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Abstract

The magneto-elastic coupling between spin and acoustic excitations offers an ex-

cellent opportunity to combine, within the same signal processing devices, the mag-

netic tuneability and re-programmability inherent to magnonics with the energy effi-

ciency of phononics. Relevant recent studies have focused on characterisation of the

interaction strength in magnetoacoustic devices and on the excitation and detection

of an acoustically induced magnetic signal. The work presented in this thesis focuses

on the magnetic control of propagating acoustic waves, with the aim to reveal and to

characterise the signatures of the magneto-elastic coupling in reflection and transmis-

sion of acoustic waves in magnetoacoustic metamaterials, and to explore their tuning

using magnetic stimuli.

Following a brief introduction (Chapter 1) and theoretical background (Chapter

2), Chapter 3 is devoted to a theoretical modelling of the acoustic reflection, transmis-

sion, and absorption coefficients of an isolated thin magnetic slab. The incident waves

are found to scatter resonantly from the slab, hence it is referred to as a ‘resonator’.

The resonance is caused by the magneto-elastic coupling between the waves and the

slab’s precessing magnetization. Its frequency corresponds to the anticrossing in the

dispersion relation of propagating acoustic modes due to their coupling to the discrete

ferromagnetic resonance (FMR) mode of the slab (at the ‘Kittel frequency’). The fre-

quency dependence of the reflection coefficient is found to have an asymmetric Fano

lineshape, while the transmission and absorption have Lorentzian lineshapes. The
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scattering strength increases with that of the magneto-elastic coupling and scales in-

versely with the magnetic (‘Gilbert’) damping. To compare materials in terms of their

resonant magneto-elastic scattering, a figure of merit is defined, using which nickel

is identified as the most promising material, producing the strongest magnetoacous-

tic response. However, realistic materials, which typically have rather high damping,

are found to exhibit only weak acoustic scattering, hardly distinguishable from that

when magneto-elastic coupling is absent altogether. Nonetheless, it is also found that

the suppression by magnetic damping can be counteracted by making the incidence

angle of the propagating acoustic wave oblique. This enables coupling to the larger

component of the resonantly precessing magnetization, leading to a stronger scatter-

ing. At last, the response is found to be non-reciprocal.

Chapter 4 is devoted to the generalisation of the theory from Chapter 3 to finite

and infinite periodic one-dimensional (1D) arrays of magnetic slabs, i.e. to magne-

toacoustic metamaterials. In particular, their phononic band structure is exploited to

control the strength of coupling between the acoustic waves and slabs’ FMR modes.

Using the slowing of the phonon group velocity around band gaps, the interaction

time between the phonons and magnetic modes of the slabs is enhanced, leading to

stronger hybridization. When the slabs’ Kittel mode frequency is tuned to the band

gap’s vicinity, the Borrmann effect is observed, whereby the coupling is enhanced

near one band-gap edge and suppressed near the other. When the Kittel resonance

falls within the band gap, the array exhibits an induced transparency, whereby a finite

transmission of magnetoacoustic modes becomes possible.

In Chapters 5 and 6, the ideas developed in Chapters 3 and 4 for bulk acoustic
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waves are applied to surface acoustic waves, which are more suitable for an experi-

mental realisation. Chapter 5 deals with translationally symmetric, infinite thin mag-

netostrictive films formed on non-magnetic substrates. While Rayleigh waves tend to

be the "go-to” surface acoustic waves, we find Love waves to be the optimal choice

for a Damon-Eshbach spin-wave geometry (in-plane magnetisation orthogonal to the

wave’s propagation direction), which is often preferable in magnonics. The propaga-

tion of Love waves is studied analytically and compared with numerical simulations

in various geometries. It is shown that a measurable signal in transmission can be ob-

tained using Love waves for realistic parameters of the films. This signal can be am-

plified by adding a capping layer, which increases the localization of the Love wave

inside the magnetostrictive thin film. The transmission is found to be non-reciprocal

and a design that optimises this nonreciprocity is proposed.

Chapter 6 explores a realistic surface acoustic wave metamaterial formed by an

array of magnetic resonators on top of a LiNbO3 substrate. Although surface wave

modes are stable, their scattering from steep changes of the surface impedance leads

to an additional channel of energy loss: the bulk modes. We use the interfacial Green’s

function to cast the problem in a one-dimensional form, removing the need to add the

bulk degree of freedom to the model explicitly. Instead, the bulk emission is included

as a contribution to the linewidth of the magnetic resonators, remaining a dominant

loss channel. To suppress this channel, the metamaterial band structure is again ex-

ploited. At frequencies around the first passband and band gap, the reduced phonon

group velocity promotes the scattering into the (magneto-elastically usable) surface,

rather than bulk, modes of the metamaterial. Above the first band gap however, sur-

face modes become degenerate with the bulk continuum, which promotes the bulk

scattering channel. This defines a frequency domain in which surface acoustic wave
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metamaterials can be engineered to localise energy (almost) entirely at the surface: the

first passband and band gap.

Chapter 7 concludes this thesis by discussing the significance of its findings and

outlining possible directions for further research on its topic.
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Chapter 1

Introduction

Wave based computing utilises the magnitude and phase of signal carriers to encode

information, and so is a promising alternative to traditional scalar computing[1]. The

use of spin waves as such data or signal carriers has spurred recent growth in the re-

search fields of magnonics[2–5] and magnon spintronics[1, 6]. These fields utilise the

magnon: a collective excitation of processing spins[7], to overcome the Joule heating

associated with the motion of electrons in CMOS devices[8–10]. Magnonic based de-

vices also exhibit high scalability[11, 12], low wavelength[13, 14], non-reciprocity[15–

17], non-volatility[18] and can be patterned into complex structures[19, 20]. Magnon

based device applications range from logic components[18, 21, 22] for spin wave com-

puting to biomedical sensors[23, 24]. However, spin wave propagation lengths are

typically rather small, on the order of tens of µm[25], while miniaturization requires

large (energy inefficient) magnetic bias fields[19]. This has renewed research into hy-

brid systems, where the deficits of magnonics are circumvented by coupling to a dif-

ferent excitation[26–28]. One such is the field of magnetoacoustics[29–31], in which

a propagating acoustic wave is coupled to a spin wave[32–39] or vice versa[40–43].

This coupling can be used to enhance the energy efficiency of magnonic devices,

due to the longer propagation length of phonons when compared to magnons[44–



2 Chapter 1. Introduction

48]. Magnetoacoustic devices also have a high degree of miniaturization, as phonons

and magnons are of similar wavelengths.

Recently the coupling strength of the magnon-phonon interaction in materials

have been characterized[49–55], particularly the non-reciprocity of magnetoelastic waves

has been explored[56–63]. However, the coupling strength predominantly depends on

both the magnetic damping and magnetostrictive coupling factors which have mag-

nitude that scales together, but act in opposition[64, 65]. That is to say: the coupled

response is typically rather weak. As the magnetoacoustic resonance is tunable along

the acoustic dispersion[66], this opens up the field of magnetoacoustic metamateri-

als, whereby the characteristics of phononic crystals (i.e: band gaps) are employed to

enhance the magnetoelastic coupling. Before this project, thin (and ultrathin) magne-

tostrictive films sequenced into periodic nanostructures were not fully investigated in

literature, and those authors that did explore this class of metamaterials were not fo-

cused on the scattering properties[67]. Instead, attention was put on the excitation of

magnetic precession rather than the control of an input propagating acoustic wave. If

magnetoacoustics is to be a solution to the energy inefficiency of spin waves prop-

agating over longer distances, then the reflection and transmission of the coupled

acoustic waves from isolated and arrays of magnetic resonators is important to un-

derstand. Afterall, it is the acoustic waves that will be used to communicate between

the components of a larger structure. To address this, this thesis aims to characterize

the manifestation of the magnetoacoustic interaction ("signatures") in the reflection

and transmission of an input acoustic wave in various magnetoacoustic geometries,

and suggest methods that may enhance the interaction strength.
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The work presented may be separated into two areas: first the exploration of pro-

totypical bulk designs, used to inform of the magnetoacoustic signatures in transmis-

sion and reflection, their relative strengths, and how they may be enhanced using

metamaterials. Secondly the developing of models for more realistic surface acoustic

wave magnetoacoustic devices, initially for non-reciprocal transmission in thin films

and then for the transmission in a surface acoustic wave metamaterial, emphasising

the role of bulk scattering. The outline of this thesis is as follows. In Chapter 2 the

relevant magnetic, elastic and magnetoacoustic background literature is shown. The

magnetic subsystem consists (mostly) of uniform modes, the elastic waves are bulk

or surface modes. The chapter ends by presenting how the coupling between these

modes are described.

In Chapter 3 we consider the simplest case of coupling, a bulk elastic wave to a

uniform magnetic mode. The reflection, transmission and absorption of the incident

wave are characterised, and we illustrate the strengths and weaknesses of magnetoa-

coustic resonators, using a figure of merit.

In Chapter 4 an array of the resonators presented in Chapter 3 is analysed. The

magnetoacoustic reflection signatures of this prototypical metamaterial are presented,

and we illustrate that the largest interaction strengths occur when the resonance is

tuned toward the phononic band edges. Additionally, it is found that inside the band

gap it is theoretically possible to form a magnetoacoustic passband.

In Chapter 5 the work considers the realistic design of a surface acoustic wave

coupled magnetic thin film. We characterise its transmission and compare this with

numerical simulations. We then develop a highly non-reciprocal design that is based

on the chiral mismatch of magnetoacoustic driving fields and magnetic precession.
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In Chapter 6 we investigate the role bulk scattering plays in the surface magnetoa-

coustic metamaterial. The work presents that the emission of a surface source, and so

the scattering of waves from magnetic resonators, is heavily skewed toward the bulk

modes. We then present that by sequencing the films into arrays, the bulk scatter-

ing can be heavily suppressed and use this analysis to suggest an optimal operating

regime for realistic magnetoacoustic metamaterials.
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Chapter 2

Background

The content of this chapter presents the background literature, and is separated into

three sections: literature describing the magnetic subsystem, literature describing the

elastic subsystem and finally the literature describing their coupling. The magnetic

response of the geometries we will consider is typically uniform, owing to the small

lateral dimensions of the magnetic elements. The discussion therefore focuses around

uniform magnetic precession, the ferromagnetic resonance (the Kittel mode). Some

geometries are forced to consider the response as partially non-uniform, in which case

the spin waves modes for the relevant magnetic geometries are illustrated. This sec-

tion follows the discussions found in Refs.[68–73]. We next describe the elastic re-

sponse which we use to propagate stresses. The well known bulk, Rayleigh, Love and

Bleustein and Gulyeav solutions to the (piezo-)elastic wave equation are shown. As

we will exploit the dispersion of these solutions in metamaterials, the phononic band

structure is presented using a Green’s function approach. This section follows the

discussions found in Refs.[74–79]. Finally, in order for the magnetization dynamics

to exert some control over the propagating acoustic waves, the elastic wave equation

must contain some magnetoacoustic contributions. The final section presents how

these magnetic stresses are imposed on the propagating acoustic wave.
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2.1 Magnetic excitations

This section is arranged as follows, we begin by discussing the origin of a ferromag-

nets magnetization and how this contributes the the magnetic free energy. We then

consider uniform magnetic precession using the Landau-Lifshitz-Gilbert equation,

and describe some non-uniform spin wave modes.

2.1.1 Magnetization of a continuous medium

In magnonics we typically consider the precession of ensembles of magnetic moments,

µ, formed due to the motion of electrons in their orbitals. As such µ contains angular

momentum contributions from both orbital L and intrinsic spin S (total, J = L+ S).

This is in analogy with the electric dipole moment of paired charges p = qd, which is

of functionally similar form to µ = γJ , where γ is the gyromagnetic ratio[71, 80]. In

quantum mechanics the angular momentum J , is quantized, and so µ is quantised

as the Bohr magneton, µB. When an external bias field µ0HB, is applied this moment

then orbits the bias field axis, a process referred to as Larmor precession. This occurs

at a given Larmor frequency, ω0,

ω0 =
gµBµ0HB

h̄
, (2.1)

and illustrated in Fig.2.1. Reversing bias field orientation, i.e: HB → −HB, reverses

the chirality of precession. For a crystal lattice, changes to L require a significant

amount of energy as it is fixed by electron bonding and so the dominant contribution

is uncompensated S. The energy associated with the alignment of µ with µ0HB is
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FIGURE 2.1: An illustration of Larmor precession for a magnetic dipole
µ about an external field µ0H . A torque µ0µ×H induces a change in

angular momentum ∆J .

referred to as the Zeeman energy. This is typically written as

EZ = −µ · µ0HB, (2.2)

which is minimized when µ ∥ HB.

We now consider µ on the macroscopic scale, which is typically experimentally ob-

servable. On these length scales (nm) the response composed by ensembles of µ and

so we express the magnetic moment using its average (mean field) per unit volume:

the magnetization M (r),

µ =
∫

V
M (r)dV. (2.3)

The behaviour of M (r) characterizes magnetic materials. In Eqn.(2.2) the magnetic

moment µ is aligned according to the orientation of HB. Just as the response of µ is

described by an effective M (r), we can consider M (r) as the response to an applied

(or effective) magnetic field H . Assuming linearity we write the response function

(tensor) as the susceptibility χ,

M = M0 + χH , (2.4)
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FIGURE 2.2: A typical hysteresis curve for a ferromagnetic material.
The points around the curve are A) the saturation magnetization Ms,
B) the remnant magnetization MR, C) the coercive field −HC, D) -Ms,
E) -MR, F) HC. The dashed path indicates the typical path taken as
the ferromagnet moves from an initially demagnetised (M = 0) state.
(b). Common ‘C’, ‘X’ and ‘S’ magnetic ground states at remnance are
shown. Typically these are achieved by relaxing from saturation along
the path A → B in panel (a). Other, more complex, ground states are

not shown, such as ‘Vortex’ or ‘Onion’ states.

where M0 represents spontaneous magnetization, i.e: the magnetization in the ab-

sence of an effective field. A hysteresis curve is used to illustrate this response in var-

ious magnetic materials, as shown in Fig.2.2.(a). We also show some common ground

states in Fig.2.2.(b). In this thesis we will be considering only ferromagnets, which

initially may have no net magnetization, but spontaneously align their moments be-

low a specific “Curie" temperature, TC. For T > TC, a bias field must be applied to

form a net magnetization. So far we have only considered the Zeeman energy, how-

ever χ contains contributions from a range of sources. For example, the spontaneous

magnetization M0, in Eqn.2.2, of ferromagnet is a result of exchange coupling.
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Exchange energy

Macroscale magnetic order is underpinned by the interaction of adjacent electron

spins, which, curiously, is electrostatic in origin. For example, two hydrogen atoms

have electrons that have total many body wavefunction Ψ12 which is anti-symmetric

(the electron is a Fermion) and can be separated into spin and radial wavefunctions[81,

82]. The spin wavefunctions are separated into two states: the "singlet" and "triplet"

(so called due to how they preserve the anti-symmetry of Ψ12 with the radial compo-

nent, i.e: the singlet state is asymmetric while the triplet state is symmetric). The

expectation energy associated with these spin states is given by their inner prod-

uct with the Hamiltonian (the energy operator), the latter of which is given by the

Coulomb electron-electron (and nucleus-nucleus) repulsion and electron-nucleus at-

traction. This inner product gives a quantitative energy difference between the spin

singlet and triplet states, thus the exchange interaction describes the energy cost in-

curred by the overlap of different adjacent spin orientations, caused by the electrons

electrostatic potential. The range of the interaction is small as it requires a consid-

erable overlap of electron wavefunctions before their exchange energy contribution

becomes significant, hence why only neighbouring spins are considered[83]. The ex-

change length lexch, provides the (wave)length scales in which exchange energy begins

to dominate. It is related to both the maximum demagnetising energy µ0M2
s /2, and

the exchange stiffness constant A, by[84]:

lexch =

√
2A

µ0M2
s

. (2.5)

For typical magnetic materials lexch is of the order of 10nm[25]. In a ferromagnetic

material spin alignment reduces energy. The spontaneous magnetization is therefore
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a domino effect: one spin flips, which promotes the next, until the sample has a net

magnetization (is magnetized).

The exchange contribution to dispersion is ωexch = γµ0Msl2
exchk2. This k2 depen-

dence means that while exchange is required to explain the spontaneous magnetiza-

tion in a lot of the ferromagnets we will consider, it may largely be ignored in our

calculations. For instance, in this thesis the acoustic wavelengths λ are typically con-

siderably larger than the thickness δ, of the magnetic materials. As δ ∼ lexch in these

models and λ ≫ δ, then the exchange contribution to the magnetic modes is negligi-

ble.

Magnetostatic energy

At distances considerably larger than lexch the mangetic ordering is mediated by mag-

netic field dipole-dipole coupling[69]. This is the classical electrostatic interaction

where two dipoles are exerting some influence over each other by their magnetic

fields. At a distance fields experienced by one dipole from the other are essentially

uniform[85]. This dipolar field ensures that in magnetic domains, uncompensated

surface spins do not violate Maxwells equations (specifically ∇ ·B = 0, i.e: they do

not form magnetic monopoles). This is illustrated in Fig.2.3, where the “poles" of the

surface spins are effectively magnetic monopoles. In order to remove these free sur-

face poles, a self demagnetizing field HD, couples the opposite surface poles and acts

against the long range order imposed by M . The contribution of this to free energy

FD, is similar to the Zeeman energy, a product of M and HD,

FD = −µ0

2
M ·HD. (2.6)
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FIGURE 2.3: Left: The magnetic field of a bar magnet N → S. Right:
Magnetic surface charges appear along the interfaces where there are
uncompensated spins and generate a self-demagnetizing field anti-

parallel to the magnetization.

The exact form of HD is in general quite hard to determine, and frequently approxi-

mated using ellipsoids of revolution and their limits[86]. In these limiting geometries

(where the sample is uniformly magnetised), HD = −NM where N is the demag-

netising tensor. For spherical, prolate and oblate samples, the components of N are

constants. In particular (for relevance to our systems) the oblate (disk) geometry, has

the tensor component along the short axis tend to unity, ∑ Nii = 1. Thus, we write FD

including only diagonal tensor components as,

FD =
µ0

2

(
Nxx M2

x + Nyy M2
y + Nzz M2

z

)
. (2.7)
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Magnetocrystalline (Anisotropy) Energy

As presented at the beginning of this section, µ is a function of L and S. However,

both of these contributions are themselves coupled, referred to as “spin-orbit cou-

pling"[87]. This means that a change in L may have a significant impact on the orien-

tation of µ as it can effect the much more dominant S. This acts also in a reverse sense,

a magnetization M orientation has some impact on the equilibrium crystal lattice. It is

this that is referred to as the magnetocrystalline anisotropy and so is a function of mag-

netization rather than strain[88]. The magnetic anisotropy energy density FMC associ-

ated with the unstrained lattice is often given as a power series of directional cosines

α1, α2 and α3 of the magnetisation vector to an orthogonal basis (i.e: α1 = mx/Ms),

F = F0 +
∂F
∂αi

αi +
1
2

∂2F
∂αi∂αj

αiαj + ...

F − F0 = FMC = biαi + bijαiαj + ...

(2.8)

where b represents the anisotropy tenors of various rank, and the basis is typically the

crystallographic axes: [100], [010], [001]. F0 represents all terms that are independent

of the spin-lattice coupling. This expansion is in α as it is the magnetization orientation

that is contributing to energy here. The tendency of M is to lie at an orientation to the

crystal axes that minimises the terms in Eqn.(2.8) referred to as the magnetic “easy

axis".

Frequently Eqn.(2.8) will be generalised for the intrinsic symmetries of the system.

For a cubic crystal the first non-zero b is the fourth rank bijkl = K1, and so the free

energy is of the form[88],

FMC = F0 + K1(α
2
1α2

2 + α2
2α2

3 + α2
3α2

1). (2.9)
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We will consider the contribution here as “unstrained", i.e: that the lattice equilibrium

already contains contributions from the magnetocrystalline anisotropy. Any time de-

pendent strains are considered using the magnetoacoustic energy.

2.1.2 Collective excitations

Adjacent magnetic moments are coupled by the exchange interaction, and so excita-

tion of a single would lead to a cascade of excitation along a linear chain. These spin

waves, and their associated quasi-particle: the magnon are typically explored for their

precessional dynamics as they transfer no mass, charge or spin. While we will use the

term spin wave to discuss some magnetic modes in our models, it will typically be

in reference to the uniform (k = 0) spin wave or ferromagnetic resonance (FMR). In

this section we will discuss how these dynamics are characterised, before considering

some non-uniform spin wave modes.

Micromagnetic theory

Ferromagnetism is described by the micromagnetics continuum theory[89]. In this

the magnetisation at any point is taken to have magnitude equal to the saturation

magnetisation,

|M(r, t)| = Ms, (2.10)

and the ferromagnet is assumed to be well below the Curie temperature. In general,

under the influence of any internal or external fields, the energy profile of the magnetic

material aligns the magnetisation to (one of) the minimum energy state(s)[90]. That is

the minimum energy associated with the orientation of the magnetisation as parallel
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to the effective field Heff[91],

M ×Heff = 0. (2.11)

Thus in this case, the system is in equilibrium. Upon removal of any external bias, the

system relaxes to a ’ground state’ equilibrium profile that is typically non-uniform, as

was shown in Fig.2.2.(b).

The effective field here refers to the total field from all contributions, i.e: Zeeman

HZ, demagnetizing HD, to the total energy,

Heff = HZ +HD + ... , (2.12)

where the effective magnetic field above is the functional derivative of the free energy

F, with respect to M ,

Heff = − 1
µ0

δF
δMi

î. (2.13)

The Landau-Lifshitz-Gilbert Equation

In the case M ×Heff ̸= 0 the system will evolve in time. These dynamics are encap-

sulated in the Landau-Lifshitz (LL) equation[89],

∂M

∂t
= −γµ0 [M ×Heff] . (2.14)

The Eqn.(2.14) normally is unphysical, M does not precess indefinitely and the mag-

netization is damped back to its ground state. Physically this can be by a number

of mechanisms, however there is always a contribution from lattice vibrations. The

energy exchange is mediated by the spin-orbit interaction, i.e: the coupling of S and

L allows the transfer of energy between spin waves and phonons. This damping is
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FIGURE 2.4: Illustration of the path taken by the magnetization as it ex-
cited and then decays according to Eq.(2.15). (a) The precession about
the effective field Heff, (b) the Gilbert damping torque and (c) the over-

all damped precession.

introduced phenomenologically as the Gilbert damping parameter, αG. This extends

Eqn.(2.14) to the Landau-Lifshitz-Gilbert (LLG) equation of the form[92],

∂M

∂t
= −γµ0 [M ×Heff] +

αG

Ms

[
M × ∂M

∂t

]
. (2.15)

The path taken by the magnetization as it precesses and decays to the Heff is shown

in Fig.2.4. As the damping in Eqn.(2.15) is a torque, an anti-damping torque may also

be applied to counteract its effect[93].

Ferromagnetic Resonance

Assuming the material is magnetized, any perturbation to the effective magnetic field

(i.e: a dynamic bias filed h), excites the magnetization causing precession. Under

certain situations, such as those frequently discussed in this thesis (i.e: films that have

thicknesses δ, much smaller than the excitation wavelengths λ: δ ≪ λ), the magnetic

moments will oscillate in phase, with k = 0. This uniform spin wave is then said to

be at ferromagnetic resonance (FMR, or “Kittel" resonance)[86]. We now derive an

expression for the associated FMR frequency. For an ellipsoid the only non-vanishing



16 Chapter 2. Background

demagnetising tensor components are the diagonal ones, Nii =
(

Nx, Ny, Nz
)
. Let the

sample be saturated along ẑ such that Mx, My ≪ Mz ≃ Ms, and perturbed by a radio

frequency (r-f), time dependent field h(ω, t) = hx x̂ + hyŷ. The components of Heff

given by Eqn.(2.13) become,

Heff = [hx − Nx Mx] x̂ +
[
hy − Ny My

]
ŷ + [HB − Nz Mz] ẑ. (2.16)

If we consider only the linearized case: ∂My/∂t ≃ 0 as My ≃ Ms, and the dynamics in

x̂ and ŷ are,

∂Mx

∂t
= −γµ0

[
HB +

(
Ny − Nz

)
Ms
]

My(ω, t) + γµ0Mshy, (2.17)

∂My

∂t
= γµ0 [HB + (Nx − Nz) Ms] Mx(ω, t)− γµ0Mshx. (2.18)

Assuming plane wave solutions with time dependence Mi ∝ exp(iωt), the system is

resonant at ωFMR,

ωFMR = γµ0

√[
HB + (Ny − Nz)Ms

]
[HB + (Nx − Nz)Ms]. (2.19)

This formulae may be applied to any ellipsoid. Frequently we will be generalising

to the case of a thin slab (ultra-thin in some cases: δ-function inclusion), of which

(provided the plane of the slab coincides with the yz plane) Nx = 1, Ny = Nz = 0. This

formulae applies to a material magnetized as a single domain, so any non-uniformity

is ignored or ensured by a (small) saturation field.
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FIGURE 2.5: An example spin wave propagating along a 1D chain of
exchange coupled spins.

2.1.3 Spin waves in the magnetostatic regime

The magnetic system may also be excited inhomogeneously, such that the moments

do not precess in phase and form a spin wave (magnon). A localised excitation will

therefore propagate (k ̸= 0) through the spin-lattice. The simplest example is the

one dimensional chain of spins as in Fig.2.5. We can identify regimes based on the

magnon wavelength, λ[94]. In the “exchange regime", the exchange interaction plays

a significant role as λ ≃ lexch as in Eqn.(2.5). However as discussed previously we will

frequently consider the thickness δ, of magnetic elements as considerably smaller than

input acoustic wavelengths, λ. This puts the spin waves modes into the magnetostatic

regime.

In the magnetostatic regime, λ are significantly larger than lexch and so the ex-

change interaction is neglected as the dipolar field dominates. The name “magneto-

static" refers to the assumption of no moving external charges for Amperes’ law (4th

Maxwell): ∇×H = Jc = 0. While called magnetostatic, the spins still precess dy-

namically. The spin wave mode excited in this regime depends on the orientation

of the bias field HB to the spin wave propagation, k. As this orientation varies for

the geometries explored in this thesis, we present how these magnetostatic spin wave

(MSSW) modes are defined below. Typically this derivation is presented for an infi-

nite ferrite, and so anisotropy (demagnetizing) coefficients are ignored. Let us split

the magnetic field and magnetization into static and time varying parts, and align HB
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along ẑ so the these fields are: h = hx x̂ + hyŷ + HBẑ and M = Mx x̂ + Myŷ + Msẑ.

The internal field of the magnetic material is B = µ0(H +M ) which may be written

using a permeability tensor µ:

B = µ ·H = µ0 (I + χ̄) ·H , (2.20)

by also introducing the susceptibility tensor χ̄: M = χ̄H , M = (Mx, My, Ms), H =

(hx, hy, HB). By rearranging inverting the linearized LLG for χ̄ as shown in Eqns.(2.17)

we write µ as:

µ = µ0


1 + χ(ω) −iκ(ω) 0

iκ(ω) 1 + χ(ω) 0

0 0 1

 , (2.21)

χ(ω) =
ωHωM

ω2
H − ω2

, κ(ω) =
ωωM

ω2
H − ω2

, (2.22)

where ωH(M) = −γµ0[HB(Ms)]. Using Gauss’ Law, ∇ ·B = 0, and introducing the

magnetic scalar potential ϕM, H = −∇ϕM, we obtain the Walker equation:

∇ ·B = ∇ · (µ∇ϕM) = (1 + χ)

(
∂2ϕM

∂x2 +
∂2ϕM

∂y2

)
+

∂2ϕM

∂z2 = 0. (2.23)

Let θ be the angle between the propagation direction and HB: k2
x + k2

y = k2 sin2 θ,

k2
z = k2 cos2 θ and ϕ ∝ exp(ik · r). The dispersion from Eqn.(2.23) is then,

ω2 = ωH
(
ωH + ωM sin2 θ

)
. (2.24)
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Note the dispersion is independent of the magnitude, k. Magnetostatic wave resonant

frequency therefore exists in the range:

ωH (θ = 0) < ω <
√

ωH (ωH + ωM) (θ = π/2) (2.25)

called the spin wave "manifold"[69]. As θ has defined this manifold, the orientation of

the bias magnetic field HB to the spin wave wavevector k, plays an important role.

Thin film spin waves

We will frequently make use of magnetic thin films of thickness δ ≪ λ in ŷ, as shown

in Fig.2.6. Shown are two distinct geometries: Damon-Eshbach (DE), k ⊥ HB or

Backward-Volume (BV), k ∥ HB. A third geometry (Forward volume) k ⊥ HB satu-

rates orthogonal to the film plane but due to the high magnitude HB required to satu-

rate thin films in this orientation we do not consider it. For all geometries, Eqn.(2.23)

is solved by oscillating (in the thin film) and decaying (in the surrounding dielectric)

magnetic scalar potential ϕM in z, along with the boundary conditions: continuity in

ϕM and dynamic b = µ0µ · h over the film interfaces. These boundary conditions

also mean the demagnetizing tensor does not need to be added to Eqns.(2.21) as the

boundary effects are already being included. The dispersions are shown in Fig.2.6.(a)

as well as the potential profiles in Fig.2.6.(b) and .(c) for a film of thickness δ, centered

at y = 0.

For the DE geometry the dispersion is,

ω2 = ωH (ωH + ωM) +
ω2

M
4

[1 − exp(−2kδ)] , (2.26)
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FIGURE 2.6: (a) The dispersion and geometry of DE and BV spin waves.
(b) Magnetostatic surface wave potentials for positive k+ and negative
k− propagation in the DE geometry.(c) Odd (n = 1) and even (n = 2)

potential profiles over a thin film in the BV geometry,

which shifts the resonant frequency higher than fFMR. Edge effects may however al-

ready be included in a model by the demagnetizing tensor, i.e in Eqn.(2.19). In this

case, the MSSWs’ can be taken into account by including k−dependent contributions

to the demagnetizing tensor:

Nx =
1 − exp(−|k|δ)

2
, Nz = 1 − Nx. (2.27)

Foe example, these are obtained by expanding Eqn.(2.19), with some unknown func-

tion A, Nx = A, Nz = 1 − A, and then solving the resulting quadratic equation for

A. However, this will not take into account the non-uniform magnetization profile of,

rather it is quick fix for the resonant frequency. MSSW profiles are also non-reciprocal

as shown in Fig.2.6.(c), as for ±k the potential exists on a single surface of the thin film

(±δ/2), hence the name: magnetostatic “surface" modes.

For the BV geometry the dispersion is

k =
2
δ

√
− [1 + χ(ω)]

[
arctan

√
− [1 + χ(ω)] +

(n − 1)π
2

]
, (2.28)
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where n represents the order of the mode. For the fundamental (n = 1) this is approx-

imated as

ω2 = ωH

{
ωH + ωM

[
1 − exp(−kδ)

kδ

]}
, (2.29)

which is plotted in Fig.2.6.(a) along with the potential profile for the lowest order od

(n = 1) and even (n = 2) modes in .(b). Unlike the DE geometry, this wave is recipro-

cal. The phase and group velocity are in opposite directions (“backward" volume).
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2.2 Elastic excitations

This section is arranged as follows, we begin by deriving the constitutive relations of

elasticity to define elastic moduli, stress and strains. We then consider the boundary

conditions, so that we can solve the wave equation with a free surface. We then con-

sider the solutions in the bulk, as well as the surface Rayleigh and interfacial Love

solutions. As our structures will modulate their elastic properties periodically, we

then present the phononic crystal dispersion. The final section covers surface wave

solutions in a piezoelectric substrate: the so called Bleustein and Gulyeav surface

waves[95, 96].

