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Mean-shift exploration in shape assembly of
robot swarms

Guibin Sun 1,2, Rui Zhou1, Zhao Ma2, Yongqi Li2, Roderich Groß 3,

Zhang Chen 4 & Shiyu Zhao 2,5,6,7

The fascinating collective behaviors of biological systems have inspired

extensive studies on shape assembly of robot swarms. Here, we propose a

strategy for shape assembly of robot swarms based on the idea of mean-shift

exploration: when a robot is surrounded by neighboring robots and unoccu-

pied locations, it would actively give up its current location by exploring the

highest density of nearby unoccupied locations in the desired shape. This idea

is realized by adapting the mean-shift algorithm, which is an optimization

technique widely used in machine learning for locating the maxima of a den-

sity function. The proposed strategy empowers robot swarms to assemble

highly complex shapes with strong adaptability, as verified by experiments

with swarms of 50 ground robots. The comparison between the proposed

strategy and the state-of-the-art demonstrates its high efficiency especially for

large-scale swarms. The proposed strategy can also be adapted to generate

interesting behaviors including shape regeneration, cooperative cargo trans-

portation, and complex environment exploration.

In nature, groups of insects and animals can self-assemble various

spatial shapes that are functional for the groups adapting to the

environments1–3. As a remarkable example, army ants can assemble

shapes to transport food cooperatively or construct bridges using

their bodies to overcome spatial gaps4,5. These shape assembly beha-

viors are generated spontaneously by local interactions among the

individuals. They exhibit strong adaptability to individual faults and

can be easily scaled up to groups of thousands or millions of

individuals1,3.

The fascinating collective behaviors of biological systems have

inspired extensive studies on shape assembly of robot swarms6–9. One

class of strategies widely studied in the literature are based on goal

assignment in either centralized or distributed ways10–12. Once a swarm

of robots are assigned unique goal locations in a desired shape, the

consequent task is simply to plan collision-free trajectories for the

robots to reach their goal locations10 or conduct distributed formation

control based on locally sensed information6,13,14. It is notable that

centralized goal assignment is inefficient to support large-scale

swarms since the computational complexity increases rapidly as the

number of robots increases15,16. Moreover, when robots fail to function

normally, additional algorithms for fault-tolerant detection and goal

re-assignment are required to handle such situations17. As a compar-

ison, distributed goal assignment can support large-scale swarms by

decomposing the centralized assignment intomultiple local ones11,12. It

also exhibits better robustness to robot faults. However, since dis-

tributed goal assignments are based on locally sensed information,

conflicts among local assignments are inevitable andmust be resolved

by sophisticated algorithms such as local task swapping11,12.

Another class of strategies for shape assembly that have also

attracted extensive research attention are free of goal assignment18–21.

For instance, the method proposed in ref. 18 can assemble complex

shapes using thousands of homogeneous robots. An interesting fea-

ture of this method is that it does not rely on external global posi-

tioning systems. Instead, it establishes a local positioning systembased
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on a small number of pre-localized seed robots. As a consequence of

the local positioning system, the proposed edge-following control

method requires that only the robots on the edge of a swarm canmove

while those inside must stay stationary. The method in ref. 19 can

generate swarm shapes spontaneously from a reaction-diffusion net-

work similar to embryogenesis in nature. However, this method is not

able to generate user-specified shapes precisely. The method in ref. 21

can aggregate robots on the frontier of shapes based on saliency

detection. The user-defined shape is specified by a digital light pro-

jector. An interesting feature of this method is that it does not require

centralized edge detectors. Instead, edge detection is realized in a

distributed manner by fusing the beliefs of a robot with its neighbors.

However, since the robots cannot self-localize themselves relative to

the desired shape, they make use of random walks to search for the

edges, which would lead to random trajectories. Another class of

methods that do not require goal assignment is based on artificial

potential fields22–25. One limitation of this class of methods is that

robots may easily get trapped in local minima, making it difficult to

assemble nonconvex complex shapes.

Here, we propose a strategy for shape assembly of robot swarms

based on the idea of mean-shift exploration: when a robot is sur-

rounded by neighboring robots and unoccupied locations, it would

actively give up its current location by exploring the highest density of

nearby unoccupied locations in the desired shape. This idea does not

rely on goal assignment. It is realized by adapting the mean-shift

algorithm26–28, which is an optimization technique widely used in

machine learning for locating the maxima of a density function.

Moreover, a distributed negotiation mechanism is designed to allow

robots to negotiate the final desired shape with their neighbors in a

distributedmanner. This negotiationmechanismenables the swarm to

maneuver while maintaining a desired shape based on a small number

of informed robots. Theproposed strategy empowers robot swarms to

assemble nonconvex complex shapes with strong adaptability and

high efficiency, as verified by numerical simulation results and real-

world experiments with swarms of 50 ground robots. The strategy can

be adapted to generate interesting behaviors including shape regen-

eration, cooperative cargo transportation, and complex environment

exploration.

Results
The proposed shape assembly strategy consists of three components.

The first is a human-swarm graphical interface that can specify user-

defined shapes. The second is a distributed negotiation process that

can autonomously reach an agreement among the robots on the final

location and orientation of the swarm shape. The third, which is the

core of the proposed strategy, is a distributed control algorithm. The

three components are detailed as follows.

