Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1997

The Virtual Spaceplane: Integrating Multiple Motion Models and
Hypertext in a Virtual Environment

Troy Johnson

Follow this and additional works at: https://scholar.afit.edu/etd

Recommended Citation

Johnson, Troy, "The Virtual Spaceplane: Integrating Multiple Motion Models and Hypertext in a Virtual
Environment" (1997). Theses and Dissertations. 5682.

https://scholar.afit.edu/etd/5682

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5682?utm_source=scholar.afit.edu%2Fetd%2F5682&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

AFIT/GM/ENG/97D-01

THE VIRTUAL SPACEPLANE:
INTEGRATING MULTIPLE MOTION MODELS
AND HYPERTEXT IN A VIRTUAL ENVIRONMENT
THESIS

Troy D. Johnson
First Lieutenant, USAF

AFIT/GM/ENG/97D-01

19980127 024

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government

THE VIRTUAL SPACEPLANE:
INTEGRATING MULTIPLE MOTION MODELS
AND HYPERTEXT IN A VIRTUAL ENVIRONMENT

THESIS

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Meteorology

Troy D. Johnson, B.S.

First Lieutenant, USAF

December, 1997

Approved for public release; distribution unlimited

AFIT/GM/ENG/97D-01

THE VIRTUAL SPACEPLANE:
INTEGRATING MULTIPLE MOTION MODELS
AND HYPERTEXT IN A VIRTUAL ENVIRONMENT

THESIS
Troy D. Johnson, B.S.

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Meteorology

Sheila B. Banks ith A. Shomper”
Major, USAF Major, USAF

Martin R. Stytz, Chairman t/ /
Lieutenant Colonel, USAF

i

ACKNOWLEDGEMENTS

I'll never forget my accomplishments while at AFIT. A major undertaking like a
master’s degree cannot be expected to be easy; I can confidently say that I couldn’t have
made it through by myself. 1 owe many people my thanks.

A special thanks to the two other members of the Spaceplane group, Capt John
Lewisl and Lt Scott Rothermel. It was comforting on those late nights and long working
weekends for there to be someone else iﬁ the lab working. The partnership we developed
worked well.

Our committee members gave us the insight, encouragement, direction, and the
occasional “Way Cool” that kept us going in the right direction. Thank you LtCol Stytz,
Maj Banks, and Maj Shomper.

Thanks also to the fellows around the lab, especially Steven Sheasby and Capt
Jeff Bush. It’s good to have someone to talk to when times get tough.

Thanks also to the meteorology group ... after all, I am graduating with a
Meteorology degree. Thank you Maj Dungey, LtCol Walters, and the entire 98M
meteorology class.

I saved the most important for last: the three most important women of my life. I
was late for supper more times than I'd like. Daddy had to study instead of playing
softball too often. But through it all, you all were so supportive. Thank you Jo, and my

beautiful girls, Nicole and Michelle. I love you.
Troy D. Johnson

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
ABSTRACT X
I - INTRODUCTION 1
MOTIVATION ...cevveerirereiiessrerecsersssssesssssssssessssassersssssasesssssassesesssssasessssnsessssassasessassssssnsrssnsoe 1
PURPOSEcvveeeieeeeecceransnesseesssossesssssssesssssssssssssssssnsssssssssssssnssssssssssssssssnsesssssssassonsssssssnnens 2
TRESIS STATEIENL «.....oeeeneeeeeeeeeeeeeeeenreeseeeesssssssaseesesssssssssssssssessssssesssssssssssesasssssssessssssse 2
SCOPE...nvnriririririnirtent sttt a e bbbt s a e s st eb bbb e 2
APPROACH/METHODOLOGY ..eeereverereeeeererssesesessssessssssssssssssssssssssassssssnsssssssssssssssassssssessssnsnns 3
THESIS OVERVIEW ...uuuviiierrerecreseeserererrorsessessssessassssssssessesssssssessesssssssseessssssssssnesssasssssessenssse 4
II - BACKGROUND 6
VIRTUAL REALITY ...ceevveeiiirrreeeeeesssneesescssressessssserssssssnsesesssssssesssssssaesssssosssssasssenssssansassasanes 6
FLIGHT SIMULATORScevvteerececreanssosessesessmsssssssssseesssssssssessssssssssssosessssssesnssssssssesssnssnnnnssanans 7
PREVIOUS RELEVANT AFIT PROJECTS....uueeiererrererisrerersecsssenesssssesisssnsesssssaresessesssssssssssens 8
Solar System Modeleruuucuiniinuiveirriiiiiirininicctnessesscsssessssessesissssesns 8
VIrtu@l COCRPIL ...ttt s ssss s benssnens 9
COORDINATE SYSTEMS uuuueueeeeretrereereoesseresseeesssssssseessssssssssssssssssssssssssesssssssssssessssssassossesssns 9
WGS84 CoOrdinate SYSIEM..........uuuvuieeueniinaiieiectrcreeecerecerenesescsecneesevsesseasssssssens 10
ECI COOTdinate SYSIEmuuevereeeieereeireecieeeeieesissesssesssssssesssessssssessssssssssssssssseses 11
NED COOrdingte SYSteMi..........ccueeeeieciueneiiiiiectisnteetscae e stesaesseessessessasssassssssssnses 11
ENV COOTdiNate SYSIEMLcueoveeeririersiacriniueseeeseesseessesssessesssesssssssssssssesassssessasssans 12
GEOACHIC COOTAINALES c.ooeeeeeeeneeeeeeeeeeriresessssssssessssssssssssssssssesssnsssssssensssosssasesses 13
Performer Object COOTAINAIESuuueueeueeereeecrercieerireecisiecssesesiaessseessssessssesssesssesas 13
DIS COOFAINALES .eeeeeeeeeveeeeeeeeeeeeeeeeeeeeeereeeeeessseeerateasesseeesesssesesesesssssesssesasansssaess 15
FUNDAMENTALS OF ASTRODYNAMICS ...cceeemtveeeeeseerersnnsenesesssssnessssessseesssssnsnsssssesssnsnnsnsssss 16
OFDITAL @LEMENLS ..ot eeeeeeeeseeeeeeeesesesasessssasaeasaesasesessasssasssaseses 17
TWO-LINE ELEIERLS «....coooeoveeeveveeieeeeieieeeeeeeeeeieeeerseesesessesnsasesssessnsnssssntasssnssnsannsssnssasssses 19
INASA SPACE SHUTTLE .teetiiieieiiieierienrnreeeesesisessssssssesesesesesssssssssssssssessesssssnsssssssssssssssssane 20
MILITARY SPACEPLANE ..cccceeiieieeteteeeeeeeeeesssstereteeesasesessesssssssesssssesssssssssessssesssssssnmnseres 20
SUMMARY .ovvvvevveereerineieesereiseesnnsrrssesersssesesessssssessesssssssesssesssessssessssssresstessessessssessssenssssnsess 21
III - REQUIREMENTS 22
SIMULATED CAPABILITIES OF MISP ...cooeiiiiiitttteeeeeecccetcenrveetseseeceesnsrenneeeessosssassonssssenns 22

v

TRESIS JOCUS ..voneveeeeveererercerrerreesieestieeseestessstessstesssaesstsestnesaesasbesssssesbesssnnesssenssesssasssasans 23
SUPPORTED MISSIONSeeviruiruereiinisuissessisanssesssossesisssesnsssissessesssssssssssessessassassassessassassases 23
TRESIS FOCUS «..oveeneenenreraeeieserieneeeiseeeessestssesssssssssestsrs bbb b ns s s n e b st srebe s bsas e ssasns 24
USER INTERFACE.......ccocteseeiertsnresesesrensissessessosstssessisssessossessessessesssesassssssassesnenssssasssssssasas 24
TRESIS JOCUS <covveeeeeneeeeeenieteeieee e estsses e st sse et stesas s sas s esba s b s b enestesba st esseanas 25
VIRTUAL ENVIRONMENTccccoimiiriniisisiistieeissestisessisssssssesssssssenssssssessessssssssssossssesesssnsans 26
TRESIS fOCUS woneeeneeaanrenrenereercereeeeeeeennes erssresesstat sttt s a s s e bessas e e e n e sm b 26
MISCELLANEOUS.....c.cotruiereermmreereesissessnesessessesssessissnsssssessessessessesmessssssssassssssassesssssonssssenses 26
TRESIS fOCUS ..uvoneveneiineieniniicniieiecsitiniienrcsteene sttt s sbesbb s s bestsssss st aneassesss 27
SUMMARY ..ccovintenrereiensisentesstsstesessssisssssssessssssssasssssssssssssessssessesssssssesssssensssssassassesessesesss 27
IV — DESIGN & IMPLEMENTATION 28
THE SOFTWARE ARCHITECTUREcocenumuinirmmeesinississesississsseesossessssassesssssssassssessessasessess 28
Relationship between a SimObject and PropModel.....................ouueneevironuenrenuennenen. 30
PROPAGATION MODELScorteriirenecsuncnssisssesisssesaessessessnsssisssssossesasssssassssessessassasssssssssns 31
FTEEFLIGRL.......eeoiieeeietrnicrinreninesicestsncssssasssse et sa et sbesbassnassesan s b asasananess 32
ACEOPTOP c..cuoneeeevereciririrereiesesiestetssassacs sttt cbisbes e s s st e be s e s e a st s b esbesbesbasssanas 33
ASITOPYOPD coeeeevcreirneennieiseisssesscssetsistssstssssessssesssssssssssssssssessnessnssessensssesssssssssssasans 34
OFDIERITYPTOP......cecnrieeieiecrireneeneensentessessscssssiesssssssssissssssesssesssesssosssessassssssassasssasns 37
TAXIPYOP «.eeeeeveneeeeeveceeeeeieseeiesiestesaessesacestsstssaeesesss shssssssssansssensassssssssnessessassassensasseses 42
Other Propagation MOdELS...............evucceoneeiiinivininiisnisieiseesecsessieseesesssssssssssenss 43
RENDEZVOUScueieiineesinranstnestsssssessssssessstssstissssssessssssasssssstsssessssssssssasssasssssssssasssnasasen 44
SIMGRYPHON....ccuririrerianeraesnsnssssesiossosiessossessessesssesssssissessessesssssessssssssssssssassnsssssssasessens 49
Modifying the appearance of the spaceplane ... 50
Transition between propagation MOAELSeeoevmvenecsuinienreisrersesseeeninenes 52
COORDINATE CONVERSION......ccttriimumertrcrissressassssnessssssnosesssessasssessnessesssassssssssssssssessasasnans 54
Flat-10-ROUNA DIft ...u..cueeveeereneeeeecneneiniiissnressstnnatinncessessissssssssssssssesssssssnsessssssassans 60
AUTO-PILOT.c.ccoeeeiiieeeiiinrntretetereesssssrstsseseessssssssssaresassssssssosssosanssassssasesssesssessssassssosssssssns 62
AtMOSPRETiC AUIOPIIOL ...ttt e sassaeenees 64
SPACE AULOPIIOL......euoneennieriieeneiicicnieinsis e ss s sassnens reveeeeeerenes 65
TranSition AULOPILOL.eeeeeeeeeeeeneeciciiiicintsttse et cst b s s saesses e nesbaens 66
HYPERTEXT INTERFACEccoouteruiruinnrnntirucssnissscsstessesstissessnsssesssessssssasssnssssssssassssesssesans 67
Design new HTML DrOWSEFouueeeeccuivnueiviiiniiiiininennsiisiieteenesssessessesssnssssssssssans 67
Integration of external HTML DIOWSETccuvuivmevuivuinuisrinsicninnieniinseesessessnseensenis 68
Preloaded IMAGESeeeeueveveeierieieecieeiiiecsetectc ettt sas b sns b enas 69
SUMMARY ..ctiitiiieiinneitiirieatsessssiesstsessssssesssesssssasessesssssesssessassssssssessensasssssssassansasnss 71
V - RESULTS 72
COMPLETION OF REQUIREMENTSccovuiruiisuimsiensinenressseissossenisnssessssssasssnsssssssassnssssesnsssenss 72
Simulated CAPADILIIES...........c.coeeeevcuiiiiiiiiiiiiiiiiiiiict e 72
SUPPOTIEA MUSSIONSooveeeeiniriiiiiitieniiie ittt s s 74
USEE INIEITACE .ottt sas s b ea e s bs 76
VIrtUQL ERVIFORIEALcceveeieeeeeivenieesieeesiteesitestesaeessee st e saeosasesssnnssssessss sosassssssnes 80
MUSCEIANEOUS ...ttt sres et e st st e s se e s s s saeesnecsraesanaesne 81
SUMMARY ...cvtieiienieenresineneseesitseiesissssstisssessssesesessassesssssssssossssssssesssesssnssssnessssssanersssessons 82

VI - CONCLUSIONS AND RECOMMENDATIONS 83
RECOMMENDATIONS FOR FUTURE WORKccconiueinirisinisiniiiiniisississisiisisssnsssssssassesens 84
Incorporate Additional MiSSiON TYPESeueeeeeceereereveriesiesieniesseseeteesiesieseosessesneses 84
Modifications 10 the INIETACE............ccuvueeeerirerieieiecieiirnsesiesseseseeesesssssessseesessasans 86
AAVANCEA AULOPIIOL........eeneneeeeeeenseeinieneestesesteesesestetesesseet et es et esesee e se st sesnens 87
Integrating Hand Tracking HArdWarecceeeeeeeeeecievienreneeeieeneesessessessessennas 88
AGENt ASSISIANLueeeeeererererrrerererereran. eer ettt ettt b e b b r et b b st n s eens 88
CONCLUDING REMARKS........cvteerveererrersesssesessssssesssessssesessessssssesssssessssssessssssssssssssssssssssnas 89
APPENDIX A - EXTRACTING ORIENTATION INFORMATION FROM AN
EULER MATRIX 920
APPENDIX B — CONVERTING BETWEEN GEODETIC AND GEOCENTRIC
COORDINATES 93
APPENDIX C - DETAILED VIRTUAL SPACEPLANE REQUIREMENTS......... 96
BIBLIOGRAPHY 104
VITA 108

Vi

LIST OF FIGURES

Figure 1 — WGS84 Round Earth Coordinate SystemPlaOge
Figure 2 — The ECI CoOrdinate SYSLEIMccecvirerrerereererersereesersesessssesessssesssessesessesersensanens 11
Figure 3 — NED Coordinate System............. bbb R s b e b e e n s e st e sae e saas 12
Figure 4 — ENV Co0rdinate SYStEM......coeuereeeruerererirreerereserssseressssessesessesessesessessssesassesasees 12
Figure 5 — Geodetic CoOTdinate SYStEIM.......cucveerreeerereereneerrirsenserssrsessssssesesssssssesessssssnsens 13
Figure 6 — Performer Object Coordinate SYSLEMcueerverereerereereresseresnensnesesresssessasesens 14
Figure 7 — DIS Orientation COOTAINALES.........cccremeruerenrmeerenerrsssssersssssessssssssssesssesesessasses 15
Figure 8 — Geometry of an €lliPSEc.coeeerueururecrcrrerenesessesessesssssnesresessesersssssesssesesesnes 17
Figure 9 — Orbital elements [from Bate 71c.ceceeeeeveerseeneririecressnieseessesssecsnesosesessessenes 19
Figure 10 — Software Architecture of the Virtual Spaceplanecoeeeeeeveverereevererersenens 29
Figure 11 — Relationship between SIMOBJECT and PROPMODEL..........c.coveveverereeneaesennnens 30
Figure 12 — Methods common to all propagation models...........cccceeeverererernererernersaenas eeeee 32
Figure 13 — Methods in the FREEFLIGHT propagation model.........c.coveeevereeeeeeererereerenennn. 33
Figure 14 — Methods in the AEROPROP propagation model..........cceeevereerevrerervererreneresennes 34
Figure 15 — Algorithm for applying a maneuvering thrust while in orbit.........cccceoveveunne. 36
Figure 16 — Methods in the ASTROPROP propagation model..........c.eceeervereerereererrennenenennne 37
Figure 17 — Each propagation model is accurate only in specific regionscceeeeee... 38
Figure 18 — Methods in the ORBITENTRYPROP propagation model............c.eevereeverernennnne 39
Figure 19 — Exo-atmospheric trajectory in the altitude vs. velocity domain..................... 41
Figure 20 — Hohmann transfer........cocvcvieurcrienereneenirtseessesteerneeessessssessssessssessssessessassnns 42
Figure 21 — Algorithm for determining lowest time-of-flight for rendezvous.................. 45
Figure 22 — Algorithm for determining least-fuel time-of-flight for rendezvous.............. 46
Figure 23 — Short and Long way trajectories with the same time of flight 47
Figure 24 — General method for solving Gauss’ problem for rendezvous calculation...... 48
Figure 25 — VSP’s Orbit Display showing a potential rendezvouscoeeeveveeeveveenennen. 49
Figure 26 — Relationship of SIMGRYPHON t0 Other ObJECSccveereereerrrerereeerenrenenennns 50
Figure 27 — The payload bay doors are created separately from the spaceplane............... 51

vii

Figure 28 — A display of the deployed payload with the payload doors OP€N....cceeruvennennn. 52
Figure 29 — The spaceplane’s Propagation MOdelseuveeeeeeeeeeeeemeseeosoooooo 53
Figure 30 — Algorithm used by SIMGRYPHON to change propagation models.................. 54
Figure 31 — Problem with the previous version of Round Earth Utilities........................ 55
Figure 32 — Coordinate conversion routines in the ACCU ..o, 57
Figure 33 — A depiction of three North vectdrs ... 59
Figure 34 - Flat-to-Round drift 2000 o OO 61
Figure 35 — Algorithm to compensate for flat-to-round drift..............oooooooooooo 62
Figure 36 — Methods available in AUTOPILOTovvoooosooocooooooo 63
Figure 37 — AUTOPILOT state QIAZTAM......voeeeeeeeerareree st ese e eeseeseese s 64
Figure 38 — VSP’s hypertext Engineering Panel............ueueeeeeeeeeeeoneesoesoosoooeooooooosoo 70
Figure 39 — Pseudo-HTML interface architecture............ooovvovvooooooooooo 71
Figure 40 — Display of the VSP Target Paneloceevveeruneoneeeeeeeeeseesssesseoooeoooooen 75
Figure 41 — Satellite after being deployed from spaceplaneovvoeoooooooooooo 76
Figure 42 — Engineering Panel showing fuel consumables status..................oooooooooooo.. 78
Figure 43 — Engineering Panel showing an example of a hypertext checklist................... 79
Figure 44 — Engineering Panel showing details of landing gear problem....................... 80

viii

LIST OF TABLES

Page
Table 1 — Summary of Coordinate Systems used in VSPcccccorverveevrncerreceenencesenerinnenn 16
Table 2 — Orbital EIEMEnts........cccceeveeerrieiierinrernicnneseennesnnsessesessesessusssesssessesssssessessans 18
Table 3 — Capability Requirements............... reeeeteeste e et et e e et saen et eteseanaess et esesasanen 23
Table 4 — Mission Requirements..........cccceveeureeecrncvenennes ettt ettt nenes 24
Table 5 — User Interface REQUITEMENLS.ccveverueiimeccrrenieninenirsenesinseeiessesnesesssssssaesesnens 25
Table 6 — Environmental REqUIrEMENtS.c.covvricrvinrnsenerciiesernerieerenesnssnnsesscesssnssneseseene 26
Table 7 — Miscellaneous REQUITEIMENLS.cc.cecveeerrueererrceenseessencsreenraeessneessacessessserssneeens 27
Table 8 — Completion of Capability REqUIrEments..........cvccevereereercrvrrvrnssvrcresesessnssesseseras 73
Table 9 — Completion of Mission REQUITEMENLSccccecerueererrecsecrenseesueereeseeenecsesseesessasnes 74
Table 10 — Completion of Interface REQUITEMENLScoceeererreerserinerssesarsnesseseeresseseoesaans 77
Table 11 — Completion of Environmental Requirements.........ccceceuveerurcceesenuniescrcescennannns 81
Table 12 — Completion of Miscellaneous REQUIrEMEntscoceeerveeerceersveceesresressesnnenenns 82

X

AFIT/GM/ENG/97D-01
ABSTRACT

The Air Force is currently investigating the possibility of developing a manned
vehicle capable of operating in space. This Military Spaceplane (MSP) will be capable of
ascent to low-earth orbit and maneuvering while in orbit. The goal of this research
involved creating the Virtual Spaceplane (VSP), a virtual environment (VE) simulator for
the MSP. This thesis examines two ideas significant to virtual environments and cockpit
design: multiple motion models and hypertext in a VE.

