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1 Introduction

This paper aims to connect three topics that have ignited interest at different times among
theoretical physicists. The topics are: Moyal deformations of field theories, chiral higher-
spin theories of massless particles, and chiral algebras that appear in celestial holography.

The Moyal bracket was introduced long ago to provide a geometric understanding of
phase-space non-commutativity in quantum mechanics [1]. It has since been applied also to
describe non-commutativity in a position-space plane. It is characterised by a deformation
parameter, which we will call α, and it turns out to be the most general deformation
of a Poisson bracket involving two coordinates that is still a Lie bracket [2]. Because
of this property, it is often the case that when a Poisson bracket arises in an integrable
system, the Moyal deformation of the bracket preserves the integrability. That was the
original motivation to introduce a Moyal deformation of self-dual gravity, whose equation
of motion is integrable [3]. Moyal deformations became the subject of intense interest in
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higher-energy theory when they appeared in M/string theory; see e.g. [4–7] as well as the
reviews [8, 9]. For instance, it was described in [7] how Yang-Mills theory in a space with
a non-commutative plane arises from the low-energy limit of open strings on a background
with a B-field. The Moyal deformation of self-dual Yang-Mills theory was considered in [5].
Our formulation of the Moyal-deformed self-dual theories, closer to the works [3, 10, 11],
focuses on the case where the plane of non-commutativity is null and can be chosen to align
with a particular gauge choice. This case allows for very simple Moyal-deformed equations
of motion of the self-dual theories in light-cone gauge.

The Moyal-deformed theories are not Lorentz invariant, due to the plane of non-
commutativity. As we will see, however, if we interpret their fields as generating functions of
higher-spin fields, these non-Lorentz-invariant theories generate Lorentz-invariant theories
of massless higher-spin particles. The latter coincide with the ‘chiral higher-spin theo-
ries’ discussed in [12–14], based on the chiral three-point vertices introduced in [15, 16];
see [17, 18] for related reviews. These theories are higher-spin extensions of self-dual
gravity/Yang-Mills. Moyal brackets are known to arise in higher-spin theories, and for the
particular chiral theories that we study here, the Moyal bracket was identified from the ver-
tices in [13]; see also [19, 20]. We develop further these insights by explicitly connecting the
chiral higher-spin theories to Moyal-deformed self-dual gravity/Yang-Mills, and exploring
some of the implications.

It is natural to expect that 4D-chiral theories lead to 2D-chiral celestial algebras,
by which we mean the operator-product algebras that arise from the consideration of
asymptotic scattering states in celestial holography; see [21–24] for recent reviews. Celestial
holography builds on the connection between asymptotic symmetries in asymptotically
flat spacetimes and ‘soft theorems’ obeyed by scattering amplitudes [25–27]. The soft
tower associated to asymptotic symmetries [28–31] admits a very simple formulation when
restricted to the self-dual sectors of gravity/Yang-Mills [32]. For self-dual gravity, one
obtains (the loop algebra of the wedge subalgebra of) w1+∞ [33]. This algebra can be seen
to arise in various ways; see [34] for a twistorial approach as well as a historical discussion
of related results, or e.g. refs. [35–43]. Deformations of the chiral algebras of self-dual
gravity/Yang-Mills have also been studied, with a focus on what class of deformations
preserves the associativity of the algebras [35, 37, 41, 44]. It was found in [43, 45] that the
Moyal deformation of self-dual gravity leads to a known deformation of w1+∞ into W1+∞.
The present paper was partly motivated by [41], where it was observed in examples that
the vertices of chiral higher-spin theories lead to an associative celestial algebra. See
refs. [46, 47] for other work on the celestial holography of chiral higher-spin theories.

There is a thread running through all these topics that illuminates their relationship,
and that is the double-copy structure of the theories in question. The double copy is a
factorisation of the interactions that most famously connects the perturbative structure of
Yang-Mills theory and gravity; see recent reviews in [48–51] and the seminal papers [52, 53].
For works relating celestial holography and the double copy, see [43, 54–65]. In particular,
refs. [43, 64] identified the property of associativity in chiral algebras, including the appear-
ance of w1+∞ in self-dual gravity, with the algebraic structure of the colour-kinematics dual-
ity, which is very simple in the self-dual sector [66]. This extends to the Moyal deformations
and also applies, as we will discuss here building on [13], to the chiral higher-spin theories.
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The structure of this paper is as follows. In section 2, we describe how Moyal-deformed
self-dual gravity/Yang-Mills generate chiral theories of higher-spin fields. In section 3, we
discuss the related double-copy structures of Moyal deformations and of chiral higher-spin
theories, and the vanishing of the tree amplitudes that is associated to classical integrability.
The celestial chiral algebras arising from the various theories considered are presented in
section 4. Section 5 provides a brief overview of loop amplitudes in these theories. The
paper concludes with a discussion in section 6.

2 Chiral higher-spin theories from Moyal deformations

In this section, we discuss the use of Moyal deformations of self-dual gravity and self-
dual Yang-Mills theory as generating theories for the chiral higher-spin theories developed
in [12, 14–16], and other related chiral higher-spin theories. Our light-cone-gauge approach
is closely related to covariant approaches followed in [19, 67–74] and especially [20], and
builds on observations in [13] for the symmetry algebra of the interactions. We follow the
notation of [43], which is useful for connecting the discussion to the literature on the double
copy later in the paper.

2.1 chs(α) from Moyal-SDG

The Moyal deformation of self-dual gravity (Moyal-SDG) [3] is defined in terms of the light-
cone gauge formulation of SDG [75, 76]. We employ light-cone coordinates (u, v, w, w̄), with
the wave operator � := 2(−∂u∂v + ∂w∂w̄) . The equation of motion of Moyal-SDG is1

�φ+ {∂uφ, ∂wφ}M = 0 . (2.1)

The difference with respect to SDG is that the latter’s Poisson bracket

{f, g} := f
↔
P g ,

↔
P =

←
∂ u
→
∂w −

←
∂w
→
∂ u , (2.2)

is substituted by its deformation into the Moyal bracket

{f, g}M := 1
2α(f ? g − g ? f) = 1

α
f sinh(α

↔
P ) g , (2.3)

defined from the Moyal product f ? g := f exp(α
↔
P ) g , which is associative but not com-

mutative. The parameter α characterises the deformation, such that {f, g}M → {f, g} as
α→ 0 . The Moyal bracket is the most general Lie bracket of functions of two variables [2],
here (u,w).2

1For notational simplicity, we suppress the gravitational coupling constant κ, which multiplies the in-
teraction term. This is achieved by a rescaling of φ. All the gravity-like theories in this paper inherit this
coupling constant. The analogous statement is true for the Yang-Mills-like theories to be seen later.

