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Abstract

The world around us as well as our responses to worldly events are multimodal in nature. For

intelligent machines to integrate seamlessly into our world, it is imperative that they can process

and derive useful information from multimodal signals. Such capabilities can be provided to

machines by employing multimodal learning algorithms that consider both the individual char-

acteristics of unimodal signals as well as the complementariness provided by multimodal signals.

Based on the number of modalities available during the training and testing phases, learning algo-

rithms can be of three categories: unimodal trained and unimodal tested, multimodal trained and

multimodal tested, and multimodal trained and unimodal tested algorithms. This thesis provides

three contributions, one for each category and focuses on three modalities that are important

for human-human and human-machine communication, namely, audio (paralinguistic speech),

vision (facial expressions) and language (linguistic speech) signals. For several applications,

either due to hardware limitations or deployment specifications, unimodal trained and tested sys-

tems suffice. Our first contribution, for the unimodal trained and unimodal tested category, is an

end-to-end deep neural network that uses raw speech signals as input for a computational paralin-

guistic task, namely, verbal conflict intensity estimation. Our model, which uses a convolutional-

recurrent architecture equipped with attention mechanism to focus on task-relevant instances of

the input speech signal, eliminates the need for task-specific meta data or domain knowledge

based manual refinement of hand-crafted generic features. The second contribution, for the mul-

timodal trained and multimodal tested category, is a multimodal fusion framework that exploits

both cross (inter) and intra-modal interactions for categorical emotion recognition from audio-

visual clips. We explore the effectiveness of two types of attention mechanisms, namely, intra-

and cross-modal attention by creating two versions of our fusion framework. In many applica-

tions, multimodal signals might be available during model training phase, yet we cannot expect

the availability of all modality signals during testing phase. Our third contribution addresses this

situation wherein we propose a framework for cross-modal learning where paired audio-visual

instances are used during training to develop test-time stand-alone unimodal models.
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Chapter 1

Introduction

1.1 Motivation

The term ‘modality’ refers to the way in which something exists or is experienced or expressed [2].

Most physical events that we encounter in this world consist of multiple modalities; for exam-

ple, we can see, hear and touch the rain; objects around us may have their own characteristic

shape, sound and smell. We experience this world via biological sensors that capture signals

from multiple modalities. Visible aspects of events can be seen using our eyes, the mechanical

vibrations that they might produce can be heard, their texture can be felt by touch, their flavour

can be tasted and their scent can be smelled. Our brain uses signals provided by one or more of

these sensory organs to generate an understanding about the nature of the event/events in ques-

tion. Our responses to events are also multimodal in nature. We can express ourselves as well as

interact with other humans and objects using multiple modalities like linguistic speech, paralin-

guistic speech, non-verbal audio, facial expressions, gestures, postures, touch etc. In particular,

human-human interactions are remarkable examples of events where there exist significant inter-

plays between multimodal signals. This thesis focuses on three modalities that are important for

human-human and human-machine interaction scenarios, namely, audio (paralinguistic speech),

vision (facial expressions) and language (linguistic speech).

Machine Learning (ML) systems use artificial sensors to automate the functionality of biolog-

ical sensors. Cameras can be the eyes, microphones can be the ears, tactile sensors can emulate

the skin, taste sensors can be the tongue and odor sensors can be the nose. These sensors convert

9
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respective attributes of physical events into machine friendly formats. For example, cameras can

convert three dimensional world co-ordinates into two dimensional images and microphones can

convert mechanical vibrations into electrical audio signals. Outputs from these sensors are thus

suitable for being processed by computers. For ML systems to blend seamlessly in our world,

they need to be equipped with capabilities to extract relevant information from multi-sensory

signals. ML algorithms can be designed to process one or more sensory signals at a time. ML

systems that utilise only one modality are called ‘unimodal’ or ‘monomodal’ systems and those

that process multiple modalities are called ‘multimodal’ systems [3, 4, 5]. Both unimodal and

multimodal systems have their own challenges, advantages and disadvantages and a choice be-

tween them is taken after considering various factors like the use case, availability of sensors,

computational and memory requirements etc.

Traditional unimodal systems for paralinguistic speech tasks use off-the-shelf classifiers/ re-

gressors on generic hand-crafted acoustic features, which require further manual refinement and

time-consuming feature pruning [6, 7, 8, 9]. Such systems require separate training and parameter

tuning of the feature extractor and the classifier/regressor. Domain knowledge based hypothe-

ses and metadata may also be needed to extract task-specific features from standard acoustic

features [10, 11, 12]. Therefore, an important problem in speech based computational paralin-

guistics is the design of end-to-end deep learning, which trains models directly from raw input

data: since the parameters are trained jointly, the end-to-end model learns task-specific features

directly from the input, without requiring any guidance other than the objective function and the

training dataset [13, 14].

While unimodal systems are limited by the information content in a single modality, multi-

modal systems can leverage information from multiple modalities and hence have more potential

to provide improved performance compared to their unimodal counterparts [2, 3, 5]. Multi-modal

systems should be capable of modelling both intra (within) modality as well as inter (cross)

modality interactions. The term intra-modal refers to the interactions between different local

temporal positions within a single modality to derive the task-specific global semantics. Inter-

modal or cross-modal refers to similar interactions across multiple modalities [15]. Multimodal

systems should also be capable of handling heterogeneous modalities of varying dimensionalities

by designing specific architectural components that can suit the characteristics of their respective

modalities [16]. These components should be responsible for modelling the intra-modality inter-
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Figure 1.1: The three multimodal paradigms considered in this thesis

actions in the system. The design complexity of multimodal systems stems partly from the fact

that the information to explain an event is unevenly spread across the associated modalities and

hence the multimodal system should accommodate the following modes of interplay between

modalities [17];

• Equivalence/substitution: one modality conveys a meaning not borne by the other modali-

ties (it could be conveyed by these other modalities)

• Redundancy/repetition: the same meaning is conveyed at the same time via several modal-

ities

• Complementarity:

– Amplification accentuation/moderation: one modality is used to amplify or attenuate
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the meaning provided by another modality

– Additive: one modality adds congruent information to another modality

– Illustration/clarification: one modality is used to illustrate/clarify the meaning con-

veyed by another modality

• Conflict/contradiction: the meaning transmitted by one modality is incompatible or con-

trasting with the ones conveyed by the other modalities

• Independence: the meanings conveyed by different modalities are independent and should

not be merged.

Thus, an important problem in multimodal learning is to ‘fuse’ information from multiple

modalities by taking these different types of intra- and inter-modal interactions into account [18,

19, 20].

In comparison to multimodal systems, unimodal systems are limited by the information con-

tent in a single modality alone. To infuse the advantages of multimodal learning into unimodal

systems, a training strategy can be employed where multiple modalities are used during training

to improve the test-time performance of unimodal models [21, 22, 23]. This strategy, generally

known as, Co-learning, is based on the intuition that some modalities can ‘aid’ or ‘help’ other

modalities in creating better feature representations or stand-alone models [2, 24, 25, 26]. The

helper modality/modalities are usually used only during the training and not the testing phase.

This thesis focuses on the three paradigms of multimodal learning, namely, unimodal learn-

ing (training and testing with a single modality), multimodal fusion (training and testing with

multiple modalities) and co-learning (multimodal training and unimodal testing), as shown in

Figure 1.1. We first propose a unimodal end-to-end modelling framework that can process raw

data without the need for meta information or domain knowledge based hand-crafted features.

We then propose a multimodal fusion framework that can exploit intra- and cross-modal inter-

actions using two types of attention mechanisms. Finally, we propose a multimodal co-learning

framework that transfers knowledge from multiple modalities into unimodal models to improve

the unimodal test-time stand-alone performance.
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1.2 Problem Definition

Let X represent an audio-visual clip containing either human-human verbal communication in-

teractions or monologues. X can be split into Xa and Xv representing audio (speech) and vision

(RGB image sequence) channels respectively. Language modality represented by Xl can be ex-

tracted from Xa by means of manual or automatic transcription. Since all signals are derived

from the same audio-visual clip, the temporal lengths of all signals are the same (in terms of sec-

onds, minutes or hours). However, the number of samples within each modality can be different

because of the difference in the sampling frequencies of their corresponding sensors.

Since speech is the most natural means of human-human communication, our first research

goal is to ascertain if it is possible to design an end-to-end deep learning model for computational

paralinguistics. Here the objective is to develop an end-to-end trainable deep learning based

regression model that uses one dimensional raw speech signal Xa as input and maps it to a

decision space of continuous labels Yc. The model should not rely on explicit meta information

like the number of speakers, speech overlaps or onset-offset instances, instead it should learn

task-relevant features directly from the input data.

Our second research goal is to achieve multimodal fusion using audio, vision and language

modalities for affect recognition tasks. Here the objective is to develop a fusion model that can

learn both intra (within) and cross (across) modality interactions for an important multimodal

para-linguistic task, namely, categorical emotion classification. The model should take combina-

tions of audio, vision and language modality features as input and map them to a discrete (Yd) or

continuous label space (Yc).

Our third and final research goal is to achieve multimodal co-learning that can improve the

unimodal stand-alone performance by employing multiple modalities during training phase. The

objective here is to develop a co-learning model that can learn better unimodal feature repre-

sentations by using paired multimodal signals during the training phase alone. Both Xa and Xv

can be used during training to develop better unimodal features when either Xa or Xv alone is

available during testing. Let the performance of a unimodal trained and unimodal tested model

be denoted by an evaluation metric as A1 and the performance of the multimodal trained and

unimodal tested model in terms of the same metric be denoted as A2. Then A2 should be greater

than A1, where higher the value better is the metric.
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1.3 Research Questions

In order to address the above mentioned research goals, the following research questions(RQs)

have been explored in this thesis.

• RQ1: Is it possible to design end-to-end models for speech based computational paralin-

guistic tasks? and if yes, can the predictions of such ‘black-box’ models be interpreted

using any existing explainable-AI [27] methods?

Exploration of the existing research literature shows that majority of the end-to-end neural

networks for speech modality are designed for the task of speech recognition [28, 29, 30].

Although a few end-to-end works exist for emotion recognition [14], such models for other

computational paralinguistics tasks are scarce. Also, these works do not use any existing

explainable-AI methods to interpret the predictions of their end-to-end models. We aim

to address these research gaps by designing the first speech based end-to-end model for a

complex paralinguistic task, namely, verbal conflict intensity estimation, and adapting the

explainable-AI method called LIME [31] to explain its predictions.

• RQ2: Is cross-modal attention preferable to intra-modal attention in multi-modal fusion

models for emotion recognition? Also, how robust are the performances of these mod-

els in missing modality conditions and what are the ways to alleviate missing-modality

performance deterioration?

A plethora of research literature exists on multi-modal fusion for affective computing,

that uses audio, vision and language modalities as input. Lately, attention [32] based

multi-modal models have been shown to be effective in focusing on emotionally salient

regions across signals from multiple modalities [33, 20, 34]. Recently, cross-modal at-

tention [19], that computes relevance score for each time-step in one modality by util-

ising another modality, has been shown effective for multi-modal fusion. Since then,

multiple works on multi-modal affective computing models incorporate cross-modal at-

tention [35, 34, 36, 37], self-attention [38, 39] or a combination of both [40, 20, 41, 42]

in their architectures. However, the existing literature is unclear on whether cross-modal

attention is indeed better than using only self-attention mechanism in a model architecture.

Such a comparison could be useful for making an informed choice between the two for

future research works. Hence the reasoning behind our second research question.
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• RQ3: Is it possible to design a framework that utilises multi-modal signals during training

phase to develop a model that is intended to have a single modality input during test time

for affective computing applications?

The research questions we have so far, dealt with cases where the inherent assumption is

that the same modalities are available during both the training and testing phases. A natural

extension would be the case where all modalities available during training are not expected

or required during the testing phase. Hence, the reasoning beind our third research ques-

tion. Such a framework is known as ‘co-learning’ [2, 43] or ‘learning with privileged infor-

mation’ [25, 44]. Existing literature contains multiple works on multi-modal co-learning

where the involved modalities are different types of image modalities, like RGB, depth

and optical-flow images [21, 45, 26]. These works cater to image modalities that have

strong correspondence with each other, for example, a discontinuity in the depth image

can be directly mapped to an edge in the RGB image. However, when it comes to hetero-

geneous modalities like audio, vision and language signals derived from affective videos,

such correspondences become less obvious and there is a dearth of co-learning research in

multi-modal affective computing. We aim to explore this research gap.

1.4 Contributions

Given audio, vision and language signals corresponding to human-human or human-machine

interaction scenarios, our aim is to develop models that fit into the three multimodal paradigms,

namely, unimodal learning, multimodal fusion and co-learning. We propose in this thesis, three

frameworks, one for each of these paradigms. The main contributions of this thesis are as follows:

• Contribution 1: An end-to-end trainable deep learning model for verbal conflict intensity

estimation from raw speech signals. The model uses a convolutional-recurrent architecture

with attention for finding task-relevant features directly from the input. The network train-

ing solely relies on the raw speech signals and their corresponding labels in the training set.

The need for task specific meta data like the number of speakers and speech interruptions,

as well as domain knowledge based hypothesis is eliminated. An extensive ablation study

confirms the choice of individual components in the architecture. Furthermore, a subjec-

tive as well as an interpretability analysis of the model points out what specific instances

from the input signal have been picked by the network to create predictions. [J1]
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Novelty/Improvements:

(a) The first end-to-end model for verbal conflict intensity estimation, ConflictNET that

takes raw speech signal as input. This answers the first part of our RQ1.

(b) ConflictNET outperforms in terms of the evaluation metric (Pearson Correlation Co-

efficient) all but one method [7] (see table 3.1). ConflictNET achieves almost the

same performance as [7], a model that uses speech overlap feature set and feature

pruning based conflict specific subset of standard acoustic features. This could indi-

cate that our end-to-end architecture has automatically learned task-specific informa-

tion from the raw speech input.

(c) We were able to adapt an existing explainable-AI method, LIME [31], to explain

the predictions of an end-to-end paralinguistic model, thus pinpointing the salient

portions of input speech which are relevant for the model’s prediction. This answers

the second part of our RQ1.

• Contribution 2: A multimodal fusion framework that uses audio, vision and language

modalities as input for multi-class emotion classification task. Modality-specific and com-

mon components are used to model intra-modal and cross-modal interactions respectively.

Two types of attention mechanisms, namely, self- and cross-attentions are used to develop

two versions of the multi-modal framework. [C2]

Novelty/Improvements:

(a) The first work to perform an extensive comparison between the two most commonly

used attention mechanisms in multi-modal affective computing literature, thus an-

swering the first part of our RQ2.

(b) Our proposed fusion models achieve state-of-the-art results for categorical tri-modal

emotion recognition on one of the most widely used datasets, IEMOCAP [46] (see ta-

ble 4.1). In terms of weighted accuracy metric, our tri-modal self and cross-attention

models outperform the state-of-the-art model AMH [33] by 4.0 and 3.1 percentage

points (pp) respectively. Similar numbers in terms of unweighted accuracy metric are

2.5 and 1.1 pp respectively.

(c) A thorough study of the performance deterioration of our multi-modal models during

missing modality scenarios indicate that both self and cross-attention based models
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are susceptible to this issue. Nevertheless Moddrop [47] and KNN based missing

modality imputation method [48] could be used to reduce the extend of performance

degradation. Infact, we show that Moddrop training could even bring performance

improvement for full modality situations (see table 4.5). This answers the second

part of our RQ2.

• Contribution 3: A co-learning framework that uses audio and vision modalities during

training so as to improve either audio or vision alone during the testing phase. This

framework is developed based on the observation that not all modalities provide equal

performance on the same task which can be attributed to the variations in the task-specific

information that they contain. Our co-learning framework can be used to improve the

performance of a weakly performing modality by using a stronger modality during train-

ing. The framework consists of two core components, translation from weaker to stronger

modality (cross-modal translation) and correlation based latent space alignment. Modality-

specific unimodal encoders are used to map their respective features into a common latent

space and a correlation based loss is applied over this space to align the weaker modality

components with those of the stronger modality. Based on the intuition that cross-modal

translation can create intermediate features that are representative of both modalities, a de-

coder is used to translate the weaker modality into the stronger modality representations.

Once the multi-loss based training is over, all model components corresponding to the

stronger modality can be discarded. [C1]

Novelty/Improvements:

(a) Two versions of co-learning framework are developed - one for non-sequential data

and another for sequential data. Our models are able to use both stronger and weaker

modalities during training to improve the test-time performance of weaker modality.

Evaluation of our models on two affective computing tasks answers RQ3.

(b) Our non-sequential model is able to either outperform or be on par with the state-

of-the-art method Emobed [23] for visual-to-audio and audio-to-visual emotional

knowledge transfer. Out of all the methods compared (including the best uni-modal

models), our method occupies first or second position in terms of performance on

the evaluation metric (Concordance correlation coefficient) for continuous emotion
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recognition task using RECOLA [49] dataset (see table 5.3).

(c) Our sequential model is able to further improve upon the results for continuous emo-

tion recognition task. This shows that incorporating contextual information from

neighbouring time-steps is beneficial. Our sequential model is thus able to improve

upon the state-of-the-art method Emobed [23] and achieve the best results in terms of

performance on the evaluation metric (Concordance correlation coefficient) for con-

tinuous emotion recognition task using RECOLA [49] dataset (see table 5.7). Our

model is also able to improve upon the state-of-the-art results of HMTL [50] for the

binary sentiment classification task using the CMU-MOSI [51] dataset (see table 5.6).

1.5 Thesis Structure

This thesis is structured as follows:

• Chapter 1: We introduce and formulate the three paradigms of multimodal learning using

modalities that most commonly occur in human-human and human-machine interaction

scenarios, namely, speech (paralinguistic), vision (facial expressions) and language (lin-

guistic speech) and we list the contributions made.

• Chapter 2: We provide a review of the relevant background literature for multimodal fusion

and co-learning. We also discuss methods specific to the multiple paralinguistic problems

used in this thesis, namely, verbal conflict intensity estimation/detection, multi-class multi-

modal emotion classification, multimodal continuous emotion recognition and multimodal

binary sentiment classification. We also provide details about the datasets and the metrics

used to validate our approaches.

• Chapter 3: We present an end-to-end trainable model design, called ConflictNET, for ver-

bal conflict intensity estimation from raw speech signals. We describe in detail the archi-

tectural components, the loss function and other training details. We present the results,

ablation study and comparison with state-of-the-art methods in terms of three metrics. We

also present details about the subjective and interpretability based analysis of our model.

Finally we present the observations and conclusions derived from the experiments.

• Chapter 4: We present a multimodal fusion framework that uses audio, vision and language

signals for seven class emotion classification task. We design two models, one based on
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intra- and another based on cross-modal attention and present a thorough comparison of

the uni-, bi- and tri-modal modality combinations of both models. We present details of our

model architectures, loss function and other training details. We also present our results in

terms of two metrics for 7-class emotion classification. We then present details about the

test-time missing modality handling analysis of the two models. Finally, we present our

observations and conclusions.

• Chapter 5: We present a co-learning framework, called Stronger-Enhancing-Weaker, for

improving the unimodal performance of a weaker modality model by using a stronger

modality during training phase. We present details about two versions of our framework,

one each for non-sequential and sequential data and discuss the choice of architectural

components used. We also detail about each individual losses in the multi-loss function

used for the training. We present our results on the tasks of continuous emotion recog-

nition and binary sentiment classification. We also provide details of the ablation study

that quantifies the effect of individual components in the model. Finally, we present our

observations and conclusions.

• Chapter 6: We summarise the methods and achievements in the thesis and provide a dis-

cussion on future works.



Chapter 2

Background

2.1 Introduction

In this chapter, we review the literature on deep learning based multimodal learning techniques

for heterogeneous modalities. The purpose of our literature review is to understand existing

research on multimodal machine learning that uses various image modalities, audio as well as

language modalities for different human-machine interaction applications. We approach this re-

view from the point-of-view of machine learning model designing, focusing on the particular

aspect of how to effectively combine task specific information originating from multimodal sig-

nals. Since the specific focus of this thesis is on multimodal affective computing applications,

we provide a brief description on how the subject of affective computing evolved over the years

and what are some popular tasks contained within its broad umbrella. Specifically, we describe

in detail two particular focus areas in multimodal learning, namely, multimodal fusion and mul-

timodal co-learning in sections 2.2-2.3. Since attention mechanism has been used extensively

in the unimodal and multimodal contributions in this thesis, we detail this mechanism in section

2.4. We explain the four multimodal learning application scenarios considered in this thesis in

section 2.5. The details of the datasets used, the feature representations and evaluation metrics

are discussed in section 2.6.

20
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2.2 Multimodal Fusion

The multimodal learning approach that combines information from multiple modalities for a clas-

sification or regression task is popularly known as ‘multimodal fusion’. Multimodal fusion has

been an active research area for the past few decades. To the best of our knowledge, the earliest

work on multimodal fusion using neural networks, was published in the IEEE Communications

Magazine in 1989 [52]. This work used a weighted combination of speech and vision modality

representations for audio-visual speech recognition task. With technological advancements in

computing, as deep neural networks started to become popular in 2010s, deep learning based

multimodal fusion models were also introduced in 2011 [5]. An auto-encoder model was used to

create a fusion framework using audio and vision modalities for multimodal speech recognition

task. Since then, there has been a plethora of research in deep learning based multimodal fusion

methods. Earliest works categorize multimodal fusion approaches into three categories - early

or feature-level fusion, late or decision-level fusion and model-level or intermediate fusion (see

Figure. 2.1).

2.2.1 Early, late and model-level fusion

Early fusion methods concatenate the multiple modalities into a unified representation prior to

proceeding through the learning/feature extraction process [53, 54, 55, 56, 57]. Despite the sim-

plicity in formulation, an obvious downside of the method is that since the early fusion techniques

avoid explicit modeling of the different modalities, they fail to model both the fluctuations in the

relative reliability and the asynchrony problems between the distinct (e.g., audio and visual)

streams [58]. Because of the simple concatenation at the input, the processing model lacks

the ability of capturing the complex correlations across modalities when the data sources are

significantly varied from each other in terms of sampling rate, data dimensionality and unit of

measurement [3, 59].