Movement in a VE has traditionally been modeled using a single motion model.
Little work has been done to allow a change of the motion model used during the
simulation. This thesis suggests partitioning simulation entities into two sections: the
geometry model and the propagation model. This approach is demonstrated in the VSP
using multiple propagation models as it transitions from runway to orbit.

This thesis also examines the use of hypertext within a VE. Hypertext has been
shown useful for readers to quickly locate information. This thesis will discuss the
integration of a hypertext interface into the VSP. The hypertext interface provides
checklists, systems status, and consumables status. Hypertext provides the spaceplane

pilot with an effective means of referencing large amounts of data.

THE VIRTUAL SPACEPLANE:
INTEGRATING MULTIPLE MOTION MODELS
AND HYPERTEXT IN A VIRTUAL ENVIRONMENT

I - INTRODUCTION

Motivation

Former Chief of Staff of the Air Force Gen. Ronald R. Fogelman, in his roadmap
for the future of the Air Force, recently stated that “operations that now focus on air, land
and sea will ultimately evolve into space.” [FOGE96] He continued by saying, “Air and
space forces provide worldwide situation awareness. They are generally the first forces
called forward in a crisis.” This far-reaching vision will require significant advances in
space-related capabilities. At the core of the execution of this vision is a means for cost-
effective, responsive and reliable access to and through space [MSIC97].

In response to this goal, the U.S. Air Force has been investigating the possibility
of developing a vehicle capable of operating in the space environment. The Military
Spaceplane (MSP) is intended to provide a “safe, reliable, operable, supportable,
producable, testable, and affordable suborbital and Earth-to-Orbit-and-Return” flight
system [VERD97]. The MSP will be capable of accomplishing ascent to low-earth orbit,
maneuvering while on orbit, de-orbiting, and performing hypersonic flight within the
atmosphere. Takeoff and landing are to be accomplished horizontally from conventional

runways.

Purpose

The goal of our research is to develop a virtual flight simulator for the Military
Spaceplane. The Virtual Spaceplane (VSP) uses virtual environment technologies to
simulate many of the capabilities of the proposed MSP. The VSP has the ability to
maneuver in the diverse operating regimes from a runway to low-earth orbit. The Virtual
Spaceplane also simulates the deployment of a satellite and allows a rendezvous and co-
orbit with a space station or low-earth orbiting satellite.

Another research goal during the development of the VSP is to provide the
spaceplane with a cockpit interface simpler than found in other advanced air and space
vehicles. The cockpits of today’s air and spacecraft continue to include more displays
and controls. Unfortunately, this increased complexity often interferes with the pilot,
rather than providing the intended assistance [HAMMO95]. To curb this trénd, our
research investigates new paradigms of cockpit design, including a hypertext interface

used for onboard system diagnostics, checklists, and monitoring consumables.

Thesis Statement

Develop a prototype simulator for the Military Spaceplane capable of horizontal
takeoff from a conventional runway, atmospheric flight, low-earth orbit entry, orbital
maneuvering, atmospheric reentry, and landing. Investigate new concepts in cockpit
design, including virtual environments, reconfigurable displays, and hypertext, while

developing the pilot-spaceplane interface.

Scope

The Virtual Spaceplane was developed as a prototype flight simulator. It

therefore, implements only a subset of the capabilities of the proposed Military

Spaceplane. The VSP simulates the spaceplane’s maneuvering in and through the
atmosphere and space. It also demonstrates the ability to deploy a satellite into low-earth
orbit, and to rendezvous with a satellite or space station.

Also, because the VSP is a prototype for a vehicle that has not yet been
developed, no flight characteristics data were available. The VSP, therefore,
approximates the flight attributes of a vehicle of the Military Spaceplane’s expected size
and flight profile. Takeoff and landing are only allowed from a single location.

Some of the displays in the Virtual Spaceplane cockpit were developed only to a
limited degree. These prototype displays allowed us to more easily verify the usefulness
of various interface techniques. For example, the Engineering Panel’s hypertext interface
is not implemented using the Hypertext Markup Language (HTML), and the on-line
checklists are not intended to be factual, but are representative of the checklists which
would be used by the pilot of the Military Spaceplane.

Other limitations include the fact that the rendezvous mission does not include
any time restrictions and the satellite deployment mission does not accurately model the
boost to a higher orbit typical of many satellite launches. The VSP also is currently
implemented with an unlimited fuel capacity. The software was developed to operate on

Silicon Graphics Onyx hardware with the Performer execution environment installed.

Approach/Methodology

The Virtual Spaceplane was created using rapid prototyping development
techniques. Rapid prototyping allowed us to refine the system requirements during the

entire research process. It also allowed the VSP to achieve incremental improvements in

the software, and provided us with the abili‘ty to determine the effectiveness of the novel
cockpit designs used in the spaceplane. Object-oriented techniques are essential to rapid
prototyping [STYT97] and were used throughout the implementation of the VSP.

After investigating the architecture used in other large-scale virtual environments,
we developed the architecture for the VSP. We also reviewed existing software
developed by the AFIT Virtual Environments, Medical Imaging & Computer Graphics
Lab. The reuse of portions of the AFIT Virtual Cockpit [ADAM96] and the AFIT Solar
System Modeler [WILL96] increased the efficiency of the Virtual Spaceplane
development process. |

The requirement for the VSP to operate in the atmosphere, low-earth orbit, as well
the transition region between air and space necessitated a study of the mechanics in these
three dissimilar regions. The software for maneuvering the spaceplane in these three
regions was developed from three different sources. Atmospheric flight is modeled usiﬂg
procedures developed for the Virtual Cockpit; routines developed by the Air Force
Academy Astronautics Department enabled space flight; and flight through the exo-
atmosphere was allowed by incorporating routines developed for the Transatmospheric

Vehicle (TAV) project.

Thesis Overview

This thesis is divided into six chapters. Chapter Two provides background in the
areas the reader is not assumed to have knowledge, but are necessary to understand this
work, including a more detailed description of the Military Spaceplane. Chapter Three

identifies the specific requirements upon which our research is based. Chapter Four will

discuss the research performed as well as the design and implementation of the software
written to fulfill the Virtual Spaceplane’s requirements. Chapter Five presents the results
of the research. Finally, Chapter Six summarizes our research and recommends areas of
future research. Throughout the thesis are references to the Gryphon. This nickname is
given to the spaceplane vehicle that operates within the VSP environment.

Following the thesis are three appendices that provide supplementary information
on implementation details of the VSP. The first two appendices provide details on the
implementation of the coordinate conversion utilities developed as part of this research.
The third appendix provides a detailed list the progress of the Virtual Spaceplane,

including completed work and areas for future research.

Il - BAckGROUND

As described in the previous chapter, this thesis will cover the work I accomplished on the
Virtual Spaceplane. Before that, however, it is appropriate to briefly discuss some information
required to provide a framework this research. First, this thesis will discuss a technology central to
the VSP, called virtual reality, followed by a brief discussion of flight simulators. Other work
completed at AFIT applicable to our research will then be reviewed. Next, because this research
employs many different coordinate systems, I’ll present a summary of each system used in the VSP.
To provide a background for our vehicle’s capability for orbital motion, the following section will
provide a brief description of astrodynamics. I'll conclude with a short report of the current space
vehicle, the Space Shuttle, followed by a summary of the capabilities of the proposed Military

Spaceplane, the basis of our research.

" Virtual Reality

Virtual reality (VR) is a relatively new simulation tool that is often used when a
conventional, physical mockup is impractical or uneconomical. Virtual reality can be defined as
“the creation of the illusion of immersion of the user in a computer-generated environment”
[BRYS93]. When in a virtual environment (VE), the user feels surrounded by computer-generated
objects moving within a computer-generated environment [STYT97]. The user views the scene
through a head-mounted display (HMD) or some other visual display. Some means of tracking

head and body movement are usually included to stimulate the users’ immersion, or “presence”, in

the environment.

Research conducted by Pausch, et al, has shown that users of a VE interface perform
significantly faster than users of a traditional, fixed monitor and mouse, interface [PAUS97].
Pausch attributes VR’s improved performance to the mental frame-of-reference developed because
of the presence in the virtual environment.

Virtual reality has proven useful in fnany areas. Virtual environments have been
demonstrated to be an excellent means to explore celestial activity [WILL96]. Probably the most
notable source of VR technology has come from work associated with the development of vehicle

simulators, especially aircraft flight simulators [MCKI91].

Flight Simulators

The goal of our research was to develop a virtual flight simulator for a prototype air-space
vehicle. Flight simulators have been employed since the Wright brothers developed their first
airplane. The essential form of flight simulation is the creation of a dynamic representation of the
behavior of an aircraft in a manner that allows the human operator to interact with the simulation
[ROLF86]. Most computer-based flight simulators use mathematical models of aircraft motion to
emulate the aircraft’s flight. Flight simulators have been used for aircrew training, new aircraft
design, as well as research in advanced avionics. Flight simulators have taken many forms: a
physical mockup of the entire aircraft,b a physical reproduction of just the cockpit and controls, and
mockups that use VE technology. The most costly of all flight simulators are those that provide
both motion and visual cues to the pilot, making the simulation as authentic as possible. Virtual
flight simulators have been demonstrated to be an inexpensive alternative to these high-end full

motion flight simulators [ADAM96].

Previous Relevant AFIT Projects

The AFIT Virtual Environments, Medical Imaging & Computer Graphics Lab has
developed a variety of virtual environments. These include the Synthetic BattleBridge [WELL96],
the Virtual Emergency Room [GARC96], the Solar System Modeler (previously called th? Satellite
Modeler and the Space Modeler) [WILL96], and the Virtual Cockpit [ADAM96]. More on these
projects can be found at www.afit.af.mil/Schools/EN/graphics/veprojects/ve.html.
Two of these, the Solar System Modeler and the Virtual Cockpit, are particularly significant for our

research into virtual space flight.

Solar System Modeler

The representation of the environment is an important part of any virtual reality project.
Because the space setting is an important part of the VSP, the Solar System Modeler was used as a
basis for the VSP’s environment. The Solar System Modeler models the location of the Sun, all
nine planets, many planetary moons, some of the larger asteroids and comets, plus over 30 thousand
stars. The Solar System Modeler also correctly models the full constellation of Global Positioning
Satellites as well as interplanetary probes.

Planetary positions are calculated using algorithms described by Meeus [MEEU91], which

provide very accurate locations based on the astronomical time. Satellites are propagated using the

- SGP4 routines developed by the North American Air Defense Command (NORAD), which

accurately model the movement of objects in low-earth orbit. The satellites are initialized using
two-line element (TLE) sets, which describe the position and movement of the satellite. TLEs are
updated routinely and are available via the Internet (a site we found useful is

www.grove.net/~tkelso).

Virtual Cockpit
The Virtual Cockpit (VC) provided the basis for atmospheric flight for the Virtual

Spaceplane. The VC represents the flight characteristics and cockpits of known, established
systems. The VC models the cockpit interior and flight characteristics of either an F-15 or an F-16.
The purpose of the VC is to provide pilots with a simulator that can be used for training in the use
of aircraft displays and controls. It makes use of a rapidly reconfigurable cockpit, converting the
displays as well as flight characteristics between the F-15 and F-16 fighters, even during flight.

The VC uses a set of routines, collectively referred to as the Aero Model to simulate
atmospheric flight. The Aero Model was originally implemented in the C programming language
for the Wright Laboratory’s Flight Simulation Facility, and has since been converted into a C++
class for use in the Virtual Cockpit. The Aero Model is reconfigurable and allows various flight
characteristics to be modified. Flight characteristics files for F-15, F-16, F-18, F-5E and A-10
aircraft already exist for this model. Flight characteristics are represented using data files

describing the flight responses at various speeds, altitudes, and angles-of-attack.

Coordinate Systems

Many different coordinate systems are used in virtual environments. The Virtual
Spaceplane, in particular, uses seven distinct systems in the simulation. Some coordinate systems
remain fixed throughout the entire simulation, while others may change in orientation and/or
position with time. Some assume a flat earth, while others more accurately model a spherical or
ellipsoidal earth.

This section describes each of the coordinate systems used in the simulation. A table

summarizing the coordinate systems used in the Virtual Spaceplane is located on page 16.

WGS84 Coordinate System
One round-earth coordinate system is the World Geodetic System 1984 (WGS84). This

system, amongst other things, defines an ellipsoid that provides a simplified description of the
(actually pear shaped) Earth. The ellipsoid is almost spherical, but is slightly fatter at the equator
than near the poles. The WGS84 standard defines the major axis (the radius at the equator) to be
6378.137km, and the polar radius to be 6356.7523km [DOD87][SSA97]. The WGS84 coordinate
system is used in many applications, including the Global Positioning System (GPS) as well as
distributed virtual environments (see DIS Coordinates below). The WGS84 coordinate system is

shown in Figure 1.

equator

prime ,l," X-axis

meridian,’

Coordinates
rotate with earth

Figure 1 - WGS84 Round Earth Coordinate System

This reference frame is a right-handed coordinate system that has its origin at the center of
the Earth [IST93]. The axes are defined such that the z-axis passes through the North Pole. The x
and y axes are in the Earth’s equatorial plane; the x-axis passes through the prime meridian (0
degrees longitude) and the y-axis passes through 90 degrees east longitude. The WGS84 system is
therefore not a fixed, or “inertial”, coordinate system because it rotates as the Earth rotates about its

axis of rotation. Meters are the standard unit of measurement in the WGS84 coordinate system.

10

ECI Coordinate System

Another round-earth coordinate system is the Earth Centered Inertial, or ECI coordinate
system. As the name implies, the ECI system is an inertial coordinate system whose origin is at the
center of the Earth. Similar to the WGS84 system, the x and y axes pass through the equator, and
the z-axis passes through the North Pole [BATE71]. However, as shown in Figure 2, the ECI
system does not rotate with the Earth. Rather the coordinate system is fixed with respect to the
stars and the Earth revolves within the coordinate system. The x-axis is oriented to point in the
direction of the vernal equinox. The vernal equinox direction is defined by the vector from the Sun
to the Earth on the first day of the northern-hemisphere autumn. Because the ECI system is an
inertial coordinate system, it is useful for calculating future positions for objects that move
independent from the Earth (e.g., the Sun, Moon, and satellites).

z-axis
4North pole

y-axis

X-axis
Direction of the
vernal equinox

* Rotating Earth
» Fixed Coordinates

Figure 2 — The ECI Coordinate System

NED Coordinate System

During the simulation, it is often convenient to represent the position and orientation of an
object over a flat plane. The North-East-Down (NED) coordinate system is one such fixed, flat-
earth coordinate system. The location of the origin in the NED coordinate system is arbitrary. The

NED system is a right-handed coordinate system in which the x-axis points north, the y-axis points

11

east, and the z-axis points down (see Figure 3). The NED system is the primary coordinate system

used in the Virtual Cockpit.

x-axis
North

Down

Figure 3 — NED Coordinate System

ENV Coordinate System

Another flat-earth coordinate system used in some virtual environments is the East-North-
Vertical (ENV) system. This coordinate system is similar to the NED system in that it is also a
fixed right-handed coordinate system, but has the x-axis oriented east, the y-axis oriented north, and
the z-axis oriented up (see Figure 4). Although the origin of the ENV system is arbitrary, the VSP

chooses the origin to be at the surface of the Earth at 0 degrees latitude, and 0 degrees longitude.

y-axis
North

(0,0,0)

Figure 4 - ENV Coordinate System

12

Geodetic Coordinates

An object’s position may also be designated by specifying the latitude, longitude and
altitude [TOMS93]. The Geodetic origin is located at sea level at the intersection of the Prime
Meridian and the equator. The units of measurement for the geodetic coordinate system are
commonly degrees (for latitude and longitude) and meters (for altitude). Lines of latitude range
from —90 to +90 (positive values north of the equator). Lines of longitude range from —180 to +180
(positive values east of the prime meridian). Altitude is positive above the surface of the Earth.
When projected rectilinearly onto two dimensions, the familiar Mercator map projection is obtained

(see Figure 5).

Latitude

Longitude

Figure 5 — Geodetic Coordinate System

Performer Object Coordinates

Performer is a graphics programming environment used with Silicon Graphics™ hardware.
In addition to providing a complete library of tools for drawing objects in a three-dimensional
scene, it also furnishes a strong library of vector and matrix math utilities.

Objects in Performer are modeled with the origin at the object’s center of geometry. The

positive y-axis is “forward”, the z-axis is “up”, and the x-axis points to the “right” [SGI95]. This

13

right-handed coordinate system moves with the object. Performer uses heading, pitch and roll to

represent the object’s orientation in this coordinate system:

Heading specifies rotation about the z-axis.
Pitch specifies rotation about the x-axis.
Roll specifies rotation about the y-axis.

The object is first rotated about the z-axis, followed by rotation about the x-axis, and finally

by rotation about the y-axis. Figure 6 shows the Performer object coordinate system.

Up y-axis
4 Forward

x-axis
Right

Figure 6 — Performer Object Coordinate System

14

o

DIS Coordinates

The DIS standard requires that positional state information be transmitted using a coordinate
system identical to the WGS84 coordinate system [LOPE93]. An object’s orientation is defined
differently than the system used by Performer (see Figure 7). Using the DIS standard, an object is
first rotated about the z-axis, followed by rotation about the y-axis, and finally by rotation about the

x-axis. The angles designating the amount of rotation about the various axes are sometimes

referred to as Euler angles:

Psi () specifies rotation about the z-axis.
Theta (8) specifies rotation about the y-axis.
Phi (¢) specifies rotation about the x-axis.
z-axis
Up x-axis

Forward

phi (¢)

y-axis
Right

Figure 7 — DIS Orientation Coordinates

All of the coordinate systems described above are used in the Virtual Spaceplane. The
WGS84 system is the primary coordinate system used in the VSP. The VSP must have the
capability to convert between the many coordinate systems to use routines designed for the different

systems. Table | summarizes the coordinate systems described above.