2Notice that the chosen non-commutative plane is complex in Lorentzian signature. In fact, so are all
the chiral-type theories we consider in this paper. A more natural setting is split signature, where the
coordinates w and w̄ are real and independent, and so are the two chiralities of the fields, e.g. φh and φ−h
to be seen below, where h is the helicity.
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It was suggested in [43] that φ may be interpreted as a composite field of chiral higher-
spin fields. This is closely related to discussions in [13] and also to a large body of work
concerning the symmetries of higher-spin theories. Here, we aim to make that suggestion
more concrete. Suppose that we write

φ = ζ2 ∑
h∈Z

ζ−h φh , (2.4)

where φh is a helicity-h field and ζ is a parameter that will allow us to project into spe-
cific helicity spaces. Now, consider the Laurent expansion of (2.1) in powers of ζ after
substituting α 7→ α ζ ,

0 = �φ+ φ

↔
P sinh(α ζ

↔
P )

α ζ
φ = �φ+ φ

( ∑
σ≥1

(α ζ
↔
P )2σ

α2 ζ2 (2σ − 1)!

)
φ

= ζ2 ∑
h

ζ−h

�φh +
∑
h1,h2

even h1+h2−h>0

φh1
(α
↔
P )h1+h2−h

α2 (h1 + h2 − h− 1)! φh2

 . (2.5)

Imposing that the equations of motion hold independently for each coefficient in the ζ-
expansion, we obtain precisely the equations of motion of the chiral higher-spin theory
of [12, 15, 16], which we will name chs(α).3 In fact, we can also obtain the action for this
theory, by introducing a projector P(ζ) into the helicity-0 part that acts linearly as

P(ζ) ζ
n = δn,0 ∀n ∈ Z , (2.6)

and writing4

Schs(α)(φh) = P(ζ)

∫
d4x

1
2 φ�φ+ 1

3

(
φ
↔
P sinh(α ζ

↔
P )φ

)
α ζ

φ

 ζ−4

=
∫
d4x

1
2
∑
h

φ−h�φh + 1
3

∑
h1,h2,h3

even h1+h2+h3>0

(
φh1

(
α
↔
P
)h1+h2+h3φh2

)
α2 (h1 + h2 + h3 − 1)! φh3

 .
(2.7)

An important feature is that while Moyal-SDG is not a Lorentz-invariant theory (due to
the plane of non-commutativity being special), the chiral higher-spin theory it generates is
in fact Lorentz invariant. We discuss this point further in section 3.3.

Simpler versions of a chiral higher-spin theory have been considered in the literature.
It is possible to restrict the theory above to admit only even spins. Independently, it is

3The helicity fields in these references are translated into our conventions as (∂u)h φh in order to simplify
the expressions. This causes the interactions to appear to have higher order in derivatives, e.g. for self-dual
gravity in the first line of (2.8).

4It would appear to be more convenient here to define P(ζ) ζ
n = δn,4, but other choices are more

convenient for later examples. So we chose instead to make the definition (2.6) and multiply by ζ−4 in the
first line. Any such definition can be enforced via a contour integral.
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possible to simplify the interactions. Suppose that we apply (2.4) to SDG, rather than to
its Moyal deformation:

0 = �φ+ φ
↔
P 2 φ

= ζ2 ∑
h

ζ−h
(
�φh +

∑
h1,h2

h1+h2−h=2

φh1

↔
P 2 φh2

)
. (2.8)

This gives a two-derivative chiral higher-spin theory introduced in [13] as a ‘contraction’
of the more involved theory of [12] we saw above. The action can be obtained analogously
to (2.7), keeping only the interaction terms obeying h1 + h2 + h3 = 2 . In fact, naming
the theory with action (2.7) chs(α), this simpler theory is just chs(0). So even undeformed
SDG generates via (2.4) a theory of higher spins.

We can also consider an even simpler chiral higher-spin theory, which was called
‘higher-spin SDG’ in [67]. While the theories above are all higher-spin generalisations
of SDG in some sense, this theory has the closest structure, because it possesses only
(+s1 +s2 −s3) vertices, for spins si ≥ 2; we recall that SDG has a single vertex (+2 +2−2).
In this case, we work with the generating fields

φ = ζ2∑
s≥2

ζ−s φs , φ̄ = ζ−2∑
s≥2

ζs φ−s , (2.9)

to obtain the action

ShsSDG(φ±s|s≥2) = P(ζ)

∫
d4x φ̄

(
�φ+ φ

↔
P 2 φ

)

=
∫
d4x

∑
s≥2

φ−s

(
�φs +

∑
s1,s2≥2

s1+s2−s=2

φs1

↔
P 2 φs2

)
. (2.10)

2.2 gl-chs(α) from Moyal-SDYM

Here we consider the ‘gluonic’ chiral higher-spin theory, with U(N)-valued fields, that is
associated to Moyal-deformed self-dual Yang-Mills theory (Moyal-SDYM). The equation
of motion of Moyal-SDYM is [5, 10]

�Ψ + [∂uΨ, ∂wΨ]M = 0 . (2.11)

For U(N)-valued A and B, we define

[A,B]M := A ? B −B ? A = A exp(α
↔
P )B −B exp(α

↔
P )A α→0−→ [A,B] . (2.12)

The equation (2.11) can be written as

�Ψa + fabc Ψb ↔P cosh(α
↔
P ) Ψc + dabc Ψb ↔P sinh(α

↔
P ) Ψc = 0 , (2.13)

where we denote

T aT b − T bT a = fabc T c , T aT b + T bT a = dabc T c . (2.14)
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Analogously to (2.4), we consider the generating field

Ψ = ζ
∞∑

h=−∞
ζ−h Ψh , (2.15)

where Ψh is a helicity-h field. The Laurent expansion of (2.11) in powers of ζ after substi-
tuting α 7→ α ζ is

0 = �Ψa + fabc Ψb ↔P cosh(α ζ
↔
P ) Ψc + dabc Ψb ↔P sinh(α ζ

↔
P ) Ψc

= ζ
∑
h

ζ−h
(
�Ψa

h +
∑
h1,h2

h1+h2−h>0

tabc
h1+h2−h

Ψb
h1

(
α
↔
P
)h1+h2−h Ψc

h2

α (h1 + h2 − h− 1)!

)
, (2.16)

where we define, for convenience,

tabc
Σh = fabc for odd Σh , tabc

Σh = dabc for even Σh . (2.17)

We obtain the equations of motion of the gluonic chiral higher-spin theory considered
in [14, 77]. The action is obtained from

Sgl-chs(α)(Ψh) = P(ζ)

∫
d4x tr

(
1
2 Ψ�Ψ + 1

3 Ψ [∂uΨ, ∂wΨ]M
)
ζ−2

=
∫
d4x

1
2
∑
h

Ψa
−h�Ψa

h + 1
3

∑
h1,h2,h3

h1+h2+h3>0

tabc
h1+h2+h3

(
Ψa
h1

(
α
↔
P
)h1+h2+h3 Ψb

h2

)
α (h1 + h2 + h3 − 1)! Ψc

h3

 .
(2.18)

If we apply (2.15) to SDYM, rather than to its Moyal deformation, we obtain

0 = �Ψa + fabc Ψb ↔P Ψc

= ζ
∑
h

ζ−h
(
�Ψa

h + fabc ∑
h1,h2

h1+h2−h>0

Ψb
h1

↔
P Ψc

h2

)
, (2.19)

If we call the theory (2.18) gl-chs(α), then the theory with the equations of motion given
in (2.19) is simply gl-chs(0). It was first considered in [13], and it can be truncated to
admit only odd spins, unlike gl-chs(α).

