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a b s t r a c t 

Episodic memory often involves high overlap between the actors, locations, and objects of everyday events. Under some circumstances, it may be beneficial to 

distinguish, or differentiate, neural representations of similar events to avoid interference at recall. Alternatively, forming overlapping representations of similar 

events, or integration, may aid recall by linking shared information between memories. It is currently unclear how the brain supports these seemingly conflicting 

functions of differentiation and integration. We used multivoxel pattern similarity analysis (MVPA) of fMRI data and neural-network analysis of visual similarity to 

examine how highly overlapping naturalistic events are encoded in patterns of cortical activity, and how the degree of differentiation versus integration at encoding 

affects later retrieval. Participants performed an episodic memory task in which they learned and recalled naturalistic video stimuli with high feature overlap. Visually 

similar videos were encoded in overlapping patterns of neural activity in temporal, parietal, and occipital regions, suggesting integration. We further found that 

encoding processes differentially predicted later reinstatement across the cortex. In visual processing regions in occipital cortex, greater differentiation at encoding 

predicted later reinstatement. Higher-level sensory processing regions in temporal and parietal lobes showed the opposite pattern, whereby highly integrated stimuli 

showed greater reinstatement. Moreover, integration in high-level sensory processing regions during encoding predicted greater accuracy and vividness at recall. 

These findings provide novel evidence that encoding-related differentiation and integration processes across the cortex have divergent effects on later recall of highly 

similar naturalistic events. 
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. Introduction 

Everyday memory frequently involves high overlap between the ac-

ors, locations, and objects of events. Whether such similarity between

vents helps or hinders memory recall may in large part be determined

y how events are encoded. When we encounter two events with similar

eatures, it might be beneficial for the brain to distinguish their repre-

entations, or differentiate them, to reduce interference. Alternatively,

orming overlapping representations of similar events, or integration,

ay aid recall by linking new memories to old memories. 

How and under which conditions does the brain support these seem-

ngly conflicting functions? Evidence for the beneficial effect of both

ntegration and differentiation on memory exists. Functional magnetic

esonance imaging (fMRI) studies using multivoxel pattern analysis

MVPA) have shown that integration, measured as reactivation of over-

apping memories at encoding, is beneficial for later memory perfor-

ance ( Brunec et al., 2020 ; Chanales et al., 2019 ; Koen and Rugg, 2016 ;

chlichting et al., 2014 ; Wing et al., 2020 ; Xue et al., 2010 ). On the other

and, greater pattern distinctiveness in the cortex and the hippocam-

us has been shown to be beneficial for later memory recall, suggesting

ifferentiation ( Ezzyat et al., 2018 ; Favila et al., 2016 ; Katsumi et al.,

021 ). 
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Whether highly similar events are encoded in an integrated or dif-

erentiated fashion may also affect their later neural reinstatement, the

etrieval-related reactivation of brain activity present during encoding

 Danker and Anderson, 2010 ; Rissman and Wagner, 2012 ). We previ-

usly found that neural dissimilarity between events at encoding leads

o increased reinstatement in the visual cortex, suggesting that differ-

ntiating visual features is beneficial for reinstatement ( Hebscher et al.,

021 ). However, more work is needed to directly link encoding pro-

esses of integration and differentiation to neural reinstatement in dif-

erent cortical regions. 

Recent evidence suggests that the degree and content of overlap be-

ween events can affect whether they are integrated or differentiated.

or instance, shared context between events leads to strengthened asso-

iative memory, suggesting integration, while dissimilar contexts lead

o interference ( Cox et al., 2021 ). Neural integration of events at encod-

ng has also been shown to predict subsequent memory strength when

here was low interference between events ( Koen and Rugg, 2016 ). An-

ther factor of likely importance is where in the brain these processes are

eing observed. Differentiation and integration of the same events can

ccur simultaneously across different hippocampal subregions, which

an explain how we are able to remember both specific details of items

nd their relationships with each other ( Dimsdale-Zucker et al., 2018 ;
 2023 
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Fig. 1. Experimental design and methods overview. (A) Example trial for the experimental task. Participants watched videos at encoding and made odd/even 

judgments for arbitrary numbers. At retrieval, participants were cued with titles describing each of the studied videos. Participants mentally replayed each video 

while viewing a blank screen and then rated the vividness of the memory and answered two true/false (yes/no) questions to test memory accuracy, including a 4- 

point confidence judgment. (B) Multivoxel pattern similarity analysis overview. Across-item encoding similarity (left panel) within each brain region was computed 

by taking the average pairwise correlation between the neural activity patterns evoked while encoding each video, reflecting average neural similarity between 

videos. Within-item encoding-retrieval similarity, or reinstatement (right panel) was calculated as the correlation between neural activity evoked while watching 

a video and while later remembering it (on-diagonal of the correlation matrix), relative to the correlation between unmatched pairs of videos at encoding and 

retrieval (off-diagonal). (C) ROIs shown on a glass brain. SPL = superior parietal lobule, IPL = inferior parietal lobule, SMG = supramarginal gyrus, AG = angular gyrus, 

pcu = precuneus, calc = calcarine gyrus, cun = cuneus, ling = lingual gyrus, SOG = superior occipital gyrus, MOG = middle occipital gyrus, IOG = inferior occipital gyrus, 

FUS = fusiform gyrus, STG = superior temporal gyrus, MTG = middle temporal gyrus, ITG = inferior temporal gyrus. (D) Convolutional neural network (CNN) overview. 

The AlexNet CNN consists of 5 convolutional layers (conv) and 3 fully connected layers (fc). One frame from the midpoint of each video was used as input for the 

pretrained network, and features were extracted from one early layer (conv2) and one late layer (fc7), reflecting lower- and higher-level visual features, respectively. 
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aRocque et al., 2013 ). Here, we predicted that cortical regions outside

he hippocampus may also differentially support these processes, with

arietal and temporal cortices integrating high-level contextual and se-

antic features of events, and occipital regions differentiating lower-

evel visual features. 

In the present study, we examined how highly overlapping natu-

alistic events are encoded and how their encoding affects later recall

cross the cortex. Participants performed encoding and retrieval phases

f a memory task during fMRI scanning. At encoding, they viewed a se-

ies of short video clips depicting everyday activities with high feature

verlap, including the same actor, similar contexts, and similar content,

hich mimics natural memory demands. At retrieval, which occurred

fter all videos had been encoded, participants used recall cues to men-

ally replay studied videos, and their objective and subjective memory

or the videos was tested ( Fig. 1 A). 