On the other hand, late fusion methods use multiple unimodal models and combine their

decisions or predictions by a voting scheme or averaging [57, 60], a bilinear product [61] or a

simple pooling operator [62]. Thus, late fusion methods are inherently capable of handling miss-

ing modality scenarios. Another reason for the popularity of late fusion is that the architecture

of each unimodal stream is carefully designed over years to achieve state-of-the-art performance

for each modality. This enables the unimodal streams of a multimodal model to be initialized
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(a) Early or feature-level fusion (b) Late or decision-level fusion

(c) Intermediate or model-level fusion

Figure 2.1: Early, late and model-level fusion

with weights that have been pre-trained with a large number of unimodal training samples [16].

However, late fusion does not provide scope for interaction between modalities until at the last

stage of prediction. This limits the ability of the methods to exploit inter-modal correlations for

deriving high level semantic concepts related to the prediction task. Moreover, as different mod-

els are used to obtain the unimodal decisions, the learning process for them becomes tedious and

time-consuming [59].

The model-level or intermediate fusion strategy first processes unimodal components using

modality-specific parts of the fusion model. The processed unimodal components are then com-

bined via concatenation [63, 64, 65] or weighted addition [66] before being further processed

using a common feature extractor. While model-level fusion can improve the inference of shared

semantics, they are susceptible to failures due to missing modality. Also, intermediate level

features of different modalities have different or unaligned spatial dimensions making the inter-

mediate fusing more challenging [67, 68].

2.2.2 Multi-level fusion

Even though the early, late and model-level fusion paradigm provides a generic framework to

decide the level at which fusion is done in a multimodal model, determining the exact layer or



2.2.2 Multi-level fusion 23

depth at which the fusion would provide optimal performance is not straightforward. An interest-

ing approach to solve this problem is to fuse unimodal features at multiple levels instead of only

one (see Figure 2.2). This is in line with a common interpretation of deep neural models con-

sidering that features learned at different layers of the network carry varying levels of semantic

meanings. Thus features from different layers at different modalities can give different insights

from the input data.

CentralNet [69] uses two modality specific unimodal networks and connects them using an

additional central network dedicated to the projection of the features coming from different

modalities into the same common space. The central network combines features issued from

different modalities, by taking, as input of each one of its layers, a weighted sum of the layers

of the corresponding unimodal networks and of its own previous layers. A global loss allows

to back propagate some global constraints on each modality, coordinating their representations.

The approach is multitask since it simultaneously tries to satisfy per modality losses as well as

the global loss defined on the joint space. A contemporary work, Dense Multimodal Fusion

(DMF) [70] also combines unimodal features from multiple levels using a central network. The

difference from CentralNet is that DMF does not use multi-task training and uses only a single

loss for optimising the entire network using the output at the central layer. The resulting model

is claimed to have faster convergence, lower training loss, and better performance.

Instead of using a central network branch, multiple MultiModal Transfer Modules (MMTM)

can be used to combine unimodal features of different spatial dimensions at different levels of

feature hierarchy [16]. MMTM uses a modified form of Squeeze and Excitation [73] operation

and each MMTM module contains 2 units (1) multimodal squeeze unit that receives the features

from all modalities at a given level of representation across the branches, generating a global

joint representation of these features, and 2) an excitation unit that uses this joint representa-

tion to adaptively emphasize on more important features and suppress less important ones in all

modalities. While MMTM is specific to CNN architectures, Multimodal Split Attention Fusion

(MSAF) [72] extends this idea for non-convolutional architectures as well. Another line of work

infuses cross-modal features at different levels into the unimodal branches to periodically allow

for information exchange between them [67, 68]. In XCNN [67], the constituent unimodal net-

works are individually designed to learn the output function on their own subset of the input data,

after which cross-connections between them are introduced after each pooling operation to pe-
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(a) Centralised fusion [69, 70, 71]

(b) Modular central fusion [16, 72]

(c) Cross-connected fusion [67, 68]

Figure 2.2: Multi-level fusion
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riodically allow for information exchange between them. This method is shown to be beneficial

especially when the amount of training data is less. While XCNN is limited by the use of uni-

modal networks that are compatible (CNNs), XFlow [68] removes this restriction by proposing

generalised cross-connections which transfer information between streams that process incom-

patible data.

Yet another line of research extends the previous idea that considering features extracted from

all the hidden layers of independent modalities could potentially increase performance with re-

spect to only using a single combination of late (or early) features. However, unlike CentralNet,

DMF, XCNN and XFlow, where the locations of fusion are either pre-defined or are determined

empirically, we can automatically find optimal locations for fusion by formulating the problem

as a multimodal neural architecture search problem. A sequential search algorithm called, se-

quential model-based optimization (SMBO) [74] scheme, which has previously been applied to

the related problem of neural architecture search or AutoML [75], can be adapted for multimodal

fusion architecture search [71]. In this way, the number of possible fusion layers and the type

of fusion operation (concatenation or weighted fusion) are search parameters. This design en-

ables the search space to contain a large number of possible fusion architectures, including the

networks defined in CentralNet and DMF.

2.2.3 Location agnostic fusion

Orthogonal to the literature on finding optimal locations for fusion in a multimodal model, an-

other line of research focuses on the methodology of fusion, i.e; the nature of combining infor-

mation from multiple modalities.

A fusion mechanism inspired by the flow control in recurrent architectures like GRU or

LSTM is Gated Multimodal Unit (GMU) [76]. GMU can be used as an internal unit in any neu-

ral network architecture and it learns an input dependent gate activation pattern that determines

how each modality contributes to the output of hidden units. Multimodal channel exchanging

fusion is a parameter-free fusion framework that dynamically exchanges channels between sub-

networks of different modalities [77]. The scaling factor of batch normalisation is used as the

importance measurement of each corresponding channel. The method replaces the channels as-

sociated with close-to-zero scaling factors of each modality with the mean of other modalities.

Such message exchanging is parameter-free and self-adaptive as it is dynamically controlled by

the scaling factors that are determined by the training itself. Parameters except batch-norm layers
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of all sub-networks are shared with each other. By using private batch-norms, we can determine

the channel importance of each modality. By sharing convolutional filters, the corresponding

channels among different modalities are embedded with the same mapping, thus more capable

of modelling the modality common information. This design further compacts the multimodal

architecture to be as small as the unimodal one.

Bi-linear pooling [78], originally proposed for fine-grained visual recognition, is a method to

fuse feature maps from different networks processing the same image. The intuition here is that

different networks can capture different types of information from the input image and combining

the feature maps would result in a fine-grained representation of the input image. Bi-linear pool-

ing has been extended to multimodal fusion by combining feature representations corresponding

to different modalities. To reduce the computational complexity, matrix factorization based com-

pact bi-linear fusion [79] can be used for multimodal models. Tensor fusion layer [80] explicitly

models the unimodal, bi-modal and tri-modal interactions using a 3-fold Cartesian product from

modality embeddings. Unimodal vectors are first obtained using modality specific networks and

outer-product between the vectors is taken to obtain the 3D cube of all possible combination of

unimodal embeddings. Since Tensor Fusion is mathematically formed by an outer product, it

has no learnable parameters and it is empirically observed that although the output tensor is high

dimensional, chances of overfitting are low.

Multiplicative fusion [81] explicitly models the fact that on any particular sample not all

modalities may be equally useful. The method first makes decisions on each modality inde-

pendently and then the multimodal combination is done in a differentiable and multiplicative

fashion. This multiplicative combination suppresses the cost associated with the noisy or weak

modalities and encourages the discovery of truly important patterns from informative modalities.

Attention [82] mechanism can be used for multimodal fusion by dynamically adjusting the rela-

tive importance of time-steps in input sequences of multiple modalities [83]. One of the benefits

of attention based fusion is that modalities that are most helpful for the task can dynamically

receive stronger weights. Also, the network can detect interference (noise) and other sources of

uncertainty in each modality and dynamically down-weigh the modalities that are less certain.

2.2.4 Factorised fusion

A different approach to multimodal fusion focuses on learning better feature representations

instead of novelty in fusion methodology or model architecture.



2.2.5 Sequential fusion 27

MISA [18] learns two distinct representations for each modality - modality-invariant and

modality specific. The modality-invariant representations are aimed to reduce modality gaps.

Modality gaps refer to the differences across modality representations with respect to dimension-

ality and sampling rates, which make it computationally difficult to find task relevant common

information across modalities. Modality-invariant mappings help to capture underlying common-

alities and correlations by aligning the projections of multiple modalities onto a shared sub-space.

Modality-specific representations are, on the other hand, private to each modality. By explicitly

factorising representations of each modality into modality-invariant and specific components,

MISA relieves the extra burden on the multimodal model to implicitly bridge modality gaps and

learn common features. Multimodal input can also be factorized into multimodal discriminative

and modality-specific generative factors [84]. The discriminative factors are shared across all

modalities and contain intra-modal and cross-modal features required for discriminative tasks.

The generative factors are unique for each modality and contain information for generating the

data which allows the model to infer missing modalities at test-time and deal with the presence

of noisy modalities.

2.2.5 Sequential fusion

Multimodal fusion models for heterogeneous sequential data should be able to exploit the con-

textual information in sequences across modalities.

Sequence-to-sequence (Seq2Seq) [82] models, originally designed for language translation

tasks, can be adapted for learning fused representations of sequential multimodal data. Un-

supervised seq2seq modality translation using recurrent encoder-decoder architecture can be

used to create multimodal representations useful for sentiment analysis tasks [85]. An atten-

tion mechanism is used at the encoder output to provide varying weights to different time-steps

in the encoded sequence. A hierarchical version of this model can be used to create multimodal

representations when the number of involved modalities is more than two.

Memory Fusion Network [86] is a deep network for multimodal sequential learning. MFN

uses a system of LSTMs in which modality specific interactions are learned by assigning an

LSTM function to each modality. Cross-modal interactions are learned using a special attention

mechanism called Delta Memory Attention Network (DMAN) and summarised through time

using a multimodal gated memory mechanism. DMAN identifies the multimodal interactions

by associating a relevance score to the memory dimensions of each LSTM. The gated memory
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mechanism updates its contents based on the outputs of the DMAN and its previously stored con-

tents, acting as a dynamic memory module for learning crucial multimodal interactions through-

out the sequential data. Graph Memory Fusion Network (GMFN) [87], an extended version of

MFN, replaces the original delta-memory attention network with a dynamic fusion graph.

Multi-Attention Recurrent Network (MARN) [88] is a model for human communication

comprehension that can discover interactions between modalities through time using multi-attention

blocks and store them in the hybrid memory of a recurrent component. Recurrent Attended Vari-

ation Embedding Network (RAVEN) [89] models human language by shifting word representa-

tions based on the accompanying nonverbal behaviors such as facial expressions and vocal pat-

terns. Recurrent Multistage Fusion Network (RMFN) [90] decomposes fusion into three stages:

a ‘highlight’ stage for identifying and highlighting a subset of multimodal signals, a ‘fuse’ stage

for conducting local fusion of highlighted features and integrating representations of the previous

stage, and a ‘summarize’ stage for drawing final prediction.

Fine-tuning Attention Fusion (FAF) [91] preserves the original unimodal attentions and pro-

vides a fine-tuning attention for the final prediction. It utilizes word-level alignment to model

time-dependent interactions among modalities. A multi-hop attention can be used to alterna-

tively finding relevant time-steps in one modality by conditioning on the other modalities [33].

The sequential unimodal features are first processed using individual recurrent layers (GRUs)

and a context vector using last-step hidden representations of other modalities is used to obtain

attention scores for each modality. This process is done iteratively across modalities for the task

of multi-class emotion recognition.

A summary of all the fusion categories described so far, along with their specific character-

istics, pros and cons, is given in Table 2.1.

2.3 Multimodal Co-learning

Multimodal co-learning, in comparison to multimodal fusion, is a less explored research area.

Co-learning involves cross-modal knowledge transfer where multiple modalities are used during

the training phase to help a target modality to function independently of other modalities during

the testing phase.

Multimodal Training Unimodal Testing (MTUT) [21] is a method for supervised cross-modal

knowledge transfer using RGB, depth and optical-flow modalities where the transferred knowl-
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edge works as an extra supervision in addition to the class labels. The unimodal 3D CNN net-

works share knowledge by aligning the semantics of the deep representations. This is done by

selecting an in-depth layer in the network and enforcing them to share a common correlation by

minimising the distance between their correlation matrices during the training phase. A regu-

larisation parameter is also used to avoid the weaker networks from transferring knowledge to

the stronger networks. Multimodal co-learning is closely related to the concept of Learning Un-

der Privileged Information (LUPI) [25]. LUPI is based on the principle of knowledge transfer

from an ‘intelligent’ teacher to a student. During training stage, an intelligent teacher provides

the student with information that contains, along with classification of each example, additional

privileged information (for example, explanation) of this example. When the additional informa-

tion is from another modality, LUPI becomes similar to supervised multimodal co-learning.

2.3.1 Co-learning for image modalities

Modality ‘hallucination’ technique considers depth modality as a side information during training

to create an RGB only model for testing [44]. Multi-layer CNNs are used as unimodal architec-

tures. In a multi-step training process, firstly, RGB and depth modality streams are independently

trained. Then, a hallucination network, which takes RGB images as input, is initialised with the

learned depth network weights. Finally, the three streams are trained jointly. The entire network

is trained using a composite loss function. Based on the intuition that the deeper layers of depth

and hallucination streams should have similar activations, the hallucination network, in addition

to classification loss, is also trained using a Euclidean loss between the activations. Finally during

the testing phase, the two stream multimodal model composed of the RGB network and the hal-

lucination network, both using RGB data as input, is deployed. The Euclidean loss for increasing

the similarity between depth and hallucinated feature maps, is part of the total loss along with

more than ten classification and localization losses, thus making its effectiveness dependent on

hyperparameter tuning to balance the different values, as the model is trained jointly in one step

by optimizing the aforementioned composite loss.

As an improvement, the hallucination learning can be encouraged by design, by using cross-

stream multiplicative connections from depth to RGB network [45]. After the first step of pre-

training unimodal streams independently, they are trained jointly with the multiplicative cross-

connection from depth to RGB stream as well as fine tuning on the late fusion model. In the

next step, the depth stream is frozen and hallucination network is initialised with depth stream’s
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weights and a teacher-student training loss combined with Euclidean loss between activation

maps is used to train the hallucination network. Finally the RGB stream and hallucination net-

work are fine-tuned in the late fusion model. In order to further reduce the dependency on

balancing multiple losses and hyper-parameter tuning, an adversarial learning strategy is used to

further improve the method.

Adversarial Discriminative Modality Distillation [26] also uses a two-step algorithm to learn

representations from RGB and depth modalities while relying only on RGB during test. In the

first step, RGB and depth modality networks are trained individually as two standard, separate

supervised learning models. In the next step, a ‘hallucination’ network, initialised using the

depth stream weights, is trained using an adversarial training strategy to generate depth features

using RGB video as input. Finally during the testing phase, the two stream multimodal model

composed of the RGB network and the hallucination network, both using RGB data as input, is

deployed. The adversarial strategy uses the hallucination network as a ‘generator’ to produce the

corresponding depth modality features and a ‘discriminator’ network which not only generates a

‘true’ or ‘fake’ label for the generator output but also has the auxiliary task of classifying feature

vectors with their correct class.

It is to be specifically noted that these methods have all been used for image based modali-

ties like RGB, depth and optical-flow which have strong correlations and correspondences with

each other compared to heterogeneous modalities like audio, visual and text. For example, a

discontinuity in the depth image can be directly mapped to an edge in the RGB image, while

such a one-to-one correspondence between speech and facial expressions or gestures cannot be

guaranteed or are less explicit.

2.3.2 Co-learning for heterogeneous multi-modal data

Cross-modal knowledge transfer using acoustic, visual and/or textual modalities exploit the com-

plementary information from these modalities during training to develop a unimodal [22, 23, 94]

or bi-modal [50] system. While the majority of these systems are based on supervised learning,

there are some works based on un-supervised and self-supervised knowledge transfer.

A joint audio-visual training and cross-modal triplet loss [97, 98] based fully supervised

framework, called EmoBed, can be used for multimodal training in face/speech emotion recog-

nition task [23]. Two layer GRUs are used as unimodal streams for audio and visual modalities.

These are followed by a shared network made up of two GRU layers. The shared network can
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Table 2.2: Summary of cross-modal knowledge transfer methods used in multimodal training
and unimodal testing models.

Ref. Arch. Modalities Method Seq. Task
Vis. Aud. Lan.

I D F V

[21] I3D (3D CNN) correlation alignment gesture recognition
[44] AlexNet/VGG weight initialisation, object classification

activation matching
[45] Resnet-50 cross-connections, action recognition,

weight initialisation
adversarial training

[26] Resnet-50 weight initialisation, action recognition,
adversarial training object classification

[22] LSTM-attn. contrastive loss emotion recognition
[92] CNN T-S knowledge distillation emotion recognition
[93] LSTM enc.-dec. cross-modal translation sentiment analysis
[94] GRU alternate shared layers training, emotion recognition
[23] GRU alternate shared layers training, emotion recognition

cross-modal triplet training
[50] GRU-attn. cross-modal translation, sentiment analysis,

adversarial training emotion recognition
[95] MLP cross-modal translation, sentiment analysis

correlation alignment
[24] LSTM mutual learning sentiment analysis
[96] U-Net cross-modal translation emotion recognition

KEY - Ref.: reference, Arch.: architecture, Vis.: vision, Aud.: audio, Lan.: language, I: RGB
image; D: depth image; F : optical flow image; V: RGB video; enc.: encoder, dec.: decoder,
attn.: attention, trans.: transformer, MLP: multi-layer perceptron, T-S: teacher-student, Seq.:
sequential

be trained by alternatively providing it with embeddings from one modality at a time. A hyper-

parameter in the loss function can be used to control the significance of each modality for the

shared network. Also, a cross-modal triplet loss is applied to the unimodal embeddings in the

shared space. The combined loss based training is shown to be useful for developing a test-time

stand-alone model made of audio or vision modality. Even though GRUs are used to obtain

unimodal embeddings, EmoBed uses a single time-step GRU and does not take contextual in-

formation into account. Also, an inherent caveat in this system is that a weaker modality can

degrade the performance of a stronger modality.

Heterogeneous Multimodal Transfer Learning (HMTL) [50] uses a cross-modal decoder and

discriminator for fully supervised knowledge transfer from text modality to audio/vision modali-
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ties for sentiment classification. A cross-modal decoder and discriminator is used for the knowl-

edge transfer. Unimodal networks are made of GRU, dense and self-attention layers followed by

dense layers for classification. The cross-modal decoder takes the pre-classifier embeddings of

audio/vision modality as input and maps them to the corresponding text modality embeddings.

A GAN style adversarial training strategy is used with the audio/vision modality network as

generator and a discriminator with input from generator as well as text modality embeddings.

The generator tries to output embeddings that are as close as possible to the text embeddings

and discriminator tries to label them as true or fake. One drawback of the method is the use of

discriminator based adversarial training which demands additional parameters along with added

complexities such as oscillations in loss values during training [99].

While the works mentioned so far transfer knowledge from one modality to another, multi-

modal models can also be used as the source of knowledge. A multimodal acoustic-lexical model

can be used as a source or teacher for supervised knowledge transfer to an audio-only model using

contrastive loss [22]. The models use words to obtain semantic audio features. The multimodal

model, made of bi-directional LSTM, GRU and attention layers, is first trained on audio and text

features obtained from word aligned acoustic-lexical data. An audio-only network is trained us-

ing a combination of contrastive loss between the multimodal embeddings and unimodal acoustic

embeddings and a KL divergence based teacher-student loss.

An un-supervised knowledge transfer method, called deep canonically correlated cross-modal

autoencoder (DCC-CAE) [95], uses a combination of correlation based feature alignment and

cross-modal translation to develop unimodal audio or vision based sentiment classification model.

The encoders are made up of multi-layer perceptrons and do not take contextual information in

utterances into account. Un-supervised knowledge transfer from vision to audio modality can

also be done using a teacher-student modelling framework [92]. Squeeze and Excitation archi-

tecture [73] is used for the vision modality, which serves as the teacher model. It is pre-trained

on the VGG-Face2 dataset [100] for speaker identity verification and then fine-tuned on FER-

Plus dataset [101] for face emotion recognition by matching with the distribution of annotated

labels. The student model, which is tasked with performing emotion recognition from speech,

is based on the VGG-M architecture [102]. Respective modalities from an audio-visual dataset,

(VoxCeleb [103]) which has not been labelled for emotion recognition, is then given as input to

the teacher and student networks. The trained teacher outputs labels which are then used to train
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the student network.

An unsupervised cross-modal translation based framework, called Seq2SeqSentiment [85],

uses an LSTM based encoder-decoder model to create intermediate features that are represen-

tative of both modalities. However, the absence of supervision during translation can create

representations that might not be discriminative for the task at hand. Hence, an extension of this

work, called Multimodal Cyclic Translation Network (MCTN) [93], tries to solve this issue by

feeding the intermediate features to a classifier. MCTN can be used to transfer knowledge from

auxiliary modalities (audio and vision) to text modality for sentiment analysis tasks. A hierar-

chical version of the model is used when there are more than two modalities involved. Once the

training phase is over, the encoder and classifier of the model is separated and used with text input

alone during inference phase to obtain improved text representations for the downstream tasks.

Because of the supervised learning setting, MCTN is able to provide improved performance in

comparison to its unsupervised predecessor.

A self-supervised audio-visual training system can be used to obtain improved audio-only

representations at test-time for multiple downstream tasks like multi-class emotion recognition,

continuous emotion recognition and speech recognition [96]. A U-Net [104] architecture fed with

a single face frame is used to output video of talking face by infusing the U-Net decoder with the

output of an audio encoder. The system is trained using a combination of video reconstruction

loss and cross-entropy loss from audio self-supervision. Thus, the audio encoder, with help from

visual modality, is driven to produce useful speech features that correlate with mouth and facial

movements.

It has also been shown that a multimodal model trained using all modalities when tested with

only the strongest modality can perform better than a unimodal model trained and tested on the

stronger modality [24]. (Here the notion of strength is based on the individual performance of

different modalities on the same downstream task.) This is because individual modalities, with

the help of model parameters, are able to distil information from other modalities and perform

better on unimodal tasks.

A summary of all co-learning methods described so far is given in Table 2.2.
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Figure 2.3: Bahdanau attention [105] in an encoder-decoder model. Figure adapted from [105].