Finally, again analogously to the gravity case, there is a theory even more similar to
SDYM, which was called ‘higher-spin SDYM’ in [67]. The generating fields are

Ψ = ζ
∑
s≥1

ζ−s Ψs , Ψ̄ = ζ−1∑
s≥1

ζs Ψ−s , (2.20)

and the action of this theory is

ShsSDYM(Ψ±s|s≥1) = P(ζ)

∫
d4x tr Ψ̄ (�Ψ + [∂uΨ, ∂wΨ])

=
∫
d4x

∑
s≥1

Ψa
−s

(
�Ψa

s + fabc ∑
s1,s2≥1

s1+s2−s=1

Ψb
s1

↔
P Ψc

s2

)
. (2.21)
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Chiral higher-spin theory Vertices Generating theory

chs(α)
all spins

(
αX(k1, k2)

)h1+h2+h3

α2(h1 + h2 + h3 − 1)!

even h1 + h2 + h3 > 0

Moyal-SDG
action(φ)

chs(0)
all spins

X(k1, k2)2

h1 + h2 + h3 = 2
SDG

action(φ)

hsSDG
s ≥ 2

X(k1, k2)2

s1 + s2 − s3 = 2
SDG

action(φ, φ̄)

gl-chs(α)
all spins

(
αX(k1, k2)

)h1+h2+h3 ta1a2a3
h1+h2+h3

α (h1 + h2 + h3 − 1)!

h1 + h2 + h3 > 0

Moyal-SDYM
action(Ψ)

gl-chs(0)
all spins

X(k1, k2) fa1a2a3

h1 + h2 + h3 = 1
SDYM
action(Ψ)

hsSDYM
s ≥ 1

X(k1, k2) fa1a2a3

s1 + s2 − s3 = 1
SDYM

action(Ψ, Ψ̄)

Table 1. Table of chiral higher-spin theories. The generation technique is described in section 2.
The vertices are discussed in section 3. The actions appear in section 2, but their relevance is dis-
cussed in section 5. Truncations to even spins are allowed in chs(α), chs(0) and hsSDG. Truncations
to odd spins are allowed in gl-chs(0) and hsSDYM.

2.3 Useful table of chiral higher-spin theories

For the reader’s convenience, we list the chiral higher-spin theories discussed above in
table 1.

3 Double-copy structure and scattering amplitudes

In this section, building on ref. [13], we will see that the chiral higher-spin theories con-
sidered above inherit their double-copy structure from the Moyal-deformed theories. This
leads to vanishing tree-level amplitudes beyond 3-point scattering.

Before proceeding, let us recall the double-copy structure of SDG and SDYM [66, 78].
These theories possess only a 3-point vertex, given by5

VSDG = X(k1, k2)2 , VSDYM = X(k1, k2) fa1a2a3 , (3.1)

where
X(k1, k2) := k1wk2u − k1uk2w = −X(k2, k1) . (3.2)

These are bosonic vertices: notice that, due to momentum conservation, X(ki, kj) is com-
pletely antisymmetric in {k1, k2, k3}. The double-copy structure of these theories is based

5The equations of motion for each theory were given in the first lines of (2.8) and (2.19).
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on the factorisation of the vertices into the structure constants of two Lie algebras: the self-
dual-type ‘kinematic algebra’ X(k1, k2), and the colour Lie algebra in the case of fa1a2a3 .
The former is the algebra of area-preserving diffeomorphisms in the (u,w) plane,

[Lk1 , Lk2 ] = X(k1, k2)Lk1+k2 , (3.3)

generated by Hamiltonian vector fields

Lk := {ei k·x, ·} = i ei k·x(ku∂w − kw∂u) = ei k·x ku ε
+ · ∂ (3.4)

associated to positive helicity. In particular, the rightmost equality defines a standard
positive-helicity polarisation vector.

For all the theories considered in this paper, we will find the double-copy structure

V = X(k1, k2)CI1I2
I3 , (3.5)

where CI1I2
I3 are the structure constants of a Lie algebra specific to the theory. This fact

was known for many of the theories studied [13, 66, 79], to which we will add the cases of
Moyal-SDYM and the chiral higher-spin theory gl-chs(α), related via (2.16). Our approach
emphasises how the double-copy structure of chiral higher-spin theories follows from the
Moyal deformation.

3.1 Kinematic algebras in Moyal-SDG

The 3-point vertex in Moyal-SDG is

VMoyal-SDG = X(k1, k2)XM (k1, k2) , (3.6)

where
XM (k1, k2) := 1

α
sinh

(
αX(k1, k2)

)
. (3.7)

So the double-copy structure is that we have one copy of X(k1, k2) and one copy of its
Moyal deformation XM (k1, k2) [79]. The former arises from a Poisson bracket and the
latter arises from the associated Moyal bracket.6

Consider the Jacobi identity for the Moyal Lie bracket,

sinh
(
αX(k1, k2)

)
sinh

(
αX(k1 + k2, k3)

)
+ cyc(123) = 0 , (3.8)

where cyc(123) denotes the other two cyclic permutations of legs 123. Introducing k4 such
that

∑4
i=1 ki = 0, the expansion in α is

0 = sinh
(
αX(k1, k2)

)
sinh

(
αX(k3, k4)

)
+ cyc(123)

=
∑
Λ≥4

even Λ

αΛ−2

 Λ−2∑
n=1

oddn

X(k1, k2)Λ−2−n

(Λ− 2− n)!
X(k3, k4)n

n! + cyc(123)

 . (3.9)

6The counterpart of the generators (3.4) in the deformed algebra is LMk := {ei k·x, ·}M =
ei k·x

α
sinh

(
αku ε

+·∂
)
. Alternatively, the generators EMk := ei k·x

2α exp
(
αku ε

+·∂
)
lead to the same structure

constants. The latter choice is singular if we take α→ 0.
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Now, for the chiral higher-spin theory chs(α), with action (2.7), the vertex is

Vchs(α) = X(k1, k2) · 1
α

(
αX(k1, k2)

)h1+h2+h3−1

(h1 + h2 + h3 − 1)! = X(k1, k2) Ṽchs(α) , (3.10)

where the helicities hi are taken to be incoming with respect to the vertex. In this expres-
sion, we already show the two copies of structure constants, as originally identified in [13].
This should be compared to (3.6). The Jacobi relation for the algebra associated to Ṽchs(α)
takes the form

∑
hI

′ X(k1, k2)h1+h2+hI−1

(h1 + h2 + hI − 1)!
X(k3, k4)h3+h4−hI−1

(h3 + h4 − hI − 1)! + cyc(123)

= 1
2 (Λ− 2)!

