from its source to its destination. The DoD's version of a seamless supply chain is Total Asset Visibility (TAV).

Figure 2 - Traditional versus Seamless Supply Chain (Adapted from Francoise, 1995)

Total Asset Visibility (TAV) and In-Transit Visibility (ITV)

During DS/DS, units awaiting supplies had only a limited ability to trace their shipments. Concluding this situation was unacceptable, the DoD developed a Total Asset Visibility Plan that identified three categories of assets (in-storage, in-transit, and in-
process). Visibility over the status and location of these assets is known as Total Asset Visibility (TAV) (Figure 3). The advent of the Army Total Asset Visibility (ATAV) and, subsequently, Joint Total Asset Visibility (JTAV), provided a forum for testing emerging technologies such as RFID.

Figure 3 - Components of Total Asset Visibility (TAV)

As a result of DS/DS, Total Asset Visibility (TAV) was born--focusing on
"wholesale and transportation logistics" (NDTA, 1994:4-3). The DoD defines TAV as
the capability that permits operational and logistics managers to determine and act on timely and accurate information about the location, quantity, condition, movement, and status of Defense material. It includes assets that are in-storage, in-process, and in-transit. (DoD, 1995:B-3)

Another common definition used by the DoD states that TAV is
the ability to gather information from DoD systems on the identification, quantity, condition, location, movement, and status of materiel, units, personnel, equipment, and supplies anywhere in the logistics system at any time, and to apply that information to improve logistics processes. (DoD, 1997)

One of the lessons from DS/DS was that significant benefits from implementing in-transit visibility (ITV) may be gained in the area of resupply cargo. According to the DoD, however, multiple application systems, millions of resupply cargo shipments every year on all modes of transportation, one-third of all shipments originating with commercial vendors, and documentation "using a variety of standard and non-standard formats" present significant implementation challenges (DoD, 1995:vii). Several requirements were identified for ITV of resupply cargo to include identification of a single lead agency, meet a variety of transportation scenarios, create a "seamless interface between strategic and theater transportation movement systems," and possess "common and interchangeable data elements" (DoD, 1995:3-23).

Air Force Doctrine Document (AFDD) 40 describes seven logistics concepts meant to guide Air Force leaders in creating and sustaining our military power. They are pipeline security; total asset visibility; training, education, and exercises; interoperability; availability; transition to and from war; and host nation support. The TAV concept views logistics as an integrated process that enables precisely locating and resolving logistics problems while "knowing with confidence where parts or supplies are located, or when and how they will arrive" in order to meet operational requirements (DAF, 1994:9).

A recent Government Accounting Office (GAO) Report was critical of the federal government's inability to "properly account for and report billions of dollars of property, equipment, materials, and supplies" (GAO, 1998). The report notes that "certain recorded military property had, in fact, been sold or disposed of in prior years--or could not be located--and an estimated $\$ 9$ billion of known military operating materials and supplies were not reported" (GAO, 1998). The report also criticizes the Pentagon for
being uncertain about how much inventory was in-transit because current information systems in place do not collect that sort of information (Malone, 1998:11A).

Furthermore, incomplete or inaccurate information hampers the government's ability to "prevent unnecessary storage and maintenance costs or purchase of assets already on hand" (GAO, 1998).

The size of this problem goes beyond costs. In fact, an estimated 100,000 Military Traffic Management Command (MTMC) containers and 30,000 Army/Air Force Exchange Service (AAFES) containers move every year. In addition, the Defense Logistics Agency (DLA) moves over 1.9 million shipments per year (NDTA, 1994:5-14). Since the logical way to capture the necessary information about these movements is to gather the data at the source and update it as the cargo processes through each node of the transportation system (Miller, 1996:2), USTRANSCOM embarked on an aggressive program of ITV study and development in 1994 "aimed at focusing energy, attention, and resources toward obtaining an ITV capability for the DoD" (Wolford, 1996:6).

Several significant DoD publications have highlighted the need for effective ITV. Joint Vision 2010, a conceptual template for the development of the U.S. Armed Forces, discusses four new operational concepts: dominant maneuver, precision engagement, full dimensional protection, and focused logistics (JCS, 1995:19). In order to optimize the other three concepts, focused logistics must integrate "information, logistics, and transportation technologies to provide rapid crisis response, to track and shift assets even while en route, and to deliver tailored logistics packages and sustainment directly at the strategic, operational, and tactical level of operations" (JCS, 1995:24). The 1998 Air Mobility Master Plan (AMMP) considers achieving ITV the "single most challenging
task" of USTRANSCOM (DAF, 1997a:4-48) and one of AMC's top five modernization priorities (DAF, 1997a:iii).

In the 1996 Annual Report to the President and the Congress, the Office of the Secretary of Defense (OSD) identified "visibility of material in storage and transit and rapidly transporting stocks between theaters" as essential to the National Security Strategy of winning "two nearly simultaneous major regional conflicts" (DoD, 1996a). Furthermore, TAV would enable managers to "offset wholesale procurements with excess retail assets...increase user confidence, reduce duplicate requisitions, and expose supply and transportation system bottlenecks" (DoD, 1996a). The 1998 DoD Logistics Strategic Plan reiterates this through the objective of "full fielding of identified TAV capabilities"--targeting 90 percent implementation by February 2000 with 100 percent capability by February 2004 (DoD, 1998a).

The DoD addressed several ITV system requirements (Table 1) along with nine key considerations. Among these is a need for better data quality and timeliness achieved through new and simplified transportation regulations and policies; compliance with those regulations and policies; and the development of data standards (DoD, 1995:2-5).

Also, a joint theater transportation system
capable of processing shipment information received from port systems; tracking containers and pallets; reading automatic identification technology (AIT) and other devices; interfacing with GTN; and generating documentation for deploying and redeploying unit cargo and personnel, and for retrograde cargo. It should also provide information for intratheater movements. Finally, it should be capable of being deployed in any theater and developed using standard data elements. (DoD, 1995:2-7)

Another need is a system migration strategy to decrease the number of defense transportation systems and the corresponding number of system interfaces required to
support ITV (DoD, 1995:2-8). Finally, an AIT approach using devices that "provide supply content information for receipt and inventory management, and facilitate the collection of transportation information at key nodes for movement, staging, and diversion decisions" (DoD, 1995:2-10) is required. These considerations, along with securing funding and ensuring the support of existing systems while migrating to new ones, represent the necessary elements for effective Total Asset Visibility.

Table 1 - DoD Requirements for an ITV System (DoD, 1995:2-1)

1. Track personnel movements
2. Identify shipment contents
3. Determine shipment locations
4. Track requisitions and items
5. Track unit movements
6. Identify, reconstitute, and divert shipments
7. Provide visibility from origin to destination
8. Provide a seamless transition from peace to war
9. Link with operations and logistics communities

Internet and Information Technology (IT)

The private-sector logistics industry has always been very competitive and the use of the Internet for IT applications is a way many companies in the commercial sector are competing. Deregulation of the transportation industry in the 1970s and 1980s opened up the commercial industry for investment in emerging technologies as a way to achieve market dominance. Past desire to manage shipment information and achieve visibility over the entire supply chain is now a necessity. Emerging information technologies such as RFID, bar-coding, electronic data interchange, electronic commerce, and the Internet
are some of the means firms have to compete in an increasingly information-based marketplace.

The Internet provides a host of utilities for gathering and communicating information about a shipment. Some of these utilities are electronic mail, listservs (electronic discussion groups), and the World Wide Web (WWW). Indeed, the "Internet is really the sixth form of transportation" (Currie, 1998:91). Using the Internet, government and businesses can conduct their operations faster, cheaper, and easier over the traditional forms of telephone calls, mail, and express delivery.

The availability of storage and transit information is made possible through a variety of IT applications. Powerful information technologies exist to provide any type of asset visibility desired as well as provide it in real-time. Shippers, carriers, and customers now have the ability to track the movement of their shipments as well as know the exact contents of the box or container. This makes the idea of the seamless supply chain possible.

The Internet is linking these information technologies together to provide visibility over the entire supply chain and a comprehensive picture to decision-makers. Some commercial logistics firms are finding that Internet-based IT applications provide an opportunity to reach out to customers around the world as part of a "globalization strategy" (Grant, 1997:160). It also appears to influence a firm's "logistics competence" (Closs and others, 1997:14). The DoD should be able to reap the benefits of IT in both reduced inventories and the ability to centralize decision-making.

The Internet is providing a robust platform for the individual seeking out the information desired while being relatively inexpensive (Cooke, 1996:53S). RFID and
satellite tracking are two technologies that are being web-enabled (linked to the Internet) to provide managers real-time shipping information. This information, in turn, allows for rapid decision-making when alternatives are needed.

Commercial Sector Use of Internet and ITV

Use of the Internet and IT applications have exploded in the commercial sector for logistics functions--in some cases, information is more important than the shipment itself.

The explosion of Internet technologies, aided and abetted by the booming U.S. economy, has coincided with growing demand for (travel and) is forcing fundamental changes in the nature of the transportation business, and IT is the center of those changes. (Wilder, 1997)

Not surprisingly, customers want fast material delivery and information on-demand about their shipments. In turn, this makes the use of IT for logistics companies "more strategic and critical than ever" (Wilder, 1997).

One of the first in the Internet-based, shipment-tracking business was FedEx.
FedEx launched its Internet homepage [http://www.fedex.com/] in November 1994, and connected to millions of potential customers. Then, in 1996, it introduced interNetShip ${ }^{\text {SM }}$ and the first automated shipping transaction available on the Internet (FedEx, 1997b:25). This software allows customers to complete electronic airbills, print shipping labels, request courier pickups, and e-mail shipment status to other parties (FedEx, 1997a:9). Other web-based tracking software touts instant location and estimated time of arrival information (WebTrak, 1998).

Although costs of individual IT applications are continuing to decline, it requires an enormous amount of investment. For instance, FedEx and United Parcel Service are
committed to spending more than $\$ 1$ billion a year on IT - almost one-tenth of their total revenue (Wilder, 1997). These costs may be mitigated, however, by the "continued decreases in the price of technology" (Murphy, 1995:35) and the capital that is "freed up for more productive uses" (Lappin, 1996).

Continual advancements in IT now allow the end user to track cargo and passengers throughout the DTS. Information technology applications directly support the concept of focused logistics (as presented in Joint Vision 2010) by providing the quantity and quality of information necessary for decision making and reducing the DoD's logistics tail (Shalikashvili, 1996:17). One of these technologies is Radio Frequency Identification (RFID).

Radio Frequency Identification (RFID)

RFID is one form of IT in use by the DoD. It is the concept of "automatically identifying, categorizing, and locating people and assets over relatively short distances (a few inches to hundreds of feet)" (DAF, 1997b). Assets are tagged with a transponder containing information about the item of interest, and depending on the type of tag, various read and write capabilities are possible. The transponder communicates with an interrogator using radio frequency (RF) energy and the interrogators are linked to provide seamless coverage for a given system--or supply chain.

RFID tags are being used on vehicles, trucks, and other materials handling equipment in order to track their location, weigh them, or even to debit the owner's account when it passes a toll booth. RF technology can also provide drivers with new instructions and priorities on a real-time basis. This, in turn, increases flexibility and
responsiveness. It should be noted that RFID is not meant as a replacement for bar codes; rather, it is meant to complement bar coding technology (Scaling, 1998:59). Logistics functions and firms are using this IT to reroute shipments while in-transit in order to meet customer needs faster. The ability of the Internet to provide quick, accurate data transmission is increasing the overall efficiency of the entire pipeline because managers are receiving better information for decision making and it allows simultaneous access to everyone in the distribution channel (Wooley, 1997:58). Integration of RFID and satellite technology with the capabilities of the Internet makes it possible to relay extensive shipment information such as location, contents, and shipping data (e.g., origin, destination, and priority).

Defense Transportation System (DTS)

The Defense Transportation System is
that portion of a nation's transportation infrastructure that supports DoD transportation needs in peace and war. The DTS consists of those common-user military and commercial assets, services, and systems organic to, contracted by, or controlled by the DoD. (DoD, 1987:A-3)

AMC functions as the Department of Defense's primary source of cargo airlift. The AMC system is set up on a hub-and-spoke concept. Airlift of cargo and passengers occurs via a series of regularly scheduled (frequency channel) missions or on an as needed (requirements channel) basis. AMC's airlift hub system consists of several aerial ports linked by these channel missions to collect cargo from spoke locations and forward it to the end user. AMC's five major aerial ports in the Continental United States (CONUS) are at Charleston AFB, South Carolina; Dover AFB, Delaware; McChord AFB, Washington; McGuire AFB, Delaware; and Travis AFB, California.

Information System Descriptions

There are numerous DoD logistics and transportation systems in place to provide information on a requisition. Three of these systems are used in this research--the Global Air Transportation and Execution System (GATES), Global Transportation Network (GTN), and Logistics On-Line Tracking System (LOTS).

Global Air Transportation and Execution System (GATES). GATES is a migration system designed to consolidate five legacy systems into one program, while interfacing with other migration systems. As one of 23 USTRANSCOM migration systems, GATES provides "oversight of worldwide cargo movement" for the airlift portion of the DTS (AMC CSS, 1998).

Global Transportation Network (GTN). GTN was developed as the main focus of the "DoD transportation enterprise" (Begert, 1996:6) and the "centerpiece of DoD's ITV efforts" (DoD, 1995:v). The system is a database of information accessible via the Internet and is compiled from literally dozens of different DoD (and commercial) systems. The USTRANSCOM developed GTN "to provide ITV over air and surface shipments moving between ports of embarkation and debarkation (POEs and PODs)" (DoD, 1995:iv). GTN provides a "seamless, real-time capability to access--and employ-both classified and unclassified transportation and deployment information" (USTRANSCOM, 1998).

The GTN ITV website [http://www.gtn.transcom.mil/], divides queries into six categories; passengers, cargo, forces (military units), airlift schedules, reference tables, and requisition queries. The system is intended as the integrated transportation portion of the Global Command and Control System (GCCS) and will be DoD's "comprehensive
data base of in-transit shipment information, including all military, government, and vendor documented shipments" (DoD, 1995:v). As an illustration of its size and responsiveness, the ITV capability in GTN was launched in August 1997 and has a data warehouse of over 43 gigabytes with 80 percent of the information received from the various systems posted within 5 minutes of receipt (Honor, 1997:42).

Logistics On-Line Tracking System (LOTS). LOTS is an on-line automated information system designed for processing and storing logistics data to provide TAV about DoD and civilian agency requisitions and related data (DAASC, 1998a).

Uniform Material Movement and Issue Priority System (UMMIPS)

The DoD, through the Defense Logistics Agency (DLA), uses a system of requisition priorities to establish movement standards for all DoD cargo. The UMMIPS time standards are "the maximum amount of time that should elapse during any given pipeline segment for items that are in stock" (DoD, 1998b:AP8.1). The system recognizes the priorities used by both transportation and supply. UMMIPS serves as the "system for allocating resources among competing demands. It shall be used during peacetime and war" (DoD, 1998b:C5.6.1). In May 1998, the Under Secretary of Defense for Acquisition and Technology authorized a new set of UMMIPS time standards (Table 2) as part of the new DoD Materiel Management Regulation, DoD 4140.1-R. [NOTE: Since this study will focus on high-priority cargo, only UMMIPS time standards for transportation priority one (TP1) cargo are provided.] The new standards decreased the maximum time allowed for movement of a shipment as well as redefined the different areas for airlift.

Table 2 - UMMIPS Time Standards for Transportation Priority 1 (TP1) Shipments (Adapted from DoD 4140.1-R, May 1998)

PIPELINE SEGMENT	AREA 1					
CONUS	A	B	C	D	EXP	
A. Requisition Submission Time	.5	.5	.5	.5	.5	.5
B. ICP Processing Time	.5	.5	.5	.5	.5	.5
C. Storage Site (or Base) Processing,	1	1	1	1	1	1
Packaging and Transportation Hold Time						
D. Storage Site to CCP ${ }^{2}$ Transportation	N/A	1	1	1	1	N/A
Time						
E. CCP Processing Time	N/A	.5	.5	.5	1	N/A
F. CONUS In-Transit Time	1	1	1	1	1	N/A
G. POE ${ }^{4}$ Processing and Hold Time	N/A	1	1	1	2	N/A
H. In-transit to Theater Time	N/A	1	1	1	1.5	3
I. POD ${ }^{5}$ Processing Time	N/A	.5	.5	.5	1	N/A
J. In-Transit, Within-Theater time	N/A	1	1	1	1	1
K. Receipt Take-Up Time	.5	.5	.5	.5	.5	.5
Total Order-to-Receipt Time	3.5	8.5	8.5	8.5	11	6.5

NOTE: All times are in calendar days.
${ }^{1}$ Area refers to "the geographic area (of the activity originating the order)."
Area A - Alaska, Hawaii, North Atlantic, Caribbean, and Central America
Area B - United Kingdom, Northern Europe, and Portugal (Azores)
Area C - Japan, Korea, Guam, Western Mediterranean, and Italy
Area D - Hard lift areas - all other destinations not listed as determined by U.S.
Transportation Command. The time standards for port of debarkation (POD) for
Area D are lower than the other areas.
EXP - Express service is only for commercial air shipments that are transportation priority 1 with a maximum weight of 150 pounds and an RDD of $999,777, \mathrm{~N} \ldots$, or E .

Required Delivery Date (RDD) of $999, \mathrm{~N}_{\text {_ }}$, or E _ (where " _" is any alphanumeric character) indicates an expedited handling requirement for Non-Mission-Capable-Supply (NMCS) overseas customers or CONUS customers deploying within 30 days.
${ }^{2}$ A Consolidation/Containerization Point (CCP) either consolidates shipments on an air pallet or containerizes shipments in a SEAVAN for transportation to overseas areas.
${ }^{3}$ CONUS is Continental United States
${ }^{4}$ POE is Port of Embarkation
${ }^{5}$ POD is Port of Debarkation

Problem Statement

The purpose of this research is to investigate the Army's use of Internet-based RFID technology for ITV and determine whether there is a difference in cycle time for resources moving through the AMC portion of the DTS. The goal is to evaluate the contribution that Internet-based visibility of high-priority cargo associated with the application of RFID technology can make to total cycle time relative to non-RFID-tagged cargo. The hypothesis of this research is that the visibility of tagged items speeds the flow of resources in comparison to non-tagged items as they move through the AMC system--from the aerial port of embarkation (APOE) to the aerial port of debarkation (APOD).

Research Questions

1. Do shipments tagged with RFID technology and reported directly to a World Wide Web (WWW) accessible database have an average transit time between the Aerial Port of Embarkation (APOE) and the Aerial Port of Debarkation (APOD) below the average transit time of items not tagged?
2. On average, do RFID-tagged shipments have a smaller average Port Hold Time (PHT) (time between arrival at and departure from an aerial port) than non-tagged shipments?
3. On average, do RFID-tagged shipments have a smaller AMC Possession Time (total time between receipt at the APOE and departure from the APOD) than non-tagged shipments?
4. On average, are RFID-tagged shipments more likely to meet Uniform Material Movement and Issue Priority System (UMMIPS) time standards than non-tagged shipments?