2.2.1 Constitutive relation for linear isotropic materials

We must start by introducing two basic quantities, displacement and strain. Displace-

ment Ui is when any body is deformed from its equilibrium position xi to another

point in space Xi,

Ui (xi) = Xi(xi)− xi. (2.30)

The length between any two infinitesimally close deformation points Xi, is linked by

the strain tensor uik (here assumed to contain only linear components),

uik =
1
2

(
∂Ui

∂xk
+

∂Uk

∂xi
+

∂Ul

∂xk

∂Ul

∂xi

)
≃ 1

2

(
∂Ui

∂xk
+

∂Uk

∂xi

)
. (2.31)

This is a common simplification, as typically stresses (and so displacements) are small.

When changes in the mass density of any region of the material are considered, these

are referred to as volume compressions or extensions. Only strain components along
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the diagonal axis contribute to the compressions, as any off diagonal components sim-

ply “shear" the material. Volume compressions can also be expressed by a non-zero

divergent displacement (or a curled displacement of zero),

dV ∝
N

∑
i

uii = ∇ ·U , ∇×U = 0, (2.32)

while volume conservation (i.e: shearing of the material) is expressed by a non-zero

curled displacement (or a divergence in displacement of zero)

dV = 0 = ∇ ·U , ∇×U ̸= 0. (2.33)

We must assume that the displacements and strains are as a result of some driving

force: a stress. We now relate stress to force and so derive the elastic equation of

motion. In static equilibrium any portion of a material will experience an internal

force f that is a result of the surrounding material. The total force acting on the body

is then the sum of all internal forces over the volume of the body: Fi =
∫

fidV. We then

express the force Fi as a stress acting over the closed surface bounding the volume1,

∫
fidV =

∫
∂σik

∂xk
dV =

∮
σikdSk,

fi = ρ
∂2

∂t2 Uk =
∂σik

∂xk
.

(2.34)

If we assume the relation between stress and strain is linear, then the generalised form

of Hooke’s Law is

σij = cijklukl , (2.35)

1Representing a rank one tensor Ai as the divergence of a rank two tensor Bik: Ai = ∂kBik and diver-
gence theorem:

∫
∂kBikdV =

∮
BikdSk.
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where cijkl is the elastic stiffness tensor. As ukl and σij are both second order, cijkl

must be fourth order to characterise the elastic properties of the material linearly. The

components of ciklm are referred to as elastic moduli. The elastic stiffness tensor can in

practice be greatly simplified by considering the number of independent entries. For

example, the symmetry in stress σij = σji reduces it from 81 to 54 entrys, and symmetry

in strain ukl = ulk to only 36. We may then reduce the number of independent entrys

by considering the system symmetric about the leading diagonal, which reduces the

number of independent constants to 21. In this project we will mostly consider that

the materials are isotropic, linear elastic materials, as such the symmetric tensor is

expressed by the Lamé constants λ, µ as,

Cijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
. (2.36)

So we state the constitutive relation as,

σij = λukkδij + µ
(
uij + uji

)
, (2.37)

σij = λukkδij + 2µuij, (2.38)

where repeated indices are summed over[77]. In practice one may measure the Young’s

E, and shear µ, moduli as well as the Poisson’s ratio ν, as such the relationships be-

tween these and the Lame constants are:

E =
µ (3λ + 2µ)

λ + µ
,

ν =
λ

2 (λ + µ)
,

λ =
νE

(1 + ν) (1 − 2ν)
.

(2.39)
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The elastic energy density FE is defined as,

FE =
1
2

σikuik =
1
2

Ciklmuikulm. (2.40)

This is defined using σik = ∂FE/∂uik, in which a body at equilibrium has internal

σik = 0, thus FE as an expansion with respect to uik must be second order[74]. In a

system with cubic symmetry, the number of independent stiffness tensor components

is three, C11 = C1111, C12 = C1122 and µ = C1212. As such the free elastic energy for any

cubic system generalises to[74],

FE =
1
2

C11

N

∑
i

u2
ii + C12

N

∑
i,j, i ̸=j

uiiujj + 2µ
N

∑
i>j,i ̸=j

u2
ij. (2.41)

2.2.2 Boundary conditions

At interfaces, displacements, stress and strains must be treated appropriately due to

sharp change in material properties. The boundary conditions (e.g: for stresses) may

vary depending on the interface (i.e: welded solid-solid, slipping solid-solid, solid-

liquid, etc.). The common case is a solid-solid interface with no slip, that is the in-

terfaces are ’welded’ together. The boundary conditions in this case are continuity of

displacement and orthogonal stress. For an interface at x = 0 with surface normal n:

U (x = 0−) = U (x = 0+),

σ ·n(x = 0−) = σ ·n(x = 0+).

(2.42)

In the case of a free surface (solid-free space interface), displacement is no longer con-

served, there is no material to oppose the movement of the solid at the free interface.
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However, normal stresses must still be conserved,

σ ·n(x = 0) = 0, (2.43)

as there is no medium to impose stress upon.

2.2.3 Solutions to the elastic wave equation in isotropic solids

The general equation of motion from Eqn.(2.34) is: ρüi = ∂σik/∂xk. In a linear isotropic

medium µ and λ are uniform, and the wave equation has the vector form,

ρÜ = (λ + 2µ)∇ (∇ ·U )− µ · ∇ × (∇×U ) . (2.44)

If U is a function of only one co-ordinate (i.e: x) then Eqn.(2.44) for a plane wave is

separated into a longitudinal (Ux) and transverse (Uy,z) wave equations,

∂2Ut(l)

∂t2 − c2
t(l)∇

2Ut(l) = 0. (2.45)

with speeds,

cl =

√
E(1 − ν)

ρ(1 + ν)(1 − 2ν)
=

√
λ + 2µ

ρ
, (2.46)

ct =

√
E

2ρ(1 + ν)
=

√
µ

ρ
. (2.47)

For a general displacement U = Ut +Ul , we know only the leading diagonal stresses

contribute to volume changes as in Eqn.(2.32), and so the transverse and longitudinal

components represent two separate volume changes. The transverse component does
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not cause volume deformation:

∇ ·Ut = 0, (2.48)

while the longitudinal incurs volume compression and expansion:

∇×Ul = 0. (2.49)

Acoustic waves in the bulk

The simplest solution to the wave equation is that of the bulk, whereby the medium

is continuous and there are no interfaces. In this case a monochromatic plane wave

solution is assumed: U = U0eik·r−iωt, for both the longitudinal and transverse com-

ponents. In this case the linear dispersions are,

ω = cl(t)k. (2.50)

For a transverse bulk wave the displacement is orthogonal to the direction of propa-

gation, k. For longitudinal, displacement is parallel to k.

Surface: Rayleigh

The introduction of a surface complicates the solution. Let us assume that the ge-

ometry is as shown in Fig.2.7. Here the elastic material fills the half space for z ≤ 0

and free space is assumed everywhere else. The wave propagating is a plane wave

U = f (z) exp(ikx − iωt), which is the solution to Eqn.(2.45). For the wave to be local-

ized on the surface we must assume that the solution to this wave equation is decaying

into the bulk. That is to say that k2 − ω2/c2
t(l) > 0 and there are finite decay rates into
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FIGURE 2.7: (a) A typical Rayleigh wave geometry. The wave is local-
ized at the free surface z = 0, and involves displacements in x and z.

(b) A Love wave geometry. The wave is localized at an interfacial layer
between two media, i.e: z = 0 in this figure. It contains only a y com-

ponent in displacement.

the bulk (z) κt(l):

κt(l) =
√

k2 − ω2/c2
t(l), (2.51)

such that the displacement is given as U = U0 exp(κz) exp(ikx − iωt). Note that the

system is treated as infinite and uniform in y. Applying the boundary conditions in

Eqn(2.42) we note that at the free surface: σ ·n = σxz = σyz = σzz = 0, and that there

are finite transverse and longitudinal displacements at the interface,

U = Utx + Utz + Ulx + Ulz. (2.52)

The displacement components Uy are excluded as the system is homogeneous in this

direction: σyz = ∂zUy = 0. Applying the remaining boundary conditions for stress:

σxz = µ

(
∂Ux

∂Uz
+

∂Uz

∂x

)
= 0, (2.53)

σzz = λ

(
∂Ux

∂x
+

∂Uz

∂z

)
+ 2µ

∂Uz

∂z
= 0. (2.54)
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The total displacements Ux = Utx +Ulx, Uz = Utz +Ulz, which are linked by Eqns.(2.48)

and (2.49), and the system of equations is written as,

−
(
k2 + κ2

t
)

2kκl

−2kκt
(
k2 + κ2

t
)

A

B

 = 0. (2.55)

For a non-trivial solution we obtain (k2 + κ2
t )

2 = 4k2κtκl . Substituting for κt(l) and

assuming ω2 = c2
t k2ξ, where ξ < 1 we must solve the following cubic equation for

any Rayleigh wave,

ξ3 − 8ξ2 + 8ξ

(
3 − 2

c2
t

c2
l

)
− 16

(
1 − c2

t

c2
l

)
= 0. (2.56)

For a LiNbO3 substrate the Rayleigh wave phase speed, cR =
√

ξct, is: cR = 3.36 kms−1.

FIGURE 2.8: The Rayleigh wave displacements Ux(z) as a function of
depth for k = 10µm−1. Shown is the ellipticity and chirality, illustrating

how it alters with depth.
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The Ux and Uz components of displacements are π/2 out of phase, with chirality that

opposes the direction of propagation. The ellipticity of the orthogonal components is

also given by:

k2 + κ2
t

2kκt
, (2.57)

which results in the elliptical retrograde motion as shown in Fig.2.8. The Rayleigh so-

lution has a higher order mode that is (predominantly) interfacial: the Sezawa mode[97].

However, the main interfacial wave we will consider in this thesis is transverse: the

Love wave.

Surface: Love

Now we consider the case of a transverse surface wave with U = U0ŷ,k = kx̂. In

the geometry illustrated in Fig.2.7.(a) in which a uniform elastic half space extends for

z ≤ 0 and a free surface for z > 0, the free surface stress σzy(z = 0) = 0. This in

incompatible with a transverse surface wave. Instead, the transverse (Love) surface

wave exists in geometries with either a non-uniform (graded) elastic substrate or a

half space with a “capping" layer[74], which is illustrated in Fig.2.7.(b). Properties

associated with the capping layer are marked with “1", while the substrate properties

with “2". Within the layers the solutions are plane waves with both oscillatory and

decaying z profiles:

U1
y = [A exp(iκ1z) + B exp(−iκ1z)] exp(ikx − iωt), (2.58)

U2
y = C exp(κ2z) exp(ikx − iωt). (2.59)
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The decay rates may be written using the layers transverse wave speeds ct, κ2
1 =

ω2/c2
t,1 − k2, κ2

2 = k2 − ω2/c2
t,2. The Love wave travels at some speed cL, so k = ω/cL

here. As both decay rates are assumed to be real and positive, then ct,1 < cL < ct,2,

which sets limits on the materials that can be used, as
√

µ1/ρ1 <
√

µ2/ρ2. The bound-

ary conditions are:

σyz(z = 0+) = σyz(z = 0−), (2.60)

Uy(z = 0+) = Uy(z = 0−), (2.61)

σyz(z = h) = 0. (2.62)

The stress at the free surface, σzy(z = h) = 0, ensures B = A exp(2iκ1h). The continu-

ity of displacements at z = 0 gives C = A [1 + exp(2iκ1h)]. Finally σyz at z = 0 gives

the compatibility condition:

tan(κ1h) =
µ2κ2

µ1κ1
. (2.63)

A finite number of modes for the Love wave exist according to this condition, due

to multiple crossings, as is shown for a LiNbO3 substrate and SiO2 capping layer in

Fig.2.9. In the case where µ1 = 0, i.e: there is a free surface rather than an interface at

z = 0, Eqn.(2.63) goes to zero on the left (h = 0), and diverges on the right, thus has

no solution.

The dispersion relations of transverse and longitudinal bulk, as well as Rayleigh

and Love waves are illustrated in Fig.2.10. In this example the Love wave phase speed

cL is very similar to the transverse bulk.
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Uy(z)
−2.0

−1.5

−1.0

−0.5

0.0

z(
h
)

(a)

Fundamental2nd

3rd

κ2 = 7.94
κ2 = 6.69
κ2 = 3.40

σzy(z)

(b)

FIGURE 2.9: Love wave (a) displacement Uy and (b) stress σzy depth
profiles. The substrate is LiNbo3 and the capping layer SiO2. Capping
layer height is 1µm, f=4GHz. Shown are the 1st, 2nd and 3rd harmonics.
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FIGURE 2.10: The transverse bulk, longitudinal bulk, surface Rayleigh
and surface Love dispersions are illustrated. The bulk continuum is

bounded by the transverse bulk wave dispersion.

2.2.4 Phononic crystals

A metamaterial is a periodically arranged array of alternating impedance (or refrac-

tive indices) along the direction of energy propagation. Variation of elastic moduli

and mass density constitutes the most common phononic metamaterial: the phononic

crystal. In these structures the sudden change in wave speed causes finite reflection
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and transmission, which coherently interfere to form a phononic band structure. This

band structure contains characteristic regions known as band gaps, where the com-

plex wavenumber becomes (predominantly) imaginary and so the solution is non-

propagating. Positions of band gaps in the density of states (dispersion) are pro-

grammable, e.g: depending on the operating frequency, by the relative impedances of

the constituent materials. This tunability is of great benefit, and can be used to create

(among other applications) acoustic diodes (i.e: via non-reciprocal acoustic transmis-

sion) and well as asymmetric filters (band gaps)[98, 99]. Shown in this section is the

transfer matrix and Green’s function methods, which are employed to evaluate the

scattering from these crystals and to visualize their band structure, One-dimensional

metamaterials (the impedance variation exists only in one direction, parallel to the

propagating wave) are typically used. This has two benefits, it simplifies numerical

and analytical models which give insight into the physical phenomena, as well as sim-

plifying the design for fabrication.

Transfer matrix method

As an acoustic wave approaches a discontinuity in acoustic impedance, the wave is

partially transmitted and reflected at the interface, as shown in Fig.2.11. The scatter-

ing region, shown as the red box in Fig.2.11, is where the input waves Ψ are reflected

and transmitted. No scattering occurs anywhere else. The waves Ψ are known, and

typically assumed as plane waves. In many systems it may be difficult to actually

compute the form of the wavefunction inside Φ, and so they are assumed to be un-

known. The wave functions and their first derivatives are continuous (displacement



34 Chapter 2. Background

FIGURE 2.11: The wavefunction ψA(B), in the outer region is reflected
and transmitted through the slab in each direction. The wavefunction
ϕA(B), inside the slab is unknown and so the response is characterised
by the reflection and transmission. The system may be non-reciprocal,

so r(t) ̸= r̃(t̃).

and stress continuity) and so the boundary conditions are:

ΨA(B)(x = δ−1 ) = ΦA(B)(x = δ+1 ), ΨA′ (B′ )(x = δ−2 ) = ΦA(B)(x = δ+2 ), (2.64)

∂ΨA(B)(x)
∂x

∣∣∣∣
x=δ−1

=
∂ΦA(B)(x)

∂x

∣∣∣∣
x=δ+1

,
∂ΨA′ (B′ )(x)

∂x

∣∣∣∣
x=δ−2

=
∂ΦA(B)(x)

∂x

∣∣∣∣
x=δ+2

. (2.65)

Conveniently if we know the scattering coefficients, we can simply relate the wave

functions in the outside region. By relating outgoing waves (those propagating from

the slab) we obtain the scattering matrix S, defined as[100]

ΨB(x = δ1)

ΨA′ (x = δ2)

 = S

ΨA(x = δ1)

ΨB′ (x = δ2)

 =

S11 S12

S12 S22


ΨA(x = δ1)

ΨB′ (x = δ2)

 , (2.66)

and by relating waves propagating to the left of the slab to those on the right we obtain

the transfer matrix M, as

ΨA′(x = δ2)

ΨB′(x = δ2)

 = M

ΨA(x = δ1)

ΨB(x = δ1)

 =

M11 M12

M12 M22


ΨA(x = δ1)

ΨB(x = δ1)

 . (2.67)
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FIGURE 2.12: Shown is the reflection from three scatterers. The total
reflected wave is a sum of all paths that the wave may taken inside the

arrays to contribute to the reflected signal.

As in Fig.2.11,we can express the waves propagating either side of the scattering ele-

ment by its reflected r, and transmitted wave amplitudes, t. This allows us to write

the elements of S and M as,

S =

r̃ t

t̃ r

 , M =

t̃ − rt−1r̃ rt−1

−t−1r̃ t−1

 . (2.68)

There are systems typically in which there are multiple scattering events, as shown

in Fig.2.12. As a result we express the transfer matrix of any given scattering slab in-

dividually as in Eqn.(2.68). Let us assume that these slabs are of number N, and are

separated by some finite distance, as illustrated in Fig.2.12. The path length between

successive scatterers adds a phase factor to Eqn.(2.68)[101]. We can express the to-

tal scattering from the array of N scatterers as its own transfer matrix MN . As the
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scattering event is applied N times, MN has the convenient property,

MN = MN
1 . (2.69)

In the case where the system has time-reversal symmetry, det(M1) = 1 and Tr(M1)

is real. This gives the condition for propagating solutions: Tr(M1) ≤ 2 which is il-

lustrated in Fig.2.13[101]. Note here the regions in which |Tr(M1)| > 2 (shaded red)

FIGURE 2.13: (a) Tr(M) as a function of f . Dashed horizontal lines
indicate |Tr(M)| = (2, 0).The region of −2 ≤ Tr(M) ≤ 2 is indicated by
shaded green and |Tr(M)| > 2 red regions. (b) A zoom into the region

surrounding a band gap.

correspond to band gaps. In these regions the wavenumber must be complex and

hence non-propagating[101]. This is useful when determining the position of band

gaps.

Spectral function: Phononic band structure

An electron in an infinite periodic system of δ-function potential barriers (Kronig-

Penney model) gives insight into the properties of the band structure (dispersion) of
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FIGURE 2.14: kl2 (energy) in the first Brillouin zone: −ql/π < k <
ql/π for the Kronig-Penney model. Shown are the passbands (solid

lines) and band gaps (shaded red).

periodically arranged crystals[101, 102]. For the electron wavefunction Ψ(x), and lat-

tice with periodicity L, Bloch’s theorem holds:

Ψ(x) = fk(x) exp(iqx), (2.70)

fk(x) = fk(x + L), (2.71)

where fk is periodic in L. This may also be recast in reciprocal space with the reciprocal

lattice vector, G. For the delta function barriers with potential β, Tr(M) = 2 cos(ql) =

β sin(kl)/kl + 2 cos(kl). Here k and q represent eigenmode and Bloch wavenumber

respectively. For β = 0, q = k and the free electron dispersion is recovered. If β ̸= 0:

one finds bands of propagating (passbands, k = Re) and non-propagating solutions

(stopbands, k = Im). The Bragg condition, qL = mπ (m is an integer), determines the

position of band edges and corresponds to the edge of the Brillouin zone: −G/2 <

k < +G/2. Solving for β > 0 we find a band spectrum similar to Fig.2.14. Moreover

we know that the transfer matrix is related closely with the scattering coefficients, and

so the passbands and stopbands must be characterised by some scattering. In fact, the
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passbands have non-zero transmission, as energy is allowed to propagate, while the

stopbands are characterised by a transmission of (near) zero.

Bloch’s theorem can be applied to any waves in stratified media, and so we can

apply it to elastic waves in phononic crystals to solve for the band structure[103]. For

bulk acoustic waves, instead of the free electron energy we have the bulk dispersions

as in Eqns.(2.50), and instead of the Schroödinger equation we have the elastic wave

equations, as in Eqns.(2.45). The definition of band structure by the transfer matrix

as above will be useful for systems that we outright know (or have designed) to have

limited degrees of freedom, i.e: propagation in a single direction. For example, bulk

wave propagation through orthogonal thin films as in Chapter 3. For more compli-

cated systems, the scattering at resonators can be rather non-trivial, as in the thin film

resonators of Chapter 6. In these geometries the full response is better illustrated by

the system Green’s function, G(ω, k), which defines the dispersion by the spectral

function, S(ω, k) = Im [G(ω, k)].

Green’s function is a response function, and characterises how the given system

will respond to a perturbation[104]. We will specialise to one dimension here, x. If

the system is perturbed by a delta impulse stress σ0δ(x− x′), the real space Greens

function G(x, x′, ω) is a solution to the wave equation:

−ω2∂t2G(x, x′, ω)− c2
t(l)∂

2
xG(x, x′, ω) = ∂xσ0δ(x − x′). (2.72)

As any arbitrary perturbation may be decomposed as a collection of impulses, the
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Greens function details how the system responds to any stress source. It may be writ-

ten as a sum of normal modes Uk(x, ωk) to the response (∂xσ0 = I),

G(x, x′, ω) = c2
t(l) ∑

k

U ∗
k(x′, ωk)

ω2
k − ω2

⊗Uk(x, ωk), (2.73)

and so contains information of all possible modes available. The Eqn.(2.73) highlights

that singularities in Green’s function correspond to the normal mode frequencies ωk.

If one were to add any damping, this adds imaginary components to the wavenumber

and so moves the Greens function from the real to the complex domain, ω → ω +

iΓ. Adding near zero damping Γ → 0 is commonly how the integral in the complex

domain is achieved by Cauchy’s integral theorem. As a result of the finite damping

the denominator in Eqn.(2.73) becomes: ω2
k − (ω + iΓ)2. Thus, G(x, x′, ω) obtains an

imaginary component which in the Fourier domain is related to the local density of

states n(ω, k, x′),

n(ω, k, x′) = − 2
πω

Im
[
G(ω, k, x′)

]
. (2.74)

However, this only contains information as to the density of states at that local region

(a slab for example), and so contains any asymmetry present in that plane. For exam-

ple, in a finite sized slab as there may be bulk and surface modes, they would appear

as separate branches in Eqn.(2.74). The total density of states, or the spectral function

S(ω, k) as it will be referred to here, will require an integral over all positions of the

source, i.e: x′. To simplify this we can assume that the sources and responses are Bloch

periodic: f = f (x + nL). The integral of the dissipated power gives the full density

of states as in Eqn.(2.74). As the system is Bloch periodic, the power dissipated in any
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unit cell is equivalent and we only have to evaluate the first,

P =
1
2

∫ L

0
Re [Fk,ω · (−iω)Uk,ω] dx,

=
1
2

∫ L

0
Fk,ω · (−iω)Im [Uk,ω] dx,

= −ω

2

∫ L

0
|F2

k,ω|ImGk,ω,x′dx′.

(2.75)

This is equivalent to folding the dispersion back into the first Brillouin Zone. The 1/2

factor in Eqns.(2.75) is due to the time-averaging of oscillating signals. The power is

linked to the Sω,k by: Sω,k = P · 4Lρ/
(
π|Fω,k|2

)
, which gives,

Sω,k = −2ρω

πL
Im
∫ L

0
G(ω, k, x = x′)dx′. (2.76)

For an array with reflection and transmission, r, t: this may coincide with the Igna-

tovich dispersion for the Bloch wavenumber q,[105]

exp(iqL) =
[
(t + 1)2 − r2] 1

2 +
[
(t − 1)2 − r2] 1

2

[(t + 1)2 − r2]
1
2 − [(t − 1)2 − r2]

1
2

. (2.77)

The relation above helps identify the positions of the modes, but will not give any

indication as to their spectral weight. Eqn.(2.77) also assumes reciprocity, which is not

always present in our system, as such it is only used to check that derived dispersions

can agree with literature.

Let’s apply some of this to elasticity. The displacement obeys the elastic equation

of motion for a force source f0(r, t):

ρ
∂2U
∂t2 = C∇2U − b

∂U
∂t

+ f0(r, t). (2.78)



2.2. Elastic excitations 41

FIGURE 2.15: A phononic crystals spectral function, S f ,k. Inset: a zoom
into the region surrounding the first band gap.

Green’s function is the response to a given excitation Λ0, as such we can define the

phonon Green’s function GP
ω,x, using: U = GP

ω,x · Λ0. Note Λ0 can be a force, a

stress or a displacement. If we assume that the source is a plane wave displace-

ment: U0,ω,k exp(ik · r− iωkt), then the force source in the elastic equation: f0(r, t) =

ρ∂2
t U0,ω,k exp(ik · r − iωkt) as in Eqn.(2.34), at wavenumber ωk = v|k| where, v =√
C/ρ. The rearrangement of Eqn.(2.78) gives GP

ω,x,

U(r, t) =
−ρω2

k

−ρω2 + Ck2 − ibω
U0,ω,k exp(ik · r− iωkt),

U(ω, k) =
ω2

k

ω2 − ω2
k + ibω/ρ

Λ0(ω, k),

(2.79)

and therefore,

GP
ω,k =

ω2
k

ω2 − ω2
k + ibω/ρ

. (2.80)

Using Eqn.(2.80) with .(2.76) gives the phononic crystal band structure is shown in

Fig.2.15. Illustrated are the typical characteristics of a metamaterial dispersion, zone

folding into the first Brillouin Zone and band gaps (only the first is shown). This
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figure was calculated using the same parameters as Fig.2.13, hence the agreement in

band gap positions between the two. Provided we have the complex Green’s function

of the system, we can obtain this dispersion, either analytically or numerically.

It will also be useful to define the power dissipated. The time and volume aver-

aged Poynting vector in electrodynamics is written using a current density and exci-

tation field[104]. The elastodynamic Poynting vector therefore is[76],

P = −σ · v = −σ · ∂tU . (2.81)

The velocity v may be related to σ,

v = −iωU = −iωGω,kσω,k,

P =
dE
dt

= −1
2

Re
∫ dk

2π
· −iωGω,kσω,k · σ∗

ω,k,

=
ω

2

∫ dk
2π

Im [Gω,k] |σω,k|2.

(2.82)

2.2.5 Bleustein & Gulyeav Surface waves

Love waves cannot exist without a capping layer as shown by Eqn.(2.63), their energy

quickly decays into the bulk. Piezoelectric materials however produce stresses under

applied electric fields, and vice versa. For a piezoelectric substrate without a capping

layer, we will see how this allows a love wave to propagate slightly below the free

surface, as proposed by both Bleustein and Gulyeav (B&G)[95, 96].

Let us assume an elastic displacement Uy(x, z) as well as an the electric potential

ϕ(x, z) (E = −∇ϕ) in the substrate. The linear constitutive relations can be expressed

in four forms, either exchanging strain uij, for stress σij, or exchanging electric dis-

placement Di, for field Ei[74]. Stresses are of interest to us so we express them in the
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form,

σij = cijklukl − ekijEk, Di = D0i + ϵijEj + eijkujk, (2.83)

where cijkl , eijk and ϵij are elastic, piezoelectric and dielectric tensors[77]. The piezo-

electric coefficients share the symmetry of the strain, and so the dimensions of these

tensors is: c(ij)(kl) = ci′ j′(6x6), ei(jk) = eij′(3x6), ϵij(3x3) where we will use Voigt no-

tation: 11 = 1, 22 = 2, 33 = 3, 23 = 4, 13 = 5, 12 = 6[106]. We take from the

elasto-piezo-dielectric matrix of 3m crystals (of which LiNbO3 belongs) and obtain,

σxy = µ∂xUy + e15∂xϕ, σzy = µ∂zUy + e15∂zϕ, (2.84)

Dx = e15∂xUy − ϵ11∂xϕ, Dz = e15∂xUy − ϵ11∂zϕ. (2.85)

Let’s also consider the equations of motion inside the piezoelectric (z < 0, Uy, ϕ) and

free space (z > 0, ϕ̄), these are:

(z ≤ 0) : µ∇2Uy + e15∇2ϕ = ρÜy, (2.86)

(z ≤ 0) : e15∇2Uy − ϵ11∇2ϕ = 0, (2.87)

(z > 0) : ∇2ϕ̄ = 0. (2.88)

The elastic Eqn.(2.86), was obtained using Eqn.(2.34). The electric Eqn.(2.87) and (2.88)

are from electrostatics (the speed of the acoustic waves is significantly less than light),

∇ ·D = 0 (there is no free charge). Here we will make the change ψ = ϕ − e15Uy/ϵ11

to re-write Gauss’ Law in the substrate and introduce the stiffened piezoelectric shear
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modulus µ̄ = µ + e2
15/ϵ11, recasting the equations in the substrate as:

µ̄∇2Uy + e15∇2ψ = ρÜy,

∇2ψ = 0.

(2.89)

We now can justify how the Love wave propagates. With an altered shear modulus

in the bulk when compared to the surface, there is effectively a ’crust’ to the sub-

strate, similar to Love’s description of the earths crust when he introduced the elastic

wave[107]. The Eqns.(2.89) and .(2.88) are satisfied with plane wave ansatz’ for Uy and

ψ for z ≤ 0 and ϕ̄ for z > 0,

(z ≤ 0) : Uy = Ũyeikx+qze−iωt,

(z ≤ 0) : ψ = ψ̃eikx+κze−iωt,

(z > 0) : ϕ̄ = ˜̄ϕeikx−κze−iωt,

(2.90)

here q and κ represent decay rates and in what follows we will omitt e−iωt. We have

the following boundary conditions at the free surface. Tangential stress at the free

surface is zero: σzy(z = 0) = 0. Tangential E is continuous: ϕ(z = 0−) = ϕ̄(z = 0+).

Normal D is continuous: Dz(z = 0−) = D̄z(z = 0+). As well as the conditions at

z = ±∞: ϕ̄(z = +∞) → 0, and ϕ, Uy(z = −∞) → 0. In both domains (piezoelectric

and free space) Gauss’ law gives κ = |k| and Eqn.(2.89) gives,

q2 = k2 − ρω2

µ̄
. (2.91)

Tangential E gives: ˜̄ϕ = ψ̃ + e15Ũy/ϵ11, where we have represented Fourier ampli-

tudes with a tilde. Using continuous normal D at z = 0 we find the relation between
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FIGURE 2.16: The displacement Uy, and electric potential ϕ, profile of
a B&G Love wave is shown for a fictitious material. The maxima of Uy

and ϕ are located at the free surface.

ψ̃ and Ũy,

e15qŨy − ϵ11κ

[
ψ̃ +

e15

ϵ11
Ũy

]
= ϵ0κ

[
ψ̃ +

e15

ϵ11
Ũy

]
,

ψ̃ = − e15ϵ0

ϵ11 (ϵ0 + ϵ11)
Ũy.