2.4 Attention in deep neural networks

Attention mechanism is an important component in many unimodal, multimodal and cross-modal

learning models in the literature. In this section, we describe in detail the motivation and method-

ology of attention mechanisms.

The concept of ‘attention’ was introduced in the Natural Language Processing (NLP) litera-

ture for machine translation tasks [105]. Prior to the introduction of attention, translation from a

source language to a target language used sequence-to-sequence (seq2seq) models [106] with an

encoder-decoder mechanism. The encoder and decoder are usually made of recurrent networks

like LSTM or GRU. The encoder generates a fixed length context vector, which is a compressed

summary representation of the whole source language sequence. The decoder is initialized with

this context vector to generate the transformed output. A severe limitation of the use of fixed

length context vector is its incapability to remember long sentences. The attention mechanism

was introduced to solve this problem.

Conceptually, attention in deep networks emulate the human visual attention mechanism that

allows us to focus on a certain region with “high resolution” while perceiving the surrounding

image in “low resolution”, and then adjust the focal point or do the inference accordingly [32].

Rather than building a fixed length context vector out of the encoder’s last hidden state, atten-

tion creates shortcuts between the context vector and the entire source input. The weights of
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these shortcut connections are customizable for each output element. The alignment between the

source and target is learned and controlled by the context vector. Since the context vector now

has access to the entire source sequence via attention, it will not forget long sentences. Fig. 2.3

shows the Bahdanau attention [105] incorporated into an encoder-decoder model. The vectors

[X1, X2, X3, ..., Xn] and [Y1, Y2, Y3, ..., Ym] represent the source and target sentences of lengths

n and m respectively. The encoder is a bi-directional RNN with forward and backward states

represented by
−→
hi and

←−
hi respectively. A simple concatenation of the two represents the encoder

state given by hi = [
−→
hi ;
←−
hi ]. The decoder hidden state at time-step t is given by

St = f (St−1,Yt−1,Ct), (2.1)

where the context vector Ct is given by


Ct = ∑

n
i=1(at,i ·hi),

at,i =
exp(score(St−1,hi))

∑
n
j=1 exp(score(St−1,h j))

,

score(St ,hi) = vT
a · tanh(Wa[St ;hi])

(2.2)

The attention mechanism assigns a weight at,i to the pair of input at position i and the output

at position t based on how well they match. The set of weights {at,i} define how much of each

source hidden state should be considered for each output. These weights are parameterized by

a feed-forward network with a single hidden layer and this network is jointly trained with other

parts of the model as given by the ‘score’ function in eq. 2.2. Both va and Wa are weight matrices

to be learned.

With the success of Bahdanau attention in machine translation, the concept of attention got

extended into other fields like computer vision [107, 108] and audio processing [109, 110, 111].

Over time, different types of attention mechanisms have also emerged where the functions used

to compute the alignment scores are different [112, 113]. For example, [112] proposed two types

of scoring functions as follows;
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score(St ,hi) = ST

t ·hi, called dot-product attention and

score(St ,hi) = ST
t ·Wa ·hi, called general attention

(2.3)

where Wa is learnable. Another categorisation of attention can be based on the scope of the

input, namely, global (or soft attention) and local (or hard attention). The original attention

mechanism [82] is global since it looks at the entire source input, while local attention focuses

only on parts of the given input [107, 112]. When the target sequence is replaced with the

same input source sequence, the form of attention is called ‘self-attention’ or ‘intra-attention’.

In multimodal learning, when attention mechanism is used to find the similarity or alignment

between the same sequence belonging to a single modality, it is called ‘self-’ or ‘intra-modal’

attention and if it is between two different modality sequences, it is called ‘cross-’ or ‘inter-

modal’ attention.

2.4.1 Multi-head attention

The Transformer model [113] introduced in 2017 elevated the importance of attention mecha-

nism by proposing an architecture for machine translation tasks that completely relied on a form

of dot product attention by eliminating the recurrent layers in seq2seq models. The major com-

ponent of a transformer model is ‘multi-head self-attention’ (MHA). Rather than only computing

the attention once, the MHA mechanism runs through the scaled dot-product attention multiple

times in parallel and hence the name ‘multi-head’. Each MHA module performs multiple scaled

dot-product attention on three inputs, named as, Query (Q), Key (K) and Value (V). The ter-

minology for Query/Key/Value can be considered analogous to retrieval systems. For example,

when we search for videos on any video hosting site on the internet, the search engine will map

our query (text in the search bar) against a set of keys (video title, description, etc.) associated

with candidate videos in their database, then present the best matched videos (values). In the

case of self or intra-modal attention, the Q, K and V are all derived from the same input modality

sequence.

Fig. 2.4 shows the intra-modal MHA mechanism with 3 heads in detail. In intra-modal case,

the input sequence from a single modality, em, is projected into multiple heads or sub-spaces via

linear layers. Each sub-space contains a set of Q, K and V values.
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(a) Intra-modal attention (b) Cross-modal attention

Figure 2.4: Multi-Head Attention (MHA) [113] with 3 heads (H=3) for (a) intra-modal and (b)
cross-modal cases. Note that the intra-modal model is fed with only one input whereas the cross-
modal model is fed with two inputs.


Qh =W Q

h em,

Kh =W K
h em,

Vh =WV
h em,

(2.4)

where h denotes head index, m ∈ {a,v, l} denotes the modality and W refers to learnable weights

of the linear layers. On each set of Q,K,V values, a scaled dot-product attention operation is

performed in parallel. For a sub-space h, the attention operation is given as,

Atth(Qh,Kh,Vh) = So f tmax(
QhKh

T
√

dk
)Vh, (2.5)

where Atth and dk refer to the attention operation in head h and feature dimensionality, respec-

tively. The outputs of all attentions are concatenated and passed through a linear layer to obtain

the final output of an MHA module.

In the cross-modal case, a source modality (em2) is used to generate K and V, whereas a

target modality (em1) is fed as Q. The intuition behind such an approach is to discover cross-

modal interactions by adapting the source modality to the target modality [19]. As an example,
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let us take the case of audio as target modality and vision as the source modality. Due to different

sampling frequencies of both modalities, the sequence lengths of audio and vision representing

the same temporal event can be different. Thus, let the audio and vision features with common

feature dimensionality d′′ be represented by ea ∈ Rt′a×d′′
and ev ∈ Rt′v×d′′

respectively. The ea is

transformed to Q and ev to K and V using eq. 2.4. The cross-modal MHA module then maps

vision to audio modality and outputs vision features adapted to audio Am ∈ Rt′a×d′′
. Thus, cross-

modal attention re-inforces a source modality by calculating its attention weights using a different

target modality. Note that the sequence length of the cross-attention weighted output is the same

as the target modality audio. With 3 modalities, we can have 6 different combinations of source-

target modalities.

2.5 Baseline methods

Out of all the multi-modal fusion and co-learning methods discussed so far, we provide details

about the specific methods that are baselines for our thesis contributions in Table 2.3.

For multi-modal fusion based emotion classification, the state-of-the-art results are obtained

by methods that use attention mechanism along with a recurrent network like GRU or LSTM.

Nevertheless, none of these methods provide a comparison between the 2 major types of attention

mechanisms being used, namely, self and cross-attention, thus leading us to our research ques-

tion RQ2. In case of the co-learning paradigm, first of all, the number of co-learning methods for

affective computing tasks is lesser compared to tasks involving different types of image modal-

ities. Secondly, out of the few methods available, we find that, albeit they achieve co-learning

from stronger to weaker modality, each are limited by disadvantages that we intent to avoid or

improve upon. Thus via RQ3, we intend to improve upon the results of compared methods, along

with eliminating some of the drawbacks associated with them.

2.6 Application Scenarios

In this section, we look at the application scenarios considered in this thesis. Since one important

and practical application of unimodal and multimodal representation learning involving hetero-

geneous multimodal data is human-machine communication, we focus on affective computing

applications. In particular, we look at four specific tasks involving vocal prosodic information

from speech signals, text representing the spoken words and visual representations from dynamic
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facial images of the speaker, namely, unimodal verbal conflict intensity estimation, multimodal

multi-class emotion classification, multimodal continuous emotion recognition and multimodal

binary sentiment classification.

The first steps towards automatic processing of emotions in speech occurred by mid-1990s.

With Picard’s book on affective computing published in 1997 [115] and the International Speech

Communication Association (ISCA) Workshop on emotion and speech in 2000 [116], the re-

search community began to recognize the importance and challenges associated with estimating

the ‘paralinguistics’ of speech. The term paralinguistics refers to ‘alongside’ linguistics and fo-

cuses on ‘how’ you say rather than ‘what’ you say. ‘Computational paralinguistics’, which refers

to the automatic inference of paralinguistic cues using a computer, was not popularly recognized

as a discipline on its own merit by the research community until after 2000. Computational par-

alinguistics deals with ‘traits’ and ‘states’; traits being long-term events and states short-term.

The long-term events include age, gender, personality etc and short-term events include emo-

tions, mood, inter-personal stances etc. The first INTERSPEECH computational paralinguistics

challenge [117] was introduced in 2013 and consisted of 4 sub-challenges, namely, the detection

of social signals, conflict, emotion and autism from mono or conversational speech. Evidently,

it is not only speech that communicate emotion, affect, personality etc, but facial expressions,

gestures and body movements/postures as well [3, 118]. In fact, Darwin (1872) [119], who ini-

tiated the evolutionary theory of emotions in the late 19th century, considered the face to be the

‘chief seat of expression and the source of the voice’, an opinion which is shared by many in

the research community and evidenced by the abundance of literature on face based analysis

for various affect recognition tasks [120, 121]. Till mid-1990s, recognition of emotions via face

modality and speech modality were considered as separate research paradigms and it was in 1997

that the first paper on multimodal emotion recognition was published [122]. Since then there has

been a growing interest in using multiple modalities for affect recognition tasks.

In this thesis, we use a sub-set of problems under the umbrella of computational paralin-

guistics for validation of our proposed speech-based and multimodal models. The details and

background of each of these tasks are given as follows:

2.6.1 Unimodal verbal conflict intensity estimation from speech

Verbal conflict is an interaction process between parties who pursue incompatible goals [123]:

each party perceives that their interests are being opposed or negatively affected by another party
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[124]. While goals and interests are not directly observable, they influence human behaviour

through gestures, facial expressions and speech [125]. Inter-personal conflicts are found to not

only negatively affect the lives of involved parties to a significant extent [126] but also cause

long-term negative effects on the rapport between them. Conflicts can span from minor disagree-

ments to physical assaults and can become one of the most concerning causes of stress [127].

Thus, detection and monitoring of such inter-personal conflicts is a desired ability for socially

intelligent technologies that are expected to understand and seamlessly integrate human interac-

tions [128]. In particular, the automatic estimation of conflict from speech signals has several

important applications, such as monitoring conflicts during meetings and in call centers to help

employees handle difficult interactions and thereby reduce stress and anxiety.

The problem of verbal conflict intensity estimation from speech has been popularised by the

2013 INTERSPEECH computational paralinguistics challenge [117]. It can be formulated as a

detection or estimation problem. Conflict detection aims to identify if a given temporal interval

of speech contains an instance of verbal conflict [8, 11, 12]. Conflict intensity estimation is a

regression task that aims to determine a continuous level of conflict intensity [7][129], which is

more informative than the binary class label generated by conflict detection methods [7]. Most

of the prior methods relied on the baseline features provided in the INTERSPEECH challenge,

which are 6,373 acoustic features extracted using OpenSMILE [130]. Relevance of these baseline

features can be determined by repeated classification using random feature subset selection [9],

canonical correlation analysis based discriminative projection [8], greedy forward-backward fea-

ture selection [6] or ensemble Nyström method on manually partitioned feature subsets [129].

A major drawback of these methods is that they require extra techniques to filter out redundant

features and identify conflict-specific features. For example, [9] performs 300,000 iterations to

identify 349 conflict specific features out of the 6,373 baseline features.

A Support Vector Machine (SVM) classifier can be used for conflict detection using predicted

speech overlap ratio [12] or speech overlap based features [11]. Speech overlap predictions gen-

erated by a bi-directional LSTM can also be used for conflict detection using a DNN classi-

fier [10]. Utterance-level features, obtained by combining frame-level DNN predicted speech

overlap posteriors along with a subset of the baseline features, can be used for conflict intensity

estimation using Support Vector Regressors (SVR) [7]. These methods require the availability of

metadata, like the number of speakers and speech overlap duration. To our knowledge, there is
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Table 2.4: Summary of features, refinement methods and classifiers/regressors.

Ref. Input Feature Refinement Method Class/Reg
[9] IS13 relevance adjustment by rep. class. KNN
[8] IS13 canonical correlation analysis SVM
[6] IS13 forward-backward pass SVR

[129] IS13 manual feature partitioning ensemble
+ ensemble Nyström SPLSR

[12] IS13 speech overlap ratio using SVR SVM
[10] conv. & pros. speech overlap ratio using BLSTM DNN
[7] IS13 & over. forward-backward pass SVR
[11] IS10 & IS13 overlap detection using SVR SVM

+ backward selection
[131] FPF & LLD LSTM based encoder-decoder network
[132] raw speech End-to-End Convolutional Neural Network

KEY - IS13: INTERSPEECH 2013 Conflict sub-challenge baseline features; IS10: INTER-
SPEECH 2010 paralinguistics challenge baseline features; rep. class.: repeated classification;
conv.: conversational features; pros.: prosodic features; over.: overlap features; Class/Reg: Clas-
sifier/Regressor; KNN: K Nearest Neighbour; SVM: Support Vector Machine; SVR: Support
Vector Regressor; LSTM: Long Short Term Memory; BLSTM: Bi-directional LSTM; SPLSR:
Sparse Partial Least Squares Regression; FPF: Facial Point Features; LLD: Low Level Descrip-
tors; CRNN: Convolutional Recurrent Neural Network

only one multimodal conflict estimation method and it uses a concatenation of audio and visual

features as input to an LSTM-based encoder-decoder architecture with attention. This method

focuses on visual features (facial gestures) and uses 65 audio Low-Level Descriptors (LLD) fea-

tures, sampled at 25 Hz [131]. The key methods are summarised in Table 2.4.

2.6.2 Multi-class multimodal emotion classification

Since speech is the most natural means of communication between humans, researchers are mo-

tivated to use it as an efficient medium for human-machine interaction. While the initial focus

of researchers on human-machine interaction via speech signals was on the speech recognition

task that started in the late 1950s, later they realised that for having a more natural interaction,

machines have to understand the emotional state of the speaker. Thus began the interest in the

computational paralinguistics task of Speech Emotion Recognition (SER), which is defined as

extracting the emotional state of a speaker from his or her speech. Applications of SER include

interfacing with robots, audio surveillance, web-based E-learning, commercial applications, clin-

ical studies, entertainment, banking, call centers, computer games, etc [133, 134, 135].

An important aspect of SER is the need to decide a set of emotion categories to be classi-



2.6.2 Multi-class multimodal emotion classification 44

fied by an SER system. The emotions that are most distinct and commonly occurring in our

lives are called archetypal emotions and include the categories of angry, happy/joy, sad, fearful,

surprised, disgust and neutral [136, 137]. However, different researchers create different sets

of categories depending upon the use cases and the relative relevance of different emotions in

their use cases. For example, SER can be formulated as a binary classification problem to recog-

nize negative/non-negative [138, 139], angry/neutral [140] or fearful/neutral [141] emotions for

call center monitoring applications. In most general applications of SER, however, researchers

mostly focus on multi-class emotion classification, where the number of classes can vary from

four [65, 110, 142, 143, 144] to seven [33, 145] with additional classes being frustration, excite-

ment and other to accommodate for all other emotions not included.

To design a successful SER system, we need to take into account the following [146];

• the choice of an appropriate database that captures different emotions

• the type of features to be extracted from speech and

• the design of a reliable machine learning algorithm

A classical SER system consists of two stages [133]:

• a feature extraction unit that extracts the task relevant features from the input speech data

• a classifier that maps the output of feature extraction unit to the decision space

Over the years, various types of classifiers have been used for SER like HMM [147, 148],

GMM [149, 150], SVM [151], artificial neural networks (ANN) [1, 152], KNN [153] and many

others, with each having its own advantages and limitations. An ensemble of classifiers [154]

can also be created to derive the merits of different types of classifiers.

Apart from speech, other modalities such as visual modality (facial expressions, gestures,

postures, gait) [155, 156], language modality (text transcripts) [157, 158] and physiological

modality (brain or muscle electrical activity, temperature, skin conductance, cardiac function) [159,

160] have also been explored for emotion recognition. Due to the requirement for contact based

or invasive sensors, we do not consider physiological modality within the scope of this thesis. We

focus on a combination of speech (paralinguistics), visual (facial expressions) and text (speech
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transcripts) modalities for the multimodal fusion based multi-class emotion classification prob-

lem. As mentioned in section 2.2, there are various creative multimodal fusion techniques that

can be applied for emotion classification.

2.6.3 Multimodal continuous emotion recognition

Apart from discrete emotion classification, another popular line of research is emotion recogni-

tion when the label space is continuous. This is based on the studies in psychology that represents

emotions as coordinates in a multi-dimensional space [161]. The circumplex model of emotion

posits that different emotional states are processed and represented as points in an emotional

space, along the dimensions of valence and arousal [162]. There exist different types of circum-

plex models for emotion mappings. Russell’s circumplex model uses the dimensions of arousal

and valence to plot 28 affective labels [163], while Whissell considers emotions as a continu-

ous 2D space whose dimensions are evaluation (or valence) and activation (or arousal), where

the evaluation dimension measures how a human feels, from positive to negative and the acti-

vation dimension measures whether humans are more or less likely to take some action under

the emotional state, from active to passive [164]. Plutchik’s wheel of emotions (Figure. 2.5.b)

is another 2D model of emotions, which consists of 8 basic emotions and 8 advanced emotions

each composed of 2 basic ones, the vertical dimension represents intensity and the radial di-

mension represents degrees of similarity among emotions [165]. Besides the 2D approaches, a

commonly used 3D emotion representation framework is the (valence, arousal, dominance) set,

which is known in the literature by different names, including (evaluation, activation, power) and

(pleasure, arousal, dominance) [166].

2.6.4 Multimodal binary sentiment classification

The concepts of emotion recognition and sentiment recognition sit under the broad umbrella of

affect recognition and it is important to understand the differences between them. Even though

both emotions and sentiments refer to “experiences that result from the combined influences

of the biological, the cognitive, and the social” [167], sentiments can be differentiated from

emotions by the duration in which they are experienced [168]. Emotions are brief episodes of

brain, autonomic, and behavioral changes [169], sentiments have been found to form and be held

for a longer period. Furthermore, sentiments are formed and directed toward an object, whereas

emotions are not always targeted towards an object. In this context, an object refers to a person,
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(a) Russel’s model

(b) Plutchik’s model

Figure 2.5: Circumplex models of emotions [163, 165]
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a thing, a condition, a place or an event at which a mental state is directed [170].

In affective computing literature, compared to emotion recognition, sentiment recognition is

a more coarse grained task since it is usually considered as a binary (positive or negative) or

ternary (positive, negative or neutral) classification task [3]. While earlier works on sentiment

classification focused on text modality alone, later works added visual and acoustic modalities

and formulated the task as a multimodal problem [171, 172]. To the best of our knowledge,

the very first work on multimodal learning for sentiment analysis task that used three modalities

(audio, text and visual) came only in 2011 [172]. Even though, by this time there was a sig-

nificant amount of work done on audio-visual emotion recognition, it is interesting to note that

text modality and audio-visual modalities were scarcely considered for emotion recognition and

sentiment analysis tasks respectively.

In this thesis, we use the verbal conflict intensity estimation task to verify our first research

paradigm, namely, unimodal training and unimodal testing. For our next research paradigm,

multimodal training and multimodal testing, we use multi-class multimodal emotion classifica-

tion task. For the third and final research paradigm of multimodal training and unimodal testing,

we use multimodal continuous emotion recognition and multimodal binary sentiment classifica-

tion tasks.

2.7 Datasets, Features and Metrics

In this sub-section, we explain about the datasets used for various tasks mentioned previously.

Specifically, we use SSPNet Conflict Corpus [128] for verbal conflict intensity estimation, IEMO-

CAP [46] for multi-class multimodal emotion classification, RECOLA [173] for multimodal con-

tinuous emotion recognition and CMU-MOSI [174] for multimodal binary sentiment classifica-

tion.

2.7.1 SSPNet Conflict Corpus

SSPNet Conflict Corpus [128] is a subset of Canal 9 [175], an audio-visual database of political

debates televised in Switzerland during 2005. The Canal9 debates were segmented into uniform,

non-overlapping windows of 30 seconds and only the segments portraying at least two persons

were retained. Compared to shorter windows or analysis units, 30 seconds long segments are less

ambiguous and, therefore, the annotations are more likely to converge. The result is a collection
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Table 2.5: Number of 30 seconds duration audio clips in the Train-Val-Test Split [117] for the
SSPNet Conflict Corpus [128]

Train Val Test Total
Low (conflict<0) 471 127 226 824
High (conflict≥0) 322 113 171 606
Total 793 240 397 1430

of 1430 clips - the SSPNet Conflict Corpus - showing 138 subjects for a total length of 11 hours

and 55 minutes. Each clip is rated by 10 different non-French speaking assessors and the conflict

intensity value assigned to each clip is the average of individual scores [176]. These values are

in the range [-10,10], from no conflict (-10) to high level of conflict (+10), thus making the

dataset suitable for regression tasks. Audio signals are sampled at 48KHz, resulting in 1,440,000

samples per clip. This dataset was adopted in the conflict sub-challenge of the INTERSPEECH

2013 Computational Paralinguistics Challenge [117] using only the audio signal. The training-

validation-testing data split as defined in the challenge is shown in Table 2.5. All clips with the

female moderator (speaker #50) were assigned to the training set. The development set consists

of all broadcasts moderated by a male (speaker #153), and the test set comprises the rest (male

moderators).