To better understand how highly overlapping events are represented

n the brain, we performed MVPA to measure similarity between videos

t encoding ( Fig. 1 B, left panel) and reinstatement of videos at retrieval

 Fig. 1 B, right panel). We examined activity within regions of interest

ROIs) across parietal, temporal, and occipital cortices ( Fig. 1 C), which
 v  

2 
ave been implicated in the recall and reinstatement of naturalistic stim-

li ( Bainbridge et al., 2021 ; Hebscher et al., 2021 ; Oedekoven et al.,

017 ; Silson et al., 2019 ; Xue, 2018 ). To test whether the degree and

ontent of overlap affects how events are encoded, we related a met-

ic of visual similarity extracted from the AlexNet convolutional neural

etwork (CNN) with neural activity at encoding ( Fig. 1 D). We then ex-

mined how encoding of overlapping videos affects their later retrieval

y relating neural activity at encoding activity to behavioral outcomes

t retrieval and neural reinstatement of stimuli. 

. Results 

.1. Visually similar videos are integrated in cortical neural populations 

We first tested whether visual similarity between events affects how

hey are encoded in the cortex. We tested whether visual similarity

etween videos, measured by a CNN, affects their neural similarity

n the cortex, measured by representational similarity analysis (RSA)

 Kriegeskorte et al., 2008 ). This analysis served as a replication of pre-

ious findings that the information represented by CNNs map onto
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Table 1 

Visual similarity – across-item encoding similarity correlation by ROI. 

Region 

Early layer (conv2) Late layer (fc7) 

r s p-value r s p-value 

L AG 0.04 1.0 0.03 1.0 

L IPL 0.14 0.076 0.09 0.1 

L PCU 0.11 0.34 0.03 1.0 

L SMG 0.10 0.182 0.1 0.26 

L SPL 0.14 0.09 0.06 1.0 

L IOG 0.14 0.03 a 0.09 0.058 

L MOG 0.17 0.03 a 0.08 0.306 

L SOG 0.16 0.03 a 0.08 0.323 

L calc 0.12 0.09 − 0.01 1.0 

L cun 0.04 1.0 0.01 1.0 

L fus 0.13 0.03 a 0.01 1.0 

L ling 0.09 0.195 − 0.04 1.0 

L ITG 0.11 0.135 0.07 0.524 

L MTG 0.06 0.566 0.1 0.058 

L STG 0.05 0.599 0.04 1.0 

R AG 0.04 1.0 0.02 1.0 

R IPL 0.14 0.03 a 0.13 0.058 

R PCU 0.09 0.34 − 0.0 1.0 

R SMG 0.06 0.464 0.1 0.176 

R SPL 0.11 0.195 0.09 0.252 

R IOG 0.12 0.112 0.1 0.4 

R MOG 0.15 0.03 a 0.11 0.1 

R SOG 0.17 0.03 a 0.12 0.1 

R calc 0.13 0.03 a 0.0 1.0 

R cun 0.142 0.03 a 0.09 0.285 

R fus 0.078 0.319 − 0.02 1.0 

R ling 0.12 0.03 a − 0.03 1.0 

R ITG 0.11 0.03 a 0.16 0.03 a 

R MTG 0.01 1.0 0.09 0.078 

R STG − 0.04 1.0 0.03 1.0 

reported p-values are Bonferroni-Holm corrected for multiple comparisons. 

r s = Spearman’s rho. 
a passed Bonferroni-Holm correction for multiple comparisons. 
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MRI activity in relevant visual processing regions ( Davis et al., 2021 ;

eman et al., 2020 ; Zhang et al., 2018 ) 

Neural similarity between videos was calculated by performing a

eries of RSAs within cortical ROIs ( Fig. 1 C). For each participant

nd each ROI, we computed the average pairwise Fisher-transformed

earson correlation between the neural activity pattern of each video

 Fig. 1 B, left panel). This measure, termed across-item encoding simi-

arity, reflects the relative neural similarity of a given video to all other

ideos, effectively its place on a continuum from neural averageness

o distinctness (See Methods). To obtain a measure of visual similarity,

e extracted learned image features from the pretrained CNN AlexNet

 Krizhevsky et al., 2012 ) ( Fig. 1 D). We used the middle frame from each

ideo as input to the CNN and extracted features from early (conv2)

nd late (fc7) layers, which are thought to correspond to visual infor-

ation from early and late visual cortex, respectively ( Güçlü and van

erven, 2015 ; Yamins et al., 2014 ) (see Methods). Visual similarity was

omputed as the average Fisher-transformed pairwise Spearman corre-

ation between all videos. This measure reflected the degree and content

f feature overlap of stimuli, with the early layer reflecting lower-level

isual feature overlap and the late layer reflecting higher-level visual

eature overlap. 

To assess whether visual similarity between videos affects their neu-

al similarity, we calculated the Spearman correlation between CNN-

ased visual similarity and fMRI across-item encoding similarity for each

articipant and each ROI. Permutation tests performed at the group-

evel revealed that visual similarity was significantly positively asso-

iated with across-item encoding similarity in parietal, temporal, and

ccipital regions. These tests assessed the probability that the observed

orrelations are more extreme than zero, relative to a null distribution of

orrelation differences generated by randomly signing correlation val-

es over 1000 permutations (See Methods). The correlation between

arly CNN layer visual similarity and across-item encoding similarity

as significantly greater than zero in bilateral middle occipital gyrus,

uperior occipital gyrus, left inferior occipital gyrus, left fusiform gyrus,

ight inferior parietal lobe, inferior temporal gyrus, calcarine gyrus, lin-

ual gyrus, and cuneus (all p’s < 0.05 after Bonferroni-Holm correction

or multiple comparisons) (See Fig. 2 A) ( Table 1 ). Late layer similar-

ty was significantly correlated with across-item encoding similarity in

ight inferior temporal gyrus ( p < .05, corrected). 

These findings indicate that visual similarity maps onto neural sim-

larity in the cortex at encoding, such that videos with higher vi-

ual feature overlap also show higher pattern similarity with other

ideos. Conversely, videos that are visually dissimilar tend to be en-

oded with low pattern similarity. Early layer CNN features are re-

ated to representations mainly in occipital cortex, including both

ower-level (calcarine gyrus, lingual gyrus, cuneus) and higher-level

isual processing regions (i.e. fusiform gyrus, occipital gyri, inferior

emporal gyrus), while late layer CNN features are related to repre-

entations in inferior temporal gyrus, a high-level visual processing

egion. 