15

Table 1 — Summary of Coordinate Systems used in VSP

Coordinate System

Description

Use in VSP

WGS84

Round-earth system that rotates with
Earth.

Primary coordinate system in VSP.

ECI Round-earth system fixed with Used for movement in space.
(Earth Centered respect to the stars.

Inertial)

NED Flat-earth system used in Virtual The Aero Model’s coordinate

(North-East-Down)

Cockpit.

system. Used for movement in
atmosphere.

ENV
(East-North-Vertical)

Flat-earth system.

Intermediate system use in
conversion from NED to WGS84.

Geodetic

Latitude, Longitude and Altitude.

Used in coordinate conversion and
for navigation.

Performer Object Specifies the orientation of an object | Drawing objects in the scene.
(heading, pitch, and roll)

DIS Position is same as WGS84. Allows participation in a

(Distributed Orientation is specified using Euler | distributed simulation.

Interactive angles (v, 6, ¢).

Simulation)

Fundamentals of Astrodynamics

A majority of the Spaceplane’s mission time will be in orbit around the Earth. A short

summary of the science of bodies in space, or astrodynamics, will therefore be presented in this

section. Johann Kepler is often considered the father of astrodynamics. In the early 17" century,

Kepler discovered three laws that govern planetary motion [BATE71]. Kepler’s laws are the

following:

First Law:

The orbit of each planet is an ellipse, with the Sun at a focus.

Second Law: The line joining the planet to the Sun sweeps out equal areas in equal times.

Third Law:

distance from the Sun.

The square of the period of a planet is proportional to the cube of its mean

The motion of a satellite around the Earth (or a planet around the Sun) is confined to a plane

fixed in space, referred to as the orbital plane. The satellite’s position is described using the polar

16

equation for an ellipse (see Figure 8). The vector, r, specifies the position of the satellite with
respect to the Earth (the Earth is located at the focus, F1). The ellipse’s second focus, F2, is
unoccupied. The polar angle between r and the point on the conic nearest the focus is represented
by v. In the equation relating r and v, p is a geometrical constant of the conical section called the
“parameter”, or “semi-latus rectum”. The constant e is called the eccentricity, and it determines the

shape of the conic section.

p
Circle
r= 14 O<e<1 Ellipse
1+ecosv e=1 Parabola
e>1 Hyperbola

Figure 8 — Geometry of an ellipse

These principles, and other laws of astrodynamics, are used in the VSP to move satellites, as
well as the spaceplane itself, in orbit around the Earth. For an excellent introduction into

astrodynamics, refer to Bate, et al [BATE71].

Orbital elements

The orbit of a satellite around the Earth may be completely defined by six independent
parameters, referred to as the classical orbital elements (see Figure 9). Table 2 provides a short
description of each of the most commonly used elements. The orbital elements are based on the

ECI coordinate system described above.

17

Table 2 — Orbital Elements

Name of Orbital Element | Symbol | Description

Semi-major axis a Defines the size of the orbit

Eccentricity € Defines the shape of the orbit

Inclination i The angle between the orbital plane and the
equatorial plane

Longitude of ascending Q The angle between the vernal equinox direction

node and the line of nodes (the intersection between the
equatorial and orbital plane)

Argument of periapsis o The angle between the line of nodes and the
periapsis point

Time of periapsis T The time when the satellite was at periapsis

passage

True Anomaly *1 v The angle from periapsis to the satellite’s current
position

Argument of latitude * u u=0+vV

Longitude of periapsis * II [I=Q+®

True longitude * ¢ /=0 +u

* — Secondary orbital element (dependent on the first six)

The true anomaly, v, is often used in place of T as one of the six primary orbital elements
[BATE71]. The Solar System Modeler (and the Virtual Spaceplane) use this convention for
calculation of positions for the planets. For objects orbiting the Earth, it is customary to replace the

term periapsis with perigee.

18

Z-axis

-1

tellite’s position
satelli po! ﬁ!i""
L gir

is

Y-axis

ernol equinox
direction

Figure 9 — Orbital elements [from Bate 71]

Two-Line Elements

NORAD maintaiﬁs general perturbation element sets on all resident space objects. These
element sets are compiled into two lines of text data for distribution. These Two-Line Element
(TLE) sets consist of 24 fields of infbrmation, some of which are similar to the classical orbital
elements described above. Converting from TLE data to the classical orbital elements is fairly
straightforward, but obtaining the additional fields of information specified by a TLE from the six
classical orbital elements is more difficult. It is also important to note that the TLE sets are “mean”
values obtained by removing periodic variations. In order to obtain the most accurate predictions,

these periodic variations must be reconstructed (by the prediction model) in exactly the same way

19

they were removed by NORAD. Hence, inputting TLE sets into a different model will result in

degraded predictions [HOOTS80].

NASA Space Shuttle

Before investigating a new model for space flight, it is appropriate to review the methods
used today. The primary manned vehicle currently used for low-earth orbit is the Space Shuttle.
Design of the Space Shuttle began in the early 1970s. It is ‘the first reusable launch vehicle in the
United States space program.

The Shuttle cockpit is one of the most complex cockpits ever assembled. The flight deck
has 65 panels containing over 1700 buttons, knobs, switches, gauges and display screens
[NASA94]. On most flights, two astronauts (a pilot and a flight commander) operate the orbiter.
Due to lack of cockpit space, many of the controls and much of the information in the cockpit are

behind, and often out of reach of the pilot and flight commander. In addition, because of the

. complexity of the interface, two or more astronauts are required to execute some shuttle maneuvers

[KERRS88].

The Space Shuttle was designed for a vertical takeoff using two solid-fuel booster rockets,
plus an external liquid-fuel tank. After liftoff, the mission control center at the Johnson Space
Center in Houston assists the space shuttle with orbit and reentry maneuvering, and is also
responsible for monitoring the spacecraft’s systems during the flight. After the mission has been

completed, the orbiter enters the Earth’s atmosphere and lands on a runway like an airplane.

Military Spaceplane
The goal of the research for this thesis was to develop a flight simulator for the Military

Spaceplane, an air-space vehicle being developed by the United States Air Force. General

20

Fogelman, in his roadmap for the future of the Air Force, stated that “operations that now focus on
air, land and sea will ultimately evolve into space.” [FOGE96] The U.S. Air Force has recently
been investigating the possibility of developing a vehicle capable of operating in and through the
space environment. Interest in a Military Spaceplane (MSP) dates from initial research into
reusable launch vehicles (RLV) such as the X-20/Dyna-Soar program in the late 1950’s, to more
recently, the National Aerospace Plane (NASP) and the Delta-Clipper (DC-X) in the early 1990’s
[USCI90]. The MSP is envisioned to be capable of sustaining an operational tempo like a military
aircraft. The MSP must therefore have a rapid turn-around time and be easily maintainable
[VERD97]. One means of providing such a rapid turn-around time is single-stage-to-orbit (SSTO)
technology. A SSTO vehicle does not use external tanks or rockets, and takes off with all the fuel
needed to achieve orbit, accomplish its mission and return to Earth. Sortie tufnaround processing is
therefore limited to the more rapid tasks of refueling, loading new mission assets, and systems
checkout [KUPE92].

The MSP will be capable of accomplishing ascent to low-earth orbit, maneuvering while in
orbit, de-orbiting, and performing hypersonic flight within the atmosphere. Takeoff and landing are
accomplished horizontally from conventional runways. The vehicle should be capable of manned,
unmanned virtually-piloted, as well as completely autonomous flight. Current projections call for

initial production of a military spaceplane beginning around 2010 [MSIC97].

Summary

This chapter provided a summary of previous work and a synopsis of information that

should make the remaining portions of this thesis easier to read. The next chapter will describe the

requirements of the Virtual Spaceplane.

21

111 - REQUIREMENTS

Before proceeding into the Design and Implementation chapter, I’ll discuss more fully the
requirements of our research project. These requirements derive from the thesis statement given in
Chapter One and evolved during the course of the development of the VSP.

Our goal is to develop a simulator for an aerospace vehicle capable of simulating operation
in the atmosphere as well as in low-earth orbit. This simulator must be capable of accurately
simulating the flight characteristics of a vehicle in both flight regimes, as well as the tenuous exo-
atmospheric region. It must also model takeoffs and landings. The VSP should provide a
convincing environment in which to maneuver. Finally, we are developing a framework for a
future spaceplane user interface.

The VSP requirements are divided into five primary areas: simulated capabilities of the
MSP, supported missions, user interface, virtual environment, and miscellaneous requirements.
The following sections briefly describe each area. Because this research was conducted in
cooperation with two other students, only a portion of these requirements will be addressed in the
following chapters. Readers interested in the remaining requirements are encouraged to investigate
the companion theses by Capt John Lewis and Lt Scott Rothermel [LEWI97][ROTH97]. A more

detailed requirement list is given in Appendix C.

Simulated Capabilities of MSP

The capabilities to simulate the flight of the Military Spaceplane from horizontal takeoff to
low-earth orbit play a significant role in the development of the Virtual Spaceplane. Table 3 lists

the capability sub-tasks required of the VSP.

22

Table 3 — Capability Requirements.

ID Requirement Description
Flight Characteristics
1.11 The spaceplane shall simulate maneuvering on runways.
1.12 The spaceplane shall simulate flight through the atmosphere.
1.13 The spaceplane shall simulate maneuvering in space.
1.14 The spaceplane shall transition from one flight regime to another when
appropriate.
Manual Operation
1.21 The VSP shall provide capability to manually operate in the atmosphere.
1.22 The VSP shall provide capability to manually operate in space.
Automatic Operation
1.31 The VSP shall provide capability to automatically takeoff.
1.32 The VSP shall provide capability to automatically fly specified routes.
1.33 The VSP shall provide capability to automatically enter orbit.
1.34 The VSP shall provide capability to automatically modify orbital
parameters.
1.35 The VSP shall provide capability to automatically reenter the atmosphere.
1.36 The VSP shall provide capability to automatically land.
Thesis focus

In this thesis, I will discuss the fulfillment of all of these requirements. Methods for
manually and automatically maneuvering the VSP in all regions of operation will be discussed in
the next chapter. Rothermel discusses the architecture on which this will be built [ROTH97].

Details on the interface to these procedures are covered by Lewis [LEWI97].

Supported Missions

The Military Spaceplane is intended to facilitate many types of missions for the exploitation
of space to achieve military objectives. The VSP initially only supports a subset of these mission

profiles as listed in Table 4. Future work should expand the VSP mission capabilities significantly.

23

Table 4 — Mission Requirements.

ID Requirement Description
' Supported Missions
2.1 The VSP shall support rendezvous with orbiting objects.
2.2 The VSP shall support deployment of satellite.
Thesis focus

In the following chapters, I will discuss both requirements 2.1 and 2.2. A detailed
description of the interface used to execute a rendezvous and deployment are discussed by Lewis

[LEWI97].

User Interface

A primary goal of the VSP was to investigate unconventional interface schemes for
controlling a MSP and for maintaining the pilot’s situational awareness without overburdening the

pilot with tasks. The requirements specifying the interface goals are listed in Table 5.

24

Table 5 — User Interface Requirements.

ID Requirement Description
Interaction methods

3.11 All interface functionality shall be available via a three-button mouse.

3.12 The VSP shall support a head-mounted display (HMD) with head
tracking.

3.13 Auxiliary functionality will be available via the keyboard.

Configurable Cockpit

3.21 The user shall be able to selectively display information interactively.

3.22 The user shall be able to modify the location of information displays
interactively.

Displayed Information

3.31 The interface shall display state information of the Gryphon in the
atmosphere.

3.32 The interface shall display state information of the Gryphon during orbit
entry/reentry.

3.33 The interface shall display state information of the Gryphon in space.

3.34 The interface shall display status of consumables (propellants, life-
support, etc.).

3.35 The interface shall display state information of potential targets.

3.36 The interface shall assist the user in locating/acquiring potential targets.

3.37 The interface shall assist the user with system management and
diagnosis.

3.38 The interface shall investigate hypertext paradigms for display of
information.

3.39 The interface shall minimize obstruction of the user’s view.

Controlling the Gryphon

3.41 The interface shall not utilize a throttle and stick for control of Gryphon.

3.42 The interface shall enable users to change the state of the Gryphon in the
atmosphere.

3.43 The interface shall enable users to change the state of the Gryphon in
space.

Thesis focus

The investigation of hypertext paradigms for the display of information, requirement 3.38,
will be covered in the following chapters. The hypertext interface will facilitate the display of

consumables status, requirement 3.34. Lewis covers the remaining interface requirements

[LEWI97].

25

Virtual Environment

An effective virtual environment must encourage the user to make the mental transition

from participating in a computer simulation to accepting the perception that they are within the

portrayed environment. The Virtual Environment requirements in Table 6 are intended to enhance

the sense of presence for user of the VSP.

Table 6 — Environmental Reqliirements.

ID Requirement Description
Environment

4.1 The VSP shall present convincing terrain surrounding the landing site at
Edwards AFB.

4.2 The VSP shall present convincing representations of the Earth, Sun, and
Moon.

4.3 The VSP shall simulate multiple constellations of Earth orbiting objects.

44 The VSP shall portray the transition between day/night and
atmosphere/space.

Thesis focus

This thesis will specifically address completion of 4.2 and 4.3, involving producing both the

movement characteristics and visual appearance of the Earth, Sun, Moon and satellites.

Miscellaneous

Several requirements for the VSP did not correspond to one of the previous areas. These

requirements are listed in Table 7.

26

Table 7 — Miscellaneous Requirements.

) Re ement De ptio
Miscellaneous
5.1 The VSP shall accept state information of remote entities via the DIS
protocols.
5.2 The VSP shall transmit state information of the Gryphon via the DIS
protocols.
53 The VSP shall operate at a mean of 15 frames per second on a 4

processor 250 MHz R10000 SGI Onyx2 with Infinite Reality
graphics equipped with 16 Mbytes of hardware texture memory.

Thesis focus

This thesis will not discuss these three requirements. Rothermel provides a discussion of

the miscellaneous requirements [ROTH97].

Summary

In this chapter, I discussed the requirements of the Virtual Spaceplane project. We divided
the requirements into five areas: simulated capabilities of the Military Spaceplane, the missions
supported by the VSP, plus user interface, virtual environment, and other miscellaneous

requirements. The next chapter will cover the research we performed to accomplish the research

goals.

27

1V - DESIGN & IMPLEMENTATION

The previous chapter covered the requirements of the Virtual Spaceplane project and
alluded to those that this thesis will address. This chapter will cover the research done during the
design and implementation of the Virtual Spaceplane. First, we’ll discuss the software architecture,
and the division of simulation entities into a geometry model and a propagation model. The topic
of propagation models, the mathematical models used to move simulation entities through the
virtual environment, will then be fully explored. Following a description of each propagation
model used in the VSP is a summary of the techniques used by the spaceplane to rendezvous with a
satellite in orbit. The next section describes the implementation of the spaceplane with the capacity
to transition between the various propagation models as well as operating the landing gear and
payload doors. Next, the thesis will describe a set of utilities developed to allow conversion among
the many coordinate systems used in the VSP. The implementation of another portion of the VSP,
the autopilot, is then presented. In the final section, we’ll discuss an implementation of a hypertext

interface in the VSP virtual environment.

The Software Architecture

An important part of any program design is the software infrastructure. Before getting to
the details of my research, I’ll provide a short summary of the Virtual Spaceplane’s architecture to
provide a framework for the rest of the chapter. Rothermel provides a more detailed examination of
the VSP’s architecture [ROTH97].

The main loop of the simulation is the Go method inside SIM (see Figure 10). The

RENDERER is responsible for drawing the virtual environment. User input is handled through

28

various IO_MODIFIERS. Each input device updates the Common Object Database (CODB) with
user inputs. The SIM then reads the CODB during its TranslateInputs method. When SIM is
initialized, it instantiates the COCKPIT and other SIMOBJECTS. Each SIMOBIECT has an associated
PROPMODEL that allows the SIMOBJECT to move in the simulation. The relationship between a
SIMOBJECT and a PROPMODEL will be discussed in the next section. The SIMCLOCK tracks the
passage of simulation time and allows the rate at which time passes to be adjusted. A SIMOBJECT
(in particular, the spaceplane) can also be controlled by the AUTOPILOT. When flying in the
atmosphere, the AUTOPILOT follows a ROUTE of WAYPOINTS as it moves toward its destination.
The AUTOPILOT will be covered in more detail later in this chapter. The COCKPIT groups related
information into panels that can be moved as the pilot desires. The hypertext panel was developed
to investigate the use of hypertext techniques in a virtual environment. This thesis will report on

our research of these hypertext ideas beginning on page 67.

Renderer

I0_Modifier |—merpe

1+
SimClock i—’

Sim >——————— CODB

initialize ()

GO0
Pr OpMOde| E— Transtatelnputs ()
5

gets time
from,

Fy

Is moved

Autopilot

Hypertext
Panel

Figure 10 - Software Architecture of the Virtual Spaceplane

29

Relationship between a SimObject and PropModel

The key to the implementation of the various means of moving the spaceplane through the
air and space environments is the relationship between a simulation object and a propagation
model. Each entity’s geometry is modeled using the SIMOBIECT class, whereas its movement is
modeled using the PROPMODEL class. As Figure 11 illustrates, both the SIMOBJECT and
PROPMODEL classes have many sub-classes. Each SIMOBIECT is moved by its corresponding
PROPMODEL. All propagation models get the simulation time from the simulation timer
(SMCLOCK). The spaceplane uses multiple propagation models to model its flight during the
simulation. Therefore, the spaceplane, also referred to as the Gryphon, requires the capability to
transition between its various propagation models to accomplish flight from the Earth’s surface to
Earth orbit. The Gryphon, and the transition between propagation models, will be discussed in

more detail later in this chapter.

SimObject]-£m2ved &Yl propModel |22 i oM g Glock
FreeFlight

Gryphon AeroProp

AstroProp

SpaceStation TaxiProp

Earth

EarthProp

Sun SunProp

Figure 11 — Relationship between SIMOBJECT and PROPMODEL

3

S

Propagation Models

Separating the functionality for a simulation entity’s motion representation from its
geometry representation in the Virtual Spaceplane allows the Gryphon to change propagation
models during the simulation. This capability permitted the spaceplane to maneuver in the
disparate environments of the runway, atmosphere, and space.

As shown in Figure 11, each simulation object has an associated propagation model
responsible for modeling the movement of the entity during the simulation. Once per frame, each
SIMOBJECT directs its corresponding PROPMODEL to compute the entity’s position based on the
amount of simulation time that has passed since the previous update.