[(
X(k1, k2) +X(k3, k4)

)Λ−2 −
(
X(k1, k2)−X(k3, k4)

)Λ−2] + cyc(123)

= 0 , (3.11)

where Λ :=
∑4
i=1 hi must be even, and moreover must satisfy Λ ≥ 4 because the sum over

helicities in each vertex must be positive and, due to Bose symmetry, even. Momentum
conservation leads to a cancellation in pairs in the final equality. The sum over hI in the
first line is restricted (hence the prime) so that both exponents are positive and odd; so the
‘odd part’ of the binomial formula is used in the first equality. The point is that the first
line of (3.11) is identical to the coefficient with Λ =

∑4
i=1 hi in the last line of (3.9). The

Jacobi relation for XM (k1, k2) encodes the Jacobi relation for Ṽchs(α), as noticed already
in [13]. This follows from

XM (k1, k2) =
∑
σ≥1

(
αX(k1, k2)

)2σ−1

α(2σ − 1)! =
∑
σ≥1

Ṽchs(α)(h1 + h2 + h3 = 2σ) . (3.12)

The conclusion here is that the double-copy structure of Moyal-SDG encodes the double-
copy structure of the associated chiral higher-spin theory.

For the simpler chiral higher-spin theory chs(0), where we have the restriction h1 +
h2 + h3 = 2, the double-copy structure of the vertex is the same as for SDG, in (3.1).
Indeed, the expression for the vertex is the same, only the particle content is extended.
The same conclusion applies to the theory hsSDG, with action (2.10), which is obtained
from chs(0) by keeping only spins si ≥ 2 and vertices of the form (+s1 +s2 −s3).

3.2 Kinematic and colour-kinematic algebras in Moyal-SDYM

The 3-point vertex in Moyal-SDYM, with equation of motion (2.13), is

VMoyal-SDYM = X(k1, k2)
(
cosh

(
αX(k1, k2)

)
fa1a2a3 + sinh

(
αX(k1, k2)

)
da1a2a3

)
. (3.13)
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The double-copy structure is similar to the previous cases, with the Jacobi relation for the
‘right algebra’ taking the form7

fa1a2bfba3a4 cosh
(
αX(k1, k2)

)
cosh

(
αX(k3, k4)

)
+fa1a2bdba3a4 cosh

(
αX(k1, k2)

)
sinh

(
αX(k3, k4)

)
+da1a2bfba3a4 sinh

(
αX(k1, k2)

)
cosh

(
αX(k3, k4)

)
+da1a2bdba3a4 sinh

(
αX(k1, k2)

)
sinh

(
αX(k3, k4)

)
+cyc(123) = 0 . (3.14)

This is an interesting instance of the double copy. Instead of the usual factorisation between
colour and kinematics as in (3.1), one of the algebras mixes colour and kinematics! In the
limit α→ 0, we recover the usual colour Lie algebra. This type of deformation of the colour
algebra appears in non-commutative Yang-Mills theory, e.g. [80]; see [81] for its appearance
in a context close to ours.8

The associated gluonic chiral higher-spin theory gl-chs(α), with action (2.18), has the
vertex

Vgl-chs(α) = X(k1, k2) ·
ta1a2a3
h1+h2+h3

(
αX(k1, k2)

)h1+h2+h3−1

(h1 + h2 + h3 − 1)! = X(k1, k2) Ṽgl-chs(α) , (3.15)

Similarly to the previous subsection, the relation (3.14) can be checked to encode in its
α-expansion the Jacobi relation for Ṽgl-chs.

For the simpler gluonic chiral higher-spin theory gl-chs(0), where we have the restric-
tion h1 + h2 + h3 = 1, the double-copy structure of the vertex is the same as for SDYM,
in (3.1). The same conclusion applies to the theory hsSDYM, with action (2.21), which is
obtained from gl-chs(0) by keeping only spins si ≥ 1 and vertices of the form (+s1 +s2−s3).

3.3 Comment on 3-point scattering amplitudes

We now discuss the interpretation of 3-point scattering amplitudes, focusing on Moyal-SDG
and chs(α). Consider the chiral higher-spin vertex

Vchs(α) =
(
αX(k1, k2)

)h1+h2+h3

α2(h1 + h2 + h3 − 1)! .
(3.16)

In our gauge choices and conventions, the 3-point amplitude is unhelpfully the same for
any triplet of external states with the same h1 + h2 + h3. We can backtrack slightly,
and introduce the two following elements to compute amplitudes in the spinor helicity-
formalism: we define9

X(k1, k2) = 〈η|k1k2|η〉 , (3.17)

7Generators for the algebra are provided by Ea
k
M := ei k·xT a exp

(
αku ε

+ · ∂
)
. Notice that there is a

restriction on the colour group, which we take to be U(N).
8For a different recent appearance of dabc in the double-copy literature, see [82, 83].
9We follow the notation of refs. [43, 78].
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and introduce the helicities factor for n external particles
n∏
i=1

(−〈ηi〉−2)hi . (3.18)

For massless particles, X(k1, k2) = 〈η1〉[12]〈2η〉. The rules here reduce to the previous ones
for a certain choice of the spinors. We can exemplify the rules by checking that the 3-point
amplitude is, up to a constant factor,

−X(k1, k2)h1+h2+h3∏3
i=1〈ηi〉2hi

= −X(k1, k2)h1+h2−h3X(k2, k3)h2+h3−h1X(k3, k1)h3+h1−h2∏3
i=1〈ηi〉2hi

= [12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 , (3.19)

as expected. Notice that, at 3 points, on-shell kinematics requires complexified momenta,
so the amplitude has no support on real momenta in Lorentzian signature.

Now, the basic observation is that10

VMoyal-SDG =
∑
σ≥1

(
αX(k1, k2)

)2σ
α2(2σ − 1)! =

∑
σ≥1

Vchs(α)(h1 + h2 + h3 = 2σ) . (3.20)

This exhibits the breaking of Lorentz symmetry in Moyal-SDG that arises from the (u,w)
plane of non-commutativity that is associated to X(k1, k2). Notice that each term in
the sum over σ can give rise to a Lorentz-invariant 3-point amplitude if multiplied by
appropriate external helicity factors (i.e. such that h1 + h2 + h3 = 2σ). There is no
way, however, for the sum of these terms to exhibit Lorentz invariance — understood as
independence on |η〉 and having homogeneous little-group scaling in each particle.

Still, the Lorentz non-invariance of Moyal-SDG is special, as the vertex generates
vertices of the Lorentz-invariant theory chs(α). To see how it is special, we can consider
the two conditions of Lorentz invariance in these theories with only 3-point light-cone-
gauge vertices. The first condition is Lorentz invariance of the 3-point amplitudes, which
is satisfied by chs(α) but not by Moyal-SDG for the reasons discussed above. The second is
the ‘gluing’ of 3-point vertices to form higher-point amplitudes (which turn out to vanish)
in accordance with the closure of the Lorentz algebra, for which the numerical coefficient in
each vertex is important; see e.g. [12]. These numerical coefficients are constrained by the
double-copy structure, in particular by the Jacobi relation (3.11) for the algebra Ṽchs(α).
Moyal-SGD has a double-copy structure related to that of chs(α), as illustrated in (3.9), so
in this sense it satisfies the second condition for Lorentz invariance, while failing the first.