(2.92)

The full expression for the electric potential inside the substrate can thus be written,

ϕ =
e15

ϵ11

(
eqz − ϵ0

ϵ11 + ϵ0
eκz
)

Ũy. (2.93)

Examples of the profiles for Uy and ϕ in z are illustrated in Fig.2.16. The free space
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stress gives the resonance condition for q,

q = |k| ϵ0

ϵ11 + ϵ0

e2
15

ϵ11µ̄
= |k| ϵ0

ϵ11 + ϵ0

(
1 − µ

µ̄

)
,

β =
ϵ0e2

15
ϵ11µ̄ (ϵ11 + ϵ0)

,

(2.94)

which defines the confinement parameter β. Called such as when β → 0 (no piezo-

electricity) the penetration depth diverges to infinity and so they become transverse

bulk waves. The speed of the B&G Love waves is then found as

c2
BG =

µ̄

ρ
(1 − β2), (2.95)

which is lower than that of bulk wave speed. One should note that the profiles shown

in Fig.2.16 have Uy maximised at the interface. While a good approximation, this is

somewhat unphysical, as the wave will actually be maximised at a location below the

interface, as the wave must travel between the ’effective’ interface between the bulk

stiffened media given by µ̄ and the shear modulus at the interface, µ. This ’interface’

may be very close to the free surface.

2.3 Magnetoacoustics

This section covers the literature surrounding the coupling between elastic and mag-

netic modes. It introduces the origin of the coupling and defines the magnetostriction

and magnetoacoustic coupling constants.

The coupling between lattice strain and magnetization is via the spin-orbit interac-

tion, much the same as in the case of magnetocrystalline anisotropy in Section.2.1.1[85,

108]. However while the Eqns.(2.8) define the energy cost of M alignment for a lattice
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at equilibrium, we must also consider the energy cost of a strained lattice. For exam-

ple, a lattice is at equilibrium and no elastic wave or external strains are imposed. This

“unstrained" (there may be some static strains present, e.g: due to fabrication) lattice

will have an energy cost associated with misalignment of M with the easy axis as in

Eqn.(2.9). If an elastic wave for example is introduced on top of this we have a strain

that, due to spin-orbit coupling, excites the magnetization. This is the magnetoelastic

energy. We consider the free magnetic energy has an additional term that does couple

to strain FME such that F − FE = FM + FME. Performing the same Taylor expansion as

in Eqn.(2.8), we obtain,[88]

F − FE = FM +
∂FME

∂uij
uij +

1
2

∂2FME

∂ukl∂uij
ukluij + ...

FME =
∂FME

∂uij
uij.

(2.96)

As strain is typically small, higher order terms can be neglected. Thus evaluating the

differential ∂FME/∂uij gives 9 components as,

∂FME/∂uxx = B1α2
1, ∂FME/∂uxy = B2α1α2, ∂FME/∂uyz = B2α2α3,

∂FME/∂uyy = B1α2
2, ∂FME/∂uxz = B2α1α3, ∂FME/∂uzx = B2α3α1,

∂FME/∂uzz = B1α2
3, ∂FME/∂uyx = B2α2α1, ∂FME/∂uzy = B2α3α2.

(2.97)

Here B1 and B2 are the magnetoelastic coupling coefficients and αi the directional

cosines of the magnetization as before (i.e: αi = Mx/Ms). This gives the form of
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magnetoelastic energy density FME

FME =
B1

M2
s

∑
i

uii M2
i +

B2

M2
s

∑
i,j,i ̸=j

Mi Mjuij,

=
B1

M2
s

∑
i

uii M2
i + 2

B2

M2
s

∑
i>j

Mi Mjuij.

(2.98)

We must then relate B1(2) to what is measured experimentally: the relative length

extensions along the crystal axes. The magnetostriction coefficients λijk represent this

fractional change in length along the crystal axes [ijk] when the material is saturated

along this direction (the saturation magnetisation Ms is aligned with the axes). For

cubic materials there are two independent magnetostriction coefficients: λ100 and λ111

which are obtained experimentally. The expression for the magnetostriction: ∆l/l =

λs, is as follows,

∆l
l

= λs =
3
2

λ100

(
α2

1β2
1 + α2

2β2
2 + α2

3β2
3 −

1
3

)
+ 3λ111 (α1α2β1β2 + α1α3β1β3 + α2α3β2β3) ,

(2.99)

and is the fractional change in length measured in the crystallographic direction with

directional cosines β1, β2 and β2 between the orthogonal axes and the measurement

direction, and α1, α2 and α3 between the saturation magnetisation and axes (as be-

fore)[109]. This is shown in Fig.2.17. It is common to assume αi = βi, as the magneti-

zation follows the effective field. Using α2
1 + α2

2 + α2
3 = 1,

λs = λ100 + 3(λ111 − λ100)
(
α2

1α2
2 + α2

2α2
3 + α2

3α2
1
)

. (2.100)
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FIGURE 2.17: The directional cosines in the orthogonal cubic basis. The
angles ϕi are between M and the axes, while θ are between the effective

field H , and the axes.

In order to relate B1(2) to λ100(111) for use in Eqn.(2.98), the saturation magnetistriction

is written in terms of the strains present,

dl
l
= λs = ∑

i
uiiβ

2
i + 2 ∑

i>j
uijβiβ j. (2.101)

By writing the strains uij as functions of B1(2): uij(B1(2)), and equating Eqns.(2.100)

and .(2.101), we can express B1(2) by λ100(111). Minimising the total energy F = FE +

FME(+FM) with respect to uij,

∂F
∂uii

= B1α2
i + c11uii + c12

(
ujj + ukk

)
= 0,

∂F
∂uij

= B2αiαj + 2µuij = 0.

(2.102)

Which are re-written explicitly as,

uii =
B1
[
c12 − (c11 + 2c12)α

2
i
]

(c11 − c12)(c11 + 2c12)
, uij = −

B2αiαj

2µ
. (2.103)
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Substituting these into Eqn.(2.101) and equating this with Eqn.(2.100) we obtain[110],

λ100 =
−2B1

3(c11 − c12)
, λ111 =

−B2

3µ
. (2.104)

While we understand the dependence of the coupling constants Bi, to the magne-

tostriction components λijk, the latter are obtained experimentally.
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2.4 Literature outlook

Let us briefly summarise how the background literature presented in this chapter is

expanded on by the work presented in this thesis. The mechanism with which acoustic

(elastic) waves may excite spin waves and vice versa is well documented as shown in

Section 2.3[111–114]. Recently the coupled waves have been characterised and shown

to exhibit both magnetic and acoustic degrees of freedom[49, 52, 53]. The waves there-

fore retain the high scalability, low volatility and non-reciprocity of the magnetic com-

ponent, while retaining the energy efficiency of the acoustic[11, 12, 16]. Spin wave

computing architecture utilising a magnetoelastic wave however will still be ham-

pered by the proverbial weakest link in the chain: the Gilbert damping introduced

in the LLG Eqn.(2.15). This can be circumvented by ensuring that the Gilbert damp-

ing is not present over the whole structure, by utilising only laterally small coupling

regions. The literature surrounding these finite sized magnetic elements focuses on

the efficient excitation and observation of the hybrid magnetoelastic modes[49], the

acoustic wave driving of a magnetic resonance in films[29, 32, 115] or arrays[16, 116]

and the magnetoacoustic signatures (anticrossings) in the phononic band structure[66,

117]. An omission however, is the effect magnetic elements have on the propagating

acoustic waves reflection and transmission coefficients, in various geometries. The

reflection and transmission coefficients of a thin magnetic film are important for mag-

netoacoustic processing. For example, hypothetical magnetoacoustic architecture will

utilize phonons carrying signals between elements that use their magnetic features

to do some computation. In this case the reflection and transmission of the coupled

acoustic waves should be well known to manipulate the signal. The work presented

in this thesis aims to correct this omission.
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Chapter 3

Scattering of acoustic waves from

magnetic thin slabs

The coupling between the magnetic and elastic degrees of freedom in magnetostric-

tive materials is promising for wave based computing as presented in Chapter 2. The

reflection and transmission coefficients of traveling acoustic waves from thin magne-

tostrictive films has seldom been covered in scientific literature. Furthermore, a mag-

netoacoustic metamaterial (which may form the baseline of some computing array)

will manipulate the scattering and transmission of the traveling wave to form coherent

effects. This would require a thorough characterization of the scattering coefficients

of the constituent resonators, while compounding any large (magnetic) absorption

(Gilbert damping) they have. The absorption was considered in Ref.[29], however

the goal there was to drive a magnetic resonance and so the coupling is presented

as a product of magnetic configuration, rather than a traveling acoustic wave. For a

magnetoacoustic wave the magnetic damping can be minimised by laterally small el-

ements, so a structure that exploits the resonance in magnetoacoustic coupling should

be composed of thin slabs in the propagation direction.

The work shown in this Chapter lays the groundwork theory for and illustrates
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the expected magnetoelastic signatures in the reflection and transmission coefficients

of isolated thin slab resonators. The resonators are somewhat unphysical, composed

of bulk elastic waves coupling to magnetization dynamics in an infinite slab, but the

exploration of these resonant signatures reveals the problems that may be faced by

a magnetoacoustic metamaterial. Primarily, it explores how they may be tailored to

produce stronger responses, reducing the effect of damping. The results of this chapter

were published in Ref.[118] and it is arranged as follows. We begin by giving the

analytical theory of the coupling of the elastic wave to the ferromagnetic resonance

in the Damon-Eshbach geometry and the give the typical dispersions at resonance.

We then derive the reflection and transmission coefficients from this slab. In Section

3.3 we then explore the causes of non-reciprocal reflection in this structure and apply

this knowledge to the theory of magnetically excited acoustic waves in 3.4. Finally

we introduce a figure of merit and discuss its behaviour of common magnetostrictive

materials to characterise the strength of the magnetoelastic scattering.

3.1 Magnetoacoustic dispersion

We start by considering a simple geometry in which magnetization dynamics can

couple to propagating elastic waves: a thin magnetostrictive film. This geometry is

illustrated in Fig.3.1, a ferromagnetic slab (M) of thickness δ, is embedded inside a

non-magnetic (E) medium. The slab is assumed to be infinite in the yz plane, and

so the propagating elastic waves are considered to be in the bulk. These waves are

then incident to the slab from the ±x̂ (left, right) at an angle of θ to the film normal.

Herein we will use magnetic and non-magnetic to refer to the magnetostrictive film

and elastic matrix respectively. An external bias field of HB = HBẑ is applied to the
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FIGURE 3.1: A magnetostrictive thin slab (red) is embedded inside a
non-magnetic matrix (blue). The plane-normal of this slab is parallel
to the predominant propagation axis of the input bulk acoustic wave
(n̂ ∥ kx) here shown as a transverse wave. The slab is magnetized by an
applied bias field (shown here in the Damon-Eschback geometry). The
reflection rω, and transmission tω, of the propagating acoustic waves
will include characteristics from acoustic impedance mismatch at the

boundaries, as well as the coupling to the magnetization dynamics.

system, and the magnetic inclusion has saturation magnetization Ms, M = ∑i Mi î. As

a number of parameters (such as wavenumber k) can be different inside the magnetic

and non-magnetic media we use the superscripts ′M′ and ′E′ to distinguish between

those respectively.

To include the magnetic component in the elastic equations of motion we derive

them from the free energy, including magnetostrictive coupling. Representing the

total energy as a sum of elastic FE, magnetic FM and magnetoelastic FME contributions:

F = FE + FM + FME we write,[67, 119]

FE =
1
2

c11

N

∑
i

u2
ii + c12

N

∑
i,j, i ̸=j

uiiujj + 2c44

N

∑
i,j, i ̸=j

u2
ij , (3.1)

FM = −µ0HB · M +
µ0

2 ∑
i

Ni M2
i , (3.2)

FME =
2B1

M2
s

∑
i ̸=j

Mi Mjuij +
B2

M2
s

∑
i

M2
i uii , (3.3)
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here i, j = x, y, z, the strain tensor is ujk = 1
2

(
∂jUk + ∂kUj

)
and Uj are the displace-

ment vector components. Here B1 = B and B2 represent the anisotropic and isotropic

magnetoelastic coupling factors respectively, and ci the elastic stiffness tensor com-

ponents. In Eqn.(3.2) we neglect the exchange interaction, as the wavelength of any

non-uniformity is set by the elastic wavelength, which is in the order of 100’s of nm,

whereas the thickness, δ ≃ 10nm. To verify this assumption, the exchange field in

a Co-like slab would be: µ0Ms(klex)2 ≃ 9mT. We have also neglected the magne-

todipolar interaction, which vanishes for normal incidence as there is homogeneity

in y. However for finite angles this may be significant and we can treat this as con-

tributions to the demagnetizing coefficients, as in Eqns.(2.27), which gives the dis-

persion in Eqn.(2.26). Returning to Eqns.(3.1-3.3), these are of general form, and so

must be applied to the geometry in Fig.3.1. The direction of magnetization: M =

Mxx̂ + Myŷ + Mzẑ, is important. If we assume a Damon-Eschback (DE) geometry

(k ⊥ Ms, Mx, Mz ≪ My = Ms) in the linear regime, the transverse strain uij compo-

nents couple stronger to the magnetization, as seen in Table.3.1. A Backward-Volume

k = kx x̂ + kyŷ DE (kx ⊥ Msẑ) BV (kx ∥ Msx̂)
Linear σxz, σyz σxz

Non-linear - σzy

TABLE 3.1: The linear and non-linear components of strain coupled in
the geometry illustrated by Fig.3.1

(BV) geometry (k ∥ Ms), My, Mz ≪ Mx = Ms, on the other hand would support

longitudinal strains uii, however its transverse wave coupling would be weak. As

our design specification requires we keep the lateral dimensions in the direction of

propagation down, a BV geometry would require large biasing, so we stick to the DE

geometry.

We now consider the dispersion of the coupled magnetoelastic waves, first in an
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infinite medium and then in the thin film geometry of Fig.3.1. Let us assume that the

transverse acoustic plane waves propagates to the right left (+kx̂), with polarization

along the ẑ axis, Ux = Uy = 0, Uz = U(x, y, t). This displacement polarization is

parallel to the applied bias field (U ∥ HB). The non-zero strain tensor components are

uxz =
1
2 ∂xU and uyz =

1
2 ∂yU, and the free energy F,

F = 2µ(u2
xz + u2

yz)− µ0HBMs +
µ0

2
(Nx M2

x + Ny M2
y) +

2B
Ms

(Mxuxz + Myuyz), (3.4)

where herein we write C44 = µ, Uy = U. The Ny component of the demagnetizing field

is retained for magnetostatic surface waves (MSSWs) as discussed, where: Ny(ky) ̸= 0.

For the ’back-action’ effect of the magnetization on the propagating wave, we include

the magneto-elastic contribution to the stress, σ
(ME)
jk = δFME/δujk, into the elastic mo-

mentum balance equation F′
i = ∂kσik = ∂k [∂F/∂uik · (1 + δik) /2] giving,

ρ
∂2U
∂t2 =

∂

∂x

(
µ

∂U
∂x

+
B

Ms
Mx

)
+

∂

∂y

(
µ

∂U
∂y

+
B

Ms
My

)
. (3.5)

This recovers the bulk elastic wave equation
(
ρ∂2

t U = µ∇2U
)

by setting B = 0. The

magnetization dynamics precess about the effective magnetic field Heff, µ0Heff =

−δF/δM as in the linearized LLG[7]. The dynamic magnetization components are

then written as,

−∂Mx

∂t
= γµ0(HB + Ny Ms)My + γB

∂U
∂y

+ α
∂My

∂t
, (3.6)

∂My

∂t
= γµ0 (HB + Nx Ms) Mx + γB

∂U
∂x

+ α
∂Mx

∂t
, (3.7)

where γ is the gyromagnetic ratio and α is the Gilbert damping constant. We also
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introduce the notations ωx(y) = γµ0(HB + Nx(y)Ms), ω̃x(y) = ωx(y) − iωα. As the

material parameters (µ, B, Nx,y) are assumed constant in each material, we shall seek

solutions of the equations in the form of plane waves U, Mx(y) ∝ exp[i(kω,xx + kω,yy −

ωt)] and henceforth consider all variables in the Fourier domain.

As in the case of coupled harmonic oscillators[27] the dispersion will give com-

plex frequencies along with an avoided anticrossing. To obtain an expression for the

dispersion, we solve the following system of homogeneous equations:


−iω ω̃y iγBkω,y

ω̃x iω iγBkω,x

iBkω,x/ρMs iBkω,y/ρMs ω2 − µk2/ρ.

 ·


Mx

My

U

 = 0. (3.8)

For non-trivial solutions we obtain,

ω2 =
1
2

(
µk2

ρ
+ ω̃xω̃y

)
± 1

2

√
(

µk2

ρ
− ω̃xω̃y)2 +

4γB2

ρMs

(
ω̃yk2

ω,x + ω̃xk2
ω,y

)
, (3.9)

where we let ϕ be the angle between the propagation vectors: kx = k cos ϕ, ky = k sin ϕ.

The elastic wave propagating in an infinite magnetostrictive medium propagates with

wavenumber kω, with resonant frequency ωME,

k2
ω =

ω2ρ
(
ω2 − ω̃xω̃y

)
µ
[
ω2 − ω̃xω̃y +

γB2

Msµ

(
ω̃y cos2 ϕ + ω̃x sin2 ϕ

)] , (3.10)

ω2
ME = ω̃xω̃y −

γB2

Msµ

(
ω̃y cos2 ϕ + ω̃x sin2 ϕ

)
. (3.11)
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However, Eqn.(3.10) will differ for a finite sized film as linear momentum along

the interface is conserved, thus kω,y is constrained by the non-magnetic matrix,

kω,y =

√
ρE

µE ω sin θ. (3.12)

This refracts the elastic wave in the film and we now make the distinction between

parameters inside the non-magnetic matrix, i.e kE, and magnetic slab, i.e: kM. As a

result, we rearrange Eqn.(3.9) for kω,x,

(kM
ω,x)

2 =
ρMω2 (ω2 − ω̃xω̃y

)
/µM − k2

ω,y
(
ω2 − ω̃xω̃y + γB2ω̃x/MsµM)

ω2 − ω̃xω̃y + γB2ω̃y/MsµM . (3.13)

This describes the hybridization between acoustic waves and magnetic precession at

frequencies close to ferromagnetic resonance (FMR) at frequency ωFMR, with linewidth

ΓFMR. Away from the resonance, Eqn. (3.13) returns the linear dispersion of acoustic

waves. We illustrate the behaviour of Eqns.(3.10) and (3.13) in Fig.3.2. Fig.3.2.(a) is

similar to coupled harmonic oscillators: we find an anti-crossing, centered around

the overlap of FMR and bulk acoustic dispersion[120, 121]. The modes wavenumber

diverges approaching from lower frequencies: ω2 < ω̃xω̃y, and converges above ω2 >

ω̃xω̃y. This panel illustrates that as θ increases, so too does the anticrossing width,

which is synonymous with the strength of the magnetoacoustic coupling. Fig.3.2.(b)

illustrates Eqn.(3.10) for α ̸= 0. The damping suppresses the divergence and so k is

not discontinuous. For finite incidence the conservation of linear momentum along

the interface suppresses the anticrossing further, as shown in Fig.3.2.(c). Evidently

the wave is refracted toward the slab normal, so finite angles amplify magnetoelastic

effects far less.
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FIGURE 3.2: (a) Eqn.(3.9) (b) Eqn.(3.10) for a Co-like slab. (c) Eqn.(3.13)
when a Si3N4 non-magnetic layer is added

We can supplement the discussion of Fig.3.2 by inspecting the dynamic magne-

tization components, Mx(y). For the magnetization precession in the magnetic layer

driven by the acoustic wave, we obtain

Mx =
γB
(
ωkω,y + iω̃ykω,x

)
ω2 − ω̃xω̃y

U, (3.14)

My =
iγB

(
ω̃xkω,y + iωkω,x

)
ω2 − ω̃xω̃y

U. (3.15)

These equations represent the excitation of the magnetization by the transverse dis-

placement inside the magnetic material, and are illustrated in Fig.3.3. The response of

Eqns.(3.14) and (3.15) exhibits a resonant pole at the ferromagnetic resonance ωFMR,

of Eqn.(2.19), as shown in Fig.3.3.(a). We assign a ferromagnetic linewidth ΓFMR by

writing Eqn.(2.19) as,

(ωFMR + iΓFMR)
2 = ω̃xω̃y. (3.16)
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FIGURE 3.3: (a) Percentage dynamic magnetization components Mx
and My for normal incidence as a function of frequency over the fer-
romagnetic resonance. (b) The θ dependence of Mx and My. For all

panels U = 0.1pm, and a Co-like material is assumed.

In the limit of small α we approximate this as,

ω2
FMR = ωxωy, (3.17)

ΓFMR = α(ωx + ωy). (3.18)

Rearranging Eqns.(3.14) and (3.15), we find mx ∝ my
√

ωy/ωx, showing that M is

highly elliptical due to the demagnetising field along x: Ny ≪ Nx[122]. The increase

anticrossing magnitude in Fig.3.2 with finite θ is therefore due to coupling to the larger

My component. At finite θ, both Mx and My increase in magnitude, as illustrated in

Fig.3.3.(b). This follows from Eqns.(3.14) and (3.15), as kω,y always couples stronger:

ωy < ωFMR < ωx. This further increases the magnetoelastic effect.
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3.2 Reflection and transmission

In this section we investigate the changes the magnetoelastic coupling forces on the

reflection and transmission coefficients lineshapes.The coefficients are derived using

the impedances in the non-magnetic and magnetic media. At resonance, the coupling

is attributed to an asymmetric Fano-lineshape in the reflection and transmission coef-

ficients and the effect of damping on the magnitudes considered.

3.2.1 Impedance

The expressions for the impedance inside the magnetic inclusion ZM are found using

the equations of motion, and ZM may be expressed

ZM =
σM

xz

U̇M
=

iσM
xz

ωUM . (3.19)

The form of σM
xz is shown by Eqn.(3.5),

iσM
xz

ωUM =
i

ωUM

(
iµMkM

ω,xUM +
B

Ms
Mx

)
, (3.20)

=
−µMkM

ω,x

ω

(
1 +

γB2

µMMs

ω̃y

ω2 − ω̃xω̃y

)
+

γB2

Ms

ikω,y

ω2 − ω̃xω̃y
. (3.21)

In the case where the magnetoelastic coupling is removed (B = 0), this returns to the

expression for acoustic impedance, ZM
+ , in the forward (+x̂) direction. Impedance in

the magnetic material, ZM, and non magnetic, ZE, in +x̂ are

ZM
+ =

µMkM
ω,x

ω

(
1 +

γB2

µMMs

ω̃y

ω2 − ω̃xω̃y

)
− γB2

Ms

ikω,y

ω2 − ω̃xω̃y
, (3.22)

ZE
+ =

µEkE
ω,x

ω
=
√

ρEµE cos θ. (3.23)
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Impedance is typically defined as positive, as it represents opposition to an elastic

displacement. As realistic magnetoelastic effects simply modify the acoustic around

the magnetic resonance, as in Fig.3.2, we can safely assume ZM
+ > 0. However, as we

exchange kω,x → −kω,x in Eqn.(3.20) we obtain

ZM
− =

−µMkM
ω,x

ω

(
1 +

γB2

µMMs

ω̃y

ω2 − ω̃xω̃y

)
− γB2

Ms

ikω,y

ω2 − ω̃xω̃y
, (3.24)

ZE
− =

−µEkE
ω,x

ω
= −

√
ρEµE cos θ, (3.25)

in which ZM
− < 0. As such we express the impedances in the forward and backward

directions as ratios,

η =
ZM
+

ZE
+

, η̃ =
ZM
−

ZE
−

=
−ZM

−
ZE
+

=
Z̃M

ZE
+

, (3.26)

where we introduce Z̃M in order to have both ratios divided by ZE
+,

Z̃M = −ZM
− =

µMkM
ω,x

ω

(
1 +

γB2

µMMs

ω̃y

ω2 − ω̃xω̃y

)
+

γB2

Ms

ikω,y

ω2 − ω̃xω̃y
. (3.27)

Comparing Eqns.(3.22) and (3.27) we can see that the coupling to the magnetization

dynamics causes the impedance to be non-reciprocal. For a dissipationless system

(α = 0) the relation between the ratios η and η̃ is

η̃ = (η)∗ , (3.28)

as ω̃x(y), kω,x(y) are real. In this case ZM and Z̃M are complex conjugates and so the

non-reciprocity under exchange of kx → −kx is suppressed. However, this is not true

for finite damping (α ̸= 0) as kω,x(y), ω̃x(y) are complex, which ensures Z̃M ̸=
(
ZM)∗.

In Eqns.(3.24) and (3.25) we exchanged kω,x ↔ −kω,x, for a change in angle sign, i.e:
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θ ↔ −θ, the sign of kω,y is only reversed and so the result is the same:

kω,x → −kω,x : ZM
+ → ZM

− , ZE
+ → ZE

−, η → η̃, (3.29)

θ → −θ : ZM
+ → Z̃M, ZE

+ → ZE
+, η → η̃. (3.30)

The frequency response of the magnetoelastic impedances ZM(Z̃M) will contribute

to the frequency response of the reflection and transmission (acoustic impedances are

not frequency dependent), and so we plot these in Fig.3.4. Singularities in Fig.3.4 can
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FIGURE 3.4: The impedance inside the magnetic material ZM is shown
for small damping α = 0.0001. Dashed vertical lines indicate the posi-
tion of fMR as in Eqn.(3.3) and the solid line the position of fFMR as in
Eqn.(3.17). It is scaled to uncoupled impedance Z0 =

√
ρMµM to high-

light the modulation about the magnetic resonance.

be seen by inspecting Eqns.(3.22). The most apparent is at ωFMR, when the magne-

toelastic contributions diverge. This is indicated by the solid, black vertical line in

Fig.3.4. The second is the point where ReZM → 0. We denote this as frequency ω0,

which coincides with ωME in Eqn.(3.11) for θ = 0:

ω2
0 = ω̃xω̃y −

γB2

MsµM ω̃y. (3.31)



3.2. Reflection and transmission 65

For finite θ and large α the behaviour is less trivial, as there are also divergences in

kM
x as in Eqn.(3.13) mixing with the divergences at ωFMR in the first bracketed term

of Eqn.(3.27). For example, as kx divergences before ωFMR (as can be seen in Fig.3.2),

this causes the dip at lower frequencies. The higher frequency peak is caused by the

divergence at ωFMR, which is also slightly suppressed by the reduced kx. In full, the ex-

pressions have complex numerator and denominator, which add further terms which

complicate the exact positions of these peaks. However, the frequencies f0 and fFMR

remain good approximations for the singularities of ZM, which can be related to simi-

lar points (dips and troughs) in the reflection coefficient.

3.2.2 Reflection and transmission equations

We now employ a linear algebraic approach to solve for the reflection rω, and trans-

mission tω, directly. The boundary conditions of continuous displacement, U, and

stress, σxz, form the following expression by employing Eqns.(3.5) and (3.8),

 U

σxz

 =

 0 0 1

B
Ms

0 µ∂x




Mx

My

U

 . (3.32)

From Eqn.(3.13) the left and right decaying waves have different solutions in the slab,

which we denote here as kL and kR. We will also introduce ξ = (Mx, My, U)T. We

express ξ as follows for left and right propagation

ξ = AξL exp(ikLx) + BξR exp(ikRx), (3.33)
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such that ξL(R) represent the respective amplitudes of ξ. The boundary conditions of

continuous U and σxz are written,

 U

σxz

 = ηR A exp(ikRx) + ηLB exp ikLx, (3.34)

where,

ηR(L) =

 0 0 1

B
Ms

0 µ∂x

 ξR(L). (3.35)

We now consider the situation outside the slab. The boundary conditions will be sim-

ilar in form to Eqn.(3.32), with an analogue matrix of η in Eqn.(3.35) ,which we define

as ζ,

ζR(L) =

0 0 1

0 0 µ∂x

 ξR(L). (3.36)

The wavenumber outside (which is purely acoustic and the same either side of the

slab) is kE, thus we can write in analogy of Eqn.(3.33) for outside the slab to the left,

 U

σxz

 = ζR I exp(ikEx) + ζLR exp(−ikEx). (3.37)

For the right at x > δ we then have the following boundary condition,

 U

σxz

 = ζRT exp[ikE(x − δ)]. (3.38)
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The matched equations at the boundaries then take the form,

ζR I + ζLR = ηRA + ηLB, (3.39)

ζRT = ηRA exp(ikRδ) + ηLB exp(ikLδ). (3.40)

To solve for the unknowns (A, B), let us introduce a new basis {νL, νR} which is the

reciprocal of {ηL, ηR}. Thus the following relations hold,

⟨νR, ηR⟩ = ⟨νL, ηL⟩ = 1, ⟨νL, ζR⟩ = ⟨νR, ζL⟩ = 0. (3.41)

By applying the reciprocal basis vectors < νL| and < νR| to Eqns.(3.39) and (3.40), we

recast these sets of simultaneous equations to obtain,

A = ⟨νR, ξR⟩I + ⟨νR, ζL⟩R = ⟨νR, ζR⟩T exp(−ikRδ), (3.42)

B = ⟨νL, ξR⟩I + ⟨νL, ζL⟩R = ⟨νL, ζR⟩T exp(−ikLδ). (3.43)

These eliminate the unknowns (A, B) and allow us to solve for reflection rω, and trans-

mission tω. The reflection coefficient rω, is expressed as

rω =
R
I
=

(exp(ikLδ)− exp(ikRδ))⟨νL, ξR⟩⟨νR, ξR⟩
⟨νL, ξR⟩⟨νR, ξL⟩ exp(ikRδ)− ⟨νL, ξL⟩⟨νR, ξR⟩ exp(ikLδ)

. (3.44)

We may then solve to find the transmission coefficient tω as,

tω =
T
I
=

⟨νL, ξR⟩⟨νR, ξL⟩ − ⟨νL, ξL⟩⟨νR, ξR⟩
⟨νL, ξR⟩⟨νR, ξL⟩ exp(ikRδ)− ⟨νL, ξL⟩⟨νR, ξR⟩ exp(ikLδ)

. (3.45)
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For the magnetostrictive material we have already found that we can express the

impedance as a function of the displacement, as in the combination of Eqns.(3.14) and

(3.20). Thus ηR(L) and ζR(L) may be expressed through the impedance of the magnetic

slab and non-magnetic matrix respectively. This gives the following set of equations,

ζR(L) =

 1

±Z+
0

 , ηR =

 1

ZME

 , ηL =

 1

−Z̃ME

 . (3.46)

The reciprocal basis is then given by,

νL =
1

ZME + Z̃ME

ZME

−1

 , νR =
1

ZME + Z̃ME

Z̃ME

1

 . (3.47)

By making use of Eqns.(3.26) and (3.44-3.45) we find

rω =
(η̃ − η) sin(kω,xδ)− (ηη̃ − 1) sin(kω,xδ)

(η̃η + 1) sin(kω,xδ) + i(η + η̃) cos(kω,xδ)
, (3.48)

tω =
i(η + η̃)

(η̃η + 1) sin(kω,xδ) + i(η + η̃) cos(kω,xδ)
. (3.49)

In the case of a dissipationless system (α = 0) we employ the relation given

by Eqn.(3.28) to prove that energy is indeed conserved. For brevity we denote

sin(kω,xδ) = s and cos(kω,xδ) = c. Substituting in we find,

|rω|2 =
[(η∗ − η)s + (ηη∗ − 1)s] {(η − η∗)s + (η∗η − 1)s}
[(η∗η + 1)s + i(η + η∗)c] {(ηη∗ + 1)s − i(η∗ + η)c} . (3.50)

Here one may use the following relations for a dissipationless system,

η + η∗ = η∗ + η, η∗η ± 1 = ηη∗ ± 1, (3.51)
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to reduce the scattering coefficents to

|rω|2 =
(ηη∗ − 1)2s2 − (η − η∗)2 s2

(η∗η + 1)2s2 + (η + η∗)2c2 , (3.52)

|tω|2 =
(η + η∗)2

(η∗η + 1)2s2 + (η + η∗)2c2 . (3.53)

Which then add to give |rω|2 + |tω|2 = 1. For a lossy slab the absorption is found as,

|aω|2 = 1 − |rω|2 − |tω|2.

