

© Universiti Tun Hussein Onn Malaysia Publisher's Office



http://penerbit.uthm.edu.my/ojs/index.php/ijie ISSN : 2229-838X e-ISSN : 2600-7916 The International Journal of Integrated Engineering

# Free Vibrational Behavior of Bi-Directional Functionally Graded Composite Panel with and Without Porosities Using 3D Finite Element Approximations

## Pankaj S. Ghatage<sup>1,2</sup>, P. Edwin Sudhagar<sup>1\*</sup>

<sup>1</sup>School of Mechanical Engineering, Vellore Institute of Technology, Vellore - 632014, Tamilnadu, INDIA

<sup>2</sup>Department of Automobile Engineering, Rajarambapu Institute of Technology, Rajaramnagar, Affiliated to Shivaji University, Kolhapur, Islampur - 415414, Maharashtra, INDIA

\*Corresponding Author

DOI: https://doi.org/10.30880/ijie.2023.15.01.012 Received 14 August 2021; Accepted 11 October 2021; Available online 28 February 2023

**Abstract:** The frequency characteristics of bi-directional functionally graded (FG) rectangular panels with and without porosities are examined in this work using 3D finite element approximations. The properties of graded panel consist metal and ceramic material varied smoothly in bi-direction. The material properties of this highly heterogeneous material are obtained using the Voigt material model and Power-law. The present model is developed using a customized computer code and discretized using three-dimensional solid 20-noded quadrilateral elements. The mesh refinement is conducted to present the convergence test. The validation test is presented by showing comparison of the obtained findings with the results reported in the previous literature. At a later stage, comprehensive parametric research is presented through numerical illustrations which reveal that the geometrical and material parameters of bi-directional functionally graded panel affect its frequency characteristics, significantly. Finally, the developed 3D FEM model to predict the free vibrational characteristics of multidirectional FG rectangular plates with and without porosities will be the reference for the continuation of research in this area.

Keywords: Bi-directional FGMs, free vibration, finite element approximation

## 1. Introduction

Recently, multidirectional functionally graded composite materials show significant improvement in their characteristics, which results in attracting considerable attention in aerospace as well as other engineering application because of their enormous advantages over laminated composites and unidirectional functionally graded materials (FGMs). Koizumi [1] had proposed the idea of FGM in Japan for producing thermal barrier materials, in the 19<sup>th</sup> century many researchers had contributed to the development of unidirectional FGMs but some modern structures like advanced space crafts, shuttles, etc. demand advanced FGMs, whose micromechanical properties should vary not only in one direction but also vary in two or more than two directions and hence the concept of multidirectional FGMs was introduced in plate structure in which the micromechanical properties graded in two or more than two directions from one surface to another. FGM structures are typically composed of a grouping of metal and ceramic, metals exhibit good strength and toughness while ceramic materials are having good anti-oxidant as well as thermal resistance behavior. Free vibrational behavior of plate structure is one of the important concerns for structures [27-29], whereas in recent decades, a group of researchers has worked to model and analyze multi-directional FGM structures [2-10].

The free vibrational behavior of multidirectional FG annular plates using the differential quadrature method (DQM) presented by Nie and Zhong [3]. The micromechanical material properties are graded in two directions. It was observed that the free vibrational behavior of the multi-directional FG plate was different than the unidirectional FG plate. Kermani et al. [4] carry forwarded the same study by changing geometry and boundary conditions to predict free vibrational behavior. The findings revealed that multi-directional FGMs influence natural frequencies as well as mode shapes of the plate. Nejati et al. [5] analyzed the free vibrational behavior of bi-directional FG annular plates with the DQM. The multidirectional FG piezoelectric annular plates were analyzed and presented vibrational behavior using DQM by Yas and Moloudi [9]. The buckling as well as vibrational responses of 2D-FG circular plate considering uniform plane load resting on the elastic foundation was presented by Ahlawat and Lal [11]. Further, Lal and Ahlawat [12] investigated the buckling and vibrational response of circular plates of 2D-FG materials by considering a hydrostatic in-plane force. Mahinzare et al. [13] developed a model to analyze the free vibrational behavior of 2D FG micro circular plate using the FSDT. Van Do et al. [14] presented buckling and bending responses of 2D-FG plates using the finite element approximation. Lieu et al. [15] have studied the bending and vibration behavior of in-plane 2D-FG plates considering the variable thickness. Ahlawat [16] presented the buckling and vibrational responses of 2D-FG circular plates. Ghatage et al. [17] have presented the first time, a review on multidirectional FG composite structures including its modeling and analysis. Esmaeilzadeh and Kadkhodayan [18] studied a dynamic response of porous 2D-FG plates using a dynamic relaxation method. Wu and Yu [19] analyzed the free vibrational responses of 2D-FGM annular plates with the help of a finite annular prism method in which they presented the impact of different boundary conditions on the free vibrational behavior of plates. Liu and Cheng [20] proposed a systematic approach of voxel modeling and analysis for FGM structures in the Ansys environment. Kandasamy et al. [21] simulated the FGMs structures using APDL codes and compared the buckling and vibrational responses of the FG structure with findings of existing methods. Ersoy et al. [22] proposed the approximate numerical solution to predict free vibrational characteristics of FG annular plates and shells structures using two different approaches and the findings are compared with results generated by using ANSYS packed program. Huang et al. [23] analyzed the buckling behavior of FGM rings using FSDT and the findings are compared to the results obtained by the ABAQUS commercial software. Higher-order finite element models developed by researchers to forecast the vibrational, flexural, and buckling responses of FG structures [39-44]. Thai and Kim [25] presented a review on different methods of modeling and analysis of FGM panels.

During the production of FG structures, the porosities usually form in the structure. Wattanasakulpong et al. [31] experimentally proved that the static and dynamic analysis of FGM panels by considering porosities claims more accurate results, hence structural behavior of FGM structure need be analyzed by considering porosities. Many authors contributed to analyzing FG structure considering porosities [31-37]. Sobhy and Zenkour [32] presented the influence of porosities on the vibrational and buckling behavior of FG nanoplate using quasi three-dimensional refined theory. Wang and Zu [33] carried out the vibrational responses of unidirectional FGM plates considering porosities with the thermal environments. Wattanasakulpong and Ungbhakorn [34] presented nonlinear and linear vibrational responses of unidirectional FGM plates. Barati and Shahverdi [35] considered even and uneven porosity pattern to analyze the stability of supersonic FGM panels in different fields. Even and uneven porosity distribution was also considered to analyze vibrations of longitudinal traveling unidirectional FG plates by Wang et al. [36]. In the open literature, only Karamanli and Aydogdu [37] considered two-directional even porosity distributions to carry out structural dynamics and stability behavior of 2D-FGM micro-sized beams using modified coupled stress theory.