A human-swarm graphical interface
The first step of shape assembly is to specify a desired geometric

shape. We designed a human-swarm interface that allows a human

operator to specify the desired shape by drawing or loading a binary

graphical image (Fig. 1a). The graphical image is converted to a black-

white binary grid, where the black cells in the grid correspond to the

locations that should be occupied by the robots. The binary grid is

then converted to a grayscale grid by the distance transformation

algorithm29 so that the influence of the desired shape is gradually

expanded and the robots can move into the shape more smoothly

(Fig. 1a).With this human-swarm interface, theoperator can specify the

desired shape in a graphical way without specifying the physical

Desired shape Distributed interpretation negotiation

Distributed control strategy

Each robot interprets the desired shape locally and may have different initial interpretations.

Specify as a black-white grid 

by the human-swarm interface.

sense
r

Initial position

All robots negotiate the desired shape 

in a distributed manner.

Finally, all interpretations 

reach a consensus.

Convert to a gray-level grid.

Send the gray-level grid to all 

robots without centroid location 

or orientation parameters.

Blue robot: select the nearest 

gray cell as its local target.

Red robot: select the darkest 

neighboring cell as its local target.

Blue robot: avoid collision with 

neighbors. 

Red robot: align its velocity 

with neighbors.

Blue robot: move into the deep of 

the desired shape.

Red robot: explore unoccupied 

cells in the desired shape.

Shape-entering command Shape-exploring commandInteraction command

a

c

Different Initial interpretations

b

Fig. 1 | An illustration of the proposed shape assembly strategy. a The human-

swarm interface. The desired shape is specified via the interface and sent to all the

robots as a nonparametric grid.bThe robots havedifferent initial interpretationsof

the translation and orientation of the desired shape. They gradually reach a

consensus via the proposed distributed negotiation algorithm. c Examples to

illustrate the three control commands in the proposed control strategy. Details of

the algorithms can be found in Methods and Sections 1 to 3 in the Supplementary

Information.

Article https://doi.org/10.1038/s41467-023-39251-5

Nature Communications |         (2023) 14:3476 2



parameters of the grid. The parameters such as the physical size of

each cell can be autonomously generated. Moreover, the number of

cells in the grid does not have to be the same as the number of robots

because the proposed method can handle mismatches between the

grid and robot numbers (Fig. 4 as shown later). Although the desired

shape is represented as a discrete grid, the robots can move freely

across the boundaries of the cells in the grid. More information can be

found in Methods and Section 1 in the Supplementary Information.

Distributed negotiation on the desired shape
Once the grayscale grid has been generated by the human-swarm

interface, it is sent to all the robots and stored in each robot’smemory.

The memory sizes of the grids used in our work are around tens of

kilobytes (details are given in Section 1 in the Supplementary Infor-

mation), which is affordable for mainstream embedded computers

nowadays. The Euclidean parameters of the desired shape including

the position or orientation are not assigned manually. Instead, the

robots negotiate with each other to autonomously determine them in

a distributed manner. In particular, each robot first interprets the

desired shape based on its local interest. For example, every robotmay

initially interpret itself as the center of the desired shape (Fig. 1b),

which is locally optimal for each robot in the sense that they do not

need tomove because they are already inside the desired shape. While

the initial interpretations of different robots may conflict, each robot

negotiates its interpretation with its neighbors through local wireless

communication by a distributed consensus algorithm. With the

negotiation algorithm, all the robots would eventually reach a con-

sensus on the translation and orientation of the final desired shape

(Fig. 1b). By introducing a small number of informed robots, the swarm

can reach a consensus on a user-specified trajectory of the desired

shape. More information about shape negotiation is given in Methods

and Section 2 and Section 6.1 in the Supplementary Information.

Distributed control of shape assembly
The aimof each robot is tomove into the desired shape. This process is

highly dynamic because its goal location is time-varying due to the

dynamical convergence process of its interpretation and, more

importantly, the avoidance of inter-robot collision or goal location

competition. In our method, each robot executes the same control

strategy based on its locally sensed information so as to enter the

desired shape while avoiding collision. In particular, the velocity

command for the ith robot is

vi =v
ent
i +vexp

i +vint
i ,

where vent
i ,vexp

i , and vint
i represent the shape-entering, shape-explor-

ing, and interaction velocity commands, respectively. The roles of the

three velocity commands are explained as follows, whereas their

mathematical expressions are given in Methods.

The shape-entering command vent
i aims to steer robot i to the

desired shape by seeking the darkest grid cells around them (Fig. 1c

and Methods). More specifically, when robot i is too far away from the

desired shape, vent
i would drive the robot toward the closest gray cell.

When robot i has entered the area of the gray cells, venti wouldpush the

robot towardone of the neighboring gray cells that has the lowest gray

level. In this way, the robot can gradually reach a black cell in the

desired shape. It is notable that venti would vanish once a robot steps

into the desired shape area. In this case, the robot would stop moving

and hence block those robots behind. To resolve this problem, the

following velocity command vexpi is designed so that the robots can

continue moving into the deep of the desired shape.