3.2.3 The effect of Gilbert damping

To understand the resonant magneto-elastic response, it is instructive to consider first

the case of normal incidence (θ = 0) using Eqns. (3.48) and (3.49). In this case

the demagnetising energy takes a simplified form due to the lack of immediate in-

terfaces to form surface poles in the y direction, so simply Nx = 1 and Ny = 0.

Including magneto-elastic coupling (B ̸= 0), we plot the frequency dependence of

rω, tω and aω in Fig.3.5. To gain a quantitative insight, Fig.3.5 assumed a magnetic

inclusion similar to cobalt (Co): ρM = 8900kgm−3, B = 10MPa, µM = 80GPa,

γ = 176GHzT−1, Ms = 1MAm−1, embedded into a non-magnetic matrix similar

to Si3N4: ρE = 3192kgm−3, µE = 298GPa. To highlight the resonant behaviour,

we first suppress α to 10−4. The reflection coefficient exhibits an asymmetric non-

monotonic dependence, shown as a black curve in Fig.3.5(a), which is characteristic

of a Fano resonance[66, 98, 123]. This line shape can be attributed to coupling be-

tween the discrete FMR mode of the magnetic inclusion and the continuum of prop-

agating acoustic modes in the surrounding non-magnetic material. If the two ma-

terials had matching elastic properties, rω would exhibit a symmetric Breit-Wigner
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FIGURE 3.5: The frequency dependence of the absolute values of (a) re-
flection and (b) transmission coefficients and (c) absorbance is shown
for a 20nm thick Co-like slab. The vertical dashed and solid black lines
represent the ferromagnetic resonance frequency ωFMR and magnetoe-
lastic resonance frequency ωME respectively. The elastic and magnetic
parameters are shown in the text, with a bias field of µ0HB = 50mT

giving fME ≈ 7.138 GHz.

lineshape[124]. The transmission shown in Fig.3.5(b) exhibits an approximately sym-

metric dip near the resonance[125]. In actuality this dip is also a Fano lineshape, ap-

pearing symmetric only due to its weakness (i.e: the Fano-resonance is barely viable

as the non-resonant transmission is close to unity rather than zero). The absorbance

|aω|2 = 1 − |rω|2 − |tω|2, shown in Fig.3.5(c) exhibits a symmetric peak, since the
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acoustic waves are damped in our model only due to the spin coupling. The fig-

ures illustrate how the magneto-elastic resonance is affected by the damping, as in

each the response for α of 10−3 and 10−2 is also shown (red and blue curves). An in-

crease of α from 10−4 to 10−3 significantly suppresses and broadens the resonant peak.

For a more common, realistic value of 10−2 the resonance is suppressed entirely (i.e:

the Fano-resonance is barely viable as the non-resonant transmission is close to unity

rather than zero). Fitting a Lorentzian curve to the resonant contributions, as shown

in Fig.3.6, there is a resonant background R0 due to the Fabry-Perot resonances of the
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FIGURE 3.6: The reflection due to only the magnetoelastic coupling.
Background acoustic reflection is removed by matching acoustic pa-

rameters (ρM = ρM, µM = µE).

slab. This is accounted for in Fig.3.6 by removing the elastic impedance mismatch:

ρM = ρM, µM = µE. This illustrates explicitly that the magnetoelastic resonant effects

are being suppressed in reflection and transmission by the Gilbert damping. In the

case of α = 0 we can obtain an expression for the intrinsic linewidth ΓR. Near ω0

Eqn.(3.22) is:

η0 =
iµM tan θω

µEωy
, (3.54)
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and η̃0 = −η0 via Eqn.(3.28) as α = 0. This gives the following expressions for the

relations in Eqn.(3.48),

1 − η0 = 1 + η̃0 = 1 − i
µMω tan θ

µEωy
, (3.55)

η0η̃0 =

(
µMω tan θ

µEωy

)2

. (3.56)

Then we expand near ω0,

η0 + η̃0 =
−4
(
µM)2 Msω0δω

γB2µEωy
. (3.57)

In the limit kωδ ≪ 1 (sin kδ = kδ, cos kδ = 1), we can rearrange Eqn.(3.48) using the

above equations to a Lorentzian form,

rω =
iΓR/2

(ω − ωME) + iΓR/2
eiϕ. (3.58)

The phase ϕ represents a resonant phase, which is non-zero for finite θ and ap-

proaches π rapidly, while ΓR is the radiative linewidth,

ϕ = −2 arctan
[

µM

µE

√
ωx

ωy
tan θ

]
, (3.59)

ΓR =
γB2

2Ms(µM)2 cos θ

√
ρEµE

[
ωycos2θ +

(
µM

µE

)2

ωxsin2θ

]
δ. (3.60)

The origin of this linewidth is the re-radiated acoustic modes. For example, the in-

put propagating acoustic modes are converted into localised magnon modes (here the

magnon mode has k = 0). These modes in turn either decay due to the Gilbert damp-

ing or are re-emitted as phonons. The rates of these transitions are proportional to

ΓFMR and ΓR, respectively, and the total decay rate is Γ = ΓR + ΓFMR. This is similar
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to resonant scattering in quantum theory[124], such that ΓR and ΓFMR are analogous

to the the elastic (Γe) and inelastic (Γi) linewidths respectively. When α = 0, ΓFMR

vanishes, and Γ = ΓR. A stronger magnetoelastic coupling (i.e. high values of B)

could countermand the suppression of the magnetoelastic resonance by Gilbert damp-

ing. However, this will likely also enhance the phonon contribution to the magnetic

damping[64].

3.2.4 Oblique incidence reflection

Introducing an oblique angle to the incident acoustic wave modulates the response

further as shown in Fig.3.7. Fig.3.7.(a) does not account for background reflection,

while Fig.3.7.(b) does, hence it returns Lorentzian lineshapes. The magnetoelastic res-

onant contribution seems to increase with θ as shown in Fig.3.7.(b). This is not surpris-

ing, as shown in Fig.3.3 and Eqns.(3.14) and (3.15), the magnetization couples stronger

to ky. The modulation in Fig.3.7.(a) with θ must be a consequence of the elastic back-

ground. In fact if one were to compare panels (a) and (b), the 30◦ curves are very

similar, and so (for an angle of 31◦) the background elastic reflection is completely re-

moved. This is confirmed by the angle dependence of the impedances. For θ = 0 the

impedance of the ferromagnetic (M) material is indeed less than the impedance of the

nonmagnetic (E), ZM =
√

ρMµM < ZE =
√

ρEµE. However, the transverse speeds

ct =
√

µ/ρ show that the speed inside the ferromagnet is less than the non-magnetic,

cM < cE. For any incidence angle θE, the angle inside the ferromagnet θM, is therefore

refracted toward the normal (kE
y = ω sin θE/cE = kM

y = ω sin θM/cM), thus θM < θE.

For the wave propagating at oblique incidences,

Zi(θ ̸= 0) = Zi(θ = 0) cos θi. (3.61)
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FIGURE 3.7: (a) Peak R( f ) is enhanced and slightly shifted to the left
in the oblique incidence geometry (θ > 0◦). Coloured curves represent
specific incidence angles sweeping from 0◦ to 45◦. Moderate Gilbert
damping of α = 10−3 is assumed. The dashed vertical line corresponds
to the magnetoelastic resonance frequency. (b) The magnetoelastic con-
tribution only, obtained by subtraction of the uncoupled (B = 0) reflec-

tion.

To explain the angular dependence of Fig.3.7.(a) we plot Fig.3.8, where we use

Eqn.(3.61) to plot the impedances inside the two media as a function of θ. We can
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FIGURE 3.8: Acoustic impedances of the magnetic and non-magnetic
matrix are shown (blue dot-dashed and red-dashed respectively) for
varied incidence angle, θE. The black solid curve indicates the maxi-

mum reflection associated with the Fabry-Perot resonance for θE.

see the peak background reflection (black curve), which is a typical Fabry-Perot reso-

nance, goes to zero at precisely (31◦) where the acoustic impedances of the two media

(red, blue) are the same. This is just a Brewster angle for this particular geometry



3.3. Reciprocal reflection and transmission coefficients 75

whereby rω → 0, tω → 1[126]. The modulation due to magnetoelastic coupling is then

the only contribution the reflection at this angle.

3.3 Reciprocal reflection and transmission coefficients

As Eqn.(3.29) shows the impedance is non-reciprocal we expect a similar response in

the reflection. To observe non-reciprocity in this individual resonator (as well as in

metamaterials) we must consider the scattering coefficients of waves traveling to the

left (r̃, t̃). For waves traveling inside the magneto-acoustic material we assume the

same form as in Eqns.(3.34) and (3.35), as ultimately we do not derive the amplitudes

of these waves and the difference between left and right propagating waves is already

taken account of inside the slab by ηR and ηL. To exemplify terms that do alter with a

change of incidence sign, we include the same ’un-tilded’ form (i,e: η̃R(L) = ηR(L), etc.)

for things that do not. Similar to rω and tω we define U and σxz for waves incident at

the boundaries from the non-magnetic material as

 U

σxz

 = ζLT̃ exp[ik̃E(x − δ)], (3.62)

 U

σxz

 = ζL Ĩ exp[ik̃E(x − δ)] + ζRR̃ exp[−ik̃E(x − δ)] (3.63)

which are the reversed systems equivalent of Eqns.(3.37) and (3.38) respectively. We

match and obtain

ζLT̃ = ηRA + ηLB, (3.64)

ζL Ĩ + ζRR̃ = ηRA exp(ikRδ) + ηLB exp(ikLδ), (3.65)
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which are of similar form as Eqns.(3.39) and (3.40). Following the same procedure by

introducing the reciprocal basis {νL, νR} we eliminate unknowns (A, B),

exp(ikRδ)⟨νR, ζL⟩T̃ = ⟨νR, ζL⟩ Ĩ + ⟨νR, ζR⟩R̃, (3.66)

exp(ikLδ)⟨νL, ζL⟩T̃ = ⟨νL, ζL⟩ Ĩ + ⟨νL, ζR⟩R̃. (3.67)

These are again be solved for t̃ω = T̃/ Ĩ and r̃ω = R̃/ Ĩ as for the non-reciprocal case.

We find t̃ω = tω as in Eqn.(3.49) and only r̃ω varies as,

r̃ω =
R̃
Ĩ
=

(exp(ikLδ)− exp(ikRδ))⟨νR, ξL⟩⟨νL, ξL⟩
⟨νL, ξR⟩⟨νR, ξL⟩ exp(ikRδ)− ⟨νL, ξL⟩⟨νR, ξR⟩ exp(ikLδ)

. (3.68)

We find the same expressions for ηR(L), ζR(L) and νR(L) as in Eqns.(3.46) and (3.47) and

using Eqns.(3.26) obtain,

r̃ω =
(η − η̃) sin(kω,xδ)− (ηη̃ − 1) sin(kω,xδ)

(η̃η + 1) sin(kω,xδ) + i(η + η̃) cos(kω,xδ)
, (3.69)

which varies subtly from rω, as in Eqn.(3.48), in the first numerator term: (η − η̃). So,

exchange from right (+x̂), and left (−x̂) incidence is simply η ↔ η̃ as expected from

Eqns.(3.29) and (3.30). As in the impedance, the exchange of wavenumber direction

from +x̂ → −x̂ changes the reflection, however it is not just a phase change, as shown

in Fig.3.9. If we consider all possible orientations of the incidence, as in Fig.3.9.(a),

for non-symmetric incidences, we find a change in both the magnitude and phase.

One notes there are four incidences corresponding to change of sign of either (or both)

kω,x and/or kω,y (also known as θ → −θ) as shown previously in the impedance.

Symmetry of the geometry imposes that opposite incidences are identical, as shown

in Fig.3.9.(b) and (c). The change in amplitude follows from Eqns.(3.48) and (3.69),
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FIGURE 3.9: (a) A graphic of the incidences from the non-magnetic ma-
trix, with colour coded incidences. (b) The reflection magnitude |rω |,
and (c) phase ϕ, from the scattering magnetic inclusion for the differ-
ent incident directions. Dashed and solid vertical lines correspond to

fME, fFMR respectively.

where we find this difference is indeed non-zero for a finite damped, oblique system:

|rω|2 − |r̃ω|2 ∝ {(ηη̃ − 1)(η∗ − η̃∗) + (η̃∗η∗ − 1)(η − η̃)} ̸= 0. (3.70)

This non-reciprocity is not a consequence of chirality as one may expect here[58]. In

fact, the magnetoelastic driving field is linear:

Heff =
−iBU
µ0Ms

(
kω,x x̂ + kω,yŷ

)
. (3.71)

The Gilbert damping and the oblique incidence are responsible. If we re-write

Eqns.(3.14) and (3.15) using a susceptibility matrix M = χh, h = hxx̂ + hyŷ as in
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Eqn.(2.21). We introduce ν =
√

ωx/ωy, and for the dissipationless (α = 0) case:

Mx

My

 =

1/ν −i

i ν


hx

hy

 , (3.72)

U =

(
ikω,x ikω,y

)1/ν −i

i ν


hx

hy

 . (3.73)

Here if we use the light mode solution (the mode that maximises the displacement),

we obtain for the magnitude

|U| =
∣∣∣∣hy(kω,x + iνkω,y)

(
1 +

1
ν2

)∣∣∣∣ , (3.74)

which is reciprocal for exchange kω,x(y) → −kω,x(y). Introducing the damping, ωx(y) →

ω̃x(y) and so, kω,x = k′ω,x + ik′′ω,x, ν = ν′ + iν′′. This introduces an additional term to

the displacement magnitude given by ∆U,

∆U ∝ kω,y
(
k′′ω,xν′ − k′ω,xv′′

)
, (3.75)

which recovers the 2-fold non-reciprocity observed in Fig.3.9, i.e: if kω,y = 0 (normal

incidence) or k′′ω,x = ν′′ = 0 (no magnetic damping) the displacement is reciprocal:

∆U = 0.

3.4 Emission by driven magnetic precession

To further investigate this non-reciprocity, we will pivot slightly to a similar system

that has different excitation mechanism: an external magnetic field. So instead here
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the acoustic wave is a product of the magnetostriction, rather than activating it. An

example of the geometry of this system is shown in Fig.3.10. As the scattering coef-

FIGURE 3.10: A similar geometry to the bulk phonon excitation model
in Fig.3.1, although here the excitation mechanism is an applied mag-
netic field. Instead of scattering coefficients we will examine the emit-

ted displacements in ±k.

ficients in the non-magnetic matrix have no analogue here, we will instead examine

the displacement at the boundaries of the magnetic inclusion on the left and right,

UE
L , UE

R respectively. Of interest here is the response to a circular or elliptical excita-

tion field. Previously the acoustic effective magnetic field (from the incoming acoustic

wave) was linear, and so the non-reciprocity was not due to chirality.

Let us assume that the displacement over the slab is linear

UR = UL +
(UR + UL)

δ
x, (3.76)

and the waves inside the acoustic material are of the form UR(L) = Uk,ω exp(±ikx +

iky − iωt). Discontinuities and averages of a quantity f (e.g. stress and displacement)
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are denoted as,

[ f ] = [ f ]RL = fR − fL,

⟨ f ⟩ = ( fL + fR)

2
.

(3.77)

The free energy over the slab is,

F = FM + α⟨U⟩+ β

δ
[U], (3.78)

where FM is the same as in Eqn.(3.2) and we introduce α = ikyBMy/Ms, β = BMx/Ms.

From the linearized LLG we then obtain,

Mx =
γB
(

ωky⟨U⟩+ ω̃y
[U]
δ

)
− γµ0Ms

(
ω̃yhx − iωhy

)
ω2 − ω̃xω̃y

,

My =
iγB

(
ω̃xky⟨U⟩+ ω [U]

δ

)
− γµ0Ms

(
ω̃xhy + iωhx

)
ω2 − ω̃xω̃y

.

(3.79)

Introducing λ = µMk2
y − ρω2, from the stress and displacement boundary conditions

we obtain

[
µE∂xU

]
= λδ⟨U⟩+ α(U)δ = [σxz],

µM [U] = ⟨µE∂xU⟩δ − β(U)δ = ⟨σxz⟩ − βδ,

(3.80)

which describe the stress and displacement discontinuity over the slab. These bound-

ary conditions we then recast as

A = M ·

UR

UL

 , (3.81)
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M =

 µEikx − λδ
2 +

γB2kyδ(ω̃xky/2+ωδ−1)
Ms(ω2−ω̃xω̃y)

, µEikx − λδ
2 +

γB2kyδ(ω̃xky/2−ωδ−1)
Ms(ω2−ω̃xω̃y)

µM − µEδ
2 ikx +

γB2δ
Ms

(ωky/2+ω̃yδ−1)
ω2−ω̃xω̃y

, −µM + µEδ
2 ikx +

γB2δ
Ms

(ωky/2−ω̃yδ−1)
ω2−ω̃xω̃y

 ,

(3.82)

A =

−
iγµ0Bδky(ω̃xhy+iωhx)

ω2−ω̃xω̃y
,

γµ0Bδ(ω̃yhx−iωhy)

ω2−ω̃xω̃y

 , (3.83)

and obtain the displacement amplitudes as,

Uk,ω = ∑
j
(M−1)i,jAj . (3.84)

3.4.1 Exciting with a linearly polarized field

We can expect the response here to be similar to what we found in Section 3.3, that the

displacements UE
R(L) be non-reciprocal for finite damped, system with inhomogeneity

in ŷ. The displacements are given in Fig.3.11, which shows the choice of polarization

of the linear field is an analogue to the oblique incidence.
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FIGURE 3.11: The displacements UE
R (black, blue) and UE

L (red, green)
are given for a linear field in x̂(ŷ). The emitted fields here are homoge-

neous in ŷ, kω,y = 0.

For example, the field hx couples to Mx and hy to My. The larger the magnetization,
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the larger the magnetostriction and the displacements. As in this geometry Mx < My,

thus polarization in y excites larger displacements. The frequency of this excitation is

ωFMR rather ωME. Finally, the fields emitted in this panel are homogeneous in ŷ (that

is the waves are taken along the x axis in the non-magnetic matrix) and so do not have

any non-reciprocity in UE
R(L). One may wonder if the non-reciprocity of Section.3.3 is
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FIGURE 3.12: The maximum (resonant) displacement max(|Uk|) for
the emitted waves as a function of their emission angle,

i.e: with kω,y ̸= 0.

manifested in the emission of elastic waves. To show this we plot the emission from

a point source as a function of emission angle in Fig.3.12. Here the displacements

of left and right emitted elastic waves at angles θ : −π/4, π/4 are not equivalent.

For reference, at an angle of ±π/12: UL(R) ∼ 0.9UR(L). This difference is verified by

Eqn.(3.75). However, this is a false flag, as the slab is infinite in the yz−plane. Any

waves emitted as finite angles will interfere with waves emitted at all angles from

every other point on the same interface, to cancel. This means only waves emitted

with θ = 0 should be considered.
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3.4.2 Exciting with an elliptically polarized field

The incident magnetic field may be circular or even elliptical. We assume a phase

difference ϕ, between hx(y) and contain the total field to constant magnitude so

h2 = h2
x + |hy|2, hx = ϵh, hy =

√
h2 − h2

x exp iϕ. Shown in Fig.3.13 is UE
L(R) (which

are identical for all values here) sweeping the phase difference ϕ : {−π, π}, as well as

the magnitude of the hx field component. Along the vertical axis the chirality of the ex-

citation field is varying. Along the horizontal axis we vary the ellipticity (ϵ = {0, 1}),

i.e: representing the absolute value of hx/hy.

First here let us consider the vertical axis dependence in Fig.3.13.(a). UL(R) have

magnitude that depends on the chirality of the applied field (vertical, ϕ cuts). If

the chirality of the driving field matches the magnetic precessions ’preferred’ chiral-

ity then the displacements are maximised. In this system the magnetization in left

handed: Mx leads My by π/2, and so ϕ = π/2 is preferred in the driving field. This

is seen in Fig.3.13.(a) as the bright and dark patches around ϕ = ±/2. The points in

which the excitation field is perfectly circular are shown by the white dots.

The blue and green crosses highlight the maximum and minimum points of the the

displacement magnitude. This does not occur when hy is maximal in amplitude as one

may expect. Rather this occurs at the maximum (or minimum) of the Mx component’s

hx, hy dependence, i.e: when (ω̃xhx − iωhy) is maximal (or minimal) in Eqn.(3.79) as

shown in Fig.3.13.(b). This is explained by Eqns.(3.80) as for θ = 0 only the Mx com-

ponent couples to the emitted displacements. This also explains why the system is re-

ciprocal, |UR| = |UL|, regardless of the chirality of the excitation field. The excitation

field chirality will affect the magnitude of the excited Mx, hence induce the vertical
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FIGURE 3.13: (a) The magnitude of UE
R(L) as a function of ϕ (phase dif-

ference, chirality) and hx magnitude (ellipticity) of the driving magnetic
field. White dots indicate where the driving field is perfectly circular.
(b) The dependence of the numerator of the driven Mx component of

magnetization on the ellipticity.

dependence in Fig.3.13.(a). However the coupling between magnetization and emit-

ted fields is reciprocal as the coupling to My is suppressed in this geometry. So the

elliptical excitation field retains chiral non-reciprocity in the induced magnetization,

but does not translate this to the emitted displacements.
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3.5 Comparing realistic materials: A figure of merit

Returning to the acoustic excitation model, the excited magnon may decay in two

ways, by re-emission as a bulk wave ΓR, or by decay by the Gilbert damping ΓFMR. In

order to characterise the strength of the magnetoelastic response of a given material

we introduce a figure of merit as

Υ = ΓR/ΓFMR . (3.85)

This quantity will depend on the geometry of the device and material parameters, thus

we compare typical magnetic materials. This comparison can be performed either at

the same value of the bias field HB, or at the same operating frequency ωFMR. The

latter situation is more appropriate for a device application, but to avoid completely

unphysical parameters, the results are shown for the same µ0HB. An example of such

comparisons for yttrium iron garnet (YIG), cobalt (Co), permalloy (Py), cobalt iron

(CoFe) and nickel (Ni) is presented in Table 3.2. According to the previous analysis of

TABLE 3.2: Comparison of the figure of merit Υ for different materials,
assuming δ = 20nm, µ0HB = 50mT and µE = 298GPa.

Parameters YIG Co Py CoFe Ni
Υ(θ = 0◦) 4.3x10−2 1.7x10−3 2.7x10−4 2.6x10−3 1.1x10−2

ΓR (ns−1) 1.9x10−4 7.5x10−3 2.0x10−4 1.9x10−2 1.2x10−2

ΓFMR (ns−1) 4.4x10−3 4.3 0.74 26.5 2.4
Υ(θ = 30◦) 4.1x10−2 2.5x10−3 2.8x10−4

ΓR (ns−1) 1.8x10−4 1.1x10−2 2.1x10−4

ΓFMR (ns−1) 4.4x10−3 4.3 0.74
fME (GHz) 2.97 7.14 6.26 9.49 3.44
B (MJm−3) 0.55 10 -0.9 22.95 5.5
µ (GPa) 74 80 50 85 76
ρ (kgm−3) 5170 8900 8720 5305 8900
α 0.9x10−4 1.8x10−2 4.0x10−3 6.4x10−2 3.8x10−2

Ms (kAm−1) 140 1000 760 1800 203

reflection and transmission coefficients, a reduction in magnetic damping would give
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a greater signature. Thus, YIG would seem a likely candidate as the best magnetostric-

tive material. However, YIG has low damping due to its weak lattice coupling[127,

128]. As such Table 3.2 ranks it high (second) but identifies Ni as the most promising

candidate. Nickel is actually a rather balanced material in terms of its relative B and

α, which is likely why it is so promising. However, this analysis has not taken into ac-

count that variations of deposition techniques may alter these parameters, while some

materials may be more challenging than others to work with. It does not also consider

doped materials, such as rare earth doped YIG, which may be promising alternatives,

but are as of yet still being developed[129].

As we understand the oblique incidence amplifies the magnetoelastic effect, we

present Eqn.(3.14) for finite θ in Fig.3.14. The enhancement in Υ by adopting an
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FIGURE 3.14: Figure of merit Υ and radiative linewidth ΓR are both
enhanced in the oblique incidence geometry (θ > 0◦). Ferromagnetic
linewidth ΓFMR remains unchanged. The magnetic parameters of Co

are assumed with α = 10−3.

oblique incidence geometry is reflected in its full equation,

Υ =
ΓR

ΓFMR
=

γδB2

2

√
ρEµE

[
HB

(µM)
2 cos2θ + Ms

(µE)
2 sin2θ

]
αM2

s cos θ
, (3.86)
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where ωx ≫ ωy and HB ≪ Ms are assumed. For small θ, the approximation Nx ≃ 1

and Ny ≃ 0 still holds. As a result, non-zero θ increases peak magnetoelastic response

in reflectivity, as seen in Fig.3.7. Although larger incidence angles may be hard to

implement in a practical device, the resonant scattering is still enhanced at smaller

angles.

3.6 Conclusions

The work here illustrates the typical signatures we can expect due to coupling be-

tween the ferromagnetic resonance and bulk elastic waves in thin magnetostrictive

slabs, in dispersion, reflection and transmission. First we explored the magnetoacous-

tic dispersion and characterized the anticrossing shape and size based on the Gilbert

damping. This was the first indication that typical (or realistic) damping values may

suppress magnetoacoustic signatures in their entirety. We then characterized the re-

flection, transmission and absorption. The lineshape was found to be an asymmetric,

Fano-lineshape. The discussion illustrated that for realistic materials the response was

heavily suppressed due to low coupling B and high damping α, agreeing with the

dispersion. By introducing an oblique angle of incidence we found this suppression

could be partially countermanded. This was due to device geometry, as for normal

incidence only the component of magnetization orthogonal to the slab interface (Mx)

was coupled to. By introducing this angle we coupled to the less constrained com-

ponent parallel to the slab interface (My). The reflection is also non-reciprocal for

finite damped, oblique incidence geometries. We demonstrate that mathematically

this is a consequence of finite damping and oblique incidence, and we verified it by

considering the emission of an acoustic wave by an exciting magnetic field. Finally,
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comparison of the figures of merit for Py, Co, CoFe, Ni and YIG suggest that Ni is the

most promising material with the strongest magnetoelastic response, which we adopt

herein.
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Chapter 4

Scattering of acoustic waves in

arrays: Forming a

magneto-phononic crystal

Magnetoacoustic metamaterials are formed using a periodic arrangement of materi-

als with alternating elastic properties[66]. The coupling of the magnetic resonance is

then to the phononic crystal dispersion, rather the discrete acoustic (bulk or surface)

mode. In Chapter 3 we explored the single ’resonator’: an infinite magnetostrictive

thin film in the bulk[118]. This analysed illustrated that the resonant scattering is of

Fano-lineshape, but is heavily suppressed by the magnetic damping. In this Chapter

we explore periodically arranged arrays of these individual resonators, and illustrate

how they achieve greater magnetoacoustic interaction strengths, countermanding the

suppression due to magnetic damping. This is achieved by increasing the number of

hybridization events along the path of the acoustic wave and careful positioning of the

magnetic resonance in the passbands. As we are still considering bulk elastic waves

we consider this design prototypical, and once again use it as an insight into how a
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realistic metamaterial may be exploited.

The work shown in this chapter is published in Ref.[130] and it is arranged as

follows. In Section.4.1 the model geometry is illustrated and the magneto-phononic

crystal dispersion is characterised. Section.4.2 derives the reflection and transmission

coefficients for a finite and semi-infinite array. The coefficients are shown to exhibit

three distinct regimes based on their position relative to the crystal passbands, and we

illustrate these. In Section.4.3, when the resonance is tuned inside a stopband, the coef-

ficients demonstrate that a magnetoacoustic passband can be formed. We then explore

this formed passband and present some alternative mechanisms in which it could be

produced. Finally in Section.4.4 we briefly consider a figure of merit for the tunability

to illustrate the regions in which the magnetoacoustic interaction is maximised.

4.1 Magneto-phononic crystal dispersion

The prototypical, bulk magnetoelastic metamaterial will be constructed by stitching

together the individual resonators explored in Chapter 3. As we have characterised

the scattering from the single building block we will be assume that the non-magnetic

matrix here just serves to propagate the acoustic waves between magnetostrictive el-

ements as is shown in Fig.4.1 The arrays of slabs will contain either N or an infinite

amount of resonators. Let L = δ + δs, be the unit cell length (period of the array),

as shown in Fig.4.1, such that the nth resonator is located at xn = nL. The bulk elas-

tic waves may be incident from the left and right and scatter according to the coef-

ficients given by Eqns.(3.48), (3.49) and (3.69), with t̃ = t. In this geometry δ and

δs are magnetic and non-magnetic matrix thicknesses respectively. For the thin slab

δ ≪ λ, therefore we neglect the exchange contribution to the effective magnetic field
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FIGURE 4.1: A schematic of the repeating unit cell, which contains the
magnetoelastic inclusion which scatters waves. Included are the nth

and (n + 1)st cells and the amplitudes An and Bn (left, right respec-
tively) of traveling waves inside the non-magnetic matrix.

and treat magneto-dipole interaction by introducing relevant demagnetising coeffi-

cients, Eqn.(2.27). The magnetic modes in neighbouring resonators are assumed to be

non-interacting.

As in the analysis of the isolated resonators, it will be instructive to first visualise

the band structure of this magnetoacoustic phononic crystal. This is defined by the

crystals density of states: the imaginary component of a systems Green’s function.

The phononic Green’s function (for a single k) is given in Eqn.(2.80). However, this

assumes that the source is a displacement, Λ0 = U0, herein we will assume that it

is some force: f0. This removes ωk in the numerator (there is no ρ∂2
t U). If we then

assume that this force source is point like: F0 = Fω,kδ(x − x′) exp(−iωt),

U(x, t) = −G(ω, k, x, x′)
ρω2 Fx,t, (4.1)

where x is the observation point, and x′ the source position, so F(x, t) = F(ω, k)δ(x −

x′), is the functional form of the point force source. The geometry here is Bloch pe-

riodic and the displacements and forces are assumed to be of the form: f (x + L) =
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f (x)eikL, where k is the Bloch wavenumber. Therefore as in Eqn.(2.76) it is sufficient

to consider only the response in a single unit cell. The spectral function Sω,k, which

gives the band structure is defined using the power dissipated, which only occurs at

the ’source’ magnetostrictive slabs, and so x = x′. Similar to Eqn.(2.76), Sω,k is then

written as,

S(ω, k) = − 2
πLω

∫ L

0
ImG(ω, k, x = x′)dx′. (4.2)

While in theory the dissipative slab could be positioned anywhere, we specify it to

be at the end of the unit cell as in Fig.4.1. The thickness δ ≪ λ, L, and so instead of

modelling the finite magnetostrictive film, we assume that the cell boundary adopts

the properties of the film: the reflection r, r̃ and transmission t, t̃, as in Eqns.(3.48),

(3.49) and (3.69). The force sources will be placed inside the non-magnetic material

("spacers") and are δ-function). The momentum balance equation is therefore,

ρ∂2
t Ux,t = µ∂2

xUx,t − b∂tUx,t + Fx,t, (4.3)

ρ∂2
t Ux,t = µ∂2

xUx,t − b∂tUx,t + Fk,ω ∑
n

δ
(
x − x′ − nL

)
eiknLeikyy−iωt, (4.4)

where b represents a viscous force constant. The Eqn.(4.4) must be solved with the

boundary conditions which we will now derive. Let us assume that the displacements

either side of the force source are given by,

U
(
0 < x < x′

)
= Aeiqx + Be−iqx, (4.5)

U
(
x′ < x < L

)
= Ãeiqx + B̃e−iqx. (4.6)
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Bloch theorem specifies that at x = L (the cell boundary) the waves either side must

match and give,

AeikL = tÃeiqL + r̃BeikL, (4.7)

Be−iqL = rÃeiqL + t̃BeikL. (4.8)

This matching due Bloch theorem is illustrated in Fig.4.2. The Eqns.(4.7) and .(4.8) are

FIGURE 4.2: A schematic of how the displacements at the edge of cells
are matched using Bloch periodicity.

the first two boundary conditions, and represent the matching at the cell boundary.