2.7.2 Interactive Emotional Dyadic Motion Capture (IEMOCAP)

Interactive Emotional Dyadic Motion Capture (IEMOCAP) [46] is a multimodal dataset which

contains approximately 12 hours of audio-visual dyadic emotional interactions in acted and spon-

taneous settings. The dataset, recorded with 5 male and 5 female speakers, includes the ground-

truth text transcripts. The labelling of each utterance was determined by majority voting from

3 annotators. Emotional labels present in the dataset are anger, happiness, excitement, sadness,

frustration, fear, surprise, disgust, other and neutral. Fleiss’ Kappa (k) statistic [177] was used

to measure agreement between annotators and was found to be k = 0.48, indicating moderate

agreement. There is lack of consensus amongst researchers on the use of IEMOCAP dataset.

Some use it for 4 class classification [19] by merging different classes (happy and excited, angry

and frustrated), while others [20, 65, 33, 142] perform 7-class classification. Class sizes smaller

than 100 utterances (fear, disgust, other) are usually eliminated [33]. The final dataset contains

7,487 utterances in total (1,103 angry, 1,041 excited, 595 happy, 1,084 sad, 1,849 frustrated, 107

surprise and 1,708 neutral).
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For IEMOCAP audio modality, 40D MFCC features (frame size is set to 25 ms at a rate of

10 ms with the Hamming window) are extracted and concatenated with their first and second

order derivatives to obtain the final acoustic feature dimension of 120. These features are then

standardised by removing the mean and scaling to unit variance. For vision data, cropped face

images of speakers are fed into a ResNet-101 [178] to obtain 2048D features at a frame rate

of 3 Hz. For text modality, each word in an utterance is represented by a 300D GloVe [179]

embedding. Note that the modalities are sampled at different rates and the maximum sequence

length of audio, vision and text modalities is set to 1,000, 32 and 128 respectively.

2.7.3 Remote Collaborative and Affective Interactions (RECOLA)

Remote Collaborative and Affective Interactions (RECOLA) [173] is an audiovisual dimensional

emotion recognition dataset and has been used in multiple Audio Visual Emotion Challenges

(AVEC) over the years [49, 180]. It contains audiovisual recordings of spontaneous and nat-

ural interactions from 27 French-speaking participants in order to investigate socio-affective

behaviours in the context of remote collaborative tasks. Moreover, time and value continuous

dimensional emotion annotations (in the range [-1,1]) in terms of arousal and valence are given

with a constant frame rate of 40 ms for the first five minutes of each recording, by averaging

all six annotators and meanwhile taking the interevaluator agreement into consideration. The in-

terevaluator agreement, measured on the basis of Cronbach’s α [181], show good (α > 0.8) and

acceptable (α > 0.7) agreement for arousal and valence annotations respectively. The dataset is

further equally divided into three disjoint parts, by balancing the gender, age, and mother tongue

of the participants. Therefore, each part consists of nine unique recordings, resulting in 67.5 k

segments in total for each part (training, development, or test). Data from first 9 speakers com-

prise the training set, the next 9 speakers comprise the development set. Only the training and

development sets are made publicly available and hence we use these sets primarily for obtain-

ing our results. The last 9 speakers’ data is the test-set or the held out evaluation set. Only the

features are publicly available and the annotations are privately held by the dataset creators. We

sent our final model’s predictions on this set and obtain the results from the evaluation done by

the dataset creators.

The audio and vision features are provided by the AVEC 2016 and 2018 baselines [49, 180].

These are 88-D extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [182] fea-

tures extracted using openSMILE, LGBP-TOP based 168-D video-appearance features and 49
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facial landmarks based 632-D video-geometric features. The arithmetic mean and the standard

derivation of both audio and vision features were computed over the sequential handcrafted fea-

tures of each frame using a sliding window of 8 s with a step size of 40 ms.

2.7.4 CMU Multimodal Corpus of Sentiment Intensity (CMU-MOSI)

CMU Multimodal Corpus of Sentiment Intensity (CMU-MOSI) [51], is a collection of 2199

opinion video clips from 93 YouTube movie review videos in English language. Each video

inherently contains three modalities: language in the form of spoken text, vision via perceived

gestures and facial expressions, and acoustics through intonations and prosody. The videos are

limited to setups where the speaker’s attention is exclusively towards the camera and to have

manual and properly punctuated transcriptions provided by the uploader. There are 89 distinct

speakers (41 females, 48 males). The training, validation and test sets have 52 (1151), 10 (296)

and 31 (752) videos (utterances), respectively. The videos are segmented into utterances with

each utterance’s sentiment label scored between +3 (strong positive) to -3 (strong negative) by 5

annotators. The inter annotator agreement was 0.77 in terms of Krippendorf’s Alpha [183]. The

average of these five annotations is taken as the sentiment polarity to create two classes (positive

and negative) [184, 185, 186].

For CMU-MOSI, the audio, vision and language features are provided by the creators of the

dataset [51]. A CNN is used for textual feature extraction, which takes utterances represented

as a matrix of Google word2vec [187] vectors. The CNN has two convolutional layers: the first

layer has two kernels of size 3 and 4, with 50 feature maps each and the second layer has a

kernel of size 2 with 100 feature maps. The convolution layers are interleaved with max-pooling

layers of window 2 × 2. This is followed by a fully connected layer of size 500 and softmax

output. ReLU is used as the activation function. The activation values of the fully-connected

layer are taken as the features of utterances for text modality. Audio features are extracted with

30 Hz frame-rate and a sliding window of 100 ms using openSMILE [130] toolkit. The features

extracted consist of several low-level descriptors, e.g., voice intensity, pitch, and their statistics,

e.g., mean, root quadratic mean. A 3D CNN [188] is applied on video clips to obtain visual

features. The features from last convolution layer are passed through max-pooling operation

to remove irrelevant features. This is followed by a fully-connected layer of size 100. The

dimensions of textual, visual and acoustic features thus obtained are 100, 100 and 73 respectively.
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2.7.5 Metrics and loss functions

For regression tasks that use continuous labels, correlation based metrics and loss functions can

be used. An example is Pearson Correlation Coefficient (PCC) based loss/metric function. PCC

is given as

PCC =
1

Nσσ̂

N

∑
i=1

(yi−µ)(ŷi− µ̂), (2.6)

where N is the number of labels; yi and ŷi are true and predicted labels, respectively; and (µ ,σ )

and (µ̂ ,σ̂ ) are their corresponding mean and standard deviation pairs.

Then the loss function using PCC can be formulated as

L = 1−PCC, (2.7)

Similar to PCC, another correlation based metric popularly used for regression tasks in AVEC

challenges [49, 180] is Concordance Correlation Coefficient (CCC), given as,

CCC =
2σ2

xy

σ2
x +σ2

y +(µx−µy)2 , (2.8)

where x and y are the true and the predicted labels, respectively, and µx, µy, σx, σy and σxy refer

to their means, variances and covariance, respectively.

Apart from correlation based metrics, Mean Absolute Error (MAE) or Mean Squared Er-

ror (MSE) are also widely used for regression tasks. For classification tasks, categorical cross-

entropy loss function is used.

Lcross−entropy(y, ŷ) =−
C

∑
i=1

yilog(ŷi) (2.9)

where y and ŷ are the true and predicted posterior class probabilities, C is the total number of

classes.

The evaluation metrics for classification tasks are Un-Weighted Accuracy (UWA) and Weighted
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Accuracy (WA), given as,

UWA =
1
N

N

∑
i=1

1(ŷi = yi),

WA =
1
C

C

∑
c=1

(
1

Nc

N

∑
i=1

1(ŷi = yi = c)),

(2.10)

where N is the total number of samples; yi and ŷi are true and predicted labels, 1(x) is the in-

dicator function, C is the total number of classes and Nc is the total number of samples belonging

to class c.

2.8 Summary

In this chapter, we provide the background literature relevant for this thesis. Specifically, we

provide a holistic overview of multimodal fusion techniques involving audio, vision and lan-

guage modalities. We categorize these methods according to their characteristics and provide

a comparison based on their advantages and disadvantages. We also provide a detailed discus-

sion on multimodal co-learning techniques applied to audio, vision and language modalities.

We then describe the four tasks involving the three modalities, namely, unimodal verbal conflict

intensity estimation, multi-class multimodal emotion classification, multimodal continuous emo-

tion recognition and multimodal binary sentiment classification. Furthermore, we describe the

datasets, the features as well as the loss functions and metrics used for validation in this thesis.



Chapter 3

Single Modality Modelling for Computational

Paralinguistics

3.1 Introduction

In this chapter, we discuss details about the design of an end-to-end DNN for a speech based com-

putational paralinguistic task, namely, verbal conflict intensity estimation. Traditional speech-

based conflict detection and conflict intensity estimation methods use off-the-shelf classifiers or

regressors on generic hand-crafted acoustic features, which require further manual refinement

and time consuming feature pruning [6, 7, 8, 9]. Task-specific hypotheses and metadata, like

the number of speakers and the ratio of their speech overlaps, may also be needed to extract

conflict-specific features from standard acoustic features [10, 11, 12]. Another drawback of

these methods is the need for separate training and parameter tuning of the feature extractor and

the classifier/regressor. An alternative approach is end-to-end learning, which trains models di-

rectly from raw input data: since the parameters are trained jointly, the end-to-end model learns

task-specific features directly from the input signal, without requiring any guidance other than

the objective function and the training dataset (see Figure. 3.1). While hand-crafted features may

facilitate interpretation of specific characteristics of the speech signal that are used as predictors

for the task at hand, it is worthwhile to explore if an end-to-end learning framework can be used

for a complex paralinguistic task such as verbal conflict intensity estimation by automatically

learning relevant acoustic features for this task. We aimed to explore this gap in literature and

this resulted in the design of an end-to-end deep neural network for the task of verbal conflict

53
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Feature
extraction

Refinement/
pruning

Classifier/
regressor

Predictions

Domain expertise

(a) Classical model

End-to-end Predictions

(b) End-to-end model

Figure 3.1: Traditional v/s end-to-end speech based detection/estimation models

intensity estimation.

3.2 End-to-End Model Design

According to our RQ1, the aim was to design an end-to-end network, ConflictNET, after consid-

ering the following aspects about the input data:

(a) Features relevant for the task have to be automatically extracted from the raw speech wave-

form.

(b) The nature of temporal evolution of speech should be taken into account.

(c) Instances of verbal conflict are unevenly spread across the entire duration of speech signal.

We use the following rationale to design our end-to-end network.

Since the input is a 1D temporal raw signal, in order to extract features (as required by item

(a) from above), we could use a series of temporal convolutional layers. Each 1D convolutional

layer is composed of multiple learnable filters of specific (chosen) dimensionality. A progressive

increase in the number of filters as well as decrease in filter size after the first convolutional layer

could be employed due to the fact that, with increased depth, the network learns more detailed

features. In order to take into the account the fact that speech is a temporally evolving signal

across which task-relevant cues are spread (items (b) and (c) from above), we need to exploit the

sequential nature by means of a recurrent network like LSTM or GRU. Thus, the output of the

last convolution layer should be provided as input to one or more recurrent layers for further pro-

cessing. Next, while hearing the audio samples, we can find that only some temporal instances in

each signal contain task-related cues with varying degrees of relevance. Some temporal instances

have zero contribution towards the task while some others might contribute more. In order for the
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Figure 3.2: The proposed ConflictNET architecture for conflict intensity estimation.

network to provide a task relevance weightage to temporal instances, we could use an attention

layer. Finally, to provide a mapping the final feature space to the label space, we could use a fully

connected layer.

A more detailed explanation of the architecture is as follows:

3.2.1 Convolutional-recurrent network with attention

ConflictNET contains six types of layers arranged as a single stream and combines feature ex-

traction and regression in a unified framework. Features from the speech signal are extracted by

1D convolutional layers with learnable filters. There are 3 1D strided convolutional layers, with

64, 128 and 256 filters respectively. Each convolutional layer uses ReLU activation. 1D filters of

successive convolutional layers, each with stride 1, are of sizes 6, 4 and 4 respectively. Changes

in the parameters of network layers during training modify the distribution of the input to their

subsequent layers, a phenomenon known as internal covariate shift [189]. To reduce the effect

of this phenomenon and thereby accelerate the training, we perform batch-normalization after

each convolutional layer. Successive max-pooling layers downsample the convolution outputs

and reduce the number of network parameters. The pooling size is determined by considering

the rate of overlap, R, between convolution filter size, F, and pooling size, P [14]:

R =
F−1

F +P−1
. (3.1)

We keep R < 0.4 and use a stride size equal to pool size in all the max pooling layers.

Even though the common choice to model temporal sequential data like speech is to use a Re-

current Neural Network (RNN), vanilla RNNs are hard to train due to the vanishing gradient

problem [190], which can be attenuated using Long-Short-Term-Memory (LSTM). Thus, we
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use two Tanh activated LSTM layers, with 128 and 64 units respectively, to capture the inter-

dependencies between features across time. Although, theoretically, there is no limitation on the

number of time-steps an LSTM can process, our experiments showed that restricting the number

of time steps to fewer than 250 improves performance. Thus, we use a temporal average pooling

layer of pool size 4 to reduce the number of input time-steps to the first LSTM layer. Since, not

all portions of an input speech signal will contribute equally towards the conflict intensity esti-

mate of the entire signal, to enable the network to focus on portions of the signal that are more

relevant for conflict intensity estimation, we use an attention mechanism between the LSTM lay-

ers. The LSTM layer with 128 units provides a sequence output rather than a single value to

the attention layer, which assigns different weights to hidden states across different time-steps.

We use a global additive self-attention mechanism [108], which considers the whole context to

calculate relevance:



g(t, t
′
) = tanh(Wght +Wg′ ht′ +bg),

e(t, t
′
) = tanh(Wag(t, t

′
)+ba),

a(t) = softmax(e(t)),

lt = ∑t′ a(t, t
′
)h

′
t ,

(3.2)

where Wg and Wg′ are weight matrices corresponding to hidden states ht and ht′ respectively; Wa

is the weight matrix corresponding to their non-linear combination; bg and ba are the bias vectors;

a(t, t
′
) captures the similarity between ht and ht′ ; lt represents the attention focused hidden state

representation, which is then given as input to the second LSTM at time-step t. A final fully

connected layer, with a linearly activated single output neuron connected to the final time-step

of last LSTM layer, provides the continuous conflict intensity value. The resulting ConflictNET

model has 420,418 trainable and 896 non-trainable parameters.

3.2.2 Pearson correlation-based loss function

In line with the previous works in the literature [6, 8], we use Pearson Correlation Coefficient

(PCC) as the performance evaluation metric and the loss function was designed to maximise this

metric as given by:



3.2.3 Training 57

L = 1−PCC = 1− 1
Nσσ̂

N

∑
i=1

(yi−µ)(ŷi− µ̂), (3.3)

where N is the number of labels; yi and ŷi are true and predicted labels, respectively; and (µ ,σ )

and (µ̂ ,σ̂ ) are their corresponding mean and standard deviation.

3.2.3 Training

The model was developed, trained and tested using Keras with Tensorflow backend [191]. The

model was trained using the training set and the validation set was used to identify the epoch for

early stopping and model saving callbacks. We used the Adam optimizer [192] with a learning

rate of 0.01 and decay of 0.6 for training the network with mini-batches of size 32. The model

was selected based on the highest PCC value on the validation set. We follow the same training-

validation-testing data split as defined in the challenge. Note that the challenge considered a

binary classification task, obtained by classifying the conflict level into high (≥0) or low (<0).

Also, we convert the target labels from the range [-10,10] to [-1,1] for compatibility with the

activations of the neural network. Since the input to the network is raw speech waveform, due to

memory considerations, we downsample the speech signals to 8KHz. Thus a 30s duration input

signal will have 240000 samples. The downsampling operation loses information above 4KHz

which is perceptually significant but assumed to contain little information relevant to conflict

recognition. To normalize the energy level across the entire input signal S, we perform root-

mean-square normalization as follows:

s =
S√

∑
M
i=1 |Si|2

M

, (3.4)

where Si is the ith sample, M is the total number of samples of the input signal and s is the

normalized signal.

3.3 Results and Ablations

In our experiments, we focus on improving the PCC metric, in line with the related previous

works. We also measure the UAR and WAR after binarising the predicted continuous labels
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into high and low conflict levels. We map the predicted output values to the same range as

the training labels before calculating UAR and WAR, which helps to improve these evaluation

measures without changes in the PCC value. The results we report are average values obtained

after training and testing the model for 10 times.

We compared the performance of ConflictNET with previous works in literature as well as

with a baseline convolutional recurrent network, which we call ParaNET. ParaNET is composed

of the three sets of convolution, max pooling and batch normalization layers as well as two

LSTM layers and a fully connected layer from the ConflictNET. The following ablation study

observations were made using the SSPNet corpus [128].

The performance of our baseline model ParaNET is much better than the expected measure

by chance values (PCC = −0.008± 0.023, UAR = 50%) given in [117]. An average pooling

operation at the input of the first LSTM layer improves the performance on all the 3 evaluation

measures, which can be attributed to the better performance of the LSTM obtained by reducing

the number of input time-steps. An attention layer added to ParaNET improves its performance

by a noticeable margin of 0.162, 9.8% and 8.1% in PCC, UAR and WAR, respectively. This

supports our intuition that weighted combinations of hidden states across multiple time-steps can

result in performance improvement of the LSTM layers. Further, adding both average pooling

and attention layers to ParaNET improves the PCC value to 0.853±0.003. We also experimented

by using a Global Average Pooling layer that took a temporal average over the entire output

sequence of the second LSTM layer before feeding it to the fully connected layer. However,

adding this layer resulted in a slight decrease of 0.002 in PCC and a slight improvement of 0.2%

and 0.5% in UAR and WAR values, respectively. It is worthwhile to note that the standard

deviation of UAR and WAR values (0.43% and 0.51%, respectively) are higher than that of PCC.

This is not surprising since we optimized our network in terms of PCC alone.

The comparison1 in Table 3.1 shows that the performance of ParaNET+AP is similar to that

of the end-to-end solution in [132]. Our best performing model ConflictNET outperforms in

terms of PCC all but one method ([7]). ConflictNET achieves almost the same performance

as [7] , a model with DNN based speech overlap feature set and feature pruning based conflict

specific subset of standard acoustic features. This suggests that our end-to-end architecture has

automatically learned task-specific information from the raw speech input.

1As the results of [131] on the SC2 are not available, this method in not included in the comparison.
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Table 3.1: Performance comparisons on the SSPNet Conflict Corpus test set. Note that the range
of PCC is [-1,1], and that of UAR and WAR are in percentage.

Ref Method PCC UAR WAR

[117] INTERSPEECH’13 baseline .826* 80.8* -
[9] Random subset feature selection .826 81.6 82.1
[8] Random discriminative projection - 84.6* -
[10] Deep hierarchical neural networks .838* 84.3* -
[6] Greedy forward-backward .842* 85.6* -

[129] Ensemble Nyström method .849* - -
[12] Detection using speaker overlap - 83.1 -
[11] Speech interruption detection - 85.3 -
[7] DNN-based feature extraction .856 84.7 -

[132] End-to-End Convolutional NN .779 79.8 -
ParaNET .675 72.4 75.3
ParaNET + AP .781 79.9 81.3
ParaNET + Attn .837 82.2 83.4
ParaNET + AP + Attn + GAP .850 84.5 84.8
ConflictNET: ParaNET + AP + Attn .853 84.3 84.3

KEY - ’*’ results reported by training on both training and validation sets; ’-’ values not reported;
Ref: Reference; PCC: Pearson Correlation Coefficient; WAR: Weighted Average Recall; UAR:
Unweighted Average Recall; NN: Neural Network; DNN: Deep Neural Network; AP: Average
Pooling; Attn: Attention; GAP: Global Average Pooling

3.4 ConflictNET: Model Analysis

Since ConflictNET is an end-to-end architecture, it is not straightforward to understand what cues

from the input signal are being used by the network to generate predictions. To understand what

instances of input speech are being used to predict a conflict intensity estimate, we performed the

following steps. (a) Manual analysis by creating a ground truth versus predicted labels graph and

(b) Interpretation using Local Interpretable Model-agnostic Explanation (LIME) algorithm [31].

3.4.1 Manual analysis

We created a Graphical User Interface (GUI) in Python [193], where each speech sample is

represented as a circle and upon clicking on a circle, we can listen to the sample. The speech

samples in SSPNet corpus [128] were given as input to ConflictNET and the predictions were

obtained. Since the predictions are in the range [-1 1], they were scaled up by a factor of 100

for ease of visualisation of the circles. Figure 3.3 shows the GUI graph. The X axis represents

ground-truth/actual labels (y ∈ RN×1) and Y axis represents predicted labels (ŷ ∈ RN×1). The

quadrants shown in yellow indicate samples where the polarity of actual and predicted labels are
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opposite. The straight line through origin is drawn as reference to understand which samples

have predicted values that are exactly equal to their actual labels. The two other straight lines are

shown to indicate a margin of error ε = 0.5 (50 after scaling). We categorised the entire samples

into 4 cases for analysis purposes.

• Samples for which actual and predicted values have same polarity and are within a margin

of error, i.e., (y > 0 & ŷ > 0) or (y < 0 & ŷ < 0) & |y− ŷ| ≤ ε

• Samples for which actual value has positive polarity and predicted value has negative po-

larity, i.e., y > 0 & ŷ < 0

• Samples for which actual value has negative polarity and predicted value has positive po-

larity, i.e., y < 0 & ŷ > 0

• Samples for which actual and predicted values have same polarity but differ by more than

the margin of error, i.e., (y > 0 & ŷ > 0) or (y < 0 & ŷ < 0) & |y− ŷ|> ε

We took an error margin of 0.5. The rationale behind this choice is as follows. Even though

we formulated conflict analysis as a regression task, it can also be considered as a classification

task, where conflict level > 0 means presence of conflict and conflict level < 0 indicates absence

of conflict. Thus for a regression output of range [-1,1], [-1,0) means absence of conflict and [0,1]

means presence of conflict. We wanted to refine it further with [-1,-0.5) as very low, [-0.5,0) as

low, [0,0.5) as high and [0.5,1] as very high levels of conflict. In this sense, an error margin of

0.5 means that the predicted label belongs to a different sub-class than the actual label.