.2. Across-item encoding similarity differentially predicts reinstatement 

We next evaluated how encoding overlapping videos affects their

ater retrieval by testing whether across-item encoding similarity af-

ects later reinstatement of videos across the cortex. We measured re-

nstatement of individual video clips by comparing patterns of fMRI ac-

ivity between encoding and retrieval. For each participant and ROI,

ncoding-retrieval similarity was computed as the Pearson’s correlation

f a video’s fMRI activity pattern during encoding with the correspond-

ng activity pattern when participants attempted to mentally replay the

ame video during retrieval (See Fig. 1 B, right panel). Encoding-retrieval

imilarity was computed for all pairs of videos, resulting in a Fisher-

ransformed correlation matrix in which the diagonal reflected rein-

tatement of video-specific neural activity (same video at encoding and

etrieval), and the off-diagonal reflected reinstatement of mismatched
3 
airs of videos (different video at encoding and retrieval). The aver-

ge correlation for the mismatched pairs (off-diagonal of the matrix)

as then subtracted from the correlation for matched pairs (diagonal

f the matrix). The resulting difference scores reflected the degree to

hich video-specific neural activity at encoding was reinstated at re-

rieval, relative to reinstatement of other videos. Importantly, there was

o inherent perceptual similarity between encoding and recall, so re-

nstatement reflects memory rather than perceptual overlap. Average

einstatement scores were above zero for all ROIs other than right lin-

ual gyrus (mean = -0.001), indicating that video-specific content was

einstated to a greater degree than content not specific to each video. 

To quantify the effects of across-item encoding similarity on later

einstatement, we computed the Spearman correlation between across-

tem encoding similarity and reinstatement for each subject and each

OI. Permutation tests revealed this correlation was significantly dif-

erent than zero for several ROIs, with the direction of this correlation

iffering by region. Across-item encoding similarity and reinstatement

ere positively correlated in temporal cortex (significant effects in bi-

ateral inferior temporal gyrus, and right superior temporal gyrus), and

egatively correlated in occipital regions (significant effects in bilat-

ral calcarine gyrus, lingual gyrus, left middle occipital gyrus and left

usiform gyrus (all p’s < 0.05, corrected for multiple comparisons). See

ig. 3 , Table 2 . As can be seen in Table 2 , additional regions showed

imilar trends that did not survive correction for multiple comparisons,

ncluding positive effects in right supramarginal gyrus ( p < .01; p = .06,

orrected) and middle temporal gyrus ( p < .01; p = .06, corrected). Con-

rolling for trial-wise head motion at encoding did not change this pat-

ern of results. 

Because the reinstatement measure reflects a difference score, it is

ossible that reinstatement of irrelevant videos (off-diagonal correla-

ions) was driving the association with across-item encoding similarity
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Fig. 2. Visual similarity predicts across-item encoding similarity. A) Average within-subject correlation between visual similarity and across-item encoding 

similarity for an early CNN layer (conv2). Average correlations are shown for parietal, occipital, and temporal ROIs, split by hemisphere (LH – left hemisphere, RH 

– right hemisphere). Glass brains below show lateral (top) and medial (bottom) views of corresponding significant ROIs for left (L) and right hemispheres (R). B) 

Average within-subject correlation between visual similarity and across-item encoding similarity for a late CNN layer (fc7). Glass brains below show lateral (top) and 

medial (bottom) views of corresponding significant ROI for left and right hemispheres. Standard error of the mean plotted as error bars. Asterisks show significant 

regions ( p < .05, Bonferroni corrected for multiple comparisons). 
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T  
ather than reinstatement of the video itself. To test for this, we re-

eated the same correlation analyses using reinstatement of matched

airs (diagonal) without subtracting reactivation of different videos (off-

iagonal). A similar set of regions to the previous analysis showed sig-

ificant effects. Across-item encoding similarity and reinstatement were

ositively correlated in bilateral inferior temporal gyrus, supramarginal

yrus, right middle temporal gyrus, right superior temporal gyrus, and

ere negatively correlated in bilateral calcarine gyrus and lingual gyrus

all p’s < 0.05, corrected for multiple comparisons). 

Thus, in high-level sensory processing regions across temporal and

arietal lobes, videos that are more highly integrated with other videos

t encoding (more neurally average) show higher reinstatement at re-

rieval, while videos that are more differentiated at encoding (more neu-

ally distinct) show lower reinstatement. Occipital regions, particularly

ower-level visual processing regions (i.e. primary visual cortex), but

lso high-level visual processing regions (fusiform gyrus, middle occipi-

al gyrus), show the opposite pattern, with greater integration at encod-

ng leading to lower reinstatement and greater differentiation leading to

igher reinstatement. Interestingly, a similar pattern across the cortex

as observed when looking at the relationship between across-item sim-

larity at retrieval and reinstatement (Supplementary Figure 2). These

ndings demonstrate that an event’s neural representation can be simul-

aneously integrated and differentiated in different populations across

he brain, perhaps reflecting differences in the type of content repre-

ented across regions. 
4 
.3. Across-item encoding similarity is related to later memory performance

We next examined whether the degree to which videos are encoded

n an integrated or differentiated fashion affects their subsequent mem-

ry performance. Memory performance was measured objectively dur-

ng the retrieval stage by two true/false questions about the content of

he videos, and subjectively by vividness ratings (1–4). See Methods for

urther details about the true/false questions. To code for accuracy, each

rial was given a score from 0 to 2 to represent the number of questions

nswered correctly. For each subject and each ROI, we computed the

endall’s Tau rank correlation between across-item encoding similarity

nd each memory measure across trials. 

Across-item encoding similarity in parietal and temporal regions was

ignificantly positively correlated with accuracy at retrieval. Permuta-

ion tests revealed that this correlation was significantly greater than

ero for bilateral superior parietal lobule, supramarginal gyrus, inferior

emporal gyrus, superior temporal gyrus, left angular gyrus, left inferior

arietal lobule, right middle temporal gyrus, and right inferior occipital

yrus ROIs (all p’s < 0.05, corrected for multiple comparisons). Aver-

ge across-item encoding similarity plotted by accuracy score revealed

 linear relationship, such that average neural similarity was highest

or trials that were later remembered with 100% accuracy (2/2 ques-

ions), with lower similarity for trials that were remembered with 50%

ccuracy (1/2 questions) and 0% accuracy (0/2 questions) ( Fig. 4 A).

his indicates that videos that are highly integrated with other videos
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Fig. 3. Across-item encoding similarity dif- 

ferentially predicts reinstatement. A) Aver- 

age within-subject correlation between across- 

item encoding similarity and reinstatement, 

split by hemisphere (LH – left, RH – right). 