The Eqns.(4.7) and (4.8) are characterised by four unknowns: (A, Ã, B, B̃), so we

also expect boundary conditions at the force source. To resolve these we note that a

solution to Eqn.(4.3) is found by assuming a delta function source Fx,t = Fω,kδ(x)e−iωt,

i.e: is positioned at x′ = 0. Finite phonon damping is assumed and so the wavenum-

ber q = ω/c + iκ. Let us seek a solution of the form U = U0eiq|x−x′|−iωt so that the

wave at x = ±∞ has decayed. There are two cases Eqn.(4.3) needs to be solved

for: when x ̸= 0 (and the system is not forced) and when x = 0 (and is forced, i,e:

has the Fx,t term). Taking the modulus derivative as ∂2
xeiq|x| = ∂x

[
iqsgn(x)eiq|x|

]
=

[q2sgn2(x)− 2iqδ(x)]eiq|x|: for x ̸= 0 (i.e: away from the δ-source) we find κ = b/2Z

and Z =
√

ρµ. Using this for x = 0 we find that U0 = Fω,k/2iµq. Noting that
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|κ| ≪ ω/c, we write the boundary conditions at the force source as,

U(x = x′+) = U(x = x′−) =
Fω,k

2iωZ
eiq|x−x′|−iωt, (4.9)

∂xU(x = x′+) = ∂xU(x = x′−) +
Fω,k

µ
. (4.10)

We can see that the discontinuity of strains (opposing signs) is because on the source

left there is only a wave that travels to the left, and on the source right only a right

traveling wave. Eqns.(4.5) and (4.6) have provided a convenient expression for the

source amplitude, Fω,k = iωZ and are the remaining two equations in terms of the

four unknowns (A, Ã, B, B̃). Using Eqns.(4.5) and (4.6) in Eqns.(4.9) and .(4.10) we

find,

(
A − Ã

)
eiqx′ +

(
B − B̃

)
e−iqx′ = 0, (4.11)(

A − Ã
)

eiqx′ +
(

B̃ − B
)

e−iqx′ = 1, (4.12)

which are the remaining two equations. This system can be solved numerically (four

unknowns in four equations), but we shall also seek an analytical solution. Solving

Eqns.(4.11) and (4.12),

Ã = A − 1
2

e−iqx′ , (4.13)

B̃ = B +
1
2

eiqx′ . (4.14)

Conversely, solving Eqns.(4.7) and (4.8) requires a bit more work. Using the previous

equations, we can reduce the four unknowns to two, and then solve the resultant

system of two linear equations in two unknowns. Calling our new variables, X =
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Av + Bv−1, Y = Av − Bv−1, v = eiqx′ , we find

A =
1
2
(X + Y) v−1, B =

1
2
(X − Y) v, (4.15)

Ã =
1
2
(X + Y − 1) v−1, B̃ =

1
2
(X − Y + 1) v. (4.16)

Substitution into Eqns.(4.9) and (4.10) and re-arranging gives,

 v−1 − tv−1ei(q−k)L − r̃v v−1 − tv−1ei(q−k)L + r̃v

−v − rv−1e2iqL − t̃vei(q+k)L −v − rv−1e2iqL + tvei(q+k)L


X

Y

 =

 −v−1tei(q−k)L

−rv−1e2iqL − v


(4.17)

The determinant simplifies to Dk,ω = 2
[(

rr̃ − tt̃
)

e2iqL − 1 + te−i(k−q)L + t̃ei(k+q)L
]

and

so we find,

Xω,k,x′ =
1

Dk,ω
·
[(

rr̃ − tt̃
)

e2iqL + 1 + re2iq(a−x′) + r̃e2iqx′
]

. (4.18)

The spectral function Sω,k as in Eqn.(4.2) using the rearrangement of Eqn.(4.1) for

Gω,k,x′ gives,

Sω,k =
−2

πLω

∫ L

δ
Im
[
−ρω2

Fω,k
Ux,t

]
dx′, (4.19)

=
−2

πLω

∫ L

δ

ρω2

ωZ
Re [Ux,t] dx′, (4.20)

= − 2q
πLω

∫ L

δ
Re
[

A(x′)eiqx′ + B(x′)e−iqx′
]

dx′, (4.21)

here we have recalled that at x = x′, A = Ã. Note here the integrand is
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Re
[

A(x′)eiqx′ + B(x′)e−iqx′
]
= Re [Xω,k,x′ ] as in Eqn.(4.18). So Sω,k for our magne-

toelastic metamaterial is,

Sω,k =
−1

πLω
Re

{[(
rr̃ − tt̃

)
e2iqL + 1

]
qL − i (r + r̃)

(
e2iqa − 1

)
/2(

rr̃ − tt̃
)

e2iqL − 1 + te−i(k−q)L + t̃ei(k+q)L

}
. (4.22)

We have neglected terms that include δ as the width is small compared to the spacer

length. This equation is derived assuming δ-function scatterers, and so some dis-

FIGURE 4.3: Sω,k over the first Brillouin Zone: −π/L < k < π/L. (a)
Small Gilbert damping, α = 0.0005, is assumed to illustrate the anti-
crossing and sharp features. (b) A more realistic Gilbert damping value
of α = 0.01 is assumed. Insets: The anti-crossing formed by the hy-
bridization of magnetic and phonon modes. Dashed blue curves indi-
cate the prediction of the Ignatovich dispersion, Eqn.(2.77). Reciprocity

is assumed for θ = 0.



4.2. Reflection and transmission coefficients of the array 97

agreement is expected compared to models where the (small) finite width of the

magnetic slab is taken into account. We plot this in Fig.4.3 for normal incidence

θ = 0, using parameters similar Ni: mass density ρM = 8900kgm−3, magnetoelas-

tic coupling coefficient B = 8.8MJm−3, shear modulus µM = 76GPa, gyromagnetic

ratio γ = 31.7GHzT−1, saturation magnetization Ms = 203kAm−1, δ = 30nm, for

the magnetic matrix. The non-magnetic matrix parameters are similar to silicon ni-

tride: ρE = 3192kgm−3, µE = 127GPa, δs = 500nm. In this chapter we will adopt

these parameters unless stated otherwise. The characteristics are as expected: the full

phononic band structure with an anti-crossing at the magnetoelastic resonance. The

peaks in the spectra coincide with the peaks in the Ignatovich dispersion given by

Eqn.(2.77). Increasing the magnetic damping has the same effect as the dispersions in

Fig.3.2: it suppresses the anti-crossing.

4.2 Reflection and transmission coefficients of the array

The magneto-acoustic response of finite arrays is characterized by the reflection RN ,

transmission TN , and absorption AN , coefficients. The transfer matrix method[101]

allows us to express these total reflection coefficients, as those of the individual cells,

rω, tω as in Eqn.(3.48) and (3.49). The method here therefore treats the inclusions as

a “black box" (which we have already characterised in Chapter 3) and requires the

reciprocal coefficients
(
r̃ω, t̃ω

)
. Acoustic waves may be incident to the array at normal

or oblique angles. So for normal incidence, reciprocity between forward and back-

ward reflection is maintained (r = r̃). However, at oblique incidence, it is not. As

illustrated in Fig.3.5, the resulting coefficients t, t̃, r, and r̃ exhibit a strong frequency

dependence, indicative of resonant hybridization between the acoustic and magnetic
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modes, and so the reflection R, and transmission T, of the array should exhibit a simi-

lar response (a Fano lineshape). As previously, we assume a transverse, bulk acoustic

displacement U = U(x, y, t)ẑ. Thus an (obliquely) incident acoustic wave inside the

nth non-magnetic spacer matrix (n − 1)L < x < nL − δ, is given by

U(x, y, t) = e−iωt+iqyy
[

Aneiϕx + Bne−iϕx
]

, (4.23)

where q represents the wave number in the non-magnetic layer and ϕx =

qx [x − (n − 1)L]. In what follows, we retain only the x-dependence of the displace-

ment. The amplitudes An and Bn, as in Fig.4.1, are elastic, traveling to the right and to

the left in the nth nonmagnetic layer, respectively. Then, for a wave of unit amplitude

incident from the left onto a finite array, we have A0 = 1, B0 = RN , AN = TN , BN = 0.

To form the transfer matrix M for a single period of the array, amplitudes at x = nL

and x = (n + 1)L can be related via forward (t, r) and backward (t̃, r̃) transmission

and reflection coefficients. Waves in neighboring segments are then matched. Hence,

we write for the interface between the nth and (n + 1)th segment:

An+1exp(−iχθ) = tAn + r̃Bn+1exp(iχθ) ,

Bn = t̃Bn+1exp(iχθ) + rAn ,

(4.24)

where χθ = ωδscosθ
√

ρE/µE is the acoustic phase delay within the spacer layer. The

transfer matrix M links the vector (An+1, Bn+1) to (An, Bn), and is constructed by in-

verting Eqn. (4.24) as

An+1

Bn+1

 = M

An

Bn

 =

M11 M12

M21 M22


An

Bn

 , (4.25)
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M =


[
t − r̃rt̃−1] exp (iχθ) r̃t̃−1exp (iχθ)

−rt̃−1exp (−iχθ) t̃−1exp (−iχθ)

 . (4.26)

Note that this is similar to that shown for the transfer matrix literature, Eqn.(2.68),

however this includes the phase delay of the non-magnetic spacer. The coefficients

r(r̃), t(t̃) include the input amplitude, which is assumed as unity. A convenient prop-

erty of M is that the transfer matrix MN , of a periodic row of repeated scatterers can

be evaluated by repeated application of the transfer matrix of a single unit cell as in

Eqn.(2.69)[101], and so MN retains the same eigenvector basis as M. We represent the

action of M by

Mτ± = µ±τ±, (4.27)

where τ± and µ± represent the eigenvectors and eigenvalues of M, respectively. Thus,

repeated application of M to τ± is described by the eigenvalue raised to the respective

power,

MNτ± = µN
±τ±. (4.28)

Using linear algebra, we relate the determinant and trace of the transfer matrix to its

eigenvalues,

det(M) = µ+µ− ≡ D,

Tr(M) = µ+ + µ− ≡ 2T .

(4.29)

The action of M is therefore represented by its eigenvalues µ± and the respective

eigenvectors. The eigenvalues that solve the characteristic equation µ2 − 2T µ+D = 0

are given by µ± = T ∓
√
T 2 −D. From Eqn. (4.26), we find that D = t/t̃, which has

absolute value of one. As usual, we find that the two eigenvalues of M either both
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lie on the unit circle |µ| = 1, i.e: one is inside and the other is outside. In our sys-

tem, the energy is dissipated due to the Gilbert damping. Hence, we can define µ± so

that |µ+| < 1, representing the wave propagating to the right. To solve the scattering

problem, we must introduce the initial ν0, and terminal νN , state amplitude vectors.

By definition of the transmission and reflection coefficients, they have the form

v0 =

 1

RN

 , vN =

TN

0

 . (4.30)

We represent them in the eigenvector basis τ± as

 1

RN

 = C+τ+ + C−τ−, (4.31)

TN

0

 = C+µN
+τ+ + C−µN

−τ−. (4.32)

Here C± represent the amplitudes of the two modes: the incoming wave propagating

to the right, and the reflected wave propagating to the left. In Eqn. (4.32), we have used

the property defined by Eqn. (4.28). In principle, Eqns. (4.31) and (4.32) can be solved

directly. It is convenient however to represent the solution in terms of the reciprocal

basis τ±, τ̃± which have the scalar product: ⟨τ̃, τ⟩ ≡ τ̃1τ1 + τ̃2τ2, and is defined by the

relations

⟨τ̃±, τ±⟩ = 1, ⟨τ̃±, τ∓⟩ = 0. (4.33)
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Hence, application of M yields,

⟨τ̃±, Mτ±⟩ = µ± ⟨τ̃±, Mτ∓⟩ = 0. (4.34)

The expansion coefficients C± are obtained by projecting Eqns. (4.31) and (4.32) onto

the reciprocal basis,

C± = ⟨τ̃±, v0⟩ = τ̃±,1 + RN τ̃±,2 , (4.35)

C±µN
± = ⟨τ̃±, vN⟩ = TN τ̃±,1 . (4.36)

This eliminates C±, yielding two equations in TN and RN ,

TN τ̃+,1 = µN
+ (τ̃+,1 + RN τ̃+,2) , (4.37)

TN τ̃−,1 = µN
− (τ̃−,1 + RN τ̃−,2) . (4.38)

Let us introduce the ratio of the two eigenvalues, µ2 ≡ µ+/µ−, so that |µ| < 1. Note

that in the reversible case, t̃ = t, µ = µ+ = µ−1
− . The Eqns. (4.37) are solved as,

RN = − τ̃+,1τ̃−,1(1 − µ2N)

τ̃+,1τ̃−,2 − τ̃−,1τ̃+,2µ2N , (4.39)

TN = µN
+

τ̃+,1τ̃−,2 − τ̃−,1τ̃+,2

τ̃+,1τ̃−,2 − τ̃−,1τ̃+,2µ2N . (4.40)

For an infinite array, N → ∞, the reflection coefficient is given by R∞ = −τ̃−,1/τ̃−,2.

Hence v0 ∝ τ+ in this limit, and ⟨τ̃−, v0⟩ = 0. After singling out the factor R∞, we

see that both TN and RN depend upon the same combination of the reciprocal vector
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components,

ξ ≡ τ̃−,1τ̃+,2

τ̃+,1τ̃−,2
. (4.41)

The expression for the ratio ξ, between the reciprocal components can be obtained

without calculating the eigenvectors explicitly. To do this we transform Eqs. (4.33)

using the inner product formulae ⟨ζ, Aη⟩ = ⟨ATζ, η⟩, where ζ, η are two arbitrary

vectors, A a matrix, and AT is its transposition. This yields

⟨τ±, MT τ̃±⟩ = µ± ,

⟨τ∓, MT τ̃±⟩ = 0 .

(4.42)

These relations imply that the vectors forming the reciprocal basis τ̃± are the eigenvec-

tors of MT belonging to the same eigenvalues µ±. Thus, we can relate the components

of a single reciprocal basis vector via the eigenvalue equation

M11 M21

M12 M22


τ̃±,1

τ̃±,2

 = µ±

τ̃±,1

τ̃±,2

 . (4.43)

Using the explicit form of M, Eqn.(4.26), we rewrite

M11τ̃±,1 + M21τ̃±,2 = µ±τ̃±,1, (4.44)

in the form, (
t − r̃r

t̃

)
eiχθ τ̃±,1 −

r
t̃
e−iχθ τ̃±,2 = µ±τ̃±,1. (4.45)

This gives the ratio of reciprocal basis vector components,

τ̃±,2

τ̃±,1
=

eiχθ

r

[
(t̃t − r̃r) eiχθ − µ± t̃

]
. (4.46)
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Alternatively, one may use an equivalent expression

τ̃±,1

τ̃±,2
=

e−iχθ

r̃

(
µ± t̃ − e−iχθ

)
, (4.47)

and ξ is defined as

ξ =
(tt̃ − rr̃) exp (iχθ)− t̃µ+

(tt̃ − rr̃) exp (iχθ)− t̃µ−
. (4.48)

Using this we can re-write the reflection and transmission, Eqn.(4.39) and (4.40), as

RN =
R∞
(
1 − µ2N)

(1 − ξµ2N)
, (4.49)

TN =
(1 − ξ) µN

+

1 − ξµ2N , (4.50)

where R∞ is the reflection from a semi-infinite array,

R∞ = r exp(−iχθ) [t̃µ− − (tt̃ − rr̃) exp (iχθ)]
−1 . (4.51)

The absorbance is found as A2
N = 1 − |RN |2 − |TN |2.

We plot the reflection R∞ of an infinite array as in Eqn.(4.51) in Fig.4.4. This is

done with similar parameters as Fig.4.3, and so should have the same features. Fig.4.4

contains the large square peaks for rω → 1 we expect from band gaps, followed by

high transmission passbands. The magnetoacoustic resonance is of Fano-lineshape in

a passband, with the same characteristics as before. As this is tunable by the bias field

HB, we identify three regimes, which we name as follows: “Regime I" is the phononic

passband, “Regime II" is the region of passband close to a stopband (band gap) and

“Regime III" as the region inside a band gap.



104
Chapter 4. Scattering of acoustic waves in arrays: Forming a magneto-phononic

crystal

FIGURE 4.4: |R∞| over the first two band gaps, with magnetoelastic
resonance tuned inside the first passband. Highlighted in blue, red and
green and the regions corresponding to Regime I, II and III respectively.
The distinction between Regime I and II however is not fixed, and more

ambiguous. HB = 50mT.

4.2.1 Regime I: Tuning inside a phononic passband

The signatures in rω and tω in Regime I, the phononic passband, are much the same as

in Chapter 3: A magnetoacoustic Fano-resonance atop the background phononic spec-

trum. Instead, let us focus here on Regime I in the case of a finite number of resonators,

N. In fact this regime will be important for a finite array in which the band gap has

not fully formed. The rω and tω coefficients for a finite array of resonators are plotted

in Fig.4.5 for N = 1, 3, 9 and 81 repetitions of the isolated magnetoelastic resonator.

Adding more and more periods builds up spectra indicative of phononic crystals as

the scattering from subsequent elements coherently interferes. Allowed passbands

here are thus characterised by low reflection-high transmission, and forbidden regions

(that result in wave decay) vice-versa. This is due to the acoustic impedance mismatch

of the two media[77, 126, 131].

The coupling between propagating elastic waves and the magnetic modes of the

elements manifests as an asymmetric Fano-resonance in RN , TN and AN . However, the
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FIGURE 4.5: (a) Reflection RN , (b) transmission TN , and (c) absorption
associated with N = 1, 3, 9, 81 magnetoelastic resonators incident nor-
mally (θ = 0). |R∞|, |T∞| and |A∞| are shownn as black curves. Vertical
solid lines indicate the position of the ferromagnetic resonance. The in-

set of (a) zooms into the region surrounding fFMR.

latter two have such weak Fano-resonant features they appear Lorentzian. Each pass-

band in Fig.4.5 also contains N − 1 oscillations due to the phase change of π over each

Brillouin zone[101]. The rapid oscillation in passbands in Fig. 4.5 are formed due to the

multiple reflections within arrays of finite size. For sufficiently large arrays (i.e. when

the decay length is smaller than the array size), these oscillations are suppressed. In-

deed, the oscillations are suppressed for R∞, as calculated using Eqn. (4.51), shown by

the solid line in Fig.4.5, as well as in the larger arrays around the magnetic resonance

in the same figure (as the magnetic resonance will significantly reduce propagation
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lengths due to Gilbert damping). To evaluate the passband that one may expect from

a realistic material, we henceforth evaluate the semi-infinite array. When patterning

into arrays it can be expected that as the energy has more conversion events along

its propagation path, a larger proportion of it will be converted into magnetoelastic

energy. This is shown in Fig.4.5.(c) whereby the absorption at resonance is increasing

for a larger number of N scatterers.

Curiously, the inset of Fig.4.5.(a) also shows that the Fano-resonance in R∞, peaks

at lower magnitude than in an individual resonator r. However, this difference is a

background reflection phenomenon only. The difference being that the background

reflection of the metamaterial in the passband is less than the uncoupled Fabry-Perot

reflection of a single resonator.

4.2.2 Regime II: Tuning around a band gap

The reflection R∞, and absorption A∞, for the second regime (Regime II.) when the

FMR is close to the band gap but still within the acoustic passband, are shown in

Fig.4.6. This regime has some unique characteristics. The first is the increase in the

magnetoelastic coupling strength. This is due to the increase in interaction time be-

tween the propagating acoustic wave and the magnetic modes. As the frequency nears

the Bragg condition at the edges of the band gap, the effective group velocity reduces.

We can see by analogy with the single resonator model as in Fig.4.6.(c), if we reduce

the speed of the propagating wave (by changing µM) the resonant coupling strength

increases. As the magnetoelastic coupling signatures in Fig.4.6.(b) remain significant

even for a realistic damping value of α = 10−2, this is a considerable improvement

compared to a single resonator where a similar value would suppress the resonant

modulation[118]. The panels .(a) and .(b) also illustrate that the reflection is most
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FIGURE 4.6: The frequency dependence of the acoustic reflection co-
efficient, R∞, from a semi-infinite array with α = 10−2 is shown for
the Kittel frequency, fFMR, tuned by either side, (a) below, (b) above
the first phononic band gap. The solid vertical lines indicate the posi-
tion of fFMR, while the dashed black lines indicate the acoustic reflec-
tion R∞(B = 0). (c) The magnetoelastic component of the single res-
onator reflection [r − r(B = 0)] over the resonance for different speeds

(v0, 0.5v0) of the acoustic wave in the magnetic medium.

modulated at only one band edge[99]. For example, comparing these panels which

are tuned either side of the band gap, the behaviour at resonance illustrates that the

response at one band edge is greater than the other. For this case, the reduction in re-

flection is stronger as fFMR approaches the upper band gap edge, i.e in Fig.4.6.(b). This

can be attributed to a Borrmann effect[132, 133]. In a pure phononic crystal (B = 0),

the modes at the band edges are two standing waves, i.e: 90◦ out of phase[134]. For

one of the modes, the maxima of the stress occurs within the magnetic slabs, the min-

ima inside the non-magnetic matrix, and vice-versa for the other mode. As the wave
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only couples to magnetization in the magnetostrictive element (the Ni), the standing

wave wave mode that has an anti-node in the magnetic slabs will hybridize greater

(and have stronger interaction signatures)[135, 136]. This condition depends on the

impedances of the two media, for instance if ZM > ZE (the impedance of magnetic is

larger than non-magnetic), the upper band edge maximises the interaction. The situ-

ation is reversed when ZM < ZE. Finally, we observe that the band edge influenced

by the magnetic resonance is shifted. This is once again due to the presence of the fre-

quency dependent magnetoelastic coupling terms in the slab impedance, thus altering

the band gap position.

4.3 Regime III: Tuning inside a band gap

The reflection R∞, and absorption A∞, in Regime III (magnetic resonance inside

the band gap) are illustrated in Fig.4.7. The most striking feature here is the large
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FIGURE 4.7: The frequency dependence of the acoustic (a) reflection co-
efficient R∞, and (b) absorption A∞, from a semi-infinite array with α =
10−2 is shown for the Kittel frequency, fFMR, tuned inside the phononic
band gap. The solid vertical lines indicate the position of fFMR, while

the dashed black lines indicate the acoustic scattering R(T)∞,B=0

dip(peak) in R∞(A∞), which may suggest that the wave is actually propagating in the

band gap. If inside a phononic band gap we see some transmission of the acoustic
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wave through the structure that we would not typically expect, we call this a mag-

netically induced transparency (MIT). The following sections shall illustrate the trans-

parency is formed by a passband and assess the viability of forming it for realistic

materials.

4.3.1 Splitting a band gap to form a passband

The magnetically induced transparency in Fig.4.7 is caused by the splitting of a

phononic band gap into two very close band gaps, with a passband between. This

passband would be located at the magnetic resonance. The first issue with this, is that

the Gilbert damping (magnetic) linewidth, must be considerably less than the width

of the band gap. This is to properly decompose any edge effects (i.e Borrmann) with

the newly formed passband. To this end, Fig.4.8 shows suppression of the acoustic re-

flection within a typical band gap for a structure with a fictitious non-magnetic matrix:

ρE = 1000 kgm−3, µE = 500 GPa, HB = 380 mT , α = 0.5x10−3, all other parameters

are as previously stated. Instead of massively reducing the damping for this struc-

ture, we have instead opted to make the band-gap rather wide (≃ 2GHz). Fig.4.8.(b)

shows an increase in transmission from background (red, dashed), and so this increase

in transmission can only be attributed to MIT. Further to this, in Fig.4.8.(a) the reflec-

tion exhibits the same passband oscillations that can be seen in Fig.4.5, suggesting

energy is indeed propagating. The |Tr(M)| in Fig.4.9 also shows that the modulation

of impedance caused by the magnetoelastic interaction gives |Tr(M)| < 2 and so the

solution would support propagating modes. For example, in this frequency region the

acoustic impedance is altered so significantly by the magnetic component, that effec-

tively the phonon incident to a material with different elastic parameters, similar to

the introduction of depth dependent shear modulus in Section.2.2.5. The majority of
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FIGURE 4.8: The frequency dependence of (a) reflection, (b) transmis-
sion and (c) absorption coefficients around a band gap is shown for a
finite (N = 81) array with α = 0.5x10−3. The bias magnetic field is
µ0HB = 380mT. The frequency interval associated with the magneti-
cally induced transparency (’MIT’) is indicated above panel (a). The
dashed black vertical line corresponds to fFMR. The non-magnetic ma-

trix used here is fictitious.

the energy within this new passband will be constrained in the magnetic mode, due to

the proximity of the propagating modes to the magnetic resonance. This interpretation

should also manifest as a passband in the structure factor S( f , k). This is illustrated

in Fig. 4.10. Subtly, the band edges vary here compared to Fig.4.8 as S( f , k) treats the

slabs as δ−function scatterers. This treatment increases the phase delay χθ by altering

δs → δ + δs, by including the finite slab width. A form factor may be introduced as a

correction. This would average the Green’s function over a finite width, however it is
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FIGURE 4.9: The Tr(M) for the parameters in Fig.4.8, shaded green
represents passband regions, while shaded red represents stopband.
Note the large (Fano like) modulation around the fME, indicated by the

dashed vertical black line.

FIGURE 4.10: The response function S( f , k) of the infinite array, assum-
ing delta function slabs. The bias field µ0HB = 375mT and α = 5x10−3.

not included here. Fig.4.8 confirms that a branch of dispersive magnetoelastic energy

states form inside the phononic band gap.

4.3.2 Is MIT viable?

Given the strength of the magnetoelastic interaction for realistic materials we compare

typical magnetostrictive Co, Fe, Ni, Py, YIG and CoFe, with tuned parameters (α, B) to

explore how far they would have to be pushed to achieve a strong MIT response. As
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shown in Fig.4.11, Ni seems be to most promising if the Gilbert damping is reduced

(due to its typically strong coupling), while YIG is if the coupling is increased (due

to its low damping). As we know α and B are related by the spin-orbit coupling, an
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FIGURE 4.11: Compared transmission |T81( f )| − |T81,B=0( f )| spectra
for (a) varied α in Ni, and (b) varied B in YIG. The variation is scaled
with respect to realistic values α0, B0 inside the first phononic band gap.
Horizontal dashed lines indicate the position in which a gain of 10%

(0.1) transmission is achieved from background.

increase in one will typically lead to an increase in the other, but in this hypothetical

situation we can determine which materials are the closest to achieving good results.

YIG is particularly interesting, as the coupling strength ’only’ needs to be increased

by a factor of 3 to achieve a 10% transmission increase from background. Literature

shows that rare-earth doped YIG may fulfil these requirements however, these rare

earth doped magnetostrictive materials are still being developed[129].
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4.4 A figure of merit illustrating tunability

One of the advantages of the magnetic resonator is its resonant frequency is easily tun-

able by the external bias field, allowing us to explore the resonant responses over the

entire phononic band structure. To characterize the tunability of the acoustic reflection

FIGURE 4.12: The frequency and field dependence of the absolute
value of the modulation coefficient, |ζ| = |∂|R∞|/∂HB|, is shown
around the (a) first, (b) second, and (c) third phononic band gaps.
(d) The frequency and field dependence of the modulation coefficient,
ζ = ∂|R∞|/∂HB, is shown around the first phononic band gap. The po-
sition of the band gap edges at B = 0 are marked with dashed vertical

lines in all panels and α = 10−2.
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coefficient by the bias magnetic field, we introduce the field modulation coefficient,

ζ = ∂|R∞|/∂HB. (4.52)

The purpose of ζ is to highlight regions in which the modulation induced by the mag-

netoelastic coupling is most pronounced. We find that particular areas of interest are

the phononic band gaps, of which the frequency and field dependence of |ζ| in these

regions is illustrated in Fig.4.12.(a), (b) and (c). The first band gap here produces the

largest modulation, as the magnetization is less pinned to the bias direction (due to a

lower bias field, HB). As a side note, the higher frequency phononic band gaps would

also be more difficult to access in practice, as this would require a large bias magnetic

field (> 0.25T). Any analysis should hence be limited to frequencies around the first

band gap as shown in Fig.4.12.(d). In these regions ζ is significantly enhanced when

fME (solid, black) is tuned close to the proximity of the band gap edges (outside the

vertical, dashed, black lines) and inside them (inside the vertical, dashed, black lines).

This illustrates again that there are three regions (Regime I, II and III) to the tunability

as detailed in the previous sections.

4.4.1 Oblique incidence

Fig.4.13 illustrates R∞ for normal (θ = 0) and oblique (θ = π/12) incidences. The

band gap position is shifted between the incidence angles by the change of path

length, effectively increasing the thickness of the non-magnetic spacer. For finite θ

the magnitude of resonant signatures is increased, and the three regimes (I, II and

III) identified previously will apply. At oblique incidences the reflection of individual

resonators is non-reciprocal, as detailed in chapter 3. This would also apply to the
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FIGURE 4.13: R∞ for normal (θ = 0) and oblique (θ = π/12) incident
waves. Vertical solid lines indicate the position of fFMR.

metamaterials, however a full analysis of this has not been completed by the author.

The system we have considered here is still rather unphysical (i.e: using bulk waves):

it is to inform on the benefits of metamaterial tuning in realistic systems. With this in

mind, it may be challenging to implement a finite incidence angle in these geometries,

particularly for surface acoustic waves.

