
Received: 21 November 2022 Revised: 21 March 2023 Accepted: 24 April 2023

DOI: 10.1002/eng2.12675

S H O R T C O M M U N I C A T I O N

Logarithmic time encoding and decoding of integer error
control codes

Aleksandar Radonjic Vladimir Vujicic

Institute of Technical Sciences of the
Serbian Academy of Sciences and Arts,
Belgrade, Serbia

Correspondence
Aleksandar Radonjic, Institute of
Technical Sciences of the Serbian
Academy of Sciences and Arts, Belgrade,
Serbia.
Email: sasa_radonjic@yahoo.com

Funding information
The Ministry of Science, Technological
Development and Innovation of the
Republic of Serbia, Grant/Award Number:
451-03-47/2023-01/200175

Abstract
One of the most important characteristics of all error control codes (ECCs) is the
complexity of the encoding/decoding algorithms. Today, there are many ECCs
that can correct multiple bit errors, but at the price of high encoding/decoding
complexity. Among the rare exceptions are integer ECCs (IECCs), whose serial
encoding/decoding algorithms run in O(n) time, where n is the codeword length.
In this article, we show that IECCs can be encoded/decoded even faster, that is,
that their parallel encoding/decoding algorithms have O(log2n) time complexity.

K E Y W O R D S

decoding, encoding, integer error control codes, logarithmic time complexity

1 INTRODUCTION

In order to find out whether one algorithm is more computationally efficient than the other, researchers use two models:
one based on the random access machine (RAM) and the other based on parallel RAM.1 The first model consists of a
processor that has an unrestricted amount of memory and that can perform various operations on data bits. Unlike it,
the parallel RAM is a model in which multiple processors perform operations in parallel and share a common unlimited
amount of memory.

Using these models, the researchers were also investigating the time complexity of the encoding and decoding pro-
cedures for various error control codes (ECCs). The obtained results have shown that many codes, such as LDPC,
Polar, Reed-Solomon (RS), and Turbo codes, are complex to encode/decode. In particular, in References 2–4 it was
shown that LDPC codes can be encoded in linear or quasi-linear time, whereas their decoding algorithms run in
linear or log-linear time.5–7 Polar codes, on the other hand, can be encoded/decoded in log-linear time,8,9 while the
encoding/decoding procedures for RS codes have quasi-log-linear time complexity.10 The most complicated of all
ECCs are Turbo codes, since their encoding and decoding algorithms run in quasi-linear and quasi-exponential time,
respectively.11,12

Although all the mentioned codes are complex to encode/decode, and therefore complicated to implement, they are
used in various communication systems. So, for example, it is known that LDPC, Polar, and Turbo codes are applied in
wireless communication systems, such as digital video broadcasting and cellular networks.13 On the other hand, RS codes
are standardized in a number of applications such as optical networks, satellite communications, and storage systems.13

The reason for such a massive use of the mentioned ECCs lies in the fact that reliable data transmission is much more
important than the price paid for it.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Engineering Reports published by John Wiley & Sons Ltd.

Engineering Reports. 2023;e12675. wileyonlinelibrary.com/journal/eng2 1 of 9
https://doi.org/10.1002/eng2.12675

https://orcid.org/0000-0003-3715-468X
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/ENG2
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feng2.12675&domain=pdf&date_stamp=2023-05-14

2 of 9 RADONJIC and VUJICIC

In this article, we will show that reliable communication can be achieved in a much simpler way if integer
ECCs (IECCs) are used. These codes use integer arithmetic, which brings with it a number of advantages, such
as the possibility of efficient implementation on general purpose processors (GPPs). In one of the previous papers,
we showed that IECCs can be serially encoded/decoded in linear time.14 In this article, we will show that IECCs
can be encoded/decoded even faster, that is, that their parallel encoding/decoding algorithms run in logarithmic
time. We believe this fact will make them very attractive for potential use in future communication and memory
systems.

The organization of this article is as follows: Section 2 deals with the basic concepts of IECCs. The parallel encod-
ing/decoding algorithms for this family of codes are described and evaluated in Sections 3 and 4, while Section 5 concludes
the article.

