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SEBASTIAN NEUSÜSS, MICHAEL RAZEN,

UTZ WEITZEL, DAVID ABAD-DÍAZ,
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ABSTRACT

In statistics, samples are drawn from a population in a data-

generating process (DGP). Standard errors measure the uncertainty

in estimates of population parameters. In science, evidence is gener-

ated to test hypotheses in an evidence-generating process (EGP). We

claim that EGP variation across researchers adds uncertainty: Non-

standard errors (NSEs). We study NSEs by letting 164 teams test

the same hypotheses on the same data. NSEs turn out to be sizable,

but smaller for better reproducible or higher rated research. Adding

peer-review stages reduces NSEs. We further find that this type of

uncertainty is underestimated by participants.

In their recent book, Kahneman et al. (2021) (KSS) discuss variability in

wrote the manuscript. Any errors are therefore their sole responsibility. The three authors
affiliated with Cascad conducted the reproducibility verification. The other authors all sig-
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in Appendix A, because space in this footnote is limited. The views expressed here are the
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of New York, the Federal Reserve System, or any other of the institutions that the authors
are affiliated with or receive financing from. The coordinators thank Andrew Chen, Amit
Goyal, Campbell Harvey, Lucas Saru, Eric Uhlmann, and participants at the Microstruc-
ture Exchange 2021, Derivatives Forum Frankfurt 2022, Financial Intermediation Research
Society (FIRS) 2022, Research in Behavioral Finance Conference (RBFC) 2022, Society
for Experimental Finance (SEF) 2022, Society for Financial Econometrics (SoFiE) 2022
where the paper was runner-up for the best-paper prize, Vienna-Copenhagen Conference
on Financial Econometrics 2022, and the Western Finance Assocation (WFA) 2022 for
valuable comments. They further thank Adam Gill, Eugénie de Jong, Ingrid Löfman, and
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from (Dreber) the Knut and Alice Wallenberg Foundation, the Marianne, Marcus Wallen-
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P29362, (Huber and Kirchler) FWF SFB F63, (Johannesson) Riksbankens Jubileumsfond
grant P21-0168, and (Menkveld) NWO-Vici. Authors at Gothenburg University, Lund
University, and Stockholm University gratefully acknowledge financial support from the
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human judgment in terms of noise. They illustrate their analysis by judges

passing sentence. They decompose total variation in sentencing into two

canonical components: level noise and pattern noise (Ch. 6). Level noise

captures the extent to which some judges are more lenient than others. Pat-

tern noise, on the other hand, refers to variation in judgment when the same

judge sentences similar cases. In statistical terms, this distinction can be de-

fined as across-judge versus within-judge variation. Variation across judges

is also referred as variation in judge fixed effects.

There are similarities to empirical science, where researchers analyze sam-

ples to test hypotheses. There is within-researcher variation due to sampling

error. Re-sampling (or bootstrapping) yields different values of the estimator.

The standard deviation (SD) of this distribution is referred to as standard

error (SE) (Yule, 1897). It is a source of uncertainty that researchers are

well aware of when conducting their tests.

Researchers are less aware that there is an additional level of uncertainty

due to there not being a standard analysis path. Researchers vary in what

they deem to be the most reasonable path in the “garden of forking paths”

(Gelman and Loken, 2014). Conditional on the path, there is a well-defined

estimator and standard error. Conditional on the sample, however, estimates

may vary across researchers as they might pick different paths.1 We refer to

this additional variation as non-standard error (NSE). Note that the adjec-

1An important source of such variation is that researchers need to translate conceptual

research questions to empirical research questions (Breznau et al., 2022).
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tive, non-standard, emphasizes the lack of a standard approach. In other

words, if all researchers agree on one path being the most reasonable one,

then NSE is zero.

The schema below summarizes the overarching idea of non-standard er-

rors. Statisticians use the term data-generating process (DGP) to convey

the idea that samples are random draws from a population. Estimators,

therefore, exhibit standard error.

Using the same language, one could say that scientists collectively en-

gage in an evidence-generating process (EGP). Researchers potentially pick

different analysis paths, which is a source of additional error: Non-standard

error. Note that error in this case is to be understood as erratic as opposed

to erroneous, in the sense that there simply is no right path in an absolute

sense.2

2Variation in estimates reported in meta studies is of both types. The polar cases are

the following. Estimates vary because researchers did the analysis in the exact same way,

but on different samples (SE). Or, estimates vary because the sample is the same, but

the analysis differs (NSE). Mavroeidis et al. (2014) is a special case, because they conduct

their meta study by applying all observed analysis paths on all samples. They, unlike us,

do not focus on distinguishing the two sources of variation explicitly. For a review of meta

studies in finance, see Geyer-Klingeberg et al. (2020).
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Let us illustrate the idea with an example. In microstructure, market

efficiency is conceptually defined as the extent to which a price process re-

sembles a random walk. Suppose that one is interested in estimating the

trend in a measure of market efficiency. To estimate, say, the mean annual

change in market efficiency, a researcher faces many forks in the road: How

to measure market efficiency, at what frequency to sample the data, how to

define outliers, etc. Collectively, we refer to these decisions as the analysis

path.

Our objective is to measure and analyze non-standard errors. The four

questions that we focus on are:

1. How large are non-standard errors in finance?

2. Can they be “explained” in the cross-section of researchers? Are they

smaller

(a) for papers by higher quality teams?

(b) for papers with better reproducible results?

(c) for papers that score higher in peer evaluations?

3. Does peer feedback reduce non-standard errors?

4. Are researchers accurately aware of the size of non-standard errors?

The motivation for these questions is that non-standard errors are undesirable

in the sense that they add uncertainty. Such uncertainty becomes particularly

14



worrisome when some estimates are positive, while others are negative. We

therefore want to learn if higher quality coincides with tighter NSEs, and if

feedback reduces NSEs.

Finding answers to the four questions is extremely costly in terms of

human resources. The core structure of an ideal experiment involves two

sizable sets of representative researchers. A first set of researchers indepen-

dently tests the same hypotheses on the same data, and writes a short paper

presenting the results. A second, non-overlapping set of researchers obtains

these papers, evaluates them, and provides feedback in a single-blind process.

We have run such an experiment under the #fincap tag (FINance Crowd

Analysis Project). 164 research teams (RTs) and 34 peer evaluators (PEs)

participated, with each PE evaluating about ten papers. The Deutsche Börse

kindly made proprietary data available spanning 17 years of trading in Eu-

rope’s most actively traded instrument: the EuroStoxx 50 index futures.

These data enabled researchers to test pre-defined RT-hypotheses3 on several

important market trends. This unique opportunity might explain why par-

ticipation was exceptionally high (at least double that of similar experiments

elsewhere, discussed later in the introduction).4 A back-of-the-envelope cal-

3We refer to these hypotheses as RT-hypotheses to distinguish them from the hypothe-

ses that we test when analyzing the #fincap results. Our hypotheses are based on the four

overarching questions (Section B).

4#fincap was presented to all involved by means of a dedicated website

(https://fincap.academy) and a short video (https://youtu.be/HPtnus0Yu-o).
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culation shows that total human resources for #fincap span almost a single

academic career: (164 × 2 months + 34 × 2 days ≈ 27 years).

Statistical framework. We define the non-standard error for a particu-

lar RT-hypothesis as the interquartile-range (IQR) in estimates across re-

searchers. The reason for picking a robust dispersion measure instead of SD,

is that this distribution could exhibit fat tails, and thus be prone to out-

liers. #fincap itself is a case in point as will become clear. The distribution

of estimates across researchers tends to the distribution of researcher fixed

effects (RFEs), in the sense of each researcher picking his preferred analysis

path. Importantly, a distribution of RFEs could be any distribution. Using

a robust dispersion measure, therefore, is a prudent choice.5

Statistical inference in #fincap needs to account for multiple hypothesis

testing (MHT) (Bonferroni, 1936; Šidák, 1967). The critical values for indi-

vidual tests need to account for multiple teams testing the same hypothesis.

Put simply, if individual tests are performed at a five percent level, then

the probability of at least one turning significant for multiple tests, (weakly)

exceeds five percent. Harvey et al. (2016) illustrate how to adjust levels in

5The intuition is as follows. If the number of researchers tends to infinity, then the

distribution of estimates tends to the distribution of RFEs, plus sampling errors. If, in

addition, the sample size tends to infinity, then the distribution of estimates tends to the

distribution of RFEs (because, for each analysis path, the group mean for this path tends

to the RFE associated with this path). This distribution can be any distribution and

might, therefore, exhibit fat tails. Section C provides a statistical framework.
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asset pricing tests. In his presidential address, Harvey (2017) emphasizes

that MHT affects all of finance. We follow in his footsteps when applying

MHT in #fincap.

Finally, to address the overarching questions, we need to analyze how

NSEs co-vary with quality measures, and how they change across stages.

Since NSE is defined in terms of quantiles, we will use quantile regression to

conduct this analysis (Koenker and Bassett Jr., 1978). Note that ordinary

least-squares only models conditional means, and it is therefore unfit for an

analysis of dispersion. In addition to the first and the third quartile, we

will also model the median, the first decile, and the ninth decile, in order

to obtain a more complete view of the distribution, including results on the

interdecile range (IDR).

Summary of our findings. We first show that the group of #fincap

participants is representative of the academic community in empirical fi-

nance/liquidity. About a third of the 164 research teams have at least one

member with publications in the top-three finance, or the top-five economics

journals.6 For the group of peer evaluators, this share is 85%. 52% of RTs

consist of at least one associate or full professor. For PEs, this is 88%. On

a scale from 1 (low) to 10, the average self-ranked score on experience with

6Finance: Journal of Finance, Journal of Financial Economics, and Review of Finan-

cial Studies. Economics: American Economic Review, Econometrica, Journal of Political

Economy, Quarterly Journal of Economics, and Review of Economic Studies.
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empirical finance is 8.1 for RTs, and 8.4 for PEs. For experience with market

liquidity, it is 6.9 for RTs, and 7.8 for PEs.

The evidence on the four overarching questions is as follows. First, the

dispersion in estimates across RTs is sizable. All six RT-hypotheses had to be

tested by proposing a measure and computing the average per-year percent-

age change. The first RT-hypothesis, for example, was “Market efficiency

has not changed over time.” The median estimate across RTs is -1.1% with

a non-standard error (IQR) of 6.7% (i.e., 6.7 percentage points). The IDR is

27.3%.7 The dispersion for the other RT-hypotheses is similar in magnitude,

albeit smaller for RT-hypotheses that arguably involve fewer decisions on the

analysis path (e.g., testing for a trend in market share).

Statistical tests show that, for all RT-hypotheses, at least a few estimates

are significant (at a family level of 0.5%).8 This number ranges from 6 (out

of 164) for RT-H6 to 125 for RT-H3. We further test the null hypothesis of

no dispersion in researcher fixed effects. We reject it for all RT-hypotheses.

NSEs are therefore statistically significant for all RT-hypotheses.

Finally, it is worth noting that the uncertainty due to non-standard errors

7This RT-hypothesis further illustrates the importance of robust statistics. One RT

reports an estimate of +74,491%. This extreme outlier causes the mean and standard

deviation to be 446.3% and 5,817.5%, respectively.

8We use the conservative significance levels advocated by Benjamin et al. (2018): 0.5%

for significance and 5% for weak significance. They refer to the latter as “suggestive

evidence.”
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is similar in magnitude to that due to standard errors. For RT-H1, for

example, the median standard error across RTs is 2.5%. For a Gaussian

distribution, this implies an IQR of 1.35 × 2.5% = 3.4%, which compares to

an NSE of 6.7%.