4.5 Conclusions

The work in this chapter illustrates that magnetoelastic signatures in the scattering

coefficients of a propagating acoustic wave can be enhanced by sequencing individ-

ual magnetoacoustic resonators into periodic arrays. First we presented the signa-

tures of magnetic coupling in the phononic crystal dispersion, which exhibited similar

coupling signatures to the individual resonator dispersion: a magnetoacoustic anti-

crossing that was tunable by the applied bias field and suppressed by the magnetic

damping. We then calculated the reflection, transmission and absorption coefficients

of finite and infinite arrays, in which we identify three key regimes, based on the po-

sition of the bias field tuned magnetic resonance. The first is the regime within a band
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gap, away from the phononic band edges. In this regime the behaviour is much like in

Chapter 3, however by adding multiple hybridization events along the path of the res-

onator the effective magnetoacoustic interaction strength was increased. The second

regime was identified as a magnetic resonance located close to the magneto-phononic

crystal band edge. Here the reduced phonon group velocity enhanced the magnetoa-

coustic signatures by increasing hybridization times. We also illustrate a Borrmann

effect at the band edges due to the phase difference of standing wave modes. Practi-

cally, this may be useful to tune modulate the band gap width externally (i.e: by an

external magnetic bias field). The third regime is located inside the magneto-phononic

stopband. Here we identify a magnetically induced transparency. Initially this is il-

lustrated as the magnetic resonance effectively cutting the band gap in two, due to the

large modulation in effective acoustic impedance. This is shown to be a true passband,

where energy is permitted to flow through the structure, as passband oscillations are

recovered. We assessed whether MIT will be observable in realistic materials, com-

ing to the conclusion that YIG poses the most likely candidate, as the coupling ’only’

needs to be increased by a factor of ≃ 3. Finally, a figure of merit illustrates that

the first band gap appears to be the regime in which the magnetoacoustic interaction

strength is maximised.
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Chapter 5

Propagation of surface acoustic

waves coupled to magnetic films

The magnetoacoustic metamaterials explored in Chapter 4 employ propagating bulk

elastic waves. This was useful for characterising the coupling signatures in dispersion

(i.e: an anti-crossing), reflection, transmission and absorption (i.e: Fano lineshapes),

while exploring the practical challenges (i.e: Gilbert damping) that these metamate-

rials will face. However, in practice surface acoustic waves (SAWs) will typically be

excited rather than bulk waves due both the ease of excitation and detectability. More-

over, typical experimental geometries are based around (thin) films situated atop some

elastic substrate due to the decreased complexity in their manufacture[29, 49, 137]. For

example, it is easier to deposit a finite width film on the surface of a substrate than in

the bulk. SAWs have a more complex character than the bulk waves and the solution

to Eqn.(2.45) with a boundary are illustrated in Section.2.2.3: the surface Rayleigh (ret-

rograde elliptical) or the interfacial Love (transverse) wave. Typically Rayleigh waves

are chosen as the SAW[32, 65, 112, 138–141], perhaps due to their familiarity but also

as the Love wave compatibility condition, Eqn.(2.63), requires either some grading of

the substrate (which requires e.g: a piezoelectric material) or a capping layer. When
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coupled to magnetization dynamics, Rayleigh SAWs are also non-reciprocal due to

magneto-rotation coupling[58]. However, in our previous analysis of bulk slabs, we

identified that the transverse bulk wave coupling was stronger in Damon-Eshbach

(DE) geometries and we will present arguments in this chapter that the same applies

to a Love interfacial wave geometry.

The work in this chapter lays the groundwork for the design of a Love interfacial

wave coupled thin film. This design is intended to operate under realistic conditions,

and so primarily explores the effect parameters have on the transmission of the Love

wave. It is arranged as follows. In Section 5.1 we introduce a more realistic SAW

coupled model and evaluate the merits of exciting either a Rayleigh or Love surface

wave when coupling to the magnetization dynamics in the thin film. This highlights

why the Love SAW is chosen. Section 5.2 and 5.3 derive and analyse the transmission

of this Love SAW excited thin film. Section 5.4 and 5.5 add a capping layer to better

localise the Love wave at the thin film interface. Section 5.5 presents how the thin film

coupling is non-reciprocal and explores the parameter space to specify a design that

maximises this non-reciprocity.

5.1 Rayleigh or Love SAWs for magnetoacoustics?

As discussed, Rayleigh SAWs are typically excited in magnetoacoustic devices. In the

work of Chapter 3 and 4 we considered slabs magnetized in the DE geometry and

so the bulk transverse elastic waves were used due to their linear coupling, as sum-

marized in Table (3.1). We therefore begin by exploring the merits of using either a

Love or Rayleigh wave excitation in the thin film coupled geometry. Let us assume

the model shown in 5.1.(a) for the Rayleigh wave and 5.1.(b) for the Love. Note the
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FIGURE 5.1: (a) The geometry with a propagating Rayleigh (retrograde
elliptical) surface acoustic wave. (b) The geometry with a propagat-
ing Love (transverse) surface acoustic wave. The label (1) refers to the

plane layer and (2) the substrate (half space).

change in SAW z dependence: a Rayleigh wave is localized at the surface, while a

Love wave is localized at the film-substrate interface. We consider both Rayleigh wave

and Love wave solutions in this section, however the latter was already presented for

a capping layer film of thickness h, in Section 2.2.3. The Rayleigh wave solution in

the geometry of Fig.5.1.(a), will contain longitudinal Ul , and transverse Ut displace-

ment components in both x and z, similar to Eqns.(2.52). We will also consider that

propagation may occur in both z directions, denoting ±z with ′±′. In each layer the

displacements in x and z are,

Ux = U+
tx + U−

tx + U+
lx + U−

lx ,

Uz = U+
tz + U−

tz + U+
lz + U−

lz .

(5.1)

In Fig.5.1.(a) we have propagation in both directions for the capping layer: z =

{−h, 0}, while for the half space z ≤ −h, there is only decay as z → ∞. According to

Eqns.(5.1) colorred the capping layer (layer "1") will have the full eight contributions,

as the wave propagates in ±ẑ. The substrate (layer "2") will have only four, as propa-

gation only occurs in +ẑ. The two independent wave equations for longitudinal and
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transverse displacements define the decay rates (wavenumbers) of the waves in the z

direction: κt(l) for the capping layer, and αt(l) for the substrate, which are written,

κ(α)t(l) =
√

k2 − ω2/c2
t(l). (5.2)

We assume plane wave solutions for each component, i.e: the transverse wave propa-

gating in +ẑ in the capping layer has the form: a+t eκtz
(
eikxx),

U1
x = a+l eκlz + a+t eκtz + a−l e−κlz + a−t e−κtz,

U1
z = b+l eκlz + b+t eκtz + b−l e−κlz + b−t e−κtz,

U2
x = cle−αlz + cte−αtz,

U2
z = dle−αlz + dte−αtz.

(5.3)

We know that transverse components, i.e: U+
tx, U−

tz in Eqn.(5.1), do not incur any vol-

ume compression (or expansion) and so obey Eqn.(2.33). Conversely, the longitudinal

components do and so obey Eqn.(2.32). For each layer we obtain the following, for

layer (1):

∇ ·Ut = ∂x
(
U+

tx + U−
tx
)
+ ∂z

(
U+

tz + U−
tz
)
= 0, (5.4)

=
(
ikU+

tx + κtU+
tz
)
+
(
ikU−

tx − κtU−
tz
)

, (5.5)

∇×Ul = ∂z
(
U+

lx + U−
lx

)
− ∂x

(
U+

lz + U−
lz

)
= 0, (5.6)

=
(
κlU+

lx − ikU+
lz

)
−
(
κlU−

lx + ikU−
lz

)
, (5.7)
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and for layer (2):

∇ ·Ut = ∂x (Utx) + ∂z (Utz) = 0, (5.8)

= ikUtx − αtUtz, (5.9)

∇×Ul = ∂z (Ulx)− ∂x (Ulz) = 0, (5.10)

= −αlUlx − ikUlz. (5.11)

This allows us to reduce the number of independent variables from twelve:(
a+t , a−t , a+l , a−l , b+t , b−t , b+l , b−l , ct, cl , dt, dl

)
, to six:

(
a+t , a−t , a+l , a−l , ct, cl

)
. To illustrate this

reduction, the Eqn.(5.4) (for the transverse displacement of layer 1) is expanded using

the plane wave solutions below,

∇ ·Ut =
(
ikU+

tx + κtU+
tz
)
+
(
ikU−

tx − κtU−
tz
)
= 0, (5.12)

U+
tx = κta+t eκtzei(kx−ωt), U+

tz = −ikb+t eκtzei(kx−ωt), (5.13)

U−
tx = κta−t e−κtzei(kx−ωt), U−

tz = ikb−t e−κtzei(kx−ωt), (5.14)

a+t = b+t , a−t = b−t . (5.15)

Now we characterise the boundary conditions for this geometry. The Rayleigh wave

above contains three stress components that are non-zero, σxx, σzz, σxz. According to
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Eqns.(2.42) for the 1-2 (solid-solid) interface at z = 0:

Ux
(
z = 0−

)
= Ux

(
z = 0+

)
, (5.16)

Uz
(
z = 0−

)
= Uz

(
z = 0+

)
, (5.17)

σxz
(
z = 0−

)
= σxz

(
z = 0+

)
, (5.18)

σzz
(
z = 0−

)
= σxz

(
z = 0+

)
. (5.19)

For the free surface at z = −h, Eqn.(2.43) gives:

σxz (z = −h) = 0, (5.20)

σzz (z = −h) = 0. (5.21)

This gives six boundary conditions in the six unknowns (the displacement ampli-

tudes), which are solved numerically using singular value decomposition (SVD). To

compare stresses for both Rayleigh and Love, we must also normalise these waves.

To do so we normalise with respect to the incident power, I = 10−6W/µm (a typi-

cal incident power one could expect to achieve) using the acoustic Poynting vector of

Eqn.(2.81),

N =
10−6

S
, (5.22)

S = −
∫ 1

0

∫ ∞

0
[∂tUz (σxz + σzz) + ∂tUxσxz] dzdx. (5.23)

The dimensions of N are µm−1 as the incident power is defined per unit y. We now

present the displacement profiles of the Rayleigh wave solution above, and the Love

wave solution presented in Section.(2.2.3), in Fig.5.2. We begin by discussing the
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FIGURE 5.2: The displacement components (a) Ux, (b) Uz for Rayleigh
waves and (c) Uy for Love waves, with depth z as a function of film
thickness, h. Thicknesses (black) 0.5, (red) 0.3 and (green) 0.1µm are

shown.

Rayleigh wave which contains two displacement components: Ux shown in Fig.5.2.(a)

and Uz in Fig.5.2.(b). The solution is predominantly a free surface (not interfacial)

wave, i.e: for h = 0.5µm curve (black, solid) Ux and Uz are largest at the free surface.

The motion is also elliptical retrograde: the ellipticity changes with depth, and at some

point Ux reverses sign to flip the chirality (refer to Fig.2.8 for an example of the typical

elliptical retrograde profile). At z = 0 however there is a kink. This discontinuity is al-

lowed as the strains Uxz(zz) are not conserved. Depending on the stiffness or thickness

of the capping layer this interface then acts as a pseudo-free surface. For example, if

the capping layer material is soft enough (µ1 ≪ µ2), there will be no resistance to the

substrate displacement, and stresses σzz, σxz, will be rather small at z = 0. Therefore

this interface will act as another channel with which the Rayleigh wave may propa-

gate and kinks in Ux and Uz reflect this. For thin films where h ≪ λ, this secondary
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channel at the capping-substrate interface z = 0 appears to become a primary chan-

nel for the waves, highlighted by h = 0.1µm in Fig.5.2.(b). Due to the capping films

small thickness it can put up little resistance to the Rayleigh wave motion. This can

be thought of as the thin film “riding" the Rayleigh wave, much like a buoy on the

surface of the ocean. This analogy may be more accurate if the film has finite width w,

much less than the Rayleigh wavelength: w ≪ λ. The profiles of the Love waves in

Fig.5.2.(c) can be compared with those in Fig.2.9.(a), as the solution is the same. The

h dependence follows from Eqn.(2.63), as h → 0 the Love solution localises from the

interface. Therefore Uy is weakly concentrated at the interface as h decreases.

We now consider the stress profiles and so it will be instructive to first consider

the stress components of the Rayleigh and Love wave that will be useful when the

capping layer is magnetostrictive. For the backward volume (BV, k ∥ Ms), Damon-

Eshbach (DE, k ∥ Ms) and forward volume (FV, k ∥ Ms) geometries we list the coupled

stress tensor components in the linear and non-linear regimes in Table 5.1. In the

k = kx x̂ + kyŷ DE
(
kx ⊥ Ms,ŷ

)
BV (kx ∥ Ms,x̂) FV (kx ⊥ Ms,ẑ)

Rayleigh: Linear - σxz σxz
Love: Linear σzy, σxy σxy σzy

Rayleigh: Non-Linear σxz, σxx, σzz σzz σxx
Love: Non-Linear - σzy σxy

Rayleigh: Uncoupled - σxx σzz
Love: Uncoupled - - -

TABLE 5.1: The stress components that is in the linear, non-linear and
uncoupled regimes, depending on the magnetic geometry (DE, BV, FV).

linear regime the Rayleigh wave does not couple in the DE geometry. As the stress

drives the magnetic precession, the Rayleigh waves will therefore produce weaker

coupling signatures than Love waves. The stress profiles are shown in Fig.5.3. For

Rayleigh waves the displacements are typically large at the interfaces, however this

is not where conserved stress is concentrated. As in Fig.5.3.(a) this is just below the
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FIGURE 5.3: The stress component (a) σxz for Rayleigh waves, (b) σxy
and (c) σzy for Love waves, with depth z as a function of film thickness,

h. Thicknesses (black) 0.5, (red) 0.3 and (green) 0.1µm are shown.

propagating channels (i.e: free surfaces). For h = 0.5µm the interface at z = 0 acts as

a secondary channel giving the curve two σxz maxima. As we decrease thickness the

stress at h = 0 increases rapidly, and as before this interface is becoming the primary

propagation channel. For the Love wave there are two components coupled to the

magnetization: σxy in Fig.5.3.(b) and σzy in Fig.5.3.(c). The discontinuity in σxy is given

by ratio of shear moduli µ1/µ2. The σzy follows from Fig.2.9.(b), and does not increase

with h but instead is maximised at a value around h = λ/6.

For the magnetoacoustic metamaterial we will typically consider a DE geometry

and so we discuss the choice of Rayleigh or Love wave when coupling to the magne-

tization dynamics in this geometry. First let us consider the magnitude of the stresses:

the Rayleigh wave is considerably less than the Love. This means magnetization com-

ponents in the thin film for the Rayleigh wave are more weakly driven. Secondly, in

the DE geometry the Rayleigh wave only couples non-linearly to the magnetization.
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The stress profiles of the Rayleigh wave are also not optimal, σxz is maximised just be-

low the plane layer-substrate interface. Only stresses inside the capping layer couple

to magnetization dynamics. At thicknesses of film likely used in metamaterial struc-

tures h ∼ 10nm as in Chapter 4 the stress inside the Rayleigh film almost completely

vanish, i.e: the trend in Fig.5.3.(a) is extended to h = 0.01µm. In this case the thin film

’rides’ the Rayleigh wave as previously discussed. Conversely, the Love wave max-

imises its stress at the plane layer-substrate interface, couples linearly and has larger

magnitude stresses, so it is the optimum wave in the DE geometry.

The BV geometry must also briefly be discussed. As the films presented in Fig.5.1

are infinite in x and y, a large magnitude magnetic bias field is not required to align the

magnetization in the BV orientation. From Table 5.1 both Rayleigh and Love waves

couple linearly. However, the Rayleigh couples to the Mz component of magnetiza-

tion, which is limited in magnitude by the demagnetizing field. Therefore its contri-

bution to Eqn.(2.98) when compared to the Love wave, which couples to the larger Mx

component, is small. No other limitations of the Rayleigh wave are lifted, i.e: its stress

profile is still not optimal, therefore the Love interfacial wave remains the best choice.

However, it is expected that the Love wave will couple weaker in the BV geometry

when compared to the DE, as it does not couple to both Mx and Mz. This is verified

later by the transmission t(dB) in Section 5.3.

5.2 Deriving equations for thin film Love wave absorption

Love waves couple stronger to the magnetization dynamics than Rayleigh waves in

this geometry, and so in what follows we shall consider only Love waves. Fig.5.4

illustrates a typical experimental geometry, in which SAWs are input, couple to the



5.2. Deriving equations for thin film Love wave absorption 127

magnetization dynamics, and their transmission is measured. As experimentally the

FIGURE 5.4: The magnetic thin film atop a substrate is excited by a
love wave. Inset: The σzy stresses coupling to the magnetization, the

magnitude reflected by the size of the traced ellipse

transmission t(dB), can be measured, this section provides a theory with which to

compare the results. This is the objective of the following sections in various geome-

tries and magnetic orientations. As shown in Fig.5.4, h1 and h2 correspond to the films

lower and upper z values respectively, thus the thicknesses hTF, of the thin films is

hTF = h2 − h1. We will note later that h1 = 0, h2 = h. As this is a thin film we can

state that the displacement follows a simple linear dependence in z. Omitting ei(kx−ωt)

terms we write,

UTF = U1 +
(U2 − U1)

hTF
z, (5.24)

∂zU =
U2 − U1

hTF
, ∂xU = ikU, (5.25)

kx(z) =


kL (−∞ ≤ z ≤ 0) ,

kx (0 ≤ z ≤ h) ,

(5.26)

where U2(1) are the displacements at the edges of the slab U(z = h2) = U2, U(z =

h1) = U1. We also assume the magnetization profile is uniform. The wave inside the
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substrate however is exponentially decaying in z,

US ∝ eκz. (5.27)

An expression for the decay rate κ, into the bulk will allow us to define the absorption

of a propagating wave in this geometry. We therefore derive an expression for κ to

specify the transmission, t(dB). As the Love wave mode localises at the film-substrate

interface, the majority of the absorption will be magnetic, thus around the magnetoe-

lastic resonance we expect sharp resonant dips in t(dB).

5.2.1 Deriving magnetoacoustic boundary conditions

The decay rate κ, of the Love wave into the substrate is defined by the interface bound-

ary conditions. The elastic boundary conditions for the thin film problem are well

known as Eqns.(2.42). However, if the capping layer is magnetoacoustic there will be

additional contributions to the stresses in this layer due to the coupling. As bound-

aries are positions where there may be a finite discontinuity in the free energy, the

boundary conditions minimise this discontinuity. For example, the free energy of the

bulk becomes: F → F + δF, at a boundary, where the boundary conditions set δF = 0.

To derive the boundary conditions for our problem, we therefore consider the varia-

tion in the displacement U → U + δU to obtain the increment of free energy δF, that

we minimise: δF → 0.

We begin by deriving the contributions to free energy in the capping layer. There

are two contributions to acoustic impedance, mass density and elastic stiffness, there-

fore both should factor into the minimised free energy. The mass mismatch between
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the film and substrate is considered by the systems Lagrangian (time-dependent),

L =
ρ

2

(
∂U
∂t

)2

− µ

2

(
∂U
∂x

)2

, (5.28)

FL =
∫

Ldz =
λ

2

∫
U2dz, (5.29)

where we have noted λ = µk2 − ρω2. Applying to elastic Love waves in our thin film

we obtain,

FTF
L =

λTF

2

∫ h2

h1

U2dz =
λTF

2

∫ h2

h1

(
U1 +

(U2 − U1)

hTF
z
)2

dz,

=
λTF

2

[
U2

1 z +
U1(U2 − U1)z2

hTF
+

(U2 − U1)
2z3

3h2
TF

]h2

h1

,

=
λTF

2

[
U2

1 hTF +
U1(U2 − U1)(h2

2 − h2
1)

hTF
+

(U2 − U1)
2(h3

2 − h3
1)

3h2
TF

]
,

=
λTF

2

{
U2

1

[
hTF

3
+ h1

(
h1

hTF
− 1
)]

+ U1U2

[
hTF

3
− 2h2

1
hTF

]

+ U2
2

[
hTF

3
+ h1

(
h1

hTF
+ 1
)]}

.

(5.30)

We now consider the terms associated with the elastic mismatch, and so the next con-

tribution is from the elastic energy, Eqn.(2.41):

FTF
E =

µTF

2

∫ h2

h1

(∂zU)2 + (∂xU)2dz, (5.31)

=
µTF

2

∫ h2

h1

(
U2 − U1

hTF

)2

− k2
[

U1 +
(U2 − U1)

hTF
z
]2

dz, (5.32)

=
µTF

2
(U2 − U1)

2

hTF
− k2µTF

2

[
U2

1 hTF + U1 (U2 − U1) (hTF + 2h1)

+
(U2 − U1)

2

3hTF

(
h2

TF + 3h2
1 + 3hTFh1

)]
.

(5.33)
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The final contribution if from the magnetoacoustic free energy Eqn.(2.98),

FTF
MA =

B
Ms

Mxuxy +
B

Ms
Mzuzy, (5.34)

and so we obtain

FTF
MA = α

∫ h2

h1

Udz + β
∫ h2

h1

∂zUdz, (5.35)

where α = Bmxikx/Ms and β = Bmz/Ms. For the linear displacement in the thin film

this can be written as,

FTF
MA = αU1hTF +

α(U2 − U1)(h2
2 − h2

1)

2hTF
+ β(U2 − U1) (5.36)

= αhTF

[
(U1 + U2)

2
+

(U2 − U1)h1

hTF

]
+ β(U2 − U1). (5.37)

In theory, this could then be applied to any number of thin films, but we only consider

a single. The total energy shall also include contributions from the substrate FS
E ,

FS
E =

µS

2

∫ 0

−∞
(∂xU)2 + (∂zU)2 dz, (5.38)

and so the total free energy of the system is,

F = FTF
E + FTF

MA + FTF
L + FS

E . (5.39)
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We now minimise the energy discontinuity δF = 0 by considering the variation in

displacement U → U + δU. The variation of the three thin film terms are written as,

δFTF
L = λTF

{
δU1

[
U1

(
hTF

3
+ h1

[
h1

hTF
− 1
])

+
U2

2

(
hTF

3
− 2h2

1
hTF

)]

+ δU2

[
U2

(
hTF

3
+ h1

[
h1

hTF
+ 1
])

+
U1

2

(
hTF

3
− 2h2

1
hTF

)]}
,

(5.40)

δFTF
E =

µTF

hTF
(U2 − U1) (δU2 − δU1) , (5.41)

δFTF
MA = αhTF

[
(δU1 + δU2)

2
+

(δU2 − δU1)h1

hTF

]
+ β(δU2 − δU1). (5.42)

The substrate variation requires integration by parts,

δFS
E =

µS

2

∫ 0

−∞
2

∂U
∂z

∂δU
∂z

dz, (5.43)

= µS

[
∂U
∂z

δU
]0

−∞
= µS

∂U1

∂z
δU1. (5.44)

As both the free surface z = h2, and interface z = h1 = 0 minimise the free energy dis-

continuity we separate the sum: δF = δFTF
L + δFTF

E + δFTF
MA + δFA

E , into linear equations

in the variation of the displacements at the interfaces δU1(2),

D1 · δU1 = 0,

D2 · δU2 = 0,

(5.45)

where D1(2) represent functions in U1(2), hTF and h1. Addition and subtraction of D1(2)

give us the boundary conditions for the problem. By utilising the abbreviations [ f ]21 =
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f2 − f1, ⟨ f ⟩ = 1
2 ( f1 + f2) we write these as,

[µs∂zU]h2
h1
= [σ] = αhTF + λTFhTF⟨U⟩+ λTFh1[U], (5.46)

[U]
(
µTF + λTFh2

1
)
= hTF⟨∂zU⟩ − βhTF − αh1 − λTFh1hTF⟨U⟩. (5.47)

We have disregarded terms of the order, O(h2
TF), but retained terms O(h2

1) for com-

pleteness as these could be significant for large stacks of thin films, or similar systems

where the film is not located at z = 0. The Eqn.(5.46) describes the stress discontinuity

over the thin film, and Eqn.(5.47) the displacement.

5.2.2 Agreement with literature in the uncoupled case: α, β = 0

We consider the uncoupled: α, β = 0 case, and set h1 = 0 to ensure the boundary

conditions presented in Eqns.(5.46) and (5.47) agree with the result in Eqn.(2.63). The

decay rate in the substrate κ, now solely represents the acoustic (bulk) decay of the

interfacial Love wave, with no Gilbert contribution. Provided that the capping layer

is thin film, κ is much smaller than the propagation wavenumber but still non-zero,

k ≫ κ, and so

ω2 =
µS

ρS

[
k2 − κ2] ≃ µS

ρS
k2. (5.48)

With κhTF ≪ 1, Eqns.(5.46) and (5.47) take the form,

−µSκU1 =
hTF

2
(
µTFk2 − ρTFω2) (U2 + U1) , (5.49)

µTF (U2 − U1) ≃ 0. (5.50)
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These, with Eqn.(5.48), give the existence condition of Love waves,

κ = hTFk2
[

ρTF

ρS
− µTF

µS

]
, (5.51)

which is to say, the Love mode is stable if: µS/ρS > µTF/ρTF[74], i.e: the speed of the

Love wave cL is within the range cTF < cL < cS.

5.3 Analysis of coupled Love waves to a magnetic thin film:

α, β ̸= 0

For the coupled system α, β ̸= 0, Eqns.(5.46) and (5.47) describe a discontinuity in

stress due to coupled magnetization. In this instance the magnetization is driven by

an input displacement U, i.e: the components Mx (in α) and Mz (in β) should be ex-

pressed as functions of U. In order to derive these dependence’s we must consider

the magnetoelastic contribution to the magnetic effective field. The free energy in the

magnetic thin film can be written from Eqn.(5.37). However as we integrated over

z to obtain the boundary conditions, to recover the dimensionality we must divide

Eqn.(5.37) by hTF ,

FTF = FTF
M + α

(
⟨U⟩+ [U]h1

h2
TF

)
+

β

hTF
[U], (5.52)

= FTF
M +

iBMxk
Ms

(
⟨U⟩+ [U]h1

hTF

)
+

BMz

MshTF
[U]. (5.53)
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The effective field for this system is,

−µ0Heff = −µ0HBŷ + µ0 (Nx Mx x̂ + Nz Mz ẑ)

+
iBk
Ms

(
⟨U⟩+ [U]h1

hTF

)
x̂ +

B
MshTF

[U]ẑ.
(5.54)

We then obtain the magnetic equations of motion by substitution into the linearized

LLG. The cross product matrix is shown below,

(M × Heff) =


x̂ ŷ ẑ

Mx Ms Mz

−Nx Mx − iBk
µ0 Ms

(
⟨U⟩+ [U]h1

hTF

)
HB −Nz Mz − B

µ0 MshTF
[U].

 (5.55)

We once again use the notation ω̃x(y) = γµ0(HB + Nx(y)Ms)− iωα and obtain for the

dynamic components of magnetization,

Mz =
γB (hTFωk⟨U⟩+ ω̃x[U])

hTF (ω2 − ω̃zω̃x)
+

γBωkh1[U]

hTF (ω2 − ω̃zω̃x)
, (5.56)

Mx =
iγB (hTFω̃zk⟨U⟩+ ω[U])

hTF (ω2 − ω̃zω̃x)
+

iγBω̃zkh1[U]

hTF (ω2 − ω̃zω̃x)
. (5.57)

These expressions are then re-substituted into Eqn.(5.46) and (5.47) in the α, β terms.

For a thin film located at h1 = 0 this gives the system of equations:

−µSκU1 = αhTF +
hTF

2
(
µTFk2 − ρTFω2) (U1 + U2) , (5.58)

µTF (U2 − U1) = −βhTF +
hTFµSU1κ

2
. (5.59)
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These are recast as

0 = M

U1

U2

 , (5.60)

M =

µSκ + λh
2 + γB2k(hω̃zk/2−ω)

Ms(ω2−ω̃xω̃z)
, λh

2 + γB2k(hω̃zk/2+ω)
Ms(ω2−ω̃xω̃z)

µTF − γB2(ωhk/2−ω̃x)
Ms(ω2−ω̃xω̃z)

, −µTF − γB2(ωhk/2+ω̃x)
Ms(ω2−ω̃xω̃z)

 , (5.61)

which must have characteristic equation equal to zero for non-trivial solutions and so

we obtain (ignoring terms of the order (γB2)2 and h2
TF):

κ(k, ω) = hTFk2
(

ρTF

ρS
− µTF

µS

) [
1 +

γB2ω̃x

µTFMs (ω2 − ω̃xω̃z)

]
− γB2k2ω̃zhTF

MsµS (ω2 − ω̃xω̃z)
.

(5.62)

In Eqn.(5.62), κ is a function of both k and ω. This means to obtain κ(k, ω) we must

therefore solve the transcendental equation of κ =
√

ω2 − ρS/µSk2 and κ given by

Eqn.(5.62), for k at each ω. This is then re-substituted into Eqn.(5.62) to give κ(ω). We

should also note here that there is a recurring discontinuity when solving the transcen-

dental for the fundamental harmonic. Higher wavelength solutions may appear sud-

denly as shown in Fig.5.5, e.g: when varying hTF. This is the equivalent of additional

crossings existing for the Love harmonic, i.e: the multiple crossings of Eqn.(2.63),

shown in Fig.2.9. As sudden lower k solutions may appear, when varying material

parameters the response of the fundamental harmonic may alter discontinuously.

For finite damping (α ̸= 0) we can see that κ is complex, κ = κ1 + iκ2, whereby the

imaginary component is introduced by the Gilbert damping as: ω̃x(z) = ωx(z) − iωα.

The imaginary component κ2, represents the energy lost by the magnetic damping. If

we consider the acoustic Poynting vector in Eqn.(2.81), for this system it will represent

the energy lost by the magnetic damping. We can use this to consider the energy lost
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FIGURE 5.5: Example of the discontinuity in solving the transcendental
g(hc), for the fundamental harmonic. Crossing points highlighting the

solution are marked.

by a Love wave with specific power per unit distance, propagating along the interface.

Dimensionally we specifying the input power for the Love wave by a power per unit

distance Ix, in x̂ (typically 1mW/mm). As the material is assumed uniform in y, all

powers are specified as a function of distance. The power Ix, may be related to the

Love waves energy flux Sx, using the Poynting vector in x̂,

Ix =
∫

Sxdz =
∫

σxy∂tUdz ∝
∫ 0

−∞
exp(2κz)dz = Re

[
Sx

2κ

]
=

Sx

2κ1
. (5.63)

As the magnetic damping α acts via κ in ẑ, it contributes to the flux, Sz. Therefore, the

power lost per unit distance Iz, requires an integral over the entire substrate,

Iz =
∫

Szdz =
Sz

2κ1
, (5.64)
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this is equivalent to the integral performed in Eqn.(5.63). We then link powers in

orthogonal directions by evaluating the full expressions,

Ix =
∫

σxy∂tUdz = ωk
∫

µU2dz = ωk
∫ 0

−∞
µ∞U2

1 exp(2κz) exp(2ikx)dz, (5.65)

U2
1 =

2κ Ix

ωkµ∞
exp(−2ikx), (5.66)

Iz =
∫ 0

−∞
σzy∂tUdz = −iµ∞ωκ

U2
1

2κ
exp(2ikx), (5.67)

Iz = Re
[
−iκ Ix

k

]
=

κ2

k
Ix. (5.68)

Lost energy flux (by magnetic damping) Sz can then be equated to the input power by,

Sz =
2κ1κ2 Ix

k
. (5.69)

We then integrate Eqn.(5.69) over x to obtain the loss (per unit in y) for a given dis-

tance, d. As the damped power and input are known, then the power transmitted can

be found and used to define the transmission in dB,

t(dB) = −10 log10

[
Wi

Wt

]
(5.70)

where the incident wave power Wi = Ix, and the transmitted wave power, Wt =

Ix − Szd. Taylor expanding log10 (1 − x) = ln (1 − x) / ln (10), yields:

t(dB) ≃ −20κ1κ2d
ln(10)k

. (5.71)

The transmission t(dB), can be analysed for either the Damon-Eshbach (DE, k or-

thogonal Ms) or Backward Volume (BV, k ∥ Ms) geometries, the former requiring
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demagnetizing coefficients as given in Eqn.(2.27). We compare this with COMSOL

simulation results (Dr Yat-Yin Au is thanked for his considerable contribution to these

models) for a similar thin film system, i.e: one composed of a Ni (Ms = 480kA/m,

µTF = 76GPa, α = 0.038, B2 = 5.5MPa, E = 200GPa, ν = 0.31, ρTF = 8900kg/m3) thin

film and LiNbO3 (µS = 107GPa, ρS = 4650kg/m3) substrate. The COMSOL model

geometry is shown in Fig.5.6.