2 IECCS: CONSTRUCTION AND ERROR CONTROL

In Reference 15 it was pointed out that IECCs share many common features with checksum codes.16 One of them is that
the codeword consists of k data bytes and one check-byte (Figure 1). In the case of IECCs, the check-byte is computed as
the sum of the products of the integer values of the data bytes and the coefficients Ci. However, the syndrome S of the
received codeword is calculated as Reference 16, that is, as the difference in value between the newly calculated and the
received check-byte. Both these facts are summarized in the following definitions.

Definition 1 (17). Let Z2b−1 = {0, 1,… , 2b−2} be the ring of integers modulo 2b−1 and let Bi =
∑b−1

n=0an ⋅ 2n be the
integer representation of a b-bit byte, where an ∈ {0, 1} and 1≤ i≤ k. Then, the code C (b, k, c), defined as

C(b, k, c) =

{

x ∈ Zk+1
2b−1

∶
k∑

i=1
Ci ⋅ Bi ≡ Bk+1

(
mod 2b − 1

)
}

(1)

is an (kb+ b, kb) integer code, where x= (B1, B2, … , Bk, Bk+1) ∈ Zk+1
2b−1

is the codeword vector, c= (C1, C2, … ,
Ck, 1) ∈ Zk+1

2b−1
is the coefficient vector and Bk+1 ∈ Z2b−1 is an integer.

Definition 2 (17). Let x= (B1, B2, … , Bk, Bk+1) ∈ Zk+1
2b−1, y= (B1, B2, … , Bk, Bk+1) ∈ Zk+1

2b−1 and e = (B1−B1,
B2−B2, … , Bk−Bk, Bk+1−Bk+1)= (e1, e2, … , ek, ek+1)∈ Zk+1

2b−1 be the transmitted codeword, the received codeword
and the error vector, respectively. Then, the syndrome S of the received codeword is defined as

S =
k∑

i=1
Ci ⋅ Bi − Bk+1

(
mod 2b − 1

)
=

k+1∑

i=1
ei ⋅ Ci

(
mod 2b − 1

)
. (2)

From (2) it is easy to see that the nonzero value of S indicates the presence of one or more errors within t b-bit
bytes (1≤ t< k+ 1). The decoder will be able to correct these errors if the corresponding IECC is constructed through the
following steps.

1. Defining the error type that the code should correct. In essence, we need to define the values of t and ei. For instance, if
we want to construct a class of codes that can correct single errors within one b-bit byte, the values of t and ei will be
equal to t= 1 and ei =± 2r, where 0≤ r≤ b−1. On the other hand, if we want to construct a class of codes capable of
correcting single errors within two b-bit bytes, the values of t and ei will be equal to t= 2 and ei =± 2r, where 0≤ r≤ b−1
(Table 1).

F I G U R E 1 The codeword structure for IECCs

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12675 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [16/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

RADONJIC and VUJICIC 3 of 9

T A B L E 1 The main characteristics of several classes of IECCs

IECCs t ei kmax |𝝃|

Codes from
Reference 15

1 {± 2r ∶ 0 ≤ r ≤ b − 1}
⌊

2b−1 − b − 1
b

⌋

2 ⋅ b ⋅ (k + 1)

Codes from
Reference 18

1 {± 2r ± 2s ∶ 0 ≤ r < s ≤ b − 1}
⌊

2b−1 − (b − 1)2

(b − 1)2 − 1

⌋
[
2 ⋅ (b − 1)2 − 2

]
⋅ (k + 1)

Codes from
Reference 17

1 {± 2r ± 2s ∶ 0 ≤ r < s ≤ b − 1}
⌊

2(b−1)∕2 − b + 1
b

⌋
2 ⋅ [b ⋅ (k + 1) − 1]2 − 2

2 {± 2r ∶ 0 ≤ r ≤ b − 1}

Codes from
Reference 19

2 {± 2r ∶ 0 ≤ r ≤ b − 1}

⌊√
2b+1 + (b − 1)2 − 4 − b − 1

2 ⋅ b

⌋

2 ⋅ b ⋅ (b ⋅ k + 1) ⋅ (k + 1)