From available multi-directional FG plate literature, one can notice that most of the researchers have worked on multi-directional FG circular as well as annular plates; however, the rectangular plates are widely used in different engineering applications. Swaminathan et al. [45] stated that additional focus is needed to develop numerical techniques for 3D analysis of FG structures in order to reduce computing time and cost. Also based on open literature, this is the first attempt, in which free vibrational analysis of bi-directional FG rectangular plates (BFGRP) with various porosity pattern using the 3D elasticity theory was studied. So, in this present work, the frequency characteristics of the BFGRP with and without porosities are examined using the finite element approximation in combination with the 3D elasticity theory. The material properties of this highly heterogeneous material are obtained using the Voigt model via extended Power-law. The proposed model is developed using a customized computer code and discretized using three-dimensional solid 20-noded quadrilateral elements. The mesh refinement is confirmed with convergence test and validation test also confirmed by comparing the current work with previously reported work. The effects different parameters like as thickness ratio (a/h), boundary conditions, aspect ratio (a/b) and an impact of even as well as uneven porosities of multi-directional FG plate on natural frequency are presented in this work.

#### 2. Effective Material Properties (EMP) of FGM

In this research work, FG rectangular plates with length 'a', width 'b' and thickness 'h' are taken in to account in the system of cartesian coordinates i.e., x, y, and z, which is depicted in Fig. 1(a). The EMP of 2D-FGM are graded in x and y direction with Power-law material distribution. The EMP can be represented as;

$$EMP = \sum_{j=1}^{k} P_j V_{f_j} \tag{1}$$

where,  $P_i$  is the material properties and  $V_{f_i}$  represents the volume fractions



Fig. 2 - Distribution of volume fraction profile of BFGRP with  $n_x = 1$ ,  $n_y = 5$ 

The volume fraction based on Power-law function can be obtained as per equation (2) [18]. The volume fraction distribution profiles of bidirectional FG plate are depicted in Fig. 2 and Fig. 3.

Pankaj S. Ghatage and P. Edwin Sudhagar, Int. J. of Integrated Engineering Vol. 15 No. 1 (2023) p. 131-144

$$V_{f} = \left(\frac{x}{a}\right)^{n_{x}} \left(\frac{y}{b}\right)^{n_{y}} \begin{cases} 0 \le n_{x} < \infty \\ 0 \le n_{y} < \infty \end{cases}$$
(2)

where,  $n_x$  and  $n_y$  are the indices of Power-law in x and y directions, respectively.



Fig. 3 - Distribution volume fraction profile of BFGRP with  $n_x = 1$ ,  $n_y = 0.5$ 

The EPM like Young's modulus (*E*), mass density ( $\rho$ ) and Poisson's ratio (v) of bi-directional FGM are calculated by equations (3-5) [38].

$$E = \left(E_c - E_m\right)V_f + E_m \tag{3}$$

$$\rho = (\rho_c - \rho_m)V_f + \rho_m \tag{4}$$

$$v = \left(v_c - v_m\right)V_f + v_m \tag{5}$$

Fig. 1(b) represents the even and uneven porosity pattern in the FG rectangular plate. The EPM of 2D-FGM plate with even porosity pattern can be calculated using equation (6-8) and the EPM of 2D-FGM plate with uneven porosity pattern in bi-direction expressed as in equations (9-11) [36].

$$E = (E_{c} - E_{m})V_{f} + E_{m} - \frac{\alpha}{2}(E_{c} + E_{m})$$
(6)

$$\rho = \left(\rho_c - \rho_m\right)V_f + \rho_m - \frac{\alpha}{2}(\rho_c + \rho_m) \tag{7}$$

$$v = (v_c - v_m)V_f + v_m - \frac{\alpha}{2}(v_c + v_m)$$
(8)

$$E = (E_{c} - E_{m})V_{f} + E_{m} - \frac{\alpha}{2}(E_{c} + E_{m})\left(1 - \frac{2|x|}{a}\right)$$
(9)

$$\rho = \left(\rho_c - \rho_m\right)V_f + \rho_m - \frac{\alpha}{2}\left(\rho_c + \rho_m\right)\left(1 - \frac{2|x|}{a}\right) \tag{10}$$

$$v = (v_c - v_m)V_f + v_m - \frac{\alpha}{2}(v_c + v_m)\left(1 - \frac{2|x|}{a}\right)$$
(11)

Where,  $\alpha \ (\alpha << 1)$  is the porosity volume fraction.

#### 3. Mathematical Formulation

To obtain the free vibrational responses of BFGRP, the problem is formulated using 3D elasticity theory and finite element approximation.

#### **3.1 Governing Equations**

The governing equations of motion for the BFGRP in Cartesian coordinate system are depicted in equations (12-14) [26, 30]. The displacements u, v, and w along x, y and z direction respectively.  $\rho$  represents the mass density which depends on x and y coordinates.

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{zx}}{\partial z} = \rho(x, y) \frac{\partial^2 u}{\partial t}$$
(12)

$$\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} = \rho(x, y) \frac{\partial^2 v}{\partial t}$$
(13)

$$\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} = \rho(x, y) \frac{\partial^2 w}{\partial t}$$
(14)

#### **3.2 Stress Strain Relations**

The generalised stress-strain relationship can be expressed in terms of its reference plane using Hook's law as in equation (15) [30]

$$\{\sigma\} = [Q]\{\mathcal{E}\} \tag{15}$$

where,  $\{\sigma\} = \{\sigma_{xx} \quad \sigma_{yy} \quad \sigma_{zz} \quad \tau_{xy} \quad \tau_{yz} \quad \tau_{xz}\}^T$  and  $\{\varepsilon\} = \{\varepsilon_{xx} \quad \varepsilon_{yy} \quad \varepsilon_{zz} \quad \gamma_{xy} \quad \gamma_{yz} \quad \gamma_{xz}\}^T$  are the stress and strain vector respectively and [Q] is the rigidity matrix as shown in equation (16).

$$[Q] = \frac{E(1-v)}{(1+v)(1-2v)} \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} & 0 & 0 & 0 \\ Q_{21} & Q_{22} & Q_{23} & 0 & 0 & 0 \\ Q_{31} & Q_{32} & Q_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & Q_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & Q_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & Q_{66} \end{bmatrix}$$
(16)

Where,

$$Q_{11} = Q_{22} = Q_{33} = 1$$
,  $Q_{12} = Q_{23} = Q_{13} = \frac{v}{(1-v)}$ ,  $Q_{44} = Q_{55} = Q_{66} = \frac{1-2v}{2(1-v)}$ 

#### **3.3 Relations of Strain-Displacement**

The strain-displacement relations for rectangular Cartesian coordinates in a three-dimensional elasticity theory can be stated as follows [30];

$$\varepsilon_{xx} = \frac{\partial u}{\partial x}, \ \varepsilon_{yy} = \frac{\partial v}{\partial y}, \ \varepsilon_{zz} = \frac{\partial w}{\partial z}, \ \gamma_{xz} = \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) \\ \gamma_{yz} = \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right), \ \gamma_{zx} = \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}\right)$$
(17)