FIGURE 5.6: The geometry used in the COMSOL model. Non-
reflecting boundary conditions are employed as well as damping re-

gions to reduce the reflection of waves at the edges.

The COMSOL results for the t(dB) are shown alongside analytical results given

by this theory for the DE geometry in Fig.5.7. In this analysis t(dB) is calculated over

a distance of d = 20λ, where the IDT spacing λ/4 = 0.1µm. Overall there is a rea-

sonable amount of overlap between the predictions of this analytical theory and the

COMSOL results, and the theory may be used as a reference for the position and mag-

nitude of the signal one could expect. However, the agreements are not perfect. While

magnitudes are similar the analytical theory consistently seems to underestimate the
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FIGURE 5.7: (a) t(dB) from the analytical theory, of Eqn.(5.71), (dashed
lines) and the COMSOL simulation (solid lines) sequentially increasing
with bias field for the Damon-Eshbach (DE, k ⊥ Ms) geometry. The
COMSOL results have had background spectra, S21(B = 0) removed.
(b) The DE dispersion is shown for the bias fields (coloured, solid) to

intercept with the (approximate) Love dispersion (black, solid).

loss. There are a number of factors that could cause this. The first is the MSSW pro-

file, which is asymmetric as shown in Fig.2.6. This asymmetry causes non-uniform

magnetization profiles, which are not taken into account in the model. As the stresses

are not constant over the slab, the non-uniform magnetization will couple asymmet-

rically. Secondly, while Love surface waves exist at the Ni-LiNbO3 interface, they

are not completely immune to dissipation into the bulk continuum. This would add

a contribution to t(dB) that the analytical theory overlooks. The resonant frequen-

cies are also slightly shifted at higher frequencies. This is as the exchange interaction

is not included in the model, which may impact the higher frequencies. The COM-

SOL model also includes the bulk decay channel, i.e: energy that leaks from the thin
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film-substrate interface into the substrate, that the analytical model has not taken into

account, however it remains a good approximation to the t(dB) one may expect.

5.3.1 Backward Volume Theory

In the thin film geometry of Fig.5.4 the BV orientation does not require an excessively

large bias field HB, and so we consider it here for completeness. We also expect to

verify the hypothesis following from Table 5.1, that this orientation will couple less

efficiently to the Love waves. The derivation will follow the steps of the Section

5.2.1 In this orientation in the second term term of the magnetoelastic free energy of

Eqn.(5.34),is non-linear. Thus we write for the BV geometry,

FTF
MA =

B
Ms

Mx Myuxy. (5.72)

This removes any terms with β in the proceeding equations. For a thin film situated

with h1 = 0, we write the magnetoacoustic boundary conditions as,

[µs∂zU]h2
h1
= [σ] = αhTF + λTFhTF⟨U⟩,

µTF[U] = hTF⟨∂zU⟩.
(5.73)

The dynamic magnetization components Mz(y) become,

Mz =
γBkω⟨U⟩

hTF
(
ω2 − ω̃zω̃y

) , (5.74)

My =
iγBkω̃z⟨U⟩

hTF
(
ω2 − ω̃zω̃y

) , (5.75)
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FIGURE 5.8: (a) t(dB) from the analytical theory, of Eqn.(5.71), (dashed
lines) and the COMSOL simulation (solid lines) sequentially increasing
with bias field for the Backward Volume (BV, k ∥ Ms) geometry. The
COMSOL results have had background spectra, S21(B = 0) removed.
(b) The BV dispersion is shown for the bias fields (coloured, solid) to

intercept with the (approximate) Love dispersion (black, solid).

which when applied to Eqns.(5.73) obtain the following for the matrix M as in

Eqn.(5.60),

M =

µSκ + λh
2 + γB2k2hω̃z

2Ms(ω2−ω̃yω̃z)
, λh

2 + γB2k2hω̃z

2Ms(ω2−ω̃yω̃z)

µTF −µTF

 , (5.76)

which gives a similar expression for κ as in Eqn.(5.62). The rest of the derivation is

the same (as it is dealing with acoustic fluxes). We compare analytical and COMSOL

results of t(dB) for the BV geometry in Fig.5.8.

The results are much the same as in the DE theory of Fig.5.7, the general agreement

is good between the magnitude and linewidths. Comparing magnitudes of t(dB) in
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Fig.5.8 with Fig.5.7 verifies the hypothesis that the Love waves couple stronger in the

DE than BV geometry: Fig.5.7 has higher attenuation at resonance. Overall, while the

agreement between magnitudes is not perfect, the analytical theory provides a good

approximation as to the expected magnitudes in t(dB).

5.4 Adding a finite thickness capping layer

The surface acoustic wave is only partially localized to the substrate-thin film inter-

face, i.e: there is some stress that exists at finite depth z in the substrate. To achieve

stronger magnetoacoustic signatures we should have as much stress at the interface

or in the thin film as possible. The idea of this section is to add an additional layer

above the thin film, to therefore further localise the SAW at the magnetic interface,

giving stronger signatures. An example geometry is shown in Fig.5.9, in which we

have assumed that the displacement in the capping layer is oscillating,

U ∝ eikx
[
eiq(z−h2) + e−iq(z−h2)

]
. (5.77)

Similar to the solutions for the Love wave in Fig.2.9, and that the displacement at the

FIGURE 5.9: The finite capped, thin film geometry. Love waves have an
oscillating profile in the finite thickness capping layer and may propa-

gate along both interfaces of the magnetic thin film.
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thin film-capping layer interface z = h2, is conserved. We follow the same method

as in Section 5.2.1, deriving boundary conditions by minimising the free energy vari-

ation, δF → 0. Evidently this system will still retain the expressions for the uncapped

thin film as in Eqns.(5.46) and (5.47). Instead the boundary conditions will include ad-

ditional contributions from the capping layer, obtained from the capping layers mass

mismatch as in Eqn.(5.29), and elastic stiffness mismatch as in Eqn.(5.31). For the ge-

ometry shown in Fig.5.9 where the thin film is located at h1 = 0, we find the boundary

conditions are,

[σzy] = −2 tan(qhc)
λc

q
U2 − µSκU1 = −αhTF − λTFhTF⟨U⟩, (5.78)

µTF[U2 − U1] = −βhTF − tan(qhc)
λc

q
U2hTF. (5.79)

The magnetization expressions in the DE geometry retain their form as in Eqns.(5.56)

and (5.57). However, the application of the capping layer may introduce some tun-

ability in the magnetic anisotropy in ẑ, named perpendicular magnetic anisotropy

(PMA)[142]. PMA is predominantly an interfacial anisotropy, however as we are con-

sidering thin films it is applied uniformly (i.e: to all ẑ as well as the usual x̂). This is ac-

counted for in our model as the magnetic anisotropy of Eqn.(2.9) and shape anisotropy

of Eqn.(2.7) are of similar form. Therefore the contribution of the PMA is expressed

as a tunable anisotropy field Hani, which contributes to the effective demagnetizing

coefficients N′
i ,

N′
x =

1 − exp(−|k|hTF)

2
, N′

z = 1 − Nx −
Hani

Ms
. (5.80)
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Note that the coefficients from the shape anisotropy still retain Nx + Nz = 1, while Hani

(effectively) reduces Nz, thus circularising the magnetic precession. The boundary

conditions of Eqns.5.78 are solved as in Eqn.(5.60) to give the decay rate κ:

κ = κ′ + κ′′, (5.81)

νi =

(
ρi

ρS
− µi

µS

)
, (5.82)

κ′ = k2
[

νTFhTF + νc
tan(qhc)

q

]
, (5.83)

κ′′ =
γB2k2hTF

Ms (ω2 − ω̃xω̃z)

[
kνc tan(qhc)ω

qµTF
− ω̃z

µS

]
. (5.84)

We have separated the terms in κ as components relating to elastic κ′, and magnetoe-

lastic κ′′, for clarity. The transmission t(dB) is then calculated as in Eqn.(5.71).

5.4.1 Agreement with literature in the uncoupled case: hTF, α, β = 0

Following the arguments presented in Section 5.2.2, in the case of zero magnetic layer

thickness hTF = 0 we recover Eqn.(2.63):

κ =
tan(qhc)

q
k2
(

ρc

ρS
− µc

µS

)
(5.85)

=
tan(qhc)

q
µcq2

µS
, (5.86)

tan(qhc) =
κµS

µcq
. (5.87)
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5.5 Analysis of coupled Love waves to a magnetic thin film

with a finite capping layer: hTF, α, β ̸= 0

In the case where the magnetic layer is present and couples to acoustic waves, we

obtain the attenuation terms shown in Eqn.(5.84). The k−dependent demagnetizing

coefficients of Eqns.(5.80) are included in the transcendental formed of Eqn.(5.81) and

κ =
√

ω2 − ρS/µSk2. This gives explicitly,

Re [κ] = Re

[{
νTFhTF + νc

tan(qhc)

q

}

+
γB2k2hTF

Ms (ω2 − ω̃xω̃z)

{
kνc tan(qhc)ω

qµTF
− ω̃z

µS

}]
,

(5.88)

= Re
[√

ω2 − ρS

µS
k2

]
, (5.89)

which is solved for k. A suitable parameter space for ω is selected, while k is lim-

ited by the bulk wavenumbers in the capping and substrate layers:
√

ρSω2/µS <

k <
√

ρcω2/µc. We assume a Ni thin film and LiNbO3 substrate as in Section 5.10.

The capping layer has parameters similar to Aluminium (Al): ρc = 2700kgm−3, µc =

26GPa, hc = 300nm. We set the transmission length, d = 10µm, and consider Hani = 0.

We compare the results of the theory evaluated in Section.(5.10) for a non-capped ge-

ometry, with the capped geometry presented here in Fig.5.10. The general charac-

teristics are as one may expect: a distinct dip at the magnetic resonance due to the

Gilbert damping, similar to Fig.5.7 for example. The peak transmission loss for the

capped system is approximately a factor of five greater than the uncapped, so a finite

thickness capping layer does indeed increase the resonant interaction strength.

The drawback of adding the capping layer however is that (at least theoretically)
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FIGURE 5.10: Transmission t(dB) for capped magnetic thin film (black,
solid) and an uncapped thin film (red, dashed). The resonant frequency
alters as the Love wave k alters depending on capping thickness, which

changes the MSSW resonant frequency.

the system now supports another channel, i.e: an interface, for Love wave propaga-

tion. This may cause erroneous results when characterising the scattering proprieties

(particularly experimentally). For example, if one were to probe the loss along a sin-

gle channel, as in Fig.5.6, additional loss may be artificially included as the Love wave

’flips’ propagation channels. For example, as damping is reduced, in the case of the

LiNbO3 substrate, Ni thin film and Al capping layer, the Love wave starts to con-

centrate on the Ni-Al interface, as shown in Fig.5.11. The panels at the two damping

extremities in Fig.5.11 illustrate the path the energy takes from its source point. Hence,

at the lower damping, increased transmission loss is recorded. The lower α however

in Fig.5.11 is rather unphysical (typically the damping parameter for Ni is ∼ 0.038)

so in practice this effect may be entirely theoretical and have no impact on physical

observations.
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FIGURE 5.11: The displacements at either side of the thin film inter-
face: U1 at z = 0, U2 at z = TF, as a function of α. The displacement:
|U|2 = |U1|2 + |U2|2, swaps interface at low α as illustrated in the bot-

tom panels.

5.5.1 Chiral non-reciprocity

Let us now consider waves propagating in reciprocal directions: k → −k. In

Eqn.(5.81), k3 terms will introduce some non-reciprocity. The driving magnetoelas-

tic elastic fields −µ0hi = δFMA/δMi of Eqn.(5.34) are of the following form,

hx ∝ uxy = ∂xUTF
z=0 = ikUTF

z=0, (5.90)

hz ∝ uzy = ∂zUTF
z=0 =

µS

µTF
∂zUS

z=0 =
Re [κ] µSUS

z=0
µTF

, (5.91)

where we have used 2µSuS
zy,z=0 = 2µTFuTF

zy,z=0. Care should be taken to ensure κ is real

even for finite Gilbert damping, α. This shows that the magnetoacoustic driving field

is elliptical with chirality depending on the sign of k. The magnetization has its own

preferential chirality given by the ratio of its components, Mx/Mz =
√

ωz/ωx. The
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match or mismatch of the driving field and magnetization chirality is the cause of non-

reciprocity. The ellipticity of both the driving field and magnetic precession will also

play a key role. The closer the ellipticity of both, the greater the non-reciprocal effect.

We therefore introduce the ratio ζ, between the elliptical magnetoacoustic driving field

and magnetic precession to measure the ellipticity matching,

ζ =
Mx

Mz

hz

hx
=

√
ωz

ωx

hz

hx
. (5.92)

For example, |ζ| = 1 indicates that the ellipticities are equivalent. For the parame-

ters used in Section 5.5, we plot t(dB) for k and −k along with the magnitude of ζ in

Fig.5.12. We consider an optimal non-reciprocity as close to t+ = 0dB and t− = −40dB
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FIGURE 5.12: (a) t (+k) and t̃ (−k) over the magnetic resonance indi-
cated by the dashed black vertical line, fFMR. (b) Magnitude ζ for +k.

as possible. While there is some non-reciprocity in Fig.5.12, we can still improve it by

tuning the material parameters. However, the behaviour of altering a single parame-

ter, may not be so as simple as at first glance. For example, Fig.5.12.(b) illustrates that

the driving field and magnetic precession ellipticity are mismatched. So increasing

the anisotropy field Hani, reduces Mx/Mz in Eqn.(5.92) and causes |ζ| → 1. However,

according to Eqn.(5.80) this would also lower the resonant frequency, and so non-

trivially alter Re [κ] in Eqn.(5.88). This would then alter the driving field in Eqn.(5.90),
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thus we must evaluate the ζ dependence systematically.

The parameter space that influences non-reciprocity while hTF is kept constant is

four dimensional: hc, Hani, HB and d Thus the goal is as follows, obtain a combination

of hc, Hani, HB and d that produce as close to t+ = 0dB and t− = −40dB as possible.

We can begin by immediately reducing this parameter space to two hc and Hani. The

distance d, is just a parameter that can be used to mutually scale t(dB). In practice

the magnetic bias field HB reduces dynamic magnetization components Mx and Mz,

therefore we consider a conservative value of HB = 100mT.

5.5.2 Ellipticity dependence on capping thickness, hc
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FIGURE 5.13: hc is varied for Hani = 300mT, HB = 100mT, d = 10µm.
Shown vertically is (a) the driving field hx/hy, (b) the magnetic preces-

sion Mx/My and (c) the ellipticity ratio, ζ.

The dependence of ellipticity while varying hc is shown in Fig.5.13. First the driv-

ing field ellipticity is shown in Fig.5.13.(a). As we increase hc this becomes increasingly

circular. This is because hx/hz basically follows the ratio of k to Re [κ], and with higher

thicknesses: Re [κ] ≃ k, as the wave is increasingly localized in the capping layer.

The magnetic precession ellipticity is also modulated as in Fig.5.13.(b). The com-

ponents Mx(z) are functions of Nx(z)(k) as in Eqn.(5.80), and k is a function of hc as in

Fig.5.5. As k increases with hc this reduces ellipticity as in Eqns.(5.80). However this

effect is not as strong as the driving field.
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Overall hc strong circularises the driving field and weakly the magnetic precession.

This gives the dependence in Fig.5.13.(c), showing capping thicknesses should be kept

minimal at around ≃ 100nm.

5.5.3 Ellipticity dependence on magnetic anisotropy, Hani
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FIGURE 5.14: Hani is varied for hc = 300nm, HB = 100mT, d = 10µm.
Shown vertically is (a) the driving field hx/hy, (b) the magnetic preces-

sion Mx/My and (c) the ellipticity ratio, ζ.

The dependence of ellipticity while varying Hani is shown in Fig.5.14. First lets

consider Fig.5.14.(b) as the Hani directly circularises the magnetic precession as shown

in Eqns.(5.80).

The driving field in Fig.5.14.(a) on the other hand becomes rather elliptical at

higher fields. As Hani lowers the resonant frequency this gives a smaller k solution to

the transcendental in Eqn.(5.88). As Re[κ] scales on the order of O(k2) as in Eqns.(5.81),

this increases ellipicity.

Overall Hani increases ellipticity in the driving field and circularises the magnetic

precession. This gives the dependence in Fig.5.14.(c), which suggests Hani should be

maintained around ≃ 500mT.
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5.5.4 A ’perfectly’ non-reciprocal, Love wave coupled thin film

Let us then summarise the findings of Sections 5.5.2 and 5.5.3 in a two dimensional

space for |ζ (hc, Hani)| as in Fig.5.15. Specifically here we are looking for the regions
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FIGURE 5.15: The dependence of the magnitude of the ellipticity ratio
|ζ|, on the two dimensional Hani and hc parameter space. Ideal regions

are highlighted in white.

where |ζ| = 1 (white regions of Fig. 5.15), which evidently occur in the region of

Hani ∼ 550mT, hc ∼ 350nm. The insertion loss non-reciprocity in this region is shown

in Fig.5.16. For the parameters: hc = 350nm, Hani = 550mT, HB = 1kOe and d =

120µm we obtain an optimal non-reciprocity. Of course these exist within a range of

parameters themselves, for example hc in the range (300 − 350)nm all mostly fit the

criteria, which leaves some tolerance in the design.
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FIGURE 5.16: t(dB) and t̃(dB) in the parameter region identified as to
maximise their non-reciprocity. Shown are three hc values to illustrate

that the system has some tolerance.
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5.6 Conclusions

The work in this chapter characterises a more realistic magnetoacoustic coupling de-

sign that is based on Love interfacial waves. The Love waves were chosen due to their

linear coupling in the DE regime and their enhanced stresses at the thin film-substrate

interface when compared with Rayleigh waves. In the BV regime it can also be in-

ferred that Love waves are still a better choice, as the coupling in Rayleigh waves,

while linear, is weaker due to their coupling to the smaller dynamic magnetization

component. The transmission t(dB), between a source and receiver for both DE and

BV geometries confirms the choice of Love wave and the analytical theory is shown to

agree with numerical (COMSOL) simulation. The transmission follows a Lorentzian

lineshape and discrepancies in magnitude and linewidth between analytical and nu-

merical results arise due to the non-uniform magnetization profile and the decay of

the surface waves into the bulk, which are not accounted for in the analytical model.

A finite thickness capping layer is added on top of the magnetostrictive thin film to

better localise the Love wave in the thin film. This is shown to enhance the interaction

strength, as well as alter the resonant frequency. We find that there is a chiral non-

reciprocity present due to the matching (or miss matching) of the chirality magnetic

precession and driving field. As the Love wave solution is very sensitive to the de-

sign parameters, i.e: the thickness of capping layer, the full design parameter space is

explored and we specify a region where this non-reciprocity can be maximised. Ex-

perimental work will benefit from the results presented in this chapter. It provides

an overview of how the seldom utilized Love SAWs will interact with a fabricated

magnetoelastic thin film geometry. The thin film and capped geometry can be ex-

pected to be fabricated (either by deposition or sputtering). Substituting (to the users
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preferred) magnetostrictive material and/or substrate is expected to not dramatically

change the character of the magnetoelastic signatures (only their relative strengths).

An example experimental verification of the results presented here could be achieved

by measuring the VNA transmission of an interdigital transducer excited Love wave,

wavepacket, over a finite length film.
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Chapter 6

Coupling between piezoelectric

surface acoustic waves and finite

width magnetic thin films

Typical surface acoustic wave devices excite the SAW mode using interdigital trans-

ducers placed atop the piezoelectric substrate[29, 32, 36]. While this piezoelectricity

excites the SAW it also contributes to local stress, allowing a solution to the wave

equation at a free surface, i.e: the Bleustein and Gulyeav (B&G) surface acoustic wave

described in Section 2.2.5. This wave has a displacement and electric potential profile,

which is maximised at (or just below) the free surface. As the solution is stable for

a piezoelectric substrate, one may attempt to model these waves as one-dimensional,

considering only displacements and stresses at the free surface. However, the SAW

metamaterial will exploit the sharp impedance change at the substrate interface as a

consequence of coupling to the magnetization dynamics to manipulate the scattering.

A source positioned at the surface of a substrate will emit waves into both the surface

and bulk channels, thus, the propagating SAW in the metamaterial can be expected to
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scatter into both[143]. This implies that to correctly model the device, the bulk degree

of freedom should be considered, which may significantly complicate those models.

The work in this chapter will illustrate that using the interfacial Green’s function,

the influence that bulk scattering has on B&G SAWs can be considered while disre-

garding the bulk degree of freedom. It is arranged as follows. In Section 6.1 we in-

troduce the Green’s function of the piezoelectric substrate, consider how it represents

the bulk and surface mode and illustrate the substrates spectral function (dispersion)

so we can better understand its modes. Section 6.2 considers the emission rates of a

monopole and dipole source situated at the substrate surface. We calculate this emis-

sion rate to indicate whether the bulk or surface decay channel typically dominates.

Section 6.3 evaluates the real space Green’s function, using it to consider how the bulk

scattering can be taken into account for the SAW metamaterial. The reflection and

transmission from a single finite width, magnetic thin film is derived and illustrated

in Section 6.4. This assesses the typical effect bulk emission has on any magnetoelastic

resonant scattering. This system is then considered as Bloch periodic in Section 6.5,

whereby the metamaterials spectral function is presented along with the transmission

and absorption to identify where the bulk scattering can be suppressed.

6.1 B&G surface acoustic wave dispersion

The analytical solution for the B&G Love surface waves shows that the maxima for the

displacement occurs at the surface and the wave decays into the substrate, as shown

in Eqn.(2.86) and Fig.2.16. Our goal is to consider how surface modes are influenced

by bulk scattering in the magnetoacoustic metamaterial using the interfacial Green’s

function. As such it will be instructive to begin by evaluating the modes using the
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FIGURE 6.1: Sω,k in the ω, k domain for an elastically similar LiNbO3
substrate, with β = 0.5.

substrates Green’s function and illustrate the dispersion.

We begin by stating the source term will be stress σ(ω, k), such that: Gω,kσω,k =

Uω,k. At the piezoelectric substrates interface (z = 0), the stress σzy may be recast,

using a confinement parameter β (which we will expand upon shortly), into a similar

form and we state Gω,k

σzy = µ̄∂zUy + e15∂zψ = Ũy,0µ̄

[
q −

e2
15ϵ0

ϵ11(ϵ11 + ϵ0)µ̄
κ

]
eikx, (6.1)

σzy ·
1

µ̄ (q − βκ)
= Ũy,0eikx, (6.2)

Gω,k,z=0 =
1

µ̄ (q − β|k|) . (6.3)

In what follows we shall use the stiffened bulk wavenumber: k2
ω = ρω2/µ̄, so

q =
√

k2 − k2
ω and write c44 = µ, to make a distinction between the substrate shear

modulus at the surface, and µ̄, the stiffened bulk shear modulus. Evaluating Eqn.(6.3)

for a single delta function positioned at x′ = 0 gives the dispersion as in Fig.6.1. This

is the emission from a single source. When we add magnetic films to the substrate

surface these acts as a source for scattering waves, and so we will have to integrate
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FIGURE 6.2: (a) Gω,k in the complex domain. Note that for finite ν there
is no cut at the origin. The B&G singularities are marked by crosses. (b)
The solutions along the branch cuts are phase shifted by π/2 to move
them away from the real axis. In both the phase is given by the colour.

over the source positions. On Fig.6.1 we highlight the edge of the bulk continuum

(ω = k
√

µ/ρ) by a dashed white line, and have added a small Im[k] = ν, of the order

of about 1% of Re[k] to visualise. This small imaginary component will moves singu-

larities and branch cuts off of the real axis, and where +iν → 0 we can use the rules of

complex analysis to evaluate Gω,k,z=0. Physically ν represents the small phonon damp-

ing in the system. We can consider the response at the surface from a delta function

source situated at x = 0 by:

U =
∫ dk

2π
Gω,keikx. (6.4)

Care must be taken around the three singularities of Gω,k, which we will evaluate for

fixed ω. To help explain these we illustrate Gω,k in the complex domain in Fig.6.2,

along with the numerical integration contour used for the Fourier transform into the

real domain.
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The most obvious singularity of Eqn.(6.3) is the surface wave pole, when q =√
k2 − k2

ω = β|k|. This occurs at the wavenumber kBG,

kBG =
kω + iν√

1 − β2
, (6.5)

which is a point of singularity in the complex domain. On Fig.6.1 this resonance is

represented as the bright line separated from the bulk continuum. The singularity

defines β, which is a measure of the separation of this surface branch from the bulk

continuum edge. As β increases, the bulk and surface modes separate, so we can

assume that the stability of the B&G surface mode will be increased. As such we call

β a “confinement parameter" as its magnitude indicates how a surface source emits

into the bulk or surface. For example, β = 0 means the surface branch is degenerate

with the edge of the bulk continuum and would be the case were the substrate is no

longer piezoelectric. The non-piezoelectric substrate solution as in Eqn.(2.63) does not

support a solution at a free surface and so a surface source can be expected to emit

fully into the bulk. A value of β = 1 would be rather unphysical and indicate the B&G

SAW speed is zero, and so 0 < β < 1. For a piezoelectric substrate β may be calculated

using the piezoelectric, dielectric and shear modulus,

β =
ϵ0e2

15
ϵ11µ̄ (ϵ11 + ϵ0)

, (6.6)

and for LiNbO3, β ≃ 0.1.

Returning to the singularities in Eqn.(6.3), there are also branch cut singularities

(a line of complex phase discontinuity). The first is at the square root singularity



160
Chapter 6. Coupling between piezoelectric surface acoustic waves and finite width

magnetic thin films

of k = kω + iν. This branch cut extends horizontally in the complex domain be-

tween −kω ≤ k ≤ kω. We can also see this in Fig.6.1 labelled as ’BULK’. This

region introduces an imaginary component, as k < kω. The other branch cut is:

|k| =
√

kk∗ =
√
(k + iν) (k − iν), which is a vertical cut that extends from iν → ∞.

This is not as immediately obvious on Fig.6.1, as it represents divergence of the origin,

and so is responsible for the brightness at k = 0. This is actually shown in Fig.6.2(a),

as phase discontinuity at the origin is avoided when iν ̸= 0.

We will consider these poles in the real space and so when contour integrating,

care must be taken that the loops around the pole are not too large, otherwise the pole

contribution will be diminished. To further aid in establishing a contour, the cuts are

also phase shifted off the real axis as in Fig.6.2(b).

6.1.1 Depth profiles

A way to verify that the poles do indeed represent surface and bulk modes is to in-

spect the displacement profiles associated with those Green’s function singularities.

If one were to consider a horizontal slice at a specific ω in Fig.6.1, there would be

two peaks, one associated with the bulk edge and the other the surface branch. This

gives the ω and k = kx for each mode. The system is solved using these ω and k for

the displacements Ux, Uy, Uz and potential ϕ by employing a finite element approach.

The z domain is split into small regions where the variables are assumed to vary lin-

early. The boundary conditions over these regions are calculated in a similar way to

the boundary conditions in Eqn.(5.46), by minimising the variation in free energy. This

gives a system of 4xN system of equations in the discontinuity in stress ([σ]), displace-

ment ([U]), scalar potential ([ϕ]) and electric displacement ([D]), which are then solved

using singular value decomposition. This gives the potential profiles seen in Fig.6.3.
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FIGURE 6.3: The numerical solution for the displacements Ux, Uy and
Uz and electric potential, ϕ. The solutions are defined by their ω and k

at either (a) the surface pole or (b) the edge of the bulk continuum.

In the solution, it is assumed that all displacements (Ux, Uy, Uz) and their stresses are

present. We assume the wave is uniform in y, so κ =
√

ρsω2/µ − k2
x. The solutions for

the surface pole at ω = 2πns−1 and k = 1.308µm are shown in Fig.6.3.(a). The trans-

verse displacement Uy is clearly dominant near the surface, with a small displacement

Uz which indicates that there is some decay still into the bulk continuum. The profile

of Uy is also exponentially decaying, which is in line with the analytical theory. Con-

versely at the edge of the bulk continuum, ω = 2πns−1 and k = 0.96µm, in Fig.6.3.(b),

we can see that the Uy and Uz nearly equally contribute and are oscillatory. This indi-

cates that the bulk modes here are dominant, i.e: there is hardly a distinction between

the displacements at the edge, z = 0 when compared to a depth say z = 9µm. A mi-

nor discrepancy here is that the maxima of Uy(z) and ϕ(z) are not at z = 0, rather just

below the surface. This is shown in Fig.6.3.(a). In practice however this will have neg-

ligible impact on the magnetoacoustic coupling as the profile just below the surface is

not too far from an exponential decay. However, it does agree with the interpretation

given in Section 2.2.5, that these waves travel at the interface between a “crust" layer

with shear modulus given by µ and the bulk shear modulus given by µ̄.
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6.2 Emission rates

The thin films in our magnetoacoustic metamaterial act as sources of scattered waves,

and so it will be instructive to consider the emission rates of a surface source, i.e: the

power dissipated from a source positioned at the free surface, into the bulk and surface

modes. To do so we consider Eqn.(2.82) for dissipated power which we apply to the

piezoelectric substrate using Eqn.(6.3). As we now know the Green’s function singu-

larities, we can split the total emission rate into bulk and surface wave contributions.

For example, we know that Im[Gω,k] is significant at k ≤ kω and that this corresponds

to bulk emission, the same for surface waves at k = kBG. Evaluating Eqn.(2.82) at these

poles will give us the relevant emission rate contributions.

6.2.1 Bulk

If we rationalise Gω,k using q =
√

k2 − k2
ω = i

√
k2

ω − k2, and retain only this square

root in the numerator (as only this contributes to the imaginary component of Gω,k)

and we find,

PB =
ω

2µ̄

∫ kω

−kω

dk
2π

√
k2

ω − k2

k2
ω − k2 + β2k2 |σω,k|2. (6.7)

We have only integrated over the domain associated with the bulk continuum: −kω ≤

k ≤ kω. We can consider that the source may be a monopole σmono
ω,k or dipole σ

dip
ω,k k. In

the Fourier domain, the dipole source term introduces a k factor as it is the derivative

of a monopole source. Here we have assumed that the sources are independent, else

the dipole would also be introduced with a phase factor i, as: iσmono
ω,k k. We obtain for

the bulk emission,

PB =
ω

4µ̄

 |σmono
ω,k |2

1 + β
+

|σdip
ω,k |2k2

ω

2 (1 + β)2

 . (6.8)
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6.2.2 Surface

The main contribution for the surface, is the residue of the pole at the k = kBG. If we

expand the denominator of Gω,k:

(q − β|k|)|k=kBG
= qBG + qBG(k − kBG)β

[
kBG

|KBG|
1

(ρω2/µ̄ − k2
i )

1/2

− kBG|kBG|
(ρω2/µ̄ − k2

BG)
3/2

]
,

(6.9)

= (k − kBG)
1 − β2

β
. (6.10)

We may evaluate the integral using Sokhotski-Plemelj theorem[144],

lim
ν→0+

1
x ± iν

= ∓iπδ(x), (6.11)

where iν → 0 represents the negligible damping introduced in the complex analysis.