Methodology

Three sets of data were considered. All three sets of data considered were shipments originating in the CONUS with an APOE of Dover AFB, Delaware, and an APOD of either Taszar Airfield, Hungary, or Eagle Base, Tuzla, Bosnia. Additionally, all shipments moved through Ramstein AB, Germany, and were in support of OPERATION JOINT ENDEAVOR (OJE) and OPERATION JOINT GUARD (OJG). Thus, routing for all shipments were either Dover-Ramstein-Taszar or Dover-RamsteinTuzla.

The primary data consisted of two sets of Army palletized cargo originating from the consolidation/containerization point (CCP) at the Defense Depot in New Cumberland, Pennsylvania (Figure 1). A list of Lead Transportation Control Numbers (Lead TCNs) that were tagged or burned in at the New Cumberland depot were retrieved via a query of the United States Army Europe (USAREUR) Radio Frequency/In-transit Visibility (RF/ITV) website [http://144.170.190.8/ITV_summary.html]. [NOTE: A Lead TCN represents a set of individual shipment TCNs consolidated-physically and systemically-under a single TCN for ease of movement and ITV throughout the DTS.] The Lead TCNs collected were matched with relevant transportation pipeline movement data gathered from two sources-the GATES legacy database and the GTN website.

Transportation movement information for the first population of Army data (Army population \#1) was gathered from the GATES legacy database for high-priority. TCNs moving through the AMC portion of the DTS during May to November 1997. Transportation information for the second population of Army data (Army population \#2) was gathered from the GTN website for high-priority TCNs moving during April to June 1998.

The third (comparative) population is a set of Air Force cargo moving through the same pipeline as both sets of Army cargo. This data set covers the same time period as Army population \#2 (April to June 1998) and was not RFID-tagged.

In an attempt to answer the proposed research questions, data analysis encompassed three main areas centered on four transportation pipeline segment calculations derived from the UMMIPS time standards (Table 2). The three areas of analysis are a comparison of:

1. the Air Force population and Army population \#2 (Figure 4),
2. Army population \#2 and Army population \#1 (in order to determine if there is a seasonality effect) (Figure 4), and
3. all three populations against the UMMIPS time standards (Table 2).

The four transportation pipeline segment calculations considered are: PHT at the APOE, transit time between the APOE and the APOD, PHT at the APOD, and AMC Possession Time (total time from receipt of the shipment at the APOE until departure from the APOD).

Figure 4 - Illustration of Areas for Data Analysis

Scope and Limitations

This study focuses on a limited aspect of the DTS. Although there are headquarters agencies looking at worldwide implementation of this type of system, the population under study is currently the only one of its kind.

A population of Air Force cargo was used in this analysis to represent the population of cargo moving through the AMC portion of the DTS that was not RFIDtagged. A great deal of effort would have been required to gather a list of Lead TCNs meeting all of the same parameters as the RFID-tagged Army TCNs except without the RFID tag. Since there was no easy way to validate an Army Lead TCN as non-RFIDtagged, an Air Force population of shipments was used.

The Army data collected for this analysis covered two separate time periods due to the differences in the databases used to gather transportation movement information. Army population \#1 was limited to a 7-month period for two reasons. First, the USAREUR RF/ITV website could not provide information prior to May 1997 (the extent of the on-line database). Second, at the time of this analysis, the GATES legacy database
could only provide pipeline movement information prior to December 1997 and after February 1998 due to an identified problem with the system. Thus, data was collected for a second population (Army population \#2) from the GTN website. However, this database was also limited--by system design--to 60 days of historical information.

The shipments included in the Air Force population of data did not arrive at the APOE from a single location (i.e., CCP) as both sets of Army cargo did. Additionally, unlike the Army cargo, Air Force shipments in this study arrived unpalletized (not consolidated) and moved under an individual shipment TCN.

Although this analysis was designed to look at all priorities of cargo, extremely small sample sizes for lower priority cargo limited this analysis to high-priority shipments. Also, this analysis excludes hazardous material as well as classified or greensheeted (cargo specifically identified to proceed through the airlift system over other priority cargo of the same shipper service) shipments.

Finally, this research attempt is to find out how RFID-tagged shipments perform relative to non-RFID-tagged shipments as they move through the transportation pipeline. Although this study produces empirical results, their use is purely for the purpose of comparison. Because of the scope and limitations noted above, calculations should not be considered a reflection of the true population. For similar reasons, the results of comparing the three populations to the UMMIPS time standards should not be taken as absolute performance of the different pipeline segments. Rather, the UMMIPS comparison is used to support the findings of the first comparison and shows the relative performance of the segments between the sample populations studied.

Chapter Summary

This chapter described the overall nature of this research effort and the background driving the need for such a study. It also reviewed the concepts of Total Asset Visibility (TAV) and In-Transit Visibility (ITV) along with supply chains, the Internet, and RFID technology. An overview of the information systems specific to this study, the Defense Transportation System (DTS), and the Uniform Material Movement and Issue Priority System (UMMIPS) were discussed. It defined the specific problem and research questions to be explored, gave a general overview of the methodology used, and the scope and limitations of the study. Chapter II provides the details of data collection.

II. Data Collection

Chapter Overview

This chapter focuses on the methodology used in collecting the data required for this analysis as well as the difficulties encountered in collection. Three sample populations were gathered from various sources. Two populations consist of RFIDtagged Army shipments. The third population consists of non-RFID-tagged Air Force shipments. Sources used for data collection include the Logistics On-Line Tracking System (LOTS), Global Air Transportation and Execution System (GATES), and the Global Transportation Network (GTN). A large majority of the data was collected from the World Wide Web (WWW).

Data Requirements

In order to conduct the proposed analysis, the following data elements were required for each sample population:

1. Transportation Control Number (TCN). This is a "unique 17-position alphanumeric data element assigned to control a shipment unit throughout the transportation pipeline" (DoD, 1995:B-3).
2. Aerial Port of Embarkation (APOE). This is the point of entry into the AMC portion of the DTS. For this research, the APOE is Dover AFB, Delaware (referred to as Dover or DOV).
3. Aerial Port of Debarkation (APOD). This is the point of exit from the AMC portion of the DTS. For this research, the APOD is Taszar Airfield, Hungary
(referred to as Taszar or TZR), or Eagle Base, Tuzla, Bosnia (referred to as Tuzla or TZL).
4. Required Delivery Date (RDD) or Transportation Priority (TP). This is a code that defines the movement priority of a shipment (see Table 2).
5. APOE Receipt Time. This is the time the shipment is received at the APOE via motor carrier.
6. APOE Lift Time. This is the time the shipment departs the APOE via aircraft.
7. Intransit Receipt Time. For this research, this the time the shipment arrives at Ramstein AFB (referred to as Ramstein or RMS) from Dover AFB.
8. Intransit Lift Time. For this research, this is the time the shipment departs Ramstein AFB for the APOD.
9. APOD Receipt Time. This is the time the shipment is received at the APOD.
10. APOD Lift Time. This is the time the shipment departs the APOD, usually via motor carrier.

All shipments collected for analysis were moved through the AMC system between Dover AFB, Delaware, and Ramstein AB, Germany, and then to either Taszar Airfield, Hungary, or Eagle Base, Tuzla, Bosnia (Figure 1).

Initially, this analysis was designed to look at all priorities of cargo. However, due to extremely small sample sizes for lower priority cargo, this analysis was limited to high-priority (i.e., transportation priority one (TP1)) shipments.

Army Data

Two populations of Army data were collected. The first population consists of RFID-tagged shipments moving through the Air Mobility Command (AMC) portion of the Defense Transportation System (DTS) between 9 May 1997 and 29 November 1997. The second population consists of RFID-tagged shipments moving between 21 April 1998 and 26 June 1998.

Army Population \#1. Data collection for this population consisted of four stages (Table 3) and resulted in a population of transportation priority one (TP1), RFID-tagged Lead TCNs moving to Taszar and Tuzla in support of OPERATION JOINT ENDEAVOR (OJE) and OPERATION JOINT GUARD (OJG). The movement timeframe for these shipments was 9 May to 29 November 1997. The size of this population was limited to RFID-tagged shipments after May 1997 and historical movement data was only available prior to December 1997.

Table 3 - Army Population \#1 (Number of TCNs)

	Stage 1 RFID-tagged TCNs	Stage 2 TP1/9FF TCNs	Stage 3 Movement Data	Stage 4 Final Population
Taszar	293	196	95	81
Tuzla	631	380	144	108
Total	924	476	240	189

The first stage involved gathering a set of RFID-tagged shipments originating from the consolidation/containerization point (CCP) at the Defense Depot, New Cumberland, Pennsylvania, destined for Taszar or Tuzla, and with an APOE of Dover Air

Force Base. Data was gathered from the United States Army Europe (USAREUR) Radio Frequency/ Intransit Visibility (RF/ITV) website
[http://144.170.190.8/ITV_summary.html]. This query resulted in 924 Lead TCNs meeting the previously identified criteria and with an APOD of Taszar or Tuzla.

In order to determine the transportation priority and project code of each Lead TCN, stage two involved extracting requisition data on the individual TCNs comprising each Lead TCN from the Defense Automated Addressing System Center (DAASC) Logistics On-Line Tracking System (LOTS).

In this stage, only individual TCNs with a Required Delivery Date (RDD) that indicated TP1 movement (i.e. "999," "N__," or "E__") and movement under the OJE/OJG project code, "9FF," were retained. Further, due to the scope of this analysis, shipments were eliminated if they were classified (lack of requisition information) or expedited (manipulation of the movement priority). This stage ended with a population of 476 Lead TCNs out of the 924 TCNs from stage one.

The third stage gathered transportation pipeline data for each TCN through the Transportation Reporting \& Inquiry System (TRAIS) legacy environment (historical database) within GATES. This resulted in pipeline data on 240 of the 476 Lead TCNs found in stage two.

For ease of analysis, stage four eliminated any of the 240 Lead TCNs from stage three that were short of a complete set of pipeline data. This resulted in a final population of 189 Lead TCNs (Appendix A).

Army Population \#2. A second query of the USAREUR RF/ITV website for the time frame of 1 April to 26 June 1998 resulted in an initial population of 291 Lead TCNs (Table 4).

In stage two, a query of the GTN website for the Lead TCNs found in stage one yielded 190 shipments to Taszar (TZR) and Tuzla (TZL) that were also TP1 shipments (Figure 5).

Table 4 - Army Population \#2 (Number of TCNs)

	Stage 1 RFID-tagged TCNs	Stage 2 GTN Query/ TP1	Stage 3 Movement Data	Stage 4 Final Population
Taszar	103	68	62	46
Tuzla	188	122	111	91
Total	291	190	173	137

Stage three involved the collection of movement data for each shipment. To accomplish this, it was necessary to query GTN for each TCN individually using the same cargo query interface used to gather stage two information (Figure 2). If the shipment followed a routing other than DOV-RMS-TZR or DOV-RMS-TZL, it was eliminated from the population. This stage resulted in a population of 173 TCNs out of the 190 shipments from stage two.

As with the first population of Army data, stage four eliminated any TCNs missing movement data. This reduced the second Army sample population to 137 TCNs out of the 173 from stage three (Appendix B).

Air Force Data

Collection of the Air Force sample population did not require accessing the RF/ITV website, therefore, stage one started with a query of the GTN website for TCNs with TP1 priority and shipped under the OJE/OJG project code (9FF). Figure 5 shows an example of the GTN cargo query interface. In this example, a query is set up to search for all TCNs possessing a partial TCN (SW3123*), specific project code (9FF), and flowing through Dover AFB (KDOV) during the period 1 April 1998 to 26 June 1998.

Figure 5 - GTN Cargo Query Interface

The query for Air Force TCNs was conducted using the primary DoD Activity Address Code (DoDAAC) for Taszar (FB5895) and Tuzla (FB5830). Thus, stage one resulted in a population of 145 TCNs (Table 5).

Table 5 - Air Force Population (Number of TCNs)

APOD	Stage 1 GTN Query/TP1/9FF	Stage 2 Movement Data	Stage 3 Final Population
Taszar	84	69	56
Tuzla	61	49	34
Total	145	118	90

In stage two, movement data for each individual shipment was collected. Again, collection of movement data required a separate query for each TCN. If the shipment was found to follow a routing other than DOV-RMS-TZR or DOV-RMS-TZL, it was eliminated from the population. This stage resulted in a population of 118 TCNs out of the 145 found in stage one.

As with the other two sample populations, the final stage involved elimination of any TCNs missing movement data. This reduced the total Air Force sample population to 90 TCNs out of the 118 from stage two (Appendix C).

Data Collection Challenges

Data collection and selection is an expensive process. Several difficulties in locating and capturing source data for this analysis were encountered. Data collection attempts were made through several systems including the Consolidated Aerial Port System II (CAPS II), GATES, GTN, and LOTS.

Difficulties resulted from the inability to accomplish restricted queries for data, obtain search results in an easily usable configuration, and rely on the accuracy of the data received. Several systems were unable to support a search for specific sets of data or were only able to limit the search parameters. To accomplish a large portion of this analysis, data had to be extracted manually from a larger set of data. All four main systems used for data collection--the RF/ITV website, LOTS, GATES, and GTN--had a different configuration for presenting the requested data. The main difficulty encountered was the use of different date and time stamps for the transportation movement data. Finally, doubtful input accuracy of some data elements precluded the use of the data extracted from the system or forced a validation check with a second source.

Chapter Summary

This chapter focused on the data collection process necessary to conduct this analysis. It defined the data elements required, the three populations of data necessary for the analysis, and the process used to limit each population to a set of comparable data. Finally, this chapter described some of the difficulties encountered in collecting data for this analysis. Chapter three will describe the methodology used in this study.

III. Methodology and Data Analysis

Chapter Overview

The purpose of this chapter is to describe the methodology used to conduct the comparisons identified in Chapter I between the three populations described in Chapter II. The areas described include calculations relevant to the key segments of AMC Possession Time, elimination of outliers, comparison of key pipeline segments, and application of the UMMIPS time standards to all three populations.

Calculation of Pipeline Segments

After data collection, pipeline times for each portion of AMC Possession Time (Table 6) were calculated for Army population \#1 (Appendix A), Army population \#2 (Appendix B), and the Air Force population (Appendix C) of shipments.

Table 6 - AMC Possession Time Pipeline Segments

Segment	1	2	3	4	5	Total
	APOE	APOE	Intransit	Intransit	APOD	Total
	Receipt to	Lift to	Location	Location	Receipt	AMC
	APOE Lift	Intransit	Receipt to	Lift to	to Final	Possession
	to Intransit	Location	Intransit	APOD	Lift	Time
	Location	Receipt	Location Lift to	Receipt	from	
					APOD	
			APOD			

NOTE: Segments 2 and 4 are only calculated for the determination of population outliers. For analysis, segments 2, 3, and 4 are combined into the "transit time between APOE and APOD."

In terms of this analysis, the APOE is Dover AFB , in-transit location is Ramstein AB , and the APOD is either Tuzla or Taszar. Therefore, segment 2 represents the transit time between Dover AFB and Ramstein AB , and segment 4 represents the transit time between Ramstein AB and the APOD (Tuzla or Taszar). Also, segments 2, 3, and 4 are combined as the transit time from APOE to APOD to include the Port Hold Time at Ramstein AB .

Elimination of Outliers

An examination of the transit time calculations--segments 2 and 4 from Table 6-revealed the possibility of existing outliers in the populations.

In order to determine the range of acceptable transit times between locations (Dover to Ramstein, Ramstein to Taszar, and Ramstein to Tuzla), average flight times for each mission leg by aircraft type for the past year were obtained from Headquarters AMC Tanker Airlift Control Center (Table 7) (Ashby, 1998).

Using the transit time information calculated for each sample population, an entire TCN was excluded from its respective population if the time sequence of events was out of order (i.e., the shipment left a location before it arrived). Based on the information in Table 7 and histograms of each population, a TCN was also excluded if it had a transit time calculation outside of the following ranges (in days):

- Dover to Ramstein . 2900-. 4200
- Ramstein to Taszar . $0400-.1300$
- Ramstein to Tuzla . $0400-.1700$

Table 7 - Average Flying Time by Mission Leg - 1997

Mission Leg	Aircraft Type	Average Flying Time (in days)
Dover to	$\mathrm{C}-5$.3300
Ramstein	$\mathrm{C}-17$.3300
	$\mathrm{C}-141$.3290
	$\mathrm{KC}-10$.3150
	$\mathrm{KC}-135$.3150
	$\mathrm{MD}-11$.3000
Ramstein to	$\mathrm{C}-5$.0625
Taszar	$\mathrm{C}-17$.0670
	$\mathrm{C}-130$.0875
	$\mathrm{C}-141$.0625
Ramstein to	$\mathrm{C}-17$.0958
Tuzla	$\mathrm{C}-130$.1000
	$\mathrm{C}-141$.0875

The researcher selected the ranges as representative of all three populations of data.
Because the transit time between airlift nodes is stable over time, the goal was to exclude only the most obviously incorrect transit times. From the histograms as well as the raw calculations, the ranges were selected so as to represent the most realistic transit times and retain as many TCNs as possible without compromising the analysis. These ranges resulted in TCNs removed from three of the six population segments (Table 8).

Table 8 - Population Sizes With/Without Outliers (Number of TCNs)

Location		Army \#1	Army \#2	Air Force
Taszar	Original Population Size	81	46	56
	Nbr of Outliers Removed	13	2	0
	Size After Removal of Outliers	68	44	56
Tuzla	Original Population Size	108	91	34
	Nbr of Outliers Removed	42	0	0
	Size After Removal of Outliers	66	91	34

A Large-Sample Test of Hypothesis for two samples will be used to compare the means of the different populations. One of the primary assumptions of this test is the normality of the sample populations. This assumption is possible because of the Central Limit Theorem. The Central Limit Theorem states that
if a random sample of n observations is selected from a population (any population), then, when n is sufficiently large, the sampling distribution of $\overline{\mathrm{x}}$ will be approximately a normal distribution. The larger the sample size, n, the better will be the normal approximation to the sampling distribution of $\overline{\mathrm{X}}$. (McClave and Benson, 1994:282).

To invoke the Central Limit Theorem, a sample size of $n \geq 30$ is generally required (McClave and Benson, 1994:282). Since each sample population collected (Table 8) has more than 30 observations, the Central Limit Theorem was applied to each population in this analysis. Thus, the Large-Sample Test of Hypothesis may be used to test for differences between the different population means.

Comparison of Shipment Times

Four calculations will be considered for analysis based on their relationship to the UMMIPS time standards (Table 2):

1. Port Hold Time (PHT) at the APOE (Dover AFB) - Segment G of the UMMIPS time standards
2. Transit Time Between the APOE and the APOD (Taszar or Tuzla) - Segment H of the UMMIPS time standards
3. PHT at the APOD - Segment I of the UMMIPS time standards
4. AMC Possession Time - Sum of segments G, H, and I. This calculation reflects the total time a shipment is in the AMC portion of the DTS.