Three-dimensional strain-displacement correlation can be expressed as;

$$\varepsilon = B\delta \tag{18}$$

Where the differential operator *B* and displacement  $\delta$  is defined as in equation (19) and (20) respectively, the differential operator *B* and displacement  $\delta$  contribute to develop the three-dimensional strain. Also, the displacement  $\delta$  indicates the degree of freedom.

$$B = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \\ 1/2 \frac{\partial}{\partial y} & 1/2 \frac{\partial}{\partial x} & 0 \\ 0 & 1/2 \frac{\partial}{\partial z} & 1/2 \frac{\partial}{\partial y} \\ 1/2 \frac{\partial}{\partial z} & 0 & 1/2 \frac{\partial}{\partial x} \end{bmatrix}$$
(19)  
$$\delta = \begin{cases} u \\ v \\ w \end{cases}$$
(20)

#### **3.4 Finite Element Formulation**

A three-dimensional 20-noded solid higher-order element with three degrees of freedom for each node in rectangular cartesian coordinates is considered for discretization in this investigation. As indicated in equation (21), displacements can be represented in terms of shape functions.

$$\delta = \sum_{i=1}^{20} N_i \delta_i \tag{21}$$

Equations (22) and (23) express the nodal displacement vector of the element  $\delta_i$  and the shape function matrix  $N_i$  respectively.

$$\delta_{i} = \left\{ U_{1} \ V_{1} \ W_{1} \dots \dots U_{20} \ V_{20} \ W_{20} \right\}^{T}$$

$$N_{i} \left( \xi, \eta, \zeta \right) = \begin{bmatrix} N_{1} \ 0 \ 0 \ N_{2} \ 0 \ 0 \ N_{2} \ 0 \ 0 \ N_{2} \ 0 \ N_{2} \ 0 \ N_{20} \ 0 \ N_{20} \ 0 \end{bmatrix}$$

$$(22)$$

$$(23)$$

 $\xi$ ,  $\eta$  and  $\zeta$  are the natural coordinates in *x*, *y* and *z* directions respectively. The shape function terms are depicted in an appendix. The components of shape function can be represented in the form of natural coordinates as per equation (24).

$$N_{i}(\xi,\eta,\zeta) = \frac{1}{8} (1+\xi_{i}\xi) (1+\eta_{i}\eta) (1+\zeta_{i}\zeta)$$
<sup>(24)</sup>

Hamilton principle is used to compute governing equations as shown in equation (25)

$$\int_{0}^{T} (\partial U - \partial T) dT = 0$$
<sup>(25)</sup>

Where,  $\partial U$  represents virtual strain energy per unit volume and  $\partial T$  represents kinetic energy per unit volume which are expressed in equation (26-28).

$$U = \frac{1}{2} \int_{v} \left\{ \sigma \right\}^{T} \left\{ \varepsilon \right\} dv = \frac{1}{2} \int_{v} \left\{ \delta \right\}^{T} \left[ B \right]^{T} \left[ Q \right] \left[ B \right] \left\{ \delta \right\} dv$$
(26)

$$U = \frac{1}{2} \left\{ \delta \right\}^{T} \left[ K \right] \left\{ \delta \right\}$$
<sup>(27)</sup>

$$T = \frac{1}{2} \int \rho \left\{\delta\right\}^{T} \left\{\delta\right\} dv = \frac{1}{2} \int \left\{\delta\right\}^{T} \left[M\right] \left\{\delta\right\} dA$$
(28)

$$[M][\delta] + [K][\delta] = 0 \tag{29}$$

Where,  $[\delta]$  is the second derivative of nodal displacement and  $[\delta]$  is the nodal displacement.

The variational method was used to derive the elemental stiffness matrix [K] and the mass matrix [M], which are stated as;

$$[K] = \int_{-1}^{+1} \int_{-1}^{+1} \int_{-1}^{+1} [B]^{T} [Q] [B] |J| d\xi d\eta d\zeta$$
(30)

$$[M] = \int_{-1}^{+1} \int_{-1}^{+1} \int_{-1}^{+1} [N]^{T} [m] [N] |J| d\xi d\eta d\zeta$$
<sup>(31)</sup>

where, |J| is the determinant of the Jacobian matrix used for the mapping, [N] is the shape function matrix and [m] is the elemental inertia matrix.

The free vibration behaviour is obtained by equation (32).

..

$$\left(\left[K\right] - \omega^{2}\left[M\right]\right)\Delta = 0 \tag{32}$$

Where, [K] global stiffness matrix and [M] global mass matrix.  $\omega$  represents natural frequency and  $\Delta$  is the respective eigen-vectors.

#### 4. Convergence and Validation Study

To obtain the free vibrational behavior of a BFGRP using the proposed model, it is essential to confirm the precision and effectiveness of the developed model. This is ensured by studying convergence and validation test, which is discussed below with two different examples;

#### Example I:

To study the convergence, free vibration analysis of BFGRP is presented with  $n_x = 0.5, n_y = 0.5$ , aspect ratio

a/b=1.5 and thickness ratio a/h=10. BFGRP is assumed to be constituted with Stainless Steel and Silicon Nitride; FGM constituent's properties are depicted in Table 1. The non-dimensional frequency (NDF) responses are obtained by using equation  $\overline{\omega} = (\omega a^2 / h) (\sqrt{\rho_c / E_c})$ , which is exhibited in Fig. 4, the five modes of vibration presented

in the figure. Based on convergence study, the non-dimensional frequency parameters of  $18 \times 18 \times 18$  mesh size have been found good convergence and the average percentage difference between results of  $18 \times 18 \times 18$  and  $20 \times 20 \times 20$  mesh size is less than 0.2%, hence it is suitable for the free vibrational analysis of BFGRP.

|                                                                               |                                               | F F                  |                           |  |
|-------------------------------------------------------------------------------|-----------------------------------------------|----------------------|---------------------------|--|
|                                                                               |                                               | Properties           |                           |  |
| Materials                                                                     | <b>Density</b> $\rho \left( kg / m^3 \right)$ | Poisson's Ratio<br>V | Young's Modulus<br>E(GPa) |  |
| Stainless steel (SUS304)<br>Silicon nitride (Si <sub>3</sub> N <sub>4</sub> ) | 8166<br>2370                                  | 0.3177<br>0.24       | 207.78<br>322.27          |  |

Table 1 - FGM component's properties [24]



Fig. 4 - Convergence test of non-dimensional linear frequency for clamped (CCCC) BFGRP (SUS304/Si<sub>3</sub>N<sub>4</sub>) for  $n_{u} = 0.5, n_{u} = 0.5, a/b = 1.5$  and a/h = 10.