3.4 Vanishing tree-level amplitudes

All the theories seen here have a 3-point vertex of the form (3.5). This subsection has a
single piece of information: following the argument given in [43], based on the double copy,
the fact that all these theories have the same ‘left algebra’ associated to X(k1, k2) means
that n-point tree-level scattering amplitudes for n > 3 vanish. For clarity, this is an on-shell

10See also related discussions in [13, 43, 45, 84].
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statement. In the case of the gluonic higher-spin theory gl-chs(α), the vanishing was shown
already in [14], based on Berends-Giele recursion for colour-ordered amplitudes. For the
non-gluonic theory chs(α), the amplitude was shown to vanish at 4 points in [12], and our
observation provides an all-multiplicity proof. These proofs apply for generic kinematics.
See [84] for a recent discussion of amplitudes supported on special (complexified) kinematics
with vanishing Mandelstam variables, which occurs also without higher spins [85].

4 Celestial chiral algebras

Celestial holography aims to interpret scattering amplitudes in four spacetime dimensions
as correlation functions of a conformal-type field theory on the two-dimensional celestial
sphere [86–89]. The external states in a scattering amplitude correspond to operator in-
sertions on the celestial sphere. As the figure below illustrates, the singular part of the
operator product expansion (OPE) between two such operators is fixed by the collinear
behaviour of the amplitudes [90, 91].

 

In this section, we will use the momentum-space approach (and conventions) of [43]
to obtain the chiral celestial operator product expansions relevant to the theories consid-
ered in this paper. Let us review this approach and its results. We use the following
parametrisation of massless momenta:

kAȦ = λAλ̃Ȧ , λA = (1, z) , λ̃Ȧ = (ku, kw) , (4.1)

so that the holomorphic coordinate on the celestial sphere is

z = kw̄
ku

= kv
kw

. (4.2)

With this choice, we identify the anti-holomorphic spinor bracket with the self-dual kine-
matic algebra,

[12] := εȦḂ λ̃1 Ȧ λ̃2 Ḃ = X(k1, k2) , (4.3)

and we can write the Mandelstam variables as

s12 := (k1 + k2)2 = (z1 − z2) [12] . (4.4)

Taking a ‘holomorphic collinear limit’ z1 → z2, we obtain for the OPE in SDYM (which
matches the ++ OPE in full Yang-Mills)

Oa1
+ (k1) Oa2

+ (k2) ∼ X(k1, k2) fa1a2a3

s12
Oa3

+ (k1 + k2) = fa1a2a3

z1 − z2
Oa3

+ (k1 + k2) . (4.5)
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The gravity counterpart is

O+(k1) O+(k2) ∼ X(k1, k2)2

s12
O+(k1 + k2) = X(k1, k2)

z1 − z2
O+(k1 + k2) . (4.6)

The double-copy structure matches that of the celestial OPEs [43, 64]: the X algebra is
associated to the chirality of the OPEs, while the second algebra (colour for SDYM and X
for SDG) provides the structure constants of the OPEs, ensuring associativity at tree level.

Let us remark that different points of view can be taken regarding the OPEs in SDYM
and SDG. One is that we see SDYM and SDG as the self-dual sectors of full Yang-Mills
and gravity, respectively, with their OPEs characterising the positive-helicity collinear be-
haviour of tree amplitudes in the full theories (since tree amplitudes beyond 3 points vanish
in the self-dual sectors). Another point of view is to study the self-dual theories themselves,
without consideration of full Yang-Mills and gravity. In this case, the OPEs are still mean-
ingful because they are determined only by the 3-point amplitudes, which are non-vanishing
in SDYM and SDG.11

The ‘soft-generator’ OPEs are obtained from the OPEs above by taking the soft limit
at fixed z, corresponding to λ̃Ȧ = (ku, kw)→ (0, 0). The operators are expanded as

Oa
+(k) =

∞∑
a,b=0

(iku)a

a!
(ikw)b

b! $a
a,b(z) , O+(k) =

∞∑
a,b=0

(iku)a

a!
(ikw)b

b! $a,b(z) . (4.7)

The soft generators lie in the ‘wedge’ a, b ≥ 0. They lead to the soft OPEs for SDYM,

$a1
a,b(z1)$a2

c,d(z2) ∼ fa1a2a3

z1 − z2
$a3
a+c,b+d(z2) , (4.8)

and for SDG,
$a,b(z1)$c,d(z2) ∼ ad− bc

z1 − z2
$a+c−1,b+d−1(z2) . (4.9)

We may also expand the soft generators in Laurent modes,

$a
a,b(z) =

∑
n∈Z

$a
a,b ;n
zn+1 , $a,b(z) =

∑
n∈Z

$a,b ;n
zn+1 . (4.10)

The SDYM modes satisfy the algebra

[$a1
a,b ;n , $

a2
c,d ;m ] = fa1a2a3 $a3

a+c,b+d ;n+m , (4.11)

while for SDG we have

[$a,b ;n , $c,d ;m ] = (ad− bc)$a+c−1,b+d−1 ;n+m . (4.12)

For SDYM, we have an affine Kac-Moody algebra with level zero, which was identified
in [90, 91]; see also [92] for previous related work. For SDG, we have the loop algebra
of the wedge subalgebra of w1+∞, which was identified in [33]12 building on [32]; see the
twistor derivation and historical discussion in [34].13

11The interpretation in terms of collinear behaviour turns out to apply too within the self-dual theories,
if we consider the one-loop amplitudes, which are very special. See the loop-level discussion in section 5.

12The translation between the conventions in [33] and ours is wpm(z) = 1
2 $p−1+m, p−1−m(z) .

13Despite the simplicity of these algebras of soft generators, the status of the latter as local operators in
a celestial conformal field theory was questioned recently in [93].
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4.1 Moyal-SDG and LW∧

We review now the case of Moyal-SDG, already analysed in [43, 45]. From the vertex (3.6),
we have

O+(k1) O+(k2) ∼ X(k1, k2)XM (k1, k2)
s12

O+(k1 + k2) = XM (k1, k2)
z1 − z2

O+(k1 + k2) .
(4.13)

Expanding as in (4.7), we obtain

$a,b(z1)$c,d(z2) ∼ (4.14)

1
z1−z2

∑
s≥0

α2s

(2s+ 1)!

2s+1∑
j=0

(−1)j
(

2s+ 1
j

)
[a]2s+1−j [b]j [c]j [d]2s+1−j $a+c−1−2s,b+d−1−2s(z2) ,

which is isomorphic to the loop algebra of the wedge subalgebra of W1+∞. W1+∞, in-
troduced in [94–96] and reviewed in [97, 98], is a higher-spin (in the 2D notion of spin)
extension of the Virasoro algebra; the latter is generated by the Laurent modes of the
(spin-2) chiral stress-energy tensor, whereas W1+∞ is an extension to generators of all
spins≥ 1. The isomorphism in the wedge subalgebra between (4.14) and W1+∞ follows
from the results of [99], and was well explained in [45], where LW∧ was used to denote
the loop algebra in this class of isomorphic wedge algebras. For α = 0, we recover the
loop algebra of the wedge subalgebra of w1+∞ as in (4.9). Refs. [37, 41] discussed related
deformations of the SDG chiral algebra.