The shape-exploring command vexpi , which is realized by an

adapted version of themean-shift algorithm27, aims to push each robot

into the desired shape and then explore unoccupied cells inside the

desired shape (Fig. 1c and Methods). More specifically, there are two

cases. In the first case where robot i is near the edge of the desired

shape so that the cells within its sensing radius are either black or gray,

vexp
i would drive the robot toward the highest density of black cells. In

thisway, the robot is attracted into the shape. In the second casewhere

robot i is already inside the desired shape so that the cells within its

sensing radius are all black, vexpi would drive the robot toward the

direction with the highest density of the unoccupied black cells. A cell

is defined as unoccupied if the distance between its center and any

robot is greater than half of the robot’s collision avoidance radius (F

3B). The shape-exploring command is the key to resolving inter-robot

competition. When a robot is surrounded by neighboring robots and

unoccupied locations, it would actively give up its current location by

exploring the highest density of nearby unoccupied locations.

The interaction command vint
i consists of two sub-terms (Fig. 1c

and Methods). The first is a collision-avoidance term that generates

repulsive velocity commands when robot i is too close to its sur-

roundings. The second is a velocity-alignment term that aligns the

velocity of robot i with its neighbors. The velocity-alignment term

plays two roles. First, it can reduce velocity mismatches among the

robots to reduce the chances of inter-robot collision. Second, since the

desired shape may maneuver across in the motion space, the velocity-

alignment term is necessary for robot i to track the velocity of the

moving desired shape.

Platforms and experimental setup
We implemented the proposed strategy on a swarm of 50 holonomic

wheeled robots (Fig. 2a, b). Details of the robotic platforms aregiven in

Section 5.1 in the Supplementary Information. Each robot can exhibit

its velocity command by using a LED belt inside the robot’s dome. In

particular, each LED can show four colors: red, green, blue, and white

(Fig. 2a). The numbers of LEDs showing the four colors correspond to

the magnitudes of vent
i ,vexp

i ,vint
i , and vi, respectively (Section 5.1 in the

Supplementary Information). The experiments were conducted in an

indoor environment with the support of a motion capture system

(Fig. 2c, d). To implement the proposed strategy, each robot needs to

acquire certain information about its neighbors and sense its sur-

roundings to identify unoccupied cells and obstacles. These functions

are realized through a parallel multi-thread system in a distributed

manner (Fig. 2e). More specifically, each robot is assigned an inde-

pendent control thread runningon theworkstation and communicates

with its thread using wireless routers. Although all the information is

available in the workstation, the control command for each robot

merely uses the local information that each robot is supposed to have.

Details of the experimental setup are given in Section 5.2 in the Sup-

plementary Information.

Complex shape assembly
The proposed strategy is able to assemble nonconvex complex

shapes. One representative complex shape is the snowflake as shown

in Fig. 3a. The snowflake shape has 6 major branches and 18 minor

branches, making the shape highly nonconvex and challenging to

assemble. The proposed strategy can assemble the snowflake shape,

which is quantitatively verified by the fact that the coverage rate

converges to 100% (Fig. 3a). The coverage rate and other metrics to

evaluate the assembly performance are defined in Methods. The

shape-exploring control term of the strategy plays a key role in this

process. In particular, when this term is disabled, the swarm fails to

assemble the snowflake shape since many robots get trapped in local

minima and the coverage rate drops sharply to 75% (Fig. 3a). The

reason for the failure is that a robot would stop moving and

hover near the boundary once it has entered the desired shape in

the absence of this term. As a result, it may block those robots

behind from entering the shape (Fig. 3b). By contrast, with this term,

a robot would continue moving toward the deep of the desired

shape after passing the boundary so that those robots behind it
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can enter the shape smoothly (Fig. 3b). In addition to the shape-

exploring term, the shape-entering term in the proposed strategy

also plays a necessary role to steer all the robots into the desired

shape. As shown in Fig. 3b, not all the robots can enter the shape in

the absence of this shape-entering term even though the shape can

still be fulfilled by a subset of the swarm. The proposed strategy

exhibits smooth swarming motion in shape forming and switching

tasks. As shown in the experimental results in Fig. 3c, the swarm can

assemble different nonconvex shapes and switch from one to

another smoothly.

In the following, the efficiency of the proposed method is com-

pared with that of two state-of-the-art methods. The first is the

assignment-based method in ref. 12 and the second is the assignment-

free method in ref. 21. Both of the methods are decentralized. The

method in ref. 12 and our proposed method require external global

positioning, whereas the one in ref. 21 does not. The comparison

results are presented in Fig. 4 and Supplementary Fig. 8. It is shown

that, given the same initial configurations, the three methods have

similar convergence timeswhen the number of robots is as small as 20.

However, as the number of robots increases, the convergence times of

the state-of-the-art methods increase rapidly while that of the pro-

posedone increases slightly. Specifically, when thenumber of robots is

as large as 300, the convergence time of the proposed method is at

least 20 times shorter than the others. The reason why the method in

ref. 12 requires longer convergence time is that it executes local goal

swaps constantly and the robots must move along the grid lines. By

contrast, the proposed method does not rely on goal assignment due

to themean-shift exploration control. It also allows the robots tomove

continuously in theworking space. Themerit of themethod in ref. 21 is

that it does not rely on any global or local positioning system. How-

ever, since the robots do not know their positions relative to the

desired shape, they make use of randomwalks to search for the edges

of the desired shape, which would lead to random and long

trajectories.