**Example II:** In this illustration, the free vibrational analysis of simply supported (SSSS) square FG plate with Powerlaw indices  $(n_z = 0, 0.5, 1, 5, 10, \infty)$  and thickness ratio a/h = 10 is discussed, the NDF parameters using equation  $\overline{\omega} = (\omega a^2/h) (\sqrt{\rho_c/E_c})$  are presented. The plate is comprised with Stainless Steel and Silicon Nitride material; Table 1 lists the properties of the same. To verify the precision of the current model, the findings of the present model are compared with the findings of Talha and Singh [24] as shown in Fig. 5. It is observed that the percentage difference between computed results and the results of Talha and Singh [24] is within 5%. The results obtained using the current model match well with the findings of Talha and Singh [24].



Fig. 5 - NDF responses of SSSS square FG (SUS304/ Si<sub>3</sub>N<sub>4</sub>) plates

#### 5. Result and Discussions

Free vibration analysis of BFGRP using customized computer codes is presented and discussed in this section. To explore the effectiveness of the developed model, the influence of thickness ratio, aspect ratio, boundary conditions and the influence of porosities of BFGRP on natural frequency are discussed with some new examples.

## 5.1 Effect of Thickness Ratio

Table 2 shows that the effect of thickness ratio (a/h) on NDF parameter  $\overline{\omega} = (\omega a^2 / h) \left( \sqrt{\rho_c / E_c} \right)$  of fully clamped

(CCCC) rectangular plate with four different materials (Ceramic, FGM-I, FGM-II, and Metal) and aspect ratio (a/b) is 1.5. The plate is comprised with Stainless Steel and Silicon Nitride material; Table 1 lists the properties of the same. The natural frequency should rise as the thickness ratio of the plate increases; nevertheless, the opposite tendency is found in the current investigation due to the representation of NDF characteristics. The ceramic plates are having more non-dimensional frequency compare to other material plates moreover, the bi-directional FGM-II plates are having less non-dimensional frequency than bidirectional FGM-I, so it noticed that increase in volume fraction index in certain direction

reduces the NDF parameter, hence FGM -II is having less stiffness compare to FGM-I. It is anticipated that approximately 4% fall in NDF parameter for FGM-II compare to FGM-I.

| Material  |                |                | o/h  | Modes   |         |         |         |         |         |         |         |         |         |         |
|-----------|----------------|----------------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|           | П <sub>х</sub> | п <sub>у</sub> | a/11 | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      |         |
| Ceramic 0 |                |                | 10   | 15.7433 | 23.1472 | 33.9435 | 34.5562 | 39.7612 | 43.1520 | 48.6081 | 49.1092 | 51.8658 | 56.6246 |         |
|           | 0              | 0              | 20   | 17.5849 | 26.6511 | 41.2058 | 41.4601 | 49.0100 | 60.9762 | 62.0053 | 73.9844 | 79.5224 | 80.9125 |         |
|           | Ū              | 0              | 50   | 18.2552 | 28.0779 | 44.3638 | 44.5631 | 53.3621 | 67.1748 | 68.6269 | 83.1804 | 90.0692 | 91.7692 |         |
|           |                |                | 100  | 18.3582 | 28.3172 | 44.8784 | 45.1154 | 54.1191 | 68.3063 | 69.8527 | 84.8211 | 92.0898 | 93.7925 |         |
| FGM-I 1   |                |                |      | 10      | 7.1006  | 10.8174 | 15.1441 | 16.4065 | 18.4077 | 19.8615 | 23.1736 | 23.1903 | 23.2630 | 25.0859 |
|           | 1              | 5              | 20   | 7.9280  | 12.4349 | 18.3889 | 19.6325 | 22.6790 | 29.0974 | 29.2353 | 32.7980 | 37.1592 | 37.9524 |         |
|           | 1              | 5              | 50   | 8.2291  | 13.0904 | 19.8038 | 21.0752 | 24.6874 | 32.0032 | 32.3265 | 36.9038 | 42.1762 | 42.8228 |         |
|           |                |                |      | 100     | 8.2752  | 13.2000 | 20.0344 | 21.3314 | 25.0347 | 32.5345 | 32.8955 | 37.6371 | 43.1132 | 43.7695 |
|           |                | 5              |      | 10      | 6.9001  | 10.3168 | 14.7825 | 15.5536 | 17.5537 | 19.1400 | 21.9402 | 22.0081 | 22.6278 | 24.6166 |
| FGM-II    | 10             |                | 20   | 7.7038  | 11.8605 | 17.9395 | 18.6098 | 21.6110 | 27.5068 | 27.6415 | 32.1568 | 35.5481 | 35.8046 |         |
| I GIVI II | 10             |                | 5    | 50      | 7.9953  | 12.4837 | 19.3111 | 19.9676 | 23.5122 | 30.2278 | 30.5484 | 36.1495 | 40.2984 | 40.3630 |
|           |                |                | 100  | 8.0397  | 12.5863 | 19.5339 | 20.2052 | 23.8390 | 30.7187 | 31.0759 | 36.8618 | 41.1777 | 41.2359 |         |
|           |                |                | 10   | 6.8592  | 10.1772 | 14.7157 | 15.2486 | 17.3274 | 18.8808 | 21.4774 | 21.5043 | 22.5006 | 24.5196 |         |
| Metal     | 00             | 00             | 20   | 7.6608  | 11.7172 | 17.8630 | 18.2886 | 21.3491 | 26.9055 | 27.1339 | 32.0329 | 34.9867 | 35.1311 |         |
| metur     |                |                | 50   | 7.9516  | 12.3401 | 19.2300 | 19.6457 | 23.2374 | 29.6055 | 30.0096 | 36.0121 | 39.4767 | 39.8323 |         |
|           |                |                | 100  | 7.9961  | 12.4435 | 19.4520 | 19.8841 | 23.5626 | 30.0958 | 30.5339 | 36.7212 | 40.3410 | 40.7030 |         |

Table 2 - Effect of thickness ratio on the NDF parameter of BFGRP

#### **5.2 Effect of Aspect Ratio**

Fig. 6 shows the effect of aspect ratio (*a/b*) on NDF parameters  $\overline{\omega} = (\omega a^2 / h) (\sqrt{\rho_c / E_c})$  of fully clamped (CCCC) rectangular plate with four different materials (Ceramic, FGM-I, FGM-II, and Metal) and thickness ratio (*a/b*) is 10. The

plate is comprised with Stainless Steel and Silicon Nitride material; Table 1 lists the properties of the same. The NDF parameters are computed for ten different modes. It is noticed that the NDF parameter is increased with an increase in aspect ratio and mode number as anticipated. It is observed that, average approximately 50% rise in frequency parameter when aspect ratio changes from 1 to 2.5. Also, the NDF parameter of the bidirectional FGM plate decreases by approximately 3% when the material of the plate changes from FGM-I to FGM-II.