For each of these four calculations, the Large-Sample Test of Hypothesis for two samples will be used. This test has the following characteristics:
$H_{0}: \mu_{1}-\mu_{2}=D_{0}$
$H_{a}: \mu_{1}-\mu_{2} \neq D_{o}$
Test Statistic: $z=\left[\left(\bar{x}_{1}-\bar{x}_{2}\right)-D_{o}\right] / \sigma_{\left(\bar{x}_{1}-\bar{x}_{2}\right)}$
where $\sigma_{\left(\bar{x}_{1}-\bar{x}_{2}\right)}=\left[\left(\sigma_{1}^{2} / n_{1}\right)+\left(\sigma_{2}^{2} / n_{2}\right)\right]^{\frac{1}{2}}$

Rejection Region: $\mathrm{z}<-\mathrm{z}_{\alpha / 2}$ or $\mathrm{z}>\mathrm{z}_{\alpha / 2}$
where
$\mathrm{H}_{\mathrm{o}}=$ null hypothesis
$\mathrm{H}_{\mathrm{a}}=$ alternate hypothesis
$\mu_{1}=$ population mean of the first distribution
$\mu_{2}=$ population mean of the second distribution
$D_{0}=$ hypothesized difference between the population means
$\overline{\mathrm{x}}_{1}=$ sample population mean of the first distribution
$\overline{\mathrm{x}}_{2}=$ sample population mean of the second distribution
$\sigma_{\left(\bar{x}_{1}-\bar{x}_{2}\right)}=$ standard deviation of the difference between the sample population means
$\mathrm{n}_{1}=$ number of sample observations in the first distribution
$\mathrm{n}_{2}=$ number of sample observations in the second distribution
$z=$ test statistic
$\mathrm{Z}_{\alpha / 2}=$ critical value

To determine if there was any bias created by removing the large number of outliers from Army population \#1 (Table 8), a two-sample t-test was conducted between the population before removal of outliers from the population and after the removal of outliers. The results showed that for all four pipeline calculations, there was no significant difference between the means at a 0.01 alpha-level of significance (Table 9). Therefore, although all results are provided, analysis and discussion is restricted to the populations created by the removal of outliers.

Table 9 - Pipeline Segment Calculations Comparing Removal of Outliers (Army \#1)

	PHT at APOE		Transit Time from APOE to APOD		PHT at APOD		AMCPossessionTime	
	TZR	TZL	TZR	TZL	TZR	TZL	TZR	TZL
With MEAN	2.22	2.41	2.70	3.15	0.80	2.15	5.72	7.70
Outliers STD	1.16	1.36	1.36	1.92	1.75	3.47	2.36	4.00
Without MEAN	2.24	2.47	2.72	2.78	0.92	2.46	5.88	7.71
Outliers STD	1.16	1.28	1.46	1.59	1.89	3.89	2.47	4.33
Test Statistic	0.95	0.77	0.91	0.19	0.69	0.58	0.69	0.99
Critical Value	± 2.61	± 2.60						
Significant	no							

NOTE: Units are in days. All significance tests conducted at the 0.01 alpha-level of significance.

Using the four pipeline segment calculations, two-sample t-tests were conducted to compare the Air Force and Army \#2 populations (Tables 10 and 11) as well as the Army \#1 and Army \#2 populations (Tables 12 and 13). Tests were conducted between the populations both before and after outliers were removed from the sample populations. Each table of results provides the mean and standard deviation of each compared sample
population--separated by destination (TZR or TZL) and the four pipeline segments. Also, the calculated test statistic from the Large-Sample Test of Hypothesis described above along with the critical value is included.

The difference between the means of the two sample populations compared is significant if the test statistic falls outside the range described by the critical value. For example, from Table 11, the test to compare average PHT at the APOE for the Air Force and Army \#2 populations for Taszar-bound shipments is significant because the test statistic, -6.74 , falls outside the range created by the critical value, ± 2.65. All tests were conducted at the 0.01 alpha-level of significance. Further discussion will be limited to the results of tests conducted after the removal of outliers (Tables 11 and 13).

Comparison 1: Air Force versus Army Population \#2. The results of the test between the Air Force population and Army population \#2 (Table 11) indicate there is a statistically significant difference between the two populations in terms of the Port Hold Time at the APOE as well as AMC Possession Time. Additionally, there is a statistically significant difference between the populations for the transit time between the APOE and the APOD for Tuzla-bound shipments. The remaining discussion will focus on the significant differences.

An examination of the means and standard deviations of the compared populations reveals the following:

1. Army cargo had a longer average PHT at the APOE than Air Force cargo for both Taszar- and Tuzla-bound shipments. For Taszar-bound shipments, Army cargo was held at the APOE (Dover) more than 2.5 times longer than Air Force cargo (2.77 days vs. 1.02 days). For Tuzla-bound shipments, Army

Table 10 - Pipeline Segment Calculations Before Removal of Outliers (Air Force vs. Army \#2)

			Transit Time from APOE to APOD				AMC PHT at APOD	
		PHT at APOE	Time					
		TZR	TZL	TZR	TZL	TZR	TZL	TZR
AZL								
Air	MEAN	1.02	1.18	2.67	2.06	0.29	1.67	3.98
Force	STD	0.98	0.79	0.89	0.67	0.47	1.01	1.41
Army	MEAN	2.71	2.32	2.26	2.55	0.14	1.40	5.11
\#2	STD	1.49	1.46	1.26	1.37	0.27	1.15	1.94
Test Statistic	-6.62	-5.60	1.89	-2.68	2.00	1.20	-3.38	-4.04
Critical Value	± 2.64	± 2.62	± 2.64	± 2.62	± 2.63	± 2.62	± 2.63	± 2.62
Significant	yes	yes	no	yes	no	no	yes	yes

NOTE: Units are in days. All significance tests conducted at the 0.01 alpha-level of significance.

Table 11 - Pipeline Segment Calculations After
Removal of Outliers (Air Force vs. Army \#2)

			Transit Time from APOE to APOD				AMC PHT at APOD	
		Possession Time						
	PHT at APOE	TZR	TZL	TZR	TZL	TZR	TZL	TZR
AZL								
Air	MEAN	1.02	1.18	2.67	2.06	0.29	1.67	3.98
Force	STD	0.98	0.79	0.89	0.67	0.47	1.01	1.41
Army	MEAN	2.77	2.32	2.19	2.55	0.15	1.40	5.11
$\# 2$	STD	1.50	1.46	1.13	1.37	0.27	1.15	1.91
Test Statistic	-6.74	-5.60	2.40	-2.68	1.87	1.20	-3.39	-4.04
Critical Value	± 2.65	± 2.62	± 2.63	± 2.62	± 2.63	± 2.62	± 2.63	± 2.62
Significant	yes	yes	no	yes	no	no	yes	yes

NOTE: Units are in days. All significance tests conducted at the 0.01 alpha-level of significance.
cargo was held at the APOE almost twice as long as Air Force cargo (2.32 days
vs. 1.18 days). Additionally, the standard deviations for Army shipments are at
least one-third larger than for Air Force shipments (1.50 days vs. 0.98 days; 1.46 days vs. 0.79 days).
2. Army cargo had a longer transit time from APOE to APOD than Air Force cargo for Tuzla-bound shipments. Army shipments took 19 percent longer to transit from the APOE (Dover) to the APOD (Tuzla) than Air Force shipments to the same destination (2.55 days vs. 2.06 days). Although the results of the twosample t-test indicate a significant difference, the test statistic, -2.68 , is barely outside the range created by the critical value, ± 2.62. Another factor of interest is that the standard deviation for the Army shipments is twice the standard deviation for Air Force shipments (1.37 days vs. 0.67 days).
3. Army cargo had a longer AMC Possession Time than Air Force cargo for both Taszar- and Tuzla-bound shipments. For both destinations, the possession time for Army cargo was 22 percent longer than Air Force cargo (5.11 days vs. 3.98 days; 6.27 days vs. 4.90 days). Furthermore, the standard deviation for Army shipments bound for Taszar is 26 percent larger than for Air Force shipments (1.91 days vs. 1.41 days), and the difference for Tuzla-bound shipments is 47 percent (2.44 days vs. 1.30 days).

Comparison 2: Army Population \#2 versus Army Population \#1. The results of the test between the two Army populations (Table 12) indicate there is only one statistically significant difference between the two populations in terms of the Port Hold Time at the APOD for Taszar-bound shipments.

An examination of the means and standard deviations of the compared populations reveals that Army \#1 cargo had an average PHT at the APOD more than six times that of Army \#2 cargo for Taszar-bound shipments (0.80 days vs. 0.14 days).

Although test results indicate this is a significant difference, both means are less than one day and unlikely to be significant. However, the difference in the range of PHT data for the Army \#1 population runs from 0.0 days to 8.21 days--with only four observations greater than 2.88 days--whereas the range of Army \#2 data is 0.0 days to 0.92 days. This may indicate the existence of more outliers not eliminated or a reflection of events at the APOD. As previously discussed, shipments were removed from the sample population for only two reasons: the time sequence of events was out of order, or the transit time for a particular mission leg fell outside the selected range. Thus, shipments were not eliminated as outliers based on Port Hold Time (PHT).

Table 12 - Pipeline Segment Calculations Before Removal of Outliers (Army \#2 vs. Army \#1)

		PHT at APOE	Transit Time from APOE to APOD		PHT at APOD	AMC Possession Time		
		TZR	TZL	TZR	TZL	TZR	TZL	TZR
TZL								
Army	MEAN	2.71	2.32	2.26	2.55	0.14	1.40	5.11
\#2	STD	1.49	1.46	1.26	1.37	0.27	1.15	1.94
Army	MEAN	2.23	2.41	2.70	3.15	0.80	2.15	5.72
$\# 1$	STD	1.16	1.36	1.36	1.92	1.75	3.47	2.36
Test Statistic	2.04	-0.42	-1.80	-2.56	-3.32	-2.11	-1.50	-3.11
Critical Value	± 2.62	± 2.60	± 2.62	± 2.60	± 2.63	± 2.61	± 2.62	± 2.60
Significant?	no	no	no	no	yes	no	no	yes

NOTE: Units are in days. All significance tests conducted at the 0.01 alpha-level of significance.

Table 13 - Pipeline Segment Calculations After Removal of Outliers (Army \#2 vs. Army \#1)

	PHT at APOE		Transit Timefrom APOE toAPOD		PHT at APOD		AMCPossessionTime	
	TZR	TZL	TZR	TZL	TZR	TZL	TZR	TZL
Army MEAN	2.77	2.32	2.19	2.55	0.15	1.40	5.11	6.27
\#2 STD	1.50	1.46	1.13	1.37	0.27	1.15	1.91	2.44
Army MEAN	2.24	2.47	2.72	2.78	0.92	2.46	5.88	7.71
\#1 STD	1.16	1.28	1.46	1.59	1.89	3.89	2.47	4.33
Test Statistic	2.12	-0.65	-2.06	-0.98	-3.32	-2.15	-1.76	-2.44
Critical Value	± 2.62	± 2.61	± 2.62	± 2.61	± 2.65	± 2.64	± 2.62	± 2.63
Significant?	no	no	no	no	yes	no	no	no

NOTE: Units are in days. All significance tests conducted at the 0.01 alpha-level of significance.

Application of UMMIPS Time Standards

The last area for analysis was a comparison of all three populations against the UMMIPS time standards (Appendix D). The results of this comparison (Table 14) show that 16.7 to 38.6 percent of Army cargo met UMMIPS time standards for AMC

Possession Time (4.5 days) whereas 71.4 percent of Taszar-bound Air Force shipments and 29.4 percent of Tuzla-bound Air Force shipments met the standard. Additionally, while 92.9 percent of Taszar-bound and 85.3 percent of Tuzla-bound Air Force cargo met UMMIPS time standards for PHT at the APOE (2 days), only 39.4 to 52.9 percent of Army shipments met the standards. Because the primary comparison of interest is the difference between RFID-tagged and non-RFID-tagged shipments, the remainder of this discussion will focus on the Air Force and Army \#2 populations.

Table 14 - Comparison of Populations to UMMIPS Time Standards (Percent of Shipments Meeting/Exceeding Standards)

$\left.$| | Location | Population | PHT at APOE | Transit Time
 from APOE
 to APOD | PHT at APOD |
| :---: | :--- | :---: | :---: | :---: | :---: | | AMC |
| :---: |
| Possession |
| Time | \right\rvert\,

NOTE: Reference Table 2 for UMMIPS Time Standards and Appendix D for complete set of calculations.

Several observations may be made about the results listed in Table 14.

1. PHT at APOE. Air Force shipments met the UMMIPS time standards about twice as often as Army shipments for both Taszar- and Tuzla-bound cargo (92.9% vs. 43.2%, and 85.3% vs. 48.4%, respectively).
2. PHT at APOD. Army shipments met the standards more often than Air Force shipments for both destinations (100.0% vs. $92.9 \% ; 47.3 \%$ vs. 14.7%). This is the only pipeline segment where RFID-tagged shipments moved faster than non-RFID-tagged shipments for both destinations of cargo.
3. Air Force shipments met the standards for AMC Possession Time about twice as often as Army shipments for Taszar-bound cargo (71.4\% vs. 38.6\%) and more than 1.5 times as likely for Tuzla-bound cargo (29.4% vs. 18.7%).
4. Throughout the pipeline, Taszar-bound Army shipments met the UMMIPS time standards approximately 40 percent of the time, but at the APOD (Taszar), 100 percent of the shipments met the standard.
5. Air Force Taszar-bound shipments met the UMMIPS time standards for PHT at the APOE and APOD 92.9 percent of the time, yet only 14.3 percent of shipments met the standard for transit time between the APOE and APOD. Additionally, only 71.4 percent of shipments met the standards for AMC Possession Time.
6. Tuzla-bound Army shipments met the UMMIPS time standard for AMC Possession Time less than 20 percent of the time, and never exceeded 48.4 percent in the rest of the pipeline.
7. Tuzla-bound Air Force shipments managed to meet the standard for PHT at APOE 85.3 percent of the time, yet fell below 40 percent for all other pipeline segments. Also, only 14.7 percent (5 of 34 observations) met the standard for PHT at APOD (Tuzla).

Chapter Summary

This chapter presented the methodology used in this analysis. It described how the calculations were made for each of the AMC pipeline segments, method for eliminating outliers, and the comparison of pipeline segment calculations and UMMIPS time standards among the three populations. Chapter IV will present conclusions of this analysis as well as recommendations for future research.

IV. Findings and Conclusions

Chapter Overview

The purpose of this chapter is to synthesize the key findings of this research. It will provide a synopsis of the research conducted, discuss the significant findings and conclusions, and provide suggestions for further research.

Synopsis of Research

The purpose of this research was to study the movement of a set of RFID-tagged shipments to examine the extent this technology affects transportation cycle time through the AMC portion of the Defense Transportation System.

Three populations of data were chosen to examine these areas. Two of the populations consisted of RFID-tagged U.S. Army cargo shipped from the Defense Depot at New Cumberland, Pennsylvania, and shipped to the Bosnia-Herzegovina theater of operations. The third population was used for comparison to the RFID-tagged cargo and consisted of a set of U.S. Air Force shipments destined for the same location. All three populations moved through the same portion of the AMC system--entered the system at Dover AFB, Delaware, transited through Ramstein AB, Germany, and exited the system at either Taszar, Hungary, or Tuzla, Bosnia.

Data collection for the first set of Army cargo required three different information systems. First, a population of RFID-tagged shipments was collected from the USAREUR RF/ITV website. Each of these shipments was a consolidated set of individual shipments identified by a Lead TCN. Therefore, a second information system,

LOTS, was used to limit the population to shipments of high-priority cargo destined for Taszar or Tuzla. Once these TCNs were identified, the third information system, GATES, was used to extract the specific pipeline movement date and time stamps for every portion of the pipeline. Data collected for the first population covered a 7-month timeframe; May to November 1997.

Data collection for the second set of Army cargo was conducted using only two information systems. First, the USAREUR RF/ITV website was used to extract Lead TCNs bound for Taszar and Tuzla. These TCNs were then queried against the GTN website to extract high-priority shipments and the transportation pipeline movement information. The third population of data, Air Force cargo, was extracted completely from the GTN website. Data collected for the second and third populations covered a 60 day period; April to June 1998.

After data collection, outliers were eliminated (Table 8) and key transportation pipeline calculations were made based on UMMIPS pipeline categories (Table 2). Four transportation pipeline calculations were used in this analysis: Port Hold Time (PHT) at the APOE (Dover AFB), transit time between the APOE and the APOD, PHT at the APOD (either Taszar or Tuzla), and AMC Possession Time (total time from entry at the APOE until exit from the APOD).

These four sets of calculations provided the foundation for three sets of comparisons: (1) between non-RFID-tagged (Air Force) cargo versus RFID-tagged (Army) cargo, (2) between the two sets of RFID-tagged Army cargo, and (3) all three populations against the UMMIPS time standards in Table 2.

Summary of Findings

Since the primary comparison of interest is between RFID-tagged and non-RFIDtagged shipments, this discussion will focus on the Air Force and Army \#2 populations.

Research Question One. Do shipments tagged with RFID technology and reported directly to a World Wide Web (WWW) accessible database have an average transit time between the Aerial Port of Embarkation (APOE) and the Aerial Port of Debarkation (APOD) below the average transit time of items not tagged?

For Taszar-bound shipments, there was no reason (no statistically significant difference) to conclude that non-RFID-tagged (Air Force) shipments had a different average transit time between APOE and APOD than RFID-tagged (Army \#2) shipments (Table 10).

For Tuzla-bound shipments, there was a significant difference between the means of the two populations at the 0.01 alpha-level of significance. RFID-tagged (Army \#2) shipments had a longer average transit time between the APOE and APOD than non-RFID-tagged (Air Force) shipments (2.55 days vs. 2.06 days). However, the results of the two-sample t-test show the test statistic, -2.68 , is barely outside the range created by the critical value, ± 2.62. Relaxing the alpha-level of significance to 0.05 , there would be no statistically significant difference between the means. Thus, it is reasonable to conclude that there is no real difference in the transit time between the two sample populations.

Research Question Two. On average, do RFID-tagged shipments have a smaller average Port Hold Time (PHT) than non-tagged shipments?

For both APOEs, RFID-tagged (Army) shipments had a significantly longer average PHT (2.77 days for Taszar cargo and 2.32 days for Tuzla cargo) at the Dover APOE than non-RFID-tagged (Air Force) shipments (1.02 days for Taszar cargo and 1.18 days for Tuzla cargo).

A potential reason for this difference may lie in the characteristics of the shipments used in this analysis. Air Force shipments, in general, arrive at the Dover APOE unpalletized whereas Army shipments are consolidated (palletized) at a consolidation/containerization point (CCP) before arriving at the Dover AFB aerial port. One of the last steps made by an aircraft loadplanner in planning a load is the addition of any available (processed) small pieces of cargo for the scheduled destination. In this case, small pieces of cargo (e.g., 1-cube, 5-pound boxes) are added to a mission more readily than an entire pallet (of any type of cargo).

A second possibility for the longer average PHT of Army cargo is the arrival rate of the pallets at the APOE. If pallets arrive with insufficient time to be processed and ready to load, they would not be selected for an outbound aircraft load and may end up waiting until the next day. Along with the arrival rate is the quantity of pallets arriving at the same time. If large quantities of palletized, RFID-tagged cargo arrive at the APOE at the same time, it could take several airlift missions over several days to clear the backlog of cargo. However, since movement priority is first-in, first-out by transportation priority, this reasoning may not add to the explanation of why the Air Force cargo studied
had significantly less PHT. A third possible explanation is the ability of shipping services to space-block or reserve space on channel missions. Any one or all of the above possibilities may explain the differences seen in PHT between the RFID-tagged (Army) and non-RFID-tagged (Air Force) cargo as observed in this research.