Standard error of the mean plotted as error 

bars. B) Within-subject correlations between 

across item-similarity and reinstatement. Top 

panel shows significant positive correlations, 

with each line representing an individual sub- 

ject’s linear fit (reinstatement ∼ encoding sim- 

ilarity) for significant ROIs. Glass brains to the 

right show lateral (top) and medial (bottom) 

views of all ROIs showing a significant positive 

effect in blue for left (L) and right hemispheres 

(R). Bottom panel shows negative correlations 

for a subset of significant ROIs. Glass brains to 

the right show lateral and medial views of all 

ROIs showing a significant negative effect in 

purple. 
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n temporal, parietal, and occipital lobes are more likely to be remem-

ered with greater accuracy relative to videos that show low integration

n these regions. 

We next examined vividness ratings, finding that across-item en-

oding similarity in parietal, temporal, and occipital ROIs was posi-

ively correlated with vividness ratings at retrieval. Permutation tests

evealed that the correlation between across-item encoding similar-

ty and vividness was significantly greater than zero for bilateral an-

ular gyrus, inferior parietal lobe, superior parietal lobe, precuneus,

upramarginal gyrus, inferior temporal gyrus, middle temporal gyrus,

uperior temporal gyrus, middle occipital gyrus, fusiform gyrus, and

ight inferior and superior occipital gyri (all p’s < 0.05, corrected for

ultiple comparisons). Across-item encoding similarity increased with

ividness ratings ( Fig. 4 B), suggesting that videos that are more highly

ntegrated at encoding are later remembered with more subjective

ividness. 
i  

5 
Together these findings suggest that greater integration of related

ideos at encoding in high-level sensory processing regions across pari-

tal, temporal, and occipital lobes is beneficial for later subjective and

bjective memory. Notably, low-level visual processing regions (i.e. pri-

ary visual cortex) were not significantly associated with later memory,

uggesting that the degree of neural overlap between videos at encoding

n these regions does not strongly predict later memory. See Table 3 . 

.4. Testing the effects of hippocampal encoding activity on later retrieval 

Although the focus of the current study was on pattern similar-

ty outside of the medial temporal lobes, previous studies have found

hat pattern integration or differentiation within the hippocampus pre-

icts later memory retrieval and reinstatement ( Brunec et al., 2020 ;

aRocque et al., 2013 ; Schlichting et al., 2014 ). While the hippocampus

s thought to be important for coordinating cortical reinstatement, we
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Fig. 4. Across-item encoding similarity relates to later memory performance. A) Across-item encoding similarity plotted by accuracy score, averaged across 

all significant ROIs. Glass brains below show lateral (top) and medial (bottom) view of all ROIs showing a significant correlation between accuracy and across-item 

encoding similarity for left (L) and right hemispheres (R). B) Across-item encoding similarity plotted by vividness score, averaged across all significant ROIs. Glass 

brains below show lateral (top) and medial (bottom) view of all ROIs showing a significant positive effect for left and right hemispheres. Error bars reflect 95% 

confidence intervals. Across-item encoding similarity scores have been converted to z-scores for visualization purposes. 

Table 2 

Across-item encoding – reinstatement similarity correlation by ROI. 

Region r s p-value 

L AG 0.01 1.0 

L IPL 0.12 0.364 

L PCU 0.03 1.0 

L SMG 0.12 0.133 

L SPL − 0.03 1.0 

L IOG − 0.09 0.432 

L MOG − 0.12 0.048 a 

L SOG − 0.11 0.133 

L calc − 0.21 0.03 a 

L cun − 0.07 0.759 

L fus − 0.14 0.048 a 

L ling − 0.2 0.03 a 

L ITG 0.11 0.048 a 

L MTG 0.09 0.345 

L STG 0.04 1.0 

R AG 0.1 0.187 

R IPL 0.1 0.32 

R PCU 0.03 1.0 

R SMG 0.1 0.063 

R SPL − 0.05 0.909 

R IOG − 0.05 1.0 

R MOG − 0.1 0.432 

R SOG − 0.08 0.5 

R calc − 0.22 0.03 a 

R cun − 0.08 0.5 

R fus − 0.1 0.364 

R ling − 0.18 0.03 a 

R ITG 0.12 0.03 a 

R MTG 0.1 0.063 

R STG 0.13 0.03 a 

Reported p-values are Bonferroni-Holm corrected for multiple comparisons. 

r s = Spearman’s rho. 
a passed Bonferroni-Holm correction for multiple comparisons. 

Table 3 

Across-item encoding similarity – memory performance correlation by ROI. 

Region 

Accuracy Vividness 

𝜏 p-value 𝜏 p-value 

L AG 0.09 0.044 a 0.11 0.03 a 

L IPL 0.09 0.03 a 0.14 0.03 a 

L PCU 0.09 0.088 0.16 0.03 a 

L SMG 0.1 0.03 a 0.12 0.036 a 

L SPL 0.08 0.044 a 0.14 0.03 a 

L IOG 0.05 0.517 0.07 0.056 

L MOG 0.05 0.581 0.11 0.03 a 

L SOG 0.05 0.634 0.1 0.056 

L calc 0.02 1.0 0.02 0.486 

L cun − 0.0 1.0 0.04 0.486 

L fus 0.07 0.144 0.11 0.03 a 

L ling 0.0 1.0 0.06 0.056 

L ITG 0.1 0.044 a 0.15 0.03 a 

L MTG 0.1 0.075 0.14 0.03 a 

L STG 0.09 0.03 a 0.14 0.03 a 

R AG 0.09 0.075 0.13 0.03 a 

R IPL 0.07 0.075 0.14 0.03 a 

R PCU 0.08 0.068 0.15 0.03 a 

R SMG 0.1 0.044 a 0.12 0.03 a 

R SPL 0.1 0.03 a 0.14 0.03 a 

R IOG 0.08 0.03 a 0.1 0.03 a 

R MOG 0.08 0.054 0.11 0.03 a 

R SOG 0.08 0.075 0.1 0.03 a 

R calc 0.06 0.12 0.04 0.486 

R cun 0.08 0.068 0.07 0.12 

R fus 0.05 0.272 0.1 0.03 a 

R ling 0.04 0.703 0.05 0.232 

R ITG 0.13 0.03 a 0.13 0.03 a 

R MTG 0.11 0.03 a 0.13 0.03 a 

R STG 0.13 0.03 a 0.15 0.03 a 

Reported p-values are Bonferroni-Holm corrected for multiple comparisons . 