The PROPMODEL’S Initialize method (see Figure 12) is used to set the initial position,
orientation and speed of the associated SIMOBJECT. Once per frame, the PROPMODEL’S
CalcNewPosition method is called, providing th¢ propagation model the opportunity to
determine a new position based on its speed and previous position. The remaining PROPMODEL
methods are used to access the position and orientation information computed during
CalcNewPosition. GetPosition, GetOrientétion, and GetSpeed return the current
position, orientation, and speed respectively. The three-dimensional velocity can be obtained from
the GetVelocity method. GetInstrumentOri allows the caller to get the orientation in the
ENV coordinate system. The instrument orientation is the heading of the object with respect to true
north, and is used in many of the cockpit displays. As the name implies, the GetGroundSpeed
method returns the ground speed, also used primarily for cockpit displays. GetMach returns the
speed with respect to the speed of sound. Although the GetMach procedure written for the
PROPMODEL class assumes a fixed speed of sound (343.0 m/s), a subclass of PROPMODEL (for

example AEROPROP) can override this assumption and compensate for the fact that the mach

31

number depends on the atmospheric density. The last method, Get PropModelType, allows the
simulation to determine which propagation model a SIMOBIECT is currently using. Both the
AUTOPILOT (page 62) and the SIMGRYPHON (page 49) use GetPropModelType to modify their

behavior depending on the propagation model currently being used by the spaceplane.

PropModel

Initialize ()
CalcNewPaosition ()
GetPosition ()
GetOrientation ()
GetSpeed ()
GetVelocity ()
GetinstrumentOri ()
GetGroundSpeed ()
GetMach ()
GetAltitude ()
GetPropModelType ()

Figure 12 — Methods commeon to all propagation models

Many different PROPMODELS were required by the VSP due to the diverse regimes in which
simulation entities operate: FREEFLIGHT, which ignores many laws of motion, AEROPROP for
atmospheric flight, ASTROPROP for Earth orbit, TAXIPROP for runway operations, as well as

propagation models for the Sun, Earth, and Moon.

FreeFlight

The first propagation model developed, FREEFLIGHT, ignores many of the laws of motion
such as the concepts of mass, acceleration, and inertia. Maneuvering is performed by making calls
to the TurnLeft/TurnRight, PitchUp/PitchDown, and Rol1lLeft/Rol1Right methods
and by setting the speed (see Figure 13). All orientation and speed changes are performed

instantaneously.

32

FreeFlight

SpeedUp ()
SpeedDown ()
SetSpeed ()
Stop ()
PitchUp ()
PitchDown ()
RollRight ()
RollLeft ()
TurnRight ()
TurnLett ()

Figure 13 — Methods in the FREEFLIGHT propagation model

The FREEFLIGHT propagation model was initially developed for testing of the VSP. Another
use of FREEFLIGHT arose because of the architecture design specification that all SIMOBJECTS must
have an associated propagation model. Therefore, objects such as the terrain and stars that do not

move during the simulation use FREEFLIGHT as a placeholder model.

AeroProp

Although atmospheric flight is not a primary concern for the Spaceplane, we must still
provide the capability to fly the VSP using a standard aircraft dynamics model. This propagation
model, called AEROPROP, is based on the Aero Model, currently used in the AFIT Virtual Cockpit
[ADAMO6].

Figure 14 shows the methods provided by AEROPROP which allow the VSP to set the
various control surfaces of the spaceplane. The throttle is controlled using the ThrottleUp,
ThrottleDown, and SetThrottle methods. The aircraft’s control surfaces are adjusted using
the remaining methods. The pitch, rudder and bank all vary between —1.0 and +1.0. The throttle

varies from 0.0 (off) to 1.5 (full throttle), with 1.0 representing full military power.

33

AeroProp

ThrottleUp ()
ThrottieDown ()
SetThrottle ()
SetPitch ()
PitchUp ()
PitchDown ()
SetRudder ()
RudderLeft ()
RudderRight ()
SetBank ()
BankLett ()
BankRight ()

Figure 14 — Methods in the AEROPROP propagation model

AstroProp

The VSP must accurately model low-earth orbits with trajectories similar to those routinely
executed by the Space Shuttle. Several techniques exist for forecasting the position of an object in
orbit. Potential methods investigated for use in the VSP included the SGP4 algorithm and the use

of classical orbital mechanics.

- SGP4

The first method we examined was based on .a mathematical model developed by Ken
Cranford in 1970 for predicting the future position and velocity of satellites [LANE79][HOOT80].
This routine, called SGP4, takes into account the irregular shape of the Earth, as well as
atmospheric drag on the satellite. |

This approach has several advantages. The SGP4 algorithm very accurately models small
perturbations caused by the interactions between the object in orbit and the earth-atmosphere
system. A second advantage is that the SGP4 model is initialized using a two-line element (TLE)
set. TLEs are available for many objects currently in space. Also to our advantage, the algorithm is

already implemented in the AFIT Solar System Modeler for the propagation of satellites.

34

We decided against using this method for two reasons. First, the algorithm can’t be used to
compute how the orbit changes when a maneuvering thrust (delta-v) is applied. Second, this
method can only be initialized using a two-line element set. Because no TLE set exists for the
spaceplane as it enters orbit, we would have no capability to initialize the spaceplane using the

SGP4 model.

Classical Orbital Mechanics

Another means of determining the future position of an object in orbit is based on the
classical orbital elements. Chapter two described how orbital elements might be used to determine
the position of a satellite. A satellite being propagated using the classical orbital elements may also
be initialized using a TLE. This approach is very convenient, as TLEs are available via the Internet
for all the satellites we intend to model in the VSP.

A primary advantage of using orbital elements for space propagation is the ease of
initializing the model during orbit entry. Bate, et al, describes a method for determining the six
orbital elements based on position and velocity (needed for orbital entry) [BATE71]. This method
allows the VSP to transition from the atmospheric regime to space.

Another advantage of the orbital element method is the ability to model the application of
maneuvering thrust. When a space vehicle changes its orbit by firing its thrusters, the maneuver is
often called a delta-v burn. The thruster, in effect, provides a change to the orbiter’s current
velocity. As a first approximation, a delta-v burn is often treated as an impulse change in velocity
(the thrust is applied instantaneously). Using an impulsive delta-v is a reasonable approximation,
used even for a Space Shuttle in orbit, because the thruster burn time is very small compared to the

time between burns, and provides accurate results [BLOO74]. By using these approximations, the

35

problem of applying a maneuvering thrust is reduced to adding the desired delta-v to the current

velocity vector to obtain the new velocity (see Figure 15).

1) Compute current position and velocity based
on orbital elements.

2) Add delta-v to current velocity vector to
obtain new velocity.

3) Determine the new orbital elements based on

the new position and velocity.

Figure 15 — Algorithm for applying a maneuvering thrust while in orbit

The VSP also uses some of the orbital elements such as the semi-major axis and eccentricity
to quickly determine the shape of the orbit. This technique can be used to graphically represent the

orbit of objects for some of the VSP displays.

Design Choice: Orbital Elements

While the SGP4 method provides a more accurate method of determining the position of a
satellite than the orbital elements based approximation, it provides no ability to modify the
parameters. The ability to modify orbital parameters is an important requirement of the VSP, as it
allows the VSP to maneuver while in orbit. The VSP therefore uses classical orbital mechanics for
its propagation model in space. This propagation model, called ASTROPROP, is based on a library
of FORTRAN routines provided by the US Air Force Academy Department of Astronautics,
written by Capt Dave Vallado. Included in the FORTRAN library are subroutines to convert from
orbital elements to position-and-velocity (and back), subroutines for propagating a satellite, and for
determining the correct delta-v maneuvers to accomplish a rendezvous with another satellite

(described below). Several of the subroutines used in ASTROPROP use an iterative approach to

36

solve for orbital parameters as well as for delta-v’s. These iterative solutions seem to converge
faster, and work best at altitudes of 50km or higher. These routines may work best at higher
altitudes because they were designed to model motion of objects in low-earth orbit or higher.

Figure 16 identifies the methods used by ASTROPROP to maneuver the spaceplane while it is
in orbit. The three throttle functions (Throttl'eUp, ThrottleDown and SetThrottle) can
be used to provide constant thrust to the Spaceplane. However, whereas constant thrust works well
in the atmosphere where pilots have developed an intuitive idea of the motion of the aircraft, an
orbiting spaceplane does not move in such an intuitive manner. The VSP therefore does not use
this functionality, and implements all thrusts as instantaneous changes in velocity using
ApplyDeltaV. The remaining methods are used to turn, pitch and roll the associated SIMOBJECT.
The ASTROPROP propagation model is also used to model the movement of satellites around the

Earth.

AstroProp

ThrottleUp ()
ThrottleDown ()
SetThrottle ()
ApplyDeltaV ()
TurnLett ()
TurnRight ()
PitchUp ()
PitchDown ()
RollRight ()
RollLeft ()

Figure 16 — Methods in the ASTROPROP propagation model

OrbitEntryProp

Ideally, the Gryphon would use a single propagation model in the atmosphere as well as in
space. This approach would provide seamless operation throughout the entire simulation

environment and obviate the need to transition between models. However, because the VSP is only

37

a prototype, no single propagation model has been developed that is capable of modeling its flight
from takeoff, through the atmosphere, to low-earth orbit and back. The transition between the
atmospheric flight and orbital maneuvering presented a significant problem during the development
of the VSP. The Aero Model used in the atmosphere fails around 30 kilometers. At such high
altitudes, the air needed to drive the simulated jet' engines of the model is too thin to efficiently burn
the fuel. Therefore, a transition to another propagation model must be performed at, or below, this
altitude.

An initial attempt at the air-to-space transition involved performing a direct changeover
from AEROPROP to ASTROPROP at an altitude of 30km. This approach proved unsatisfactory for
two reasons. First, as described above, the iterative techniques used in ASTROPROP model do not
work well at altitudes this low. Second, and perhaps as a consequence of the first problem, the
transition was quite noticeable and failed to achieve our goal of a seamless flight from runway to
low-earth orbit. As Figure 17 shows, each propagation model is accurate only over a portion of the

spaceplane’s operation regions.

80

60

]

Altitude (km)

4 6 8 10

Velocity (km/s)

Figure 17 — Each propagation model is accurate only in specific regions

38

An alternative approach of providing an intermediate propagation model grew out of the
difficulties with the direct transition method. The new transition model, called ORBITENTRYPROP,
is designed to be fast, though not necessarily completely accurate. This model is also referred to as
the exo-atmospheric model, or the hypersonic model, because of its scope. ORBITENTRYPROP is
based on a FORTRAN program called QuikFlight written by Mark Goodman and John Livingston
from the Aeronautical Systems Center (ASC/XRD) as part of the TransAtmospheric Vehicle (TAV)
studies.

While the ORBITENTRYPROP model is active, the spaceplane has no ability to maneuver.
The position of the Gryphon is computed using the GetDownrange and GetAltitude methods
(see Figure 18), which returns the horizontal distance the spaceplane has traveled.
ORBITENTRYPROP provides two other methods, GetAngleOfAttack and GetWeight, that can

be used by the cockpit to update displays.

OrbitEntryProp
GetDownrange ()
GetAltitude ()
GetAngleOfAttack ()
GetWeight ()

Figure 18 — Methods in the ORBITENTRYPROP propagation model

The routine accepts several tables for input. The tables specify aircraft parameters and the
projected flight path. The first table specifies the aircraft's aerodynamic properties, including the
coefficients of lift and drag with respect to the angle of attack.

Although the proposed method for the Military Spaceplane’s flight through the exo-
atmospheric region is using scramjet technology, we had no model to represent this type of engine.
Therefore, flight through the upper atmosphere is simulated using rockets. The rockets’

specifications are also table-based and include fuel flow, maximum thrust in a vacuum, and the

39

rocket’s exit area. The ORBITENTRYPROP model models flight using two large rockets that provide
most of the thrust, and three smaller rockets (similar to the configuration of the Space Shuttle). The
rocket model takes into account altitude when calculating thrust (rockets produce less thrust at low
altitudes/high atmospheric pressures) and drag (additional drag is produced when the rockets are
off).

The last table specifies the planned trajectory, given as a set of points in the altitude vs.
velocity domain. Figure 19 shows a trajectory through the upper atmosphere. Velocity in
kilometers-per-second is displayed on the ordinate, and altitude in kilometers is the abscissa. The
thick line represents the spaceplane’s trajectory. At lower altitudes, the spaceplane maintains
constant dynamic pressure. Dynamic pressure is related to both altitude (because of the
atmosphere) and the velocity of the object. Vehicles transitioning to space usually maintain a
constant dynamic pressure to ensure proper rocket engine performance and to maintain structural
integrity. The nearly vertical lines on the right side of the graph represent lines of constant specific
energy. Specific energy is the sum of the potential and kinetic energy per unit mass. These lines
are useful for determining the Gryphon's proximity to a specific orbit and for reentry. After a retro
burn (in preparation for reentry), the Gryphon has a certain amount of energy. The retro burn puts
the Gryphon in a trajectory that will intersect the Earth. On this trajectory, the Gryphon gradually
converts potential energy (height) into kinetic energy (speed), but its total energy remaihs a
constant. If the atmosphere were neglected, the spaceplane would follow one of the constant energy
lines down until it hit the Earth. However, as the altitude decreases (and the atmospheric density
increases), atmospheric drag slows the spaceplane, and it will start deviating from the constant
energy line and begins to run parallel to lines of constant dynamic pressure. The lines in the lower

left portion of the graph are lines of equilibrium wall temperature. These are used to give an

indication of the hull temperature of the Gryphon during reentry. If the Gryphon takes a reentry

trajectory too steep, the hull temperature may exceed safety limits and burn up.

Lines of constant

' ' . Spaceplane’s
dynamic pressure (q) I [I

I | I

|

Trajectory

o |

80 1

60
40 |

- - \ \

4 s I I

\ \

20 4 / | I
/] |

/ L

\ \

1 1

Lines of constant ' ‘; ' 6 z; I 10
temperature (T)

Altitude (km)

\ Lines of constant
energy (E)

L o e ——

Velocity (km/s)

Figure 19 — Exo-atmospheric trajectory in the altitude vs. velocity domain

The routine produces another table of output values that includes time, downrange, velocity,
altitude, alpha, gamma (angle between ground and flight path in radians), weight, thrust, fuel flow,
dynamic pressure (q), and axial acceleration (G's) of the resulting path.

The position of the spaceplane in the environment is determined using the values of
downrange distance (the horizontal distance from the starting point) and altitude.
ORBITENTRYPROP converts these values into a position in WGS84 coordinates for use in the
simulation.

To provide a more realistic orbit entry, once the Gryphon ascents to an altitude of

approximately 70 kilometers using ORBITENTRYPROP, the Gryphon then executes an orbital

41

maneuver called a Hohmann transfer to transition to the desired orbital radius (see Figure 20). This
procedure is the same one executed by the NASA Space Shuttle to achieve low-earth orbit.
Although there are an infinite number of paths for such a transition, the Hohmann transfer requires
the least fuel to achieve the new orbit. Similar to other orbital maneuvers, the Hohmann transfer
requires two delta-v burns. To transition from a low orbit to a high orbit, the first delta-v increases
the orbiter’s speed to place it in an elliptical transfer orbit that is tangent to both the low orbit and
high orbit. The final delta-v, performed at the apogee of the transfer orbit, increases the orbiter’s

speed to achieve the desired orbit.

Hohmann
Transfer
Orbit

Figure 20 — Hohmann transfer

Although this example discusses the transition from a low to a high orbit, the same
principles may be applied to a transfer in the opposite direction for use during reentry. The only

difference would be that two decelerations would be required instead of two accelerations.

TaxiProp

Simulating a hard runway used for taxiing and takeoff was accomplished using a technique

called intersection testing. A line segment from the Gryphon to the center of the Earth is checked

42

for an intersection with the polygons making u;; the surface of the Earth. The distance from the
Gryphon to the intersection point is, in effect, the altitude above ground level (AGL). For runway
operations, the center of the Gryphon must maintain a fixed distance (the VSP uses 4.5 meters)
above the surface of the runway. The illusion of a hard runway is maintained by forcing the altitude
AGL to remain constant. When on the runway, the Gryphon is moved straight ahead (defined by its
orientation) by a distance determined by the frame rate and the spaceplane’s speed. If the runway is
not perfectly level, the Gryphon may now have a different altitude AGL than before the movement.
The position of the Gryphon is therefore compensated either up or down to maintain a fixed altitude

AGL. The resulting propagation model, termed TAXIPROP, is used for all runway operations.

Other Propagation Models

In addition to the propagation models for the Gryphon discussed above, models were
developed for the other SIMOBJECTS in the VSP. The VSP uses the center of the Earth as the origin
of the simulation. Therefore, the Sun is modeled as revolving around the Earth using the SUNPROP
propagation model. The Earth is rotated about its axis of rotation by the EARTHPROP model. The
Moon also revolves around the Earth using MOONPROP in this earth-centric simulation. All three of
these propagation models were derived from routines developed in the Solar System Modeler
[WILL96]. It is interesting to note that, although the earth-moon distance is modeled accurately,
the Sun has been placed just beyond the orbit of the Moon (and scaled appropriately). This
approach reduces the required size of the viewing frustum, aiding in the elimination of an
undesirable rendering property called flimmer. See Lt Rothermel’s thesis for other techniques used

to eliminate flimmer from the VSP display [ROTH97].

43

Rendezvous

One of the requirements of the VSP is to provide a method for the spaceplane to rendezvous
and co-orbit with a satellite or space station. The target satellite presents a moving objective for the
Gryphon to attain. For the spaceplane to rendezvous with the target, the VSP first must establish
the time of the encounter, then estimate the future position of the target, and finally, determine a
path to reach the rendezvous point (see Figure 25).

The first step in executing a rendezvous is to establish the time of the rendezvous. The time
specifies the future position of the target and the spaceplane, as well as the fuel requirements for the
maneuver. Depending on the urgency of the maneuver, the pilot may wish to rendezvous in the
least amount of time, or may wish to use the least amount of fuel, or some option between the two
extremes. The spaceplane can, to a degree, trade fuel for time. In other words, the spaceplane can
expend additional fuel to reach the target faster. The spaceplane pilot also has the option to wait a
period of time before initiating a rendezvous maneuver. Allowing for a wait time allows the
spaceplane (and the target) to continue in their current orbits, potentially reducing the fuel required
for the rendezvous. The rendezvous time equals the current time plus the wait time and the flight
time (the time between the initial and final delta-v burns).

t = t, +WaitTime + TimeOfFlight (1)

To determine the fastest path to rendezvous, we set the wait time to zero, and incrementally
search for the lowest time that will not cause an Earth impact. These steps are presented in Figure

21.

44

mintime « O

done ¢« false

while done = false
mintime ¢« mintime + INCREMENT_VALUE
fuelreq <« fuel requirements for rendezvous.
if rendezvous trajectory doesn’t impact earth

done ¢« true

Figure 21 — Algorithm for determining lowest time-of-flight for rendezvous .

Although the quickest time-of-flight can be determined rapidly, calculating the cheapest
(least amount of delta-v expended) rendezvous time is not as simple. The cheapest route often calls
for a wait time. The VSP determines the wait-time/time-of-flight combination that minimizes the
delta-v by using a direct double “for-loop” search of wait-times and times-of-flight (see Figure 22).