For both APODs, there was no reason (no statistically significant difference) to conclude that non-RFID-tagged (Air Force) shipments had a different average PHT than RFID-tagged (Army \#2) shipments. The average PHT for Army shipments arriving at Taszar was 0.15 days whereas Air Force shipments were held an average of 0.29 days. At Tuzla, Army shipments averaged 1.40 days PHT and Air Force shipments averaged 1.67 days. It is interesting, however, that the PHT for Tuzla is so much larger than the PHT at Taszar.

Research Question Three. On average, do RFID-tagged shipments have a smaller AMC Possession Time (total time between receipt at the APOE and departure from the $A P O D)$ than non-tagged shipments?

Test results indicated--for both Taszar- and Tuzla-bound shipments--that RFIDtagged (Army) shipments had a longer average AMC Possession Time than non-RFIDtagged (Air Force) shipments. Army shipments destined for Taszar had an average AMC Possession Time of 5.11 days and Air Force shipments averaged 3.98 days. Tuzla-bound shipments averaged 6.27 days for Army shipments and 4.90 days for Air Force shipments. Thus, it took more than one day longer for the RFID-tagged (Army) shipments to move through the system than non-RFID-tagged (Air Force) shipments for both destinations of cargo. Because there was no significant difference between the two
populations for either the transit time between the APOE and APOD or the PHT at the APOD, the most likely (and obvious) reason for the difference in AMC Possession Time is the PHT at the APOE as discussed in Research Question Two.

Research Question Four. On average, are RFID-tagged shipments more likely to meet Uniform Material Movement and Issue Priority System (UMMIPS) time standards than non-tagged shipments?

In terms of AMC Possession Time, non-RFID-tagged (Air Force) shipments met the UMMIPS time standard (of 4.5 days) more often than RFID-tagged (Army) cargo. As noted previously, non-RFID-tagged (Air Force) Taszar-bound shipments met the standard 71.4 percent of the time and Tuzla-bound shipments met the standard 29.4 percent of the time. Although a poor performance, RFID-tagged (Army) shipments only met the standard 38.6 percent of the time for Taszar-bound shipments and 18.7 percent of the time for Tuzla-bound shipments.

The pipeline segment contributing the most to this difference is PHT at the APOE. Despite being palletized and ready for onward movement upon arrival at the aerial port, RFID-tagged (Army) shipments only met the UMMIPS time standard (of 2 days) 43.2 percent of the time for Taszar-bound and 48.4 percent of the time for Tuzlabound cargo. In contrast, non-RFID-tagged (Air Force) shipments met the standard 92.9 percent of the time for Taszar-bound and 85.3 percent of the time for Tuzla-bound cargo. See Research Question Two for the discussion of possible explanations.

An examination of PHT at the APOD may provide a partial explanation for the significantly lower percent of Tuzla-bound shipments meeting total AMC Possession

Time UMMIPS standards. At Taszar, significant percentages of both tagged and nontagged shipments met the UMMIPS standard for PHT at APOD (100.0\% and 92.9\% respectively) whereas at Tuzla only 47.3 percent of RFID-tagged and a mere 14.7% of non-RFID-tagged cargo met the standard. Although the reason for this difference in PHT between these two locations is unknown, it provides some explanation for the lengthy AMC Possession Time and the inability to meet the UMMIPS time standard.

Areas for Further Research

These outcomes suggest three possible areas for further research: the effects of IT applications on various decision-making functions; an analysis of logistics information systems and information technology applications used to provide in-transit visibility to decision-makers and end users; and an extension of the research presented in this study.

As stated in the introduction, two things about a shipment are of interest to an end user after the placement of a requisition--the status and expected arrival date. One of the fundamental premises of web-enabled information systems and the use of information technology applications such as RFID is an increase in ITV. Implementation of these systems and applications should provide the end user with sufficient in-transit visibility so as to reduce the need for duplicate requisitions and increase the ability to divert or cancel shipments. Quantifying this effect would provide significant insights into different segments of the Defense Transportation System. What may not be known is how customers are using these information systems to accomplish their organization's objectives or their perception of the systems' usefulness. Further, there are several other
information technology applications in use and in development--optical memory cards and satellite tracking systems--that also provide fertile ground for similar analysis.

At perhaps the other end of the spectrum is the high-level decision-maker looking for easily exploited systems that may be used to analyze different portions of the Defense Transportation System. These users are likely to be looking for information that identifies systemic problems such as transportation pipeline bottlenecks. Research into such topics as the ability of the various logistics information systems and technologies to centralize decision-making may reveal the limits of these systems, but may very well identify new needs and abilities since these systems were conceived of and developed. Another area of interest to all types of planners--strategic, operational, and tactical--is the flexibility and responsiveness of these systems as an aid to moving cargo within the DTS. Further, how is all of the extensive shipment information provided by these systems and technologies actually being used in decision-making?

One of the pleasures of research is finding a database of information from which it is easy to extract the specific data required for analysis. In this study, the web-based Global Transportation Network (GTN) was used to collect data for two of the three populations under study. Although there was some frustration in getting to the actual database, this system has a lot of functionality for the end user, and it is getting better for the researcher as well. Query screens (Figure 5) were clear and specific although somewhat technical for those not familiar with logistics community terminology. This is mitigated in part by help screens and a toll-free phone number to a help desk. This system is still in its infancy and several additions and improvements to the system are
planned. It would be interesting to trace the migration of this system to its current state and analyze the impact it has had on movement of DoD material.

Finally, because this research was the first effort to quantify the effects of RFID technology on logistics cycle time, several elements were discarded in an effort to create a baseline for further research--as well as present some initial conclusions. To that end, there are several ways that this particular research effort could be extended. In particular, what are the factors in Port Hold Time (PHT)? What variables, if controlled, would contribute to a lower PHT? What are some specific technologies that could streamline aerial port handling and thus reduce PHT? These questions, along with the following proposed research areas, could extend this baseline research.

First, a continuous and extended collection of the type of data included in the Air Force and Army \#2 populations may reveal start-up effects from the implementation of the Radio Frequency/In-Transit Visibility system. As this system has only been operational since December 1995, improvements, additions, and policies are continually being made which may change this study's outcome. Second, no attempt was made to analyze the effect that shipments not considered in this research such as classified or green-sheeted cargo had on the sample populations examined. Third, an examination of populations of cargo moving under lower transportation priorities may yield interesting results. Fourth, because all Army cargo going into the Bosnia-Herzegovina theater of operations is RFID-tagged, non-tagged and palletized Army cargo was not considered for study. Thus, further research should attempt to find a population of this type that would
be comparable in order to discover the effect of palletization prior to arrival at the APOE has on transportation pipeline cycle time.

Conclusions

As discussed in the introduction, there is a perception in DoD that ITV--in the form of Radio Frequency Identification (RFID) technology--will improve transit time through the Air Mobility Command (AMC) portion of the Defense Transportation System (DTS). The results of this research indicate there is some basis for rejecting this notion. The research results point very strongly to the conclusion that RFID-tagged shipments generally move slower than non-RFID-tagged shipments.

First, there are differences in terms of PHT at the APOE. RFID-tagged shipments waited 2 to 2.5 times longer than non-RFID-tagged shipments at the APOE and the variability of the PHT for RFID-tagged shipments was 1.5 to 2 times greater than for non-RFID-tagged shipments. Second, shipments of RFID-tagged cargo destined for Tuzla had a 22 percent longer average transit time between the APOE and APOD than non-RFID-tagged cargo and had 2 times greater variability. [NOTE: Since tagged and non-tagged cargo travel on the same aircraft together and transit time between locations is stable over time, it would be reasonable to attribute this variability to the Port Hold Time at Ramstein AB.] Finally, in terms of total average AMC Possession Time, RFIDtagged shipments were in the AMC system 19 percent longer than non-RFID-tagged shipments and also possessed a larger variability.

From these conclusions, several questions remain. First, RFID-tagged cargo met the UMMIPS time standard better than non-RFID-tagged cargo in only one significant
area--PHT at the APOD. Why is this so? Perhaps it is a consequence of the added ITV provided by the RFID technology (the end user knows it has arrived) or it may be a coincidence of the operations at the APOD (neglecting to process the shipment out of the system or a sporadic schedule of pick-ups).

Second, the results of this study may be partially explained by the scope and limitations of this study as identified in Chapter I. Although there is an inclination to suspect that Air Force shipments are given priority over Army shipments at the APOE, the more likely explanation is the characteristics and nature of the cargo being shipped (see explanation under Summary of Findings, Research Question Two). An examination of each area discussed in Chapter I may reveal more possibilities.

Ultimately, the RFID technology described throughout this research is intended to aid the end user; it was not intended to benefit the different transportation nodes. The original purpose behind the implementation of this technology was to enable the requisitioning unit to know where their supplies are and when to expect them; it was not intended to decrease cycle time. However, RFID technology should be expected to help the military plan its shipments, improve readiness and combat capability, and reduce duplicate requisitions. These benefits are a result of the increased shipment visibility RFID technology provides. Technology is frequently called upon to solve problems, but knowing what it may properly be called upon to do can save resources and make a job easier or even possible. Various identification technologies lend themselves to benefit different parts of the supply chain. Decision-makers should be able to use this research
as baseline evidence of the above argument and pursue an analysis of whether this technology delivers on its intended purpose.

Appendix A: Army Population \#1 Data

Table 15 - Column Header Definitions for Appendices A, B, and C

Column Header	Definition
TCN	Transportation Control Number
APOE Rcpt	Receipt at Aerial Port of Embarkation (Dover)
APOE Lift	Departure from Aerial Port of Embarkation (Dover)
Intransit Rcpt	Receipt at intransit location (Ramstein)
Intransit Lift	Departure from intransit location (Ramstein)
APOD Rcpt	Receipt at Aerial Port of Debarkation (Taszar or Tuzla)
APOD Lift	Departure from Aerial Port of Debarkation (Taszar or Tuzla)
APOE PHT	Port Hold Time at Aerial Port of Embarkation (Dover) = APOE Lift - APOE Receipt
Transit to RMS	Transit time to Ramstein from Dover = Intransit Receipt - APOE Lift
Intransit PHT	Port Hold Time at intransit location (Ramstein) = Intransit Lift - Intransit Receipt
Transit to APOD	Transit time to Aerial Port of Debarkation (Taszar or Tuzla) from Ramstein = APOD Receipt - Intransit Lift
Intransit Overseas	Total transit time from Aerial Port of Embarkation to Aerial Port of Debarkation = APOD Receipt - APOE Lift
APOD PHT	Port Hold Time at Aerial Port of Debarkation (Taszar or Tuzla) = APOD Lift - APOD Receipt
AMC PT	Air Mobility Command Possession Time = APOD Lift - APOE Receipt

NOTE: Times for Appendices B and C are formatted as a military time followed by a julian date; for example, "1800 8150" translates to "6:00 PM 31 May 98."

TCN	APOE Rcpt	APOE Lift	Intransit Rept	Intransit Lift	APOD Rept	APOD Lift
APOD $=$ Taszar (TZR)						
SV312371423024XXX	5/27/97 6:00 PM	5/29/97 7:00 AM	5/29/97 3:00 PM	5130/97 6:00 AM	5/30197 7:00 AM	5/30/97 3:00 PM
SW312371433042XXX	5/29/97 4:00 PM	6/3/97 11:00 PM	614197700 AM	6/61975:00 AM	616/97 8:00 AM	616/97 11:00 AM
SW312371443071XXX	5/28/97 10:00 PM	5/30197 8:00 AM	5130197 4:00 PM	6M197 6:00 AM	6M197 8:00 AM	6M197 12:00 PM
SN312371503138XXX	6/3/97 1:00 PM	686997 1:00 AM	616197 10:00 AM	6/797 5:00 AM	6/7197 7:00 AM	67/97 10:00 AM
SN312371513150xXX	6/2997 8:00 PM	6/6.97 1:00 AM	615/97 10:00 AM	6/8997 5:00 AM	68897 8:00 AM	6/8/97 10:00 AM
SN312371573253XXX	6,9/97 6:00 PM	6M11975:00 AM	6 M 197 2:00 PM	6M3979 1:00 PM	6/13/973:00 PM	6M4197 6:00 AM
SN312371583263XXX	6/9/97 6:00 PM	6M1197 5:00 AM	6M1197 2:00 PM	6M 4/97 6:00 AM	6M 4/97 8:00 AM	6M4197 9:00 AM
SW312371673422XXX	6M8/97 12:00 PM	6/23/97 11:00 PM	624/97 7:00 AM	6/25/97 6:00 AM	6125/97 7:00 AM	6/25/97 11:00 AM
SW312371673425×XX	6M9197 12:00 PM	6/20/97 3:00 AM	6/20197 11:00 AM	6/21/97 9:00 AM	6/21:97 12:00 PM	6/24/97 9:00 AM
SW312371703474XXX	6/21/97 4:00 PM	6/23/97 11:00 PM	8/24/97 7:00 AM	6/28/97 12:00 PM	6/261973:00 PM	6/27197 6:00 AM
SN312371703477XXX	6/21/975:00 PM	6/23/97 11:00 PM	6/24/97 7:00 AM	6/26/97 6:00 AM	6/26/97 8:00 AM	6/26/97 12:00 PM
SW312371703483) ${ }^{\text {S }}$	6/23/97 8:00 PM	6/25/97 3:00 AM	625197 12:00 PM	6/26/97 12:00 PM	6/26/97 3:00 PM	6/27197 6:00 AM
SW312371743512x0x	6/25/97 12:00 PM	6/27973:00 AM	6/27/97 12:00 PM	6/29197 5:00 AM	6/29/97 8:00 AM	6130197 7:00 AM
SNV312371753525×KX	6/26/97 2:00 PM	6130197 3:00 AM	6/30/97 11:00 AM	7M1976:00 AM	7M/97 8:00 AM	7M197 10:00 AM
SW312371753528×XX	6/26/97 2:00 PM	712197 3:00 AM	7/2197 12:00 PM	7/4/97 6:00 AM	7/41979:00 AM	7/4/97 9:00 AM
5W312371753531 X X	6/26/97 12:00 PM	6/27/97 3:00 AM	6/27197 12:00 PM	6/29/97 5:00 AM	6/29/97 8:00 AM	6/30197 7:00 AM
SW312371773553KXX	6/28/97 12:00 PM	6/30197 3:00 AM	6130197 11:00 AM	7M197 6:00 AM	7M1978:00 AM	7M197 10:00 AM
SVM312371783572xXX	6/30/97 11:00 AM	$7 / 21973: 00 \mathrm{AM}$	7/2997 12:00 PM	7/4/976:00 AM	7/4/979:00 AM	7/41979:00 AM
SW312371843624XXX	77197 1:00 PM	719197 4:00 AM	719197 12:00 PM	7M2197 6:00 AM	7M2/97 8:00 AM	7/14197 6:00 AM
SW312371843628×XX	77/97 1:00 PM	7/9197 4:00 AM	79197 12:00 PM	7M1976:00 AM	7M1/97 7:00 AM	711197 8:00 AM
SW312371883642XXX	719/97 1:00 PM	7M01979:00 AM	7M0/975:00 PM	7M2979 6:00 AM	7M2197 8:00 AM	7M4197 6:00 AM
SN312371883644KXX	79997 1:00 PM	7M3197 4:00 AM	7/13/97 1:00 PM	7M597 6:00 AM	7M5197 8:00 AM	7M5197 3:00 PM
SW312371913687XXX	7M2997 11:00 AM	7M6/97 12:00 AM	7M6/97 8:00 AM	7M9197 6:00 AM	719197 8:00 AM	7/20197 6:00 AM
SN312371913697KXX	7/12/97 2:00 PM	7M6/97 12:00 AM	7M6197 8:00 AM	7M8997 12:00 PM	7M8197 2:00 PM	7M8197 3:00 PM
SW312371983775XXX	7M8/97 11:00 PM	7/21/97 8:00 PM	7/22/97 5:00 AM	7/24/97 8:00 AM	7/24/9710:00 AM	7/24/97 12:00 PM
SN312371993795XXX	749997 12:00 PM	7/21/978:00 PM	7/22/97 5:00 AM	7/24197 8:00 AM	7/24/97 10:00 AM	7/24/97 12:00 PM
SW312371993802 XXX	7/21:9712:00 PM	$7 / 23 / 97$ 3:00 AM	7/23/97 11:00 AM	7/27197 6:00 AM	7/27/97 9:00 AM	7/27/97 11:00 AM
SW312372023835xXX	7/229775:00 PM	7/25/97 3:00 AM	7/25/97 12:00 PM	7/27/97 12:00 PM	7/27/97 3:00 PM	729197 7:00 AM
SN312372023839XXX	7/22977 6:00 PM	7/25/97 3:00 AM	7/25/97 12:00 PM	7/27/97 12:00 PM	7127197 3:00 PM	7129197 7:00 AM
SN312372033869xXX	7/24/97 1:00 PM	7128197 4:00 AM	7/28/97 12:00 PM	7131/97 5:00 AM	7831/97 8:00 AM	7131197 10:00 AM
SN312372033871 XXX	7/24/975:00 PM	7/28197 4:00 AM	7/28197 12:00 PM	7130197 1:00 PM	7130197 3:00 PM	731/97 6:00 AM
SN312372063937XXX	7/28/97 2:00 PM	7130197 2:00 AM	7/30/97 10:00 AM	8/2977 6:00 AM	8/2/97 8:00 AM	8/2197 9:00 AM
SW312372113996xxX	7131/97 6:00 PM	8/2/97 2:00 AM	8/2/97 10:00 AM	816197 6:00 AM	816197 8:00 AM	877/97 5:00 AM
SN312372114015 XXX	8M197 12:00 PM	8/3/97 9:00 PM	814/97 6:00 AM	816197 6:00 AM	816197 8:00 AM	8/7/97 5:00 AM
SN312372174100XXX	8/6/97 3:00 PM	811197 8:00 AM	8M1197 4:00 PM	8M3197 6:00 AM	8/3197 7:00 AM	8M1497 1:00 PM