F I G U R E 2 Bit-width of one ST entry for general IECCs

2. Defining the set of correctable syndromes. In the general case, this set is defined as

𝜉 =
t⋃

h=1
sh, (3)

where

s1 =
{

ei1 ⋅ Ci1

(
mod 2b − 1

)
∶ 1 ≤ i1 ≤ k + 1

}
, (4)

s2 =
{

ei1 ⋅ Ci1 + ei2 ⋅ Ci2

(
mod 2b − 1

)
∶ 1 ≤ i1 < i2 ≤ k + 1

}
, (5)

⋮

st =
{

ei1 ⋅ Ci1 + ei2 ⋅ Ci2 + · · · + eit ⋅ Cit

(
mod 2b − 1

)
∶ 1 ≤ i1 < i2 < · · · < it ≤ k + 1

}
. (6)

3. Finding the coefficients Ci. For each value of b≥ 2 it is necessary to perform a computer search to find the coefficients
Ci. Although the number of coefficients increases with increasing b, the upper theoretical limit (kmax), in the general
case, cannot be determined (the value of kmax depends on the class of IECCs) (Table 1). Regardless of that fact, the
values of the coefficients Ci must be such that

s1 ∩ s2 ∩ · · · ∩ st = ∅,

|𝜉| =
t∑

h=1
|sh| ⋅

(
k + 1

h

)

,

where |X| denotes the cardinality of X .

4. Selecting the code parameters and generating the syndrome table. The number of the coefficients found determines the
number of b-bit bytes that can be protected. By choosing whether to use all coefficients or not, we determine the size
of the codeword as well as the size of the syndrome table (ST). The ST always has |𝜉| entries and is generated based on
the values of t, b, k, ei, and Ci. The purpose of each entry is to describe the relationship between the nonzero syndrome,
error locations and error values (Figure 2).

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12675 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [16/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 9 RADONJIC and VUJICIC

From the above steps, it is clear that the IECC construction process is independent of the encoding/decoding
process. However, for the sake of completeness it is needed to point out that the communication between end-
points starts only when the ST is generated and stored in local memories. In that case, for each incoming codeword,
the decoder will calculate the syndrome S. If its value is equal to zero (S= 0), the decoder will assume that the
codeword is error-free. However, if the value of S is nonzero (S≠ 0), the decoder will lookup the ST in order to find the
entry with the first b bits as that of the syndrome S. If such an entry exists, the decoder will perform (in parallel) the
operations:

Bi1 = Bi1
+ E1

(
mod 2b − 1

)
, (7)

Bi2 = Bi2
+ E2

(
mod 2b − 1

)
, (8)

⋮

Bit = Bit
+ Et

(
mod 2b − 1

)
. (9)

Otherwise, it will declare an uncorrectable error.

3 PARALLEL ENCODING AND DECODING OF IECCS

In Reference 14 it was shown that the serial encoding/decoding algorithms for IECCs have linear time com-
plexity. However, the data can also be processed in parallel. The motivation for such an approach lies in
the concept of parallel addition of p integers. In particular, if a binary tree structure is used, the addition
of p integers can be performed in O(log2p) time1 (Figure 3). Using this fact, we can state the following
theorems.

Theorem 1. Any (kb+ b, kb) IECC can be encoded in parallel in O(log2n) time.

Proof. Let us analyze the expression (1). The first thing we notice is that the check-byte is computed as the
sum of k products. Each of these products is calculated independently (Figure 4A), which means that the
encoder must perform b⋅log2 b bit operations20 in order to calculate the product Ni =Ci⋅Bi, where i= 1, 2,
… , k. After that, the encoding procedure reduces to modular addition of k integers using a binary tree with
⌈log2k⌉ levels. This means that the check-byte Bk+1 will be computed after ⌈log2k⌉ additions, where each
addition takes b bit operations. Given this and the fact that the codeword has n= (k+ 1)⋅b bits, from the
expression

O
(

b ⋅ log2b + b ⋅ ⌈log2k⌉
)
≈ O

(
b ⋅ log2(b ⋅ k)

)
≈ O

(
b ⋅ log2n

)
= b ⋅ O

(
log2n

)
= const. ⋅ O

(
log2n

)
= O

(
log2n

)

it is clear that any IECC can be encoded in parallel in logarithmic time. ▫

Theorem 2. Any (kb+ b,kb) IECC can be decoded in parallel in O(log2n) time.