Adaptability to swarm scale variants
The proposed strategy is adaptive to the variant of robot number in a

swarm. When some robots leave the swarm, the remaining robots can

autonomously assemble the desired shape without any goal re-

assignment or fault-tolerant control. A representative example is the

shape regeneration behavior as demonstrated in Fig. 5, where the

desired geometric shape is a starfish. After one arm of the starfish

shape has been removed, the rest of the swarm spontaneously grows a

new arm and assembles the starfish shape again. The adaptability is

due to the shape-exploring term, by which the robots can actively

search unoccupied cells and hence replace the roles of the removed

robots.

Notably, the newly generated starfish has less number of robots

than the original one, verifying that the proposed strategy can

assemble the same shape with different numbers of robots. In fact, the

strategy exhibits stable performance in the presence of mismatches

between the number of robots, denoted as nrobot, and the number of

black cells in the desired shape, denoted as ncell (Fig. 5d). For the

starfish example, it is shown by the statistical results in Fig. 5e that the

proposed strategy can successfully assemble the desired shape with a

wide range of ncell/nrobot. Specifically, the coverage rate of robots for

the desired shape is greater than 93% and the entering rate remains

100% when the ratio ncell/nrobot varies from 0.45 to 128.06. As a con-

sequence, the strategy avoids the requirement of the condition

nrobot = ncell, a condition widely adopted in shape assembly methods11,

and hence makes the strategy more adaptive. In addition, when the

swarm scale increases from nrobot = 16 to 1024, the convergence time

of the entire swarm increases mildly as shown in the rightmost sub-

figure of Fig. 4E, verifying the high motion efficiency of the strategy.

Implementation architecture

A swarm of 50 robotsa

Red: shape-entering command

Green: shape-exploring command

Blue: interaction command

White

Experimental setup

Rainbow robot platform

d

b c

Color LED belt

WI-FI transceiver

Marker 

Master controller 

Mecanum wheel

e

… … … 

Interpretation 

negotiation

Own interpretation 

Others’ negotiations Others’ motion states

Velocity 

observation

Own position 

Own velocity

Workstation

Thread
Thread

Thread
… 

… 

Assembly 

control

… … … 

Motion capture system

Motion 

Controller
IMU

DC Motors

Commands

Robot
Robot

Robot
… 

Robot swarm

Motion capture 

system

Robot swarm

Ultra-wide 

angle camera

Workstation

Wireless router

x

y

z

Human-swarm interface

… 

Wireless router

Fig. 2 | Platformsand implementation setup. aThe specifically designedRainbow

robots. Each robot can showdifferent colors to reflect the ingredients of its control

commands. b Hardware components of robot platform. See Section 5.1 in the

Supplementary Information formore details. cA swarmof 50Rainbow robots.dAn

illustration of the experimental setup. The detailed functions of each experimental

element are given in Section 5.2 in the Supplementary Information. e The multi-

thread implementation architecture. Each robot corresponds to a unique control

thread in the workstation, and the threads are executed in a parallel way.
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Cooperative transportation and shape maneuvering
In nature, ants can surround and transport a piece of food that is

much larger than their individual body size in a cooperative manner4.

The proposed strategy can be applied to cooperative cargo trans-

portation. To do that, we can specify a hollow shape centered at a

cargo (Fig. 6a). When the robots assemble the hollow shape, they

would encircle the cargo tightly. The consequent task is to steer the

swarm to move collectively while maintaining the desired shape. In

particular, we introduce a small number of informed robots that

know the desired translational and rotational trajectory of the shape.

The informed robots have counterparts in ant swarms4, where some

leader ants can guide the others to transport food to a goal location.

During the inter-robot negotiation process, the informed robots play

a stubborn role by insisting on their knowledge of the desired

trajectory. The interpretations of the rest uninformed robots would

gradually converge to the informed ones so that all the robots reach

a consensus on the desired trajectory of the shape (see the details of

the algorithm in Section 2 in the Supplementary Information). While

the robots attempt to assemble the desired moving shape, they

automatically transport the cargo encircled in the center (Fig. 6b).

The velocity alignment component in the interaction control term of

the proposed strategy is essential for all the robots tracking the

maneuvering swarm shape.

The number of informed robots is required to be at least one.

The more informed robots there are, the faster the negotiation

process can converge. As shown in Supplementary Figure 6, seven

informed robots are randomly selected out of 128 ones, which can

reach a consensus on the time-varying translation and orientation of
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in the absence of the term as shown in the rightmost subfigure. b Numerical

simulation of 16 robots assembling a ring shape starting from an initial linear
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sequence. The distributed negotiation process among the robots converges fast.
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pendence of goal assignment of the proposed strategy. See Supplementary

Movies 1 and 2.
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the desired shape efficiently. As a consequence, the swarm can

maneuver while the overall shape varies. Being able to track moving

shapes is an important feature of the proposed strategy. By contrast,

the state-of-the-art methods for homogeneous swarms are only

applicable to static shapes10,12,18,19,30. Although there is a rich body of

control-theoretic methods that can achieve maneuvering

formations14,31,32, these methods require goal assignments or unique

robot identities.