Fig. 6 - Effect of aspect ratio on the NDF parameter of BFGRP

#### **5.3 Effect of Boundary Condition**

Table 3 shows that the effect of different boundary conditions on the NDF parameter  $\overline{\omega} = (\omega a^2 / h) (\sqrt{\rho_c / E_c})$  of

fully simply supported (SSSS), fully clamped (CCCC), simply supported clamped (SCSC) and cantilever (CFFF) rectangular plate with four different materials (Ceramic, FGM-I, FGM-II, and Metal). The aspect ratio (a/b) and thickness ratio (a/h) of the plates are considered as 1.5 and 10 respectively. The plate is comprised with Stainless Steel and Silicon Nitride material; Table 1 lists the properties of the same. For all materials, the lowest frequency is recorded for plates with CFFF boundary condition and the highest frequency is recorded for plates with CCCC boundary condition, and the frequency ranges of SSSS and SCSC boundary conditions are in between the frequencies of CCCC and CFFF. The NDF responses increase with the increase in constraint on the boundaries of the BFGRP. The average difference between the non-dimensional frequency of CCCC and CFFF is approximately 70%.

Table 3 - Effect of different boundary condition on the NDF parameter of BFGRP

| Matarial  |                |    | P.C. | Modes   |         |         |         |         |         |         |         |         |         |        |        |
|-----------|----------------|----|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|
| Wateria   | n <sub>x</sub> | ny | Б.С. | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      |        |        |
| Ceramic 0 |                |    | SSSS | 13.6047 | 20.7516 | 24.7933 | 27.0935 | 30.2311 | 31.5382 | 32.6471 | 35.3256 | 38.8511 | 43.5324 |        |        |
|           | 0              | 0  | CCCC | 15.7481 | 23.1671 | 33.9430 | 34.5907 | 39.7763 | 43.1628 | 48.6474 | 49.1302 | 51.8674 | 56.6193 |        |        |
|           | 0              | 0  | SCSC | 11.6536 | 19.6750 | 20.6864 | 27.4120 | 28.7229 | 31.0021 | 32.8309 | 33.3406 | 42.3998 | 43.5690 |        |        |
|           |                |    | CFFF | 1.0339  | 3.2621  | 5.3077  | 6.1523  | 10.6304 | 14.6877 | 15.8192 | 16.5887 | 17.4610 | 20.5657 |        |        |
| FGM-I 1   |                | 5  | SSSS | 6.1496  | 9.7209  | 11.9721 | 12.8110 | 13.4899 | 15.0153 | 15.1915 | 16.3898 | 19.7871 | 20.6465 |        |        |
|           | 1              |    | CCCC | 7.0957  | 10.8071 | 15.1328 | 16.3871 | 18.3829 | 19.8394 | 23.1520 | 23.1574 | 23.2264 | 25.0697 |        |        |
|           | 1              |    | SCSC | 5.2929  | 9.2014  | 9.2289  | 12.2609 | 13.5540 | 14.7594 | 15.4922 | 15.4949 | 20.0958 | 20.7074 |        |        |
|           |                |    | CFFF | 0.5513  | 1.6605  | 2.7481  | 3.0764  | 5.4868  | 7.4977  | 7.7908  | 8.1421  | 8.4255  | 10.4590 |        |        |
|           |                | 5  | SSSS | 5.9744  | 9.2666  | 11.5442 | 12.4899 | 13.1790 | 14.2453 | 14.5988 | 15.6398 | 18.7289 | 19.5640 |        |        |
| ECM II    | 10             |    | CCCC | 6.9001  | 10.3168 | 14.7825 | 15.5536 | 17.5537 | 19.1400 | 21.9402 | 22.0081 | 22.6278 | 24.6166 |        |        |
| FOM-II    | 10             |    | SCSC | 5.1374  | 8.8027  | 9.0662  | 11.9602 | 12.9990 | 14.0088 | 14.7788 | 14.9323 | 19.0619 | 20.1066 |        |        |
|           |                |    |      |         | CFFF    | 0.5073  | 1.5431  | 2.5494  | 2.9384  | 5.1503  | 7.0305  | 7.3339  | 7.7795  | 8.0672 | 9.9191 |
|           |                |    | SSSS | 5.9367  | 9.1346  | 11.3357 | 12.2813 | 13.1144 | 13.9431 | 14.4027 | 15.4216 | 18.0823 | 19.1448 |        |        |
| Matal     | ~              | ~  | CCCC | 6.8592  | 10.1772 | 14.7157 | 15.2486 | 17.3274 | 18.8808 | 21.4774 | 21.5043 | 22.5006 | 24.5196 |        |        |
| Wietai    | w.             | 00 | SCSC | 5.0998  | 8.6750  | 9.0220  | 11.8972 | 12.7781 | 13.7130 | 14.5670 | 14.7017 | 18.6550 | 19.5980 |        |        |
|           |                |    | CFFF | 0.4838  | 1.4880  | 2.4482  | 2.8568  | 4.9529  | 6.7945  | 7.1254  | 7.6173  | 7.8835  | 9.6120  |        |        |

#### 5.4 Effect of Porosities

The effect of even and uneven porosities on the NDF parameter  $\omega = (\omega a^2 / h) (\sqrt{\rho_c / E_c})$  of fully clamped (CCCC) BFGRP with four different FGM (FGM, FGM-I, FGM-II, and FGM-III) is presented in tabular form as shown in Table 4 and 5 respectively. The aspect ratio (a/b) and thickness ratio (a/h) of the plates are considered as 1.5 and 10 respectively. The plate is comprised with Stainless Steel and Silicon Nitride material; Table 1 lists the properties of the same. It is clear from the obtained results that the fundamental NDF parameter shows a decreasing trend with an increase in porosity volume fraction in even type of porosity, however it shows an increasing trend in uneven distribution of porosity. The value of the NDF parameter of BFGRP with uneven porosity pattern is higher than the even porosity pattern, hence the uneven distribution of porosities increases the stiffness of the plate. It is noticed that approximately 4% rise in NDF in a plate with uneven porosities compare to plate with even porosities when porosity volume fraction is 0.1 and that rise in NDF parameter increases up to 15% when porosity volume fraction is 0.3.