To allow the search to complete quickly, MAX_RENDEZVOUS_TIME is set to approximately 5Y2

" hours.

45

minfuel ¢ o
for waittime « 0 to MAX_ RENDEZVOUS_TIME
find position of spaceplane and target after waittime.

for timeofflight <« 0 to MAX RENDEZVOUS_TIME — waittime

fuelreq < fuel requirements for rendezvous.
ensure rendezvous trajectory doesn’t impact earth.

if fuelreq < minfuel
minfuel ¢« fuelreq
rendezvous_waittime « waittime

rendezvous_timeofflight « timeofflight

Figure 22 — Algorithm for determining least-fuel time-of-flight for rendezvous

Once the time of the rendezvous has been established it is possible to estimate the future
position of the spaceplane and the target using a straightforward application of the Kepler
procedures used in the ASTROPROP model described above. The Gryphon and the target move
along their current orbits during the wait time. The location of the target at the time of rendezvous
is the desired rendezvous point. After the initial delta-v burn, the Gryphon moves along its
intercept orbit to meet the target at the rendezvous point.

To accomplish the change in orbit required to meet up with the target, the spaceplane must
execute two delta-v burns. The first burn changes the orbit of the spaceplane to bring it into an
intercept orbit. Once the spaceplane has reached the rendezvous point, the spaceplane makes a final
delta-v burn to achieve the same orbit as the target. The magnitude (and direction) of the two delta-
v’s are calculated using a method developed by the German mathematician, Carl Fredrich Gauss.
Gauss’ method allows for the calculation of an orbit (in our case, the transfer orbit) given two

position vectors, r; and ry, and the time-of-flight, 7, between them. Although there are an infinite

46

number of orbits which pass through points r; and rz, only two have the specified time-of-flight,

one for each direction of motion (see Figure 23). The short trajectory is always less than 7 radians,

whereas the long trajectory is always more than 7 radians.

Figure 23 — Short and Long way trajectories with the same time of flight

The solution to the Gauss problem involves solving a series of three transcendental
equations. Bate, et al, provides a detailed discussion of several methods for solving the equations,
all using the trial-and-error technique necessary when solving transcendental equations [BATE71].
In the VSP, the solution fo the Gauss problem is computed using a procedure in the astrodynamics

FORTRAN library obtained from the Air Force Academy. The general method of solving the

Gauss problem is shown in Figure 24:

47

1) Guess a trial value of one of the three
unknowns.

2) Using Gauss’ equations, compute the
remaining two unknowns.

3) Test the result by solving for t, and check
against the given value of time-of-flight.

4) If the computed value of t does not agree
with the given value, adjust the value of
the variables and repeat the procedure

until it agrees.

Figure 24 — General method for solving Gauss’ problem for rendezvous calculation

Finally, for the transfer orbit to be useful, the spaceplane must not impact with the Earth on
its way to the rendezvous point. Therefore, before the orbit is presented to the pilot as an option,
the VSP checks the orbit to ensure the Gryphon’s flight path remains out of the Earth’s atmosphere.

~ Figure 25 shows a potential transfer orbit to rendezvous with a DMSP satellite.

48

Figure 25 - VSP’s Orbit Display showing a potential rendezvous

SimGryphon

To simulate the capabilities of the MSP, the ability to use multiple propagation models, as
well as operate its payload and landing gear systems, were added to the Gryphon. The Gryphon
(the virtual vehicle traveling through the virtual environment) is modeled as a subclass of
SHV[OBJECT (described above on page 30) called SIMGRYPHON. The relationship of the
SIMGRYPHON to the rest of the simulation software is shown in Figure 26. The SIMGRYPHON has
the responsibility for maneuvering through all the environments the MSP will encounter.
SIMGRYPHON also has special methods for handling the spaceplane’s accessories (e.g., payload
doors and landing gear), as well as for deploying a satellite. At the beginning of the simulation, the
spaceplane can begin on the runway or in low-earth orbit (using command line options) by calling
SIMGRYPHON’S InitializeToTaxiProp or InitializeToSpace. The GetAAGL

method is used to determine the spaceplane’s altitude above-ground-level. SIMGRYPHON’S

49

remaining methods are used to control the spaceplane’s landing gear and payload bay doors, and for

preparing the payload for deployment.

SimObiject

AI‘A PropModel

: AN
SimGryphon [——
Initialize ToSpace () TaxiProp
Initialize ToTaxiProp () -
GetAAGL ()
ToggleGear () AeroProp
ToggleDoors ()
TogglePayioad d OrbitEntryProp
5 AstroProp [—
AutoPilot

Figure 26 — Relationship of SIMGRYPHON to other objects

Modifying the appearance of the spaceplane

One of the responsibilities of SIMGRYPHON is to model the spaceplane’s landing gear and
payload doors. To model these movable parts, we first created a complete model of the spaceplane,
then saved the gear and doors separately to allow each object to have independent motion (see

Figure 27).

50

Figure 27 — The payload bay doors are created separately from the spaceplane

The adjustable payload doors allow the spaceplane to deploy a satellite. Prior to
. deployment, the satellite is modeled as a movable part of the SIMGRYPHON, similar to the landing
gear. When it is ready to be deployed, the satellite is removed from the SIMGRYPHON coordinate
system and initialized as a new SIMOBJECT with its own propagation model. Once it has been
deployed, the satellite moves independently of the Gryphon. One of the methods used in the Space
Shuttle for ejecting its payload is through a spring that pushes the satellite out of the payload bay.
The VSP accomplishes this capability by applying a small delta-v to the satellite just as the new

SIMOBIJECT is initialized. Figure 28 shows the satellite shortly after it was deployed from the

spaceplane.

51

Payload Status: Deployed
Open

Figure 28 — A display of the deployed payload with the payload doors open

Transition between propagation models

Ideally, the SIMGRYPHON would use a single propagation model to manage its motion
through the environment. However, no single model was found that was capable of accurately
modeling the spaceplane’s movement in the broad spectrum of environments from runway to space.
Each propagation model specializes in a single domain. For this reason, the SIMGRYPHON was
designed and developed to allow the ability to change its propagation model as it transitions from
one domain to another. Many of the propagation models discussed above were developed
specifically for the SIMGRYPHON. Figure 29 shows all of the propagation models used by the

spaceplane.

52

70km

30km

Surface

Figure 29 — The spaceplane’s propagation models

Although the WGS84 system is the primary coordinate system used in the VSP, each
propagation model operates in its own coordinate systefn. It is therefore necessary to provide the
capability to convert between the coordinate systems (see Chapter Two for a summary of the
coordinate systems used in the VSP). Coordinate conversion becomes especially important when
transitioning from one propagation model to another. The section entitled Coordinate Conversion
below details the procedures used to convert between the VSP’s many coordinate systems.

The changeover from one propagation model to another must be accomplished such that the
transition is not obvious to the user. For example, during takeoff, the transition from TAXIPROP to
AEROPROP is performed when the Gryphon is moving fast enough and has pitched its nose up. The
Gryphon’s position and orientation are converted from the WGS84 coordinate system used by
TAXIPROP into the NED coordinate system used by AEROPROP. A second concern during the
takeoff transition is the Gryphon’s speed; the AEROPROP’S speed is initialized using units of mach
rather than meters per second as used by TAXIPROP. Although the speed of sound (mach) is
dependent on air density (and therefore altitude and temperature), the VSP assumes the speed of

sound to be 343.0 m/s for the AEROPROP to TAXIPROP transition. Each transition from one

53

propagation domain to the next requires a similar conversion of position, orientation, and velocity

(see Figure 30).

move spaceplane using current propagation model.

switch (current propagation model)

case AEROPROP:
if altitude_AGL < LANDING_ALTITUDE
convert current position from ENV to WGS84 for
Tax1PROP
initialize TaxiProrp with WGS84 position,
orientation and velocity.
current propagation model ¢ TaxIiProp
begin automatic application of brakes.
if altitude > ORBIT_ENTRY_ ALTITUDE
convert current position from ENV to WGS84 for
ORBITENTRYPROP
initialize OrBITENTRYPROP with WGS84 position,
orientation and velocity.
current propagation model ¢ ORBITENTRYPROP

case ORBITENTRYPROP:

Figure 30 — Algorithm used by SIMGRYPHON to change propagation models

Coordinate Conversion

The VSP must be capable of operating in a variety of coordinate systems; some are used for
convenience, while hardware, software and operational requirements dictate others. A description
of the many coordinate systems used in the VSP is located in Chapter Two. This section will

describe a means of converting between them.

54

While investigating methods of coordinate conversion, we first looked at the Round Earth
Utilities, written for previous AFIT virtual environments. The Round Earth Utilities (REU) were
designed to provide routines for converting between the flat-earth ENV coordinate system and the
round-earth WGS84 coordinate system [ERIC93]. This conversion was accomplished by placing a
patch of flat terrain near the region of interest as shown (two-dimensionally) in Figure 31, where a
is the radius of the Earth. The REU did not, therefore, consider the curvature of the Earth. The
figure shows that as the distance from the flat-earth origin increases, the error between the REU
computed position and the actual position increases. The REU also considers the Earth to be a
sphere. Because the Earth is more accurately modeled as an ellipsoid, treating the Earth as purely
spherical will contribute to position errors when used close to the poles. The existing REU also did

not provide the capability to use geodetic coordinates or ECI coordinates.

VAR

Flat terrain Rounded terrain
patch patch

Figure 31 — Problem with the previous version of Round Earth Utilities

Because of these difficulties, the decision was made to rewrite the REU. However, this
decision brought on the question of computer platform independence that is desired, which boils
down to a decision on whether to use Performer’s math library. The REU makes use of the

Performer matrix mathematics library. Performer provides an extensive library of matrix and

55

vector math routines useful when converting between two coordinate systems. The Performer math
libraries are optimized for operation on Silicon Graphics hardware.

A desire to remove the Performer math dependencies from the REU was noted in a prior
project [ZURI96]. Basing the conversion utilities on the Performer math routines works well for
many of the VE applications developed at AFIT because the applications are already using the
Performer libraries for graphics support. However, some previous (and current [HUTS97])
applications do not use Performer’s graphics routines, but need the coordinate conversion
capabilities of the REU. Requiring a program, that would not otherwise do so, to load the
Performer libraries unnecessarily increases the program size and load time. Linking the coordinate
conversion utilities to Performer also limits the application to operation on Silicon Graphics
hardware.

Besides deciding which math library to use, a second design decision had to be made
regarding how to package the new coordinate conversion utilities. The first option was to emulate
the REU and design our new utilities as a C++ class. A class provides a convenient place to hold
data as well as the methods that use the data. On the other hand, creating a class involves additional
overhead. A class is unnecessary if all data required by the functions are passed in as parameters.
In such cases, it may be more practical to avoid the overhead of a class and design the utilities as a
collection of stand-alone routines.

Given the difficulties with the Round Earth Ultilities, the decision was made to rewrite the
Round Earth Utilities as a stand-alone set of routines that do not use the Performer math libraries. I
shall refer to the new routines as the AFIT Coordinate Conversion Utilities (ACCU). Figure 32

identifies the coordinate conversion routines provided by the ACCU.

56

ACCU

WGS84 to ENV ()
ENV to WGS84 ()
WGS84 to ECI ()

ECI to WGS84 ()
WGS84 to Geodetic ()
Geodetic to WGS84 ()
Performer to DIS ()
DIS to Performer ()
WGS84_Delta ()

Figure 32 — Coordinate conversion routines in the ACCU

The ACCU routines make use of an algorithm described by Ralph Toms for converting
between a geocentric (WGS84) coordinate system and a geodetic (latitude/longitude/altitude)
system [TOMS93]. The conversion from geodetic to geocentric coordinates is straightforward.
The inverse transformation is performed using an efficient iterative algorithm. Toms’ coordinate
conversion algorithms are outlined in Appendix B.

Conversions to and from the NED flat—earth coordinate system are not directly addressed in
the ACCU. When a conversion from WGS84 to NED coordinates is needed, the WGS84 position
1s first converted to the ENV system. The conversion from ENV to NED is elementary as shown in

Equation (2).

@)

2 mw ~ 2 nep

Because the Aero Model is a flat-earth based model and the VSP uses the round-earth
WGS84 coordinates as its primary coordinate system, a coordinate conversion between a flat-earth

coordinate system and a round-earth coordinate system is necessary.

57

The conversion from a position in the WGS84 coordinates to the ENV coordinate system
(round-to-flat) uses the following procedure:

1. Convert from geocentric (WGS84) into geodetic coordinates using Toms’
geocentric-to-geodetic routine.

2. Assume a fixed distance between lines of latitude and longitude' (1 degree ~
111.319 km). This assumption flattens the Earth in a manner similar to a

Mercator map projection.
The conversion from a position in the ENV coordinate system to the WGS84 coordinates
(flat-to-round) uses the following procedure:

1. Convert from ENV into a geodetic coordinate system by assuming a fixed
distance between lines of latitude and longitude (similar to step 2 above).
2. Use Toms’ algorithm to convert from geodetic into geocentric (WGS84)

coordinates.

In addition to the position, an object’s orientation must also be converted from one
coordinate system to another. Conversion of orientation between round and flat earth coordinates
becomes complicated because the definition of “straight up” in the ENV system is in the positive z-
axis, but in the WGS84 system the definition of “straight up” depends on location on or above the
Earth’s surface. The two coordinate systems are coincidental only at the North Pole.

To convert the orientation of an object between the two coordinate systems, we must first
establish a reference vector that points in a fixed direction regardless of the object’s location on
Earth. The ACCU accomplishes this conversion by calculating the vector that points north given
the WGS84 position of the object. Notice in Figure 33 that the North vector points in various

directions depending on location. A similar method was used in the Solar Modeler for orienting

! Some difficulties arise due to this assumption, and will be addressed in the section entitled
Flat-to-Round Drift below.

58

satellites toward the Earth’s surface [WILL96]. It is then necessary to “add in” the flat-earth
orientation to obtain the round-earth orientation. Alternately, to obtain the flat-earth orientation, it

is necessary to “subtract out” the round-earth orientation from the North vector.

Figure 33 - A depiction of three North vectors.

We can use Euler angles to represent the orientation of the object. Each of the Euler angles
represents rotation about one of the three primary axes. From the Euler angles, we can compute an
Euler matrix, E:

E=R-P-H 3

where R, P, and H represent the roll, pitch and heading transform matrices respectively. Euler
angles and matrices are explained in more detail in Appendix A.
The Euler matrix for the round-earth orientation, Eg, is computed by multiplying the flat-
earth Euler matrix, EF, by the North vector Euler matrix, Ey:
Eq=E, -E, @
The Euler matrix for the flat-earth orientation is therefore:
E.=E,-[E]")
Once the Euler matrix in the desired coordinate system has been computed, the next step is
to extract the required heading, pitch and roll information from the matrix. Performer provides a
routine, getOrthoCoord, which accomplishes the Euler angle extraction automatically [SGI95].

However, one of our goals was to design the ACCU without the use of the Performer’s math

59

routines. The same information provided by getOrthoCoord can be obtained without the
assistance of Performer using a procedure described by Thomas [THOM91]. Appendix A describes

Thomas’ method used to extract the orientation information from an Euler matrix.

Flat-to-Round Drift

One of the primary uses for the ENV-to-WGS84 (flat-to-round) coordinate conversion
discussed above was to allow the VSP to use the Aero Model (also discussed previously). The
Aero Model was designed to operate in a flat-earth coordinate system, whereas the VSP uses the
WGS84 round-earth coordinate system. The AEROPROP propagation model converts from the flat-
earth system to round-earth coordinates for use in the simulation. However, during the
development of the VSP, we recognized a weakness in the procedure described above to convert the
position from the Aero Model into round-earth coordinates.

As discussed in the previous section, to convert from ENV to WGS84 coordinates, the
ACCU first converts from ENV into geodetic coordinates. The conversion to geodetic coordinates
assumes a fixed distance between lines of latitude and longitude. A quick glance at a globe,
however, confirms that the distance between lines of longitude decreases as you approach the poles.
The ACCU’s ENV-to-WGS84 conversion doesn’t behave as expected when we use the Aero Model

output, as the following example demonstrates.

For the sake of this example, assume the spaceplane begins at 35°N, 118°W (near Edwards
AFB) flying northeast. The spaceplane travels a distance such that, in the Aero Model’s flat-earth
coordinate system, it has traveled 1km north and 1km east (see Figure 34). Using the ACCU’s
assumption of a fixed distance (111.319km) per degree, the spaceplane traveled 8.98x107 degrees
in both the north direction and east direction. Lines of longitude converge as the cosine of the

latitude. Thus, near Edwards AFB, lines of longitude are separated by only 91.187km per degree.

60

If we compensate for the convergence of lines of longitude, the spaceplane actually traveled
8.98x107° degrees north, but 10.97x10™ degrees east. Thus, the assumption of a fixed distance
between lines of longitude forces the spaceplane to fly slower to the east than it should. The

spaceplane therefore appears to drift in the north-south direction.

4

North

Path of ACCU: 8.98x10 deg
Spaceplanc /1 1km > Trye: 898x107 deg

1km

: ACCU: 8.98x10 deg

True: 10.97x107deg

35eN-{-

| .
East

118°W

Figure 34 — Flat-to-Round drift problem

To solve this problem, a routine was added to the ACCU to compensate for the spaceplane’s
latitude. The new routine, WeS84_Delta, when given the spaceplane’s current WGS84 position
and the change in ENV coordinates (provided by the Aero Model), returns the spaceplane’s position
in WGS84 coordinates. The new “delta” routine is most simply represented in geodetic coordinates
as outlined in Figure 35. For any othef coordinate system, simply convert the geodetic results to the

desired coordinate system.

61

1) A constant distance separates lines of latitude.
Therefore, first compute the change in latitude
based on distance traveled in the northerly
direction.

2) Using the current latitude, determine the distance
between lines of longitude:

Radius_of_earth - cos(latitude)
18Wn

Meters_per_degree =

3) Using the result of step 2, compute the change in
longitude based on distance traveled in the
easterly direction.

4) Compute the new latitude and longitude by adding
the results of steps 1 and 3 to the current

latitude and longitude.

Figure 35 — Algorithm te compensate for flat-to-round drift

~Auto-Pilot

Most of the maneuvering done in the Spaceplane will be performed automatically because
of the complexity of operating a vehicle in space. ﬂe operation of the Spaceplane will be a
collaboration between the human pilot and the orbiter with the pilot in the position of flight
manager and the onboard computer tasked with accomplishing assigned tasks. For example, rather
than manually firing a precise series of short thruster bursts, the pilot may instead specify a new
orbit and allow the computer to accomplish the maneuver. This paradigm has several advantages,
key of which is the elimination of menial tasks from the pilot. The pilot is free to think, “Where do
I want to go?” rather than worrying about “How do I get there?”.