TCN	APOE Rept	APOE Lift	Intransit Rept	Intransit Lift	APOD Rept	APOD Lift
SW1312372194143xXX	8/8/97 5:00 PM	8M0:97 2:00 AM	8M0197 12:00 PM	8912976:00 AM	8M2197 9:00 AM	8M2979 9:00 AM
SNB12372194144XXX	8/8/97 5:00 PM	8M0197 2:00 AM	8M0:97 12:00 PM	8M2976:00 AM	8M2197 9:00 AM	8M2197 9:00 AM
SNY312372204168xXX	8/9/97 2:00 PM	8M2/97 4:00 AM	8M2/97 12:00 PM	8/14/97 6:00 AM	8M 4197 9:00 AM	8/14/97 10:00 AM
SN1312372234205xXX	8M2/97 8:00 PM	8M 4/97 8:00 AM	8144/97 3:00 PM	815197 6:00 AM	8M5197 9:00 AM	8M5197 12:00 PM
SW312372254255xxX	818197 1:00 PM	8/20/97 2:00 AM	8,20197 11:00 AM	8/22/97 7:00 AM	8/22197 10:00 AM	8/23197 9:00 AM
SN312372264269xXX	8M8/97 4:00 PM	8/20197 2:00 AM	8,20197 11:00 AM	822/97 7:00 AM	8/22197 10:00 AM	823/97 9:00 AM
SW312372334370xxx	8/22/97 12:00 PM	8125/97 4:00 AM	8/25/97 11:00 AM	8/27/97 6:00 AM	8127197 9:00 AM	8:27/97 12:00 PM
SNW312372384436xXX	8/27/97 4:00 PM	8130/97 1:00 AM	8/30/979:00 AM	9M1975:00 AM	9M1977:00 AM	M
SN/312372454565 KXX	9/3/97 7:00 PM	9/6/97 2:00 AM	916197 10:00 AM	9/1975:00 AM	9/71977:00 AM	9/7197 8:00 AM
SN1312372521040xXX	9M11/97 4:00 PM	9M5/97 12:00 PM	9M51978:00 PM	9M7197 6:00 AM	9M7197 9:00 AM	917797 9:00 AM
SW312372551106xXX	9/18/97 7:00 PM	9/21/97 8:00 PM	9/22/97 5:00 AM	9/23/97 7:00 AM	9/23/97 9:00 AM	9:23/97 1:00 PM
SNB12372729418×XX	9/30/97 8:00 PM	1013/97 4:00 AM	10/3/97 12:00 PM	10/4/97 5:00 AM	10/4/97 8:00 AM	10/4/97 8:00 AM
SW312372799516xXX	10/7197 11:00 AM	1091977 3:00 AM	101997 11:00 AM	10M1/97 6:00 AM	10M11978:00 AM	10M2997 7:00 AM
SN312372819582XXX	10M0997 12:00 PM	10M2977 4:00 AM	10M 2197 12:00 PM	10M8997 12:00 PM	10 M 8197 3:00 PM	10/20197 3:00 PM
SWV312372819586xXX	10M0/97 3:00 PM	1013397 1:00 AM	1013197 10:00 AM	10M8/97 8:00 AM	10M8/97 10:00 AM	1098/97 11:00 AM
SN312372819588×XX	1010197 3:00 PM	10M3/97 1:00 AM	1013197 10:00 AM	10M5/97 6:00 AM	10M5197 8:00 AM	1015197 8:00 AM
SN/312372849632xXX	10/4/97 12:00 PM	10M6197 12:00 AM	1016197 9:00 AM	10M8997 12:00 PM	10M8197 3:00 PM	10/20/97 3:00 PM
SN312372889672 2 XX	10M7197 5:00 PM	1021/97 9:00 PM	10122977 5:00 AM	10/24/97 9:00 AM	10/24/97 11:00 AM	10/24/97 12:00 PM
SN31237293D697XXX	10/22/97 2:00 PM	10/26/97 2:00 PM	10/26197 11:00 PM	10/28/97 7:00 AM	10/28/97 10:00 AM	10:28/97 2:00 PM
SW312372970774XXX	10/25/97 12:00 PM	10:26i97 9:00 PM	10127197 5:00 AM	10/28/977:00 AM	10/28/97 10:00 AM	10/28197 2:00 PM
SN1312372970790××X	10/25/97 $6: 00 \mathrm{PM}$	10/27/97 3:00 PM	10/27197 11:00 PM	10/31/97 1:00 PM	10131/97 3:00 PM	10131197 3:00 PM
SN131237298D804XXX	10/28/97 8:00 PM	10130197 5:00 AM	10/30/97 1:00 PM	11/5197 7:00 AM	11/5197 10:00 AM	11/5/97 10:00 AM
SW131237298D810xXX	10/28/97 1:00 PM	10/29/97 12:00 PM	10/29997 10:00 PM	11/3/97 7:00 AM	11/3197 9:00 AM	11/4/97 6:00 AM
SW31237298D812XXX	10/28/97 1:00 PM	10/29/97 12:00 PM	10/29197 10:00 PM	11/1977 2:00 PM	11M197 4:00 PM	11/2197 7:00 AM
SW1312373000821 XXX	10128/97 8:00 PM	10130/97 5:00 AM	10130/97 1:00 PM	11/5/97 7:00 AM	11/5/97 10:00 AM	11/5/97 10:00 AM
SW31237301D832XXX	10/30/97 8:00 PM	11M/97 6:00 AM	11M97 2:00 PM	11/3/977:00 AM	1131979:00 AM	11/4/97 6:00 AM
SN31237301D833XXX	10/30997 8:00 P	11/9197 6:00 AM	119197 2:00 PM	11/7977:00 AM	11/71979:00 AM	11/15/97 2:00 PM
SN/31237303D878×XX	11/1/97 1:00 PM	11/2/975:00 AM	11/2197 1:00 PM	11/797 7:00 AM	11/7979:00 AM	11/15/97 2:00 PM
SN/31237305D925XXX	11/3/97 8:00 PM	11/5/97 3:00 AM	115197 11:00 AM	11/1977:00 AM	11/7197 9:00 AM	11/15197 2:00 PM
SW31237305D928XXX	11/3/97 8:00 PM	11/5/97 3:00 AM	11/597 11:00 AM	11/8197 6:00 AM	11/8197 8:00 AM	11/15/97 2:00 PM
SW31237305D929)XXX	11/4/97 2:00 PM	11/7/97 1:00 AM	11/797 10:00 AM	11/9/97 6:00 AM	11/9197 9:00 AM	11/91979:00 AM
SW312373110024×XX	11/8/97 8:00 PM	11/9297 5:00 AM	11/12/97 12:00 PM	11M3/976:00 AM	11M3197 9:00 AM	11/33979 9:00 AM
SW31237321D205×XX	11/91976:00 PM	11/21/97 4:00 AM	11/21/97 1:00 PM	11/291978:00 AM	11/29/97 11:00 AM	11/29/97 11:00 AM

TCN	APOE Rept	APOE Lift	Intransit Rept	Intransit Lift	APOD Rcpt	APOD Lift
TCNs listed below this line are outliers for the Taszar APOD						
SW312371272785KXX	5/9/97 5:00 PM	5M11975:00 AM	5M1197 1:00 PM	5M3/97 5:00 AM	5M3/97 2:00 PM	5/13/97 2:00 PM
SW312371402995 KXX	5/23/97 1:00 PM	5/25/97 3:00 AM	5/25/97 11:00 AM	5/27/97 5:00 AM	5127197 9:00 AM	5/27/97 9:00 AM
SW312371613306XXX	6M1197 7:00 PM	6M5197 3:00 AM	6M5/97 11:00 AM	6M7197 4:00 AM	617197 11:00 AM	6118197 8:00 AM
SW312371623335 X X	6M2/97 8:00 PM	6M5197 3:00 AM	6M597 12:00 PM	6M7197 4:00 AM	6M7/97 11:00 AM	6M8.97 8:00 AM
SW312371713493 ${ }^{\text {WXX }}$	6124/97 12:00 PM	6/26197 2:00 AM	6/26/97 12:00 PM	6/28197 5:00 AM	6128197 9:00 AM	6/28/97 12:00 PM
SW312372254243 KXX	8/4197 7:00 PM	8M6197 2:00 AM	816197 10:00 AM	8.17197 5:00 AM	8M7197 9:00 AM	$8 \mathrm{M} 79712: 00 \mathrm{PM}$
SW312372889671 K K	10M7/97 5:00 PM	10/21/97 9:00 PM	10/21/97 5:00 AM	10/24/97 9:00 AM	10/24/97 11:00 AM	10/24/97 12:00 PM
SW312372960746XXX	10/24/97 2:00 PM	10/26/97 2:00 PM	10/26/97 11:00 PM	10ß30/97 6:00 AM	10130197 11:00 AM	10/30/973:00 PM
SW31237296D753XXX	10/24/97 6:00 PM	10/29/97 12:00 PM	10/29/97 10:00 PM	11M 97 6:00 AM	11M/97 2:00 PM	11M97 2:00 PM
SVV31237298D808XXX	10/28/97 1:00 PM	10/29/97 12:00 PM	10/29/97 10:00 PM	11M197 6:00 AM	11M9972:00 PM	1119197 2:00 PM
SW31237300D8180XX	10/28/97 8:00 PM	10130/97 5:00 AM	10/30/97 1:00 PM	11M97 6:00 AM	11M/97 2:00 PM	119197 2:00 PM
SW312373000822××X	10/28/97 4:00 PM	10/29197 12:00 PM	10/29/97 10:00 PM	11M 97 6:00 AM	11M197 2:00 PM	11 M 197 2:00 PM
SW312373110028×0\%	11/8/97 6:00 PM	11/11/97 4:00 AM	11M1/97 12:00 PM	11M2197 6:00 AM	1113/97 12:00 PM	1143/97 1:00 PM
g POL = TURTM (TEL						
SVW312371282807 XXX	5M0/97 11:00 AM	$5 \mathrm{M1/97} 5: 00 \mathrm{AM}$	5M1197 1:00 PM	5M2197 11:00 AM	5/12/97 12:00 PM	5127/97 7:00 AM
SVI312371322848×KX	5/13/97 12:00 PM	$51771971: 00 \mathrm{AM}$	5M7197 9:00 AM	5M8/97 6:00 AM	5118197 8:00 AM	6/6197 9:00 AM
$5 \sim 312371332868 \times \times \times$	5/15/97 11:00 AM	5M8197 4:00 AM	5M8197 12:00 PM	5/21/97 11:00 AM	5/21/97 1:00 PM	6:6/97 9:00 AM
SW312371342886KXX	5M5197 9:00 PM	519197 3:00 AM	5M9197 11:00 AM	$5123 / 97$ 4:00 AM	5/23/97 7:00 AM	5/27/97 7:00 AM
SW312371352898× $\times \mathrm{X}$	$5 \mathrm{M6/9711:00} \mathrm{AM}$	5M9/97 3:00 AM	5M997 11:00 AM	5/23/97 4:00 AM	5/23/97 7:00 AM	6/6/97 9:00 AM
$5 \mathrm{~S} 312371352987 \times \times \mathrm{X}$	5M6197 11:00 PM	5M91973:00 AM	5M9197 11:00 AM	5/21/97 11:00 AM	521/97 1:00 PM	5/27/97 7:00 AM
$5 \mathrm{~S} 312371402984 \times \times X$	5/22/97 11:00 AM	5/24/97 1:00 AM	5/24/97 10:00 AM	5/26/97 4:00 AM	5/26197 7:00 AM	5/29/97 11:00 AM
SN312371402987KXX	5/22197 11:00 AM	524197 1:00 AM	5/24/97 10:00 AM	5/26/97 4:00 AM	5/26197 7:00 AM	616/97 9:00 AM
SW $312371433048 \times \times x$	5/29/97 4:00 PM	6/6/97 1:00 AM	616197 10:00 AM	6/8/97 4:00 AM	6/8/97 7:00 AM	6/8/97 8:00 AM
SM312371483107XXX	5/30/97 1:00 PM	6/3/97 8:00 AM	6/3975:00 PM	6/4/97 11:00 AM	6/4/97 2:00 PM	616197 9:00 AM
$5 W 312371553203 \times \times X$	6/6197 8:00 AM	6181973:00 AM	6/8/97 12:00 PM	619197 8:00 AM	819197 12:00 PM	6/9197 2:00 PM
SNV12371563223××X	6/6/97 7:00 PM	6/9/97 7:00 AM	699/97 3:00 PM	6M1197 12:00 PM	6M1/97 4:00 PM	6M2197 1:00 PM
$5 W 312371563236 \times \times x$	6/7197 6:00 PM	6/9/97 6:00 AM	619/97 2:00 PM	6M0197 1:00 PM	6M0/97 4:00 PM	6M2197 9:00 AM
$5 \mathrm{~N} 312371563240 \times \times \mathrm{x}$	6/7/97 5:00 PM	6/9/97 6:00 AM	619/97 2:00 PM	6M0/97 1:00 PM	6M0197 4:00 PM	6M2/97 1:00 PM
SN312371573252XXX	619/97 6:00 PM	6M1197 5:00 AM	$6 \mathrm{M1197} 2: 00 \mathrm{PM}$	6M3/97 5:00 AM	6M3197 8:00 AM	6.14/97 6:00 AM
$5 N 312371583273 \times \times X$	6M0/97 12:00 PM	6M1197 9:00 AM	6M1197 6:00 PM	6.12197 2:00 PM	6M297 4:00 PM	6113/97 11:00 AM
SNY12371603284×XX	6M0/97 5:00 PM	6M1197 7:00 AM	6M1197 5:00 PM	6M 2197 2:00 PM	6M2197 4:00 PM	6M3/97 11:00 AM
	611197 7:00 PM	6/15/97 3:00 AM	6M5/97 12:00 PM	6M6M97 5:00 AM	6M6197 8:00 AM	6M6972:00 PM
$5 \mathrm{~W} 312371623328 \times \times X$	6M2197 7:00 PM	6M5197 3:00 AM	6M5/97 12:00 PM	6/16197 12:00 PM	6M6197 2:00 PM	616/97 5:00 PM
SWY312371633356×XX	6M3197 6:00 PM	6M6/97 2:00 AM	6M6197 10:00 AM	6M7/97 5:00 AM	6117197 7:00 AM	6 M 7197400 PM
SW312371633358××X	6116/97 12:00 PM	$61781972: 00 \mathrm{AM}$	6M8197 10:00 AM	6/20197 4:00 AM	620197 5:00 AM	621/97 5:00 AM

TCN	APOE Rcpt	APOELift	Intransit Rcpt	Intransit Lift	APOD Rcpt	APOD Lift
SW31237301D857XXX	10/29997 11:00 PM	11/2977 9:00 AM	112/97 6:00 PM	11/5997 1:00 PM	1115,97 4:00 PM	118897 3:00 PM
SW31237303D892xXX	11M1974:00 PM	112/97 5:00 AM	11/2977 1:00 PM	11/4/977 4:00 PM	11/49775:00 PM	11/8977 3:00 PM
SW31237308D978XXX	1171975:00 PM	11M0997 11:00 PM	11/11 1977:00 AM	11M3/97 2:00 PM	11/13997 5:00 PM	11/4/97 2:00 PM
SW312373100000×XX	11/1975 5:00 PM	11M0997 11:00 PM	11/11 1977:00 Am	11/M3/97 2:00 PM	M	11/1497 2:00 PM
SW312373100018XXX	118897 4:00 PM	11/12975 5:00 AM	11M297 12:00 PM	11/15/97 3:00 PM	11/M5977 7:00 PM	11 M 6
SW31237311D031 ${ }^{\text {KXX }}$	11/ 0197 2:00 PM	11/ 11997 6:00 AM	11/1197 2:00 PM	11/44/97 8:00 AM	11/1497 12:00 PM	11M5997
SW312373160103xXX	1/4/97 2:00 Am	11M697 4:00 AM	11M697 12:00 PM	11/26/97 3:00 PM	11/26997 7:00 PM	11/299978:00 AM
SW31237319D170xxX	11/179978:00 P	11/19/97 2:00 AM	11/9997 12:00 PM	11/27/979:00 AM	11/27/97 12:00 PM	11/299978:00 AM
SW312373230252XXX	11/21/37 2:00 PM	11/25:97 4:00 AM	11/25197 12:00 PM	M	M	M
TCNs listed below thls line are outliers for the Tuzla APOD						
W312371352904XXX	5/18/97 11:00 PM	5/19,973:00 AM	519997 11:00 AM	5/21/97 5:00 AMM	521979:00 AM	
SW312371953723xxx	7M5/97 8:00 PM	717797 4:00 AM	7M7197 12:00 PM	7M8197 4:00 PM	7M8977 4:00 PM	M
SW31	7/24/97 5:00 PM	712997 2:00 AM	730987 7:00 AM	8889710:00 AM	81897 10:00 AM	M
SW31	726197 9:00 PM	730197 2:00 AM	730997 10:00 AM	813/97 4:00 AM	AM	-
SW31	7130197 4:00 PM	8M197 1:00 AM	841979:00 AM	82/97 2:00 PM	PM	M
SW312372551102XXX	9M19697 6:00 PM	9M1977 2:00 AM	9M8/97 10:00 AM	9M9/97 12:00 PM	A	M
SW312372561124XXX	9M5/97 6:00 PM	9M7973:00 AM	9177979:00 AM	919/97 12:00 PM	M	M
SW312372669285XXX	9/25/97 4:00 PM	9128977 5:00 AM	M	9130197 5:00 AM	M	M
SW312372699382XXX	9130/97 4:00 PM	10M197 9:00 PM	102/97 8:00 AM	1015/978:00 AM	M	M
SN3	9/27/97 9:00 PM	9/299771:00 AM	9/2997 9:00 AM	103/97 1:00 PM	M	-
SN3	10M197 7:00 PM	101397 4:00 AM	101397 12:00 PM	1018	M	M
SN31	1013/97 8:00 PM	1061	10.697	101897 5:	M	M
SW3	10M7	10200977 11:00	10/201978:00	10/21/97 1:0	10/22997 7:00 AM	10/24/97 6:00 PM
SW3	1098197	1020/87 11:00 AM	1012097 8:00 PM	1022/97	10222/97 5:00 PM	1024/97 6:00 PM
SW31	1025/97 12:00	1027797 3:00 PM	10/27/97 11:00 PM	10130/97 2:00 PM	10131977 10:00 AM	0/3197 10:00 AM
SW312372970788	10/25/97 6:00 PM	1029197 4:00 AM	10/29997 1:00 PM	10130997 3:00 PM	103	M
SW312372980811	10/28997 1:00 P	10/29997 12:00 PM	10/29/97 10:00 PM	10/31/97 2:00 PM	11/1/97 12:00 PM	11/397 7:00 Am
SW312373000827XXX	1022997 3:00 PM	10131/97 6:00 AM	10131/97 1:00 PM	111/977:00 AM	11/3197 7:00 AM	11/3197 7:00 AM
SW312373000831 XXX	10/30197 8:00 PM	11/1977 5:00 AM	11M972:00	11/2979:00 PM	11/31977:00 AM	11/3197 7:00 AM
SW312373010	10299197 3:00 P	10/31/97 8:00 AM	10131/97 1:00 PM	11/1997 2:00 PM	11/3977:00 AM	11/3977 7:00 AM
SW31237301D8	10/30/97 1:00 AM	11/2977 9:00 AM	11/2976 6:00 PM	11/597 6:00 AM	11/5/97 3:00 PM	11,8/97 3:00 PM
SW31237302D866xxx	1031/97 3:00 AM	11/1977 6:00 AM	11/91972:00 PM	11/2197 2:00 PM	11/3977:00 AM	11/3/97 7:00 AM
SW31237303D876xxx	11/19797:00 PM	1112977 5:00 AM	11/2971:00 PM	11/5/97 7:00 AM	11/5/97 3:00 PM	11/81977 3:00 PM
SW31237304D906xXX	11131975:00 PM	115/97 3:00 AM	1115/97 11:00 AM	11/15/979:00 AM	11/15977 7:00 PM	11/16/97 11:00 AM
5N31237304D912XXX	11/3/97 5:00 PM	1155977 3:00 AM	11/5/97 11:00 AM	11/1/97 7:00 AM	11/697 2:00 PM	11/81977 3:00 PM
SW31237304D921XX	11/31975:00 PM	1144977:00 AM	11/4/97 4:00 PM	11110997 7:00 AM	11110/97 5:00 PM	11/12:977 8:00 Am