Proof. The decoding process for all IECCs consists of three steps: calculating the syndrome S, looking up the
ST and correcting the errors. From (2) we see that performing the first step requires only one operation more
than the encoding process. However, if we parallelize all the calculations (Figure 4B), we easily come to the
conclusion that the syndrome S will be computed after b⋅log2b+ b⋅ ⌈log2(k + 1)⌉ binary operations. If the value
of S is nonzero, the decoder will lookup the ST to get the error correction data. Since the ST can be presorted
in ascending order (according to the values of S), it is possible to use a binary search algorithm.1 In that case,
the number of table lookups (TLs) will not be greater than ⌊log2|𝜉|⌋ + 214 where each TL takes b bit operations
(the comparison of two b-bit integers). If we add to this the fact that the last step (error correction) requires b
bit operations (t integer additions in parallel) and that the value of |𝜉| is never greater than 2b−2, we get the
inequality

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12675 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [16/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

RADONJIC and VUJICIC 5 of 9

F I G U R E 3 Illustration of the binary tree addition algorithm

F I G U R E 4 Illustration of the parallel algorithm for (A) encoding and (B) syndrome computing

O
(

b ⋅ log2b + b ⋅ ⌈log2(k + 1)⌉ + b ⋅ ⌊log2|𝜉|⌋ + 3 ⋅ b
)
< O

(
b ⋅ log2[b ⋅ (k + 1)] + b ⋅

⌊
log2

(
2b − 2

)⌋
+ 3 ⋅ b

)
<

< O
(

b ⋅ log2n + b2 + 3 ⋅ b
)
= b ⋅ O

(
log2n + b + 3

)
= const. ⋅ O

(
log2n + const.

)
= O

(
log2n

)

from which it is clear that any IECC can be decoded in parallel in logarithmic time. ▫

4 EVALUATION

In the previous section, we have seen that the complexity of encoding/decoding of IECCs does not depend on the code’s
strength. This, however, is not the case with standard ECCs. An obvious example are LDPC codes, whose performance
depends both on the code type and the decoding algorithm used. This is the reason why it is often stated that algorithms
for decoding weaker LDPC codes run in O(n) time,5 while those used for decoding stronger LDPC codes have O(n⋅log2n)
complexity.6,7 On the other hand, it is known that all LDPC codes can be encoded in O(n) time.4 As for Polar
codes, they can be encoded and decoded in O(n⋅log2n) and O(L⋅n⋅log2n) time, respectively, whereby the decoder
performance increases with the list size L.8,9 Unlike LDPC and Polar codes, the encoding/decoding complex-
ity of RS codes grows with the number of check bytes. In particular, if the number of check bytes r is even,
RS codes can be encoded and decoded in O(n⋅log2r) and O(n⋅log2r+ r⋅log2

2r) time, respectively.10 The fourth
and most complex ECCs are Turbo codes. According to References 11,12, these codes can be encoded and
decoded in O(n⋅m) and O(n⋅2m) time, respectively, where m+ 1 is the constraint length of the convolutional
codes (Table 2).