3.4.2 Local Interpretable Model Agnostic Explanation (LIME) for ConflictNET

LIME is an algorithm proposed in [31] for model agnostic interpretation of machine learning

models. Model agnostic means that this algorithm can be applied to interpret any classifier

or regressor regardless of the architecture. LIME provides instance-based explanations to the

predictions of a model. This means that, given an instance of input data (one text/image/audio

sample), LIME can identify which portions of that particular instance are relevant for the model’s

prediction. For example, for an e-mail classification system, LIME can provide a list of words

contained in the e-mail as an explanation for its classification to some category. SoundLIME

(SLIME) [194] has shown that LIME can be applied to machine learning models whose input
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Figure 3.3: GUI for ConflictNET analysis

can be audio waveforms or spectrogram representations. SLIME pinpoints the time or time-

frequency regions that contribute most to a decision. We have adapted SLIME for interpreting

ConflictNET.

To use LIME, we need to first define what is an interpretable data representation for our spe-

cific case. For example, [31] states that a possible interpretable representation for text classifier

is a binary vector indicating the presence/absence of a word, even if the classifier uses more com-

plex and incomprehensible features like word embeddings. In our case, the input is raw audio

waveform. Thus, similar to [194], we consider temporal segments (also called super-samples) as

analogous to words in a text classifier. The interpretable data representation would then be a bi-

nary vector indicating the presence/absence of a temporal segment. Thus, an input audio signal,

xi, can be uniformly split into several super-samples T j. Thus xi = [T0,T1,....,Tn], with n number

of super-samples and x′i = [1,1,1,....,1] is considered as the interpretable data representation for

xi. Let us call the space of interpretable data representation as sparse binary space.

LIME provides local interpretation, meaning that it explains the local behaviour of the model

in the vicinity of the instance being predicted. To do this, LIME defines the neighbourhood/vicinity

using a synthetic dataset of perturbed data. If xi is the input sample for which an explanation is

required, LIME first creates a set of perturbed instances Z by randomly keeping/removing super-

samples from xi. The corresponding sparse binary space representation for Z is the set Z′. For
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example, if the number of super-samples is 4, then z′k=[1,0,0,1] is a possible perturbed instance

, where 1/0 indicates the presence/absence of that particular super-sample. The neighborhood is

defined by using a distance metric, that calculates the distance between the instance of interest xi

and each of the perturbed instances in the sparse binary space.

LIME defines an interpretable explanation as a model g, that belongs to a class of inter-

pretable models (linear models, decision trees etc). Following [194], we have chosen g to be

a linear model. This means that LIME will find a linear model g that approximates the classi-

fier/regressor for the specific case of input xi using the vicinity defined by the perturbed instances.

In case of a linear regression model, the weights of the model indicate the relevance of the corre-

sponding features and their polarity indicate whether the features have a positive/negative influ-

ence on the prediction.

Each speech input to ConflictNET is of 30s duration and 8KHz sampling frequency. Thus,

each speech file has 240,000 samples and there exists only one label for each 30s long speech

file. To create interpretable data representation, we split each 30s long file into 10 super-samples,

each of 3s duration and having 24,000 samples. Thus an input speech waveform, xi, was split

into [T0,T1,.......,T9]. The intention here was to use LIME to understand which of these 10 super-

samples are relevant for yi, the model’s prediction of xi. We can choose the number of super-

samples in the explanation of LIME, as less than or equal to the total number of super-samples.

If it is less than 10, say 6, then LIME will explain only the most prominent 6 super-samples. We

chose the number of super-samples to be equal to 10, to understand the amount of contribution

from each of them.

The next step was to create the synthetic dataset Z of perturbed samples to define the neigh-

borhood of local prediction. We chose the number of perturbed samples as 2000. The set Z′

contains the corresponding binary representations. Note that the first element of Z′ contains all

ones, indicating the original input speech sample for which we require a LIME explanation. To

apply ConflictNET to the perturbed samples, we projected these samples from the sparse space

back to the input space, where absence of a super-sample is indicated by a sequence of zeros.

Then, ConflictNET was applied on each element of Z and their predicted labels were obtained.

Next, we need to determine the ‘importance’ of each perturbed sample zi ∈ Z by finding its dis-

tance from the original speech sample xi in the sparse binary space. Samples that are closer to xi

has more ‘importance’ or ‘weight’ compared to samples that are farther from xi. The function to
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obtain these weights is given by,

ρ(x′i,z
′
k) = exp(−D(x′i,z

′
k)

2/σ
2), (3.5)

where we chose ‘cosine’ as the distance metric D and the width of the kernel σ as 25 (default

value used in [194]).

Using the sparse binary space representations Z′, predicted labels and the importance weights,

a linear model was obtained using ridge regression (sklearn.linearmodel.Ridge) with the locally

weighted square loss [31, 194] as given below.

L( f ,g,ρ) = ∑
zk∈Z,z′k∈Z′

ρ(x′i,z
′
k)( f (zk)−g(z′k))

2, (3.6)

where ρ is the importance weight function from eq.3.5, g is the linear model and f is the original

model (ConflictNET in our case). After the model is fit, super-samples were sorted in order of

the coefficient magnitudes. Higher magnitude indicates that the particular super-sample has more

relevance on the prediction. The polarity refers to the correlation between the super-sample and

the prediction value. The LIME code [194] requires us to provide labels denoting the classifi-

cation or regression value in probability. For example, if we have 2 classes cats and dogs, and

if the classifier gives a probability of 0.7 that it is a dog, then the label to be given to LIME is

[0.3,0.7]. In case of ConflictNET, the output is a regression value between -1 and 1. So to create

probability based labels, we did the following mapping.

Pp = (1+ ŷ)/2.0

Pn = (1− ŷ)/2.0, ∀ ŷ ∈ [−1,1]
(3.7)

where Pp and Pn denote probabilities associated with positive and negative classes.

We performed LIME analysis on random samples taken from the 4 quadrants of the GUI (see

Figure 3.3).

1. (y > 0 & ŷ > 0) or (y < 0 & ŷ < 0) & |y− ŷ| ≤ ε: In this category, actual and predicted

labels have same polarity and their magnitude difference is less than 0.5. The network

is focusing on instances where speakers are interrupting each other with raised voices.

For example, in case of sample ‘07−01−31 1710 1740.wav’, the actual label is 0.43 and
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Figure 3.4: Log magnitude spectrogram for sample ‘07−01−31 1710 1740.wav’. Time-
frequency representation of the three most relevant super-samples according to LIME [31] are
highlighted in yellow. Notice the distortions in the harmonics in these super-samples compared
to the rest of the spectrogram.

predicted label is 0.68. The order of super-samples given by LIME is [0,1,2,9,6,4,5,7,3,8]

(see Figure. 3.4). Upon hearing the super-samples, 0, 1 and 2 contain speech interruptions

with high energy. All other samples are more or less monologues and LIME gives negative

weights to these super-samples, indicating that they have ‘negative’ contribution towards

the predicted conflict level. In order to make sure that the network is not biased towards

the placement of conflict instances in the speech waveform, other speech files that have

conflict instances at the middle as well as end were also analysed. An example is, sample

‘06−12−13 2160 2190.wav’, whose actual label is 0.31 and predicted label is 0.44. This

speech file has verbal interruptions in the last 10 seconds. The order of super-samples given

by LIME is [7,6,8,0,5,2,3,1,4,9]. Here, 7,6 and 8 actually contain verbal interruptions

during a heated discussion between three people.

2. y > 0 & ŷ < 0: It is observed that for samples belonging to this category, more than

70% duration contain monologues. This means that the amount of time that has ver-

bal interruptions is less. It is also observed that for many samples in this category, the

network’s prediction seems to be better than the actual label for a person who does not

understand French language. However, LIME analysis has pointed out some discrepan-

cies in the network’s prediction. For example, for sample ‘06-11-08 1980 2010.wav’, the
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Figure 3.5: Log magnitude spectrogram for sample ‘06-11-08 1980 2010.wav’. Time-frequency
representation of the three super-samples with negative LIME [31] coefficients are highlighted
in red.

actual label is 0.27 and predicted label is -0.26 (see Figure 3.5). The order of super-

samples given by LIME is [0,1,2,5,6,4,7,8,9,3], where 7, 8 and 9 are given negative po-

larity, which means that they are negatively correlated with the prediction. However,

on hearing the samples, only 7 and 8 contain verbal interruptions. 9 contains a single

speaker’s voice. In fact, super-sample 9 sounds similar to 5 and it is not clear why the

network thinks that 9 contributes towards conflict and 5 contributes towards non-conflict

prediction. Similarly, for samples ‘06-12-20 690 720.wav’, ‘08-01-30 2280 2310.wav’,

‘08-01-15 1740 1770.wav’, ‘07-02-14 900 930.wav’ and ‘08-01-15 1170 1200.wav’, LIME

analysis shows that the network thinks a few super-samples that actually contain verbal in-

terruptions as contributing towards non-conflict prediction and a few super-samples that

contain only monologues as contributing towards conflict prediction.

3. y < 0 & ŷ > 0: Most speech samples in this category contain laughter instances. Some

instances contain strong background music or mic tapping noise (someone is touching on

the wearable or hand-held mic) as well. The network is giving more importance to super-

samples containing laughter and mic taps. For example, for sample ‘07-02-28 1260 1290.wav’,

the actual label is -0.69 and predicted label is 0.15. The order of super-samples, as given

by LIME, is [0,5,4,6,8,9,2,3,7,1], where 0 is given a weight of +0.5 and all others have

negative weights. Upon hearing the super-samples, it is observed that 0 contains laughter

and all the rest contains monologues with little or no cross-talks. This means that super-

sample 0 is the reason for the network’s prediction of this sample as containing conflict.
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Figure 3.6: Log magnitude spectrogram for sample ‘07-02-28 1260 1290.wav’. Time-frequency
representation of the super-sample containing laughter instance is highlighted in yellow.

Similarly, for sample ‘08-01-30 810 840.wav’, actual value is -0.4 and predicted value is

0.43. The order of super-samples, given by LIME, was [8,1,6,7,4,3,9,2,5,0], in which 8,1,6

and 7 contain laughter by a cross-talker.

4. Actual and predicted values have same polarity but exceeds a margin of error (|y− ŷ|> ε):

The margin of error is selected as 0.5. This category contains fewer samples compared

to the other categories. It has been observed that for samples whose actual and predicted

values are both positive, the 2 speakers sound very similar to each other. For example,

for sample ‘08-01-30 720 750.wav’, whose actual and predicted values are 0.64 and 0.07

respectively, 1 male speaker speaks for roughly half the time and other male speaker speaks

for the other half. The transition interruption is of very short duration as well. For all

the samples, whose actual and predicted values are negative and their difference exceeds

0.5, the network’s prediction is lower than the actual value. For example for samples

‘07-05-02 1530 1560.wav’ and ‘06-09-27 1230 1260.wav’, the actual values are -0.04 and

-0.21 respectively and the corresponding predicted values are -0.55 and -0.73 respectively.

This means that the network perceives these samples as containing lower amount of conflict

than the annotators.

From these observations, we can conclude that the network is focusing on energy variations

in the input speech. Verbal conflicts are associated with raised voices and hence high energy seg-

ments of conversations, which means that ConflictNet is using the right cues to identify instances

of verbal conflict. However, the network is prone to errors that can occur with other high energy
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segments like laughter instances, music or other high energy noise instances. Also, since the

network is language independent, it cannot understand a passive aggressive verbal conflict where

the people are not exactly shouting at each other.

3.5 Conclusion

Verbal conflicts can occur during inter-personal arguments and can be the cause or effect of

human aggressive behaviour, thus making the estimation of verbal conflict level an important re-

search topic under the umbrella of affective computing. Previous works focused on using hand-

crafted generic acoustic features along with off-the-shelf classifier/regressor models, which can

lead to time-consuming feature pruning and/or manual refinement. Some works also use extra

meta data like the number of speakers and speech overlap information. One of our research ques-

tions was whether or not it is possible to design a network that can automatically learn conflict

specific features given raw speech signals as input. We develop a convolution-recurrent neural

network model, equipped with attention mechanism, that directly maps the given raw speech

signal to a continuous label space indicating the verbal conflict intensity. Thus, we conclude

that it is possible to design an end-to-end model that can predict continuous conflict intensity

estimation values from raw speech signals. Performance evaluation of the model on the SSPNet

Conflict Corpus [128] showed that it is competitive with respect to the state-of-the-art methods.

Since our end-to-end model is a ‘black-box’ from an interpretability point of view, we adapt a

popular explainable AI method called LIME [31] to provide sample based localised explanations

of our model. This process showed that our network uses energy variations in the input speech

as cues for detecting conflicts.



Chapter 4

Attention Based Multimodal Fusion

4.1 Introduction

In this chapter, we discuss details of the design of multimodal fusion models using audio (speech),

vision and language modalities as input. Multimodal fusion models fuse complementary infor-

mation from multiple modalities to outperform their unimodal counterparts. However, a success-

ful model that fuses modalities requires components that can effectively aggregate task-relevant

information from each modality. Recently, cross-modal attention [19, 20, 195], that uses one

modality to compute attention scores for another modality, is being viewed as an effective mech-

anism for multimodal fusion. However, the current literature is unclear on the gain that such a

mechanism brings compared to the corresponding intra-attention mechanism, that relies only on

one modality to compute attention scores for itself. We aim to fill this research gap and quantify

the performance differences between the two types of attention mechanisms. To this end, we de-

sign two models, one based on cross-attention and another based on intra-attention. In addition

to attention mechanism, each model uses convolutional layers for local feature extraction and

recurrent layers for global sequential modelling. We validated the effectiveness of our models on

the task of 7-class emotion classification using the audio, vision and language modalities from

IEMOCAP [46] dataset. We also analyse the behaviour of our trimodal models when one or

more modalities are missing during the test-time and use two strategies, namely, Moddrop [47]

and KNN based imputation [196] to combat the performance drop.

68
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4.2 Intra- and Cross-Modal Models

We want to verify the hypothesis that multimodal recognition models benefit from cross-attention

mechanism [19, 20, 195] and hence we contrast this mechanism with the corresponding models

using intra-modal (self) attention mechanism. To this end, we design two multimodal emotion

recognition models, each employing one of the two attention mechanisms. To enable a direct

comparison between the two types of attention mechanisms, we use only the attention module

and not the transformer [113] encoder module. In addition to the attention mechanisms, our mod-

els also contain convolutional and recurrent layers for effective modelling of temporal sequential

data.

Our proposed cross- and intra-attention models (see Figures. 4.1 & 4.2) first process individ-

ual modalities using modality-specific encoders. Each modality specific encoder is provided with

their corresponding features obtained from audio-visual utterance clips. The encoded features are

then fed into intra- or cross-modal Multi-Head-Attention (MHA) [113] modules, respectively. A

global representation of the entire utterance clip is then generated as temporal average at the

outputs of each MHA module. The resulting features are then concatenated and their mean and

standard deviation are obtained using a statistical pooling layer. The concatenation of mean and

standard deviation vectors is then fed to fully connected layers. The class predictions are then

obtained through a softmax operation. A detailed explanation is given as follows:

Let Xa ∈ Rta×da be the audio features corresponding to an utterance clip, where ta is the

sequence length and da is the feature dimension. The audio encoder consists of a 1 dimensional

convolution layer followed by a bi-directional GRU. The convolution layer, which refines the

input feature sequence by finding task-relevant patterns, operates as follows:

X ′
a(t

′) = b(t ′)+
ta−1

∑
k=0

(W (t ′,k)∗Xa(k)), (4.1)

where X ′
a ∈ Rt′a×d′

a is the output with length t ′a and dimension d′
a, t ′ ∈ [0, t ′a−1], ∗ is the con-

volution operator, W are the weights and b are the biases associated with the layer. Thus, the

convolution layer modifies the sequence length as well as the feature dimension. The bi-GRU

layer models contextual inter-dependence of the features across time. For each element in the

sequence, the bi-GRU layer computes the following functions:
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Figure 4.1: The architecture of our proposed Cross-attention model. The input features
⊕

rep-
resents concatenation operation. KEY - MHA: Multi-Head Attention, Temp.: Temporal, Avg.:
Averaging, a: audio, v: visual, l: language/text, µ: mean, σ : standard deviation



rt = σ(WirX ′
a(t)+bir +Whrht−1 +bhr),

zt = σ(WizX ′
a(t)+biz +Whzht−1 +bhz),

nt = φh(WinX ′
a(t)+bin + rt ⊙ (Whnht−1 +bhn)),

ht = (1− zt)⊙nt + zt ⊙ (ht−1),

(4.2)

where ht and ht−1 are the hidden states at times t and t − 1, X ′
a(t) is the input at time t. rt , zt

and nt are the reset, update and new gates, W and b are the corresponding weights and biases, σ

and φh are the sigmoid and hyperbolic tangent functions and ⊙ is the Hadamard product. At the
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Figure 4.2: Attention and fusion module in our proposed intra-attention model. Rest of the model
is same as the cross-attention model. Note that the number of required MHA and Temp.Avg.
modules is half that of the cross-attention model.

output of bi-GRU, the forward and backward hidden states for each time-step are concatenated

and the refined audio features can be represented as ea ∈ Rt′a×d′′
, where d′′ is twice the number

of hidden neurons in the GRU.

Similar to audio, the video encoder consists of one 1D convolution layer followed by a bi-

GRU layer. If Xv ∈ Rtv×dv represents the video features corresponding to an utterance, then at the

output of video encoder, the features are refined to ev ∈ Rt′v×d′′
. For the text modality, the encoder

consists of only one bi-GRU layer. The input and output of text encoder can be represented by

Xl ∈ Rtl×dl and el ∈ Rtl×d′′
respectively.

The encoder outputs of all the three modalities are then fed into intra- or cross-modal MHA

modules (see Figure.2.4 for details on MHA module). For cross-attention model, since there

are 6 pairs of modalities, statistical pooling is done across the concatenation of the temporal

averages of 6 cross-modal sequences, whereas for the intra-attention model, it is done across the

concatenation of the temporal averages of the intra-attended sequences of all the 3 modalities.

The classifier for both models is:
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ŷ = So f tmax( fθ2( fθ1([µ,σ ]))), (4.3)

where µ is mean, σ is standard deviation, fθ1 and fθ2 denote the 2 fully connected layers with

parameters θ1 and θ2 respectively and ŷ denotes the vector of class predictions.

4.2.1 Architecture, loss function and training

The models are implemented using PyTorch [48]. The bimodal and unimodal versions of the tri-

modal models are created by removing components corresponding to the unused modality/modalities.

We use Adam [197] optimiser with an initial learning rate of 0.001. The learning rate is reduced

by a factor 0.1 when the validation loss has stopped decreasing for 10 consecutive epochs. Train-

ing is stopped when UnWeighted Accuracy (UWA) does not improve in the validation set for 10

consecutive epochs and the model with best validation UWA is used for testing. The batch size

is 32 and all models are trained using the categorical cross-entropy loss. The audio and vision

encoders contain one 1 dimensional convolution layer each. The kernel size and stride length are

both set to 1. The number of input and output channels for audio convolution layer are 1,000

and 500 respectively while for vision they are 32 and 25 respectively. The number of bi-GRU

layers for all the 3 modalities is 1. The number of hidden neurons in each bi-GRU layer is 60.

The number of attention heads in all MHA modules is 6 and a dropout rate of 0.1 is applied to

reduce overfitting. The number of neurons in the first and second fully connected output layers

are 60 (same as number of bi-GRU neurons) and 7 (number of output classes) respectively. All

parameters were chosen based on the performance on validation set. Specifically, a grid search

over hyper-parameters was done for the intra and cross tri-modal models. In order to make sure

that the tuning is not biased towards one model, we made sure that the same hyper-parameter

combination was applied to both models after fixing the seed value. The best hyper-parameters

were selected by the best UWA result of either models on the validation set.

4.3 Results and Ablations

We use the IEMOCAP [46] dataset and evaluate our models on 7 class emotion classification.

Table 4.1 shows the results of comparing the intra- and cross-modal models on 7-class unimodal,

bimodal and trimodal emotion recognition tasks. We report the mean and standard deviation
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Table 4.1: Results of a 7-class emotion classification task presented as mean ± standard devia-
tion. AMH refers to AMH [33] for trimodal models and to MHA [142] for bimodal models.

Weighted Accuracy

Modality MDRE [65] AMH [33] Cross Intra

T - - - .474 ± .030
V - - - .454 ± .019
A - - - .365 ± .018

T+V .524 ± .021 .526 ± .024 .567 ± .022 .563 ± .022
T+A .418 ± .077 .491 ± .028 .501 ± .026 .518 ± .031*
V+A .376 ± .024 .371 ± .042 .481 ± .024 .483 ± .026

T+V+A .490 ± .056 .547 ± .025 .578 ± .024 .587 ± .022*

Unweighted Accuracy

Modality MDRE [65] AMH [33] Cross intra

T - - - .535 ± .016
V - - - .513 ± .018
A - - - .452 ± .017

T+V .579 ± .015 .580 ± .019 .617 ± .015 .614 ± .020
T+A .498 ± .059 .543 ± .026 .562 ± .017 .574 ± .018*
V+A .477 ± .025 .471 ± .047 .566 ± .022 .567 ± .026

T+V+A .564 ± .043 .617 ± .016 .636 ± .017 .642 ± .019

KEY - A: audio; V: vision; T: text; intra: intra-attention model; Cross: cross-attention model.
The best results in each row are in bold font. The symbol * refers to the only three results with
statistically significant difference between the intra and cross models.

obtained across 50 runs (5 folds × 10 repetitions) for each model. We also applied two-tailed

t-test with the null hypothesis that the accuracy values of both intra and cross-attention models

have identical average (expected) values. Comparison of the unimodal performances shows that

the text outperforms the vision and audio modalities. This result is consistent with previous

works [19, 65]. Since unimodal performance evaluation is not possible with the cross-modal

model, we report results with the unimodal version of the intra-attention model. Among bimodal

models, the combination of vision and text modalities gives the best performance for both models.

These results are also consistent with previous works [65, 142]. Overall, both models provide

comparable performances for bi- and trimodal cases. Intra-attention significantly outperforms

cross-attention (P value < .05) only for T+A (text and audio) and the Weighted Accuracy (WA)

of T+V+A (text, vision, and audio).