Figure 36 identifies the methods provided by the AUTOPILOT to automatically maneuver the

spaceplane. When the AUTOPILOT is active, the Fly method is called once per frame, providing the

62

autopilot with a chance to observe the environment (e.g., current altitude, distance from waypoint)
and make any necessary maneuvers to the spaceplane. The SetState method is used to change
from one state to another (see Figure 37 for the AUTOPILOT’S state diagram). For example, when
beginning an automated landing; SetState would be called to transition from FLYROUTE to
LANDING. The remaining methods specify the activity the AUTOPILOT is to perform.
A‘ssignTakeOffRoute, AssignAeroRoute and AssignLandingRoute are used to
specify the waypoints for AUTOTAKEOFF, FLYROUTE, and AUTOLAND. AssignOrbitChange is
used to specify a new orbit whi_le in space, and AssignHohmann is used during the transition to

low-earth orbit.

AutoPilot

Fly ()
SetState ()

AssignTakeOffRoute ()
AssignAeroRoute ()
AssignLandingRoute ()
AssignOrbitChange ()
AssignHohmann ()

Figure 36 — Methods available in AUTOPILOT

The interface will provide the pilot with the ability to choose automatic execution of almost
all portions of the mission, including automated takeoff, route following, orbit entry, and landing.
Because of the radically different propagation models used, the VSP autopilot is best described as
three parts: the atmospheric autopilot, the space autopilot and the transition autopilot (see Figure
37). To allow the autopilot to adjust its activities as it moves from one flight regime to another, the
AUTOPILOT must determine the propagation model currently used by the spaceplane. To
accommodate the AUTOPILOT’S need to know the current region of operation, each PROPMODEL

provides a Get PropModel Type method (described above).

63

Figure 37 - AUTOPILOT state diagram

Atmospheric Autopilot

Many modern aircraft have some form of autopilot to assist the pilot. The degree of
automation performed by the autopilot varies from aircraft to aircraft, but a commonly automated
task is the ability to follow waypoints along the desired route. The VSP atmospheric autopilot uses
the F1y routine as a basis for most of its capabilities, including AUTOTAKEOFF, and AUTOLAND,
and FLYROUTE.

When the pilot activates the autopilot inside the atmosphere, the AUTOPILOT changes to the
FLYROUTE state, and the VSP follows a predefined route. This capability was built from the same
package of code as the Aero Model. The waypoints are specified using the AssignAeroRoute
method. Each waypoint is defined by its position (i.e., latitude, longitude and altitude), by the
speed the spaceplane should be travelling when it reaches the waypoint, and by how close the
spaceplane must pass by the waypoint to consider the waypoint achieved. The autopilot maneuvers
toward the waypoint by adjusting the throttle and control surfaces just as a human pilot does. The

waypoints used by the spaceplane in the atmosphere are read in from a data file.

64

While on the runway, the pilot also has the option of requesting an AUTOTAKEOFF. When
this option is selected, the VSP applies full throttle and tries to nose up the spaceplane. Once it has
achieved a safe flight speed, the spaceplane lifts off the runway. It then automatically begins
following a route high in the atmosphere, where it transitions into the AUTOORBITENTRY mode and
begins the journey to space.

When finished with the space mission, the pilot may choose an automated landing. In the

AUTOLAND mode, the autopilot follows a set of waypoints designed to provide a safe landing.

Space Autopilot

Because maneuvering in space is considerably different than in the atmosphere, the method
used for following waypoints is not appropriate for space flight. While developing the space
autopilot, we first analyzed the required mission profiles for the VSP. The primary use of the
autopilot in space is to allow the Spaceplane to match the orbit of another satellite. The
- INITIALPREP, INITIALBURN, FINALPREP, and FINALBURN autopilot capabilities were developed to
meet this need.

As described previously on page 44, a rendezvous maneuver requires two accurately timed
applications of delta-v. The exactness required to perform such a procedure makes low-earth
rendezvous an excellent candidate for automation. When the pilot is planning a rendezvous, the
interface presents the pilot with fuel-consumption/time tradeoffs for three different orbits to
accomplish the maneuver, allowing the pilot to choose whether it is more appropriate to reach the
target quickly or to conserve fuel. Once the pilot has chosen the appropriate fuel/time tradeoff for
the current situation, the autopilot takes over to execute the maneuver. In preparation for the initial
delta-v burn, the VSP initiates a pre-burn orientation change to ensure the exhaust of the spaceplane

faces in the correct direction. After the initial delta-v burn, there will be a wait period before the

65

final delta-v burn. Immediately before the final delté-v burn, the spaceplane executes another pre-

burn orientation change. The final delta-v burn brings the spaceplane into a co-orbit with the target.

Transition Autopilot

The primary means of orbital entry in the Virtual Spaceplane is using the autopilot. This
procedure is similar to the automated liftoff procedures used by today’s space shuttle. Because of
its nature, the automated orbit entry procedure is important both in the atmospheric as well as space
portions of the autopilot. When the spaceblane begins its flight toward space, the atmospheric
autopilot follows a route (using FLYROUTE) bringing the spaceplane high enough for the transition
autopilot to take over. The autopilot then changes its state to AUTOORBITENTRY.

The AUTOORBITENTRY and AUTOREENTRY procedures work in concert with the
atmospheric part of the autopilot. The AUTOORBITENTRY function provides an automated method
for achieving a low-earth orbit. The atmospheric autopilot handles the first part of this maneuver
by flying the spaceplane into the upper atmosphere. The autopilot handles the transition through
the tenuous upper atmosphere as described above in the ORBITENTRYPROP section. Once the VSP
reaches an altitude where orbital mechanics models (and therefore the ASTROPROP propagation
model) operate effectively and accurately, it executes a Hohmann transfer to bring the spaceplane
into low-earth orbit.

Atmospheric reentry works similar to the orbit entry procedure described above, only in
reverse. However, the initial Hohmann transfer must be accurately timed to bring the spaceplane
into atmospheric reentry for a safe landing at the designated landing site. Once the autopilot has
performed the Hohmann transfer and brought the spaceplane through the upper atmosphere, it
automatically transitions into the AUTOLAND mode to provide a safe, automated finish to the

mission.

66

Hypertext Interface

One of the primary research goals identified by the thesis statement was to investigate new
concepts in cockpit design. We looked to hypertext as an option in a cockpit in which, without
proper design, the pilot can potentially be overwhelmed with data. Therefore, because hypertext
provides a rapid, convenient means of locating significant information, the Hypertext Markup
Language (HTML) was investigated for use in the user interface. However, integration of a
standard HTML browser into the VSP is not straightforward because browsers are designed to be
used in a standard screen windowing environment, not in a 3D virtual environment. To overcome
this limitation, I examined the options of designing a new browser, integration of an existing
browser, and designing hypertext panels off-line and preloading them at program startup to provide

a pseudo-HTML hypertext interface.

Design new HTML browser

One approach for integration of a hypertext interface into our virtual environment was to
design and implement our own HTML browser capable of displaying HTML pages on a panel in
the VSP. This approach does have the advantage of ease of design of new panels. New panels
could be put together using the HTML standard language. The new browser could be expanded to
include some of the newer capabilities on the Internet, such as Java. This approach also has several
disadvantages. Writing (and debugging) our own browser using IRIS Performer would take a
significant amount of time. Secondly, the Performer browser would need to be modified whenever

a new change to the HTML standard is released.

67

Integration of external HTML browser

The second approach considered for incorporating an HTML browser into the VSP was to
make use of the Performer technique called texturing. Texturing allows a picture to be displayed
over geometry in the scene. The plan was to capture the image of an external browser (e.g.,
Netscape) window running in the background, and display it in the scene as a texture. Mouse
events would be passed back to the Netscape window from the VSP causing Netscape to update.
This procedure (capture Netscape and pass back mouse events) would continue as long as the
HTML browser was active. This approach would allow the integration of a fully functional Internet
capable browser into the virtual environment.

Several difficulties with this method were encountered. First, because the screen captures
would be written to a file, Performer would pause as it was loading in the new Netscape texture
from the file. The frame rate of the simulation would therefore suffer noticeably. The second, and
more significant, problem was capturing the cbntents of the Netscape browser running in the
background. A simple screen capture could work, but the browser window would have to be
unobstructed. The Netscape window would therefore obstruct a portion of the Spaceplane virtual
environment. One of the goals of any immersive virtual environment like the VSP is to provide the
user with a sense of “presence”, the feeling that the user is within the VE and behaves toward it as
though it were real [ZELT92]. Obstructing the VSP display impairs this sense of presence, and is
therefore not acceptable.

Potential workarounds to the obstruction problem included purchasing a second frame
buffer for the machine. The additional frame buffer would allow the Netscape window to be
“unobstructed” on the secondary frame buffer while the primary frame buffer was used for the VSP.

Another workaround would require Netscape to run on a second machine, which would capture the

68

image and route it across the network to the VSP. Because of the desire for the VSP to run without

specialized hardware, these workarounds were deemed impractical.

Preloaded Images

To provide some form of an hypertext interface, a third approach that avoids the difficulties
described above was examined: pre-load the necessary Netscape windows and simply switch
between them as needed. This approach has the advantage of being fast, but limits us to a small
number of HTML pages due to limited tekture memory. Because the VSP is being built as a
prototype, we selected a few significant pages, designed the images off-line, and then pre-load them

at startup.

This “pseudo-HTML” browser provides many of the fundamental features common to a
commercial Internet browser. The user can move from page to page by selecting hotspots on the
pages. The user can also choose to go “forward” or “back”, features familiar to users of Internet
browsers. Figure 38 shows an example of the hypertext display in the VSP. However, because the
pages are “screen captures” and not described using the HTML language, modifying the pages is
more difficult. The VSP’s pseudo-HTML pages also require significantly more memory than the

equivalent HTML code.

69

@ Consumables
© Checklists o
0 S_V!ilems Status

Figure 38 — VSP’s hypertext Engineering Panel

The VSP’s pseudo-HTML interface is controlled by the HTML Manager (see Figure 39).
The Manager manages the HTML panels in pairs, a left panel and right panel. As seen in Figure
38, displaying panels in pairs provides a wider HTML interface that fits well in the spaceplane’s
console. While developing an HTML panel, the developer may define multiple hotspots. Each
hotspot is defined by the page coordinates for the hotspot, and the linked page of information.
When a particular hotspot is selected, the HTML Manager displays the corresponding panels of
information. Two stacks, the forward list and backward list, are used to allow the user
to step back (and forward) to previously accessed pages of information. The HTML Manager also
has a “home page” that is initially displayed aﬁd can be recalled by pressing the homepage button

on the hypertext interface.

70

HTML Manager
home page ¢
forward list
backward list HTML Panel
Get Geometry ()
Process Selection () g‘:ltegeg metry (
Go Forward ()
Go Back () : f
Go Home (Hot Spot
X minimum
X maximum Points to
Y minimum
Y maximum

Figure 39 — Pseudo-HTML interface architecture

Summary

In this chapter we covered the research performed during the completion of the Virtual
Spaceplane. The next chapter will recap the requirements identified in Chapter Three, and show

how this work accomplishes the goals of the Spaceplane

71

V - RESULTS

The previous chapter covered the design and implementation of work to fulfill the
requirements as outlined in Chapter Three. This chapter will discuss how the VSP requirements

were satisfied.

Completion of Requirements

Emulating the style of Chapter Three, the following sections present a summary of the
overall VSP requirements and a brief description of how each requirement was satisfied. This
synopsis will accompany a more detailed discussion and analysis of requirements completed with
regard to this research. Those requirements not directly discussed in this thesis were addressed by
the other members of the Virtual Spaceplane team, Capt Lewis and Lt Rothermel

[LEWI97][ROTH97].

Simulated Capabilities

The simulated capabilities requirements are aimed at providing a simulation whose
capabilities are similar to those of the Military Spaceplane, including accurate flight characteristics,
as well as manual and automatic control of the spaceplane operations. Table 8 summarizes how

these requirements were addressed.

72

Table 8 — Completion of Capability Requirements

ID Requirement Resolution
Flight Characteristics

1.11 Maneuvering on runways TaxiProp

1.12 Flight through the atmosphere AeroProp

1.13 Maneuvering in space AstroProp

1.14 Transition between flight regimes OrbitEntryProp, ACCU, Common

interfaces of PropModels
Manual Operation '

1.21 Manually operate in the Input methods of AeroProp
atmosphere

1.22 Manually operate in space Input methods of AstroProp

Automatic Operation

1.31 Automatically takeoff Takeoff mode of Autopilot

1.32 Automatically fly specified route FlyRoute mode, Route of waypoints

1.33 Automatically enter orbit EnterOrbit mode of Autopilot

1.34 Automatically modify orbital Hohmann and Rendezvous modes
parameters

1.35 Automatically reenter the Reenter mode of Autopilot
atmosphere

1.36 Automatically land Landing mode of Autopilot

The previous chapter described how the division between propagation model and geometry
model] allowed the spaceplane to operate in many flight regimes. The separation of PropModel and
SimObject alleviated the need to create a propagation model that operated in all flight regimes. The
spaceplane used four propagation models throughout the simulation: TaxiProp for movement on a
runway, AeroProp for atmospheric flight, AstroProp for operation in low-earth orbit, and
OrbitEntryProp for the transition region between air and space. The transition from one model to

another was enabled by the AFIT Coordinate Conversion Utilities, which provides methods for

conversion between the many coordinate systems used in the simulation.

The AUTOPILOT class can perform a variety of basic maneuvering operations based on its
state (TAKEOFF, FLYROUTE, LANDING, RENDEZVOUS, etc.), the current PROPMODEL, and pilot

orders. The GetPropModelType method of PROPMODEL, in conjunction with the AUTOPILOT’S

state, provided the capability to automatically control the Gryphon across multiple flight regimes.
For example, the TAKEOFF mode typically started in TAXIPROP, but finished at a safe altitude above
the ground in the AEROPROP model. By knowing the PROPMODEL type, the autopilot reacted
differently and provided appropriate inputs at different stages of a task. The VSP’s autopilot still

has several limitations, but can be easily extended during future research.

Supported Missions

The missions listed in Table 9 were successfully integrated into the VSP. The current
implementation places many restrictions and/or makes assumptions concerning parameters
affecting the missions. For example, the rendezvous mission does not include any time restrictions
and the satellite deployment mission does not accurately model the boost to a higher orbit typical of

many satellite launches.

Table 9 — Completion of Mission Requirements

Requirement Resolution

Supported Missions
2.1 Rendezvous with orbiting satellite AutoRendezvous capability
2.2 Deployment of satellite SimGryphon’s payload capability

Because of the difficulty involved with manual maneuvering in space, the capability to
rendezvous with a satellite in orbit is provided using the AUTOPILOT. The target panel (Figure 40)
allows selection of the target. The figure shows a Defense Meteorological Satellite Program
(DMSP) satellite as the current target. Once the target is identified, the pilot can choose from three
different intercept trajectories. The first provides the lowest time-of-flight, the second option
affords a more fuel-efficient trajectory, while the third option represents the lowest delta-v path. In

addition to intercepting satellites, the VSP also rendezvous with the space station.

74

DMSP7
24.8N 51.9E 849.8km
Range: 6573.0km

M——
HI:E

Timer: .
M Detav:27551 - TOF: 00:41:40
B DetaV: 20873 TOF: 01:23:20
B Dejtav:12536 TOF: 05:00:00

Figure 40 — Display of the VSP Target Panel

The VSP also has the capability to deploy a satellite into a low-earth orbit. The
SimGryphoh class accommodates the geometry of the satellite inside the payload bay until ready for
deployment. Prior to deployment, the pilot can check on the payload’s status using the hypertext
Engineering Panel. When deployed, the satellite leaves the payload bay like performed with the
Space Shuttle. Figure 41 shows the deployed satellite after leaving the payload bay of the

spaceplane.

75

arellire

Figure 41 — Satellite after being deployed from spaceplane

User Interface

One of the primary goals of the Virtual Spaceplane research was to investigate novel ideas
in cockpit design. Initially, very little was known about the style, methods, and functionality of the

interface. The interface results used to fulfill each interface requirement are listed in Table 10.

76

Table 10 — Completion of Interface Requirements

ID Requirement Resolution
Interaction Methods
3.11 All functionality via three button ~ Left button — geometry selection
mouse Middle button — head movement
~ Right button - field of view
3.12 HMD with head tracking N-Vision HMD and Ascension Bird™
Configurable Cockpit
3.21 Selectively display information Minimizable panels
3.22 Modify location of information Movable panels
Displayed Information
3.31 Gryphon state in atmosphere Virtual HUD, Aero panel
3.32 Gryphon state during Virtual HUD, Trajectory, Aero panels
entry/reentry
3.33 Gryphon state in space Virtual HUD, Orbit panel
3.34 State of consumables Engineering and Payload panels
3.35 Target information Target panel
3.36 Locating/acquiring targets Target panel, selection of locators
3.37 System management and Engineering and Payload panels
diagnostics
3.38 Investigate hyper-text paradigms ~ Engineering panel
3.39 Minimize obstruction of view Transparent panels
Controlling the Gryphon
3.41 No throttle and stick Mouse interaction, Virtual HUD
3.42 Change state in the atmosphere Virtual HUD, Autopilot
3.43 Change state in space Virtual HUD, Target panel

The hypertext interface discussed in the previous chapter enabled the completion of two of
the interface requirements (3.34 and 3.38). The VSP integrates the hypertext interface into its
Engineering Panel (Figure 42 through Figure 44). Through the hypertext interface, the Engineering
Panel provides the statﬁs of onboard systems, consumables status, as well as checklists for use at
various times through the flight. While' using the hypertext interface to locate the desired
information, the pilot can use the forward and back buttons to navigate through previously visited

pages (similar to a conventional Internet browser). The homepage button provides a quick way to

return to the main menu.

77

The pilot of the spaceplane must have the ability to monitor the status of mission
consumables, such as fuel, air, and water. Figure 42 shows how the VSP uses the Engineering
Panel to graphically represent the amount of fuel (hydrogen and oxygen) remaining onboard the

spaceplane. The Engineering Panel also has similar displays for remaining air and water.

Figure 42 - Engineering Panel showing fuel consumables status

In addition to displaying consumables status, the Engineering Panel also provides an
interface to access checklists useful to the pilot. The hypertext interface allows the pilot to quickly
locate the desired checklist. Figure 43 shows an example of a hypertext checklist on the

Engineering Panel.

78

Checklist

Re entry

1.Deorbit Bura 6Omin. 175 mites
2. Maximum Heat 20min. 4.5 miles
3. TerminalEnergy SSmin. 157 miles

@ lL.anding Checklist

Figure 43 —- Engineering Panel showing an example of a hypertext checklist

The hypertext interface on the Engineering Panel is also the primary means of obtaining the
condition of the various onboard systems on the spaceplane. The left side of the display (see Figure
44) indicates a problem with the landing gear system. When the pilot selects the highlighted
landing gear, additional details on the problem are displayed. The system can also provide a
suggested work-around for the problem. All this information is provided in easy-to-read text, rather

than warning lights or gauges as in traditional cockpits.

79

Figure 44 — Engineering Panel showing details of landing gear problem

This hypertext interface has proven to be a successful way of displaying large amounts of
information in a compact region of the spaceplane’s cockpit. Results on other portions of the

interface design, development, and usability are given in Capt John Lewis’ thesis.