In addition to having high encoding/decoding complexity, the mentioned codes are very slow when imple-
mented in software. The reason for this lies in the fact that they use finite field (FF) arithmetic, which
is entirely different from the integer and floating point (FP) arithmetic of GPPs. Since the emulation of FF
operations requires a large number of instructions21 (thus slowing down the performance of the processor),

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12675 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [16/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 9 RADONJIC and VUJICIC

T A B L E 2 Comparison of various ECCs

Codes
Lowest encoding
complexity

Lowest decoding
complexity

Preferred type of
implementation

All IECCs O (log2n) O (log2n) Software

LDPC codes O (n) O (n) Hardware

RS codes O (n⋅log2r) O (n⋅log2r+ r⋅log2
2r) Hardware

Polar codes O (n⋅log2n) O (n⋅log2n) Hardware

Turbo codes O (n⋅m) O (n⋅2m) Hardware

T A B L E 3 Highest decoding speeds for several software-based decoders

Codes
Type of
processor

Number of
cores Code parameters

Decoding
throughput

LDPC code25 GPP 20 (16384, 4096) 11.25 Gbps

RS code23 GPP+GPU 22+ 3072 (2040, 1784) 10.65 Gbps

Polar code22 GPP 4 (2048, 1707) 2.17 Gbps

Turbo code24 GPP 12 (18432, 6144) 1.7 Gbps

some researchers decided to use extremely powerful GPPs and/or graphical processing units (GPUs). How-
ever, even this very expensive approach has not proven to be applicable22–25 in future communication networks
(Table 3).

Unlike FF-based codes, IECCs are perfectly suited for implementation on 64-bit processors. This feature is not
only related to the fact that GPPs have four integer units (IUs) per core, but also that each IU operates indepen-
dently of the other ones (Figure 5).26 This means that the proposed encoding/decoding algorithms can be fully
implemented if the total number of IUs is not less than k+ 1. In that case, the encoder (GPP) would take NIM
+ ⌈log2k⌉ ⋅ NIA clock cycles to generate the check byte Bk+1, where NIM and NIA denote the number of clock
cycles needed to perform one integer multiplication and one integer addition, respectively. Starting from the fact
that the equalities NIM = 3 and NIA = 1 apply to all GPPs,26 we easily come to the conclusion that the encoder
can process

GEN =
clock speed × dataword length

number of clock cycles
=

clock speed ⋅ k ⋅ b
⌈log2k⌉ + 3

bits per second. (10)

In a similar way it can be shown that the decoder processes

GDE =
clock speed × codeword length

number of clock cycles
=

clock speed ⋅ (k + 1) ⋅ b
⌈log2(k + 1)⌉ +

(
⌊log2|𝜉|⌋ + 2

)
⋅ NST + 5

bits per second, (11)

where NST denotes the number of clock cycles that the decoder needs to access the ST (this table must be stored in the
local GPP’s memory).

If we analyze the above expressions, we will notice that the encoding speed increases with increasing clock
speed and/or codeword length. On the other hand, the decoding speed depends on four parameters, of which NST
plays a dominant role (Table 4). This fact points to the conclusion that the ST should always be stored in the
L1/L2 cache. If this is not feasible at the start, the size of the ST should be reduced by shortening the codeword
length.

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12675 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [16/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

RADONJIC and VUJICIC 7 of 9

F I G U R E 5 Block diagram of an eight-core GPP processing a dataword (codeword)

T A B L E 4 Theoretical encoding/decoding throughputs for some 64-bit IECCs implemented on eight-core GPPs

Theoretical decoding throughput
Code
parameters k |𝝃| Clock speed

Theoretical encoding
throughput

NST= 4a

(L1 cache)
NST= 12a

(L2 cache)
NST= 25a

(L3 cache)