4.2 chs(α)

We introduce now the celestial algebra of the chiral higher-spin theory chs(α), which is
related to Moyal-SDG. We now have the vertex (3.10), which leads to the OPE

Oh1(k1) Oh2(k2) ∼ 1
z1 − z2

∑
h3

even Σh>0

(
αX(k1, k2)

)Σh−1

α(Σh− 1)! O−h3(k1 + k2) , (4.15)

where Σh := h1 + h2 + h3 . The OPE is associative due to the double-copy structure of
the vertex as before, with the Jacobi relation now corresponding to (3.11). This proves an
observation made in [41], where it was noticed based on low-spin examples that the vertices
of Metsaev that define chs(α) lead to associativity.

The soft expansion of the OPE leads to the wedge-type algebra

$h1
a,b(z1)$h2

c,d(z2) ∼ 1
z1 − z2

∑
h3

even Σh>0

αΣh−2

(Σh− 1)! ×

Σh−1∑
j=0

(−1)j
(

Σh− 1
j

)
[a]Σh−1−j [b]j [c]j [d]Σh−1−j $

−h3
a+c+1−Σh,b+d+1−Σh(z2) .

(4.16)
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4.3 hsSDG

For the theory hsSDG in (2.10), the vertex matches that of SDG but admits higher spins
(s ≥ 2) such that s1 +s2−s3 = 2. This leads to an OPE that is a straightforward extension
of the SDG case,

Os1(k1) Os2(k2) ∼ X(k1, k2)
z1 − z2

Os1+s2−2(k1 + k2) . (4.17)

The soft expansion leads to the wedge-type algebra

$s1
a,b(z1)$s2

c,d(z2) ∼ ad− bc
z1 − z2

$s1+s2−2
a+c−1,b+d−1(z2) . (4.18)

4.4 Moyal-SDYM and deformed Kac-Moody algebra

From the vertex (3.13) of Moyal-SDYM, we obtain the OPE

Oa1
+ (k1) Oa1

+ (k2) ∼
1

z1 − z2

(
cosh

(
αX(k1, k2)

)
fa1a2a3 + sinh

(
αX(k1, k2)

)
da1a2a3

)
Oa3

+ (k1 + k2) . (4.19)

The associated soft OPE is the wedge-type algebra

$a1
a,b(z1)$a2

c,d(z2) ∼ 1
z1 − z2

∞∑
s=0

αs

s! t
a1a2a3
s+1 ×

s∑
j=0

(−1)j
(
s

j

)
[a]s−j [b]j [c]j [d]s−j $a3

a+c−s,b+d−s(z2) , (4.20)

where tabc
s′ was defined in (2.17). This is a deformation of a Kac-Moody algebra analogous

to the case of LW∧ for Moyal-SDG. For α = 0, we recover the Kac-Moody algebra of
SDYM in (4.8). Refs. [37, 41] discussed related deformations of the SDYM chiral algebra.

4.5 gl-chs(α)

For the U(N)-valued chiral higher-spin theory gl-chs(α), which is related to Moyal-SDYM,
the vertex (3.15) leads to the OPE

Oa1
h1

(k1) Oa2
h2

(k2) ∼ 1
z1 − z2

∑
h3

Σh>0

ta1a2a3
Σh

(
αX(k1, k2)

)Σh−1

(Σh− 1)! Oa3
−h3

(k1 + k2) , (4.21)

where Σh := h1 + h2 + h3 . As in all the previous cases, the OPE is associative due to the
double-copy structure of the vertex. The soft expansion of the OPE leads to the wedge-type
algebra

$h1,a1
a,b (z1)$h2,a2

c,d (z2)∼ 1
z1−z2

∑
h3

Σh>0

αΣh−1

(Σh−1)! t
a1a2a3
Σh × (4.22)

Σh−1∑
j=0

(−1)j
(

Σh−1
j

)
[a]Σh−1−j [b]j [c]j [d]Σh−1−j$

−h3,a3
a+c+1−Σh,b+d+1−Σh(z2).
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4.6 hsSDYM

Finally, for the theory hsSDYM in (2.21), the vertex matches that of SDYM but admits
higher spins (s ≥ 1) such that s1 + s2 − s3 = 1. This leads to an OPE that is a straight-
forward extension of the SDYM case,

Oa1
s1 (k1) Oa2

s2 (k2) ∼ fa1a2a3

z1 − z2
Oa3
s1+s2−2(k1 + k2) . (4.23)

The soft expansion leads to the wedge-type algebra

$s1,a1
a,b (z1)$s2,a2

c,d (z2) ∼ fa1a2a3

z1 − z2
$s1+s2−1,a3
a+c,b+d (z2) . (4.24)

5 Loop level

The loop-level study of chiral higher-spin theories was initiated in [14, 77, 100], which
focused on one-loop planar amplitudes in the theory gl-chs(α) with action (2.18). In
this section, we will discuss loop amplitudes in the various chiral higher-spin theories we
considered. Many statements are explicit or implicit in [14, 77, 100] and also in [70], so
we are just aiming to give a useful overview. The collinear behaviour of loop amplitudes
is relevant to the quantum fate of the tree-level celestial chiral algebras that we discussed
above. Obviously, if the loop amplitudes vanish, then the chiral algebra is exact. It is
sufficient, however, that the collinear behaviour of a theory is preserved at loop level, as
exemplified in [101] for SDG, where w1+∞ is a perturbatively exact symmetry. At one loop,
this is implied by the vanishing of the tree amplitudes under some assumptions, because
the one-loop correction to the collinear splitting function multiplies the tree amplitude; see
e.g. [45] for a discussion concerning Moyal-SDG. Recent results indicate that, for generic
theories, the celestial OPEs acquire loop corrections that violate the associativity of the
chiral algebra [40, 102, 103]. For the chiral theories of the type studied here, no such
violation is known.

Let us start with the theories hsSDG (2.10) and hsSDYM (2.21), which have the
simplest structure of vertices. They possess only vertices of the type (+s1 +s2 −s3), for
spins si ≥ 2 in the case of hsSDG, and si ≥ 1 in the case of hsSDYM. As such, like SDG and
SDYM, they are one-loop exact theories, because it is not possible to write down higher-
loop diagrams with only vertices of that type. It may be convenient for some readers to
describe the argument in detail. The number of loops is

L = I − v + 1 , (5.1)

where I is the number of internal lines and v is the number of vertices. The argument only
cares about the signs of the helicities, so we can base it on (+ +−) vertices. 
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Dressing the diagram with helicity signs as in the figures above, the plus and minus signs
can be counted from either the lines (external and internal) or the (+ +−) vertices:

n+ + I = 2v , n− + I = v . (5.2)

We obtain
n+ = 1− L+ v , n− = 1− L . (5.3)

Hence, at tree level we have n− = 1, at one loop we have n− = 0, and there is no solution
for L > 1. Therefore, we need to consider only one loop. Let us consider first hsSDYM.
Since at one loop the number of external particles is n = n+ = v, and since the sum over
helicities in each vertex is Σh = 1, we have that