We compare with methods that use the same set of features and dataset partition. The tri-
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modal models are compared with AMH [33], the current state-of-the-art model, which uses a

combination of unimodal GRU layers and an iterative attention mechanism1. Note that the intra-

attention model exceeds the performance of AMH by 4.0 and 2.5 percentage points (pp) over

mean in terms of WA and UWA, respectively. Similar figures for the cross-attention model are

3.1 pp and 1.9 pp. We also compare with MDRE [65], which uses recurrent layers to model

unimodal signals followed by aggregation and classification using fully connected layers. The

better performance of the intra and cross-attention models, as well as AMH, compared to MDRE

can be attributed to the effectiveness of the attention mechanism. For bimodal models, we com-

pare with the bimodal version of AMH called MHA [142] and MDRE. Again, both models

outperform MHA and MDRE in all the 3 bimodal cases. Note that we obtain bimodal results by

ablating the trimodal models and not by fine-tuning for individual bimodal cases. This means

that only the original tri-modal models’ architectures were optimized for best performance using

tri-modal training. For the bi-modal results, we simply removed the components corresponding

to the unavailable modality from the tri-modal model and trained the remaining layers using the

available two modalities. A much better optimization for the bi-modal models could be done by

doing architecture search and hyper-parameter optimization for the individual bi-modal cases.

This might have resulted in improved results compared to simply training the bi-modal models

ablated from the tri-modal models. However, since the objective of our whole experiments is to

compare the self- and cross-attention performance on tri-modal models that use audio, vision and

text modalities, fine-tuning for individual bi-modal cases might be out of scope and not relevant

for the problem.

Furthermore, AMH, MHA and MDRE use prosody features in addition to MFCC features

for audio, whereas we use only MFCC features. The state-of-the-art result for text+audio case

is obtained by [20] (0.560 WA and 0.612 UWA) which is significantly higher than the bimodal

T+A (text and audio) results. We hypothesize two reasons for this: (1) unlike [20], the bimodal

models are not fine-tuned for the bimodal cases; (2) [20] uses transformer encoders that con-

tain additional parameters that might help in learning more complex inter-modal relationships,

whereas we use only the multi-head attention mechanism. Nevertheless, both models improve

the state-of-the-art trimodal results of AMH.
1We use the revised results of AMH, MHA and MDRE from https://github.com/david-yoon/

attentive-modality-hopping-for-SER. We note that the WA and UWA values were swapped by the
authors and we rectify this error in Table 4.1.

https://github.com/david-yoon/attentive-modality-hopping-for-SER
https://github.com/david-yoon/attentive-modality-hopping-for-SER
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Figure 4.3: Confusion matrices of intra- (left) and cross-attention models (right) for trimodal
7-class classification using a random fold. The emotions classes are abbreviated with their first 3
letters.

Table 4.2: Weighted accuracy (WA) and Unweighted accuracy (UWA) for 7-class emotion clas-
sification using additional trimodal model configurations. Intra and Cross model results are also
shown for comparison.

Model WA UWA

Cross-noSP .570 ± .021 .634 ± .015
Cross .578 ± .024 .636 ± .012
Intra-noSP .584 ± .021 .638 ± .019
Intra .587 ± .022 .642 ± .019
Cross+Intra .585 ± .028 .642 ± .020

KEY - SP: statistical pooling; Cross-noSP and Intra-noSP: cross and intra-attention models with-
out SP; Cross+Intra: combination model that concatenates mean and standard deviation vectors
from intra and cross-attention models.

Figure. 4.3 shows the confusion matrices for the intra- and cross-attention models. For both

models we can observe that the classes angry and frustrated are more often confused with each

other, and the class happy gets confused with excited (these 2 classes are inherently similar).

The poor performance of both models on the class surprise can be attributed to the fact that this

has the smallest sample size in the dataset. These observations are consistent with the previous

literature [33].

In addition to the two described model configurations, we also experimented with different

variations of the trimodal models. We removed the statistical pooling layer from both models to

assess its significance. The outputs from all temporal averaging modules (see Figures. 4.1 & 4.2)

were concatenated and passed to the classifier module. These models are shown as ‘Cross-

noSP’ and ‘Intra-noSP’ in Table 4.2. We can make two observations. Firstly, the intra-attention
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model outperforms the cross-attention model (P value < .05 for WA) even after ablating statisti-

cal pooling. Secondly, the performance of both models decreases without the statistical pooling

layer. We also assessed the performance of a combined model created by merging the intra and

cross-attention models (Cross+Intra). The statistical pooling output from both models were con-

catenated and fed to a common classifier module. Surprisingly, we can see that the performance

is similar to that of the intra-attention model. This might indicate that the cross-attention model

does not contribute any additional, relevant information compared to that of the intra-attention

model.

We also conducted further ablation on the cross-attention model to assess the role of individ-

ual modalities as sources and targets in the MHA mechanism. Table 4.3 shows the results. For

bimodal combinations with a single source and a single target modality, using vision modality

to generate attention scores for text modality (T2V) provides the best results. Intuitively, this

combination is using the second best performing modality to produce attention scores for the

best performing modality. The next highest values in this group are obtained when vision is used

as source and text as target. In this case, the best performing modality is used to find the attention

scores for the second best performing modality. On the other hand, the lowest performance is

obtained when audio is used as target and vision as source modality and audio is used to find at-

tention scores for vision modality. Next, we kept the target modality fixed and used the other two

modalities as sources. In this group, we find that keeping vision as target modality gives the best

performance (A2V+T2V). In the case when we keep the source fixed, text as source modality

gives the best performance (T2V+T2A). Audio and vision modalities are used to find the atten-

tion scores for text. This might point to the intuition that text is the most informative modality

and that audio and vision modalities are auxiliary modalities that help the text by finding relevant

time-steps in its sequence.

4.4 Missing Modality Behaviour Analysis

One common assumption associated with developing multimodal models is that all the modalities

available during training are also available during the testing or deployment or inference phase.

In practice, however, this cannot be guaranteed. Missing modality situations are far too common

and hence it is important to assess the behaviour of multimodal models during missing modality

scenarios. We check the behaviour of our trimodal models during scenarios where one or two
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Table 4.3: Weighted accuracy (WA) and Unweighted accuracy (UWA) for 7-class emotion clas-
sification by ablating the trimodal configuration of the cross-attention model. Modality combi-
nation is shown in the format S2T where S and T represent source and target respectively.

Model WA UWA

T2V only .550 ± .025 .597 ± .018
T2A only .504 ± .023 .561 ± .016
V2T only .520 ± .026 .597 ± .022
V2A only .448 ± .020 .532 ± .017
A2T only .456 ± .026 .533 ± .020
A2V only .471 ± .027 .558 ± .023

V2T + A2T .534 ± .027 .613 ± .020
V2A + T2A .557 ± .023 .611 ± .021
A2V + T2V .569 ± .018 .622 ± .015

T2V + T2A .540 ± .024 .590 ± .020
V2A + V2T .504 ± .027 .580 ± .019
A2T + A2V .511 ± .030 .589 ± .021

modalities are missing.

Table 4.4 shows the results when both intra- and cross-attention trimodal models are trained

using 3 modalities but when tested using one or two modalities. For comparison purposes, the

original unimodal and bimodal trained and tested model counterparts are also shown. Note

that for computational reasons, the missing modality situation is simulated by representing that

modality as a vector of zeros. When comparing the intra- models, we can see that the perfor-

mance has dropped significantly for all the unimodal and bimodal cases. Similar observations

apply for the bimodal cross-attention models as well. This means that our trimodal models which

were trained with all the three modalities consistently under-perform during missing modality

situations when compared to their unimodal and bimodal trained and tested counterparts.

In order to improve the robustness of our multimodal models, we exploit two ideas:

• Apply the Moddrop [47] technique where modalities are dropped out during training.

• Impute missing modality intermediate features using a K Nearest Neighbour (KNN) algo-

rithm based technique [48].

The fundamental difference between both techniques is that while Moddrop has to be applied

during the training time, the KNN based method is to be applied after the training. The latter will

suit situations where we do not have a provision to train the model but need to accommodate for

missing modality scenario at test-time.
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Table 4.4: Weighted accuracy (WA) and Unweighted accuracy (UWA) for 7-class emotion clas-
sification by ablating the trimodal intra- and cross-attention models. orig refers to results using
the original unimodal and bimodal models that were trained and tested using same modalities.
and indicate the presence and absence of any modality respectively.

T V A Intra Intra-orig

WA UWA WA UWA
.306 ± .063 .351 ± .049 .474 ± .030 .535 ± .016
.233 ± .033 .330 ± .040 .454 ± .019 .513 ± .018
.255 ± .034 .350 ± .035 .365 ± .018 .452 ± .017

.446 ± .055 .500 ± .052 .563 ± .022 .614 ± .020

.468 ± .038 .515 ± .032 .518 ± .031 .574 ± .018

.413 ± .027 .520 ± .023 .483 ± .026 .567 ± .026

T V A Cross Cross-orig

WA UWA WA UWA
.237 ± .062 .285 ± .048 N.A N.A
.220 ± .033 .312 ± .040 N.A N.A
.229 ± .036 .315 ± .040 N.A N.A

.361 ± .059 .423 ± .060 .567 ± .022 .617 ± .015

.446 ± .057 .495 ± .039 .501 ± .026 .562 ± .017

.403 ± .023 .502 ± .022 .481 ± .024 .566 ± .022

4.4.1 Moddrop training for missing modality

The Moddrop technique where modalities are dropped out during training makes the model aware

of missing or dropped modality situations. In Moddrop training, our training set contains the

following combinations for each sample; (T, V, A), (T, V, 0), (T, 0, A) and (0, V, A) where 0

represents a vector of the same feature dimensionality as the missing modality. Thus, Moddrop

can be considered as a data augmentation scheme as well.

Figure. 4.4 shows the results of applying Moddrop training on the trimodal version of intra-

modal attention model. The original models which are trained and tested on same modality com-

binations are shown as Unimodal-Training-and-Unimodal-Testing(UTUT)/Bimodal-Training-and-

Bimodal-Testing(BTBT). The Multimodal-Training-and-Unimodal-Testing(MTUT)/Multimodal-

Training-and-Bimodal-Testing(MTBT) shows the trimodal trained but unimodal or bimodal tested

versions. It can be seen that Moddrop is able to improve the performance over the MTUT/MTBT

versions. Similar experiments on the cross-attention model is shown in Figure. 4.5. We can

observe that Moddrop based training strategy is effective for the cross-modal model as well. An-

other interesting result, as shown in Table 4.5, is that the trimodal trained and trimodal tested

versions of both intra- and cross-attention models also show performance improvement with the
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Figure 4.4: Results in mean and standard deviation format for 50 runs (5 folds x 10 seeds)
using intra-attention model for original, missing modality and Moddrop trained scenarios. KEY:
UTUT - Unimodal Training and Unimodal Testing, BTBT - Bimodal Training and Bimodal
Testing, MTUT - Multimodal Training and Unimodal Testing, MTBT - Multimodal Training and
Bimodal Testing

Figure 4.5: Results in mean and standard deviation format for 50 runs (5 folds x 10 seeds)
using cross-attention model for original, missing modality and mod-drop trained scenarios. KEY:
BTBT - Bimodal Training and Bimodal Testing, MTUT - Multimodal Training and Unimodal
Testing, MTBT - Multimodal Training and Bimodal Testing. Note that cross-attention model
does not have unimodal training and unimodal testing versions.
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Table 4.5: Weighted accuracy (WA) and Unweighted accuracy (UWA) for 7-class emotion clas-
sification using the intra- and cross-attention trimodal models trained using Moddrop.

Model WA UWA

Cross .578 ± .024 .636 ± .012
Cross+Moddrop .599 ± .019 .654 ± .014
Intra .587 ± .022 .642 ± .019
Intra+Moddrop .593 ± .022 .648 ± .014

Figure 4.6: KNN based missing modality imputation strategy. Only two modalities are shown
for simplicity. Stars and triangles represent samples from two different modalities.

Moddrop training. Albeit both models show performance gains with Moddrop, the gain obtained

for cross-attention model is higher compared to the intra-attention model. Thus, Moddrop train-

ing strategy is not only useful for missing modality situations, but also for full modality situations

as well.

4.4.2 KNN imputation for missing modality

Next, we use the KNN based test-time missing modality imputation strategy. The method is

shown in Figure 4.6. Given paired modality samples in the training set, if for any given sample

in the test set one modality is missing (as shown by the red cross in Figure 4.6), then it is imputed

by using a 4 step strategy. First, the corresponding test sample in the other modality is taken.

Then its K nearest neighbours in the training set is chosen based on some distance metric like

Euclidean or Cosine. Then the corresponding samples in the other modality is found, their mean

is taken. This mean value is used to replace the missing sample in the test-set. In practise, since

the input modality features are high dimensional, we use this imputation strategy on intermediate

features of lower dimensionality. The feature imputation was performed at the input of statistical
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Figure 4.7: Results in mean and standard deviation format for 50 runs (5 folds x 10 seeds)
using intra-attention model for KNN based missing modality imputation with K=5,10 and 100.
Moddrop results are shown for comparison. KEY: UTUT - Unimodal Training and Unimodal
Testing, BTBT - Bimodal Training and Bimodal Testing, MTUT - Multimodal Training and
Unimodal Testing, MTBT - Multimodal Training and Bimodal Testing. Note that the distance
computation metric used is Euclidean.

pooling layer (see Figure 4.2). Figure 4.7 shows the results obtained by different values of K for

the intra-attention model. We also show the original UTUT/BTBT and Moddrop based results

for comparison. We can see that the performance is inferior to the Moddrop strategy. Also, we do

not observe any consistent performance differences across different K values. Even though for

all K values, the performance is better than with no imputation, a major drawback of this method

is the increased space complexity since we need to store the entire training set in memory.

4.5 Conclusion

Even though many contemporary works in multimodal fusion literature use intra-modal and

cross-modal attention mechanisms, it is unclear whether there is a clear advantage in using one

over the other. To understand this, in this chapter, we introduced two fusion models, one based

on intra-modal attention and another based on cross-modal attention for the task of multi-class,

multimodal emotion recognition using audio, vision and language modalities. Based on our

unimodal, bimodal and trimodal experiments on the IEMOCAP dataset, we conclude that there

is no consistent statistically significant performance differences across both models in terms of
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weighted and un-weighted accuracy measures. Ablation studies on both models validate the

choice of statistical pooling layer in the model architecture. Furthermore, a combination model

created by merging the intra- and cross-attention models did not out-perform the intra-attention

model indicating that the cross-attention model might not contribute any useful information com-

pared to the intra-attention model. Also, both our tri-modal models improve upon the state-of-

the-art models in seven class emotion recognition task. Albeit both models under-perform in case

of missing modality situations, which is a commonly reported issue with multimodal models, it

can be concluded from our experiments that modality-dropping based training strategy as well

as a KNN based post-training intermediate feature imputation strategy can be used to combat the

performance drop. We also note that the modality-dropping based training strategy is not only

beneficial for test-time missing modality cases but also improves the performance of test-time

full modality cases.



Chapter 5

Co-Learning for Improving Feature Descriptiveness

5.1 Introduction

Most multimodal machine learning algorithms assume that all modalities that are present dur-

ing training phase would be available during testing phase as well. Multimodal fusion models

aggregate the unevenly distributed, complementary information across the available modalities

to outperform unimodal models. However, several applications or use cases require only uni-

modal models. For example, emotion recognition models for emergency telephone lines [198]

or customer-support call centers [132] can rely on speech data only. Vision based drowsiness

detection models [199, 200] use only face images to detect the level of lethargic state of a driver.

These unimodal models are limited by the characteristics of their respective modalities and their

performance often falls short of their multimodal counterparts. The research question in this case

is whether it is possible to utilise all available modalities during training to create a stand-alone

unimodal model that can provide an improved test-time performance compared to the case when

only one modality is available for training. This challenge is addressed by a learning paradigm

called Multimodal Co-Learning (MCL) [2, 43]. MCL algorithms work by cross-modal knowl-

edge transfer, i.e; transferring knowledge from one modality to another. In this chapter, we

explain our cross-modal knowledge transfer method, called Stronger Enhancing Weaker (SEW),

that can be used to improve the test-time performance of a weaker modality by using a stronger

modality during training phase alone. Here the notion of strength for a modality is based on its

individual unimodal performance. We present two versions of the SEW method, one for non-
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sequential data and the other for sequential data. We explain the model design, architectural

details and the loss functions used for training. We validate the method on continuous emotion

recognition using the RECOLA [173] dataset and binary sentiment classification using CMU-

MOSI [174] dataset.

5.2 Cross-Modal Knowledge Transfer Modelling

The term ‘knowledge’ in Cross-Modal Knowledge Transfer (CMKT) refers to the task-specific

or useful information available in the features of a modality. In other words, it refers to the

feature descriptiveness of a modality. As the information to explain any multimodal event is

unevenly spread across all the modalities involved, some modalities might be more informative

compared to the others [21, 23, 24, 50]. For example, in multimodal sentiment analysis research,

it is often shown that text transcripts are more informative of sentiment compared to vision and

acoustic modalities [50, 184]. Similarly, for continuous emotion recognition task, information

about arousal or the level of activation is more evident from speech while valence or the level of

pleasantness information is conveyed better by the vision (facial expressions) modality [23, 49,

201, 202, 203].

We create a novel framework for CMKT from a stronger modality to a weaker modality. Our

CMKT framework consists of two main components, namely, cross-modal translation and latent-

feature alignment. The intuition behind using cross-modal translation is that translating from one

modality to another creates intermediate representations that capture joint information between

both modalities [85, 204]. In our framework, we translate from the weaker to the stronger modal-

ity by using an encoder-decoder model. An explicit alignment between the intermediate and the

stronger modality latent features further encourages the framework to discover components of

the weaker modality that are maximally correlated with the stronger modality.

5.2.1 Modality ranking

For any given task and dataset, we first determine the strength of individual modalities by em-

ploying unimodal classifiers or regressors. This way, we can rank modalities according to

their performance. The best and the least performing modalities can be called the strongest

and the weakest respectively. Specifically, let a, v and t represent acoustic, visual and tex-

tual modalities, respectively. The sequence of features for modality i ∈ {a,v, t} are given by
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Mi = [Mi1 ,Mi2 , ....,MiN ] ∈ RN×di , where di is the feature dimensionality and N is the sequence

length. Let the corresponding labels, which are common for all the modalities, be represented by

Y = [Y1,Y2, ....,YN ] ∈ RN×1.

Let Γ
c (Γr) denote the unimodal classifier (regressor) with parameters θi for modality i. Let

the performance score for each modality, ei, be given by the evaluation metric E as

ei = E (Γc(Mi;θi),Y ) . (5.1)

Using this performance score, we can rank the modalities for a specific classification or

regression task: a modality s is said to be stronger than modality w if es > ew (the opposite if

E measures errors). Then our objective is to improve the task performance of feature Mw (the

weaker modality) using the stronger modality during training.

It should be noted here that our objective is to improve the weaker modality using the stronger

and not vice-versa. This is because we hypothesize the following. The reason for a modality

to be stronger is because of its increased task-specific feature discriminativeness compared to

the weaker modality. Hence, a weaker modality model can take up the role of a ‘student’ that

learns to improve its ‘discriminative feature learning’ by using the stronger modality model as

a ‘teacher’. However, the opposite case where the weaker modality model becomes a ‘teacher’

could result in negative knowledge transfer [21] and can cause performance deterioration of

the stronger modality model. Thus, even though theoretically it could be plausible to design a

system to control the effect of negative knowledge transfer, we consider such a case as a poten-

tial follow-up of our current objective. Another reason for choosing the stronger to enchance

weaker modality model is that it is practically more useful since based on the margin of differ-

ence between their uni-modal performances, the former could improve the latter much more than

vice-versa.

5.2.2 Auto-encoder based model for non-sequential data

For CMKT on non-sequential data, we use an auto-encoder based architecture. The framework,

called Stronger Enhancing Weaker (SEW), employs a supervised neural network model that uses

paired modality data during training. The key concepts of our framework are cross-modality

translation and latent-feature alignment. These concepts are implemented using four main mod-

ules: a cross-modal translator, an intra-modal auto-encoder, a feature alignment module and a
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task-specific regressor or classifier (see Figure. 5.1). These modules are described as follows.

The cross-modal translator contains an encoder, WE and a decoder, SD1. The translator takes

the features of the weaker modality, MW , as input and produces the features of the stronger

modality, M̂SW , as output. The encoder of the cross-modal translator, creates intermediate rep-

resentations, msw, that capture joint information across modalities. This is achieved by using

a translation loss, Ltr, between the true, MS, and the predicted, M̂SW , features of the stronger

modality:

L1 = Ltr(MS,M̂SW). (5.2)

WE is encouraged to discover components of the weaker modality that are inclined towards

the stronger modality by increasing the alignment between msw and the representations of the

stronger modality. For this purpose, we project the stronger modality features into the same latent

space as msw. We use an intra-modal auto-encoder to create stronger modality representations,

mss, of the same dimensionality as that of the inter-modal translator representations, msw. To

this end, we employ an auto-encoding loss, Lae, between the true, MS, and the predicted, M̂S,

features:

L2 = Lae(MS,M̂S). (5.3)

For modality reconstructions, we use Mean-Square-Error (MSE) as Ltr and Lae [93].

A feature alignment loss, Lal , ensures that the intermediate representations of the cross-

modal translator are maximally aligned to the stronger modality representations:

L3 = Lal(mss,msw). (5.4)

Following [114, 95], we use Canonical Correlation Analysis (CCA) for feature alignment, such

that Lal = -CCA. CCA for deep neural networks, also known as Deep CCA or DCCA, is a

method to learn complex nonlinear transformations of data from two different modalities, such

that the resulting representations are highly linearly correlated [205]. For a training set of size

p, Ms ∈ Rp×ds and Mw ∈ Rp×dw are the input matrices corresponding to the stronger and the
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Figure 5.1: The proposed SEW training framework. (MS,MW ) denotes a pair of stronger and
weaker modality instances, SE and SD2 represent intra-modal autoencoder, WE and SD1 represent
inter-modal translator, M̂S and M̂SW are the reconstructions of stronger modality from the encod-
ings of stronger and weaker modalities respectively, R denotes the regressor/classifier connected
to the inter-modal encoder, Tl and Pl stands for true and predicted labels, respectively, mss and
msw represent the two latent representations, L1-L4 represent the 4 components of the total loss
and e1-e4 are their respective error values. Dotted arrows represent the back-propagation of com-
ponent error gradients. Only the blocks in cyan are retained during the deployment/inference
phase.

weaker modalities, respectively. mss ∈Rp×d and msw ∈Rp×d are the representations obtained by

nonlinear transformations introduced by the layers in the encoders SE and WE , respectively. Note

that SE and WE bring the individual modalities with dimensions ds and dw into a common latent

dimension d. If θes and θew denote the vectors of all parameters of SE and WE , respectively, then

the goal of DCCA is to jointly learn parameters for both the views such that correlation, (ρ),

between mss and msw is as high as possible, i.e.,

(θ ⋆
es,θ

⋆
ew) = argmax

θes,θew

ρ(mss,msw)

= argmax
θes,θew

ρ(SE(MS;θes),WE(MW ;θew)).