Second, the quantile regressions show that higher quality tends to coin-

cide with smaller NSEs. A one SD increase in reproducibility significantly

reduces NSEs by 25.0% and a one SD increase in peer-evaluator rating signif-

icantly reduces them by 33.3%. A one SD increase in team quality, however,

significantly raises NSEs by 2.8%. This effect, however, is small in economic

magnitude. If IDR were used instead of IQR, then a one SD increase in qual-

ity significantly reduces IDRs for all quality measures: 13.3%, 17.9%, and

11.9%, respectively. Overall, higher quality seems to make extreme values

less likely.

Third, peer feedback significantly reduces non-standard errors. The peer-

feedback process involves multiple stages. We find that each stage reduces

NSEs, albeit insignificantly. The reduction across all four stages is significant

and amounts to 47.2%. This number for IDRs is also significant, and amounts

to an even larger decline: 68.2%.

Fourth, RTs mostly underestimate the dispersion in estimates across RTs,

which we tested in an incentivized belief survey. Such underestimation might

well be the reason why non-standard errors never attracted much attention,

until recently.

Finally, we dig deeper to discover what drives dispersion in estimates. A
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particularly useful tool for such analysis is a multiverse analysis (Liu et al.,

2021). For key forks on the analysis path, the multiverse reveals how sensitive

the distribution of estimates is to decisions at each particular fork.

It turns out that many of the key forks in #fincap add substantial noise.

For RT-H1 on market efficiency, for example, it matters which frequencies

teams choose for their variance ratio calculations. Some teams compare sec-

onds to minutes, others days to months. A comparison of higher frequencies

tends to find a decline in market efficiency, whereas for lower frequencies

some find an increase in market efficiency.

The multiverse further reveals that Jensen’s inequality can cause large

dispersion. If a researcher is interested in assessing an N -period (long-term)

trend in Xt, and estimates it based on one-period observations, then this

could add substantial noise (Blume, 1974). Consider, for example, the expec-

tation of a product of two independent and identically distributed relatives,

where a relative is defined as Xt/Xt−1. Jensen’s inequality implies that the

expectation of this product is larger than the product of the expected rela-

tives. The multiverse shows that the noise this adds can become particularly

large for teams who sample at a daily frequency to estimate an annual trend,

and use relatives instead of, for example, log-differences or a trend-stationary

approach.

Contribution to the literature. The issue of variability in the research

process is not new. Leamer (1983), for example, was troubled by the “fumes
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which leak from our computing centers.” He called for studying “fragility in

a much more systematic way.”

Replication studies echo his concern as they typically find

much weaker effects and less statistical strength (Ioannidis, 2005,

Open Science Collaboration, 2015, Camerer et al., 2016, 2018). This

is potentially the result of p-hacking: the process by which researchers try

analysis paths until non-significant results turn significant.9 We caution,

however, that poor replication could also be demand-driven instead of

supply-driven. This is the case when journals prefer to publish papers with

low p-values. Munafò et al. (2017) survey the various threats to credible

empirical science and propose several fixes.

The literature on replicability in finance is young, but growing rapidly.

Examples are: McLean and Pontiff (2016), Hou et al. (2018), Linnainmaa

and Roberts (2018), Chordia et al. (2020), Harvey and Liu (2020), Ben-David

et al. (2021), Black et al. (2021), Chen (2021), Mitton (2021), Jensen et al.

(2022), and Pérignon et al. (2023).10 None of these replication studies focus

on explaining the dispersion of estimates in a cross-section of researchers, or

study the impact of peer feedback. We are the first to run an experiment,

where this can be done in a clean way. Our objective is to study dispersion

9The p-value is the probability of observing an effect that is at least as large as the

estimated effect, under the null hypothesis that there is no effect.

10Following up on our work, Soebhag et al. (2023) and Walter et al. (2023) study

non-standard errors in asset pricing as a result of portfolio-sort decisions.
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in estimates, short of a potential bias due to p-hacking. By design, there is

no need to p-hack for #fincap researchers, because anyone who completes

all stages of the project had been guaranteed co-authorship. Similarly, peer

evaluators are guaranteed co-authorship to ensure thoughtful feedback.

We are the first in finance to run an experiment to study dispersion

in estimates, but we are not the first in science. Silberzahn et al. (2018)

pioneered the multi-analyst study by letting multiple teams test whether

soccer referees are more likely to draw red cards for players with a darker

skin color. Other examples are Botvinik-Nezer et al. (2020) for neuroscience,

Huntington-Klein et al. (2021) for economics, and Breznau et al. (2021) and

Schweinsberg et al. (2021) for sociology. We innovate relative to these studies

by explaining dispersion in estimates with quality attributes, by adding peer

feedback stages, and by soliciting beliefs on dispersion ex-ante. A further

strength of our study is the large cross-section of research teams: N=164. It

is more than twice the size of any of the other multi-analyst samples.

The remainder of the paper is organized as follows. Section I provides an

in-depth discussion of the project design.11 It further presents the hypotheses

associated with the four overarching questions, and develops an appropriate

statistical framework to test them. Section II presents our results. Section III

concludes.

11The design of #fincap follows the guidelines for multi-analyst studies proposed by

Aczel et al. (2021).
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I. Project design and hypotheses

This section first presents the details of the #fincap experiment, then

presents hypotheses based on the four overarching questions, and finishes by

discussing an appropriate statistical framework.

A. Project design

Before starting the #fincap experiment, we had filed a pre-analysis plan

(PAP) with the Open Science Foundation (https://osf.io/h82aj/). The orig-

inal version of Non-Standard Errors contains the results of the analysis out-

lined in the PAP. This original version remains available as Tinbergen In-

stitute Discussion Paper TI 2021-102/IV. Subsequent feedback from various

presentations and from reviewers at the Journal of Finance have led to the

results presented here. Relative to the PAP, we now use robust methods

to cope with unanticipated extreme outliers, we account for multiple test-

ing, and we add a multiverse analysis to add deeper insight. Appendix B

reconciles the current results with those in the original version.

In a nutshell, the #fincap experiment is about multiple research teams

independently testing the same hypotheses on the same sample. We refer to

these hypotheses as RT-hypotheses and to this sample as RT-sample. This

is to distinguish them from the hypotheses that we will test based on the

results generated by RTs and PEs (Section B).12

12RTs and PEs have been recruited mostly by alerting appropriate candidates through
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The RT-sample is a plain-vanilla trade sample for the EuroStoxx 50 index

futures with, added to it, a principal-agent flag.13 For each side to a trade

(i.e., buy and sell), we therefore know whether the exchange members traded

for their own account, or for a client. The sample runs from 2002 through

2018 and contains 720 million trade records. These index futures are among

the world’s most actively traded index derivatives. They give investors expo-

sure to Europe, or, more precisely, to a basket of euro-area blue-chip equities.

With the exception of over-the-counter activity, all trading is done through

an electronic limit-order book (see, e.g., Parlour and Seppi, 2008, for details

on limit-order book markets).

The RT-hypotheses are all statements about annual trends in the follow-

ing market characteristics (with the null being no change):

RT-H1 market efficiency

RT-H2 realized bid-ask spread,

suitable channels (e.g., the https://microstructure.exchange/). To inform them about

#fincap, we created an online repository: https://fincap.academy. The repository remains

largely unaltered (except for, e.g., adding FAQs).

13Trade records contain the following fields: Datetime, expiration, buy-sell indicator,

size, price, aggressor flag, principal-agent flag, and a full- or partial-execution flag. Note

that each side to a trade becomes a record, where the aggressor is the side whose incoming,

say, buy order is matched with a resting sell order of the other side. The record is labeled

principal if the exchange member trades for his own account, and agent when he trades

for a client. More details on the sample are in Figure IA.6 of the Internet Appendix.
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RT-H3 share of client volume in total volume,

RT-H4 realized bid-ask spread on client orders,

RT-H5 share of market orders in all client orders, and

RT-H6 gross trading revenue of clients.

The RT-hypotheses are presented only briefly here to conserve space. The

full presentation of RT-H1, for example, characterizes informationally effi-

cient prices as a random walk. Appendix C motivates and discusses all RT-

hypotheses in detail. For the purpose of our analysis, we like to highlight two

points. First, the RT-hypotheses are picked to address first-order questions

in the field of empirical-finance/liquidity. These questions were used to mar-

ket #fincap and convince appropriate candidates to join the project. Second,

we ask for trends expressed as percentage changes to make them invariant to

choice of unit (e.g., are measures expressed in thousands, or not).

Note that there is, purposefully, considerable variation across RT-

hypotheses in the level of abstraction. RT-H1, for example, is on the rel-

atively abstract notion of market efficiency. RT-H3, on the other hand, is on

the share of client volume in total volume. Such share should be relatively

straightforward to calculate because, in the RT-sample, each buy and sell

trade is flagged agent (client) or principal (proprietary).

RTs are asked to test these RT-hypotheses by estimating an average

yearly change for a self-proposed measure.14 They are further asked to report

14RTs are asked to express their results in annualized terms. To some, it was not clear.
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standard errors for these estimates. We compute the ratio of the two, which

we refer to as the implied t-value, or t-value for short.

RTs write a short academic paper in which they present and discuss their

findings. These papers are evaluated by PEs who were recruited outside the

set of researchers who registered as RTs. RT papers were randomly and

evenly assigned to PEs in such a way that each paper is evaluated twice, and

each PE evaluates nine or ten papers. PEs score the papers by providing

an overall rating and a rating per RT-hypothesis. They do so in a single-

blind process: PEs see the names of RTs, but not vice versa.15 The reason for

single-blind instead of double-blind is to incentivize RTs to exercise maximum

effort.

PEs are asked to motivate their scores in a feedback form where they

are encouraged to add constructive feedback. RTs receive this feedback

unabridged, and are allowed to update their results based on it. Impor-

tantly, the design of #fincap was common knowledge to all because it had

been available on a dedicated website before registration opened (see foot-

note 4).

More specifically, #fincap consists of the following four stages:

We therefore notified everyone of the following clarification that we added to the FAQ

section on https://fincap.academy: “Research teams are asked to report annualized esti-

mates (and the corresponding standard errors); research teams are not required, however,

to consider only annualized data.”

15In our analysis, we remove PE fixed effects by demeaning (see Section B).
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Stage 1 (January 11 - March 23, 2021.) RTs receive the detailed instructions

along with access to the RT-sample. They conduct their analysis and

hand in their results (short paper plus code). We emphasized in our

emails and on the project website that RTs should work in absolute

secrecy so as to ensure independence across RTs.

Stage 2 (May 10 - May 28, 2021.) RTs receive feedback from two anonymous

PEs and are allowed to update their analysis based on it. They are

asked to report their findings in the same way they did in stage 1.

Stage 3 (May 31 - June 18, 2021.) RTs receive the five best papers based

on the average raw PE score. The names of the authors of these

five papers were removed before distributing the papers.16 Similar

to stage 2, all RTs are allowed to update their analysis and resubmit

their results.