𝜏 = Kendall’s Tau. 
a passed Bonferroni-Holm correction for multiple comparisons . 

6 
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id not predict that reinstatement would occur within the hippocam-

us itself, in line with several previous studies ( Wing et al., 2015 ;

itchey et al., 2013 ). In a previous analysis of these data no reinstate-

ent effects were observed in the hippocampus ( Hebscher et al., 2021 ).

o test whether encoding pattern similarity relates to reinstatement

n the hippocampus, we used left and right hippocampus as ROIs for

he same across-item pattern similarity and reinstatement analyses de-

cribed above. We found no significant correlation between hippocam-

al across-item encoding similarity and reinstatement (left hippocam-

us: p = .71; right hippocampus: p = .55). We next tested whether across-

tem encoding similarity in the hippocampus predicts later memory, re-

eating the above analyses correlating encoding activity with memory

erformance using left and right hippocampal ROIs. There was a sig-

ificant positive correlation between across-item encoding similarity in

he left hippocampus and both accuracy ( p = .003) and vividness rat-

ngs ( p = .005), while right hippocampus was correlated with accuracy

 p = .014) but not vividness ( p = .491). Thus, videos that are more

ighly integrated with related videos at encoding in the hippocampus

re later remembered with greater accuracy and vividness, but reinstate-

ent does not appear to occur in the hippocampus at retrieval. 

.5. Testing the relevance of cortical reinstatement to memory performance 

A prevailing view in the literature is that neural reinstatement

s correlated with behavior ( Bone et al., 2020 ; Gordon et al., 2014 ;

ebscher et al., 2021 ; Kuhl et al., 2011 ; Polyn et al., 2005 ; Ritchey et al.,

013 ; St-Laurent et al., 2015 ). We performed an exploratory analysis to

ee whether cortical reinstatement is related to later memory perfor-

ance. For each subject, we computed the Kendall’s Tau rank correla-

ion between reinstatement and each memory measure across trials. We

hen tested whether the correlation between reinstatement and memory

as significantly greater than a null distribution of correlation values

btained by permutation, for each ROI. There were no significant corre-

ations between reinstatement and either accuracy or vividness for any

OIs (all p’s > 0.05 after correction). 

. Discussion 

This study examined how highly overlapping naturalistic events are

epresented in cortical activity patterns at encoding and retrieval. We

howed that the degree and content of visual similarity between videos

ffects their encoding, such that highly similar videos tend to be in-

egrated while dissimilar videos tend to be differentiated. In high-level

ensory processing regions in temporal and parietal cortices, videos that

ere encoded with greater overlapping patterns of activity, suggesting

ntegration, showed higher reinstatement at retrieval. Greater integra-

ion in high-level sensory processing regions also predicted later mem-

ry performance. Conversely, in visual processing regions in occipital

ortex, videos that were encoded in more distinctive patterns of neural

ctivity, suggesting differentiation, showed greater reinstatement. These

ndings demonstrate that events can be simultaneously integrated and

ifferentiated in different neural populations, with effects on later mem-

ry differing by brain region. 

Current evidence suggests that similarity between events may in-

uence whether they are integrated or differentiated at encoding

 Cox et al., 2021 ; Koen and Rugg, 2016 ). In line with previous stud-

es ( Güçlü and van Gerven, 2015 ; Yamins et al., 2014 ), we found that

vents with high visual similarity to other events tended to be encoded

n overlapping patterns of neural activity in parietal, occipital, and tem-

oral cortices, suggesting that visually similar videos are integrated in

ensory processing regions throughout the cortex. Similarity between

ow-level visual features predicted neural overlap in high- and low-level

ensory processing regions predominantly in occipital cortex, and sim-

larity between higher-level visual features predicted neural overlap in

 high-level visual processing region in temporal cortex. Visual features

rom CNNs have been shown to predict neural representations in the
7 
isual cortex, with early and late CNN layers mapping onto early and

ate visual cortex, respectively ( Davis et al., 2021 ; Güçlü and van Ger-

en, 2015 ; Yamins et al., 2014 ). One possible explanation for our finding

hat early layer features predicted representations in both early and late

isual cortex is that, due to the hierarchical organization of the visual

ortex, representations in later visual cortex regions are based off early

isual cortex representations ( Serre, 2014 ). Representations in higher-

evel sensory processing regions may therefore reflect more complex

isual features in addition to the basic features from which they are de-

ived. Overall, these findings indicate that the content of visual overlap

etween events affects their encoding, with highly similar events tend-

ng to be represented in overlapping patterns of neural activity through-

ut the cortex. 

Previous studies have shown that neural activity when encoding a

timulus is related to the strength of its cortical reinstatement at re-

all ( Gordon et al., 2014 ; Hebscher et al., 2021 ; Ritchey et al., 2013 ;

ing et al., 2015 ). One novel finding from the present study was that

eural similarity between encoded events differentially predicted their

ater reinstatement across the cortex. Greater similarity between videos

t encoding predicted stronger reinstatement in lateral temporal and

arietal regions. Lateral temporal regions have been implicated in se-

antic processing and memory, action perception, and high-level visual

rocessing such as object, face, and scene perception ( Conway, 2018 ;

able et al., 2005 ; Rogers et al., 2006 ). Lateral parietal cortex plays

 role in multisensory integration, schema integration, and represent-

ng stimulus-specific details important for subjective memory vivid-

ess ( Kuhl and Chun, 2014 ; Lee and Kuhl, 2016 ; Pasalar et al., 2010 ;

agner et al., 2015 ). Our findings suggest that integrating the high-

evel sensory and semantic content of videos is beneficial for later re-

nstatement of this content. Future studies could directly test whether

imilarity between high-level features of events affects their encoding

nd reinstatement by manipulating stimuli to explicitly differ on these

eatures. 