(5.5)
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If m̄ss and m̄sw are the mean-centred versions of mss and msw, respectively, then the total

correlation of the top-K components of mss and msw is the sum of the top-K singular values of

the matrix, T = Σ
−1/2
s ΣswΣ

−1/2
w , in which the self (Σs,Σw) and cross covariance (Σsw) matrices

are given by

Σsw =
1

p−1
m̄ssm̄T

sw. (5.6)

Σs =
1

p−1
m̄ssm̄T

ss + r1I. (5.7)

Σw =
1

p−1
m̄swm̄T

sw + r2I. (5.8)

where r1 > 0 and r2 > 0 are regularisation constants. We use the gradient of correlation obtained

on the training data to determine (θ ⋆
es,θ

⋆
ew).

Finally, the task-specific regressor or classification module, which takes the cross-modal

translator representations as input, ensures the discriminative ability of the resulting latent space.

We use a prediction loss, Lpr, that operates on the true, Tl , and predicted task labels, Pl , as:

L4 = Lpr(Tl,Pl). (5.9)

The total training loss, L combines the four components:

L= αL1 +βL2 + γL3 +L4, (5.10)

where α , β and γ are hyper-parameters. After training, all the components except the encoder,

WE , and the regressor, R, are removed and the stronger modality is not required at the testing

(deployment) phase. The encoders, decoders as well as the classifiers of SEW are implemented

using multi-layer perceptrons.

5.2.3 Recurrence based model for sequential data

We extend the SEW framework for sequential data by using recurrent networks and transformer

encoders [113] for the encoders and recurrent networks for the decoders. We name the new
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framework as SeqSEW. SeqSEW is an improved version of SEW with the following changes.

• Unlike SEW, that uses an auto-encoder (encoder-decoder) model for creating the stronger

modality representations, SeqSEW uses an encoder-classifier model that can create task-

specific discriminative representations for the stronger modality. While the auto-encoder

is trained to minimise the reconstruction loss and thereby recreate the input features, it is

only encouraging the network to discover compressed representations of the input. Such

representations need not be optimal in terms of task-specific feature discriminativeness.

This motivates us to replace the auto-encoder model with an encoder-classifier model that

is trained to map the stronger modality features to task-specific labels.

• Unlike the single step training in SEW, we split the training process into two steps in

SeqSEW. In the first step, we train the encoder-classifier model for the stronger modality.

The parameters of this model are then kept unchanged (or frozen) for the rest of the training

process. In the second step, the encoder, decoder and classifier for the weaker modality are

trained. This is based on the intuition that the stronger modality representations need not

be changed, rather they have to be used only as a ‘guide’ or ‘reference’ for improving the

discriminativeness of the weaker modality representations.

A detailed explanation of the SeqSEW model is as follows. We first create a model for the

stronger modality, which acts as a ‘source’ of the knowledge to be transferred to another modal-

ity. This source model consists of an encoder and a classifier. The purpose of the encoder is to

effectively model the information contained in the input stronger modality features and to map

them into a latent space of desired dimensionality. The classifier ensures that the latent represen-

tations thus obtained are discriminative for the specific task.

In sequential data, every component in a sequence can have a dependence or correlation

with neighbouring components in the same sequence [184, 186]. To model this inter-dependence

across time, we use bi-GRU as the first layer of our encoder to transform the input feature se-

quence into ‘context aware’ representations, which are then input to a dense layer. The dense

(fully connected) operation is shared across the time-steps, for projecting ‘context aware’ fea-

tures onto a fixed dimension d. Even though the bi-GRU layers can capture contextual informa-

tion via the hidden states, they cannot provide varying focus on which hidden states carry more

valuable task-specific information. This can be accomplished by the use of self-attention mech-

anism that provides varying levels of attention weights to the time-steps in the same sequence.
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For this purpose, we exploit the stacked self-attention mechanism using transformer encoder

layers [113]. The use of Multi Head Attention (MHA), which contains multiple self-attention

operations, allows the transformer to capture richer interpretations of the input sequence. Note

that the transformer maintains same feature dimensionality (d) at the output of both MHA module

as well as the dense layers to facilitate residual addition.

Additionally, for the transformer encoder layers to be aware of the temporal order of the input

sequence, positional information in the form of sinusoidal position embeddings is added to the

input of the first transformer encoder layer [113]. Similar to other multimodal machine learning

works that utilise transformers [19, 206, 207], our intuition for using positional encoding for

the features of all modalities (audio, vision and text) is that, similar to word embeddings, for

audio/vision sequences it could be beneficial for the succeeding blocks of MHA modules to infer

the order of their arrangement.

As output of the multi-layer transformer encoder, we obtain attention-weighted and context

aware stronger modality representations of a desired dimensionality. In order to ensure that these

representations are discriminative for the specific task, they are fed into a classifier made up

of two dense layers. The first dense layer has ReLU activation whereas the second layer has

Sigmoid or Tanh activation for classification or regression task respectively. The upper part of

Figure.5.2 shows the encoder and classifier of source model as SE and CS. SE takes a sequence

of stronger modality features MS ∈ RN×ds as input and converts them into attention-weighted,

context aware latent representations mss ∈ RN×d . Note that the encoder has brought the feature

dimension from ds to d. The classifier CS then takes mss as input and provides the predicted labels

Ŷ ∈ RN×1.

We train the entire source model in an end-to-end fashion to map the input stronger modal-

ity features into the task-specific label space. Following [23, 50], we use Mean-Square-Error

or Binary-Cross-Entropy for training depending upon whether the task is regression or binary

classification respectively. If Ŷn denotes the predicted label for the nth time-step at the classifier

output and Yn represents the corresponding true label, then the prediction loss for regression and

classification are given by,

Lp =
1
N

N

∑
n=1

(Yn− Ŷn)
2 (5.11)
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Figure 5.2: SeqSEW model. MS and MW are stronger and weaker modality inputs, Ŷ denotes pre-
dicted labels, mss and msw are the two intermediate representations, M̂S denotes the reconstructed
stronger modality features. ×2 shows that two transformer encoder layers are used. Dashed lines
indicate layers whose parameters are fixed. Only the blocks in red background (WE and CW ) have
to be retained after the training. KEY: MHA-multi-head attention, Add: addition, Norm: layer
normalisation, Bi: bi-directional

and

Lp =
1
N

N

∑
n=1

(Yn. log(Ŷn)+(1−Yn). log(1− Ŷn)) (5.12)

respectively, where N represents the total number of segments in the sequence. Once the training

is over, the source model parameters are fixed and only the encoded representations mss are

retrieved for the next steps of knowledge transfer.

Similar to the source model, the weaker modality model also uses an encoder (WE) and a

classifier (CW ) to obtain attention-weighted, context aware and task-specific discriminative fea-

tures. The encoder maps the weaker modality features into latent representations of same dimen-
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sionality d as the encoded representations from the source model. The encoder and classifier

architecture are the same as the source model. Additionally, a decoder (SD) is used to map the

output of encoder to the stronger modality features. Thus, the encoder output is given as input

to both the decoder as well as the classifier. To facilitate the sequential aspect of cross-modal

translation, the decoder is made up of bi-GRU layers, which are followed by a dense layer. The

dense operation is shared across the time-steps, for projecting the representations from each time

step onto the same dimension as the stronger modality features.

Similar to auto-encoder based SEW, for latent feature alignment, SeqSEW uses Deep Canon-

ical Correlation Analysis (DCCA) [205]. The encoder, decoder and classifier are jointly trained

by optimising three objective functions: a translation loss between the decoder output and the

stronger modality features, alignment loss between the encoder output and the stronger modality

representations obtained from the source model and a task-specific prediction loss between the

true and predicted labels. Following [85], we use Mean-Absolute-Error as cross-modal transla-

tion loss. If Msn and M̂sn denote the stronger modality features and the decoder output for segment

n respectively, then, translation loss Lt is given by,

Lt =
1
N

N

∑
n=1
|Msn− M̂sn |. (5.13)

For alignment loss La, we use the negative of correlation obtained using DCCA. Thus,

La =−corr(mss,msw). (5.14)

Similar to the source model, we use Mean-Square-Error or Binary-Cross-Entropy as predic-

tion loss Lp depending upon whether the task is regression or classification respectively. Thus,

Lp is same as in eq. 5.11 and eq. 5.12. Hence the total training loss is given by,

L= Lp +αLa +βLt , (5.15)

where α , β are scalar weighting hyper-parameters. Once the training is over, only the encoder

and classifier of the weaker modality model are to be retained for the inference or deployment

phase.
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Table 5.1: Unimodal results on the RECOLA [173] dataset. The best unimodal results in arousal
and valence are highlighted in bold.

Audio Video-geo Video-app
Arousal 0.761 0.482 0.492

Valence 0.543 0.643 0.489

KEY - CCC: Concordance Correlation Coefficient, geo: geometric, app: appearance.

5.3 Non Sequential Model: Validation

In this section, we evaluate our proposed auto-encoder model based SEW on the task of con-

tinuous emotion recognition using audio and vision modalities from the RECOLA [173] dataset.

Note that the dataset contains recordings of 27 different speakers equally split into train (9 speak-

ers), val/dev (9 speakers) and test (9 speakers). The train and val sets are publicly available and

the test set labels are kept private by the dataset owners. Our experimental results on the non se-

quential model are reported on the publicly available val set, while our results on the sequential

model are reported on both the publicly available val set and the held out test set (evaluation done

by the owners of the dataset upon request). Note that since RECOLA [173] dataset has annota-

tions for every time-step in the sequence, it can be considered and processed as a non-sequential

data by processing each time-step in isolation. SEW framework that uses an MLP based auto-

encoder does not take contextual information into account and uses RECOLA [173] dataset in a

non-sequential manner.

5.3.1 Architecture

We use a regressor (see R in Figure. 5.1) similar to [23] and it consists of 4 single time-step GRU-

RNN layers, each made up of 120 neurons, followed by a linear layer and trained using the MSE

loss. Because the proposed method combines multimodal data with different characteristics, it

was necessary to design various architectural parameters according to the characteristics of the

given modalities rather than solving the problem using a generic model. Specifically, the encoder

and decoder for each modality differ in terms of the number of linear layers and the number of

neurons in each layer. Since the provided video-appearance features were already refined using

PCA, we did not reduce the dimensionality further and used a single linear layer of size 168 for

both its encoder and decoder. Thus, for all modality combinations that contain video-appearance

features, the size of the latent dimension was 168. For all the rest, it was 128. The encoder
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Table 5.2: Ablation results for SEW using RECOLA [173] in terms of CCC and binary classifi-
cation accuracy.

Arousal Valence

vid-geo(+aud) vid-app(+aud) aud(+vid-geo) vid-app(+aud) vid-app(+vid-geo)
SEW 0.565 0.544 0.552 0.554 0.549

-SD2 0.532 0.519 0.486 0.539 0.540
-CCA 0.512 0.508 0.496 0.532 0.546
-SD1 0.514 0.523 0.556 0.514 0.505
-(CCA & SD1) 0.484 0.497 0.545 0.497 0.491

unimodal-weaker 0.482 0.492 0.543 0.489 0.489
unimodal-stronger 0.761 0.761 0.643 0.543 0.643

KEY - vid: video, aud: audio, geo: geometric, app: appearance.

and decoder for video-geometric features use linear layers of size [512, 256, 128] and [256, 512,

632], respectively with Tanh activation between layers. For audio features, these were [108, 128]

and [108, 88]. Note that 632 and 88 were chosen to match the dimensionality of the video-

geometric and audio features, respectively. All the models were developed, trained and tested

using PyTorch. We used the SGD optimiser with learning rate 0.001, momentum 0.7 and weight

decay regularisation. The batch size was 32. The number of CCA components, K, was 10 in

all the experiments. The contribution of each loss component was found to be equally important

(i.e, α = β = γ = 1) via hyperparameter searching across values [1e-3,1e-2,0.1,1,10].

5.3.2 Results and ablations

In order to identify the stronger and weaker modalities, we first assess the unimodal perfor-

mances of audio, video-geometric and video-appearance features for arousal and valence. The

unimodal results obtained are shown in Table 5.1. For arousal, the performance of audio sur-

passes both video-geometric and video-appearance features. For valence, the video-geometric

features outperform audio and video-appearance features. We have 5 cases for cross-modal

knowledge transfer from stronger to weaker modalities, namely video-geo(+audio) and video-

app(+audio) for arousal and audio(+video-geo), video-app(+audio) and video-app(+video-geo)

for valence, where the modality in parenthesis indicates the stronger modality. Note that we

have not considered the case of video-geo(+video-app) for arousal because of the insignificant

difference between the unimodal scores.

Table 5.2 reports the results using the full SEW framework as well as after ablating individual
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components. The bottom two rows provides the unimodal results for the weaker and stronger

modalities respectively for ease of comparison with the SEW results. We can see that the SEW-

(CCA&SD1) results are close to the unimodal results of the weaker modality. This is as expected

since SEW-(CCA&SD1) contains only the WE and regressor with no interaction with the stronger

modality. In all the 5 cases, SEW was able to improve the results from the unimodal and SEW-

(CCA&SD1) models both in terms of CCC and binary accuracy. For arousal video-geo(+audio)

and video-app(+audio), removing the CCA based alignment causes a drop of 0.053 and 0.036,

respectively in CCC. The corresponding number for valence audio(+video-geo) is 0.056. These

observations support the significance of the CCA based feature alignment in the SEW framework.

For valence video-app(+audio) and video-app(+video-geo), removing the decoder of the inter-

modal translator causes a drop of 0.040 and 0.044, respectively in CCC, which indicates the

effectiveness of the weaker-to-stronger modality translation.

5.3.3 Performance comparison with literature

In Table 5.3, we compare the best unimodal results of SEW with the 4 most relevant uni-

modal models [49, 208, 209, 210] and a cross-modal training method [23] in terms of CCC.

[49] provides the baseline results on the RECOLA [173] dataset for the AVEC 2016 challenge.

The unimodal baseline used an SVM based classifier on the individual features. SEW signifi-

cantly outperforms the baseline unimodal results for all the weaker modalities considered. Our

method is also able to improve the unimodal results for all the cases from [210], which uses

difficulty awareness based training and [208, 209] which use multi-task learning. SEW outper-

forms EmoBed [23] for arousal video-geo(+audio) and valence audio(+video-geo) by a margin

of 0.038 and 0.031, respectively, in CCC. For arousal video-app(+audio), the performance of

SEW and EmoBed [23] are very close (0.544 and 0.549, respectively). However, for the valence

video-app features, EmoBed [23] outperforms SEW. The top and bottom rows of Table 5.2 show

that SEW improves the unimodal performance of the weaker modalities. Specifically, to the best

of our knowledge, the best results to date on the task of unimodal arousal estimation using video-

geometric features and on the task of unimodal valence estimation using audio features have been

achieved by SEW.
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Table 5.3: Performance comparison of SEW using RECOLA [173] with other methods in terms
of CCC.

Arousal Valence
video-geo video-app audio video-app

SVR + offset [49] 0.379 0.483 0.455 0.474
MTL (RE) [208] 0.502 0.512 0.519 0.529
MTL (PU) [209] 0.508 0.502 0.506 0.468
DDAT (RE) [210] 0.544 0.539 0.508 0.528
DDAT (PU) [210] 0.513 0.518 0.498 0.514
EmoBed [23] 0.527 0.549 0.521 0.564
SEW 0.565 0.544 0.552 0.554

KEY - geo: geometric, app: appearance. Best and second best results are shown in bold and
italics, respectively.

5.4 Sequential Model: Validation

In this section, we evaluate our proposed recurrence based model SeqSEW on the task of con-

tinuous emotion recognition using audio and vision modalities and sentiment classification using

audio, vision and language modalities. We use RECOLA [173] dataset for continuous emotion

recognition and CMU-MOSI [51] for binary sentiment classification.

Next, we use RECOLA [173] in a sequential manner by considering a sequence of time-

steps. In SeqSEW, for processing each time-step, we are using contextual information provided

by its neighbours. Similar to [211], to ensure that sequences are long enough to capture the

contextual information and to increase the number of training samples, we split the 9 recordings

in RECOLA [173] training set by applying a sliding window of 3s with hop-size 1s. Thus, for

each recording in training set, 299 clips are used, each including N = 75 time-steps. For the

development set, we use non-overlapping 3s sequences. Similarly, CMU-MOSI [51] has labels

for each time-step (also called utterance) in a sequence. Thus, instead of processing each time-

step in isolation, SeqSEW uses the contextual information provided by neighbouring time-steps

in the sequence.

5.4.1 Architecture

The network architecture for all SeqSEW models is kept generic except for a few modality-

specific and dataset-specific differences. The front-end of the encoder consists of 2 bi-GRU

layers, except for the audio models in RECOLA [173] and the text model in CMU-MOSI [51],

where only a single layer bi-GRU is used. The number of neurons in each bi-GRU layer is equal



5.4.2 Results and ablations 97

to the input feature dimensionality. Dropout rates ({0.2,0.3,0.4,0.5,0.6,0.7}) are optimized for

each model depending on the performance on validation set. The number of neurons in the dense

layer succeeding the bi-GRU layers is 100 which is the dimension of the latent representations.

This is because the transformer encoder layers do not change the feature dimensionality of their

inputs [113]. Two transformer encoder layers are then employed with 2 self-attention operations

in each transformer encoder layer. The first and second dense layers after the MHA modules in

each transformer encoder layer have 400 and 100 neurons, respectively. Dropout regularisation

is applied to the residual connections, first dense layer after MHA module as well as the attention

weights in the transformer encoder to prevent overfitting.

For the decoder, we use a single layer bi-GRU for the RECOLA [173] valence audio model,

while for all other models, we use 2 layers of bi-GRU. For RECOLA [173], the number of

neurons in the decoder bi-GRU layers is kept 250 for arousal models and 500 for valence audio

models. This is because for the latter, the decoder has to map the 100 dimensional latent features

to higher dimensional video features (632 and 168). Finally, the number of neurons in the decoder

dense layer is kept equal to the feature dimensionality of the stronger modality it is mapping

into. The classifier module contains a ReLU activated input dense layer with 300 neurons and

an output dense layer with a single neuron activated using Sigmoid or Tanh for classification or

regression respectively. A dropout of rate of 0.3 is applied after its first dense layer to prevent

overfitting. We use a batch size of 32 and the Adam optimizer [197] for training all the unimodal

baselines and the SeqSEW models. We use a learning rate of 1e-4 and 1e-5 for experiments

on CMU-MOSI [51] and RECOLA [173], respectively. We keep r1 = r2 = 0.001 in eq. 5.7-5.8

which is within the recommended range of [1e-8,10] [205]. The α and β values were empirically

determined from the range [0.001, 1] using a grid search and values that gave the best validation

set performance were retained.

5.4.2 Results and ablations

For sentiment classification, we assess the unimodal performance of each modality with a classi-

fier only model (the 2 dense layer model CS in Figure.5.2) and an encoder with classifier model

(SE - CS in Figure.5.2). Results are reported in Table. 5.4. In accordance with previous works

which found linguistic features to be more discriminative [50, 184, 186], we confirmed that the

unimodal performance of textual features surpasses that of acoustic or visual. Thus, we consider

two cases for stronger-to-weaker cross-modal knowledge transfer, namely, textual to acoustic and
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Table 5.4: Unimodal baseline results on CMU-MOSI [51] for binary sentiment classification
task.

Method Acc. F1

Textual

Classifier 74.9 75.2

Bi-GRU + Classifier 76.7 77.2

Bi-GRU + TE + Classifier 80.3 80.1

Acoustic

Classifier 54.7 55.2

Bi-GRU + Classifier 56.6 56.3

Bi-GRU + TE + Classifier 61.0 60.0

Visual

Classifier 51.5 52.2

Bi-GRU + Classifier 59.6 59.3

Bi-GRU + TE + Classifier 60.8 59.7

KEY - Acc.: binary classification accuracy, F1: weighted F1 score, TE: Transformer Encoder

textual to visual.

Similar to sentiment classification, for emotion regression, we assess the unimodal perfor-

mance of acoustic, visual-geometric and visual-appearance features with a classifier only model

(the 2 dense layer model CS in Figure.5.2) and an encoder with classifier model (SE - CS in

Figure. 5.2). Results are reported in Table. 5.5. For arousal, acoustic modality is stronger than

visual modality whereas for valence, visual modality performs better than acoustic modality.

These results are consistent with previous studies which found that acoustic and visual features

are more discriminative for arousal and valence respectively [23, 49]. Hence, for stronger-to-

weaker cross-modal knowledge transfer, we consider acoustic to visual-appearance and acoustic

to visual-geometric for arousal and visual-appearance to acoustic and visual-geometric to acous-

tic for valence, respectively.

The results obtained using the two unimodal baseline models in Tables. 5.4 & 5.5 for both

sentiment classification and emotion regression clearly indicate the performance improvement

obtained by the addition of the encoder block to the classifier module. This validates our hypoth-

esis that incorporating contextual information using the recurrence and attention mechanisms

from the bi-GRU and transformer encoder can help in better understanding the underlying affec-

tive behaviour.

For the sentiment classification task, Table. 5.6 reports the results obtained using SeqSEW
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Table 5.5: Unimodal baseline results in terms of Concordance Correlation Coefficient (CCC) on
RECOLA [173] for continuous emotion regression task. Note that the range of CCC is [-1,1].