∑n
i=1 hi = n. This requires that the

external helicities, which must be positive, are hi = 1 in hsSDYM, just like in SDYM. For
each one-loop diagram, any vertex that is not part of the loop is of the type (+1 +1−1) as
in SDYM, while the vertices in the loop are of the type (+1 +s−s), and there is a sum over
spins s running in the loop. Therefore, the one-loop amplitudes in hsSDYM equal the ones
in SDYM multiplied by a factor

∑
s≥1 1.14 Following [14], we use the zeta-regularisation

procedure of [104] to identify that factor with ζ(0) = −1
2 . Hence, the non-vanishing one-

loop amplitudes are [70]

A(1)
hsSDYM(11, 21, · · · , n1) = −1

2 A
(1)
SDYM(1+, 2+, · · · , n+) , (5.4)

where, on the left-hand side, the superscript indicates the helicity of each particle. A
similar story applies to hsSDG, with hi = 2 and a factor

∑
s≥2 1. We assume that the

latter is regularised as ζ(0)− 1 = −3
2 . Hence, the non-vanishing one-loop amplitudes are

A(1)
hsSDG(12, 22, · · · , n2) = −3

2 A
(1)
SDG(1+, 2+, · · · , n+) . (5.5)

A recent line of work [39, 103, 105–108] has described one-loop amplitudes in SDYM and
SDG as resulting from an anomaly, as first suggested in [109]. The anomaly can be cancelled
by coupling the gauge field to an ‘axion’, leading to an anomaly free theory with vanishing
loop amplitudes. The same can be done for hsSDYM and hsSDG, as recently pointed out
in [70]. Our discussion indicates that it is sufficient that the axion couples to spin 1 in
hsSDYM and to spin 2 in hsSDG, since the higher spins do not contribute as external states
to non-vanishing one-loop amplitudes. The coupling to the axion is then fixed by adjusting
the coefficients that apply in SDYM and SDG to ones consistent with the two expressions
for amplitudes above. Curiously, in the case of hsSDYM, if we truncate the theory to
odd spins, and assume the zeta-function regularisation of

∑
odd s≥1 1 is 0,15 the one-loop

amplitudes vanish. Following the discussions in [39, 105], there should be no loop-level
obstruction to directly uplifting this theory to twistor space. For hsSDG, if we truncate
to even spins, the analogous zeta-function regularisation of

∑
even s≥2 1 leads instead to a

factor of −1
2 .

16

14Notice that a factor of 2 accounting for (+1 ±s ∓s) is already included in SDYM.
15This corresponds to

∑
odd s≥1 1 =

∑∞
n=1(2n− 1)−s → 0 in the limit s→ 0.

16This corresponds to
∑

even s≥2 1 =
∑∞

n=1(2n)−s = 2−sζ(s)→ ζ(0) = − 1
2 in the limit s→ 0.
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Before proceeding to other theories, we note that hsSDG and hsSDYM have a collinear
behaviour analogous to that of SDG and SDYM, and therefore their celestial algebras are
quantum exact, similarly to the SDG case of w1+∞ [101].

Let us move now to the chiral higher-spin theories chs(0) and gl-chs(0), obtained
respectively from the actions (2.7) and (2.18) after setting α = 0. Consider one loop. The
vertices satisfy again Σh = 2 for chs(0) and Σh = 1 for gl-chs(0), so the external states
must obey

∑n
i=1 hi = 2n and

∑n
i=1 hi = n respectively. However, the external states do not

individually have the same restriction as they did in hsSDG (hi = 2) and hsSDYM (hi = 1),
because the vertices are not all of the type (+s1 +s2 −s3). Nevertheless, given an m-gon
loop subdiagram (i.e. m = 2 is a bubble, m = 3 is a triangle, etc), its ‘external’ helicities
obey the sum rules

∑m
i=1 hi = 2m and

∑m
i=1 hi = m for chs(0) and gl-chs(0), respectively;

and moreover, fixing a single helicity along the loop fixes them all, with the sum rule being
the consistency condition. The conclusion is that the possibility of fixing a single helicity
along the loop to any value still leads, for the amplitudes, to a factor representing the sum
over helicities running in the loop. This factor is∑

h

1 = 1 + 2
∑
s≥1

1 = 1 + 2ζ(0) = 0 , (5.6)

where the isolated 1 is the scalar contribution, and 2
∑
s≥1 1 is the contribution from the

other helicities. This vanishing factor multiplies in chs(0) and gl-chs(0) the one-amplitudes
of hsSDG and hsSDYM, and there is also a helicity-dependent overall factor in each case.
The point is that the vanishing factor multiplies a finite contribution, so the one-loop
amplitudes vanish, which is the argument given in [14, 77, 100]. Remarkably, if we truncate
gl-chs(0) to admit only odd spins, we get zero again from 2

∑
odd s≥1 1 = 0; and if we

truncate chs(0) to admit only even spins, we get zero again from 1 + 2
∑

even s≥2 1 =
1 + 2(−1

2) = 0. We conclude that the theories chs(0) and gl-chs(0) are actually simpler at
one loop than hsSDG and hsSDYM.

At higher loops, however, the amplitudes in hsSDG and hsSDYM manifestly vanish
due to the class of vertices, as we mentioned — an argument that does not apply to chs(0)
and gl-chs(0). To illustrate this point, we can start by recalling the story for SDYM. Its
equation of motion admits two types of cubic action: one with a single field [110, 111],

SΨ3 ‘SDYM’(Ψ) =
∫
d4x tr

(1
2 Ψ�Ψ + 1

3 Ψ[∂uΨ, ∂wΨ]
)
, (5.7)

and one with two fields representing opposite helicities that was introduced later in [112],

SSDYM(Ψ, Ψ̄) =
∫
d4x tr Ψ̄ (�Ψ + [∂uΨ, ∂wΨ]) . (5.8)

This second action has a (++−) vertex and is therefore one-loop exact. This is the correct
action for SDYM as a quantum field theory, and it can be seen as a sector of the full
Yang-Mills theory. The theories hsSDG and hsSDYM are analogous to this case, as it
is clear in the way they are generated from SDG and SDYM in (2.10) and (2.21). The
action (5.7), on the other hand, admits diagrams with any number of loops. This is not
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a Lorentz-invariant theory: the propagator does not connect fields of opposite helicity,
unless the field is a scalar, but then the vertex would unavoidably break Lorentz invariance
because there is no gauge to be fixed. Surprisingly, this non-Lorentz-invariant theory does
generate the Lorentz-invariant theory gl-chs(0) as seen in (2.18) if we set α = 0. Given that
the one-loop amplitudes vanish so beautifully due to a sum over helicities, it is tempting
to conclude that the same will happen at higher loops. In fact, the sum (5.6) will still arise
for an m-gon loop subdiagram with given ‘external’ helicities joining the loop. However,
it is not clear now whether such vanishing factors multiply a finite kinematic function; it
was clear at one loop because of the relation to one-loop amplitudes in SDG and SDYM.
If the kinematic functions diverge, perhaps the conclusion is still that the loop amplitudes
vanish, but there is a worrying competition of regularisations (states running in the loop
versus, say, dimensional regularisation). We will not pursue this further here.