Complex environment exploration
The proposed shape assembly strategy can be applied to environ-

ment exploration tasks, in which a swarm must evenly fulfill an

environment while avoiding obstacles. As a representative example,

a swarm can flood into a room through a narrow passage without

getting trapped at the entrance (Fig. 7a). This example mimics the

process of pedestrians entering a passenger elevator, which well

demonstrates the idea of mean-shift exploration of the proposed
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Fig. 4 | Comparison between the proposed method, the decentralized

assignment-based method in ref. 12 and the decentralized assignment-free

method in ref. 21. a Snapshots and trajectories of the shape assembly processes by

the threemethods. There are 300 robots assembling the shapeof “N''.b Statistics of

convergence rate and convergence time. Each average value is calculated based on

10 trials. For the proposed method and the assignment-based one in ref. 12, the

convergence rate is defined as the ratio between the number of robots that are

inside the shape and the total number of robots. The convergence time is definedas

the time when the convergence rate is equal to 100%. For the assignment-free

method in ref. 21, the convergence rate is defined as the ratio between the number

of robots that have reached the edge and the total number of robots. The width of

the border, a parameter in themethod in ref. 21, is set to zero so that the robots can

aggregate evenly around the shape as much as possible. Since it is difficult for all

the robots evenly distribute along the edge, the convergence time is defined as the

time when the convergence rate reaches 70%. The parameters of the three algo-

rithms are given in Supplementary Table 2.
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strategy: The pedestrians that enter the elevator first should move

into the deep rather than staying near the entrance to block the

people behind.

The proposed strategy can also be used to explore more com-

plex environments such as amaze as shown in Fig. 7b. Although there

aremany nonconvex corners in themaze, the swarm can successfully

fulfill the maze without getting deadlocked at any corner, verifying

the strong exploration ability of the proposed strategy. The strategy

can well balance the exploration speed and inter-robot connectivity.

That is, a robot inside the desired shapewould stop exploring when it

has no neighbors inside its sensing radius. As a result, the robots

would not explore too fast to depart from the group. This feature is

useful in practice because robots may have to explore an environ-

ment while keeping sufficiently close to others to maintain

wireless connections. In addition, the system is resilient to robot

additions or removals. For example, if the connectivity of the swarm

is broken due to the removal of some robots, the isolated ones that

are already in themazewould stopmoving. Asmore andmore robots
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Fig. 5 | Adaptability of the proposed strategy. a The desired shape is a starfish33.

b, c Experimental results of 50 real Rainbow robots assembling a starfish shape. If

one arm of the starfish shape is removed, the swarm spontaneously grows a new

arm without any goal re-assignment or fault-tolerant control thanks to the shape-

exploring control term. See Supplementary Movie 3. d It is shown by numerical

simulation that the strategy shows stable performance in the presence of the

mismatch between nrobot and ncell, quantitatively verified by the three metrics of

coverage rate, entering rate, and uniformity. e Statistical results of 512 simulations

of the starfish assembly task given mismatched values of nrobot and ncell. In each

simulation, nrobot and ncell take values respectively from {16, 32, 64, 128, 256, 512,

768, 1024} and {115, 521, 920, 1321, 1623, 2049, 2060, 2682}. Each pair of nrobot and

ncell further corresponds to eight trials with random initializations (including

robots' locations and their interpretations of the desired shape). The

8 × 8 × 8 = 512 statistical results show that the proposed strategy exhibits stable

performance in terms of the evaluation metrics in the presence of strong mis-

matches between nrobot and ncell.
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move into the maze, the isolated ones would get connected to the

others again.

Discussion
Thedistributed negotiation and control strategy proposed in thiswork

is free of both centralized and decentralized goal assignment proce-

dures. This strategy introduces amean-shift explorationmechanism so

that each robot can actively explore unoccupied locations around

them to avoid inter-robot competition for the same locations. The

mean-shift exploration is achieved through an adapted version of the

mean-shift algorithm so that each robot keeps seeking the highest

density of unoccupied cells. It is noticed that the mean-shift algorithm

is also adopted in ref. 25 to achieve shape assembly. However, the

mean-shift algorithm therein is used as an alternative to generating

attractive and repulsive forces and hence is not able to resolve the

inter-robot competition problem.

Experimental results verified that the proposed strategy can

assemble highly nonconvex shapes and exhibits strong adaptability

against mismatches between the number of robots and the number of

cells in the desired shape. The strategy can also be applied to solve

some challenging tasks such as cooperative cargo transportation and

environment exploration with minimal modifications of the algo-

rithms. It, therefore, provides a promising method for efficient and

adaptive shape assembly tasks of robot swarms.

The desired shape in a shape assembly task is a global constraint

for all the robots. The global constraint sets a fundamental require-

ment that certain global information must be used during the process

of shape assembly. However, the required global information may

exhibit in different forms in different methods. For example, in the

proposed strategy and the state-of-the-art ones10,12,30, the required

global information is that every robot has a common sense on a global

reference frame.With thisglobal information, every robot can evaluate

its location relative to the desired shape. In practice, the global refer-

ence frame can be obtained by GPS in outdoor open spaces. If the

global reference frame is unavailable, there must be alternatives to

acquire global information. For example, themethod in ref. 18 replaces

the global reference framebyusing a relative positioning systembased

on four seed robots.

The proposed negotiation and control algorithms are applied to

assemble 2D shapes in thiswork. They canbeextended to 3D scenarios

since these algorithms are based on vector calculations where the

position and velocity vectors are not restricted to 2D. However, a new

human-swarm interface that can specify 3D shapes is required. In

addition to user-specified geometric shapes, the proposed algorithms

may be extended to assemble shapes specified in a natural way. For

example, a swarm of robots may be used to clean an area of chemical

pollutants in a water body. Here, the area of the densest pollutants can

be treated as the desired shape and the density change in the nearby

water can be regarded as the gradient. In this case, the shape is “spe-

cified” by the environment naturally and the proposed algorithms can

be potentially applied.