Stage 4 (June 20 - June 28, 2021.) RTs report their final results, this time

not constrained by delivering code that produces them. In other

words, RTs are allowed to Bayesian update their results (i.e., esti-

mates and standard errors) taking in all the information that has

become available to them, in particular the five best papers. They

could, for example, echo the results of one of these papers, simply

16If two papers were tied in terms of their average score, then, following the pre-analysis

plan, we picked the one that had highest reproducibility score provided by Cascad. For

more information on Cascad, see the statement of H2 in Section B.
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because of an econometric approach that they believe is superior but

that is beyond their capacity to code. This stage was added to re-

move all constraints and see how far the RT community can get in

terms of reaching consensus.

The stages subsequent to the first one mimic the feedback researchers get

from various interactions with peer researchers in the research process be-

fore a first journal submission. Stage 2 mimics, for example, immediate

feedback from colleagues over lunch, during seminars, or in coffee breaks at

conferences. Stage 3 mimics indirect feedback by means of seeing competi-

tive papers that gain a lot of visibility through endorsements by colleagues,

or by being presented in seminars or at conferences. Stage 4 solicits a final

estimate whereby researchers are allowed to attach weight to estimates of

others whom, for example, they believe implement a superior methodology

that they are unable to code themselves. We like to emphasize that all these

stages are designed in a way to keep the full dynamics of a refereeing process

at a scientific journal out of scope.17

17Studying such dynamics requires a different experiment that involves “publishing”

papers, including the names of the authors. Note that we do reveal the best five papers

(according to PEs) to all RTs in stage 4, but the authors of these papers remain hidden.

Our focus is narrowly on the pure findings and beliefs of the RTs, avoiding any possible

corruption by “the publication game.”
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B. Hypotheses

Before running the experiment, we translated the project’s four overar-

ching questions into a set of pre-registered hypotheses. These hypotheses all

center on the dispersion in estimates across RTs. Our main measure is the

interquartile range, which we refer to as non-standard error. All hypotheses

are stated as null hypotheses and tests will be two-sided.

The first set of three hypotheses focuses on how NSEs relate to various

quality measures:

H1 NSE of stage-1 estimates does not co-vary with team quality. Team

quality is proxied by the largest common factor in various candidate

proxies for team quality. We prefer an appropriately weighted average

over simply adding all proxies to maximize statistical power in the re-

gressions. More specifically, we define team quality as the first principal

component of the following standardized series:18

(a) Top publications : The team has at least one top-three publica-

tion in finance or one top-five publication in economics (0/1) (see

footnote 6).

(b) Expertise in the field : Average of self-assessed experience in mar-

18An important advantage of a principal-component analysis (PCA) is that the weight-

ing is data-driven, thus avoiding subjective weights. Note that even the five proxies that

enter were picked ex-ante in the pre-analysis plan filed at OSF. The PCA results will be

discussed in Section B.1.
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ket liquidity and empirical finance (scale from 0 to 10).

(c) Experience with big data: The team has worked with samples at

least as large as the sample they analyze in #fincap (0/1).

(d) Academic seniority : At least one team member holds an associate

or a full professorship (0/1).

(e) Team size: The team size attains its maximum of two members

(0/1).

H2 NSE of stage-1 estimates does not co-vary with reproducibility score.

This score measures the extent to which RT estimates are reproducible

from RT code. The scoring was done by the Certification Agency for

Scientific Code and Data (Cascad). Cascad is a non-profit certification

agency created by academics with the support of the French National

Science Foundation (CNRS) and a consortium of French research in-

stitutes. The objective of Cascad is to provide researchers with a way

to credibly signal the reproducibility of their research (used by, for

example, the American Economic Review).19

H3 NSE of stage-1 estimates does co-vary with the average PE rating

19Cascad rates reproducibility on a five-category scale: RRR (perfectly reproducible),

RR (practically perfect), R (minor discrepancies), D (potentially serious discrepancies),

and DD (serious discrepancies). For #fincap, Cascad converted their standard categorical

rating to an equal-distance numeric one: RRR, RR, R, D, and DD become 100, 75, 50,

25, 0, respectively.
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(RT-hypothesis level). To remove a possible PE fixed effect, we use

demeaned PE ratings in all of our analysis.

The next hypothesis is about convergence in estimates across the four stages.

H4 NSE does not change across all feedback stages.

The final hypothesis focuses on RT beliefs about the dispersion in estimates

across RTs.

H5 The average belief of RTs on the dispersion in estimates across RTs, is

correct. The dispersion predictions were solicited in terms of the SD

measure.

C. Statistical framework

To formalize the analysis of non-standard errors in a statistical sense,

consider a set of researchers indexed by j ∈ {1, . . . , J}. All researchers are

given the same sample of size K. Researchers are asked to estimate the

mean of a particular object (e.g., the per-year change in market efficiency).

All researchers independently decide on the optimal analysis path and esti-

mate the mean accordingly. Collectively, let these estimates, X1, . . . , XJ , be

distributed as:

Xj = ej + εj, (1)

where ej is a researcher-specific mean, henceforth referred to as a researcher

fixed effect (RFE), and εj is a sampling error. The Central Limit Theorem
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(CLT) implies that, for large K, εj is approximately normal with mean zero

and variance σ2
j,K = σ2

j/K, where σ2
j is the path-specific variance of residuals.

Note that sampling errors are likely to correlate across researchers so that,

collectively, the estimates are approximately distributed as:

X
(J×1)

= e
(J×1)

+ ε
(J×1)

, where ε
(J×1)

∼ N

(
0

(J×1)
, Σ
(J×J)

)
, (2)

where Σ is a positive semidefinite matrix. The off-diagonal elements of Σ

are expected to be mostly positive since, if for a particular sample draw, Xi

is above its (unconditional) mean ei, then Xj is, most likely, also above its

mean ei.
20

Non-standard error. Non-standard error is defined as the inter-quartile

range in estimates:

NSE := Q0.75(x) −Q0.25(x), (3)

where x denotes a realization of the random vector X, and Qα(x) is the αth

quantile of x. Note that NSE tends to the IQR of RFEs when J and K both

tend to infinity:

NSE
J,K→∞→ Q0.75(e) −Q0.25(e). (4)

20For example, consider the case of estimating the mean of a distribution. If two

researchers estimate this mean by taking the sample average, but one winsorizes the sample

and the other does not, then a particular sample draw with unusually high values likely

yields above-mean estimates for both researchers.
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We reiterate that for the distribution of RFEs (i.e., the distribution of e)

could be any distribution. It is, therefore, prudent to pick a robust dispersion

measure, which is why we use IQR instead of SD. The latter tends to get

dominated by the size of extreme outliers.21

Testing for non-standard error. We test for “significance of non-

standard errors” by testing whether or not there is any dispersion in RFEs.

We do this by testing the following set of null hypotheses:

H0 : ej = ν, ∀j ∈ {1, . . . , J} , (5)

where ν is the median RFE. Since Xj is an estimator of ej, these hy-

potheses can be tested by conducting multiple tests, one for each Xj where

j ∈ {1, . . . , J}. Each individual test is a two-sided one that verifies whether

Xj is statistically different from ν. (Note that the critical values used in

the test need to account for multiple hypothesis testing, which is discussed

below.) In the implementation, we set ν equal to the median estimate. If

in at least one of these tests the null is rejected, then dispersion is non-zero,

and we consider non-standard errors to be statistically significant.22

21#fincap is a case in point. For RT-H4, one team reports an estimate of -6,275,383%,

whereas the estimates of other teams range from -2,897% to 870%. The SD based on all

estimates is 490,024%, but it is only 245% if one leaves out the outlier.

22Two more technical points merit discussion. First, we prefer the median over the mean

to have a robust location parameter. The asymptotic variance of the mean is smaller
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Conceptually, the distribution of X could be obtained by bootstrapping.

Such procedure, however, is infeasible because it requires that researchers

redo their analysis for every new draw of the sample. Instead, we use multiple

hypothesis testing (MHT) results to make the testing procedure feasible.

Before turning to MHT, let us pause for a moment and take stock of

what is available to us. The #fincap sample consists of estimates xj, along

with their standard error sj. This is useful, but misses information on the

covariance among all possible pairs of estimates across researchers.

To account for multiple testing, we rely on well developed statistical the-

ory. If one aims to test at a level of 5% for a family of N tests, then in-

dividual tests should be performed with a (5/N)% critical value, if the test

statistics are mutually independent (Bonferroni, 1936; Šidák, 1967; Harvey

et al., 2016).23

than that of the median for Gaussian distributions, but typically not for distributions

with fat tails. The reason is that the former depends on variance and thus on extreme

outliers, whereas the latter does not: σ2/N and 1/(4Nf(m)), respectively, where N is the

sample size, f is the density function, and m is the median. Figure IA.1 in the Internet

Appendix shows that, in #fincap, the variance of the median is an order of magnitude

smaller than the variance of the mean. Second, the proposed test assumes that sampling

error is negligible for the median estimate as an estimator for the median RFE, because

randomness in the median estimate is ignored. Figure IA.1 illustrates that, indeed, the

variance of the median estimate is negligible for #fincap. (If it were not negligible, then

one could resort to bootstrapping to establish critical values.)

23If theN tests statistics are independent, then the probability of at least one significant

result is (1 − (1 − α)N ). For example, for α = 0.05 and N = 10, this probability is 40
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In summary, we propose an NSE test where the null hypothesis is that

there is no dispersion in RFEs. We use a Bonferroni adjustment of signifi-

cance levels to account for multiple testing. The test is conservative, because

Bonferroni assumes independence. As pointed out in footnote 20, estimates

are likely to correlate across researchers, in which case the effective number

of tests is likely to be smaller than the actual number of tests. In the imple-

mentation, we add a trivial extension where correlations between estimates

are calibrated based on our multiverse analysis (Section C). We close the

section by discussing an alternative test and pointing out a caveat.

Alternative test. Note that a natural alternative to the proposed test is

to simply test if IQR is statistically different from zero. We did not pick this

shortcut, because our focus is on whether there is any dispersion at all in

estimates across researchers. Although we pick IQR to express dispersion in

a single number, the deeper interest is whether the distribution in estimates

is non-degenerate.

Caveat. We like to point out one potential caveat. The procedure to ob-

tain a conservative test on RFEs implicitly assumes that SEs reported by

researchers are consistent estimators of the true SEs. This might not be

true if (some) researchers report non-robust SEs. Non-robust SEs tend to

percent. Šidák (1967) proposes to adjust the significance level for the individual tests to

α′ = 1 − (1 − α)1/N . A Taylor expansion of α′ around zero yields α′ ≈ α/N , which is

known as the Bonferroni correction (Bonferroni, 1936).
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be smaller, because they ignore commonalities. If true, then NSE tests tend

to turn significant more often. NSEs themselves, however, remain consistent

estimators.24

II. Results

This section presents all our findings. They are based on a balanced sam-

ple of 164 research teams who completed all stages of the project (out of

168 research teams). The first subsection presents various summary statis-

tics and tests whether non-standard errors are statistically significant. The

second subsection tests our hypotheses. The third subsection digs deeper by

means of a multiverse analysis. The fourth and final subsection discusses

alternative explanations.

A. Summary statistics

(Insert Table I about here.)

Table I summarizes our stage-1 sample by means of three sets of statistics,

organized in three panels.25 Panel (a) summarizes the qualities of the #fin-

24Unfortunately, we do not have precise information on the SEs reported in #fincap,

because not all RTs provide detailed information on how they calculate SEs.

25Table IA.1 through IA.3 in the Internet Appendix repeat panel (c) of Table I for

the other stages. Panel (a) is the same for all stages, and panel (b) is only available for

stage-1 results, since only these results are evaluated by peers and scored by Cascad on
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cap community. It consists of 164 research teams and 34 peer evaluators.