(1920, 1856) 29 212 3.0⋅109 Hz 696.0 Gbps 87.3 Gbps 32.4 Gbps 16.0 Gbps

(1920, 1856) 29 213 3.0⋅109 Hz 696.0 Gbps 82.3 Gbps 30.3 Gbps 15.0 Gbps

(1920, 1856) 29 214 3.0⋅109 Hz 696.0 Gbps 77.8 Gbps 28.5 Gbps 14.0 Gbps

(1920, 1856) 29 212 3.5⋅109 Hz 812.0 Gbps 101.8 Gbps 37.8 Gbps 18.7 Gbps

(1920, 1856) 29 213 3.5⋅109 Hz 812.0 Gbps 96.0 Gbps 35.4 Gbps 17.5 Gbps

(1920, 1856) 29 214 3.5⋅109 Hz 812.0 Gbps 90.8 Gbps 33.3 Gbps 16.4 Gbps

(1984, 1920) 30 212 3.0⋅109 Hz 720.0 Gbps 90.1 Gbps 33.4 Gbps 16.5 Gbps

(1984, 1920) 30 213 3.0⋅109 Hz 720.0 Gbps 85.0 Gbps 31.3 Gbps 15.5 Gbps

(1984, 1920) 30 214 3.0⋅109 Hz 720.0 Gbps 80.4 Gbps 29.5 Gbps 14.5 Gbps

(1984, 1920) 30 212 3.5⋅109 Hz 840.0 Gbps 105.2 Gbps 39.0 Gbps 19.3 Gbps

(1984, 1920) 30 213 3.5⋅109 Hz 840.0 Gbps 99.2 Gbps 36.5 Gbps 18.0 Gbps

(1984, 1920) 30 214 3.5⋅109 Hz 840.0 Gbps 93.8 Gbps 34.4 Gbps 16.9 Gbps

(2048, 1984) 31 212 3.0⋅109 Hz 744.0 Gbps 93.1 Gbps 34.5 Gbps 17.1 Gbps

(2048, 1984) 31 213 3.0⋅109 Hz 744.0 Gbps 87.8 Gbps 32.3 Gbps 16.0 Gbps

(2048, 1984) 31 214 3.0⋅109 Hz 744.0 Gbps 83.0 Gbps 30.4 Gbps 15.0 Gbps

(2048, 1984) 31 212 3.5⋅109 Hz 868.0 Gbps 108.6 Gbps 40.3 Gbps 19.9 Gbps

(2048, 1984) 31 213 3.5⋅109 Hz 868.0 Gbps 102.4 Gbps 37.7 Gbps 18.6 Gbps

(2048, 1984) 31 214 3.5⋅109 Hz 868.0 Gbps 96.9 Gbps 35.5 Gbps 17.5 Gbps

a Typical number of clock cycles that a processor needs to access the L1/L2/L3 cache.26

5 CONCLUSION

In this article, we have proposed algorithms for parallel encoding/decoding of IECCs. We have shown that the proposed
algorithms have logarithmic time complexity and are perfectly suited for implementation on MPs. Both of these features
can be used not only to improve the performance of existing codes, but also to construct new ones that would have the
potential to be used in future communication and memory systems.

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12675 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [16/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 9 RADONJIC and VUJICIC

AUTHOR CONTRIBUTIONS
Aleksandar Radonjic: Writing - original draft preparation; writing - review and editing; conceptualization (equal);
investigation (equal); validation (equal). Vladimir Vujicic: Conceptualization (equal); investigation (equal); validation
(equal).

FUNDING INFORMATION
This article was supported by the Ministry of Science, Technological Development and Innovation of the Republic of
Serbia (Grant No. 451-03-47/2023-01/200175).

CONFLICT OF INTEREST STATEMENT
The authors have no conflict of interest relevant to this article.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

ORCID
Aleksandar Radonjic https://orcid.org/0000-0003-3715-468X

REFERENCES
1. Miller R, Boxer L. Algorithms Sequential & Parallel: A Unified Approach. Cengage Learning; 2013.
2. Richardson T, Urbanke R. Efficient encoding of low-density parity check codes. IEEE Trans Inf Theory. 2001;47(2):638-656.
3. Lu J, Moura J. Linear Time Encoding of LDPC Codes. IEEE Trans Inf Theory. 2010;56(1):233-249.
4. Nozaki T. Parallel encoding algorithm for LDPC codes based on block-diagonalization. Proceedings of the IEEE International Symposium

on Information Theory (ISIT’15); 2015:1911-1915.
5. Burshtein D. Iterative Approximate Linear programming decoding of LDPC codes with linear complexity. IEEE Trans Inf Theory.

2009;55(11):4835-4859.
6. Frolov A, Zyablov V. On the multiple threshold decoding of ldpc codes over GF(q). Adv Math Commun. 2017;11(1):123-137.
7. Rybin P, Andreev K, Zyablov V. Error exponents of LDPC codes under low-complexity decoding. Entropy. 2021;23(2):253.
8. Ar𝚤kan E. Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels.