| Material   |                 |     | ~   | Modes  |         |         |         |         |         |         |         |         |         |         |         |         |         |
|------------|-----------------|-----|-----|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|            | II <sub>x</sub> | Пy  | a   | 1      | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      |         |         |         |         |
| FGM 1      |                 |     | 0   | 8.6147 | 13.2016 | 17.8619 | 19.8550 | 22.5809 | 23.7399 | 27.0844 | 27.9901 | 28.3592 | 28.7606 |         |         |         |         |
|            | 1               | 0.5 | 0.1 | 8.4897 | 13.0912 | 17.5036 | 19.7149 | 22.3325 | 23.4037 | 26.5154 | 27.7940 | 28.0930 | 28.1647 |         |         |         |         |
|            | 1               | 0.0 | 0.2 | 8.3312 | 12.9462 | 17.0569 | 19.5339 | 22.0017 | 22.9753 | 25.8095 | 27.2244 | 27.5919 | 27.8996 |         |         |         |         |
|            |                 |     | 0.3 | 8.1249 | 12.7506 | 16.4879 | 19.2892 | 21.5480 | 22.4128 | 24.9129 | 26.1888 | 27.2638 | 27.5197 |         |         |         |         |
| FGM-I      |                 | 5   | 0   | 7.1006 | 10.8174 | 15.1441 | 16.4065 | 18.4077 | 19.8615 | 23.1736 | 23.1903 | 23.2630 | 25.0859 |         |         |         |         |
|            | 1               |     | 0.1 | 6.8775 | 10.5070 | 14.6457 | 15.9518 | 17.8457 | 19.2666 | 22.4149 | 22.5178 | 22.6218 | 24.2437 |         |         |         |         |
|            | 1               |     | 0.2 | 6.6156 | 10.1444 | 14.0621 | 15.4232 | 17.1970 | 18.5775 | 21.5243 | 21.7484 | 21.8869 | 23.2539 |         |         |         |         |
|            |                 |     | 0.3 | 6.2950 | 9.6966  | 13.3466 | 14.7675 | 16.3958 | 17.7299 | 20.4332 | 20.7931 | 20.9709 | 22.0437 |         |         |         |         |
|            |                 | 5   | 0   | 6.9001 | 10.3168 | 14.7825 | 15.5536 | 17.5537 | 19.1400 | 21.9402 | 22.0081 | 22.6278 | 24.6166 |         |         |         |         |
| FGM-II     | 10              |     | 0.1 | 6.6728 | 9.9919  | 14.2841 | 15.0740 | 16.9815 | 18.5295 | 21.2452 | 21.3362 | 21.8686 | 23.7814 |         |         |         |         |
| I GIVI II  | 10              |     | 0.2 | 6.4006 | 9.6029  | 13.6887 | 14.4986 | 16.2966 | 17.7989 | 20.4111 | 20.5285 | 20.9607 | 22.7835 |         |         |         |         |
|            |                 |     | 0.3 | 6.0693 | 9.1271  | 12.9629 | 13.7933 | 15.4593 | 16.9060 | 19.3895 | 19.5371 | 19.8528 | 21.5668 |         |         |         |         |
|            |                 |     | 0   | 6.8592 | 10.1772 | 14.7157 | 15.2486 | 17.3274 | 18.8808 | 21.4774 | 21.5043 | 22.5006 | 24.5196 |         |         |         |         |
| FGM-III    | 100             | 100 | 0.1 | 6.6286 | 9.8437  | 14.2146 | 14.7540 | 16.7449 | 18.2520 | 20.7818 | 20.7931 | 21.7349 | 23.6817 |         |         |         |         |
| 1 0.01 111 | 100             | 100 | 0.2 | 6.3532 | 9.4450  | 13.6155 | 14.1618 | 16.0493 | 17.4993 | 19.9391 | 19.9488 | 20.8200 | 22.6811 |         |         |         |         |
|            |                 |     |     |        |         |         | 0.3     | 6.0170  | 8.9579  | 12.8859 | 13.4382 | 15.2001 | 16.5800 | 18.8964 | 18.9304 | 19.7047 | 21.4612 |

Table 4 - Effect of even porosities on the NDF parameter of BFGRP

Table 5 - Effect of uneven porosities on the NDF parameter of BFGRP

| Matarial   |     |     |     | Modes  |         |         |         |         |         |         |         |         |         |         |         |         |
|------------|-----|-----|-----|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Material   | Шx  | Пy  | u   | 1      | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      |         |         |         |
| FGM        |     |     | 0   | 8.6147 | 13.2016 | 17.8619 | 19.8550 | 22.5809 | 23.7399 | 27.0844 | 27.9901 | 28.3592 | 28.7606 |         |         |         |
|            | 1   | 0.5 | 0.1 | 8.6244 | 13.2060 | 17.8608 | 19.8243 | 22.5760 | 23.8336 | 27.0924 | 27.9114 | 28.3069 | 28.7488 |         |         |         |
|            | 1   | 0.5 | 0.2 | 8.6341 | 13.2092 | 17.8597 | 19.7957 | 22.5712 | 23.9236 | 27.1005 | 27.8392 | 28.2568 | 28.7369 |         |         |         |
|            |     |     | 0.3 | 8.6432 | 13.2119 | 17.8587 | 19.7682 | 22.5663 | 24.0098 | 27.1081 | 27.7730 | 28.2094 | 28.7245 |         |         |         |
| EGM I 1    |     |     | 0   | 7.1006 | 10.8174 | 15.1441 | 16.4065 | 18.4077 | 19.8615 | 23.1736 | 23.1903 | 23.2630 | 25.0859 |         |         |         |
|            | 1   | 5   | 0.1 | 7.1162 | 10.8454 | 15.1495 | 16.4286 | 18.4260 | 19.9628 | 23.1941 | 23.1989 | 23.2630 | 25.0778 |         |         |         |
| 1 0.01 1   | 1   |     | 0.2 | 7.1356 | 10.8809 | 15.1646 | 16.4669 | 18.4670 | 20.0797 | 23.2286 | 23.2431 | 23.2970 | 25.0842 |         |         |         |
|            |     |     | 0.3 | 7.1539 | 10.9143 | 15.1786 | 16.5019 | 18.5053 | 20.1912 | 23.2609 | 23.2840 | 23.3277 | 25.0896 |         |         |         |
|            | 10  | 5   | 0   | 6.9001 | 10.3168 | 14.7825 | 15.5536 | 17.5537 | 19.1400 | 21.9402 | 22.0081 | 22.6278 | 24.6166 |         |         |         |
| FGM-II     |     |     | 0.1 | 6.9271 | 10.3696 | 14.8170 | 15.6231 | 17.6221 | 19.2876 | 22.0254 | 22.0906 | 22.6940 | 24.6580 |         |         |         |
| 1 0101 11  |     | U   | 0.2 | 6.9519 | 10.4186 | 14.8483 | 15.6872 | 17.6873 | 19.4272 | 22.1040 | 22.1665 | 22.7544 | 24.6936 |         |         |         |
|            |     |     | 0.3 | 6.9756 | 10.4639 | 14.8763 | 15.7460 | 17.7477 | 19.5592 | 22.1773 | 22.2360 | 22.8093 | 24.7232 |         |         |         |
|            |     |     | 0   | 6.8592 | 10.1772 | 14.7157 | 15.2486 | 17.3274 | 18.8808 | 21.4774 | 21.5043 | 22.5006 | 24.5196 |         |         |         |
| FGM-III    | 100 | 100 | 0.1 | 6.8888 | 10.2381 | 14.7578 | 15.3359 | 17.4120 | 19.0489 | 21.5905 | 21.6169 | 22.5825 | 24.5794 |         |         |         |
| i civi ili | 100 | 100 | 0.2 | 6.9163 | 10.2942 | 14.7955 | 15.4157 | 17.4896 | 19.2052 | 21.6935 | 21.7177 | 22.6558 | 24.6279 |         |         |         |
|            |     |     |     |        |         | 0.3     | 6.9416  | 10.3459 | 14.8289 | 15.4879 | 17.5618 | 19.3523 | 21.7867 | 21.8098 | 22.7215 | 24.6683 |