Maximum RT size is two members, which is the size of 79% of RTs.

The statistics testify to the high quality of the #fincap community. 31% of

RTs have at least one top publication in finance or economics (see footnote 6

for the list of journals). For PEs, this is 85%. The percentage of RTs who

have at least one member who is tenured at the associate or full professor

level is 52% for RTs. For PEs, this is 88%. Feedback seems to come from

more established scholars, which likely mirrors reality.

RT members and PEs cover the global academic-finance community rea-

sonably well (see Figure IA.2 in the Internet Appendix). RT members reside

in 34 countries with most residing in the US (51 out of 293). PEs reside in 13

countries with, again, most residing in the US (13 out of 34). The strong skew

towards the US is not surprising given that the more senior, well-published

finance scholars are predominantly affiliated with US universities.

Most RTs and PEs seem to have the appropriate background for testing

the RT-hypotheses on the RT-sample. Their average self-reported scores on

having experience in the field of empirical finance is 8.1 for RTs and 8.4 for

PEs on a scale from 0 (low) to 10. For experience with market liquidity,

these average scores are 6.9 for RTs and 7.8 for PEs. There is considerable

variation around these averages as the SDs range from 1.7 to 2.4. When

it comes to working with samples as large as the RT-sample, 720 million

trade records, most RTs and PEs seem up to it. 65% of RTs have worked

reproducibility.
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with samples at least as large. For PEs, this percentage is 88%. In sum, we

believe that the group of #fincap participants is reasonably representative

of the academic community in empirical finance/liquidity

Panel (b) of Table I shows that the average quality of the RT analysis

is solid, but the dispersion is large. The average reproducibility score is

64.5 on a scale from 0 (low) to 100 (see footnote 19). This is high when

benchmarked against other studies on reproducibility (Colliard et al., 2021).

The accompanying SD is 43.7, which shows that there is large variation

across RTs: Most code either reproduces close to perfectly or barely at all.

The paper-quality scores provided by PEs show a similar pattern, albeit with

less dispersion. The average score across RTs is 6.2 on a scale from 0 (low)

to 10, with an SD of 2.0.

Panel (c) provides descriptive statistics on the distribution of results

across RTs. It does so by RT-hypothesis, and by type of result: Estimate,

standard error, and t-value. Since our focus is on dispersion in estimates

across RTs, we relegate a discussion of RT medians to Appendix C. More

specifically, this appendix discusses the RT-hypotheses in-depth and sum-

marizes what RTs, as a group, seem to find with a focus on the across-RT

median instead of the across-RT IQR (i.e., the non-standard error).

(Insert Figure 1 about here.)

Perhaps the most salient feature of the extensive panel (c) is that there

is substantial variation across RTs for all RT-hypotheses, and for all types of
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results. Panel (a) in Figure 1 illustrates this result for estimates. For RT-H1

on market efficiency, for example, the median estimate across RTs is -1.1%

with an IQR of 6.7%. Even for RT-H3, which is a seemingly straightfor-

ward calculation of a market share, the dispersion is sizable: an IQR of 1.2%

around a median of -3.3%. The variation in IQR across RT-hypotheses sug-

gests that the more abstract a hypothesis is, the larger the IQR is. Finally,

the figure illustrates that there are extreme outliers for all RT-hypotheses,

which motivates our analysis in terms of robust statistics.

(Insert Table II about here.)

NSE test results. Is the dispersion in estimates statistically significant?

Table II presents the non-standard error test results. The null of no dispersion

in researcher fixed effects is rejected for all RT-hypotheses at a 0.5% (family)

significance level. The conservative Bonferroni adjustment in panel (a) yields

at least 11 estimates that are individually significantly different from the

median (RT-H6), and at most 38 significant differences (RT-H3). There are

significant estimates both above and below the median for all RT-hypotheses.

If, instead of assuming zero correlation across test statistics as in Bonfer-

roni, one calibrates them based on bootstrapping from the multiverse analysis

(Section C), results change to the ones presented in panel (b). The implied

“effective” number of tests is much lower than the 164 tests used in Bon-

ferroni. It ranges from 21 (RT-H3) to 86 (RT-H6). The factor by which

significance levels are adjusted is, therefore, up to almost seven times smaller
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than what Bonferroni suggests (i.e., 164/24=6.8). The result is that, indeed,

more differences become significant. The increases are moderate, though,

with at most two more differences becoming significant.

In sum, the statistics presented thus far show that there is substantial

dispersion across research teams, in terms of their estimates, but also in

team quality, in reproducibility score, and in peer-evaluator rating. In the

next subsection, we use this dispersion to test the first three hypotheses. Is

there more dispersion in estimates for lower quality teams, for results that

are harder to reproduce, or for lower quality papers?

B. Hypotheses tests

The results on the three sets of hypotheses are discussed in the next three

subsections. Standard errors in the quantile regressions account for correla-

tion in residuals by adding RT-hypothesis fixed effects, and by clustering per

RT across all stages.

B.1. Co-variates for stage-1 dispersion (H1-3)

The first set of hypotheses relates NSEs to various quality variables. One

of these is team quality, which we measure by picking the first principal

component (PC1) of five standardized quality proxies (see H1 in Section B).

PC1 explains 38.3% of total variance, and loads positively on all quality

proxies. It loads strongest on publications and weakest on big-data but,

importantly, it loads positively on all of them. Table IA.4 in the Internet
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Appendix provides detailed results on the PCA.

(Insert Table III and Figure 2 about here.)

Table III summarizes the results of the stage-1 quantile regressions, with

as dependent variables, the 10th, 25th, 50th, 75th, and 90th percentile of

the distribution in estimates across RTs. Figure 2 illustrates the results by

showing how a one SD increase in each co-variate affects IQR (i.e., NSE) and

IDR. Taken together, these results allow us to test the first three hypotheses

that relate quality variables to dispersion in estimates.

First, we find that higher team quality coincides with somewhat larger

IQR, but with smaller IDR. The effect of team quality on the 25th percentile

is not significant, but for the 75th percentile, it is significantly positive. The

economic magnitude is small, though, as can be seen in Figure 2. A one SD

increase in quality raises IQR by only (0.032− 0.004)× 7.2 = 0.2 percentage

points (pps), where 7.2 is the average IQR across hypotheses (see panel (c)

of Table I). This increase of 0.2 pps implies a relative increase of 2.8%.26 In

contrast, a one SD increase in team quality, reduces IDR by 6.7 pps (-11.9%,

since average IDR is 56.3). This is the result of a significant increase in the

26A direct test on IQR, instead of separate tests on the 25th and 75th percentiles,

requires jointly modeling these percentiles. Such multivariate modeling, combined with

clustering on errors, is a non-trivial econometric challenge. Univariate modeling with

clustering, on the other hand, is relatively standard. We use a python package to run

these regressions: pyqreg.
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first decile and a significant reduction in the ninth decile. These findings

suggest that higher quality teams are less likely to report extreme estimates.

If one replaces team quality by the five quality variables on which it is

based, then a more nuanced picture emerges (Table IA.5 in the Internet

Appendix). The statistically significant and sizable relationships are the

following. A one SD increase in academic seniority (i.e., an associate/full

professor in the team), reduces IQR by 1.4 pps (-19.4%). A one SD increase

in team size reduces it by 0.9 pps (-12.5%).

A one SD increase in top publications, however, increases IQR by 1.9

pps (+26.4%). These three variables are positively correlated which explains

why we find that the (aggregate) team variable has a relatively small effect

on IQR. For IDR, the effects are of the same sign, but larger in magnitude:

-19.4, -7.0, and +6.1 pps , respectively (-34.4%, -12.4%, and +10.8%). Note

that now the negative effects really dominate, which explains that IDR co-

varies negatively with team quality. In sum, these findings suggest that well

published scholars seem to disagree more, but such effect is offset by the

presence of a senior scholar or a second team member.27

27The finding of more disagreement among well published scholars deserves further

study. These scholars might excel, simply because they are extraordinarily creative and,

therefore, more likely to see new and idiosyncratic analysis paths that they believe are most

appropriate. Or, they might delegate more of the analysis to (junior) research assistants

resulting in more variation in analysis paths. Relatedly, Harvey (2017, p. 1414) discusses

delegation in the context of p-hacking.
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Second, all percentiles co-vary significantly with reproducibility, except

for the median. The 10th and the 25th percentile co-vary positively and the

75th and the 90th percentile co-vary negatively. The figure shows that these

changes are sizable. A one SD increase in reproducibility reduces IQR by 1.8

pps (-25.0%) and IDR by 7.5 pps (-13.3%). In sum, better reproducibility

lowers overall dispersion.

Third, the results for paper quality mirror those of reproducibility, albeit a

bit stronger in magnitude. The 10th and 25th percentile co-vary significantly

positively, the 75th and 90th percentile co-vary significantly negatively. A

one SD increase in paper quality reduces IQR by 2.4 pps (-33.3%) and IDR by

13.6 pps (-17.9%). Higher rated papers exhibit less dispersion in estimates.

In summary, the evidence on the first three hypotheses is such that the

null of no co-variation is rejected for all three. Generally, higher quality is

associated with less dispersion in estimates.

B.2. Convergence across stages? (H4)

The analysis of first-stage results has shown that dispersion in estimates is

sizable and statistically significant. Does peer feedback create convergence?

In other words, does dispersion in estimates decline in the three subsequent

stages where teams get feedback from peers. This is the focus of the fourth

hypothesis.

(Insert Table IV and Figure 3 about here.)
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Table IV presents the results of quantile regressions to explain the dispersion

in estimates in all four stages (thus far, only stage 1 has been analyzed). To

account for heterogeneity in dispersion across RT-hypotheses, the explana-

tory variables are stage dummies that are multiplied by stage-1 (estimate)

IQR per RT-hypothesis. The coefficients, therefore, measure a stage effect,

expressed in IQR units. Figure 3 presents the results graphically.

The evidence makes us reject the null hypothesis of no convergence across

all stages. All changes across consecutive stages are positive for the 10th and

25th percentile, and negative for the 75th and 90th percentile. The majority,

however, is insignificant. However, the total change across stages is significant

for all these percentiles at the 5% level, and, for all but one at the 0.5% level.

Taken together, these results show that there is significant convergence from

the first to the last stage, but a decomposition across the various stages lacks

significance.

Figure 3 illustrates that the convergence is sizable. Panel (a) shows that

the total decline in IQR is 3.4 pps (-47.2%). The decline seems evenly dis-

tributed across the stages, although this decomposition is mostly insignifi-

cant. Panel (b) shows that the total decline in IDR is even larger: 38.4 pps

(-68.2%). More than half of it seems to happen from the first to the second

stage, where RTs receive anonymized feedback from two PEs. However, this

result is only weakly significant, since only the increase in the first decile is

weakly significant (i.e., at a 5% level, not at a 0.5% level).
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B.3. Are RT-beliefs on dispersion in estimates accurate? (H5)

The fifth and final hypothesis focuses on whether RTs are accurately

aware of the dispersion in estimates across teams. Beliefs have been solicited

in an incentivized way. All teams were asked to predict SDs in estimates

across teams.28 We randomly selected 20% of all RTs and paid each of

them $300 if one of their predictions (randomly drawn) was within 50% of

the realized SD. Details on the reward scheme are in the instruction sheet

they received before reporting their beliefs (Figure IA.15 in the Internet

Appendix). The hypothesis pertains to stage-1 estimates, because beliefs are

solicited for this stage only.