One limitation of the proposed strategy is that it can only

assemble shapes with single connected components. That is because

the mean-shift exploration of each robot is based on local sensing of

unoccupied locations. Since the sensing range of each robot is limited,

if twodisconnected shape components are far away fromeachother, it

is difficult for a robot to explore unoccupied locations across different

shape components. This problemmay be potentially solved in several

ways in practice. The first is to globally assign the robots to different

components in advance. This way requires a centralized assignment

process. A simple distributed solution is to add a line segment to

bridge two disconnected components so that the entire shape

becomes connected. In this way, each robot can explore the bridge to

move from one shape component to another.

Moreover, we achieved the environment exploration tasks by

treating them as shape assembly tasks, where the map of the environ-

ment is known and specified as the desired shape. While themap of the

environment tobe exploredmaynotbe available in practical search and

rescue tasks, the proposed strategy can be applied if a minimal mod-

ification is made so that any regions unoccupied by obstacles are

treated as desired shape regions to fulfill. Finally, although the algo-

rithmsproposed in this work are fully distributed, the physical robots in

our experiments were provided data from a centralizedmotion capture

system. It will be a promising research direction to develop robotic

hardware systemswithonboard sensingunits to realize fully distributed

shape assembly tasks of large-scale robot swarms.
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Fig. 6 | Cooperative cargo transportation by a swarm of eight real Rainbow

robots. aThedesired shape is specified as a hollow rectangle centered at the cargo.

b The process of cooperative transportation by the swarm. When the robots

assemble the desired shape, theywould encircle the cargo tightly. Since the desired

shape is moving, the robots would transport the cargo while tracking the desired

moving shape. The entire process is led by two informed robots. The color of each

robot indicates its velocity command. See Supplementary Movies 4.
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Methods
Specify a desired shape as a black-white grid
The proposed human-swarm interface allows the user to either load a

predesigned image or manually draw one in the workspace (Supple-

mentary Figure 1). Either way, we can obtain a binary grid with black

and white cells. Each cell of the grid is described by two basic para-

meters ρ and ξρ. Here, ρ = (ρx, ρy) is the column and row indexes of the

cell and ξρ∈ {0, 1} represents the color of the cell: ξρ = 0 if the cell is

black and ξρ = 1 if the cell is white. The desired shape corresponds to

the set of black cells. More information is given in Section 1 in the

Supplementary Information.

Convert the desired shape to a grayscale grid
The purpose to convert the black-white grid to a grayscale grid

is to expand the influence scope of the desired shape so that the

robots can move into the desired shape more smoothly. The gray

conversion is based on the distance transformation algorithm29.

Specifically, we expand the set of black cells out by h cells to generate

an h-level grayscale grid. The gray level of each cell denoted as ξρ is

calculated based on a local parallel method described in ref. 29. In

particular, for any cell ρ in the grid, its gray value is calculated

iteratively by

ξ
k
ρ
= min

ρ02Mρ

ξ
k�1
ρ0 +

1

h

� �

, k = 1, 2, . . . ,h� 1: ð1Þ

Here, the superscript kdenotes the k-th iteration. In every iteration, we

conduct (1) for each cell. We need at most h − 1 iterations to obtain the

final grayscale grid29. Here, Mρ is a 3 × 3 mask centered at the cell ρ.

Illustrative examples andmore information canbe found in Section 1 in

the Supplementary Information.

Parameterization of the size of each cell in the grid
The desired shape represented by a grid obtained from the human-

swarm interface is merely graphical. Some important parameters of

the desired shape are to be determined automatically. The first para-

meter is the size length of each cell denoted as ℓcell. On the one hand,

the total area of all the black cells is ‘2cellncell. On the other hand, let

ravoid be the collision avoidance distance between the centers of any

two robots. It is expected that the distance among each pair of robots

in the desired shape is equal to ravoid (Supplementary Figure 2c). As a

result, the space occupied by each robot could be approximated by a

circle with the center at the robot and the radius as ravoid/2. Thus, the

area occupied by all the nrobot robots is πðravoid=2Þ
2nrobot. The above

two areas are expected to be equal so that the robots could cover the

desired shape (Supplementary Figure 2c):

π

4
r2avoidnrobot ≈ ‘

2
cellncell

from which ℓcell can be solved as

‘cell =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4

nrobot

ncell

r

ravoid: ð2Þ

Equation (2) indicates that, when nrobot and ravoid are given, ℓcell is

inversely proportional to
ffiffiffiffiffiffiffiffiffi
ncell

p
.

It is notable thatncell is specifiedby the userwhendrawing a shape

in the human-swarm interface. If ncell = nrobot, equation (2) becomes

‘cell =
ffiffiffi
π
4

p
ravoid ≈ ravoid, whichmeans the side length of each cell is equal

to the avoidance distance. In this case, each robot can approximately

occupy one cell. However, our method does not necessarily require

ncell = nrobot, which is a strict condition. The proposed method allows

a b
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Fig. 7 | Environment exploration by the proposed strategy. a Experiments of 27

real Rainbow robots flooding into a room through a narrow passage. This scenario

mimics the process of pedestrians entering a passenger elevator: The pedestrians

that enter the elevator first shouldmove into the deep rather than staying near the

entrance to block the people behind. b Experiments of 36 real Rainbow robots

exploring a complex maze without getting deadlocked at any nonconvex corners.