Occipital cortex regions showed the opposite effect, with greater neu-

al similarity between videos at encoding predicting lower reinstate-

ent, or greater dissimilarity between events leading to stronger rein-

tatement. This effect was found in calcarine and lingual gyri, which are

mplicated in processing of basic visual features, as well as left fusiform

yrus and middle occipital gyrus, which play roles in higher-level vi-

ual functions such as mental imagery, and face and object perception

 Spagna et al., 2021 ; Tootell et al., 1998 ; Tu et al., 2013 ). Many of

hese regions also showed a positive relationship between low-level vi-

ual similarity and neural similarity at encoding, although the regions

howing a relationship with visual similarity and reinstatement were not

dentical. Interestingly, the nature of this negative association was such

hat greater integration in occipital cortex tended to be associated with

ore negative reinstatement. It is possible that a negative encoding-

etrieval correlation in occipital cortex (i.e. negative reinstatement) still

eflects reinstatement of visual content, with visual representations be-

ng activated during encoding (i.e. perception) and deactivated at re-

rieval (i.e. mental imagery). In line with this idea, some previous stud-

es have reported a negative correlation between univariate activity at

ncoding and retrieval in posteromedial cortex, reflecting beneficial de-

ctivation at encoding and activation at retrieval ( Gilmore et al., 2015 ;

annini et al., 2011 ), and visual cortex has been shown to deactivate

uring memory and mental imagery ( Mazard et al., 2004 ). Others have

roposed that stimulus representations are transformed between percep-

ion and memory from occipital to parietal cortex ( Favila et al., 2018 ;

iao et al., 2017 ), which could also explain the low correlation be-

ween encoding and retrieval within occipital cortex. Additional work is

eeded to clarify the nature of the negative association between across-

tem encoding similarity and reinstatement in occipital regions. 

Previous studies have found that both cortical integration and

ifferentiation is beneficial for later episodic memory performance

 Chanales et al., 2019 ; Katsumi et al., 2021 ; Koen and Rugg, 2016 ;

ing et al., 2020 ). Here we showed that accuracy and vividness of re-
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rieved memories are predicted by integration across similar but not

dentical cortical regions. Videos that were encoded with overlapping

eural representations in lateral parietal cortex, temporal cortex, and

ight occipital gyri were more likely to be remembered with greater

ccuracy. These regions are broadly associated with semantic process-

ng, high-level visual processing, multimodal integration, and forming

timulus-specific representations for memory retrieval ( Bonnici et al.,

016 ; Conway, 2018 ; Lee and Kuhl, 2016 ; Rogers et al., 2006 ; Tu et al.,

013 ). Our findings therefore suggest that integrating high-level fea-

ures in lateral temporal and parietal cortex, as well as occipital cortex,

llows participants to recall the details of events with greater objective

ccuracy. Subjective vividness of memories was predicted by a wider set

f cortical regions encompassing medial and lateral parietal lobe, tem-

oral lobe, and occipital lobe. Most of the same regions that showed an

ssociation with accuracy also predicted vividness, in addition to several

ther regions such as precuneus, fusiform gyrus, and superior occipital

yri. In line with this finding, episodic memory vividness has been asso-

iated with neural activity in a wide network of regions, including pre-

uneus, angular gyrus, and occipitotemporal regions ( Geib et al., 2017 ;

ebscher et al., 2019 ; Richter et al., 2016 ; Tibon et al., 2019 ). Together,

hese results add to the existing literature by showing that forming over-

apping neural representations of similar naturalistic events in the cortex

s beneficial for later memory. 

Given the high overlap and potential for interference between

vents, it is somewhat surprising that integrating rather than differen-

iating related events at encoding is beneficial for later memory. One

mportant consideration is the type of behavior these memory mea-

ures are indexing. Accuracy questions tested the ability to recall the

pecific details of a video. This sometimes required discriminating re-

ated videos (i.e. when asked “is the actor wearing a blue shirt? ”, sub-

ects must distinguish that video from others with the same actor)

nd other times benefited from generalizing between events (i.e. when

sked “is there a plant in the background of the room? ” subjects can

se their memory of the room from other videos to answer the ques-

ion). Other questions were unique to the video in question (i.e. “is

he egg cracked into a metal bowl? ” when no other videos included

ooking eggs). Vividness ratings may reflect metacognitive judgements

n the quality of the recalled memory ( Richter et al., 2016 ). Indeed,

ividness and accuracy ratings were correlated (see Methods), suggest-

ng that they may index related aspects of memory recall, with accu-

acy being a measure of the details recalled and vividness a judgement

n the fidelity of those details. Moreover, while our findings indicate

hat encoding events in overlapping representations in high level sen-

ory processing regions is beneficial for later memory, it is possible

hat the opposite is true in other brain regions, such as hippocampal

ubregion CA3, which has been shown to differentiate similar mem-

ries ( Dimsdale-Zucker et al., 2018 ). Future work is needed to more

recisely measure how the degree of overlap or interference between

vents affects their neural representations at encoding and later memory

erformance. 

We did not find evidence for a relationship between encoding-

etrieval neural reinstatement and memory performance, which is in-

onsistent with findings that reinstatement reflects memory retrieval

eported in some prior studies ( Bainbridge et al., 2021 ; Bone et al.,

020 ; Gordon et al., 2014 ; Hebscher et al., 2021 ; Kuhl et al., 2011 ;

olyn et al., 2005 ; Rissman and Wagner, 2012 ; Ritchey et al., 2013 ; St-

aurent et al., 2016 ). Reinstatement within cortical regions is thought

o reflect the retrieval of region-specific content of an event ( Danker and

nderson, 2010 ). Reinstatement within an isolated cortical region may

herefore not map onto overt memory performance, which is likely

ased on more global representations of events. Future studies could

nvestigate how reinstatement across a network of cortical regions influ-

nces memory performance above and beyond reinstatement in specific

egions. 

Taken together, our findings indicate regional dissociations in how

ighly similar naturalistic stimuli are encoded and retrieved. In pari-
8 
tal and temporal lobes, integrating similar stimuli at encoding leads to

tronger reinstatement and better objective and subjective memory for

hose stimuli. In high-level visual processing regions in occipital cor-

ex, integration leads to lower or more negative reinstatement and is

redictive of later subjective memory. Conversely, in low-level visual

ortex regions, integration predicts lower reinstatement not memory

erformance. These findings suggest that integrating high-level features

t encoding leads to better memory but differential reinstatement of

hose features throughout the cortex. Integrating low-level visual fea-

ures leads to lower reinstatement of those features in early visual cor-

ex but does not affect memory, possibly because memory in this task

s complex and depends on multiple higher-order functions. These di-

ergent effects may reflect the brain’s ability to simultaneously inte-

rate high-level features of events and distinguish overlapping low-level

eatures, which can allow us to remember both relationships between

vents and their specific details ( Dimsdale-Zucker et al., 2018 ). In con-

lusion, our findings show that encoding-related integration and dif-

erentiation processes across the cortex have divergent effects on later

ecall of highly similar naturalistic events. 