Method Acoustic Visual Visual

eGeMAPS appearance geometric

Arousal
Classifier 0.769 0.517 0.470

Bi-GRU + Classifier 0.773 0.530 0.488

Bi-GRU + TE + Classifier 0.786 0.541 0.536

Valence
Classifier 0.490 0.496 0.560

Bi-GRU + Classifier 0.521 0.542 0.594

Bi-GRU + TE + Classifier 0.525 0.570 0.601

KEY - TE: Transformer Encoder

when the weaker acoustic and visual modalities are improved using textual modality during train-

ing. Compared to the best unimodal baseline results, SeqSEW improved the performance of both

acoustic and visual models in terms of both accuracy (by 2.6 percentage points (pp) and 3.8pp for

visual and acoustic respectively) and F1 (by 4.2pp and 4.3pp for visual and acoustic respectively)

metrics. The ablation results are obtained by removing the cross-modal decoder (- Decoder) or

by removing the latent feature alignment mechanism (- LFA). It can be seen that both the decoder

as well as LFA contribute towards the SeqSEW knowledge transfer process, with the contribution

of LFA component being slightly higher than the decoder component.

For the emotion regression task, Table. 5.7 shows the results obtained on both arousal and

valence estimation. For arousal estimation, SeqSEW improves the performance of the unimodal

baselines for both types of visual modality models. Specifically, an improvement of 0.033 and

0.050 are obtained for visual-appearance and visual-geometric models respectively, which are

6.1% and 9.3% of improvement over their best unimodal baselines. The ablation results indicate

that both decoder as well as LFA contribute towards the SeqSEW method, with the contribution

of decoder being slightly higher than the LFA component.

For valence estimation, Table. 5.7 shows that the performance of the weaker acoustic modal-

ity model could be improved using a visual-appearance modality model or a visual-geometric

modality model. Specifically, we obtain an improvement of 0.035 and 0.030 when performing

knowledge transfer from video-appearance and video-geometric models respectively, which are

improvements of 6.7% and 5.7% over the unimodal acoustic baseline model (which in turn out-
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Table 5.6: Results obtained using our proposed SeqSEW on CMU-MOSI [51] in terms of Binary
Accuracy (Acc.) and Weighted F1 (F1).* indicates results obtained using our evaluation on the
publicly available codes.

Ref. Method Visual Acoustic

Acc. F1 Acc. F1

[185] CAT-LSTM-Uni - 55.5 - 60.1

[185] CAT-LSTM-Uni* 55.0 55.6 62.1 60.2

[186] MU-SA 63.7 - 62.1 -

[186] MU-SA* 62.8 61.9 59.7 58.4

[85] Seq2SeqSent.-Uni - 48.0 - 56.0

[50] HMTL-Uni 62.1 61.3 58.2 58.2

- our unimodal (Table. 5.4) 60.8 59.7 61.0 60.0

[85] Seq2SeqSent.(+Textual) - 58.0 - 56.0

[50] HMTL(+Textual) 64.8 61.7 62.6 60.8

SeqSEW(+Textual) 63.4 63.9 64.8 64.3
- LFA 62.8 63.3 63.6 63.2

- Decoder 63.0 63.4 64.1 63.5

performs other unimodal methods in the literature). Our ablation study shows that even though

addition of both decoder and LFA components to the unimodal baseline model improve per-

formance, the absence of the decoder provides similar results to the whole non-ablated system.

We hypothesise that this might be due to the presence of zero frames (features corresponding to

frames where the face detector failed). The decoder might be mapping multiple acoustic features

to the same visual features (zeros) thus decreasing the discriminative ability of the intermediate

features. Nevertheless, the results are comparable to those obtained with the full SeqSEW model.

Lastly, we used our best performing models to obtain predictions on a held-out test set and

sent the results to the RECOLA [173] database administrators for evaluation. Results are shown

in Tables. 5.8 & 5.9. Unimodal results on the held-out test set also shows that acoustic modality

is the strongest for arousal estimation whereas it is the weakest for valence estimation. Appli-

cation of SeqSEW has improved the performance of both visual features for arousal estimation.

Similarly, visual features have been able to improve the test-time performance of acoustic model

for the valence estimation task as well.
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Table 5.7: Results obtained using our proposed SeqSEW on RECOLA [173] for Arousal and
Valence predictions in terms of Concordance Correlation Coefficient (CCC).

Ref. Method Arousal Valence

Visual Visual Acoustic

appearance geometric eGeMAPS

[49] SVR + offset 0.379 0.483 0.455

[208] MTL (RE) 0.502 0.512 0.519

[209] MTL (PU) 0.508 0.502 0.506

[210] DDAT (RE) 0.544 0.539 0.508

[210] DDAT (PU) 0.513 0.518 0.498

- our unimodal (Table. 5.5) 0.541 0.536 0.525

[23] EmoBed(+Acoustic) 0.527 0.549 -

[23] EmoBed(+Visual-app.) - - 0.514

[23] EmoBed(+Visual-geo.) - - 0.521

Ours SEW(+Acoustic) 0.565 0.544 -

Ours SEW(+Visual-geo.) - - 0.552

SeqSEW(+Acoustic) 0.574 0.586 -

- LFA 0.571 0.580 -

- Decoder 0.561 0.564 -

SeqSEW(+Visual-app.) - - 0.560

- LFA - - 0.538

- Decoder - - 0.563

SeqSEW(+Visual-geo.) - - 0.555

- LFA - - 0.531

- Decoder - - 0.556
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Table 5.8: Results (sent by RECOLA [173] database administrators) obtained using our whole
unimodal model, Bi-GRU + TE + Classifier, on RECOLA [173] held-out test set for Arousal and
Valence predictions in terms of Concordance Correlation Coefficient (CCC).

Acoustic Visual Visual
eGeMAPS appearance geometric

Arousal 0.647 0.388 0.418
Valence 0.379 0.460 0.516

5.4.3 Performance comparison with literature

For both datasets, we considered only methods that reported results on the same set of features

and the same dataset partition as we used.

For the sentiment classification task, from Table. 5.6 we observe that our unimodal base-

line model, comprising the encoder and classifier, performs comparable to or better than four

unimodal models from the literature. This makes the improvement provided by SeqSEW sig-

nificant as the unimodal models are very competitive. Specifically, we compare the perfor-

mance of SeqSEW on CMU-MOSI [51] using four unimodal models (CAT-LSTM-Uni [185],

MU-SA [186], Seq2SeqSentiment-Uni [85], HMTL-Uni [50]) and two cross-modal knowledge

transfer frameworks (Seq2SeqSentiment [85] and HMTL [50]). Since [185] and [186] did not

report Acc. and F1 scores respectively, we used their publicly available codes to assess the

performance. Considering the cross-modal knowledge transfer frameworks HMTL [50] and

Seq2SeqSentiment(+Textual) [85], except for unimodal visual model accuracy, our models achieve

better results, thus validating the effectiveness of knowledge transfer from the richer textual

modality via the proposed methodology.

For arousal estimation experiments on RECOLA [173], from Table. 5.7, we can see that,

with respect to other unimodal methods from the literature, our unimodal model provides bet-

ter or comparable performance for both types of video features. This might be attributed to

the fact that, unlike the compared models, our model takes contextual information into account.

We compare with five unimodal models (SVR+offset [49], MTL(RE) [208], MTL(PU) [209],

DDAT(RE) [210] and DDAT(PU) [210]) and two cross-modal knowledge transfer frameworks

(EmoBed [23], SEW). Comparing our improved visual modality models with their counter-

parts obtained using other cross-modal knowledge transfer frameworks (EmoBed [23], SEW),

we observe that our models perform better than both EmoBed [23] and SEW, thus validat-

ing the effectiveness of our knowledge transfer method. For valence estimation experiments
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Table 5.9: Results (sent by RECOLA [173] database administrators) obtained using our proposed
SeqSEW on RECOLA [173] held-out test set for Arousal and Valence predictions in terms of
Concordance Correlation Coefficient (CCC).

Ref. Method Arousal Valence

Visual Visual Acoustic

appearance geometric eGeMAPS

[49] SVR + offset 0.343 0.272 0.375

[208] MTL (RE) 0.425 0.324 0.331

[209] MTL (PU) 0.406 0.327 0.416

[210] DDAT (RE) 0.437 0.400 0.422

[210] DDAT (PU) 0.438 0.397 0.407

- our unimodal (Table. 5.8) 0.388 0.418 0.379

[23] EmoBed(+Acoustic) 0.475 0.417 -

[23] EmoBed(+Visual-app.) - - 0.434

[23] EmoBed(+Visual-geo.) - - 0.439

SeqSEW(+Acoustic) 0.434 0.438 -

SeqSEW(+Visual-app.) - - 0.465
SeqSEW(+Visual-geo.) - - 0.417

on RECOLA [173], (see Table. 5.7), comparison with the corresponding models from SEW

and EmoBed [23], shows that our SeqSEW models achieve the best results in terms of CCC.

Evaluation of our SeqSEW framework (Table. 5.9) on the held-out test set shows competitive

performance with respect to the compared methods. Specifically, the SeqSEW enhanced video-

geometric arousal model and acoustic valence model outperforms EmoBed [23] and achieves

state-of-the-art results. Nevertheless, it should be noted that the results on the held-out test set

is poorer compared to the development set, an observation which is consistent with the previous

literature [23]. This could be attributed to the distribution mismatch between the development

and test partitions.

5.5 Conclusion

An important paradigm in multimodal learning research is co-learning where multiple modalities

can be present during training while only one modality is available during testing phase. Our re-

search question was whether it is possible to design a framework that utilises multi-modal signals

during training phase to develop a model that is intended to have a single modality input during
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test time for affective computing applications. To this end, we developed a framework called

Stronger Enhancing Weaker (SEW) that uses a combination of cross-modal translation from

weaker to stronger modality and correlation based latent feature alignment. The intuition behind

using cross-modal translation is that translating from one modality to another creates intermediate

representations that capture joint information between both modalities. Also, a correlation based

alignment between the intermediate and the stronger modality latent features further encourages

the framework to discover components of the weaker modality that are maximally correlated

with the stronger modality. We created two versions of this framework, one for non-sequential

data (SEW) and another for sequential data (SeqSEW). Our experiments on the SEW model

achieve state-of-the-art results for test-time weaker modality models using the audio and vision

modalities from the RECOLA dataset for continuous emotion recognition task. For SeqSEW,

we modify the architecture of our model using components for sequential data processing, like

recurrent layers and transformer encoders, and verify the resulting model on continuous emotion

recognition using RECOLA and binary sentiment classification using CMU-MOSI. Comparison

of our results with the state-of-the-art uni-modal models as well as two cross-modal knowledge

transfer methods indicate that our models improve upon the state-of-the-art results on test-time

weaker modality models.



Chapter 6

Conclusion and Future Works

In this chapter, we first provide a summary of our contributions in this thesis. Then, we provide

directions for potential future works based on the limitations of existing literature.

6.1 Summary of Contributions

Our research so far has focused on developing unimodal and multimodal deep learning models for

computational paralinguistics tasks like verbal conflict intensity estimation, emotion recognition

and sentiment analysis.

• The first research contribution during this Ph.D. is an end-to-end convolutional-recurrent

neural network called ConflictNET that provides an estimate of verbal conflict from raw

speech waveforms of conversations between two or more people [3]. Such a system can

have several applications like security and surveillance, providing feedback to call centre

employees, helping journalists to navigate through long videos of political debates and

identify instances and topics of strong disagreements etc. Apart from the performance

evaluation of ConflictNET using multiple metrics (Pearson Correlation, Weighted and Un-

weighted Average Recall), a LIME [4] based explainability analysis was also done to

‘open-up’ the end-to-end model and understand what instances in the input speech the

network was focusing on. We found that the network relied on relevant cues like speech

overlaps and raised voice instances. Also, the network is prone to mistake other high en-

ergy segments like laughter, music or microphone tapping instances as conflicts.

105
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• Next, we developed novel multimodal fusion models for an emotion classification task

[5]. The involved modalities were speech (paralinguistics), vision (face images) and text

(speech transcript). We used a convolutional-recurrent model with multi-head-attention

[6] mechanism. Two versions of the model were created, one using intra-modality at-

tention and another using inter (or cross) modality attention. While the former uses the

same modality sequence to find task-relevant instances, the latter uses one modality to find

task-relevant instances in the other modality’s sequence. Extensive comparison between

the models were done using uni-, bi- and tri-modal modality combinations in terms of

weighted and unweighted accuracy metrics. Amongst the unimodal models, text modality

performed the best indicating that explicit emotional cues can be obtained from the spoken

words. Although both our intra- and inter-modal models improved upon the state-of-the-

art results on IEMOCAP [7] dataset, our experiments did not indicate a clear edge for one

attention mechanism over the other.

• Our final contribution is in multimodal co-learning, where multiple modalities can be

present during the training phase but only one modality is available during the testing

phase. Co-learning sits in between unimodal and multimodal fusion paradigms by lever-

aging the best of both worlds. Multimodal co-learning models aim to provide better perfor-

mance compared to their unimodal counterparts. The unimodal performance of different

modalities on the same task can vary and we can rank modalities according to their per-

formance. The best performing modalities are called stronger and low performing ones

are called weaker. We developed a novel co-learning framework called Stronger Enhanc-

ing Weaker (SEW) that uses a stronger modality as a ‘helper’ during training to improve

the stand-alone test-time performance of a weaker modality [8]. SEW uses a combination

of cross-modal translation and latent space alignment. This is based on the intuition that

translation from one modality to another can create intermediate representations that are

representative of both modalities. A latent space alignment of the weaker modality features

with respect to the stronger modality features further enhances the feature discriminative-

ness of the weaker modality. SEW was validated on the task of audio-visual continuous

emotion recognition and found to be effective in improving the unimodal performance of

weaker modalities.
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6.2 Future Works

Based on our experience so far, we identify some future directions to pursue in line with the

research in this thesis.

• To the best of our knowledge, no work has explored the incorporation of text modality

along with audio for the task of verbal conflict intensity estimation. The usage of explicit

spoken words can aid the network in cases of passive aggressive statements and politer

disagreements. It would be interesting to extend ConflictNET into a multimodal end-to-

end network.

• Most of the multimodal co-learning methods proposed so far including ours (SEW & Seq-

SEW) are limited to two modalities. However, real-world data can contain more than two

modalities with rich information related to the task. It would be useful to devise strategies

that can accommodate all the available modalities during the training phase instead of only

two. An exception is MCTN [93] that uses a hierarchical strategy with N− 1 number of

training steps for N modalities present. The drawback in this case is that each step in

the training phase is again limited to two modalities and the network is never exposed to

discover the joint information present in all modalities together. More research is needed

in this direction to address the limitations.

• One very interesting direction for future research on uni-modal as well as multimodal

learning is based on explainable-AI.

– Even though end-to-end models like ConflictNET eliminates the need for domain

knowledge, they are difficult to interpret and it is unclear what features from the in-

put data have been picked up by the model. Such a lack of clarity can be critical when

analyzing from a privacy or fairness point of view. Even though we were able to gain

some insights using LIME [31], it is not a foolproof method of analysis since the ex-

planations are dependent on the choice of hyper-parameters (sample weights, number

of samples used etc) for LIME. Exploration of Explainable AI algorithms suitable for

speech based end-to-end models could be useful for the research community.

– Another way towards model behaviour understanding would be to create inherently

interpretable models. These models contain components that facilitate the interpre-

tation of features. An example would be SincNet [212], a Convolutional Neural
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Network (CNN) that encourages the first layer to discover more meaningful filters by

exploiting parametrized sinc functions. The feature maps thus obtained are more hu-

man readable, clearly indicating the portions of spectrum that are learned for the task.

It would be an interesting future direction to modify our unimodal and multimodal

architectures using interpretable components like SincNet.

– One of the least addressed problems in multimodal learning is to develop model

agnostic explanation methods for multimodal models. So far, most of the research

community is focused on developing novel fusion mechanisms and they compare the

fusion model performance with unimodal model variants as well as state-of-the-art

fusion models. But the improvement obtained using the new fusion model can be

attributed to several factors like better hyper-parameter selection, random seeds, the

number of models compared. Ideally, a multimodal model should model unimodal

combinations (UC) as well as multimodal interactions (MI). But it is not clear if

the performance improvement is indeed due to MI and that the model is not just an

ensemble of UCs. So, the question is ‘Can we create a model-agnostic method that

can explain whether a multimodal model utilises MI in addition to UC as well?’. If

we can create such a method, then we can analyse the state-of-the-art multimodal

fusion models from this perspective and can provide an inference on what type of

fusion mechanisms are effective in cross-modal interaction modelling. A work which

addresses this problem is EMAP [9]. However, there are some limitations of this

method. EMAP has been validated on VQA datasets. However, for emotion datasets,

where modalities are highly correlated with each other, their empirical approximation

of partial dependence of modalities might be invalid. Also, EMAP is validated for

bi-modal datasets, and it doesn’t scale well for tri-modal cases (the number of factors

to be considered doubles). A proposed direction can be to explore statistical methods

on functional decomposition of models to see how we can improve over EMAP.
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[2] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, Multimodal Machine Learning: A Survey and

Taxonomy, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 2,

pp. 423–443, 2018.

[3] S. Poria, E. Cambria, R. Bajpai, and A. Hussain, A Review of Affective Computing: From

Unimodal Analysis to Multimodal Fusion, Information Fusion, vol. 37, pp. 98–125, 2017.

[4] Louis-Philippe Morency, Tadas Baltrusaitis, Tutorial on Multimodal Machine Learning.

https://www.cs.cmu.edu/˜morency/MMML-Tutorial-ACL2017.pdf. On-

line; accessed 01 September 2020.

[5] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng, Multimodal Deep Learning, in

Proceedings of the International Conference on Machine Learning (ICML), pp. 689–696,

ACM, 2011.

[6] G. Gosztolya, Conflict Intensity Estimation from Speech using Greedy Forward-Backward

Feature Selection, in Proceedings of the INTERSPEECH, pp. 1339–1343, ISCA, 2015.
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Learning Robust Joint Representations by Cyclic Translations between Modalities, in Pro-

ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6892–6899, 2019.

[94] J. Han, Z. Zhang, Z. Ren, and B. Schuller, Implicit Fusion by Joint Audiovisual Training

for Emotion Recognition in Mono Modality, in Proceedings of the International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 5861–5865, IEEE, 2019.



119

[95] S. H. Dumpala, I. Sheikh, R. Chakraborty, and S. K. Kopparapu, Audio-Visual Fusion

for Sentiment Classification using Cross-Modal Autoencoder, in Proceedings of the Vigil

workshop at Advances in Neural Information Processing Systems (NeurIPS), pp. 1–4, 2018.

[96] A. Shukla, S. Petridis, and M. Pantic, Does Visual Self-Supervision Improve Learning of

Speech Representations for Emotion Recognition, IEEE Transactions on Affective Comput-

ing, pp. 1–1, 2021.

[97] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, Large scale online learning of image

similarity through ranking., Journal of Machine Learning Research, vol. 11, no. 3, 2010.

[98] F. Schroff, D. Kalenichenko, and J. Philbin, Facenet: A unified embedding for face recog-

nition and clustering, in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 815–823, 2015.

[99] I. Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks, arXiv preprint

arXiv:1701.00160, 2016.

[100] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, VGGFace2: A Dataset for

Recognising Faces Across Pose and Age, in Proceedings of the International Conference on

Automatic Face & Gesture Recognition (FG 2018), pp. 67–74, IEEE, 2018.

[101] E. Barsoum, C. Zhang, C. C. Ferrer, and Z. Zhang, Training Deep Networks for Facial

Expression Recognition with Crowd-Sourced Label Distribution, in Proceedings of the ACM

International Conference on Multimodal Interaction, pp. 279–283, 2016.

[102] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, Return of the Devil in the

Details: Delving Deep into Convolutional Nets, in Proceedings of the British Machine Vision

Conference (BMVC), BMVA Press, 2014.

[103] A. Nagrani, J. S. Chung, and A. Zisserman, VoxCeleb: A Large-Scale Speaker Identifica-

tion Dataset, Proceedings of the INTERSPEECH, pp. 2616–2620, 2017.

[104] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional Networks for Biomed-

ical Image Segmentation, in International Conference on Medical Image Computing and

Computer-Assisted Intervention, pp. 234–241, Springer, 2015.



120

[105] D. Bahdanau, K. H. Cho, and Y. Bengio, Neural Machine Translation by Jointly Learning

to Align and Translate, in Proceedings of the International Conference on Learning Repre-

sentations (ICLR), 2015.

[106] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to Sequence Learning with Neural Net-

works, Proceedings of the Advances in Neural Information Processing Systems (NeurIPS),

vol. 27, pp. 3104–3112, 2014.

[107] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio,

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, in Proceed-

ings of the International Conference on Machine Learning (ICML), pp. 2048–2057, PMLR,

2015.

[108] G. Zheng, S. Mukherjee, X. L. Dong, and F. Li, OpenTag: Open Attribute Value Extrac-

tion from Product Profiles, in Proceedings of the International Conference on Knowledge

Discovery & Data Mining, pp. 1049–1058, 2018.

[109] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, Attention-based Mod-

els for Speech Recognition, Advances in Neural Information Processing Systems (NeurIPS),

vol. 28, pp. 577–585, 2015.

[110] S. Mirsamadi, E. Barsoum, and C. Zhang, Automatic Speech Emotion Recognition using

Recurrent Neural Networks with Local Attention, in Proceedings of the International con-

ference on acoustics, speech and signal processing (ICASSP), pp. 2227–2231, IEEE, 2017.

[111] A. Pankajakshan, H. L. Bear, V. Subramanian, and E. Benetos, Memory Controlled Se-

quential Self Attention for Sound Recognition, Proceedings of the INTERSPEECH, pp. 831–

835, 2020.

[112] M.-T. Luong, H. Pham, and C. D. Manning, Effective Approaches to Attention-based

Neural Machine Translation, in Proceedings of the Conference on Empirical Methods in

Natural Language Processing (EMNLP), pp. 1412–1421, 2015.

[113] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, Attention is All You Need, Proceedings of the Advances in Neural Information

Processing Systems (NeurIPS), vol. 30, pp. 5998–6008, 2017.



121

[114] Z. Sun, P. K. Sarma, W. Sethares, and E. P. Bucy, Multi-Modal Sentiment Analysis us-

ing Deep Canonical Correlation Analysis, in Proceedings of the INTERSPEECH, pp. 1323–

1327, ISCA, 2019.

[115] R. Picard, Affective Computing. Inteligencia artificial, Cambridge, Mass., 1997.

[116] R. Cowie, E. Douglas-Cowie, and M. Schröder, Speech and Emotion, ISCA Tutorial and
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