늦ㄴ					${ }^{\circ} \mathrm{M}$	$\stackrel{9}{9}$	$\begin{gathered} \underset{\sim}{\sim} \\ \stackrel{N}{\sim} \\ \hline \end{gathered}$		$\stackrel{M}{2}$	8	¢	8	$\begin{gathered} N \\ \infty \end{gathered}$	5	$\stackrel{8}{7}$	$\stackrel{\otimes}{\square}$	0			$\stackrel{9}{9}$	\cdots		
$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \alpha \end{aligned}$					$\underset{y}{9}$		$\begin{aligned} & 8 \\ & \hline \end{aligned}$	9	$\stackrel{N}{N}$	¢			8	${ }_{0}^{8}$	F	\％		\％	\％	N	$\stackrel{-}{-}$	\％	－
		 			$\xrightarrow[\mathrm{N}]{\square}$		$\underset{\square}{\square}$	N	NへN	n N N	N／	¢	$\stackrel{0}{0}$	$\stackrel{\sim}{n}$	N	\％	$\stackrel{\mathrm{M}}{\mathrm{N}}$	¢	0	N	9	－	$\stackrel{\sim}{\sim}$
					8	50	$\stackrel{M}{\sigma}$	50	$\stackrel{8}{\circ} \stackrel{9}{\circ}$	$\stackrel{9}{5}$	${ }^{\circ}$	$\stackrel{m}{c}$	$\underset{\circ}{\circ}$	$\stackrel{-}{\circ}$	\cdots	\cdots	\cdots	O\％	$\stackrel{8}{\circ}$				O
		$\stackrel{\square}{6}$			${ }_{\square}^{\infty}$		\cdots	，	$\stackrel{\sim}{\sim}$	\sim	\sim	$\stackrel{\sim}{n}$	∞	\square_{0}^{∞}	$\stackrel{\square}{\circ}$	$\stackrel{8}{8}$	8	8	$\stackrel{\circ}{\circ}$	5	8		n
					$\stackrel{9}{9}$	$\stackrel{8}{\circ}$	$\stackrel{3}{\circ}$	\bigcirc	38	9	$\stackrel{\square}{\circ}$	\％	${ }_{0}^{0} 0$	$\stackrel{9}{\circ}$	$\stackrel{ल}{\circ}$	$\stackrel{9}{\circ}$	$\stackrel{\infty}{8}$	$\stackrel{\square}{8}$		$\stackrel{\%}{0}$	\％		$\stackrel{M}{m}$
$\begin{aligned} & \text { 足信 } \\ & 0 \\ & \hline \end{aligned}$					雩	N¢	${ }^{\text {Nam }}$	\％	\cdots	？	9\％	20	$P G$		¢	W	9	\％		$\stackrel{\varrho}{\infty}$	$\stackrel{M}{\mathrm{~N}}$		0
S								\times \times \times \mathbf{N}^{2} $\stackrel{N}{5}$ $\stackrel{N}{5}$ 8			XXX8tOEETLLEZLENIS												

${ }_{2}^{0}{ }_{2}^{2}$	
으응돋	
	$\underset{\sim}{M} \underset{O}{M} \begin{gathered} M \\ \hline \end{gathered}$

TCN	APOE Rcpt	APOE Lift	Intransit Rcpt	Intransit Lift	APOD Rept	APOD Lift	$\begin{gathered} \mathrm{APOE} \\ \mathrm{PHT} \end{gathered}$	Transit to RMS	Intransit PHT	Transit to APOD	Intransit Overseas	$\begin{aligned} & \text { APOD } \\ & \text { PHT } \end{aligned}$	AMC PT
APOU = Taszar (TZR)													
SW31238113D027XXX	12008114	04058115	11228115	06138116	08108116	08008116	0.67	0.29	0.79	0.08	. 1	0.00	83
SW31238113D028XXX	12008114	04058115	11228115	06138116	08108116	08008116	0.67	0.29	0.79	0.08	1.1	0.00	1.83
SW312381130033 ${ }^{\text {WXX }}$	13008115	02378117	10208117	07008119	09088119	09008119	1.54	0.33	1.88	0.08	2.29	0.00	3.83
SW312381170112XXX	17008118	04008122	11528122	06208124	08208124	09008124	3.46	0.33	1.75	0.08	2.17	. 04	5.67
SN312381200167XXX	11008121	03598124	11288124	05518125	07408125	14008125	2.71	0.29	0.79	0.04	1.13	0.29	4.13
SN31238120D178×XX	18008121	03598124	11288124	07198128	09208128	15008128	2.42	0.29	3.83	0.08	4.21	0.25	6.88
SNM31238124D228×XX	17008125	04388127	12508127	06178132	08028132	09008132	1.46	0.38	4.71	0.08	5.17	0.04	6.67
SN/31238125D252xXX	13008126	04368130	12228130	06178132	08028132	09008132	3.63	0.33	1.75	0.08	2.17	0.04	5.83
SN312381270305×XX	14008128	03578130	11478130	12358132	14308132	07008133	1.58	0.29	2.04	0.08	2.42	0.71	4.71
SW31238127D314XXX	16008129	22138131	06058132	06178133	08108133	08008133	2.25	0.33	1.00	0.08	1.42	0.00	3.67
SN31238128D327XKXX	12008131	02568133	11008133	07198135	09008135	11008135	1.63	0.33	1.83	0.08	2.25	0.08	3.96
SW31238131D346XXX	17008132	04248137	12248137	05588139	07438139	05008140	4.46	0.33	1.75	0.04	2.13	0.92	7.50
SM31238131D351 XXX	12008132	23398133	07418134	07198135	09008135	11008135	1.46	0.33	1.00	0.08	1.42	0.08	2.96
SN31238133D390XXX	18008134	08588141	16458141	06148142	07558142	12008142	8.63	0.29	0.58	0.08	0.96	0.17	7.75
SW31238133D392	12008135	04248137	12248137	06278138	08028138	08008138	1.67	0.33	0.75	0.08	1.17	0.00	2.83
SN31238133D398XXX	12008135	04248137	12248137	06278138	08028138	08008138	1.67	0.33	0.75	0.08	1.17	0.00	2.83
SN31238134D417XXX	12008135	04118140	11268140	06038141	07488141	09008141	4.67	0.29	0.79	0.04	1.13	0.08	5.88
SW31238134D418XXX	12008135	04248137	12248137	05588139	07438139	05008140	1.67	0.33	1.75	0.04	2.13	0.92	4.71
SN/31238134D426xX	17008136	01088142	08478142	06518144	08358144	06008145	5.33	0.29	1.96	0.04	2.29	0.92	8.54
SN31238135D451	13008136	04118140	11268140	05558143	08008143	08008143	3.63	0.29	2.79	0.08	3.17	0.00	6.79
SN31238135D458XXX	15008136	04378139	12118139	06118140	08008140	12008140	2.54	0.33	0.75	0.08	1.17	0.17	3.88
SN0312381380488XXX	12008139	01088142	08478142	06518144	08358144	06008145	2.54	0.29	1.96	0.04	2.29	0.92	5.75
SN31238138D489XXX	12008139	08588141	18458141	05558143	08008143	08008143	1.88	0.29	1.58	0.08	1.96	0.00	3.83
SW312381400549	13008	02138147	10028147	06158150	08008150	09128150	4.54	0.33	2.83	0.08	3.25	0.04	7.83
SN31238140D558XXX	16008142	03528147	11518147	06018148	08148148	11008148	4.50	0.33	0.75	0.08	1.17	0.13	5.79
SW31238141D558XXX	18008142	03008146	10378146	06018148	08148148	11008148	3.38	0.29	1.83	0.08	2.21	0.13	5.71
SN312381460635XXX	12008148	04098149	12228149	06158150	08008150	09128150	0.67	0.33	0.75	0.08	1.17	0.04	1.88
SNM312381470663XXX	12128149	04378152	12428152	06008153	07458153	09128153	2.67	0.33	0.75	0.04	1.13	0.08	3.88
SN312381520737XXX	11128154	06058158	13228158	07568161	09418161	10128161	3.79	0.29	2.79	0.04	3.13	0.04	6.96
SW312381540775xXX	17128155	04268159	11408159	07568161	09418161	10128161	3.46	0.29	1.88	0.04	2.21	0.04	5.71
SNW31238155D800xXX	20128156	04238162	12128162	07218165	09238165	10128165	5.33	0.33	2.79	0.08	3.21	0.04	8.58
SN312381600870XXX	12128162	03128168	10578168	10338172	12188172	13128172	5.63	0.33	3.96	0.08	4.38	0.04	10.04
SN312381610886XXX	19128162	09238166	16268166	06098167	08068167	12128167	3.58	0.29	0.58	0.08	0.96	0.17	4.71
SNV31238163D911 XXX	16128166	03128168	10578168	10338172	12188172	13128172	1.46	0.33	3.96	0.08	4.38	0.04	5.88
SW31238163D914XXX	16128166	03128168	10578168	06128173	07578173	08128173	1.46	0.33	4.79	0.08	5.21	0.00	6.67

TCN	APOE Rcpt	APOE Lift	Intransit Rept	Intransit Lift	APOD Rept	APOD Lift	$\begin{gathered} \mathrm{APOE} \\ \mathrm{PHT} \end{gathered}$	Transit to RMS	Intransit PHT	$\begin{aligned} & \text { Transit } \\ & \text { to APOD } \end{aligned}$	Intransit Overseas	$\begin{aligned} & \mathrm{APOD} \\ & \mathrm{PHT} \end{aligned}$	$\begin{gathered} \mathrm{AMC} \\ \mathrm{PT} \end{gathered}$
SW31238168D960×××	20128169	02098171	09108171	06128173	07578173	08128173	1.25	0.29	1.88	0.08	2.25	0.00	3.50
SV312381680964××X	15128169	02098171	09108171	10338172	12188172	13128172	1.46	0.29	1.04	0.08	1.42	0.04	2.92
SN312381680967XXX	15128169	02098171	09108171	06128173	07578173	08128173	1.46	0.29	1.88	0.08	2.25	0.00	3.71
SN31238168D974×XX	15128169	02098171	09108171	08128173	07578173	08128173	1.46	0.29	1.88	0.08	2.25	0.00	3.71
SW31238169D003 $\times \times \times$	13128170	02138174	09238174	06148175	08298175	08128175	3.54	0.29	0.88	0.08	1.25	0.00	4.79
SV312381690009XXX	12128171	02568176	10318176	06208177	08208177	09128177	4.63	0.29	0.83	0.08	1.21	0.04	5.88
SV31238169D014XXX	12128171	04478174	12418174	06218176	08178176	09128176	2.67	0.33	1.75	0.08	2.17	0.04	4.88
SNV $312381690999 \times \times X$	16128170	02138174	09238174	06148175	08298175	08128175	3.42	0.29	0.88	0.08	1.25	0.00	4.67
SNM $312381700018 \times \times \times$	14128171	02018173	09118173	06218176	08178176	09128176	1.50	0.29	2.88	0.08	3.25	0.04	4.79
SVY31238143D618KXX	16008147	03138149	11168149	06158155	08138155	07128155	1.46	0.33	5.79	0.08	6.21	-0.04	7.63
SW31238149D709XXX	18128152	00138154	07498154	06158155	08138155	07128155	1.25	0.29	0.96	0.0	1.33	-0.04	2.54
4xめh (1)													
SW31238108D946XXX	12008111	03038112	10208112	04408116	07128116	10008118	0.63	0.29	3.75	0.13	4.17	2.13	6.92
SW312381110989XXX	17008112	01278114	08308114	04408116	07128116	10008118	1.33	0.29	1.83	0.13	2.25	2.13	5.71
$5 N 312381120003 \times \times \times$	17008114	03168116	11038116	04398117	06568117	10008118	1.42	0.33	0.71	0.13	1.17	1.13	3.71
$5 N 312381130025 \times \times \times$	12008114	04058115	11228115	05488117	08048117	10008118	0.67	0.29	1.75	0.13	2.17	1.08	3.92
$5 N 312381130026 \times \times \times$	12008114	04058115	11228115	04348121	06598121	07008122	0.67	0.29	5.71	0.13	6.13	1.00	7.79
SW312381130051×xx	15008114	03168116	11038116	13048121	15208121	12008122	1.50	0.33	5.08	0.08	5.50	0.88	7.88
SW312381140060x ${ }^{\text {a }}$	14008115	02378117	10208117	06228120	09008120	06008122	1.50	0.33	2.83	0.13	3.29	1.88	6.67
SNV312381140065XXX	14008115	02378117	10208117	04418124	07008124	14008124	1.50	0.33	6.75	0.13	7.21	0.29	9.00
SW312381140081 \times KX	12008117	02068118	09338118	06228120	09008120	06008122	0.58	0.29	1.88	0.13	2.29	1.88	4.75
SWV $312381140082 \times \times \times$	12008117	02068118	09338118	04348121	06598121	07008122	0.58	0.29	2.79	0.13	3.21	1.00	4.79
SNV312381150094×××	15008117	02068118	09338118	06228120	09008120	06008122	0.46	0.29	1.88	0.13	2.29	1.88	4.63
SW312381150097×0x	15008117	02068118	09338118	13048121	15208121	12008122	0.46	0.29	3.17	0.08	3.54	0.88	4.88
SV4312381150103×0x	13008118	03098121	10548121	11308124	13588124	07008126	2.58	0.33	3.00	0.13	3.46	1.71	7.75
SNV312381170116×KX	17008118	04008122	11528122	04438125	07028125	07008126	3.46	0.33	2.67	0.13	3.13	1.00	7.58
SW31238118D123KXX	11008119	04008122	11528122	13288123	16058123	07008126	2.71	0.33	1.04	0.13	1.50	2.63	6.83
SW312381180125KXX	18008119	03598124	11288124	11218127	13358127	12008128	4.42	0.29	3.00	0.08	3.38	0.96	8.75
$5 N 312381190145 \times \times \times$	12008120	03598124	11288124	04438127	07088127	12008128	3.67	0.29	2.71	0.13	3.13	1.21	8.00
SW312381190146×0×	12008120	03598124	11288124	05408128	08028128	07008132	3.67	0.29	3.75	0.13	4.17	3.96	11.79
SN312381200166×××	11008121	03598124	11288124	05408128	08028128	07008132	2.71	0.29	3.75	0.13	4.17	3.96	10.83
SVM312381200169×XX	20008121	05198125	12408125	05408128	08028128	07008132	3.38	0.29	2.71	0.13	3.13	3.96	10.46
SNY312381200176x0x	15008121	03598124	11288124	11248126	13358126	12008128	2.54	0.29	2.00	0.08	2.38	1.96	6.88
SN312381200188×0X	15008121	03598124	11288124	11568128	14208128	12008130	2.54	0.29	4.04	0.08	4.42	1.92	8.88
SN31238121D194×KX	12008122	05198125	12408125	04358128	07008128	07008133	2.71	0.29	2.67	0.13	3.08	5.00	10.79
SW31238121D213KXX	13008124	03558131	11518131	04208133	06408133	13008137	6.63	0.33	1.67	0.08	2.08	4.29	13.00

TCN	APOE Rcpt	APOE Lift	intransit Rcpt	Intransit Lift	APOD Rept	APOD Lift	$\begin{array}{\|l\|} \mathrm{APOE} \\ \mathrm{PHT} \end{array}$	Transit to RMS	Intransit PHT	Transit to APOD	Intransit Overseas	$\begin{aligned} & \text { APOD } \\ & \text { PHT } \end{aligned}$	$\begin{aligned} & \text { AMC } \\ & \text { PT } \end{aligned}$
SW31238122D215XXX	13008124	04158126	12068126	05408129	08008129	10008130	1.63	0.33	2.71	0.13	3.17	1.08	5.88
SW312381220216XXX	13008124	04388127	12508127	11568128	14208128	12008130	2.63	0.38	0.96	0.08	1.42	1.92	5.96
SW31238122D217XXX	12008125	04388127	12508127	04188131	06418131	13008131	1.67	0.38	3.63	0.08	4.08	0.29	6.04
SW31238122D218XXX	12008124	04158126	12068126	05408129	08008129	10008130	1.67	0.33	2.71	0.13	3.17	1.08	5.92
SW31238122D221xXX	12008125	03578130	11478130	04208133	06408133	13008137	4.67	0.29	2.71	0.08	3.08	4.29	2.04
SW31238124D224KXK	12008125	05408131	13348131	05498133	08008133	13008137	5.71	0.33	1.67	0.13	2.13	4.21	12.04
SNB1238124D225×XX	12008125	04388127	12508127	04408129	07008129	11008130	1.67	0.38	1.63	0.13	2.13	1.17	88
SW312381250247XXX	16008126	03168128	11038128	04188131	06418131	13008131	1.46	0.33	2.71	0.08	3.13	0.29	4.88
SW31238126D270xXX	17008127	03578130	11478130	11598133	14168133	13008137	2.46	0.29	3.04	0.08	3.42	3.96	9.83
SW31238126D281×XX	14008128	22138131	06058132	04208133	06408133	13008137	3.33	0.33	0.92	0.08	1.33	4.29	8.96
SN31238132D361××X	16008133	20478135	04538136	05218137	07358137	08008138	2.17	0.38	1.00	0.08	1.46	1.04	4.67
SN312381340412XXX	12008135	04118140	11268140	05558142	08008142	11008142	4.67	0.29	1.79	0.08	2.17	0.13	6.96
SNW1238134D432xXX	15008136	01088142	08478142	11218145	13358145	10008147	5.42	0.29	3.13	0.08	3.50	1.88	10.79
SNV31238135D470xXX	12008138	01558140	09578140	04458143	07008143	09008144	1.58	0.33	2.75	0.13	3.21	. 08	5.88
SNV312381360477XXX	14008138	23458141	07478142	04218150	06598150	16128150	3.38	0.33	7.88	0.13	8.33	0.38	12.08
SN31238136D484XXX	12008139	08588141	16458141	12118144	14158144	11008147	1.88	0.29	2.83	0.08	3.21	2.88	7.96
SW312381380490xXX	12008139	08588141	16458141	04458143	07008143	09008144	1.88	0.29	1.50	0.13	1.92	1.08	4.88
SW312381380501XXX	18008140	04208143	12078143	11578146	14108146	10008147	2.42	0.33	3.00	0.08	3.42	0.83	6.67
SN312381380505XXX	18008140	23458141	07478142	04558144	06558144	10008144	1.21	0.33	1.92	0.08	2.33	0.13	3.67
SN31238139D512XXX	18008140	04208143	12078143	12118144	14158144	11008147	2.42	0.33	1.00	0.08	1.42	2.88	6.71
SNM31238133D513XXX	18008140	04288142	12208142	04378145	07008145	10008147	1.42	0.33	2.67	0.13	3.13	2.13	6.67
SN31238142D588XXX	13008143	03008146	10378146	04218150	06598150	16128150	2.58	0.29	3.75	0.13	4.17	0.38	7.13
SWV31238142D593XXX	13008143	03008146	10378146	04498147	07188147	09008147	2.58	0.29	0.75	0.13	1.17	0.08	3.83
SW31238142D598XXX	11008146	03528147	11518147	04288149	06288149	14128149	0.71	0.33	1.67	0.08	2.08	0.33	3.13
SW31238144D627XXX	11008147	04288150	12368150	13518152	16008152	10128153	2.71	0.33	2.08	0.08	2.50	0.75	5.96
SWN31238146D634XXX	12008148	07358149	15158149	04038151	06288151	12128151	0.79	0.33	1.54	0.08	1.96	0.25	3.00
SW31238146D638XXX	18008147	04098149	12228149	11418150	13538150	08128152	1.42	0.33	0.96	0.13	1.42	1.75	4.58
SW31238148D685XXX	17128150	05398152	13158152	11318154	13438154	13128155	1.50	0.33	1.92	0.08	2.33	1.00	4.83
SW312381490698XXX	15128150	04378152	12428152	04428153	06428153	13128154	1.54	0.33	0.67	0.08	1.08	1.29	3.92
SVM312381500710xXX	18128152	00138154	07498154	12048157	14098157	15128158	1.25	0.29	3.21	0.08	3.58	1.04	5.88
SN312381500711 XXX	18128152	04078154	11468154	11568155	14138155	10128157	1.42	0.29	1.04	0.08	1.42	1.83	4.67
SW312381500713XXX	18128152	00138154	07498154	04428155	06598155	13128155	1.25	0.29	0.88	0.13	1.29	0.25	2.79
SN312381520733XXX	19128153	04318156	12028156	05378158	08008158	15128158	2.38	0.33	1.71	0.13	2.17	0.29	4.83
SM312381520739XXX	11128154	04098157	11508157	14558158	16558158	07128160	2.71	0.33	1.13	0.08	1.54	1.58	5.83
SN31238153D761 XXX	18128154	04098157	11508157	14038158	16228158	07128160	2.42	0.33	1.08	0.08	1.50	1.63	5.54
SW31238154D765XXX	12128155	06058158	13228158	06168160	08228160	11128160	2.75	0.29	1.71	0.08	2.08	0.13	4.96
SN31238154D766XXX	12128155	04098157	11508157	14038158	16228158	07128160	1.67	0.33	1.08	0.08	1.50	1.63	4.79