The ‘oldest’ and most complicated chiral higher-spin theories are chs(α) and gl-chs(α)
for α 6= 0, with actions (2.7) and (2.18). The gl-chs(α) case was studied in [14, 77, 100],
where it was found that the planar one-loop amplitudes are again related to the planar
SDYM amplitudes, with a helicities-dependent dressing factor; they still vanish in view of
an overall factor giving the sum over states running in the loop, which vanishes in zeta
regularisation, similarly to gl-chs(0). In fact, the arguments above still apply, because
an m-gon loop (sub)diagram, with given ‘external’ helicities and with given Σh for each
vertex, will provide the sum (5.6) over states in the loop. Now, however, it is even harder
to know whether such vanishing factors multiply a finite kinematic function, due to the
higher tensorial rank of the numerators in a loop integrand. At one loop, this was checked
explicitly in [14, 77, 100] for planar gl-chs(α). For the non-planar part and for chs(α), we
still have the unitarity-based argument that the one-loop amplitudes cannot have branch
cuts because the tree amplitudes vanish, but this does not show that the amplitudes are
finite. Beyond one loop, the status of chs(α) and gl-chs(α) is at least as unclear as the
status of their α = 0 counterparts mentioned earlier: sums over states in the loops suggest
that the amplitudes vanish, but the possibility of divergences in the loop integration should
give us pause.

Finally, one may wonder about the relation to amplitudes in Moyal-SDG and Moyal-
SDYM, seen respectively as theories of spin 2 and spin 1 particles with Lorentz-breaking
higher-derivative corrections. Notice that the Moyal deformed self-dual equations of motion
admit actions analogous to (5.7) or to (5.8). In the latter case, the actions define one-
loop exact theories. In either case, the one-loop amplitudes cannot have branch cuts
because the tree amplitudes vanish. As for the relation to the chiral higher-spin theories,
it arises from actions of the type (5.7), as we saw in (2.7) and (2.18). Hence, a priori, the
chiral higher-spin theories could have amplitudes of any loop order. We can consider the
correspondence (3.20) between Moyal-SDG and chs(α). It implies that a loop integrand in
chs(α), with a specific choice of external helicities, is related to a particular power of α in the
analogous Moyal-SDG integrand, up to the sum over states running in the loop and to an
overall factor fixing the external helicity weights. However, the perturbative behaviour of
(non-planar) theories on non-commutative spaces can be non-analytical in the deformation
parameter [113, 114], so this may be a subtle question, and we will not pursue it here.
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For planar theories on non-commutative spaces, e.g. planar Moyal-SDYM, the amplitudes
at any loop order turn out to match those of the limiting commutative theories times a
‘phase’, due to the form of the Moyal product at each vertex [113, 114]. (An actual phase
arises from defining our non-commutativity parameter α to be imaginary, which is also a
common choice.) Hence, presumably the planar one-loop results of [14, 77] for gl-chs(α),
which is related to Moyal-SDYM, can be interpreted in the following manner: start with
a planar one-loop SDYM amplitude; deform it into a Moyal-SDYM amplitude using the
phase, whose argument is proportional to α; expand that amplitude in α; specify the desired
external higher-spin states in the gl-chs(α) amplitude; pick up the corresponding term in
the α expansion, which is selected by the value of the sum of helicities of the external
states; multiply by the appropriate external helicities factor, as discussed in section 3.3;
and, finally, multiply also by the vanishing sum over states running in the loop (5.6).
Beyond one-loop (but still in the planar sector), we may expect to proceed in the same
way by starting with ‘SDYM’ and its Moyal deformation, whose actions appear in (5.7)
and (2.18); notice that while they match SDYM and Moyal-SDYM at one loop, they may
have non-vanishing higher-loop amplitudes. However, we come across the issue discussed
above with the competition of regularisations: we would need to understand the integration
over loop momenta in ‘SDYM’. We will not pursue these questions further here.

6 Conclusion

We discussed various connections between chiral-type theories, namely self-dual gravity or
Yang-Mills, their Moyal deformations, and chiral higher-spin theories. Table 1 summarised
some of the main results. We described a notion of theories ‘generating’ other theories,
which is realised in a simple manner in light-cone gauge. Indeed, there is a wonderful
ambiguity in the use of light-cone gauge: if one is given a gauge-fixed equation, it may
prove difficult to understand basic facts about its constituents, such as the spin of the
fields; and yet, not only does the simplicity of the expressions — particularly for chiral
theories — allow one to obtain crucial insights about the structure of a theory, but also the
‘ambiguity’ can be fruitful in suggesting connections between theories. The very existence
of chiral higher-spin theories was noticed first using light-cone-gauge methods [12, 15, 16].
Another example is the straightforward off-shell realisation of the colour-kinematics duality
in self-dual Yang-Mills theory [66]. We saw how all the chiral-type theories were akin to
self-dual Yang-Mills, in that the double-copy structure of the vertex has one copy of the
self-dual kinematic algebra and one copy of another (colour, kinematic or colour-kinematic)
algebra. We also mentioned how this is sufficient to guarantee the vanishing of the tree-
level amplitudes in all these theories, applying an argument from [43] to new examples.
(One may ask, in the context of the double copy, what happens if one uses a vertex that
is the product of, say, two Moyal-deformed self-dual kinematic algebras. The amplitudes
do not vanish, but the theory breaks Lorentz invariance, apparently without an interesting
interpretation.)

Along with making these connections between theories, one of our main goals was to
describe associativity-preserving deformations of OPE algebras arising in celestial hologra-
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phy, in particular the chiral algebras of soft modes of gluons and gravitons; see [35, 37, 41]
for related work. The case of Moyal-deformed self-dual gravity, which we reviewed, was
discussed recently in [43, 45] and is related to W1+∞. In this paper, we added the case
of Moyal-deformed self-dual Yang-Mills, which gives a related deformation of a U(N) Kac-
Moody algebra. We also presented here the (2D-)chiral algebras for the (4D-)chiral higher-
spin theories.

Finally, we gave an overview of loop amplitudes in these various theories. Light-cone
gauge played a crucial role here again, allowing us to focus our arguments on physical
degrees of freedom, thereby avoiding the need for Faddeev-Popov ghosts.

There are various open questions. Regarding chiral higher-spin theories, it would be
interesting to consider extensions, such as the theory recently discussed in [70, 115] and
also supersymmetric extensions.

Regarding the celestial algebras, this paper builds on the results of [43, 64] connecting
the colour-kinematics duality to the associative structure of the tree-level celestial algebras.
Indeed, it would be surprising if these were two fully distinct algebraic structures. It is
important, however, to extend this connection to the full theories, i.e. beyond the chiral
sector. The simplest next step would be the MHV (next-to-self-dual) sector, where relevant
OPEs have been recently worked out to all orders in the collinear expansion [116]. At loop
level, the connection is harder to envisage, but its exploration may lead to lessons on both
sides. We could also study in greater detail the various chiral-type theories discussed here
even at tree level. We came across a deformation of a U(N) Kac-Moody algebra, and
it would be interesting to study it further and to extend it to central terms and other
parameters, similarly to the case of W1+∞.

As a final open question, the precise relations of some or all of the chiral-type theories
considered here to the N = 2 strings remain to be fully uncovered; see e.g. [117–119].
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