As H5 is stated in terms of the average belief being correct, testing it

requires a test on the equality of means: the mean belief about SDs in esti-

mates across teams, and the SDs of these estimates in the population. Let us

define a test statistic D that measures the relative distance between beliefs

and realizations:

D =
1

6n

∑
i,j

(
BeliefOnSD ij − RealizationOfSD j

RealizationOfSD j

)
, (6)

where BeliefOnSD ij is the belief of team i on the SD in estimates across

28In retrospect, we should have (also) asked for an IQR prediction, because SD is

very sensitive to extreme outliers (see footnote 21). To assess whether RTs might have

overlooked such outliers, we will compare their SD predictions with realized SDs, both on

the full sample and on a trimmed sample.
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teams for RT-hypothesis j and RealizationOfSD j is the realized SD for this

RT-hypothesis in the raw sample.29 The distribution of D under the null

of equal means is obtained by bootstrapping. For details on the bootstrap

procedure, we refer to Appendix E.

(Insert Figure 4 about here.)

Figure 4 plots the distribution of beliefs on SDs, along with realized SDs

depicted by red dots. It illustrates that the vast majority of teams underesti-

mate dispersion in estimates. The interquartile range denoted by the boxes is

consistently below the red dot, which implies that at least 75% of the teams

underestimate the dispersion.

One might think that teams simply overlook the extreme values that make

realized SDs explode. This, however, does not seem to be the case, because

even if one trims the estimates by removing the top and bottom 2.5%, the

IQR box stays below these “trimmed” realized SDs, depicted by orange dots.

The only exception is RT-H3, for which the orange dot is just within the top

of the box.

The formal test results are in Table IA.6 of the Internet Appendix. Pool-

ing across all RT-hypothesis, the test statistic shows that the predicted SD

29The benefit of a relative measure as opposed to an absolute one is that (i) it is easy to

interpret as it allows for statements of RTs over- or underestimating by some percentage

and (ii) it accounts for level differences across hypotheses (e.g., under the null of accurate

beliefs, a uniform distribution of beliefs on the support 0.09 to 0.11 will exhibit the same

dispersion as a uniform distribution of beliefs on 900 to 1100).
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is 71.7% below the realized SD. This underestimation is significant at a 0.5%

level. Similar results holds for all RT-hypotheses individually, except for RT-

H3, for which the underestimation is insignificant. Its value was also lowest

of all, only 9.0% underestimation. RT-H3 is an hypothesis on market shares

that, arguably, is relatively straightforward to test. In summary, the vast

majority of tests show significant underestimation and we therefore firmly

reject the null that beliefs on the dispersion in estimates are accurate.

C. Digging deeper: A multiverse analysis

Non-standard errors in #fincap are significant and sizable. Why? Can

we somehow identify which forks on the analysis paths cause most of the

dispersion? More specifically, can we rank key forks on the path according

to the degree of refraction they cause in the light the sample sheds on the

research question at hand? We turn to a multiverse analysis to address these

questions.

Steegen et al. (2016) coined the term multiverse analysis to emphasize

that data construction involves multiple decisions. The sample that enters

the analysis, therefore, is a function of the set of reasonable choices. The

sample becomes a (p. 702) “many worlds or multiverse of data sets.” A

particular result of an analysis then becomes a distribution of results (because

samples vary). We generalize this approach by adding decision forks for the

part of the analysis that follows the sample construction (e.g., the choice of

econometric model).
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The strength of a multiverse analysis is that it reveals how sensitive an

estimate is to a particular fork on the analysis path. It does so by studying

how much the estimates refract when varying across all reasonable alterna-

tives at the fork. For example, let there be N reasonable analysis paths. Now

suppose there are k ≤ N reasonable alternatives at the jth fork. Then the

N estimates associated with the N paths are sorted into k sets, depending

on the alternative picked at the fork. The degree to which the results differ

across the k sets determines how sensitive results are to the jth fork. We

measure the degree to which k distributions differ by a k-sample Anderson-

Darlin (AD) test. Appendix F discusses the AD test in detail, including why

it fits our application particularly well. AD is a standard option in the Boba

software that we use (Liu et al., 2021).30

(Insert Table V about here.)

To make the multiverse feasible, we identify key forks on the analysis path

and, for each fork, we ask RTs to select the alternative they picked among

a set of pre-defined alternatives. This was done by means of a questionnaire

that all filled out after the experiment. The choice of forks and the alterna-

tives at each fork is informed by the short papers RTs wrote for #fincap. The

discretization of the decision space enables us to project the large space of

realized analysis paths, onto a manageable space of “representative” paths.

Table V provides an overview of all forks for the six RT-hypotheses. It lists

30The Boba software is available at https://github.com/uwdata/boba.
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the alternatives at each fork, along with the fraction of RTs that picked them

(depicted in Figure IA.5 of the Internet Appendix).

For each fork, we also asked RTs to rate the fit between the alternative

they picked from the set, and what they actually did in #fincap. Their aver-

age rating ranges between 4.0 for RT-H6 and 4.4 for RT-H3 on a scale from 1

“Far from what we did” to 5 “Very close to what we did” (see Figure IA.4 in

the Internet Appendix). We, therefore, believe that the multiverse analysis

is representative of the #fincap analysis itself.

A multiverse analysis is powerful, but resource intensive. The table il-

lustrates that the analysis becomes very large very quickly. For RT-H6, for

example, the nine forks generate 2 × 2 × 3 × 4 × 3 × 4 × 2 × 3 × 2 = 6, 912

possible paths. Not all possible paths are equally reasonable, and the #fincap

data help us select the most reasonable ones. The result is a weighted mul-

tiverse, where untraveled paths get zero weight. The other ones get weights

proportional to the number of teams who picked the path. The vast majority

of paths, however, was picked by only one team so the size of the multiverse

is slightly less than 164 (the actual number varies across RT-hypotheses).

The analysis is done for the original sample as well as for 1000 boot-

strapped samples. These additional samples are needed to estimate the

correlations in test statistics across paths. These correlations are used to

adjust significance levels when accounting for MHT. This is used in assessing

whether NSEs are statistically significant, and whether individual estimates

are statistically significant (see panels (b) in Table II and Table IA.7, where
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the latter is in the Internet Appendix, respectively). Each RT-hypothesis,

therefore, requires processing the 720 million trade records almost 164,000

times.31

(Insert Figure 5 about here.)

Results. Figure 5 illustrates that the multiverse is able to generate disper-

sion in estimates that is on par with the dispersion in reported estimates.

The box plots for reported estimates are drawn in gray, overlaid by the mul-

tiverse box plots in color. The large dispersion in multiverse is remarkable,

since they are based on a few decisions only.32

(Insert Figure 6 and Figure 7 about here.)

31To keep the multiverse analysis feasible, we optimized the code by identifying com-

monalities across paths and use these to economize on loops. For example, for a particular

day, realized spread calculations can iterate once over all trades to obtain realized spreads

both for the path that retains all trading and the path that excludes the first and last 30

minutes of trading. Efficient coding further involves identifying opportunities for parallel

processing. The multiverse analysis has been implemented on Snellius, a national super-

computer available to Dutch scientists (128 cores and 200 GB internal memory). With all

this help, the code took a few days instead of a few months to run for each RT-hypothesis.

32The multiverse models only a few forks and its estimates, therefore, are unlikely to

accurately predict reported estimates. The explanatory power of regressions with reported

#fincap estimates as dependent variables and multiverse estimates as explanatory variables

is low. The larger point of the multiverse is to illustrate that, for a subset of forks, variation

across paths can generate large non-standard errors. It further allows researchers to drill

down and identify the forks that generate most of the dispersion in estimates.
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Figure 6 illustrates how sensitive the distribution of estimates is to vari-

ation across alternatives at the various forks. The plots reveal that two

common strong refractors are the (econometric) model choice and the sam-

pling frequency. A well-known force that drives a wedge between high- and

low-frequency relatives is Jensen’s inequality (Blume, 1974):

ΠT
t=1 E (Mt)︸ ︷︷ ︸

Expected
high

frequency
relative

< E
(
ΠT

t=1Mt

)︸ ︷︷ ︸
Expected low

frequency relative

, (7)

if Mt ∈ R+ are identical independently distributed random variables, since

f(x) = xT is a convex function. First-order Taylor expanding the left-hand

side around one, and then subtracting one from both sides, yields:

T (E (Mt) − 1) ≲ E
(
ΠT

t=1Mt

)
− 1. (8)

If there are T high-frequency periods in a low-frequency period, then T

times the average high-frequency return is expected to be lower than the

average low-frequency return. Figure 7 illustrates the effect of this inequal-

ity. The three right-most bars illustrate how, for the relative-change model,

the median annualized return is -23,000% for data sampled at the daily fre-

quency, -200% for the monthly frequency, and only -4.56% for the yearly

frequency. The left-most six bars that correspond to the trend-stationary or

log-difference model do not show such discrepancy across frequencies. The
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reason is that both these models are linear and, therefore, do not suffer from

Jensen’s inequality. The trend-stationary model features a linear trend and

in a log-difference model, the log of a product of relatives becomes a sum of

log relatives.

Figure 6 further highlights some idiosyncratic sensitivities. For RT-H1,

for example, the second-most sensitive fork is the frequencies that are picked

to assess the deviation from a random walk. Further analysis reveals that

when comparing high frequencies, such as one-second returns to one-minute

returns, then almost all analyses exhibit a decline in market efficiency. But,

when comparing low frequencies, such as daily returns to monthly returns,

then about half of the analyses show an increase in market efficiency whereas

the other half show a decline.

Another example is the retain-negative-sign fork, which is the most sen-

sitive one for RT-H6. The decision each team had to make is whether a

negative number that becomes more negative yields a positive percentage

change, or a negative percentage change. The first one emphasizes that a

(negative) number becomes magnified, whereas the second one emphasizes a

negative trend (i.e., “retain a negative sign”). 21% of the teams picked the

first option, 79% picked the second one. It is not surprising that mapping an

estimate from the positive to the negative domain causes strong refraction

in estimates. This is an example of how a decision that each team might

have thought was a trivial one (in sense that there is only one option) can

generate non-standard error.
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D. Alternative explanations

After having presented all our results, it is useful to discuss alternative

explanations. In Section A we argued that the group of #fincap participants

is representative of the academic community in empirical finance/liquidity.

Yet, one might still wonder to what extent the sizable non-standard errors

are due to the presence of inexperienced researchers testing unsuitable hy-

potheses with little effort? We believe this is unlikely to be the case for the

following reasons.

Experience. Aware of this potential pitfall, we selectively approached re-

searchers (for RTs and PEs), whom we knew were sufficiently experienced in

the field. When signing up, they ticked a box that they understood that par-

ticipating in #fincap requires research expertise and experience in empirical

finance/liquidity and the analysis of large datasets. Ticking the box further

meant that they acknowledge that one of the team members held a PhD in

finance or economics. After ticking the box, researchers had to motivate in

an open text box why they believe they meet these requirements. We parsed

the content of this box to make sure that the team qualifies before accepting

them into #fincap (see Figure IA.7 in the Internet Appendix for the sign-up

sheet).

Hypotheses. We proceeded with care when designing RT-hypotheses.