. Materials and methods 

.1. Participants 

Twenty adults participated in the current study (11 females, mean

ge = 24.26, SD = 3.57, range = 19–32). Data from these same par-

icipants has been published elsewhere, in a study that examined the

ffects of transcranial magnetic stimulation (TMS) on hippocampal co-

rdination of cortical reinstatement ( Hebscher et al., 2021 ). All partici-

ants were native or fluent English speakers, had normal or corrected-

o-normal vision, and were free from a history of neurological illness or

njury, psychiatric condition, substance abuse, or serious medical con-

itions. All participants passed standard MRI safety screenings. Partici-

ants provided informed consent prior to participating in the experiment

nd were paid for participation. Study procedures were approved by the

orthwestern University Institutional Review Board. 

.2. Experimental design 

The data reported in the present study were originally collected as

 control session for a previously published TMS study ( Hebscher et al.,

021 ). During control sessions, participants received continuous theta

urst TMS to their vertex for 60 s, approximately 7 min prior to begin-

ing an episodic memory task while fMRI was collected. Vertex stimu-

ation is believed to have no effect on episodic memory or related brain

ctivity. 

.3. Episodic memory task 

Participants performed a practice version of the episodic memory

ask with unique stimuli prior to entering the MRI scanner to familiarize

hem with the task and to ensure correct performance. Once moved to

he MRI scanner, participants completed the episodic memory task in

hich they watched and recalled a series of short video clips ( Fig. 1 A).

ideos consisted of 51 short (7 s) depictions of common events such

s draining pasta, kicking a ball, and putting a sheet on the bed. In

ll videos, the camera remained stationary for the entire clip and there

ere no scene cuts. Each video depicted a unique event centered around

he same one character and occurred in a fixed number of locations,

esulting in high overlap between elements of the videos. All videos

ere presented without sound. Videos were presented in a randomized

rder at both encoding and retrieval phases. 

At the start of the encoding phase, participants were reminded of

he task instructions and were instructed to pay close attention to all

lements of the videos as their memory for the videos would later be

ested. Each video was then presented alone for 7 s, followed by an
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nterstimulus interval (ISI) of 1 s. Participants then judged whether a

umber was odd or even for 2 s to discourage continued processing of

he video. Previous evidence suggests that such judgments drive activity

n key regions such as hippocampus back to zero during the intertrial

nterval (ITI) ( Stark and Squire, 2001 ). The trial ended with an ITI (fix-

tion cross), jittered at 4, 6, and 8 s. Each encoding trial was 16 s on

verage. All encoding trials occurred within 1 fMRI run lasting 13.9

ins. 

The retrieval phase began immediately following completion of the

ncoding phase. Following a reminder of the instructions for this phase,

articipants were presented with the description of a video for 3 s and

old to mentally replay the video within the allotted time, within a blank

ox that remained on the screen alone for 7 s. After mentally recall-

ng each video, participants were given 4 s to rate their vividness of

he memory on a scale from 1 to 4, with 1 meaning they did not re-

all the video at all, and 4 meaning they recalled it vividly. Following

he vividness rating, participants answered two true/false (yes/no) ac-

uracy questions about the videos, incorporating their confidence (1-

efinitely yes, 2- maybe yes, 3-maybe no, 4-definitely no). 5 s were al-

otted for each accuracy question. Accuracy questions were designed to

eflect real world memory demands, where one may be asked to recall

etails about the content of an event as well as its context. There was a

otal of 1.2 s ISI within each trial, and an ITI (fixation cross) jittered at

, 6, and 8 s, with an average trial length of 34 s. Responses were made

sing 2 response boxes, each with 2 buttons. Retrieval trials occurred

ver 3 fMRI runs (17 trials each), each lasting 10 mins. Average vivid-

ess scores were 2.71 (SD = 0.36), and accuracy was on average 70%

question 1 = 0.73 (0.09); question 2 = 0.67 (0.07)). Vividness and ac-

uracy were correlated within-subjects (average within-subject r = 0.15,

 = 4.89, p < .001). Means and standard deviations on all episodic mem-

ry measures are reported in a previous study ( Hebscher et al., 2021 ). 

.4. MRI acquisition 

Structural and functional images were acquired using a Siemens 3

 Prisma whole-body scanner with a 64-channel head coil located in

he Northwestern University Center for Translational Imaging Facility.

unctional images were acquired using a whole-brain BOLD EPI se-

uence (TR = 2000 ms, TE = 20 ms, FOV = 1116 × 1080 mm, flip an-

le = 80°, and 1.7 × 1.7 × 1.7 mm voxel resolution, over 275 vol). Struc-

ural images were acquired using a T1-weighted MPRAGE sequence

TR = 2170 ms, TE = 1.69 ms, FOV = 256 × 256 mm, flip angle = 7°,

oxel resolution: 1.0 × 1.0 × 1.0 mm, 1-mm thick sagittal slices). The

ncoding phase of the memory task consisted of one 13.9 min run (418

ol), while retrieval was split among three 10 min runs (299 vol each).

.5. MRI preprocessing 

Functional MRI data were preprocessed using AFNI software. Pre-

rocessing included functional-structural co-registration, motion cor-

ection, spatial smoothing using a 1.7-mm full-width-half-maximum

FWHM) isotropic Gaussian kernel, and signal intensity normalization

y the mean of each voxel. Motion parameters were calculated for

ach volume, and volumes with excessive frame to frame displacement

 > 0.3 mm) were flagged for later censoring. 

Single-trial estimates were generated for multivariate analyses us-

ng a general linear model (GLM) in AFNI (3dDeconvolve). A separate

odel was constructed for each individual trial to estimate its activ-

ty separately from all other trials and nuisance variables, an approach

nown to work effectively for single-trial estimation for multivoxel pat-

ern analyses ( Mumford et al., 2012 ). For each functional run, individual

rials were modelled separately against all other trials using a response

odel of a 7-s block convolved with a canonical hemodynamic response

unction. Nuisance variables included the six affine motion estimates

enerated by motion correction as well as linear drift. For encoding tri-

ls, the 7-s block began at the start of video presentation, while at re-
9 
rieval the 7-s block began when participants saw the cued video title.

he resulting single-trial t-maps for each trial were used for subsequent

nalyses, based on recommendations that using t-maps rather than beta

aps for representational similarity analyses reduces the influence of

oisy voxels ( Dimsdale-Zucker and Ranganath, 2019 ). All multivariate

nalyses were carried out in native space. 