See Supplementary Movies 5 and 6.
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more general cases where ncell and nrobotmaymismatch (see examples

in Fig. 5 and Supplementary Figure 5).

Parameterization of the position and orientation of the
desired shape
Another two parameters of the desired shape are the center position

and orientation. There is no centralized assignment of the position or

orientation. The robots can negotiate the two parameters in a dis-

tributed manner.

Before proceeding further, we need to introduce some necessary

notations that will be used frequently later. Suppose there are nrobot
mobile robots in R2 and nrobot ≥ 2. Each robot is regarded as a circle

with the radius as rbody. Let pi 2 R2 be the position of the center point

of robot i in a global coordinate frame. The dynamic model of each

robot is assumed to be _pi =vi where i = 1,…, nrobot. Here, vi is the

velocity command to be designed. When the distance between two

robots is less than a threshold rsense, the two robots could share

information with each other. The information network defines an

undirected graph G = ðV, EÞ, which consists of a vertex set

V = f1, . . . ,nrobotg and an edge set E � V ×V such that

E = fði, jÞ :k pi � pj k < rsense, j≠ig. Here, ∥ ⋅ ∥ is the Euclidean norm. The

set of neighbors of robot i is N i = fj 2 V : ði, jÞ 2 Eg.
Suppose ρo is the cell located closest to the center of the desired

shape. Let pρo
and vρo be the position and velocity of the center point

of cell ρo in a global reference frame. Let ϕ denote the orientation

angle of the desired shape. Then, the position and orientation of the

desired shape could be represented by pρo
and ϕ, respectively.

Every robot has its own interpretation of pρo
and vρo , denoted as

pρo ,i
and vρo,i

. Initially, pρo ,i
ðt0Þ=piðt0Þ and vρo ,iðt0Þ= viðt0Þ, which

means that each robot initially treats itself as the center of the desired

group shape. The interpretations of different robots can gradually

reach a consensus by the following distributed negotiation algorithm:

vρo ,i = � c1
∣N i∣

X

j2N i

signðpρo ,i
� pρo ,j

Þ∣pρo ,i
� pρo ,j

∣α +
1

∣N i∣

X

j2N i

vρo ,j : ð3Þ

There are two terms in (3). The first term in (3) is the average of the

deficiency of the position interpretations between robot i and its

neighbors. Here, sign( ⋅ ) and ∣ ⋅ ∣denote the sign and the absolute value

of a real number. In addition, c1 >0 and0 < α < 1 are twoconstant gains.

The role of the first term is to drive pρo ,i
! pρo ,j where j 2 N i. The

second term is the average of the velocities of the neighboring robots.

Its role is to drive vρo ,i ! vρo ,j where j 2 N i. Since α < 1, consensus can

be achieved in a finite time. This is important for speeding up the

negotiation process. The convergence analysis is given in Theorem 1 in

the Supplementary Information.

Regarding the orientation negotiation, letϕi be the interpretation

of ϕ by robot i. The initial values of ϕi could be randomly selected or

based on task-oriented requirements. The distributed orientation

negotiation algorithm is

_ϕi = � c2
∣N i∣

X

j2N i

signðϕi � ϕjÞ∣ϕi � ϕj ∣
α +

1

∣N i∣

X

j2N i

_ϕj ð4Þ

where c2 is a positive constant coefficient. This algorithm has the same

structure as (3) and can be analyzed analogously.

If the desired shape is required to track a specified trajectory, we

can introduce informed robots to achieve that. Details are given in

Section 2 in Supplementary Information.

Shape-entering velocity command
The shape-entering velocity command venti in (5) aims to drive robot i

into its interpretation of the desired shape, as depicted in

Supplementary Figure 3a. In particular, it is designed as

vent
i = κ1ξρi

pT,i � pi

k pT,i � pi k
+vρo ,i ð5Þ

wherepi is the position of robot i andpT,i is a target location for robot i

tomove toward. Hence,
pT,i�pi

kpT,i�pik
is a unit vector pointing from pi to pT,i.

Therefore, the first term in (5) drives the robot toward its target

location. Here, κ1ξρi is a control gain where ρi is the index of the cell

that is closest to pi, ξρi is the gray level of that cell, and κ1 >0 is a

constant gain. The second term vρo ,i in (5) is the local interpretation of

robot i on the moving velocity of the entire shape. This term is

necessarywhen the desired shape ismoving. The calculation of the cell

index ρi and the target location pT,i is given in Section 3 in the Sup-

plementary Information.

Shape-exploration velocity command
The shape-exploration velocity command vexpi in (6) aims to push

robot i into the desired shape and explore unoccupied black cells.

Here, a cell is defined as occupied if the distance between its center

and any robot is less than ravoid/2; and unoccupied otherwise.