Early versions were shared with senior scholars, and their feedback helped
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us fine-tune RT-hypotheses. We, therefore, feel comfortable that the RT-

hypotheses are suitable and well motivated hypotheses to test with the RT-

sample (see Figure IA.11 in the Internet Appendix for the RT instruction

sheet, which shows how RT-hypotheses were presented to RTs).

Related to the suitability question, one might wonder whether vagueness

of an RT-hypothesis might be a viable alternative explanation for sizable

NSEs. To address this concern, we included a very precise RT-hypothesis:

RT-H3 on client volume share. The results for RT-H3 show that NSEs can

be sizable, even for relatively precise hypotheses. It is true, however, that

NSEs tend to be lower for the more precise RT-hypotheses.

Effort. We incentivized research teams to exert effort by providing them

with the following information (before they sign up): the deadlines of the

various stages so that they could plan for it; their non-anonymized paper

would be evaluated by senior peer reviewers; the top-five (anonymized) pa-

pers would be announced to all others;33 and, only those who complete all

stages become co-authors. In addition to these incentives, we believe that

most scientists are propelled by an intrinsic motivation to do good research.

Looking back, we have various reasons to believe that researchers did

33Individuals obtain “ego utility” from positive views about their ability to do well and

they exert more effort (or take more risks) when they are informed about their rank in

non-incentivized competitions (Köszegi, 2006; Tran and Zeckhauser, 2012; Kirchler et al.,

2018).
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indeed exert serious effort. First, only four out of 168 research teams failed

to complete all stages. 123 out of 168 teams (73.2%) handed in their stage-1

report at least a day early, and none of the teams seriously breached any

deadline. The average reproducibility score was 64.5 on a scale from 0 (low)

to 100, which is high in comparison to what has been reported in other

reproducibility studies (Colliard et al., 2021). Finally, the average paper

quality was 6.2 on a scale from zero (low) to 10. As for peer evaluators, we

also believe they exerted serious effort, because all who signed up as a PE

completed their reviews on time.

III. Conclusion

Researchers need to take many decisions when testing hypotheses on a

particular sample: pick an appropriate measure, treat outliers, select a sta-

tistical model, etc. If researchers are not perfectly aligned on these decisions,

their estimates likely differ. This potential dispersion in estimates therefore

adds uncertainty to an estimate reported by a single team. Other teams

might have reported other estimates based on the same data.

We measure dispersion in estimates across researchers robustly with an

inter-quartile range, and refer to it as non-standard error. We study NSEs

in an experiment where 164 teams test the same six RT-hypotheses on the

same sample. We find NSEs to be substantial, even for a relatively straight-

forward market-share hypothesis. For this RT-hypothesis, we find it to be
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1.2% around a median of -3.3%. A more opaque RT-hypothesis on market-

efficiency yields larger variation with an NSE of 6.7% around a median of

1.1%. We further find that NSEs are smaller for better reproducibility and

higher quality papers as rated by peers.

A multiverse analysis based on key forks sheds light on how important

each fork is in generating dispersion in estimates. It turns out that many

forks add substantial dispersion in estimates. Two particularly powerful ones

are sampling frequency and the statistical model. Using a non-linear model

at high frequency to estimate a low frequency trend can add substantial noise

(Jensen’s inequality).

NSEs being substantial is worrisome. An encouraging result, however, is

that peer feedback reduces NSEs by half. We further like to note that #fincap

NSEs are likely to be an upper bound for real-world dispersion in (published)

estimates. First, published papers likely have gone through more stages of

feedback. Second, papers submitted to a journal enter further review stages

only if referees judge them to be of high enough quality. Published results

might further be affected by p-hacking, which is a selective process and thus

likely further reduces dispersion, and potentially introduces bias. Overall, we

believe the full process towards published empirical research deserves further

scrutiny. Yet, the strong peer-feedback that we document encourages the

profession to think of more ways to interact in order to reduce NSEs.

Finally, our multiverse analysis provides guidance on what threshold to

use in individual tests when accounting for multiple testing. Bonferroni as-
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sumes independence among test statistics and adjusts significance levels by

the number of tests: 164 in the case of #fincap. Bootstrapped multiverse

results show that there is substantial correlation among test statistics and

finds adjustment factors that range between 13 and 91 (depending on RT-

hypothesis). The threshold for two-sided testing at 5% therefore should be

at least Φ(1 − 0.025/13) = 2.9. This is in line with the 3.0 lower bound

recommended by Harvey et al. (2016) for factor tests in asset pricing.
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University of Tübingen and Centre for Financial Research Cologne. Vincent
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Appendix B. Reconciliation with

pre-analysis-plan results

The original version of Non-Standard Errors contains the results of the

analysis outlined in the pre-analysis plan. This original version is available

as Tinbergen Institute Discussion Paper TI 2021-102/IV. Most tables and

figures have not changed.34

The only two tables that have changed are Table 3 and 4. The reason

is that these are the only two regression tables. In the original version,

we estimate a heteroskedasticity model with ordinary least-squares (OLS).

The dependent variable is log squared error. However, OLS estimates are

34More specifically, Table 1, 2, and 5, and Figure 1, 2, 3, 4, and 5 have not changed. In

the current version, they appear as Table I, IA.4, and IA.6, and Figure IA.2, 1a, 1b, IA.3,

and 4, respectively, where the IA prefix indicates that they are in the Internet Appendix.
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notoriously sensitive to extreme outliers, which turn out to be a feature of the

#finap sample (see footnote 21 or Figure 1). Quantile regressions are robust

to the presence of extreme outliers and are, therefore, more appropriate for

the analysis of our sample. Moreover, they model the entire distribution

instead of just a conditional mean (as emphasized in the introduction). In

the remainder, we compare results across the two tables in the original version

and the current version to reconcile previous findings with current ones.35

Table 3 in the original version has become Table III in the current ver-

sion. These tables both relate dispersion in estimates to quality variables

in order to test the first hypothesis. In the original version, most results

are insignificant. The only significance is for reproducibility when using a

2.5%-97.5% winsorized sample. The coefficient of -0.24 implies that a 10%

increase in reproducibility coincides with a reduction in the standard devi-

ation of estimates by 1/2 × 0.24 × 10% = 1.2% (the coefficient 1/2 con-

verts variance to SD, see footnote 21 in original paper). In the current

version, the first quartile (Q1) co-varies significantly positively with repro-

ducibility and paper quality, whereas the third quartile co-varies significantly

negatively with them. They, therefore, co-vary significantly negatively with

IQR. A 10% increase in reproducibility coincides with a reduction in IQR by

35We have changed the statistical methodology guided by the feedback of the Journal of

Finance referees. One could say that this “peer feedback” likely reduced the non-standard

error of our results.
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10% × (0.109 + 0.142) × 0.44 = 1.1%.36 Note that this effect is in the same

ballpark as the 1.2% in the original paper.

Table 4 in the original version has become Table IV in the current version.

In the original version, the unwinsorized sample shows a weakly significant

decline in dispersion of estimates across all stages. The effect is also rela-

tively small in magnitude since the SD decline is only 9%. With extreme

outliers removed in the 2.5%-97.5% winsorized sample, the decline becomes

both significant and larger in magnitude. The SD now declines by 53.5%

across all stages. The results in the current version show that Q1 of the

estimate distribution increases significantly across all stages and Q3 declines

significantly. The result is a decline of 47.2% (depicted in Figure 3). Again,

the numbers in both versions are in the same ballpark.

Appendix C. RT-sample, RT-hypotheses,

and results

This appendix presents the RT-hypotheses in detail and the test results

of #fincap RTs as a group. The instruction sheet itself is available as Fig-

ure IA.11 in the Internet Appendix. We start by providing the context that

motivates the RT-hypotheses.

36The square root of the average variance of reproducibility (de-meaned by RT-

hypothesis) is 0.44.
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A. Context

Electronic order matching systems (automated exchanges) and electronic

order generation systems (algorithms) have changed financial markets over

time. Investors used to trade through broker-dealers by paying dealer ask

prices when buying, and accepting dealer bid prices when selling. The wedge

between these bid and ask prices, the bid-ask spread, was a useful measure

of trading cost, and often still is.

Now, investors more commonly trade in electronic limit-order markets

(as is the case for EuroStoxx 50 futures). They still trade at bid and ask

prices. They do so by submitting so-called market orders and marketable

limit orders. However, investors can now also quote bid and ask prices them-

selves by submitting (non-marketable) standing limit orders. And, investors

increasingly use agency algorithms to automate their trades. Concurrently,

exchanges have been continuously upgrading their systems to better serve

their clients. Has market quality improved, in particular when taking the

viewpoint of non-exchange members: (end-user) clients?

B. RT-hypotheses and test results

The RT-hypotheses and results are discussed based on estimates in the

final stage of the project (available as Table IA.3 in the Internet Appendix).

We therefore base our discussion on the results that RTs settle on after

receiving all feedback. What do RTs find after having shown some conver-
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gence across the stages? And, consistent with the main text, we base our

discussion on robust location and dispersion statistics: the median and IQR,

respectively. Finally, we note that such discussion is meaningful, because

Table IA.7 in the Internet Appendix shows that, for all RT-hypotheses, the

null of a zero trend is rejected at a 0.5% significance level. This significance

level is used for all tests in the remainder of the subsection.

(The first two hypotheses focus on all trades.)

RT-H1. Assuming that informationally-efficient prices follow a random

walk, did market efficiency change over time?

Null hypothesis : Market efficiency has not changed over time.

Findings. The median estimate is -1.1% with an IQR of 2.6%. The third

quartile is -0.2% and the vast majority therefore finds a negative trend in

efficiency. The Bonferroni tests show that 31 RTs find a significant negative

trend against only four who find a significant positive trend. The decline

seems modest as the across-RT median37 is -1.1% per year. The small changes

add up, though, to a total change in the 2002-2018 sample of approximately

(0.98917 − 1) = −17.1%. This might reflect a trend of declining depth in the

market, possibly due to new regulation in the aftermath of the global financial

crisis of 2007-2008. Post-crisis regulation constrains the supply of liquidity

37The across-RT median includes all RTs, thus also those who report insignificant

results.
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by sell-side banks (e.g., Bao et al., 2018; Jovanovic and Menkveld, 2021). If

these banks incur higher inventory costs as a result, then, in equilibrium,

one observes larger transitory price pressures thus reducing market efficiency

(e.g., Pastor and Stambaugh, 2003; Hendershott and Menkveld, 2014). In

the interest of brevity, we discuss all remaining hypotheses in the same way.

RT-H2. Did the (realized) bid-ask spread paid on market orders change

over time? The realized spread could be thought of as the gross-profit com-

ponent of the spread as earned by the limit-order submitter.

Null hypothesis : The realized spread on market orders has not changed over

time.

Findings. The median estimate is -2.3% with an IQR of 4.3%. The third

quartile is -0.1% and the vast majority therefore finds a negative trend in

realized spread. The tests show that 38 RTs find a significant negative trend,

whereas only three RTs find a significant positive trend. The median decline

of 2.3% per year implies a 32.7% decline over the full sample. This trend

might be due to the arrival of high-frequency market makers who operate at

low costs. They do not have the deep pockets that sell-side banks have, but

they will offer liquidity for regular small trades by posting near the inside

of the market. Their arrival is typically associated with a tighter bid-ask

spread, but not necessarily with better liquidity supply for large orders (e.g.,

Jones, 2013; Angel et al., 2015; Menkveld, 2016).
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(The remaining hypotheses focus on agency trades only.)

RT-H3. Did the share of client volume in total volume change over time?

Null hypothesis : Client share volume as a fraction of total volume has not

changed over time.