.6. Regions of interest 

Multivariate analyses were focused on a set of 15 bilateral ROIs span-

ing parietal, temporal, and occipital cortices ( Fig. 1 C). Cortical ROIs in-

luded superior parietal lobule, inferior parietal lobule, supramarginal

yrus, angular gyrus, precuneus, calcarine gyrus, cuneus, lingual gyrus,

uperior occipital gyrus, middle occipital gyrus, inferior occipital gyrus,

usiform gyrus, superior temporal gyrus, middle temporal gyrus, inferior

emporal gyrus. A hippocampal ROI was also used for control analyses.

OIs were defined using the Eickhoff-Zilles macro labels from N27 in

NI space (CA_ML_18_MNI atlas in AFNI) on a template brain in MNI

pace and warped to native space for each participant by calculating

he transformation matrix needed to warp into MNI space and then

everse-transforming all ROIs into native space using affine transforma-

ion (3dAllineate). 

.7. Representational similarity analysis 

.7.1. Across-item encoding pattern similarity 

We examined similarity between neural representations of different

ideos at encoding by conducting a series of representational similar-

ty analyses (RSAs) on patterns of neural activity within ROIs. RSAs

easured the Pearson’s correlation of each video’s evoked fMRI activ-

ty at encoding with the activity pattern of every other video at en-

oding, for each ROI. Pairwise correlations between all videos resulted

n an encoding-encoding similarity matrix, with the diagonal reflecting

ach video’s correlation with itself (1.0), and the off-diagonal reflect-

ng each video’s correlation with every other video. Pairwise correla-

ion values were then Fisher transformed, and for each video (row), we

alculated the average correlation with all other videos. This measure,

ermed across-item encoding similarity, reflects the relative similarity

f a given video to all other videos, effectively its place on a continuum

rom neural averageness to distinctness. 

.7.2. Encoding-retrieval reinstatement 

We examined reinstatement of video-specific patterns of neural ac-

ivity by conducting a series of RSAs on patterns of neural activity within

OIs. RSAs measured encoding-retrieval similarity by computing the

orrelation between neural activity patterns for all pairs of videos, for

ach ROI. Only trials that were self-reported as recollected (vividness

core of > 1) were included in these analyses (86% trials). Pairwise cor-

elations between all videos resulted in a matrix with the diagonal re-

ecting correlations between the same video at encoding and retrieval

matched pairs), and the off-diagonal reflecting correlations between

ifferent videos (mismatched pairs). Pairwise correlation values were

isher transformed. We then subtracted the mean of the off-diagonal

orrelation values from the mean of the diagonal correlations and took

he average of these on- vs. off-diagonal correlation differences. This

etric reflects the degree to which neural pattern similarity was greater

or matched versus mismatched video pairs. 

RSAs for both encoding-encoding and encoding-retrieval sim-

larity were computed in MATLAB (The MathWorks, Inc., Nat-

ck, MA, USA), using the CoSMoMVPA toolbox (cosmomvpa.org)

 Oosterhof et al., 2016 ) functions to load and organize fMRI datasets

cosmo_fmri_dataset), calculate encoding-encoding similarity matrices

cosmo_dissimilarity_matrix_measure), and encoding-retrieval similarity

atrices (cosmo_correlation_measure). All subsequent analyses on cor-

elation matrices were performed using in-house MATLAB scripts. 
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.8. Convolutional neural network measure of visual similarity 

To obtain a measure of visual similarity, we extracted learned im-

ge features from the pretrained CNN AlexNet ( Krizhevsky et al., 2012 )

 Fig. 1 D). CNNs are deep learning algorithms inspired by the organi-

ation of the visual cortex that consist of multiple layers, where later

ayers represent increasingly complex stimulus features ( Zeiler and Fer-

us, 2014 ). AlexNet is a CNN that is 8 layers deep and is trained on

ore than 1 million images to classify images into 1000 object cate-

ories. Briefly, AlexNet consists of 5 convolutional layers and 3 fully

onnected layers. Each convolutional layer integrates inputs from the

mmediate previous later and encodes them in more compact activity

atterns. The size of filter (kernel) shrinks with convolutional layers,

hile the number of filters increases and their receptive field enlarges,

llowing deeper layers to take in larger-scale, more comprehensive fea-

ures. In fully connected layers, each neuron is connected to all neurons

n previous layers with its own weights. For a more complete descrip-

ion of AlexNet’s construction, see Krizhevsky et al. (2012) . One frame

rom the midpoint of each video was used as input for the pretrained

etwork. We then extracted features from two layers of the network, an

arly layer (convolutional layer 2; conv2), reflecting a lower-level rep-

esentation of each image, and a deeper layer (fully connected layer 7;

c7), reflecting higher-level features constructed using the lower-level

eatures of earlier layers. Early and deep layers are thought to corre-

pond to visual information from early and late visual cortex, respec-

ively ( Güçlü and van Gerven, 2015 ; Yamins et al., 2014 ). The early

ayer (conv2) had a total of 186,624 features, while the deep layer (fc7)

ad 4096 features. For each layer, we constructed a correlation matrix of

he Pearson correlation between each video’s features. Visual similarity

or each video was computed by taking the average Fisher-transformed

ff-diagonal correlation for each video, or the average of each video’s

orrelation with all other videos. AlexNet was implemented in MATLAB

sing the Deep Learning Toolbox. 

.9. Group-level analyses 

Group-level statistics were performed to assess the relationship be-

ween (1) across-item encoding similarity and visual similarity, (2)

cross-item encoding similarity and reinstatement, and (3) across-item

ncoding similarity and memory performance. For each participant and

OI, we measured the correlation between the two measures of interest.

ne-sample permutation tests were then used to assess the significance

f the correlation values at the group-level. These tests create a null

istribution by assigning random signs to the observed correlation val-

es and recomputing the difference in means from the null population

ean 1000 times. Resulting p–values reflect the probability of the abso-

ute value of observed correlation differences being more extreme than

he absolute value of the permuted differences. Familywise error rates

ere corrected for multiple comparisons using Bonferroni-Holm method

 Holm, 1979 ). Corrected p-values are reported. 
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