### 6. Conclusions

The free vibrational behaviour of 2D-FG fully clamped rectangular plate is reported in this work using 3D-FEM. The EMP of the FGM are obtained the using Voigt model in connection with the Power-law function. Convergence and

validation tests are presented to ensure the accuracy of the proposed model. From the convergence study, it is found that  $(18 \times 18x18)$  mesh is suitable to obtain the NDF responses. The validation test reveals that the proposed model agrees well with previously reported results. The influence of thickness ratio, aspect ratio and boundary conditions of the 2D-FGM on NDF parameters presented also the results of the 2D-FGM plates are compared with the ceramic and metal rectangular plates. Finally, the impacts of thickness ratio, aspect ratio, and boundary conditions on NDF characteristics of 2D-FG plate are observed to be substantial. Following is some concluding remarks observed through parametric study;

- 1. The plates with ceramic material reported the highest non-dimensional frequency parameters compare to the other materials because the ceramic material is having high stiffness. Moreover, the FGM-I is stiffer than FGM-II.
- 2. The natural frequency should be increased as the thickness ratio of the plate increases; however, the opposite trend is detected in the present study due to the exhibition of NDF characteristics.
- 3. The non-dimensional frequency responses of BFGRP rise with increasing plate aspect ratio and mode number as expected.
- 4. The highest frequency responses are observed for bi-directional FG graded plates with CCCC boundary conditions, while the lowest frequency responses are recorded for CFFF boundary conditions. The frequency responses rise as the BFGRP become more constrained
- 5. The fundamental non-dimensional frequency of BFGRP declines with a rise in porosity volume fraction in even type of porosity, however it shows an increasing trend in uneven distribution of porosity. The FG plates with uneven porosity pattern are stiffer than plates with even porosity pattern.
- 6. The developed 3D-FEM model for free vibrational analysis of multidirectional FG rectangular panels with and without porosities will be the reference for the continuation of research in this area. Also, this approach can be further extended for the irregular geometries however, the computational time and cost will be increased.

## **Declaration of conflicting interests**

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

## Appendix

## Shape function terms

$$\begin{split} N_{1} &= \frac{1}{8} (u_{1}(1-\xi)(1-\eta)(1-\zeta)(-\xi-\eta-\zeta'-2)) & N_{11} &= \frac{1}{4} (u_{11}(1-\xi^{2})(1+\eta)(1-\zeta')) \\ N_{2} &= \frac{1}{8} (u_{2}(1+\xi)(1-\eta)(1-\zeta')(\xi-\eta-\zeta'-2)) & N_{12} &= \frac{1}{4} (u_{12}(1-\xi)(1-\eta^{2})(1-\zeta')) \\ N_{3} &= \frac{1}{8} (u_{3}(1+\xi)(1+\eta)(1-\zeta')(\xi+\eta-\zeta'-2)) & N_{13} &= \frac{1}{4} (u_{13}(1-\xi^{2})(1-\eta)(1+\zeta')) \\ N_{4} &= \frac{1}{8} (u_{4}(1-\xi)(1+\eta)(1-\zeta')(-\xi+\eta-\zeta'-2)) & N_{13} &= \frac{1}{4} (u_{14}(1+\xi)(1-\eta^{2})(1+\zeta')) \\ N_{5} &= \frac{1}{8} (u_{5}(1-\xi)(1-\eta)(1+\zeta')(-\xi-\eta+\zeta'-2)) & N_{15} &= \frac{1}{4} (u_{16}(1-\xi)(1-\eta^{2})(1+\zeta')) \\ N_{6} &= \frac{1}{8} (u_{6}(1+\xi)(1-\eta)(1+\zeta')(\xi+\eta+\zeta'-2)) & N_{16} &= \frac{1}{4} (u_{16}(1-\xi)(1-\eta^{2})(1+\zeta')) \\ N_{7} &= \frac{1}{8} (u_{5}(1-\xi)(1+\eta)(1+\zeta')(\xi+\eta+\zeta'-2)) & N_{16} &= \frac{1}{4} (u_{16}(1-\xi)(1-\eta)(1-\zeta^{2})) \\ N_{8} &= \frac{1}{8} (u_{5}(1-\xi)(1+\eta)(1+\zeta')(-\xi+\eta+\zeta'-2)) & N_{18} &= \frac{1}{4} (u_{16}(1+\xi)(1-\eta)(1-\zeta^{2})) \\ N_{9} &= \frac{1}{4} (u_{9}(1-\xi^{2})(1-\eta)(1-\zeta')) & N_{19} &= \frac{1}{4} (u_{10}(1+\xi)(1+\eta)(1-\zeta^{2})) \\ N_{10} &= \frac{1}{4} (u_{10}(1+\xi)(1+\eta^{2})(1-\eta^{2})(1-\zeta')) & N_{20} &= \frac{1}{4} (u_{20}(1-\xi)(1+\eta)(1-\zeta^{2})) \\ \end{array}$$

## References

- [1] Koizumi, M. F. G. M. (1997). FGM activities in Japan. Composites Part B: Engineering, 28(1-2),1-4.
- [2] Alipour, M. M., Shariyat, M., & Shaban, M. (2010). A semi-analytical solution for free vibration of variable thickness two-directional-functionally graded plates on elastic foundations. International Journal of Mechanics and Materials in Design, 6(4), 293-304.
- [3] Nie, G., & Zhong, Z. (2010). Dynamic analysis of multi-directional functionally graded annular plates. Applied Mathematical Modelling, 34(3), 608-616.