Findings. The median estimate is -2.9% with an IQR of 1.7%. The ninth

decile is -1.1%, which shows that almost all RTs report a negative trend. The

tests show that 123 RTs find a significant negative trend against only two

RTs documenting a significant positive trend. An median decline of 2.9%

per year implies a total decline of 39.4% for the full sample. Intermediation,

therefore, seems to have increased which should surprise those who believe

that the arrival of agency algorithms enables investors to execute optimally

themselves, thus reducing the need for intermediation.38

RT-H4. On their market orders and marketable limit orders, did the real-

ized bid-ask spread that clients paid, change over time?

Null hypothesis : Client realized spreads have not changed over time.

Findings. The median estimate is -0.2% with an IQR of 2.4%. The third

quartile, however, is positive suggesting that a modest majority finds a neg-

38We verified with Deutsche Börse that this change is not purely mechanical in the

sense that, in the sample period, many institutions became an exchange member and,

with it, the status of their volume changes from agency to principal.
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ative trend. The tests show a bit stronger evidence for a negative trend,

because 15 RTs find it to be significantly negative against only eight who

find a significant positive trend. The median decline of 0.2% per year trans-

lates to a 3.3% decline for the full sample. The decline in client realized

spread is therefore only about a tenth of the total realized spread decline,

which suggests that market orders of intermediaries benefited most from the

general realized-spread decline.

RT-H5. Realized spread is a standard cost measure for market orders, but

to what extent do investors continue to use market and marketable limit

orders (as opposed to non-marketable limit orders)?

Null hypothesis : The fraction of client trades executed via market orders and

marketable limit orders has not changed over time.

Findings. The median estimate is 0.0% with an IQR of 0.6%. 13 RTs find

a significantly negative trend, whereas nine find a significantly positive trend.

The results seem rather balanced between a negative and a positive trend.

The results therefore seem to suggest that clients neither increased their share

of market orders, nor did they decrease it. One might have expected the latter

because an increased use of agency algorithms should allow them to execute

more through non-marketable limit orders as opposed to market orders or

marketable limit orders. The benefit of execution via a non-marketable limit

order is that one earns half the bid-ask spread as opposed to paying it.
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RT-H6. A measure that does not rely on the classic limit- or market-order

distinction is gross trading revenue (GTR). Investor GTR for a particular

trading day can be computed by assuming a zero position at the start of

the day and evaluating an end-of-day position at an appropriate reference

price. Relative investor GTR can then be defined as this GTR divided by the

investor’s total (euro) volume for that trading day. This relative GTR is, in a

sense, a realized spread. It reveals what various groups of market participants

pay in aggregate for (or earn on) their trading. It transcends market structure

as it can be meaningfully computed for any type of trading in any type of

market (be it trading through limit-orders only, through market-orders only,

through a mix of both, or in a completely different market structure).

Null hypothesis : Relative gross trading revenue (GTR) for clients has not

changed over time.

Findings. The median estimate is 0.0% with an IQR of 1.1%. Three RTs

find a significantly positive trend and another three find a significantly neg-

ative one. The significance, therefore, is rather weak and balanced. We

cautiously conclude that GTR has stayed mostly at the same level through-

out the sample.
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Appendix D. Explanatory variables for

error variance

A. Team quality

The quality measures for research teams are based on the survey that

participants filled out upon registration (see Figure IA.7 in the Internet Ap-

pendix). To keep the regression model both concise and meaningful, we

reduce the ordinal variable “current position” and the logarithmic interval-

based variable “size of largest dataset worked with” to binary variables. The

academic position variable is one if a researcher is either associate or full pro-

fessor. The dataset variable is one if the researcher has worked with datasets

that are contained at least 100 million observations, because the #fincap sam-

ple contains 720 million observations. We aggregate these binary variables

to research team level by taking the maximum across the team members.

As for self-assessed experience, we asked for both empirical finance

and market liquidity, which we deem equally relevant for testing the RT-

hypotheses. Thus, and because of the anticipated high correlation, we use

the average of these two measures to obtain the individual score. And, in

the interest of consistency, we again aggregate to the team level by taking

the maximum across the team members.
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B. Workflow quality

We proxy for workflow quality with an objectively obtained score of code

quality provided by Cascad (see footnote 19). The scale ranges from 0 (seri-

ous discrepancies) to 100 (perfect reproducibility).

C. Paper quality

Papers are rated by an external group of peer evaluators. They rate the

analyses associated with each RT-hypothesis individually, but also the paper

in its entirety (see Figure IA.16 in the Internet Appendix). The ratings range

from from 0 (very weak) to 10 (excellent). Each paper is rated by two PEs

and the paper rating is the average of the two (after removing a PE fixed

effect as discussed in Section A).

Appendix E. Bootstrap procedure for belief

statistic D

The distribution of D under the null of equal means is obtained by boot-

strapping as follows. For each RT-hypothesis, we subtract the difference

between the average belief on standard deviation and the observed standard

79



deviation, from the beliefs:

AdjBeliefOnSD ij =

BeliefOnSD ij −

[(
1

n

∑
i

BeliefOnSD ij

)
− RealizationOfSD j

]
(E1)

In this new sample with adjusted beliefs, the average belief about dispersion

equals the observed dispersion, by construction. This sample is input to the

bootstrapping procedure which iterates through the following steps 10,000

times:

1. As we have n RTs, in each iteration we draw n times from the new

sample, with replacement. Each draw picks a particular RT and stores

its beliefs and its results for all of the six RT-hypotheses. The result

of these n draws therefore is a simulated sample that has the same size

as the original sample.

2. The simulated sample is used to compute the test statistic D in (6).

This statistic for iteration k, a scalar, is stored as Dk.

The bootstrap procedure yields 10,000 observations of the test statistic under

the null. For a significance level of 0.005, the statistic observed in the #fincap

sample is statistically significant if it lands below the 25th lowest simulated
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statistic or above the 25th highest simulated statistic. Its p-value is:39

2 min(EmpiricalQuantileFincapStatistic,

1 − EmpiricalQuantileFincapStatistic). (E2)

Appendix F. Anderson-Darlin test

The sensitivity of dispersion to a particular fork is measured by a k-sample

Anderson-Darling test (Scholz and Stephens, 1987). This test was designed

to verify whether k separate samples are drawn from the same distribution.

The AD test statistic Tk−1 measures the distance between the empirical dis-

tribution functions of k separate samples. It does not rely on parametric

assumptions. It is, therefore, particularly attractive for our application as

distributions are unknown ex-ante. In case of independence, the percentiles

of the asymptotic distributions are known (Scholz and Stephens, 1987, Table

1 with m = k − 1). Tk−1 converges to a standard normal for k tending to

infinity.

The AD approach builds on tests previously proposed by Kolmogorov,

39Note that the procedure accounts for within-RT correlations (i.e., including possible

non-zero correlations among a particular RT’s results and the beliefs that it reports).

The reason the procedure accounts for these correlations is that the bootstrap uses block-

sampling where, when an RT is drawn, all of its beliefs and all of its estimates are drawn.

One therefore only assumes independence across RTs which holds by construction given

the design of #fincap.

81



Smirnov, Cramér, and von Mises. It adds a weight function to allow the

researcher to attach differential importance to various portions of the dis-

tribution function (Anderson and Darling, 1964a). It nests the Cramér-von

Mises ω2 statistic which is based on equal weighting. The AD default weight-

ing is one that equalizes the sampling error across the (empirical) support

of the distribution function (Anderson and Darling, 1964b, p. 767). It ef-

fectively attaches more weight to the tails of the distribution. Scholz and

Stephens (1987, p. 919) argue that among alternatives, the AD test statistic

has attractive small sample (i.e., small k) properties.
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Huth, Zsófia S. Ignácz, Laura Jacobs, Jannes Jacobsen, Bastian Jaeger,

Sebastian Jungkunz, Nils Jungmann, Mathias Kauff, Manuel Kleinert,

Julia Klinger, Jan-Philipp Kolb, Marta Ko lczyńska, John Kuk, Katha-
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Table I. Summary statistics

This table presents summary statistics. Standard deviations are in parenthe-
ses.

Panel (a): Quality of the #fincap community
Research
teams

Peer
evaluators

Fraction with top finance/econ publications (see footnote 6) 0.31 0.85
Fraction including at least associate/full professor 0.52 0.88
Experience empirical-finance research (low-high, 1-10) 8.1 (1.7) 8.4 (1.8)
Experience market-liquidity research (low-high, 1-10) 6.9 (2.4) 7.8 (2.3)

Relevant experience (average of the above two items) 7.5 (1.3) 8.1 (1.7)
Fraction with “big data” experience (>#fincap sample) 0.65 0.88
Fraction teams consisting of two members (maximum team size) 0.79
Number of observations 164 34

Panel (b): Quality of the analysis of research teams
Research
teams

Reproducibility score according to Cascad (low-high, 0-100) 64.5 (43.7)
Paper quality as judged by peer evaluators (low-high, 0-10) 6.2 (2.0)

(continued on next page)

99



(continued from previous page)

Panel (c): Dispersion across teams of stage-1 results: Estimates, SEs, and
t-values

RT-H1
Efficiency

RT-H2
RSpread

RT-H3
Client
Volume

RT-H4
Client

RSpread

RT-H5
Client

MOrders

RT-H6
Client
GTR

Estimate (yearly change, %)
Mean 446.3 -1,093.4 -3.5 -38,276.1 -3.5 -87.1
SD 5,817.5 14,537.2 9.4 490,024.2 37.6 728.5
Min -171.1 -186,074.5 -117.5 -6,275,383.0 -452.9 -8,254.5
Q(0.10) -23.7 -6.9 -3.8 -6.7 -1.6 -192.1
Q(0.25) -6.2 -3.6 -3.5 -2.1 -0.6 -18.2
Median -1.1 -0.0 -3.3 0.1 -0.0 0.0
Q(0.75) 0.5 3.9 -2.4 3.8 0.2 3.2
Q(0.90) 3.7 21.5 -0.1 20.4 1.0 56.5
IQR (i.e., NSE) 6.7 7.5 1.2 5.9 0.8 21.4
IDR 27.3 28.4 3.7 27.1 2.5 248.5
Max 74,491.1 4,124.0 8.7 870.2 69.5 1,119.0

Standard error
Mean 468.7 1,195.3 3.7 38,302.0 6.2 148.2
SD 5,810.6 14,711.9 29.5 489,929.5 40.1 526.0
Min 0.0 0.0 0.0 0.0 0.0 0.0
Q(0.10) 0.1 0.2 0.1 0.2 0.1 0.0
Q(0.25) 0.5 1.1 0.3 1.2 0.2 0.7
Median 2.5 5.0 1.4 4.4 1.0 9.7
Q(0.75) 9.3 13.9 2.0 14.3 2.4 77.1
Q(0.90) 44.7 39.6 2.2 31.2 3.1 235.4
IQR 8.8 12.8 1.7 13.1 2.2 76.4
IDR 44.6 39.4 2.1 31.0 3.1 235.4
Max 74,425.5 188,404.1 378.8 6,274,203.0 463.7 4,836.2

t-value
Mean -3.6 35.3 -47.1 24.3 -5.7 -2.0
SD 28.4 541.2 269.9 406.0 60.1 21.2
Min -322.3 -764.6 -2,770.6 -852.6 -631.6 -191.7
Q(0.10) -4.7 -5.7 -37.4 -3.5 -2.3 -1.7
Q(0.25) -1.9 -1.5 -11.5 -1.0 -0.6 -1.0
Median -0.7 -0.1 -1.8 0.1 0.0 0.0
Q(0.75) 0.3 0.8 -1.6 1.0 0.8 0.7
Q(0.90) 1.7 1.5 -0.3 1.6 1.7 1.2
IQR 2.2 2.3 9.9 1.9 1.3 1.7
IDR 6.4 7.2 37.1 5.2 3.9 2.9
Max 51.6 6,880.5 29.5 5,119.5 89.6 100.6
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Table II. Non-standard error test

This table tests for the presence of non-standard errors in stage 1. It does
so by testing whether estimates provided by researchers deviate from the
median across researchers. Critical values of the individual tests are raised
to achieve the desired significance level at the family of tests. The number
of significantly negative tests and significantly positive tests is reported in
brackets. The reported family p-value is the probability that out of all test
statistics, at least one is larger than the reported value, under the null of a
multivariate normal with means equal to the realized #fincap medians, and
a covariance matrix with squared SEs (reported by the RTs) on the diagonal
and off-diagonals that are either zero (Bonferroni) or based on the multiverse
analysis (Section C).