Virtual Environment

The VSP developed several aspects of the environment previously unexplored at the AFIT
Virtual Environments Lab. Integrating geographically accurate terrain onto a round earth resulted

in the ability to immerse the user in the atmosphere, in space, or anywhere in between. The

environmental requirements summary is shown in Table 11.

80

Table 11 — Completion of Environmental Requirements

ID Requirement Resolution
Environment
4.1 Convincing terrain near Edwards ~ DTED based with LOD and textures
AFB
4.2 Model Earth, Sun, Moon - EARTHPROP, SUNPROP, MOONPROP
43 Earth orbiting objects GPS, DMSP, DSCS, TDRS, Molniya,
Space Station
4.4 Day/night, atmospheric/space Blue sky, Fading Stars
transition

The terrain in the VSP, based on actual elevation data and geographically calibrated
textures, provides a realistic environment in which the spaceplane operates. The methods used to
accomplish the VSP’s terrain are discussed more completely in [ROTH97].

The Sun and Moon also add to the realism of the virtual environment by modeling day/night
illumination differences, moon phases, and even the seasonal change in sunrise and sunset times.
The correct movement of these celestial bodies in the virtual environment is accomplished using the
EarthProp, SunProp, and MoonProp propagation models.

The VSP populated the VE with numerous satellite systems. Satellites from the Global
Positioning System, Defense Meteorological Satellite Program, Defense Satellite Communication
System, Tracking and Data Relay System, Molniya system and a space station were added to the
VE. The movement of these objects is modeled using the ASTROPROP propagation model,

initialized by TLEs.

Miscellaneous

Table 12 lists the miscellaneous requirements for the VSP and how the implementation

satisfied them.

81

Table 12 — Completion of Miscellaneous Requirements

ID Requirement Resolution
Miscellaneous
5.1 Accept remote entities via DIS DISEntityManager, DISEntity,
DISEntityProp, ACCU
52 Transmit Gryphon state via DIS = BroadcastSimObject in SIM,
ACCU
5.3 Mean of 15 frames per second Average of 15.6 fps

As described by Rothermel, the Virtual Spaceplane can participate in a distributed virtual
environment using the Distributed Interactive Simulation (DIS) communication standards
[ROTH97]. The ACCU, described in the previous chapter, performs the coordinate conversions
necessary for incoming and outgoing simulation messages.

Meeting the minimum frame rate was a challenging requirement that required constant
attention and optimization. The VSP’s high frame rate was generally accomplished using

specialized culling or levels-of-detail [ROTH97]. Also, because the VSP implements its hypertext

* interface using graphic images, it is important to keep the number and size of the images small to

ensure a high frame rate.

Summary

The results of the research completed for the Virtual Spaceplane were covered in this
chapter. Each of the requirements identified in Chapter Three have been addressed. In the next
chapter, Conclusions and Future Work, we will review the work done in the VSP and consider

areas where our research may be extended.

82

VI - ConcLUSIONS AND RECOMMENDATIONS

This thesis presented the Virtual Spaceplane, a distributed virtual environment
simulating the flight of a space vehicle from the Earth’s surface to space. The Virtual
Spaceplane was developed as a virtual prototype for the Military Spaceplane.

The techniques developed during this research i)rovided the spaceplane with the
ability to maneuver in the diverse operating regimes from a runway to low-earth orbit.
Transitioning between the different regions was accomplished through an architecture
that allowed a simulation entity to change its propagation model, along with a set of
coordinate conversion routines developed during our research. The Spaceplane also
proved to be an excellent testbed for analyzing new paradigms of cockpit design,
including a hypertext interface used for onboard system diagnostics, checklists, and
monitoring consumables.

I briefly covered some relevant background information in Chapter Two,
including a description of the Military Spaceplane. In Chapter Three, the requirements of
the Virtual Spaceplane were identified. The requirements were classified in five main
areas: simulated capabilities of the Military Spaceplane, supported missions, plus user
interface, virtual environment, and other miscellaneous requirements. Chapter Four
described the research performed as well as the design and implementation of the
software written to fulfill the Spaceplane’s requirements. Finally, in Chapter Five 1
presented the results of the research and indicated how the work done satisfied the

requirements identified in Chapter Three. Although the results indicate the completion of

83

the requirements, we identified some areas that could be improved as we worked on the

project.

Recommendations for Future Work

The Virtual Spaceplane successfully simulates many of the anticipated capabilities
of the Military Spaceplane. Nevertheless, several areas of the project leave room for
improvement. These are discussed in the next few sections. We feel it would be useful
to augment the VSP’s current mission types with others projected for the Military
Spaceplane. Additional enhaﬁcements could be made in the areas of the cockpit
interface, enhanced autopilot capabilities, incorporating hand-tracking hardware, and the

inclusion of agent technology to assist the pilot.

Incorporate Additional Mission Types

The Virtual Spaceplane currently supports two types of missions. While orbiting
the Earth, the spaceplane can rendezvous and co-orbit with another object, and can deploy
a satellite into low-earth orbit. When cdmpleted, the Military Spaceplane is expected to
accomplish other mission types. These areas include a pop-up flight, a once-around orbit,
docking with the space station, and the ability to plan a flight over a specified point on the
surface of the Earth (for reconnaissance).

One type of mission trajectory that could be used by the spaceplane is referred to
as a pop-up maneuver. When executing a pop-up, the VSP could deploy a payload during
its exo-atmospheric trajectory, and then reenter and land downrange. The deployed
payload would be boosted by an upper stage to its intended target or orbit. Adding the

pop-up capability to the VSP could be accomplished by modifying the ORBITENTRYPROP

84

propagation model. The first portion of the mission through the lower atmosphere (using
AEROPROP) would be similar to that currently performed for a multiple orbit mission. At
the altitude where the spaceplane transitions from AEROPROP to ORBITENTRYPROP, the
revised propagation model would route the spaceplane toward the downrange landing site
rather than to orbit.

The spaceplane should also be able to launch into any azimuth and use or deploy
mission assets while in a once-around orbit and return to base. This type of mission is
different from a pop-up mission in that the spaceplane encircles the Earth (once) when
performing a once-around mission, allowing the spaceplane to land at the same base from
which it launched. Integration of the once-around orbit could be accomplished similar to
the pop-up maneuver described above.

Another mission type that could be added to the Virtual Spaceplane is the
capability to dock with a satellite or space station. Docking with an object in orbit
involves maneuvers similar to those performed when initiating a rendezvous. However,
the algorithms used for the rendezvous calculationé do not currently provide the accuracy
required to accomplish a docking maneuver. Providing the ability for the Virtual
Spaceplane to get close enough to another object in orbit could possibly be solved by
improving the accuracy of the rendezvous methods. In addition to the spaceplane and the
target approaching each other slowly, the spaceplane must also be oriented correctly to
ensure a safe docking procedure. Docking could be performed either manually or
automatically. Manual docking would necessitate a new interface to enable the pilot to
easily orient the spaceplane. Automatic docking will require modifications to the

autopilot.

85

Finally, although the spaceplane can currently maneuver to intercept an object in
space, it would also be useful to maneuver the orbiting spaceplane to pass over a
specified point on the surface of Earth. This capability could be used during a
reconnaissance mission (for example, to overfly Pyongyang, North Korea). Passing over
a specified point over the Earth is also useful when reentering the atmosphere prior to
landing. The mathematics behind a fly-over are significantly different than those used to

perform a rendezvous, and would have to be developed to provide this new capability.

Modifications to the Interface

Although a significant amount of research went in to developing the spaceplane
cockpit interface, this area still provides substantial areas for improvement. A few areas
we identified during our research to improve the interface include the capability to
perform mission planning, a mission timeline, a landing footprint display, and an
interface to manipulate the waypoints used by the autopilot.

The pilot of the spaceplane currently has no guidelines for when or where to
perform mission activities. This approach is in direct contrast to all spacecraft and
military aircraft, which operate using a flight plan detailing the current mission. Some
means of mission planning wbuld, therefore, be a useful addition to the Virtual
Spaceplane. Selection of the mission type, choosing the target, fuel requirements, and
other mission planning could be accomplished prior to lift-off. Pre-flight mission
planning could be achieved using flight-planning software not directly integrated into the
VSP. However, in addition to pre-flight planning, the spaceplane pilot may wish to make

modifications to the flight plan to account for unforeseen developments during the

86

mission. Allowing mid-flight retasking would necessitate adding a mission-planning
panel to the spaceplane cockpit.

The Virtual Spaceplane interface could also provide a mission timeline, showing
the progress along its current flight plan. The mission timeline could provide helpful
information to the pilot concerning the progress of the current mission, such as time to
rendezvous with the target, planned atmospheric reentry time, and periods of expected
communication blackouts.

Another useful addition to the spaceplane interface would be a landing footprint
display. After atmospheric reentry, the spaceplane’s velocity, altitude, and remaining fuel
limit the area where the spaceplane can land. The landing footprint display would allow
the pilot to ensure the spaceplane can land safely at the primary destination, and would
provide information useful for choosing alternate landing sites.

Allowing‘the pilot to adjust the route the autopilot follows could further enhance
the interface. As currently implemented, the autopilot follows routes defined by waypoint
that are read in from data files. The pilot could adjust the waypoints to land at a

secondary landing site.

Advanced Autopilot

The Virtual Spaceplane’s current autopilot is not a fully functional, intelligent
autopilot. Additional research toward developing a more e;dvanced autopilot could
significantly enhance the spaceplane’s effectiveness. In addition to providing the ability
to manipulate waypoints (discussed in the previous section), another useful addition to
the autopilot would be the capability for the autopilot to provide completely autonomous

operation of the spaceplane.

87

A necessary precursor to autonomous operation is a fully specified flight plan.
The autopilot would then be responsible for making the appropriate maneuvers at the
right time during the mission. The current autopilot can automate most of the portions of
the mission, but does not link them together to accomplish a completely autonomous
spaceplane, from automatic takeoff, transition to orbit, orbital maneuvering, and reentry,

to an automated landing.

Integrating Hand Tracking Hardware

The interface with the Virtual Spaceplane is almost entirely implemented using a
head-mounted display and a mouse. Although the mouse allows for precise selection of
objects in the virtual environment, the mouse is not an appropriate interface device for a
cockpit. Hand tracking is perhaps a more appropriate input device in the cockpit, and
could provide the Spaceplane pilot with_ the functionality currently provided by the
mouse. Hand tracking could be integrated into the Virtual Spaceplane using the same

hardware and software procedures developed for the HMD.

Agent Assistant

One of the primary research goals in the design of the VSP interface was to
provide the pilot with precisely the information necessary to complete the mission,
without unessential information to hamper the pilot. The Virtual Spaceplane
accomplishes this capability in a limited manner using the configurable cockpit ideas.
The pilot can move as well as iconify information panels as he assembles the information

to accomplish tasks throughout the mission.

88

However, the Virtual -Spaceplane may benefit by including the emerging
technology of agents and associate systems. Associate systems provide decision aiding in
high stress, data-heavy situations. The purpose of an associate system is not to automate
more of the tasks performed on the aircraft, because automation does not necessarily help
the pilot [HAMMO95]. Rather, an associate system attempts to alleviate cockpit
complexity, one of the high-level goals during the development of the Virtual
Spaceplane.

The Virtual Spaceplane’s software architecture should allow an agent assistant to
be smoothly incorporated into the interface. Communication between the simulation and
the agent will probably be accomplished using the Common Object Database (CODB).
The agent can obtain updates and can make suggestions to the pilot using the CODB’s

shared memory structures.

Concluding Remarks

Research such as that done for the Virtual Spaceplane is an important step as the
United States Air Force continues to pursue its expansion to include more activity in
space. The Virtual Spaceplane has allowed an investigation of new ideas in cockpit
design of an air-space vehicle. Furthermore, the research accomplished during the
development of the Virtual Spaceplane incorporated important findings in the areas of
large-scale realistic virtual environments as well as simulating the maneuvering of a
vehicle in the diverse environments from earth to space. Further development of this
project will assuredly bring additional insight in these areas, thereby benefiting the Air

Force and the distributed virtual environment community at large.

89

APPENDIX A — EXTRACTING ORIENTATION INFORMATION FROM

AN EULER MATRIX

Performer, a graphics programming package, provides a powerful library of vector and
matrix routines. The Performer matrix mathematics can be used to multiply matrices, as well as
extract information out of a matrix. Performer uses Euler angles to represent orientations.
Performer provides a function, getOrthoCoord, which extracts the heading, pitch, and roll from
an Euler matrix. This appendix details a procedure described by Thomas that allows us to obtain
the same information without using Performer’s math library [THOM91]. Each of the Euler angles
represents rotation about one of the three primary axes. From the Euler angles, Performer can
create an Euler matrix, E:

E=R-P-H (A-1)

where R, P, and H represent the roll, pitch and heading transform matrices respectively. The
definitions of the transform matrices can be obtained from any basic graphics textbook (Equations

A-2) [FOLE92][HEAR97].

cosr 0 sinr O
0 1 0 O
R= . (A-2a)
—sinr 0 cosr O
0 0O O 1
1 0 0 O]
0 —sin 0
p=|> %P P (A-2b)
0 sinp cosp O
0 0 0 1]
cosh —sinh 0 O]
sinh cosh 0 O
= (A-2¢)
0 0 1 0
0 0 0 1

90

In these equations, r, is the rotation about the y-axis, the pitch, p, is the rotation about the x-

axis, and the heading, #, is the rotation about the z-axis. The expanded Euler matrix, E, is obtained

by multiplying Equations (A-2a) through (A-2c) together:

EOO EOI EO2 E03
E= ElO Ell E12 E13
E20 E21 E22 E23
Ey Ey E; Eg
where
Ey =cosr-cosh+sinr-sin p-sinh,
E, =—cosr-sinh+sinr-sin p-cosh,
Ey, =sinr-cosp,
E,,=cosp-sinh,
E,, =cosp-cosh,
E,=-sinp,
E,, =—sinr-cosh+cosr-sin p-sinh,
E, =sinr-sinh+cosr-sin p-cosh,
E,, =cosr-cosp,

Ey=E;=E,=E,=E, =E;=

E,=1.

(A-3)

It is apparent from the previous equations that the pitch, p, can be derived easily from:

sinp=-E,.

(A-4)

And, assuming cos p #0, the heading, &, and roll, r, are obtained from the following

relationships:

tanh=E,/E, , and

tanr=FE,/E,,.

91

(A-5a)
(A-5b)

If cos p =0, we assume either 4 or r are 0 and solve for the other value. For this example,

I'll assume r = 0 and solve for 4 using:

cosh = EZ] /El2. (A~6)

92

APPENDIX B — CONVERTING BETWEEN GEODETIC AND

GEOCENTRIC COORDINATES

The ACCU routines make use of an algorithm described by Ralph Toms for converting
between a geocentric (WGS84) coordinate system and a geodetic (latitude/longitude/altitude)
system [TOMS93]. The conversion from geodetic to geocentric coordinates is straightforward.
The inverse transformation is performed using an efficient iterative algorithm.

Position in our geocentric coordinate system is defined by the vector (X, Y, Z) where X, Y,
and Z are in units of meters. The geodetic coordinate system defines position using the vector (¢, 4,
h) where ¢ and A represent the latitude and longitude measured in radians, and 4 is the altitude
above the surface of the Earth.

The Earth is represented as an oblate spheroid with the major axis, a, (at the equator) is
6,378,137.0 meters and the minor axis, ¢, (at the poles) is 6,356,752.3142 meters. The radius of the

Earth at any point, Ry, is therefore a function of latitude, as shown in Equation (B-1).

Ry=—r—— (B-1)

where the eccentricity, €, is defined by

Given the geodetic coordinates (¢, 4, &), the geocentric coordinates can now be calculated
quite easily using Equations (B-2) through (B-4).

X =(R +h)cos¢cos A (B-2)

Y =(R +h)cos¢sin A (B-3)

93

Zz(RNE—i—+h]sin¢ (B-4)
a
However, converting from a geocentric position, given by the vector (X, Y, Z), to geodetic

requires an iterative approach. Toms’ approach uses the Bowring method, which provides quick,

accurate results. First, the geodetic latitude, 4, is computed directly using Equation (B-5).

A=tan™ (-)YZ)
(B-5)

T
2 2

It now becomes useful to define some intermediate values.

W=vX?+Y?
a—c¢
f=
a
,2_a2—02
=—

The latitude is now solved iteratively using the Bowring method by introducing an auxiliary
variable f8 such that

Z+c-g?*.sin’ B,

tang,,, = B-6
P W-a-g*.cos’ B, (B-6)
tan Bi+1 = (1 ~f)tan ¢i+1 (B'7)
with the initial value of B given by
a-Z
tan B, = ——. B-8
Bo=— (B-8)

94

—tan ¢,

The iteration is terminated when |tan [/
then computed by using the inverse tangent function.

computed using Equations (B-1) and (B-9).

\
cos ¢

h=——--Ry

95

is small enough and the latitude, ¢, is

Given the latitude, the height can be

(B-9)

APPENDIX C - DETAILED VIRTUAL SPACEPLANE

REQUIREMENTS

The following tables were used during the development of the Virtual Spaceplane.
Because the project was developed using rapid prototyping techniques, the detailed
requirements which follow were continuously being modified with items being added and
removed from the list as research showed particular avenues to be more productive than

others. This appendix should prove useful to anyone pursuing future research on the

Virtual Spaceplane.

VSP CAPABILITIES

1 Emulate Mark Ill version of MSP

Take-off/Landing runway minimum size: 8000ftx 150ft

Ferry Capability

Orbit Entry

Once-around Orbit

Full six-DOF translation and rotation in orbit

Excess On-board propellant (AV) of 600fps.

Pointing accuracy of 10 milliradians.

Rendezvous, co-orbit capable

Docking capable.

Mission duration of 24-72 hours

Payload bay capable of housing standardized payload container
(25’ x 12’ x 127), weight 40 klbs

NAVSTAR/GPS navigation aids.

Automated Test and Checkout of subsystems and payload
Spaceplane able to be directed from onboard or from the ground
Capable of Autonomous control

Horizontal Takeoff/Landing

Y0 N N N NS N NN

XEANANEAN

Legend:
Priority
1 Vital
2 Important
3 Lesser

96

Accurate Flight Characteristics

Runway Operations

v Taxi to/from runway

v' Terrain following (can operate on non-level runways)
v’ Provides realistic acceleration, braking characteristics

Air Operations
¢ Models Spaceplane aerodynamic characteristics
v Allows access to high altitude and speed necessary for orbit entry

Orbit Entry

Space Operations
v’ Accurate astrodynamic model

Orbital Changes
v VSP can change orbital parameters

Reentry

Sub-orbital flight (Exo-atmospheric)

Ability to switch between flight models
v’ Transition from runway to air
v' Transition from air to space
v Transition from space to air
v' Transition from air to runway

Manual Flight

Manually fly through atmosphere

Manually specify orbit modifications

Manually dock with Space Station

Automatic Flight

Auto-Takeoff

Auto-AeroFlight
v’ Ability to view waypoints

Auto-Orbit

Auto-Dock

Auto-Land

Switch between manual & automatic flight

Autonomous Command
¢ Complete autopilot. User pushes button and sits back.