TCN	APOE Rept	APOE Lift	Intransit Rcpt	Intransit Lift	APOD Rcpt	APOD Lift	$\begin{gathered} \hline \mathrm{APOE} \\ \mathrm{PHT} \end{gathered}$	Transit to RMS	Intransit PHT	Transit to APOD	Intransit Overseas	$\begin{aligned} & \text { APOD } \\ & \mathrm{PH} \mathrm{l} \end{aligned}$	AMC PT
SW312381540769XX	14128155	06058158	13228158	04438159	07058159	07128160	2.67	0.29	0.63	0.13	1.04	1.00	4.71
SN312381550792×XX	18128156	06058158	13228158	12458159	15108159	11128160	1.50	0.29	0.96	0.13	1.38	0.83	3.71
SN312381550797	16128156	0405816	11278160	11268161	13458161	13128162	3.50	0.29	1.00	0.08	1.38	1.00	5.88
SW312381550806×X	20128156	0426815	11408	0616	0822	11128160	2.	0.29	0.79	0.08	1.17	0.13	3.63
SNW312381550807XXX	19128156	0426815	11408159	0616816	08228160	11128160	2.38	0.29	0.79	0.08	1.17	0.13	. 67
SN31238155D808XXX	21128156	04228160	11068160	04418162	06588162	13128162	3.29	0.29	1.71	0.13	2.13	0.25	. 67
SW331238156D8809XX	18128156	09238166	16268166	12078167	14248167	09128169	9.63	0.29	0.83	0.08	1.21	1.79	12.63
SW31238156D81	18128156	0405	11278160	1128	13458161	13128162	3.42	0.29	1.00	0.08	1.38	1.00	5.79
SNM312381570837XXX	17128159	04058	11278160	11268161	13458161	13128162	0.4	0.29	1.00	0.08	1.38	1.00	2.83
SN312381610872xXX	13128162	09238166	16268166	12078167	14248167	09128169	3.83	0.29	0.83	0.08	1.21	1.79	6.83
SNA312381610874XXX	13128162	09238166	18268168	04468168	07258168	09128169	3.83	0.29	1.50	0.13	1.92	1.08	6.83
SN312381610876xXX	13128162	0923	1628	0450	07008167	08128168	3.83	0.29	0.54	0.08	0.92	1.04	5.79
SW31238161D877XXX	13128162	09238	16268166	0450	07008167	08128168	3.83	0.29	0.54	0.08	0.92	1.04	5.79
SNV31238161D881 XXK	13128162	03478163	11338163	04498165	08498165	17128166	0.58	0.33	1.71	0.08	2.13	1.46	4.17
SW31238163D913XXX	15128166	03128168	10578168	11238172	1320	13128173	1.46	0.33	4.00	0.08	4.42	1.00	88
SW31238167D941	12128168	0209	0910	0443	06438	13128173	2.58	0.29	1.79	0.08	2.17	0.29	. 04
SN312381670945XXX	15128169	02098171	09108171	11238172	13208172	13128173	1.4	0.29	1.08	0.08	1.46	1.00	3.92
SN31238167D949X	12128169	02098171	09108171	04468174	08468174	09128175	1.58	0.29	2.79	0.08	3.17	1.13	5.88
SW31238167D953XXX	12128169	02098171	09108171	12108173	14158173	13128176	1.58	0.29	2.13	0.08	2.50	2.96	7.04
SN1312381670954	13128169	02098171	09108171	15088174	17238174	09128175	1.54	0.29	3.25	0.08	3.63	0.67	5.83
SN31238168D957XXX	20128169	02098171	09108171	11238172	13	1312	1.25	0.29	1.08	0.08	1.46	1.00	3.71
SN31238168D977XXX	16128170	02138174	09238174	12068175	14208175	09128176	3.42	0.29	1.13	0.08	1.50	0.79	5.7
SN31238168D984X	16128170	06488172	13528172	04438173	06438173	13128173	1.58	0.33	0.58	0.08	1.00	0.29	2.88
SW31238169D988)	13128170	02098171	09108171	05058176	07098176	13128178	0.54	0.29	4.83	0.08	5.21	0.25	6.00
SW31238169D989XXX	13128170	02098171	09108171	04468174	0646	09128175	0.54	0.29	2.79	0.08	3.17	1.13	4.83
SNM312381700016xXX	12128171	02138174	09238174	13158176	15208176	09128177	2.58	0.29	2.17	0.08	2.54	0.75	5.88
SN31238170D017XXX	14128171	04478174	12418174	12068175	14208175	09128176	2.58	0.33	1.00	0.08	1.42	0.79	4.79
SNM312381700033XXX	18128171	04478174	12418174	12068175	14208175	09128176	2.42	0.33	1.00	0.08	1.42	0.79	4.63
SNM312381700036XXX	18128171	07018173	14208173	15088174	17238174	09128175	1.54	0.29	1.04	0.08	1.42	0.67	3.63
SW31238171D038XXX	18128171	02138174	09238174	05058176	07098176	13128176	2.33	0.29	1.83	0.08	2.21	0.25	4.79

TCN	APOE Rept	APOE Lift	Intransit Rcpt	Intransit Litt	APOD Rept	APOD Lift	$\begin{aligned} & \mathrm{APOE} \\ & \mathrm{PHT} \end{aligned}$	Transit to RMS	Intransit PHT	Transit to APOD	Intransit Overseas	APOD PHT	$\begin{gathered} \text { AMC } \\ \text { PT } \end{gathered}$
APOD = Taszar (TZR)													
FE58958113H001 XXX	16008119	07258121	14338121	06208124	08208124	09008124	1.63	0.29	2.67	0.08	3.04	0.04	. 71
FB58958114H001 \times OX	19128167	20228168	04208169	06118171	08028171	08128171	1.04	0.33	2.08	0.08	2.50	0.00	3.54
FB58958114H002XXX	16008117	02068118	09338118	06128120	08058120	11008120	0.42	0.29	1.88	0.08	2.25	0.13	2.79
FES8958114H004XXX	20008114	03168116	11038116	06128120	08058120	11008120	1.29	0.33	3.79	0.08	4.21	0.13	5.63
FE58958114H006XXX	15008117	02068118	09338118	06128120	08058120	11008120	0.46	0.29	1.88	0.08	2.25	0.13	2.83
FB5895811 $45600 \times \times \times$	15008117	02068118	09338118	06128120	08058120	11008120	0.46	0.29	1.88	0.08	2.25	0.13	2.83
FE58958117H005XXX	16008119	07258121	14338121	06208124	08208124	09008124	1.63	0.29	2.67	0.08	3.04	0.04	4.71
FB58958118H002XXX	15008119	07258121	14338121	06208124	08208124	09008124	1.67	0.29	2.67	0.08	3.04	0.04	4.75
FB58958118H003XXX	15008120	03098121	10548121	06208124	08208124	09008124	0.50	0.33	2.79	0.08	3.21	0.04	3.75
FB58958118H004XXX	19008124	02568128	10368128	13068133	14588133	08008135	3.33	0.29	5.13	0.08	5.50	1.71	10.54
FB58958118H005XXX	15008120	03098121	10548121	06208124	08208124	09008124	0.50	0.33	2.79	0.08	3.21	0.04	3.75
FB58958118H006XXX	15008120	03098121	10548121	06208124	08208124	09008124	0.50	0.33	2.79	0.08	3.21	0.04	3.75
FB58958118S601 XXX	15008119	07258121	14338121	06208124	08208124	09008124	1.67	0.29	2.67	0.08	3.04	0.04	4.75
FB589581195600xXX	15008120	03098121	10548121	06208124	08208124	09008124	0.50	0.33	2.79	0.08	3.21	0.04	3.75
FB589581205602xXX	16008121	04008122	11528122	06208124	08208124	09008124	0.50	0.33	1.75	0.08	2.17	0.04	2.71
FB58958121H001 XXX	15008124	05198125	12408125	06248127	08198127	10008127	0.58	0.29	1.75	0.08	2.13	0.08	2.79
FB58958124H001 XXX	15008126	04388127	12508127	06248129	08098129	09008129	0.54	0.38	1.71	0.08	2.17	0.04	2.75
FB58958124H002XXX	15008126	04388127	12508127	06248129	08098129	09008129	0.54	0.38	1.71	0.08	2.17	0.04	2.75
FB58958124R001 XXX	19008126	03068131	10418131	12358132	14308132	07008133	4.33	0.29	1.08	0.08	1.46	0.71	6.50
FB58958124S604XXX	17008125	04158128	12068126	06248129	08098129	09008129	0.46	0.33	2.75	0.08	3.17	0.04	3.67
FB58958126H003AXA	17128168	06228169	13438169	06118171	08028171	08128171	0.54	0.29	1.71	0.08	2.08	0.00	2.63
FE58958126H003AXB	17128168	06228169	13438169	08118171	08028171	08128171	0.54	0.29	1.71	0.08	2.08	0.00	2.63
FB589581270011 XXX	15008138	04148139	12508139	06038141	07488141	12008142	0.54	0.38	1.71	0.04	2.13	1.21	3.88
FBS89581280011×xX	17008133	20038134	04078135	06118137	08208137	10008137	1.13	0.33	2.08	0.08	2.50	0.08	3.71
FB589581285604KXX	17008132	23398133	07418134	06178136	08028136	10008136	1.25	0.33	1.96	0.08	2.38	0.08	3.71
FE58958129H002KXX	17008131	03528132	11458132	13068133	14588133	08008135	0.46	0.29	1.08	0.08	1.46	1.71	3.63
FES8958129H003XXX	17008131	03528132	11458132	13068133	14588133	08008135	0.46	0.29	1.08	0.08	1.46	1.71	3.63
FE58958129H010XXX	16008132	23398133	07418134	06178136	08028136	10008136	1.29	0.33	1.96	0.08	2.38	0.08	3.75
FE58958129H011 XXX	16008133	20038134	04078135	06118137	08208137	10008137	1.17	0.33	2.08	0.08	2.50	0.08	3.75
FB58958131H001 X X	16008132	23398133	07418134	06178136	08028136	10008136	1.29	0.33	1.96	0.08	2.38	0.08	3.75
FE589581320023XXX	16008134	20478135	04538136	06118137	08208137	10008137	1.17	0.38	1.04	0.08	1.50	0.08	2.75
FE589581320024XXX	16008146	03528147	11508147	06158150	08008150	09128150	0.50	0.33	2.75	0.08	3.17	0.04	3.71
FB589581320025XXX	16008135	04158136	12248136	06118140	08008140	12008140	0.50	0.33	3.75	0.08	4.17	0.17	4.83
FES8858132H002 XXX	17008133	20038134	04078135	06118137	08208137	10008137	1.13	0.33	2.08	0.08	2.50	0.08	3.71
FE58958132H003XXX	16008134	20478135	04538136	06118137	08208137	10008137	1.17	0.38	1.04	0.08	1.50	0.08	2.75

TCN	APOE Rept	APOE Lift	Intransit Rcpt	Intransit Lift	APOD Rcpt	APOD Lift	$\begin{gathered} \mathrm{APOE} \\ \mathrm{PHT} \\ \hline \end{gathered}$	Transit to RMS	Intransit PHT	Transit to APOD	Intransit Overseas	$\begin{aligned} & \mathrm{APOD} \\ & \mathrm{PHT} \end{aligned}$	AMC PT
FB58958132H004XXX	16008134	20478135	04538136	06118137	08208137	10008137	1.17	0.38	1.04	0.08	1.50	0.08	2.75
FB58958132H005×XX	16008133	20038134	04078135	06118137	08208137	10008137	1.17	0.33	2.08	0.08	2.50	0.08	3.75
FB58958132H006XXX	15008135	04158136	12248136	06118140	08008140	12008140	0.54	0.33	3.75	0.08	4.17	0.17	4.88
FB58958132H007XXX	17008133	20038134	04078135	06118137	08208137	10008137	1.13	0.33	2.08	0.08	2.50	0.08	3.71
FB58958138H001 XKX	15008139	04118140	11268140	06518144	08358144	06008145	0.54	0.29	3.83	0.04	4.17	0.92	5.63
FB58958138H002XXX	15008139	04118140	11268140	06518144	108358144	06008145	0.54	0.29	3.83	0.04	4.17	0.92	5.63
FB58958138H003××X	16008140	04058141	11588141	06518144	O835 8144	06008145	0.50	0.33	2.79	0.04	3.17	0.92	4.58
FB589581385604××X	15008139	04118140	11268140	06518144	08358144	06008145	0.54	0.29	3.83	0.04	4.17	0.92	5.63
FB58958140H001 XKX	15008142	04148143	11278143	11278146	13128146	06008147	0.54	0.29	3.00	0.08	3.38	0.71	4.63
FB589581415606×KX	15008146	03528147	11508147	06158150	08008150	09128150	0.54	0.33	2.75	0.08	3.17	0.04	3.75
FB58958142H001 XXX	18008146	03528147	11508147	06158150	08008150	09128150	0.50	0.33	2.75	0.08	3.17	0.04	3.71
FE58958142H002XXX	15008146	03528147	11508147	06158150	08008150	09128150	0.54	0.33	2.75	0.08	3.17	0.04	3.75
FB58958142H003XXX	16008147	04378152	12428152	06228154	08188154	09128154	4.50	0.33	1.75	0.08	2.17	0.04	6.71
FB58958142S606xXX	15008146	03528147	11508147	08158150	08008150	09128150	0.54	0.33	2.75	0.08	3.17	0.04	3.75
FB58958149H002XXX	15128152	04088153	11598153	05458156	07338156	08128156	0.54	0.33	2.71	0.08	3.13	0.04	3.71
FB589581535601 XXX	15128155	03488156	11328156	06218158	08108158	07128159	0.50	0.33	1.79	0.08	2.21	0.96	3.67
FB58958155S602XXX	16128156	04098157	11508157	06218158	08108158	07128159	0.50	0.33	0.75	0.08	1.17	0.96	2.63
FB58958159H000XXX	15128166	05528167	14338167	06228169	08158169	09128169	0.67	0.29	1.67	0.08	2.04	0.04	2.75
FB58958159H001 XXX	15128161	04238162	12128162	06108163	08158163	09128163	0.54	0.33	0.75	0.08	1.17	0.04	1.75
FB589581595600 X XX	17128160	09168165	16278165	06098167	08068167	12128167	4.67	0.29	1.58	0.08	1.96	0.17	6.79
FB58958162H001 XXX	15128166	06528167	14338167	06228169	08158169	09128169	0.67	0.29	1.67	0.08	2.04	0.04	2.75
APOD = Tura (YZ)													
FB583080830034XXX	17008120	03098121	10548121	10468123	13058123	07008126	0.42	0.33	1.96	0.13	2.42	2.75	5.58
FB5830808800002×XX	14008133	20038134	04078135	05218137	07358137	08008138	1.25	0.33	2.04	0.08	2.46	1.04	4.75
FB583080890019XXX	16008124	05198125	12408125	04358128	07008128	07008133	0.54	0.29	2.67	0.13	3.08	5.00	8.63
FE58308118K001 XXX	14008119	07258121	14338121	10468123	13058123	07008126	1.71	0.29	1.83	0.13	2.25	2.75	6.71
FB58308119K001 XXX	15008121	04008122	11528122	11308124	13588124	07008126	0.54	0.33	1.96	0.13	2.42	1.71	4.67
FB58308119×100XAA	18008132	20478135	04538136	05218137	07358137	08008138	3.08	0.38	1.00	0.08	1.46	1.04	5.58
FB58308119×100XAB	18008132	20478135	04538136	05218137	07358137	08008138	3.08	0.38	1.00	0.08	1.46	1.04	5.58
FE58308119×100XBA	19008138	08588141	16458141	12008142	13468142	09008144	2.58	0.29	0.83	0.04	1.17	1.83	5.58
FB58308119×100XZX	14008134	03598137	12128137	11408139	14008139	11008140	2.58	0.33	1.96	0.13	2.42	0.88	5.88
FE58308120K002XXX	16008124	05198125	12408125	04358128	07008128	07008133	0.54	0.29	2.67	0.13	3.08	5.00	8.63
FB58308121K001 XXX	16008124	04388127	12508127	11568128	14208128	12008130	2.50	0.38	0.96	0.08	1.42	1.92	5.83
FE583081240040XXX	16008140	04058141	11588141	12008142	13468142	09008144	0.50	0.33	1.00	0.04	1.38	1.83	3.71
FB58308124K002 \times KX	16008125	04158126	12068126	11568128	14208128	12008130	0.50	0.33	2.00	0.08	2.42	1.92	4.83
FB58308126K001 XXX	14008128	04368130	12228130	11598131	14118131	07008133	1.58	0.33	1.00	0.08	1.42	1.71	4.71

Appendix D: Application of UMMIPS Time Standards Results

UMMIPS Time Standards (extracted from Table 2)

Segment	UMMIPS Time Standard (in days)
G. APOE Port Hold Time	2
H. Transit Time Between APOE and APOD	1.5
I. APOD Port Hold Time	1
AMC Possession Time	4.5

APOE Port Hold Time

		\# of TCNs Meeting Standards	Total \# of TCNs	\% of TCNs Meeting Standards
Taszar	Army \#1	36	68	52.9%
	Army \#2	19	44	43.2%
	Air Force	52	56	92.9%
Tuzla	Army \#1	26	66	39.4%
	Army \#2	44	91	48.4%
	Air Force	29	34	85.3%

Transit Time From APOE to APOD

		\# of TCNs Meeting Standards	Total \# of TCNs	\% of TCNs Meeting Standards
Taszar	Army \#1	11	68	16.2%
	Army \#2	18	44	40.9%
	Air Force	8	56	14.3%
Tuzla	Army \#1	15	66	22.7%
	Army \#2	31	91	34.1%
	Air Force	13	34	38.2%

APOD Port Hold Time				
		\# of TCNs Meeting Standards	Total \# of TCNs	\% of TCNs Meeting Standards
Taszar	Army \#1	56	68	82.4\%
	Army \#2	44	44	100.0\%
	Air Force	52	56	92.9\%
Tuzla	Army \#1	32	66	48.5\%
	Army \#2	43	91	47.3\%
	Air Force	5	34	14.7\%

AMC Possession Time

		\# of TCNs Meeting Standards	Total \# of TCNs	\% of TCNs Meeting Standards
Taszar	Army \#1	16	68	23.5%
	Army \#2	17	44	38.6%
	Air Force	40	56	71.4%
Tuzla	Army \#1	11	66	16.7%
	Army \#2	17	91	18.7%
	Air Force	10	34	29.4%

Appendix E: Key Definitions

Aerial Port - An airfield selected for the air movement and transshipment of personnel and material. It serves as an authorized entry or departure point for the country in which it is located.