IEEE Trans Inf Theory. 2009;55(7):3051-3073.
9. Li B, Shen H, Tse D. An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check. IEEE Commun Lett.

2012;16(12):2044-2047.
10. Tang N, Lin Y. Fast encoding and decoding algorithms for arbitrary (n, k) Reed-Solomon codes over F2

m. IEEE Commun Lett.
2020;24(4):716-719.

11. Pei R, Wang Z, Huang Q, Wang J. Low complexity SOVA for turbo codes. China Commun. 2017;14(8):33-40.
12. Mohammed M, Abdessadek A. Performance and complexity comparisons of Polar codes and Turbo codes. Proceedings of the International

Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’18); 2019:434-443.
13. Benvenuto N, Cherubini G, Tomasin S. Algorithms for Communications Systems and Their Applications, 2nd Edition. John Wiley and Sons

Ltd.; 2021.
14. Radonjic A, Vujicic V. Integer codes correcting burst errors within a byte. IEEE Trans Comput. 2013;62(2):411-415.
15. Radonjic A. (Perfect) Integer codes correcting single errors. IEEE Commun Lett. 2018;22(1):17-20.
16. Maxino T, Koopman P. The effectiveness of checksums for embedded control networks. IEEE Trans Depend Secure Comput.

2009;6(1):59-72.
17. Radonjic A. Integer codes correcting double errors and triple-adjacent errors within a byte. IEEE Trans Very Large Scale Integr (VLSI) Syst.

2020;28(8):1901-1908.
18. Radonjic A, Vujicic V. Integer codes correcting sparse byte errors. Cryptogr Commun. 2019;11(5):1069-1077.
19. Radonjic A. Integer codes correcting single errors within two bytes. J Circuits Syst Comput. 2021;30(14):2150260.
20. Harvey D, Hoeven J. Integer multiplication in time O(nlogn). Ann Math. 2021;193(2):563-617.
21. Wu Z, Gong C, Liu D. Computational complexity analysis of FEC decoding on SDR platforms. J Signal Process Syst. 2017;89(2):

209-224.
22. Le Gal B, Leroux C, Jego C. Multi-Gb/s software decoding of polar codes. IEEE Trans Signal Process. 2015;63(2):349-359.
23. Suzuki T, Kim SY, Kani JI, Hanawa T, Suzuki KI, Otaka A. Demonstration of 10-Gbps real-time Reed–Solomon decoding using GPU direct

transfer and kernel scheduling for flexible access systems. J Lightw Technol. 2018;36(10):1875-1881.
24. Le Gal B, Jego C. Low-latency and high-throughput software turbo decoders on multi-core architectures. Ann Telecommun.

2020;75(1–2):27-42.

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12675 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [16/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-3715-468X
https://orcid.org/0000-0003-3715-468X

RADONJIC and VUJICIC 9 of 9

25. Pignoly V, Le Gal B, Jego C, Gadat B, Barthe L. Fair comparison of hardware and software LDPC decoder implementations for SDR space
links. Proceedings of the 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS); 2020:1-4; IEEE.

26. Fog A. The Microarchitecture of Intel, AMD and via CPUs: An Optimization Guide for Assembly Programmers and Compiler Makers.
Technical University of Denmark; 2022. https://www.agner.org/optimize/microarchitecture.pdf

How to cite this article: Radonjic A, Vujicic V. Logarithmic time encoding and decoding of integer error
control codes. Engineering Reports. 2023;e12675. doi: 10.1002/eng2.12675

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12675 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [16/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.agner.org/optimize/microarchitecture.pdf

	Logarithmic time encoding and decoding of integer error control codes
	1 INTRODUCTION
	2 IECCs: CONSTRUCTION AND ERROR CONTROL
	3 PARALLEL ENCODING AND DECODING OF IECCs
	4 EVALUATION
	5 CONCLUSION

	AUTHOR CONTRIBUTIONS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