Day/Night Operations

Single Pilot

Simulated Communications (no voice capabilities)
< Using a “text box” approach

Simulated uplink of Mission Retasking

97

GPS Navigation
v" GPS Satellites in orbit
v' GPS Position and Velocity displayed to pilot

DIS/HLA Capable
v' Receive DIS/HLA data packets
v" Display DIS/HLA entities in environment
v" Transmit position of VSP via DIS

VSP MisSION PROFILES

Mission Planning Panel
¢+ Used at startup of Gryphon
+ Choose from list of specified mission profiles
+ Select from ““Start on runway” or “Start in Orbit”
¢ Perhaps using stand-alone program such as UCPOP

Once Around
+ Takeoff and Land at Edwards AFB

Muitiple Orbit
v’ Takeoff and Land at Edwards AFB

Rendezvous

Dock with Space Station
v' Provide visual of Space Station
+» Details on docking progress

Co-orbit with satellite
v' Provide visual of Satellite

Payloads

v Payload doors open/close
v Provide visual of payload
v’ Payload status details

Deploy Satellite

VSP INTERFACE

Immersive Virtual Environment User Interface

Ability to control interface with/without keyboard/mouse

Use of Head Tracking hardware

Use of Head Mounted Display
v' Gauges and displays can be read with/without HMD

% : Use of Finger Tracking hardware

bt % All controls operable with engloved hands

% “Velcro Finger” to select and move objects in environment

938

Configurable Cockpit

v’ User presented with semi-transparent console signifying front of
Spaceplane

v' Panels generally placed on or near consoles.

v' Ability to control/monitor Spaceplane from cockpit.

Panel placement
+ Anywhere on Virtual HUD (Velcro Finger)
v Stuck on console (Mouse)

Minimize Panels
v Panels can be minimized using button on panel
v Panels can be turned on and off using toolbar buttons

Graphic Displays

Takeoff/Landing Profile — Plan View
v Shows position of Gryphon at airfield

Landing Footprint Display

Orbit Profile (Mercator display)
v Ground Trace Trails for previous position of Gryphon
v’ Projected ground trace based on current orbital parameters

Orbital Elements Display

v" 3D Graphic Panel

v' Trajectory and current position/orientation of Gryphon

v Trajectory and current position of Target

v’ Ability to rotate display for more convenient display of orbit
v’ Display is resizable

v/ Separate orbit color for target vehicle

Vertical Velocity Indicator
v’ Indication of the magnitude of our vertical velocity

Attitude/Direction Indicator (ADI)

v’ Similar to Wright Labs’

v Display of Heading/Pitch/Roll
Plane symbol remains fixed, horizon moves to show
pitch/roll
Arrow around ADI circle denotes Heading

v' Display of Speed/Altitude
Grid moving across ADI Ground signifies ground speed
Higher altitude represented by grid lines getting closer
together

Consumables Status

v’ Fuel (Delta-V remaining)
v" Oxygen (time remaining)
v’ Water

99

Virtual HUD (Heads Up Display)
v’ Provides Alternative to a window
v' Virtual environment displayed through virtual window
v' Additional HUD information

Manual Flight
v’ Provides capability to maneuver Spaceplane manually in
atmosphere

Space Control

v" Display of potential transfer orbits
(Av and time for each)

v" Display of intercept point

v' Display of orbit intersection point

Manual Docking
% Provides capability to manually dock with Space Station

Target Symbols

v Symbols denoting affiliation (friendly/enemy/unknown) of
entities

v’ Perhaps also denoting proximity

Waypoint Symbols

v' Graphical display of waypoint symbols “out the window” for
proposed route

v’ Ability to view waypoints on Takeoff/Landing Plan View and
Orbit Profile

% Ability to move existing waypoints

s Ability to add new waypoints

2 Course Guides

* (“Fly through the squares”)

v" Final Approach and Landing Corridor Frustum
Changes color to indicate accuracy of approach

s Approach Cylinder depiction

Click on objects to get info

v Click on satellites, space station

v’ Provides Name, Image, Range, Time to intercept, Bearing,
Elevation Angle

Aerodrome Indicator
v" Graphical representation of Edwards AFB aerodrome
Helps user see field from distance

Display of Sensor Fan

Display of Satellite coverage

100

HTML Interface

v Pseudo-HTML Hypertext interface

v Home page, backward, forward control
v' Provides on-line help

Onboard Systems display (Engineering Panel)
v' Status of onboard systems (Red/Green)

v" Provides details on system complications

v' Provides checklist of suggested repair actions

Checklists

v' Preflight checklist

v' Repair checklist

v' Perhaps implemented using HTML interface

Timeline

Clock

Take Off

Way Points

Entry into Orbit

Reentry

Landing

Light/Dark (in sunlight/behind Earth)

Mission Specific
Weapon Launch
Payload Deployment

+ Rendezvous

%0 % % s O e o O o
DI IR IR AN

Trails on objects
v' Trails show previous position of object
v Trail color represents affiliation of object (friend/foe)
v’ User has ability to turn trails on/off

Locators on objects
v Symbol representing type/affiliation/proximity of object
v' User has ability to turn locators on/off.

Agent assistant
« Makes suggestions to pilot
¢ Capable of minimizing panels
+¢ Display high-priority panels when emergency conditions occur.

101

VSP ENVIRONMENT

Graphical Display of Terrain using multiple LOD
v Multiple Levels of Detail
v’ High Quality Textures

Realistic representation of Edwards AFB airfield
v" Runways
v Control Tower
v’ Taxiways

Satellites displayed in correct orbits
v 3D Model of satellites
v Using accurate astrodynamic code
v Reads in NASA/NORAD two-line element files

GPS

Others
v" DMSP
v' DSCS I
v" TDRS
v Molniya

Space Station in correct orbit
v 3D Graphical model of Space Station
v Use International Space Station in proposed orbit

Nearby Planets in correct orbits

Sun & Moon in correct orbits

Stars and Constellations
v Over 32000 stars in correct location
v’ Stars displayed with varying levels of magnitude and color
v Over 80 constellations displayed in night sky with constellation
names

Display of Day/Night terminator

Pseudo-Atmosphere
v’ Sky transitions from blue to black with sunset
v' Sky transitions from blue to black with altitude

VSP USABILITY REQUIREMENTS

Interface Design Specifications
v’ Specify details of interface

Interface Design Guidelines
v' Specify how displays are constructed

102

VSP HARDWARE/SOFTWARE REQUIREMENTS

Requires Silicon Graphics Onyx or Onyx I
v' Reality Engine/ Infinite Reality
v" Best results with 4 processor 250MHz R4400 Reality Engine with 16Mbyte
Texture Memory
v OpenGL/Iris GL capable
v' Requires Performer 2.0 Execution Environment

Frame Rate
v’ Atleast 15fps 90% of the time

VSP LIMITATIONS

Mission Profiles
Takeoff/Landing from Edwards AFB only
Limited Target Locations
No ability to retrieve satellites
No Pop-up Missions
Popups require takeoff and landing at different locations.
No Auto-Ferry Capability
No Mission Abort options
Will provide “PANIC” button to jump back to earth.

Capabilities

® No Vertical Takeoff/Landing Capability

® No Egress Capabilities

® No Threats
Interface

® No Capability for co-pilot seat

® No HOTAS

@ No attempt to integrate video

® HTML Interface has no capability to use Internet.
Environment

® No weather near Earth’s surface

103

BIBLIOGRAPHY

[ADAM96] Adams, Terry A. Requirements, Design, and Development of a Rapidly
Reconfigurable, Photo-Realistic, Virtual Cockpit Prototype. MS Thesis, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH,
AFIT/GCS/ENG/96D-02, December 1996.

[AFA97] “US Air Force Almanac 1997”. Air Force Magazine, Air Force Association,
May 1997.

[BATE71] Bate, Roger R., Donald D. Mueller, and J erry E. White, Fundamentals of
Astrodynamics, New York, Dover Publications, 1971.

[BLOO74] Bloom, Richard L. An Algorithm for Minimum-Fuel Two-Impulse
Rendezvous. MS Thesis, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, AFIT/GA/MC/74-2, September 1974.

[BRYS93] Bryson, Steve. “Introduction”. Implementing Virtual Reality, Course Notes
43. SIGGRAPH Conference on Computer Graphics and Interactive
Techniques, Anaheim, CA, 1993.

[DOD87] Department of Defense, World Geodetic System 1984 (WGS84), Its Definition
and Relationships with Local Geodetic Systems. DMA TR 8350.2,
Washington: Defense Mapping Agency, 1987.

[ERIC93] Erichsen, Matthew Nick. Weapon System Sensor Integration for a DIS-
Compatible Virtual Cockpit. MS Thesis, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, AFIT/GCS/ENG/93-07, December 1993.

[FOGE96] Fogelman, Ronald R., Chief of Staff of the United States Air Force. “Global
Engagement.” Speech presented at the Smithsonian Institution, Washington
DC. Available via the Internet.
www.af.mil/news/Nov1996/n119961122_961185.html, 21 November 1996.

[FOLE92] Foley, James D., Andries van Dam, Steven K. Feiner, John F. Hughes.
Computer Graphics: Principles and Practice, Second Edition. Reading
MA, Addison-Wessley Publishing Company, November 1992.

[GARC96] Garcia, B., Design and Prototype of the AFIT Virtual Emergency Room: A
Distributed Virtual Environment for Emergency Medical Simulation, MS
Thesis, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
AFIT/GCS/ENG/96D-07, December 1996.

[HAMMO95] Hammer, John M., and Ronald L. Small, “An Intelligent Interface in an
Associate System”, Human/Technology Interaction in Complex Systems,
Volume 7, 1995. pp. 1-44.

[HEAR97] Hearn, Donald, M. Pauline Baker. Computer Graphics, C Version. Upper
Sadie River, NJ, Prentice Hall, 1997.

104

[HOOTS80] Hoots, Felix R. and Ronald L. Roehrich, “Models for Propagation of
NORAD Element Sets”, Space Track Report No. 3, Peterson AFB,
Aerospace Defense Command. Available via the Internet.
www.grove.net/~tkelso/NORAD/documentation/spacetrk.pdf, December
1980.

[HUTS97] Hutson, Larry, A Representation Approach to Knowledge and Multiple Skill
Levels for Broad Classes of Computer-Generated Forces, MS Thesis, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH,
AFIT/GCS/ENG/97D-09, December 1997.

[IST93] Proposed IEEE Standard Draft Standard for Information Technology—
Protocols for Distributed Interactive Simulation Applications Version 2.0
Second Draft. Orlando FL, Institute for Simulation and Training, March

1993.

[KERR88] Kerry, Mark Joels, Gregory P. Kennedy. The Space Shuttle Operator’s
Manual. New York NY, Ballantine Books, 1988.

[KUPE92] Kuperman, Gilbert G., Information Requirements Analyses for
Transatmospheric Vehicles, Defense Technical Information Center, June

1992.

[LANE79] Lane, M.H. and F.R. Hoots, “General Perturbations Theories Derived from
the 1965 Lane Drag Theory”, Project Space Track Report No. 2, Peterson
AFB, Aerospace Defense Command, December 1979.

[LEWI97] Lewis, John M. Requirements, Design and Prototype of a Virtual User
Interface for the AFIT Virtual Spaceplane, MS Thesis, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, AFIT/GM/ENG/97D-02,
December 1997.

[LOPE93] Loper, M. and S. Seidensticker, The DIS Vision: A Map to the Future of
Distributed Simulation. Technical report, Institute for Simulation and
Training, Orlando FL, 1993.

[MCKI91] McKinnon, G.M., and R. Kruk. “Multiaxis Control of Telemanipulators,”
Pictorial Communication in Virtual and Real Environments, Taylor and

Francis, London, 1991.

[MEEU91] Meeus, Jean, Astronomical Algorithms. Richmond VA, Willmann-Bell,
1991.

[MSIC97] Military Spaceplane Integrated Concept Team, Science & Technology Panel,
Technology Roadmap for a Military Spaceplane System, Draft version 1.1, 3
April 1997.

[NASA94] Shuttle Crew Operations Manual. Version 1.5. National Aeronautics and
Space Administration, July 1994.

105

[PAUS97] Pausch, Randy, Dennis Proffitt, and George Williams, Quantifying Immersion
in Virtual Reality, Computer Graphics Proceedings, Annual Conference
Series, 1997.

[ROLF86] Rolfe, J.M., K.J. Staples, Flight Simulation, Cambridge, Great Britain,
Cambridge Univ. Press, 1986.

[ROTH97] Rothermel, Scott A. Architecture, Design and Implementation of a Rapidly
Prototyped Virtual Environment for a Military Spaceplane, MS Thesis, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH,
AFIT/GCS/ENG/97D-17, December 1997.

[RUMB91] Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen, Object-Oriented Modeling and Deszgn, Englewood
Cliffs, New Jersey, Prentice-Hall, 1991.

[SGI95] IRIS Performer Programmer’s Guide. Silicon Graphics, Inc, 1995.
[SSA97] Soaring Society of America, acro.harvard.edu/SSA/BGA/os_note.html, 1997.

[STYT96] Stytz, Martin R, Elizabeth G. Block, Brian B. Soltz, and Kirk Wilson, “The
Synthetic Battle Bridge: A Tool for Large-Scale VEs,” IEEE Computer
Graphics and Applications, January 1996. pp. 16-26.

[STYT97] Stytz, Martin R, Terry Adams, Brian Garcia, Steven Sheasby, and Brian
Zurita, “Rapid Prototyping for Distributed Virtual Environments,” IEEE
Software, September/October 1997. pp. 83-92.

[SWEE97] Sweetman, Bill, “Spies in the Sky,” Popular Science, April 1997. pp. 42-48.

[THOM91] Thomas, Spencer W., “Decomposing a Matrix into Simple
Transformations,” Graphics Gems II, Edited by James Arvo. San Diego
CA, Academic Press, 1991. pp. 320-323.

[TOMS93] Toms, Ralph M., “An Efficient Algorithm for Geocentric to Geodetic
Coordinate Conversion,” Proceedings on Standards for the Interoperability
of Distributed Simulations, Volume II, (13% Proceedings). Orlando FL,
Institute for Simulation and Training, September 1995. pp. 635-642.

[USAF92] Air Force Manual 1 -.7 , Volume II, United States Air Force, March 1992.

[USC90] U.S. Congress, Office of Technology Assessment, Access to Space: The Future
of U.S. Space Transportation Systems, OTA-ISC-415, Washington, DC,
U.S. Government Printing Office, April 1990.

[VERD97] Verderame, Ken Maj, Maj Andrew Dobrot, System Requirements for a
Military Spaceplane, Phillips Laboratory Space Technology Directorate,
DRAFT version 1.0, 24 April 1997.

[WELL96] Wells, William D., Collaborative Workspaces within Distributed Virtual
Environments, MS Thesis, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, AFIT/GCS/ENG/96D-26, December 1996.

106

[WILL96] Williams, G., Solar System Modeler: A Distributed, Virtual Environment for
Space Visualization and GPS Navigation, MS Thesis, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, AFIT/GCS/ENG/96D-29,
December 1996.

[ZELT92] Zeltzer, David, “Autonomy, Interaction, and Presence,” Presence:

Teleoperators and Virtual Environments, Volume 1, Number 1, 1992. pp.
127-132.

[ZURI96] Zurita, Vincent Brian. A Software Architecture for Computer Generated
Forces in Complex Distributed Virtual Environments. MS Thesis, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
AFIT/GCS/ENG/96D-32, December 1996.

107

VITA

Lt Troy D. Johnson was born on ||| N - . '

graduated from Glencoe Senior High School in 1983 and enlisted in the Air Force on
17 October 1984. While enlisted, he was assigned to Bitburg AB, Germany and Brooks
AFB, Texas. In 1991 he was selected for the Airmen’s Education and Commissioning
Program (AECP), and was reassigned to Texas A&M University to complete his
undergraduate requirements. He graduated Summa cum Laude with Bachelor of Science
degrees in Meteorology and Computer Engineering in May 1994. He received his
commission on 30 September 1994 upon graduation from Officer Training School.

He then served as a System Manager for TACC Weather Directorate at Scott
AFB, IL. In June 1996, he entered the Graduate School of Engineering, Air Force
Institute of Technology. He will graduate with a Master of Science degree in
Meteorology with an emphasis in graphical design in December 1997. He will then be

reassigned to the Air Force Global Weather Center, Offutt AFB, Nebraska.

Permanent Address: “

Permanentemai:

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collaction of information is estimated to mraqg 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this collection of
information, induding suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jetferson Davis Highway, Sulte
1204, Arington, VA 2228?-4302. and to the Office of Management Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE [3. REPORT TYPE AND DATES COVERED
December 1997 Master's Thesis
4. TITLE AND SUBTITLE 5.
The Virtual Spaceplane; Integrating Multiple Motion Models and Hypertext in a Virtual
Environment
6. AUTHOR(S)
Troy D. Johnson, First Lieutenant, USAF
7. PERFORMI R 8. PERFORMING ORGANIZATION |
Air Force Institute of Technology REPORT NUMBER .
2750 P Street -
WPAFB, OH 45433-7126 e e ARIT/GM/ENGATD-01
: Al ') 70. Al 7
PL AGENCY REPORT NUMBER
Mr Jerry Gibson
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117
12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

[13. ABSTRACT (Maximum 200 words)

The Air Force is currently investigating the possibility of developing a manned vehicle capable of operating in space. This
Military Spaceplane (MSP) will be capable of ascent to low-earth orbit and maneuvering while in orbit. The goal of this
research involved creating the Virtual Spaceplane (VSP), a virtual environment (VE) simulator for the MSP. This thesis
examines two ideas significant to virtual environments and cockpit design: multiple motion models and hypertext in a VE.

Movement in a VE has traditionally been modeled using a single motion model. Little work has been done to allow a
change of the motion model used during the simulation. This thesis suggests partitioning simulation entities into two sections:
the geometry model and the propagation model. This approach is demonstrated in the VSP using multiple propagation models
as it transitions from runway to orbit.

This thesis also examines the use of hypertext within a VE. Hypertext has been shown useful for readers to quickly locate
information. This thesis will discuss the integration of a hypertext interface into the VSP. The hypertext interface provides
checklists, systems status, and consumables status. Hypertext provides the spaceplane pilot with an effective means of
referencing large amounts of data.

T4 SUBJECTTERNS 75, NUMBER OF PAGES
Modeling, Simulation, Virtual Environments, Space Flight, Spaceplane, Hypertext 121
16. PR DE
17. | 1 A 19. SECURITY CLASSIFICATION Jzo. LIMITATION OF ABSTRAEiJ
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

F v. 2-89
Prescrbed r S| Std. 239.1
Designed using Perform Pro, WHS/DIOR, Ot 94

	The Virtual Spaceplane: Integrating Multiple Motion Models and Hypertext in a Virtual Environment
	Recommended Citation

	tmp.1684524991.pdf.ldums