- [4] Kermani, I. D., Ghayour, M., & Mirdamadi, H. R. (2012). Free vibration analysis of multi-directional functionally graded circular and annular plates. Journal of Mechanical science and Technology, 26(11), 3399-3410.
- [5] Nejati, M., Mohsenimonfared, H., & Asanjarani, A. (2015). Free vibration analysis of 2D functionally graded annular plate considering the effect of material composition via 2D differential quadrature method. Mechanics of Advanced Composite Structures, 2(2), 95-111.
- [6] Nie, G., & Zhong, Z. (2007). Axisymmetric bending of two-directional functionally graded circular and annular plates. Acta Mechanica Solida Sinica, 20(4), 289-295.
- [7] Shariyat, M., & Mohammadjani, R. (2013). Three-dimensional compatible finite element stress analysis of spinning two-directional FGM annular plates and disks with load and elastic foundation non-uniformities. Latin American Journal of Solids and Structures, 10(5), 859-890.
- [8] Shariyat, M., & Mohammadjani, R. (2014). Three-dimensional stress field analysis of rotating thick bidirectional functionally graded axisymmetric annular plates with nonuniform loads and elastic foundations. Journal of Composite Materials, 48(23), 2879-2904.
- [9] Yas, M. H., & Moloudi, N. (2015). Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space-based differential quadrature method. Applied Mathematics and Mechanics, 36(4), 439-464.
- [10] Zafarmand, H., & Kadkhodayan, M. (2015). Three-dimensional elasticity solution for static and dynamic analysis of multi-directional functionally graded thick sector plates with general boundary conditions. Composites Part B: Engineering, 69, 592-602.
- [11] Ahlawat, N., & Lal, R. (2016). Buckling and vibrations of multi-directional functionally graded circular plate resting on elastic foundation. Procedia Engineering, 144, 85-93.
- [12] Lal, R., & Ahlawat, N. (2017). Buckling and vibrations of two-directional functionally graded circular plates subjected to hydrostatic in-plane force. Journal of Vibration and Control, 23(13), 2111-2127.
- [13] Mahinzare, M., Barooti, M. M., & Ghadiri, M. (2018). Vibrational investigation of the spinning bi-dimensional functionally graded (2-FGM) micro plate subjected to thermal load in thermal environment. Microsystem Technologies, 24(3), 1695-1711.
- [14] Van Do, T., Nguyen, D. K., Duc, N. D., Doan, D. H., & Bui, T. Q. (2017). Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory, Thin-Walled Structures, 119, 687-699.
- [15] Lieu, Q. X., Lee, S., Kang, J., & Lee, J. (2018). Bending and free vibration analyses of in-plane bi-directional functionally graded plates with variable thickness using isogeometric analysis. Composite Structures, 192, 434-451.
- [16] Ahlawat, N. (2019). Numerical solution for buckling and vibration of bi-directional FGM circular plates. AIP Conference Proceedings, 2061(1), 020020.
- [17] Ghatage, P. S., Kar, V. R., & Sudhagar, P. E. (2020). On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review. Composite Structures, 236, 111837.
- [18] Ebrahimi, M. J., & Najafizadeh, M. M. (2014). Free vibration analysis of two-dimensional functionally graded cylindrical shells, Applied Mathematical Modelling, 38(1), 308-324.
- [19] Wu, C. P., & Yu, L. T. (2019). Free vibration analysis of bi-directional functionally graded annular plates using finite annular prism methods. Journal of Mechanical Science and Technology, 33(5), 2267-2279.
- [20] Liu, W., & Cheng, X. (2018). A systematic approach based on voxel modelling and APDL analysis for Functional-Graded-Material objects. Proceedia CIRP, 78, 138-143.
- [21] Kandasamy, R., Dimitri, R., & Tornabene, F. (2016). Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments. Composite Structures, 157, 207-221.
- [22] Tekieli, M., De Santis, S., de Felice, G., Kwiecień, A., & Roscini, F. (2017). Application of Digital Image Correlation to composite reinforcements testing. Composite Structures, 160, 670-688.
- [23] Huang, H., Zhang, Y., & Han, Q. (2017). Stability of hydrostatic-pressured FGM thick rings with material nonlinearity. Applied Mathematical Modelling, 45, 55-64.
- [24] Talha, M., & Singh, B. N. (2010). Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Applied Mathematical Modelling, 34(12), 3991-4011.
- [25] Thai, H. T., & Kim, S. E. (2015). A review of theories for the modeling and analysis of functionally graded plates and shells. Composite Structures, 128, 2015, 70-86.
- [26] Asemi, K., Salami, S. J., Salehi, M., & Sadighi, M. (2014). Dynamic and static analysis of FGM skew plates with 3D elasticity based graded finite element modeling, Latin American Journal of Solids and Structures, 11(3), 504-533.
- [27] Kar, V. R., & Panda, S. K. (2017). Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction. AIAA Journal, 55(12), 4376-4386.

- [28] Kar, V. R., Panda, S. K., & Pandey, H. K. (2018). Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures. Structural Engineering and Mechanics, 68(5), 527-536.
- [29] Kar, V. R., & Panda, S. K. (2013). Free vibration responses of functionally graded spherical shell panels using finite element method. Gas Turbine India Conference, 35161, 2013, V001T05A014
- [30] Loy, C. T., & Lam, K. Y. (1999). Vibration of thick cylindrical shells on the basis of three-dimensional theory of elasticity. Journal of sound and Vibration, 226(4), 719-737.
- [31] Wattanasakulpong, N., Prusty, B. G., Kelly, D. W., & Hoffman, M. (2012). Free vibration analysis of layered functionally graded beams with experimental validation. Materials & Design (1980-2015), 36, 182-190.
- [32] Sobhy, M., & Zenkour, A. M. (2019). Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory. Composite Structures, 220, 289-303.
- [33] Wang, Y. Q., & Zu, J. W. (2017). Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerospace Science and Technology, 69, 550-562.
- [34] Wattanasakulpong, N., & Ungbhakorn, V. (2014). Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology, 32(1), 111-120.
- [35] Barati, M. R., & Shahverdi, H. (2017). Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions. Journal of Fluids and Structures, 73, 125-136.
- [36] Wang, Y. Q., Wan, Y. H., & Zhang, Y. F. (2017). Vibrations of longitudinally traveling functionally graded material plates with porosities. European Journal of Mechanics-A/Solids, 66, 55-68.
- [37] Karamanli, A., & Aydogdu, M. (2019). Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter. Mechanics Based Design of Structures and Machines, 48(2), 164-191.
- [38] Adineh, M., & Kadkhodayan, M. (2017). Three-dimensional thermo-elastic analysis of multi-directional functionally graded rectangular plates on elastic foundation. Acta Mechanica, 228(3), 881-899.
- [39] Chaudhary, S. K., Kar, V. R., & Shukla, K. K. (2021). Flexural Behavior of Perforated Functionally Graded Composite Panels under Complex Loading Conditions: Higher-Order Finite-Element Approach. Journal of Aerospace Engineering, 34(6), 04021081.
- [40] Kar, V. R., Mahapatra, T. R., & Panda, S. K. (2017). Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels. Composite Structures, 160, 1236-1247.
- [41] Karakoti, A., & Kar, V. R. (2019). Deformation characteristics of sinusoidally-corrugated laminated composite panel–A higher-order finite element approach. Composite Structures, 216, 151-158.
- [42] Kar, V. R., & Panda, S. K. (2016). Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression. International Journal of Mechanical Sciences, 115, 318-324.
- [43] Kar, V. R., & Panda, S. K. (2017). Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment. Journal of Thermal Stresses, 40(1), 25-39.
- [44] Joshi, K. K., & Kar, V. R. (2021). Effect of material heterogeneity on the deformation behaviour of multidirectional (1D/2D/3D) functionally graded composite panels. Engineering Computations.
- [45] Swaminathan, K., Naveenkumar, D. T., Zenkour, A. M., & Carrera, E. (2015). Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review. Composite Structures, 120, 10-31.