Panel (a): Multiple tests (Bonferroni)
Reject
no-NSE at
0.5%?

p-value of
family test

Mean (SD)
correlation
test
statistics

Effective
number of
tests

RT-H1 Yes (8, 25) < 0.0001 0.00 (0.00) 164
RT-H2 Yes (24, 10) < 0.0001 0.00 (0.00) 164
RT-H3 Yes (13, 25) < 0.0001 0.00 (0.00) 164
RT-H4 Yes (22, 4) < 0.0001 0.00 (0.00) 164
RT-H5 Yes (13, 10) < 0.0001 0.00 (0.00) 164
RT-H6 Yes (8, 3) < 0.0001 0.00 (0.00) 164

Panel (b): Multiple tests (based on multiverse analysis)
Reject
no-NSE at
0.5%?

p-value of
family test

Mean (SD)
correlation
test
statistics

Effective
number of
tests

RT-H1 Yes (8, 26) < 0.0001 0.03 (0.21) 77
RT-H2 Yes (24, 10) < 0.0001 0.05 (0.22) 81
RT-H3 Yes (13, 26) < 0.0001 0.22 (0.34) 21
RT-H4 Yes (22, 4) < 0.0001 0.08 (0.24) 67
RT-H5 Yes (13, 10) < 0.0001 0.20 (0.34) 31
RT-H6 Yes (8, 3) < 0.0001 0.02 (0.21) 86
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Table III. Stage-1 quantile regressions

This table presents the results of quantile regressions that characterize how
the distribution of stage-1 estimates co-varies with various quality metrics.
These metrics are team quality, reproducibility score, and (de-meaned) peer
rating. The three quality variables have been standardized and, subsequently,
multiplied by the IQR per RT-hypothesis. Their coefficient therefore mea-
sures the result of a one-standard deviation change, expressed in terms of
interquartile-range units. */** correspond to significance at the 5/0.5% level,
respectively.

Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90)

Team quality (standardized/scaled) 0.597∗∗
(0.030)

0.004
(0.014)

0.002
(0.007)

0.032∗∗
(0.012)

-0.325∗∗
(0.030)

Reproducibility score (standardized/scaled) 0.473∗∗
(0.033)

0.109∗∗
(0.014)

-0.001
(0.007)

-0.142∗∗
(0.011)

-0.555∗∗
(0.028)

Average rating (standardized/scaled) 0.766∗∗
(0.034)

0.230∗∗
(0.014)

-0.001
(0.007)

-0.097∗∗
(0.011)

-0.626∗∗
(0.028)

Dummy RT-H1 Efficiency -29.592∗∗
(0.813)

-6.099∗∗
(0.340)

-1.132∗∗
(0.166)

0.939∗∗
(0.269)

9.057∗∗
(0.708)

Dummy RT-H2 RSpread -15.933∗∗
(0.849)

-3.930∗∗
(0.342)

-0.017
(0.166)

3.674∗∗
(0.268)

22.451∗∗
(0.705)

Dummy RT-H3 Client Volume -5.629∗∗
(0.836)

-3.789∗∗
(0.339)

-3.319∗∗
(0.166)

-2.386∗∗
(0.268)

0.221
(0.721)

Dummy RT-H4 Client RSpread -12.089∗∗
(0.837)

-2.437∗∗
(0.340)

0.162
(0.166)

4.161∗∗
(0.266)

19.619∗∗
(0.704)

Dummy RT-H5 Client MOrders -2.479∗∗
(0.837)

-0.744∗
(0.339)

-0.001
(0.166)

0.297
(0.268)

1.625∗
(0.721)

Dummy RT-H6 GTR -194.457∗∗
(0.806)

-21.385∗∗
(0.337)

0.022
(0.167)

5.137∗∗
(0.268)

65.203∗∗
(0.679)

#Observations 984 984 984 984 984
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Table IV. All-stages quantile regressions

This table presents the results of quantile regressions that characterize
how the distribution of estimates varies across all stages of the #fincap
project. The stage dummies have been multiplied by the (stage-1) IQR
per RT-hypothesis. Their coefficient therefore measures the effect in terms
of interquartile-range units. Standard errors account for correlation in resid-
uals by adding RT-hypothesis fixed effects and by clustering per RT across
all stages. */** correspond to significance at the 5/0.5% level, respectively.

Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90)

Dummy Stage 2 - Dummy Stage 1 2.44∗
(1.18)

0.07
(0.14)

-0.00
(0.01)

-0.06
(0.06)

-0.73
(0.64)

Dummy Stage 3 - Dummy Stage 2 0.94∗
(0.41)

0.15
(0.09)

0.00
(0.01)

-0.09
(0.05)

-0.73
(0.40)

Dummy Stage 4 - Dummy Stage 3 0.21∗
(0.09)

0.06∗
(0.03)

0.00
(0.01)

-0.04
(0.03)

-0.25∗
(0.11)

Dummy Stage 4 - Dummy Stage 1 3.59∗∗
(1.23)

0.28∗
(0.14)

-0.00
(0.01)

-0.19∗∗
(0.05)

-1.71∗∗
(0.50)

RT-hypotheses dummies Yes Yes Yes Yes Yes
#Observations 3,936 3,936 3,936 3,936 3,936
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Table V. Analysis paths

This table summarizes all analysis paths by spelling out all forks and all
alternatives at these forks. It further presents the empirical distribution of
decisions at all forks.

RT-
hypo-
thesis

Fork Fork description Alternatives Fre-
quen-
cy

All 1 Remove open/close No 79%
Yes, 30 minutes 21%

All 2 Days excluded None 81%
Settlement weeks 19%

All 3 Outlier treatment None 65%
Winsorize measure at 2.5 and 97.5 percentilea 20%
Trim measure at 2.5 and 97.5 percentilea 14%

All 4 Frequency analysis Daily 37%
Weekly 1%
Monthly 21%
Annual 41%

All 5 Model Trend stationary (regresion with linear trend) 35%
Log difference (trivial regression, i.e., intercept only) 5%
Relative difference (trivial regression) 60%

1 6 Measure Variance ratio (low-frequency in numerator) 63%
Autocorrelation (R2 of AR model for returns) 37%

1 7 Measure frequencies Second to minute 18%
One to five minutes 26%
Five to thirty minutes 34%
Day to week 13%
Day to month 10%

2,4,5 6 Tick test or aggressor flag Aggressor flag (available only for part of the sample) 84%
Tick test 16%

2,4 7 Post-trade value Price 5 minutes after trade 81%
Price 10 minutes after trade 6%
Price 30 minutes after trade 13%

2,4 8 Aggregation Equal-weighted average 47%
Trade-size-weighted average 53%

3 6 Units. . . Volume expressed in #contracts 70%
Volume expressed in euro 30%

6 6 Reference price Last trade price in the day 62%
Last trade price one day later 1%
Volume-weighted-average-price (VWAP) full-day 24%
VWAP based on last five trades in the day 0%

6 7 Mean or median Mean 96%
Median 4%

6 8 Handle non-negatives Translate and transform (ε = 0.001) 14%
Translate and transform (ε = 1) 7%
Set to missing 79%

6 9 Retain negative-trend sign Yes 79%
No 21%

a: Winsorization is applied at the frequency of analysis (fork 4).

104



Figure 1. Dispersion of stage-1 estimates across research teams

This plot illustrates the dispersion of stage-1 estimates across research teams.
These estimates all focus on a trend in the sample, expressed in terms of a
yearly percentage change. The six box plots correspond to the six trends RTs
were asked to estimate. The boxes depict the first and third quartile. The
horizontal line in the box corresponds to the median. The whiskers depict
the 2.5% and 97.5% quantile. All estimates are also plotted individually as
gray dots.
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Figure 2. Dispersion in estimates related to quality measures

This figure plots how the dispersion in stage-1 estimates co-varies with vari-
ous quality measures. The top graph uses the interquartile range (IQR) as a
dispersion measure and the bottom graph uses the interdecile range (IDR).
The quality variables are team quality, reproducibility score, and the rating
by peer evaluators. The IQR and IDR estimates are taken from Table III,
where relative changes are averaged across RT-hypotheses. The baseline level
is the average dispersion across RT-hypotheses.
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Figure 3. Dispersion in estimates related to feedback stages

This figure plots how the dispersion in estimates changes across feedback
stages. Stage 1 is the baseline stage, which is the stage before any feedback.
The top graph uses the interquartile range (IQR) as a dispersion measure,
whereas bottom graph uses the interdecile range (IDR). The IQR and IDR
values are based on the estimates in Table IV, where relative changes are av-
eraged across all RT-hypotheses. The baseline level is the average dispersion
in stage-1 estimates across RT-hypotheses.
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Figure 4. Research team beliefs on dispersion stage-1 estimates

This plot illustrates the dispersion in beliefs across research teams, for all six
RT-hypotheses. All teams were asked to predict the SD in estimates across
all RTs. The boxes depict the first and third quartile. The horizontal line in
the box corresponds to the median. The whiskers depict the 2.5% and 97.5%
quantile. All estimates are also plotted individually as gray dots. The red
dots show the realized SD in estimates across RTs. The orange dots do the
same, but are based on a 2.5%-97.5% trimmed sample.
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Figure 5. Dispersion in stage-1 estimates of multiverse analysis

This plot illustrates the dispersion in stage-1 estimates obtained from the
multiverse analysis. The dispersion in reported estimates appears in gray
and corresponds to panel (a) in Figure 1. The boxes depict the first and
third quartile. The horizontal line in the box corresponds to the median.
The whiskers depict the 2.5% and 97.5% quantile.
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Figure 6. Fork sensitivity of estimates in multiverse analysis

This figure plots how sensitive the distribution in estimates is to the al-
ternatives available at a fork in the multiverse analysis. The sensitivity is
measured by the standardized Anderson-Darling test statistic. Higher val-
ues of the statistic imply that distributions become more dissimilar across
alternatives at the fork.
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Figure 7. Sensitivity of estimates in multiverse analysis of RT-H1

This plot illustrates how the distribution of RT-H1 estimates depends on
two influential forks in the multiverse analysis: (i) the model and (ii) the
frequency of the analysis. Distributions are obtained by bootstrapping 1000
times from the original sample for each analysis path. To avoid clutter, the
weekly frequency is dropped since it is used by only one team (out of 164).
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