In particular,we employ themean-shift concept26 to design vexp
i as

vexp
i =

P

ρ2Mneigh

i

κ2ψðk pρ � pi k =rsenseÞ pρ � pi

� �

P

ρ2Mneigh

i

ψðk pρ � pi k =rsenseÞ
ð6Þ

which is a normalized weighted average of pρ −pi, where pi is robot i’s

position and pρ is a position of a valid cell whose index is ρ. Here, ρ

belongs to the set M
neigh
i . The factor κ2∈ {σ1, σ2} with σ1, σ2 >0 is a

positive constant. The weight for pρ −pi is a function ψ defined as

ψðzÞ=
1, z ≤0
1
2 ð1 + cosπzÞ, 0 < z < 1

0, z ≥ 1

8

><

>:

:

This function ismonotonically decreasing from 1 to 0 as z increases. As

a result, the weight ψ(∥pρ −pi∥/rsense) is large when the distance

between pρ and pi is small. Hence, more weights are given to the cells

that are closer to robot i.

The velocity command in (6) encourages robot i to explore

unoccupied black cells. Here, Mneigh
i is defined as the set of all the

unoccupied black cells that are within the sensing radius rsense of the

robot (see Supplementary Figure 3b) and κ2 = σ2. In addition, when

robot i is close to the boundary of the shape so that there are non-black

cells within the sensing radius, on top of exploring unoccupied black

cells, the velocity command also aims to push robot i into the desired

shape. In this case, Mneigh
i includes all the black cells no matter whe-

ther they are occupied or not and κ2 = σ1.

Interaction velocity command
The aim of the interaction velocity command vinti in (7) is to achieve

collision avoidance and velocity alignment. To that end, it is designed

as

vint
i = κ3

X

j2N i ∪Oi

μð∣∣pi � pj ∣∣Þ pi � pj

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first term

�
X

j2N i

1

∣N i∣
vi � vj

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

second term

ð7Þ

where κ3 is a positive control gain.

The first term in (7) is a weighted sum of pi −pj, where pi is the

position of robot i and pj is the position of the neighboring robot j or a

collision point j. Here, j 2 N i ∪Oi where N i is the set of neighboring

robots and Oi is the set of collision points (see Supplementary
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Nature Communications |         (2023) 14:3476 10



Figure 3c). The weight μ(∥pi −pj∥) is defined as

μðk pi � pj kÞ=
ravoid

kpi�pjk
� 1, k pi � pj k ≤ ravoid

0, k pi � pj k > ravoid

(

:

By definition, when ∥pi −pj∥ is close to zero, the weight μ(∥pi −pj∥)

methods to infinity. When ∥pi −pj∥ is close to ravoid, the weight

μ(∥pi −pj∥) monotonically decreases to zero. Since pi −pj is a vector

pointing from pj to pi, the first term is a repulsive velocity that pushes

robot i away from its surroundings to avoid a collision. The second

term in (7) aims to align robot i’s velocity with its neighbors. Velocity

alignment can help reduce the chance of inter-robot collision. In the

meantime, it is necessary when the entire shape needs to track a

moving trajectory.

Performance metrics
To evaluate the performance of the proposed strategy, we consider

the following four metrics.

The firstmetric, coverage rate, is to evaluate the proportion of the

black cells in the desired shape that are occupiedby robots. Here, a cell

is defined as occupied if the distance between its center and any robot

is less than ravoid/2. The metric is defined as

M1 =
nocc

ncell

× 100%

where nocc is the number of black cells occupied by robots. If all black

cells are occupied, that is nocc = ncell, then M1 = 100%. If no black cells

are occupied, then M1 =0.

The second metric, entering rate, is the proportion of the robots

that have entered the desired shape. Here, a robot is said to be inside

the shape if it occupies a black cell. The metric is defined as

M2 =
nin

nrobot

× 100%

where nin is the number of robots inside the desired shape. If all robots

are inside the desired shape, thenM2 = 100%, andotherwiseM2 < 100%.

The third metric, distribution uniformity, measures the distribu-

tion uniformity of the robots in the desired shape. Denote

rmin ,i =minj2N i
k pi � pj k as the minimum distance from robot i to its

neighbors. Then, the metric is defined as

M3 =
Xn

i= 1

ðrmin ,i � �rmin ,iÞ2

where �rmin ,i =
1
n

Pn
i = 1 rmin,i. If the distance between every pair of robots

is the same, then M3 =0; otherwise, M3 >0.

The fourth metric, velocity polarization, is to measure the polar-

ization of the velocities of the robots. The metric is defined as:

M4 =
∣
Pn

i= 1 vi∣
Pn

i= 1∣vi∣
:

If all robots move with the same velocity, then M4 = 1. If the robots’

velocities are random, then M4 is close to zero.

Statistics and reproducibility
Data analysis was done by using the native functions of Originlab. All

the statistical results are displayed in the format of “average ±

minimum/maximum”. During the statistical analysis, no statistical

method was used to predetermine sample size, and no data

were excluded. All statistical trials used random initialization of robots’

locations and their interpretations of the desired shape. In all bar

charts, the lower and upper edges of the bar represent the minimum

and maximum, and the shaded region represents the average.

We implemented the simulation in Matlab. Details of the simula-

tion setup and parameters used are given in Section 4 in the Supple-

mentary Information. In our experiments, we use 50 holonomic

wheeled robots. We implemented the experiments in Visual Studio

using C++. Details of the experimental setup, robotic platform, and

parameter settings are given in Section 5 in the Supplementary

Information.

Data availability
The data used in this study are available from the corresponding

author upon request.

Code availability
The code of the human-swarm interface used in this study is publicly

available at https://github.com/WestlakeAerialRobotics/Human-

swarm-interface(DOI: 10.5281/zenodo.7960508).
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