Automatic Identification Technology (AIT) - "Consists of process control hardware, application software, and hybrids that provide industry-standard real-time data acquisition to enhance productivity. It includes bar codes, radio frequency identification, magnetic stripes, smart cards, and optical laser cards. In DoD logistics, these technologies facilitate the capture of supply, maintenance, and transportation information for inventory and movement management, shipment diversion and reconstitution, and personnel or patient identification" (DoD, 1995:B-1).

Defense Automatic Addressing System Center (DAASC) - "designs, develops, and implements logistics solutions that improve customers' requisition processing and logistics management processes world wide. Our mission is to receive, edit, and route logistics transactions for the Military Services and Federal Agencies; to provide value added services for standard MILS transactions and provide information about anything, anywhere, anytime, anyway, to anybody(s) in the DoD and Federal Logistics Community. DAASC is the official repository for selected DoD publications, the DoDAAD, MAPAD, MILRI, and Distribution Code" (DAASC, 1998b).

Defense Transportation System (DTS) - "That portion of a nation's transportation infrastructure that supports DoD transportation needs in peace and war. The DTS consists of those common-user military and commercial assets, services, and systems organic to, contracted by, or controlled by the DoD" (DoD, 1987:A-3).

Department of Defense Activity Address Code (DODAAC) - A six position

 alphanumeric code identifying specific activities authorized to ship or receive materiel and prepare documentation or billings (DoD, 1987:A-4).Focused Logistics - "the fusion of information, logistics, and transportation technologies to provide rapid crisis response, to track and shift assets even while enroute, and to deliver tailored logistics packages and sustainment directly at the strategic, operational, and tactical level of operations" (JCS, 1995:24).

Green Sheet Procedures - A process that specifically identifies cargo in the AMC system to gain movement precedence over other priority cargo of the same sponsoring Service, including high-priority (RDD code 999) shipments. It is used to expedite movement of specific shipments that are in the national interest and certified as an operational necessity (DAF, 1996).

Intransit Assets - "Materiel that is between storage locations, either wholesale or retail; materiel shipped from vendors after acceptance by the government but not yet received by the inventory manager; materiel temporarily in use or on loan with contractors or schools; or materiel that cannot be otherwise categorized" (DoD, 1996b:26).

Intransit Visibility (ITV) - "The ability to track the identity, status, and location of DoD unit and non-unit cargo (excluding bulk petroleum, oils, and lubricants) and passengers; medical patients; and personal property from origin to to the consignee or destination designated by the CINCs, Military Services, or Defense agencies, during peace, contingencies, and war" (DoD, 1995:B-1).

Julian Date - A four-digit number representing the year and day of the year. The first digit represents the last digit in the year and the remaining digits represent the day of the year. Example: 1 Jan $98=8001$.

Lead Transportation Control Number (Lead TCN) - a set of individual TCNs consolidated--physically and systemically--under a single TCN for ease of movement and ITV through the DTS.

OPERATION JOINT ENDEAVOR (OJE) - North Atlantic Treaty Organization (NATO) multinational forces operating in the Bosnia-Herzegovina theater of operations to implement the military aspects of the Bosnia Peace Agreement signed in Dayton, Ohio, on 14 December 1995. 20 December 1995-20 December 1996. (NATO, 1997)

OPERATION JOINT GUARD (OJG) - NATO multinational forces operating in the Bosnia-Herzegovina theater of operations as a stabilization force supporting the Dayton Peace Accords. 21 December 1996 - present. (NATO, 1997)

Palletized - A set of items arranged on a pallet and secured so that the entire set may be handled as a single unit.

Required Delivery Date (RDD) - A three-digit alphanumeric code indicating the date a shipment is required by the requisitioning unit. An RDD code of 999 identifies the most acutely needed shipments.

Total Asset Visibility (TAV) - "The capability that permits operational and logistics managers to determine and act on timely and accurate information about the location, quantity, condition, movement, and status of Defense material. It includes assets that are instorage, inprocess, and intransit." (DoD, 1995:B-3)

Transportation Control Number (TCN) - "A unique 17-position alphanumeric data element assigned to control a shipment unit throughout the transportation pipeline" (DoD, 1995:B-3)

Transportation Priority (TP) - A number (1-4) assigned to a shipment indicating its movement priority in the Defense Transportation System. It is assigned based on the Required Delivery Date (RDD) code. TP1 represents the highest priority of shipment.

AFDD	Air Force Doctrine Document
AIS	Automated Information System
AIT	Automatic Identification Technology
AMC	Air Mobility Command
AMMP	Air Mobility Master Plan
APOD	Aerial Port of Debarkation
APOE	Aerial Port of Embarkation
ATAV	Army Total Asset Visibility
CAPS II	Consolidated Aerial Port System II [AMC]
CCP	Consolidation/Containerization Point
CONUS	Continental United States
DAAS	Defense Automated Addressing System
DAASC	Defense Automatic Addressing System Center
DLA	Defense Logistics Agency
DoD	Department of Defense
DoDAAC	DoD Activity Address Code
DOV	Dover Air Force Base, Delaware
DS/DS	Desert Shield/Desert Storm
DTS	Defense Transportation System
DUSD(L)	Deputy Undersecretary of Defense (Logistics)
GAO	Government Accounting Office
GATES	Global Air Transportation and Execution System [AMC]
GCCS	Global Command and Control System
GTN	Global Transportation Network [USTRANSCOM]
IT	Information Technology
ITV	Intransit Visibility
JTAV	Joint Total Asset Visibility
LOTS	Logistics On-Line Tracking System [DAASC]
MILSTAMP	Military Standard Transportation and Movement Procedures
MILSTRIP	Military Standard Requisition and Issue Procedures
MTMC	Military Traffic Management Command
OCONUS	Outside the Continental United States
OJE	OPERATION JOINT ENDEAVOR
OSD	Office of the Secretary of Defense
PHT	Port Hold Time
POD	Port of Debarkation

POE	Port of Embarkation
RDD	Required Delivery Date
RF/ITV	Radio Frequency/Intransit Visibility
RFID	Radio Frequency Identification
RMS	Ramstein Air Base, Germany
TACC	Tanker Airlift Control Center
TAV	Total Asset Visibility
TCN	Transportation Control Number
TP	Transportation Priority
TRAIS	Transportation Reporting \& Inquiry System
TZL	Eagle Base, Tuzla, Bosnia
TZR	Taszar Airfield, Hungary
UMMIPS	Uniform Material Movement and Issue Priority System
USAREUR	U.S. Army Europe
USEUCOM	U.S. European Command
USTRANSCOM	U.S. Transportation Command
WWW	World Wide Web

Bibliography

Air Mobility Command Computer Systems Squadron (AMC CSS). "GATES takes AMC, USTRANSCOM into 21st Century," n. pag. WWWeb, http://smsmweb.scott.af.mil/projects/gates/news/article2.htm. 30 June 1998.

Ashby, Timothy R. Headquarters Air Mobility Command, Tanker Airlift Control CenterEast Cell, Scott AFB IL. Telephone conversation. 28 June 1998.

Begert, William. "The Global Transportation Network," Defense Transportation Journal, 52: 6-10 (September/October 1996).

Closs, David J., Thomas J. Goldsby, and Steven R. Clinton. "Information technology influences on world class logistics capability," International Journal of Physical Distribution \& Logistics Management, 27: 4-17 (1997).

Cooke, James Aaron. "A sneak peek at tomorrow's technology," Logistics Management. 35: 51S-53S (December 1996).

Currie, Karen W. "An Executive's Guide to the Internet," Supply Chain Management Review: 84-91 (Winter 1998).

Defense Automated Addressing System Center (DAASC). "LOTS," n. pag. WWWeb, http://daynt2.daas.dla.mil/daashome/html/lots.htm. 30 June 1998a.
----. Homepage: n. pag. WWWeb, http://daynt2.daas.dla.mil/. 16 July 1998 b.
Department of the Air Force (DAF). Air Mobility Master Plan (1998). Scott AFB IL: Headquarters Air Mobility Command, 24 October 1997a. WWWeb, http://www.scott.af.mil/hqamc/pa/about/ammp.htm. 21 April 1998.
----. Logistics. AFDD 40. Washington: HQ USAF, 11 May 1994.
----. Radio Frequency Identification. Wright-Patterson AFB OH: HQ AFMC, 18 April 1997b. WWWeb, http://www.afmc.wpafb.af.mil/HQ-AFMC/LG/LSO/ LOA/rfid.htm. 14 January 1998.
----. Transportation - Cargo Movement. AFI 24-201. Washington: DAF, 1 August 1996.

Department of Defense (DoD). Annual Report to the President and the Congress. Washington: DoD, March 1996a. Excerpt from report, n. pag. WWWeb, http://www.dtic.mil/execsec/adr96/index.html. 21 April 1998.
----. Annual Report to the President and the Congress. Washington: DoD, March 1997. Excerpt from report, n. pag. WWWeb, http://www.dtic.mil/execsec/adr97/ index.html. 21 April 1998.
----. Defense Intransit Visibility Integration Plan. Washington: GPO, February 1995.
----. Department of Defense Logistics Strategic Plan. Washington: GPO, 1998a. WWWeb, http://www.acq.osd.mil/log/mdm/lsp98pln.htm. 21 April 1998.
----. DoD Materiel Management Regulation. DoD 4140.1-R. Washington: DoD, 20 May 1998b. WWWeb, http://204.255.70.40/supreg/. 29 June 1998.
----. In-Transit Visibility Implementation/Action Plan (Draft). Washington: HQ USEUCOM, 25 November 1996b.
----. Military Standard Transportation and Movement Procedures (MILSTAMP). DoD 4500.32-R, Vol. I. Washington: DoD, 15 March 1987.

Federal Express Corporation (FedEx). 1997 Annual Report. Memphis TN: FedEx, July 1997a.
----. Information Packet. Memphis TN: FedEx, February 1997b.
Franciose, Michelle M. Supply Chain Integration: Analysis Framework and Review of Recent Literature. Master's Thesis. Massachusetts Institute of Technology, June 1995.

Government Accounting Office (GAO). 1997 Consolidated Financial Statements of the United States. Report AIMD-98-127. Washington: GPO, 31 March 1998. WWWeb, http://www.gao.gov/reports.htm. 15 April 1998.
----. Operation Desert Storm, Lack of Accountability Over Materiel During Redeployment. Report NSIAD-92-258. Washington: GPO, September 1992 (B-246015).

Grant, Linda. "Why FedEx is Flying High," Fortune, 136: 155-160 (10 November 1997).
Honor, Edward. "Enabling Technologies - The 52nd Annual NDTA Transportation and Logistics Forum and Exposition," Defense Transportation Journal, 53: 42-52 (December 1997).

Janah, Monua and Clinton Wilder. "Networking--Special Delivery--Think FedEx is only about delivering packages? Think again," Information Week, 654: n. pag. (27 October 1997). WWWeb, http://www.techweb.com/se/directlink.cgi? IWK19971027S0043. 1 February 1998.

Joint Chiefs of Staff (JCS). Joint Vision 2010. Washington: JCS, 1995.
Lappin, Todd. "The Airline of the Internet," Wired, 4: n. pag. (December 1996). WWWeb, http://www.wired.com/wired/4.12/features/ffedex.html. 1 February 1998.

Malone, Julia. "Cargo MIA, report finds," Dayton Daily News: 1A. 28 March 1998.
McClave, James T. and George Benson. Statistics for Business and Economics. New Jersey: Prentice-Hall Inc., 1994.

Miller, James M. Intransit Visibility: Capturing All the Source Data. Graduate Research Paper, AFIT/GMO/LAP/96J-5. School of Logistics and Acquisition Management, Air Force Institute of Technology (AFIT), Wright-Patterson AFB OH, May 1996 (AD-A309719).

Murphy, Jean V. "Brutal competition, consolidation seen for transport's technologyintense future," Traffic World, 10: 28-39 (4 December 1995).

National Defense Transportation Association (NDTA). "Intransit Visibility: Harmonizing the Process," Report of the July 20-22, 1994. ITV Workshop. Cambridge MA: September 1994.

North Atlantic Treaty Organization (NATO). "The NATO-led Stabilisation Force (SFOR) in Bosnia and Herzegovina," n. pag. (April 1997). WWWeb, http://www.nato.int/docu/facts/sfor.htm. 23 July 1998.
"Scaling the heights of technology," Logistics, 37: 58-64 (February 1998).
Shalikashvili, John M. "Joint Vision 2010: Force of the Future," Defense 96, 4: 6-21 (1996).

United States Transportation Command (USTRANSCOM). "Global Transportation Network Overview," n. pag. WWWeb, http://www.gtn.transcom.mil/webplus/ overview.html. 30 June 1998.

Wilder, Clinton. "Delivery Goes Digital--The growth of the Web compels the transport industry to make basic changes," Information Week, 649:n. pag. (22 September 1997). WWWeb, http://www.techweb.com/se/directlink.cgi? IWK19970922S0063. 1 February 1998.

Wolford, Dean A. Improved Visibility Within the Air Force ITV System. Graduate Research Paper AFIT/GMO/LAL/96N-15. School of Logistics and Acquisition Management, Air Force Institute of Technology (AFIT), Wright-Patterson AFB OH, November 1996 (AD-A320449).

Wooley, Scott. "Replacing inventory with information," Forbes, 159: 54-58 (24 March 1997).

Capt Leigh E. Method was born on \square. She graduated from Northville High School in 1986 and entered undergraduate studies at Michigan State University in East Lansing, Michigan. She graduated with a Bachelor of Arts degree in Personnel Administration in June 1990. She received her commission through the Air Force Reserve Officer Training Corps on 9 June 1990 as a Distinguished Graduate and recipient of a Regular Air Force Commission.

Her first assignment was at Langley AFB as the Combat Readiness \& Resources Officer and, for a short time, the Vehicle Operations Officer for the 1st Transportation Squadron, 1st Fighter Wing. She attended the Transportation Officer Course at Sheppard AFB and graduated in March 1992. Her second assignment was at Yokota AB as an Air Terminal Operations Duty Officer and later as the Air Freight Officer for the 630th Air Mobility Support Squadron (previously the 316th Aerial Port Squadron). While at Yokota AB, she completed Squadron Officer School by correspondence. Her next move was into a logistics crossflow assignment at Travis AFB as the Assistant Maintenance Supervisor for the 60th Aircraft Generation Squadron (C-5 aircraft). While assigned to Travis AFB, she attended the Aircraft Maintenance Officer School at Sheppard AFB and graduated in January 1996. She attended Squadron Officer School at Maxwell AFB and was a Distinguished Graduate upon completion in June 1996. In May 1997, she entered the School of Logistics and Acquisition Management, Air Force Institute of Technology.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE September 1998	3. REPORT TYPE AN Master's Thesis

MEASURING THE EFFECT OF RFID TECHNOLOGY ON MOVEMENT OF U.S. ARMY RESUPPLY CARGO
6. AUTHOR(S)

Leigh E. Method, Captain, USAF
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
8. PERFORMING ORGANIZATION REPORT NUMBER
Air Force Institute of Technology
2750 P Street
WPAFB OH 45433-7765
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ AFMC/LGTR
4375 Chidlaw Rd, Suite 6
WPAFB OH 45433-5006
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited
13. ABSTRACT (Maximum 200 Words)

This research is an analysis of the effect that the added in-transit visibility (ITV) associated with applying Radio Frequency Identification (RFID) technology to Army resupply cargo makes on total cycle time (from entry into to exit from the system) within the Air Mobility Command (AMC) portion of the Defense Transportation System. Although information technology applications are known to contribute to ITV, there has been no attempt to quantify it despite a perception held by at least part of the DoD community that ITV initiatives will reduce logistics response time by improving cycle time. This study was aimed at quantifying RFID technology's contribution to cycle time by comparing a set of RFID-tagged shipments to a set of non-RFID-tagged shipments moving into the Bosnia-Herzegovina theater of operations. Although there are agencies looking at worldwide implementation of this system, the system under study is currently the only one of its kind. The major finding of this research is that RFID-tagged shipments actually took longer to move through the AMC system. Port Hold Time at the point of embarkation was 2 to 2.5 times longer for RFIDtagged shipments and had a total possession time 19 percent longer than non-RFID-tagged shipments.

14. SUBJECT TERMS Automatic Tracking, Airlift Operations, Air Transportation, Military Transportation, Cargo, Cargo Handling			15. NUMBER OF PAGES 99
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications of AFIT thesis research. Please return completed questionnaire to: AIR FORCE INSTITUTE OF TECHNOLOGY/LAC, 2950 P STREET, WRIGHT-PATTERSON AFB OH 45433-7765. Your response is important. Thank you.

1. Did this research contribute to a current research project?
a. Yes
b. No
2. Do you believe this research topic is significant enough that it would have been researched (or contracted) by your organization or another agency if AFIT had not researched it?
a. Yes
b. No
3. Please estimate what this research would have cost in terms of manpower and dollars if it had been accomplished under contract or if it had been done in-house.

Man Years \qquad $\$$ \qquad
4. Whether or not you were able to establish an equivalent value for this research (in Question 3), what is your estimate of its significance?
a. Highly
b. Significant
c. Slightly
Significant
d. Of No
Significance
5. Comments (Please feel free to use a separate sheet for more detailed answers and include it with this form):

Name and Grade

Position or Title

Organization

Address