The integral is then,

PS =
∫ dk

2π
Im
{

iπδk−kBG · resk=kBG [Gω,k]
}
|σω,k|2. (6.12)

Here we have introduced the residue[145] of Gω,k at the pole k = kBG,

resk=kBG [Gω,k] =
β

µ̄ (1 − β2)
, (6.13)

as this will be useful later. By considering both the contributions at k = ±kBG, the

surface emission rate is,

PS =
ω

2
β

µ̄(1 − β2)

|σmono
ω,k |2 +

|σdip
ω,k |2kω2

1 − β2

 . (6.14)
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6.2.3 Emission as a function of β

The emission rates calculated by Eqns.(6.8) and (6.14) have an inverse dependence on

β, as is shown in Fig.6.4. As expected, a clear distinction between surface and bulk

FIGURE 6.4: Surface PS, and bulk PB, emission rates, scaled to the total
PT = PS + PB, as a function of β. Shown for (a) monopole and (b) dipole

sources. Here β is altered by altering the dielectric constant, ϵ11.

modes in the dispersion, i.e increasing β, inhibits the attenuation of a surface source

into the bulk. However, it paints a poor picture (at least experimentally) for LiNbO3

which has β ≃ 0.1. At these values the emission in the bulk is in fact dominant. From

a dipolar source the surface emission does begin to dominate at lower values of β due

to PS(B) depending on (1 − β2)2. However, this still does not compensate enough and

at realistic β the bulk mode remains the primary decay channel.

We also note here that the the thin films have finite width w, which is referenced

in the diagrams of Fig.6.4. The incident and scattered waves must then be averaged

over w. We do this by introducing a form factor F(k)

F(k) =
1
w

∫ w/2

−w/2
eiqxdx =

sin (kw/2)
kw/2

, (6.15)
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FIGURE 6.5: The real space interface Greens function G(ω, x, z =
0), real and imaginary components as a function of x/λ (dis-

tance/wavelength) for multiple values of β = [0.1, 0.4]

which just averages the response. The incident displacement as well as the scattered

wave should be averaged, therefore for an incident wave with k = ki, a similar factor

F(ki), should be introduced.

6.3 Real space interfacial Green’s function

The emission rates shown in Fig.6.4 illustrate that for low β the bulk emission is the

prominent decay channel, while for high β the surface is. As discussed previously

β ≃ 0.1 for LiNbO3. This suggests that bulk emission in an isolated thin-film is indeed

dominant. However, is this decay dominant in the immediate region surrounding the

slab or at longer distances, i.e: what are the length scales of this bulk emission? To

evaluate this we inspect the real space Green’s function. Using Eqn.(6.3) and contour

integrating we find the real space Greens function Gω,x as shown in Fig.6.5. Here the

confinement parameter β, is set as 0.1 or 0.4. Plotted are both real Re, and imaginary

Im, components.
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6.3.1 Real space Green’s function far field behaviour

The far field behaviour is dominated by the surface wave singularity for β ̸= 0, as

depicted in Fig.6.5. At values of x/λ > 1 the figure shows that the Gω,x,z=0 eventually

obtains a constant magnitude, suggesting that the surface wave stabilizes and is no

longer decaying into the bulk. To verify this it will be instructive to consider |Gω,x,z=0|

for multiple β, as in Fig.6.6. This figure illustrates that for larger β the surface re-

sponse stabilises quicker in the far field. This is exemplified as Gω,x,z=0 coincides with

FIGURE 6.6: The modulus of G(ω, x, z = 0) is plotted for several values
of β. Hankels’ function is plotted in solid, black.

Hankel’s function for β = 0, which is continually decaying and never stabilises[146,

147]. As in metamaterials the resonators are likely to be positioned in the far field, the

contribution of bulk damping can be considered as some radiative contribution to the

linewidth.

6.4 A single magnetic finite width, thin film

We now introduce the magnetic slabs as shown in Fig.6.7, which scatter waves. In

Section 5.2 we found that the stress at a position x′ on the slab-substrate interface in
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FIGURE 6.7: The B&G single resonator geometry. The SAW is incident
to the magnetic slab which scatters the waves into the bulk as well as
into the surface modes. The width w, and thickness h, of the thin film

are small when compared to the SAW wavelength, λ.

the DE geometry would be,

−σzy(ω, k, x′, z = 0) =
γB2k2

i hω̃zUy(x′)
Ms(ω2 − ω̃zω̃y)

+ h(µk2
i − ρω2)Uy(x′),

= hρω2Uy(x′) + hk2
i µ

[
1 +

γB2ω̃z

µMs(ω2 − ω̃zω̃y)

]
Uy(x′),

= h(k2
i µ̃ − ρω2)Uy(x′),

(6.16)

where we have introduced a magnetoelastic shear modulus, µ̃ = µ
[
1 + O(B2)

]
and ki is the incident displacement wavenumber. The displacement Uy is at the

slab-substrate interface (z = 0) and a sum of both incident Ui, and scattered Us:

Uy = Ui + Us.

By considering the stress sources for the scattered wave (the waves propagating

away from the thin films), we can find their amplitudes. At the source (x = x′, the

thin films) of the scattered wave, which is located at the interface z = 0, the stress σzy
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is given by Eqn.(2.84),

σyz(ω, k, x′, z = 0) = µ̃∂zUs + e15∂zψ,

= Usµ̃

[
q −

e2
15ϵ0

ϵ11(ϵ11 + ϵ0)µ̄
κ

]
eikx′ .

(6.17)

We can re-arrange this expression in the form of the B&G Green’s function given by

Eqn.(6.3). By integrating over all possible positions of the source under the film, i.e:

between −w/2 ≤ x′ ≤ w/2, we write Us in Fourier Us(ω, k), and real Us(ω, x) do-

mains as,

Us(ω, x) =
∫ dk

2π
Us(ω, k) =

∫ dk
2π

∫ w/2

−w/2
σyz(ω, k, x′, z = 0)G(ω, k)eik(x−x′)dx′.

(6.18)

Herein we shall write Gω,k,x−x′ = G(ω, k)eik(x−x′). The component σzy is linked to σxy

by the continuity equation

∂xσxy + ∂zσzy = −ρω2Uy, (6.19)

which we have used many times before, i.e: in Eqn.(3.5). Integrating over z gives,

σzy(ω, k, x, z = 0)−������
σzy(z = h) = h∂xσxy + hρω2Uy, (6.20)

which is similar to the stress discontinuity of Eqn.(5.46) and provides the stress at

the interface σzy(ω, k, x, z = 0). In our metamaterial, as in Fig.6.10, we will have to

consider the finite width w of the thin films, which is not considered in Eqn.(6.16).

The free space in between these films is accounted for by a rectangular function for

the shear modulus: µ̃ → µ̃(x). Therefore in Eqn.(6.20), ∂xσxy = ∂x
[
µ̃(x)∂xUy(x)

]
.
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By integrating by parts the integral over x′ in Eqn.(6.18), noting G(ω, k, x − w/2) =

G(ω, k, x + w/2), the partial differential is exchanged, i.e: G(ω, k, x − x′)∂xσxy →

∂xG(ω, k, x − x′)σxy. We then write,

Us(ω, k) = h
∫ w/2

−w/2

[
∂xG(ω, k, x − x′)

(
µ∂xUy +

B
Ms

Mx

)
+ ρω2G(ω, k, x − x′)Uy

]
dx′.

(6.21)

This can be seen as writing Eqn.(6.16) as,

σyz(ω, k, x′, z = 0) = h(−kkiµ̃ + ρω2)Uy(x′). (6.22)

The Eqn.(6.21) highlights the scattered wave contains a monopole: G(ω, k, x − x′),

and dipole: ∂xG(ω, k, x − x′), component. The latter being a result of the shear mod-

ulus discontinuity caused by the finite width w, of the films. Recall displacement

Uy = Ui + Us and so does not necessarily represent the incident wave, as scattered

waves may also produces stresses. However, using the born approximation (i.e: that

scattered waves do not produce stresses), we state Uy(x′) = Ui(x′) and find

Us(ω, k) =
∫ w/2

−w/2
h(−kkiµ̃ + ρω2)Ui

y(x′)G(ω, k, x − x′)dx′. (6.23)

By substituting Gω,k from Eqn.(6.3) and averaging the input field over the finite width

w, Ui = 1 · 1/w
∫ w/2
−w/2 eikix′ = F(ki), we express the scattered displacement as,

Us(ω, k) =
∫ w/2

−w/2
h(−kkiµ̃ + ρω2)F(ki)

1
µ̄(q − β|k|) eik(x−x′)dx′,

= hw(−kkiµ̃ + ρω2) · 1
µ̄(q − β|k|) eikxF(ki)F(−k)

(6.24)

We then contour integrate Eqn.(6.24), which is done both analytically and numerically.
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As before the branch cuts and surface pole must be taken off the real and imaginary

axis by a small imaginary component, iν: k → k + iv. The surface wave singularities

are given by Eqn.(6.5). Integration around the upper contour loop therefore gives

the wave propagating with positive wavenumber kBG, and the wave in the region

x > w/2. The lower contour gives the wave propagating with negative wavenumber

−kBG, in the region x < −w/2. There are contributions of the integral from branch

cuts and the singularity at the surface pole. However, we will consider the far field

response, such that the branch cut can just be considered as some radiative linewidth

as in Fig.6.6. The scattered wave in both directions from the slab is taken written as

Us(ω,±k) = hw(∓k · kiµ̃ + ρω2) · iresk≃kBG

[
1

µ̄(q − β|k|)

]
e±ikxF(ki)F(±k). (6.25)

We use the residue as in Eqn.(6.13) and this gives for the displacements:

Us(x ≥ w/2, z) = hw(−k2
BGµ̃ + ρω2) · iβ

µ̄(1 − β2)
eikBGx · F(kBG)F(kBG), (6.26)

Us(x ≤ w/2, z) = hw(k2
BGµ̃ + ρω2) · iβ

µ̄(1 − β2)
e−ikBGxF(kBG)F(−kBG). (6.27)

These are plotted in Fig.6.8, in which both the real Re[Us], and imaginary Im[Us], com-

ponents of the scattered field are shown. Numerically we contour integrate Eqn.(6.24),

similar to the Green’s function in Section 6.1. The magnitudes in the far field (x/λ > 1)

are similar, mostly due to the surface pole dominating in this regime (as in Fig.6.5).

Numerically this is because the contribution of branch cuts, which are bulk wave

poles, are minimal. Vice-versa, in the near field these contributions cause discrepancy.

For both waves these contributions introduce a phase discrepancy, which for the left

moving −kBG is significant. Perhaps the most striking feature is the non-reciprocity in
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FIGURE 6.8: Real space interface scattered displacement Us
ω,x from a

magnetoacoustic slab of width, w. Highlighted are the edges of the
slab. Plotted by numerical and analytical means are (a) Re[Us] and (b)

Im[Us].

the magnitudes. This is not a product of the magnetic coupling, rather the discontinu-

ity in shear modulus in x that was introduced in Eqn.(6.22).

6.4.1 Scattering coefficients

The scattering coefficients from Eqns.(6.26) and (6.27) can be defined as:

tBGSW =
Ui

Ui +
Us(x = w/2)
Ui(x = w/2)

= 1 +
iwhβ(−k2

BGµ̃ + ρω2)

µ̄(1 − β2)
F(kBG)

2,

rBGSW =
Us(x = −w/2)
Ui(x = −w/2)

=
iwhβ(k2

BGµ̃ + ρω2)

µ̄(1 − β2)
F(kBG)F(−kBG),

(6.28)

where we have assumed kBGw ≪ 1 for simplicity. The magnitudes |rω|2 and |tω|2

are plotted in Fig.6.9, which have similar lineshapes as in Fig.3.5 for bulk transverse

elastic waves. An asymmetric Fano lineshape caused by the overlap of the discrete

FMR resonance of the films and the continuous Love SAW branch. Fig.6.9 illustrates

that a realistic α = 0.038 completely suppresses the magnetoacoustic signature in re-

flection. Furthermore, ass in the far field the bulk emission is considered as a radiative

contribution to the linewidth, it will further suppress these features. The effect that

this has on the metamaterial signatures is not immediately apparent, as bulk emission

may completely suppress energy from propagating through a finite array outright.
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FIGURE 6.9: The (a) reflection and (b) transmission coefficients of
Eqns.(6.28) around the magnetoacoustic resonance, HB = 50mT, for
α = {0.038, 0.01, 0.0038, 0.001}. Parameters similar to a LiNbO3 sub-

strate and Ni resonator are assumed.

This would limit the strength of coherent interference phenomena, like the slowing of

phonon group velocity at band edges as in Fig.4.7, therefore negating any benefit of

such a device.

6.5 An array of magnetic finite width, thin films

To investigate the effect bulk emission has in an array, we evaluate a hybrid SAW mag-

netoacoustic metamaterial. This is composed of a periodic array of thin films on the

surface of a piezoelectric substrate as shown in Fig.6.10, and an extension of the model

presented in Section 6.4. We assume that the width w, and thickness h, of these films

are less than the input SAW wavelength λ, w, h ≪ λ, so that the magnetic damping

is minimized over the structure. We aim to use the metamaterial band structure, to

enhance the magnetoelastic interaction and investigate the bulk emission. The basic

array is a collection of delta function scatterers at the surface.

6.5.1 Scattered displacement and strain

Similar to the bulk metamaterial of Chapter 4, we will tune around the band structure,

thus we seek a spectral function S(ω, k) to visualise this. As the spectral function is
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FIGURE 6.10: An extension of the single B&G resonator geometry of
Fig.6.7, to an arbitrary number N, of magnetic slabs. The waves scat-
tered from slabs interfere. The periodicity L is chosen such that at the

edge of the Brillouin zone kL = nπ.

the response to some source, we need to determine the scattered displacement from

the array. Let us introduce local displacements UN and local strains U′
N = ∂xUN , as ac-

cording to Eqn.(6.21) the scattered field depends upon the displacement and strain un-

der the films. These local displacements represent both scattered and incident waves,

and so we do not consider the Born approximation as previously. The source posi-

tions are therefore x′ = xN = Na. From Eqn.(6.21) the scattered displacement Us
N , at

x = xN , is:

Us
N(x = xN) = hw

[
∂xGω,0

(
µU′

N +
BMx,N

Ms

)
+ ρω2Gω,0UN

]
, (6.29)

as every slabs Green’s function is identical. As the metamaterial in Fig.6.10 contains

a finite number of these slabs, the contributions of each film are then summed to give

the displacement U(x) = ∑N Us
N(x),

U(x) = hw ∑
N

[
∂xGω,x−xN

(
µ∂xUN +

BMx,N

Ms

)
+ ρω2Gω,x−xN UN

]
,

∂xU(x) = hw ∑
N

[
∂2

xGω,x−xN

(
µ∂xUN +

BMx,N

Ms

)
+ ∂xGω,x−xN ρω2UN

] (6.30)
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These system of equations describe how the displacement at x is a result of the inter-

action of all films. The interference of the scattered displacements from films will form

the metamaterial band structure.

We assume the array is periodically spaced and infinite so we can move to the

Bloch domain, in which we define the Bloch wavenumber k, which outside the first

(1st) Brillouin zone is related to the Fourier harmonic q, by the reciprocal lattice vector

Q: q = k + Q. This removes any distinction between any single array period a in

Fig.6.10, which any other. As a consequence the local displacements UN cannot in

principle be local, as each period a is non-unique. Thus the local displacements UN

must be equivalent to the the scattered displacement U, and so we express them (and

their derivatives), as well as the magnetization Mx,N , as Bloch periodic with the Bloch

phase factor:

(∂x)U = (∂x)Ue0, (∂x)UN = (∂x)UeikNa, Mx,N = MxeikNa. (6.31)

Note in the above UN is written using the Bloch amplitude U. Substitution of these

into Eqns.(6.30) recasts them in the Bloch domain. The Bloch amplitudes are taken out

of the sums, and the Green’s functions are recast,

U = hw
(

µ∂xU +
BMx

Ms

)
∑
N

∂xGω,−NaeikNa + ρω2U ∑
N

Gω,−NaeikNa, (6.32)

∂xU = hw
(

µ∂xU +
BMx

Ms

)
∑
N

∂2
xGω,−NaeikNa + ρω2U ∑

N
∂xGω,−NaeikNa. (6.33)
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Herein we shall write G0,G1 and G2 in place of the Green’s function derivatives:

G0(ω, k) = ∑
N

Gω,−Na · eikNa,

G1(ω, k) = ∑
N

∂xGω,−Na · eikNa,

G2(ω, k) = ∑
N

∂2
xGω,−Na · eikNa.

(6.34)

In the first instance we assume that the slabs are delta functions, then the Green’s

functions can be expressed using Eqn.(6.4). In this section the delta source was at

x′ = 0, here it is at x′ = Na. The Green’s function Gω,x in Eqns.(6.34) are then

Gω,−Na = G(ω, 0, x′)δ(x′ − Na)eikNa = G(ω, k)e−ikx′δ(x′ − Na)eikNa. (6.35)

In the following analysis we drop the notation for x′ for convenience as the final result

is independent of x′. We then introduce the sums in Eqns.(6.34) to this representation.

We may re-write the delta function summations, using the following expression for

the delta function[145],

1
2π

m=∞

∑
m=−∞

eimx =
n=∞

∑
n=−∞

δ(x − 2nπ). (6.36)

Here when x is an integer multiple of 2π, the right diverges due to the delta function,

as does the left as the exponential is unity. When x is not an integer multiple of 2π

the phases on the left cancel due to the sum. For our system, Eqn.(6.36) may be recast

using the reciprocal lattice vectors Q : {...,−2π/a, 0, 2π/a, ...} in the place of m,

∑
N

δ(x − Na) =
1
a ∑

Q
eiQx. (6.37)
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The Bloch phase factor eikNa, is of similar form to the right of Eqn.(6.37), with x = Na

and so the phase factor is added as in Eqn.(6.35),

∑
N

δ(x − Na)eikNa =
1
a ∑

Q
ei(k+Q)x. (6.38)

The summation of Green’s functions in Eqns.(6.34) which are over the source positions

x = Na, therefore may then be considered as a summation of the Green’s function in

the Bloch domain k, over all possible Fourier harmonics q = k + Q. In other words,

applying Eqn.(6.38) to Eqn.(6.35) we find,

∑
N

G(ω, k)e−ikxδ(x − Na)eikNa =
1
a ∑

N
G(ω, k + Q)e−i(k+Q)xei(k+Q)x, (6.39)

where we have not cancelled the exponential factors as the derivative of the Green’s

function brings down an ”i(k + Q)” factor before cancellation. We therefore recast

Eqns.(6.34) as,

G0(ω, k) =
1
a ∑

N
G(ω, k + Q),

G1(ω, k) =
i
a ∑

N
(k + Q) G(ω, k + Q),

G2(ω, k) =
−1
a ∑

N
(k + Q)2 G(ω, k + Q).

(6.40)

The scattered displacement and strain is then written as,

U = hwG1

(
µ∂xU +

BMx

Ms

)
+ hwG0ρω2U,

∂xU = hwG2

(
µ∂xU +

BMx

Ms

)
+ hwG1ρω2U.

(6.41)
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6.5.2 Spectral function

To define S(ω, k), we must introduce a driving displacement term Ui, such that S(ω, k)

is the proportionality coefficient between the scattered displacements of Eqn.(6.41)

and Ui. The displacement Ui, is the response of the substrate to some force f , Ui =

G(ω, xi) f . As the incident wave propagates through the array we can consider that f

is applied to each thin film, and so is Bloch periodic, fN = f eikNa. In the Bloch domain

we use the same arguments as in Eqns.(6.40) to write the incident displacement Ui, as

Ui = G0 f , and strain U′
i , as U′

i = G1 f . The magnetization, as in Eqn.(3.79), enters as a

back action to the stress,

B
Ms

Mx =
B

Ms

γBω̃z

ω2 − ω̃xω̃z
∂xU. (6.42)

We use µ̃ = µ + O(B2) as before to simplify Eqns.(6.41) and include the source dis-

placement and strain giving,

U = hwG1µ̃∂xU + hwG0ρω2U + G0 f ,

∂xU = hwG2µ̃∂xU + hwG1ρω2U + G1 f .

(6.43)

Following Eqn.(2.34), the response of the overall system is given by the response func-

tion S(ω, k) as

U = S(ω, k) · f . (6.44)
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We then rearrange Eqns.(6.43) to give S(ω, k),

 U

∂xU

 =
1
D

1 − hwG2µ̃ hwG1µ̃

hwρω2G1 1 − hwρω2G0


G0 f

G1 f

 , (6.45)

D =
[(

1 − hwρω2G0
)
(1 − hwG2µ̃) + (hw)2 ρω2µ̃G2

1

]
, (6.46)

S(ω, k) =
G0 − hwµ̃ + hwµ̃G2

1

(1 − hwρω2G0) (1 − hwG2µ̃) + (hw)2 ρω2µ̃G2
1

. (6.47)

This can be solved for numerically by computing G0,1,2. The Eqn.(6.47) is shown

for the first Brillouin zone and multiple band gaps over a large frequency regime in

Fig.6.11.(a), which shares many of the features of Fig.6.1. The region associated with

FIGURE 6.11: (a) S(ω, k) for a LiNbO3 substrate and Ni magnetic slab.
Separated from the bulk continuum is the B&G SAW branch that hy-
bridises with the Ni slab giving the magnetoacoustic anticrossing. The
magnetoelastic coupling B is enhanced for illustrative purposes. (b) A

zoom to the region surrounding the first band gap.

the bulk continuum is marked by a (near) constant magnitude of ImS(ω, k) due to dis-

sipation associated with the bulk modes. A bright, thin branch that is separated from
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the edge of the bulk continuum illustrates the Love SAW dispersion. The coupling

to the magnetization dynamics manifests as the familiar magnetoelastic anticrossing

(here fFMR ≃ 3.5GHz). Due to the zone folding, SAW modes above the first band gap

become degenerate with bulk modes, which is illustrated in Fig.6.11.(b) The linewidth

of the SAW branch also appears to be increasing as it enters the bulk continuum, thus

the degeneracy must be enhancing the bulk scattering. Furthermore, as standing wave

modes are formed at band edges due to the coherent interference of scattered SAW

modes, its group velocity decreases. This increases the effective β, i.e: the separation

between the SAW branch and bulk continuum increases. As we know from Fig.6.4,

enhancing this separation means a surface source will emit proportionally more into

the SAW mode, and so we can assume that the bulk scattering in the array is sup-

pressed here. To verify these findings we consider the scattering coefficients of a finite

array.

6.5.3 Scattering coefficients of a finite array

We now consider a finite sized array, and so the local displacements UN in Eqns.(6.30)

are no longer perfectly Bloch periodic. The source is an incident displacement,

UIN(x) = ŨINeikIN x and strain ∂xUIN(x) = ikINUIN(x). As the sources are applied

at each film x = {0, a, 2a, 3a, ..., Na}, we have N source positions and N systems of

equations, i.e: Eqns.(6.30) for x = {0, a, 2a, 3a, ..., Na}. We write the 2N system of
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Eqns.(6.30), noting Mx(U) thus expressing these only as a function of local displace-

ment and strain, using the kernel, K:

K2N,2N



U1

∂xU1

U2

∂xU2

...

UN

∂xUN



=



UIN(x1)

∂xUIN(x1)

UIN(x2)

∂xUIN(x2)

...

UIN(xN)

∂xUIN(xN)



. (6.48)

By inverting K, which is 2Nx2N, we obtain the local displacements (and their deriva-

tives) for each film. As we know the local displacements we substitute them to obtain

the scattered displacement,

U(x) = hw ∑
N

∂xG(ω, x − xi)µ̃∂xUN + ρω2G(ω, x − xi)UN . (6.49)

Let us assume that the input wavenumber kIN ≃ k ≃ kBG, so we can replace G(ω, x −

xi) with the residue given by Eqn.(6.13),

Gω,x−xi =
∫ dk

2π
Gω,keik(x−xi), (6.50)

= iresk=kBG [Gω,k] eikBG(x−xi), (6.51)

=
iβ

µ̄ (1 − β2)
eikBG(x−xi). (6.52)
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In this case the outgoing wavenumber kOUT ≃ kBG, and we write

UOUT(x) =
ihwβ

µ̄ (1 − β2) ∑
N

(
ikOUTµ̃∂xUN + ρω2UN

)
eikOUT(x−xN), (6.53)

which is similar to Eqn.(6.25). Recall one must specify the scattered displacement

wavenumber sign, as in the signs of k in Eqn.(6.25), to specify the reflection RN and

transmission TN . Specifying kOUT = ±kBG, we find:

RN =
ihwβ

µ̄ (1 − β2) ∑
i

(
−ikBGµ̃∂xUN + ρω2UN

)
eikBGxN Fw(kBG)Fw(−kBG),

TN = 1 +
ihwβ

µ̄ (1 − β2) ∑
i

(
ikBGµ̃∂xUN + ρω2UN

)
e−ikBGxN F2

w(kBG),

(6.54)

where we have assumed an input wave of unit amplitude, ŨIN = 1, and included the

form factors for the scattering in the Green’s function and also in the input wave as

in Eqns.(6.24). The absorption is defined as |AN |2 = 1 − |TN |2 − |RN |2. For N = 1,

Eqns.(6.54) show a Fano resonant signature in reflection and a Lorentzian in trans-

mission, as expected from Fig.6.9, and so we do not show it here. We illustrate the

transmission |TN |2 and absorption |AN |2 for an array of N = {15, 30} films in Fig.6.12.

The magnetoelastic coupling here is increased for illustrate purposes. The band struc-

FIGURE 6.12: Transmission |TN |2, and absorption |AN |2 for an array
of N = [15, 30] magnetic thin films. The substrate is assumed to be
LiNbO3 and the magnetic films Ni. The magnetoelastic coupling B is

enhanced for illustrative purposes.
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ture illustrated in Fig.6.47 is indicative of these scattering coefficients, mainly as a

decrease in transmission in the vicinity of the band gaps. In this figure the magnetic

resonance is tuned below the first band gap as in Fig.6.11, and is characterised by

an increase in absorption due to the magnetic Gilbert damping. The absorption due

to bulk scattering is near zero in this regime, as |AN |2 forms a clear Lorentzian line-

shape at the magnetic resonance, while the surrounding frequencies have nearly no

absorption. This agrees with the analysis of Fig.6.11, that decoupling between the

bulk continuum and Love SAW at frequencies leading to the edge of the first Brillouin

zone reduces the effect of bulk damping. This identifies a promising regime where

magnetoelastic effects are readily decomposed from bulk effects in the absorption. In

Fig.6.12 frequencies above the first band gap have consistently larger absorption, as

this coincides with the region of Love SAW and bulk mode degeneracy in Fig.6.11.

For magnetoelastic metamaterials therefore the coupling regime should be kept at (or

below) the first band gap, to reduce the bulk absorption.

6.6 Conclusions

The work in this chapter illustrates that the bulk scattering of a B&G surface wave

due to surface sources (thin films in the case shown here) can be considered by evalu-

ating the Green’s function of the interface, eliminating the need to complicate models

by considering the bulk degree of freedom. We derive the Green’s function for the

piezoelectric substrate, and evaluate how it represents the response of surface and

bulk modes. We illustrate how the confinement parameter β, influences the spectral

function (dispersion) and that the surface mode branch is separated from the bulk

continuum for β ̸= 0. The dependence of the monopolar and dipolar emission rates
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of a surface source on this confinement parameter show that for realistic substrates

(i.e: LiNbO3) the bulk emission is indeed dominating. However, as the confinement

of the surface mode is increased (β → 1), the surface emission becomes dominant.

We analyse the real space Green’s function in the near and far field, and note that in

the latter the bulk modes no longer influence the surface wave. As a result, the sur-

face scattering can be considered by a one-dimensional model, with scattering into

the bulk contributing as a radiative contribution to the linewidth. The reflection and

transmission are plotted, but as the model is one-dimensional they exhibit similar fea-

tures to the scattering seen in Chapters 3 and 4: a Fano-lineshape that is suppressed

by magnetic damping.

The individual thin film (i.e: the resonator) is then patterned into a periodic array,

and the relevant equations expressed in the Bloch domain. By inspecting the meta-

material spectral function, we observe increased splitting between the B&G surface

branch and the bulk continuum at band edges due to the reduced phonon group ve-

locity. This increases the effective confinement parameter and by verifying with the

transmission and absorption, corresponds to a region of reduced bulk scattering. Con-

versely, above the band gap the SAW modes become degenerate with bulk modes due

to the zone folding. This effectively reduces the confinement parameter, which is ver-

ified by the transmission and absorption as corresponding to a region of ubiquitous

enhanced absorption. This specifies a distinct operating regime that should be taken

into account for SAW metamaterial designs: the region including the first passband

and band gap are optimal as they exhibit suppressed bulk scattering. Meanwhile the

region above the first band gap should be avoided due to enhanced bulk scattering.

Experimentally, bulk emission is typically not probably, as measurements are taken on

the surface of the sample. The work of this chapter then informs on the proportional
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energy loss (through the bulk channel) that can be taken into account when measuring

magnetoelastic signatures. Moreover, for magnetoelastic metamaterials, it provides a

regime in which this can be removed: the region up to the first phononic band gap.

This will allow the experimental resolution of weaker magnetoelastic signatures that

were previously not distinguishable from the background. It can be verified experi-

mentally by the VNA transmission of an interdigitally excited Love SAW wavepacket,

through a finite array of magnetostrictive films.
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Appendix A

Tables of notation and parameters

Listed below is the introduced notation for each chapter. Common notation such as

ω, k, etc is not included as it assumed that these are obvious. Notation is repeated (this

is unavoidable: there are only so many letters in the Greek alphabet) and so it is up to

the reader to treat the notation with respect to the context of the text. To help however,

they are listed here in the order they are introduced in the text. Notation repeated

throughout chapters, is only stated once .

A.1 Chapter 2

TABLE A.1: Symbol table for Chapter 3

µ magnetic moment

L orbital angular momentum

S spin angular momentum

p electric dipole moment

q electric charge

d charge separation distance

γ gyromagnetic ratio
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J total angular momentum

µB Bohr magneton

µ0 permeability of free space

HB magnetic bias field

ω0 Larmor precession frequency

EZ Zeeman energy

M magnetization

V volume

χ magnetic susceptibility

M0 spontaneous magnetization

T temperature

TC curie temperature

ψ1(2) electron total many body wavefunction

lexch exchange length

Ms saturation magnetization

A exchange stiffness constant

ωexch exchange frequency

k wavenumber

λ wavelength

δ film thickness

B magnetic field strength

HD demagnetizing field

F free energy

FD demagnetizing free energy
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N demagnetizing tensor

FMC magnetocrystalline free energy

αij directional cosines

b anisotropy tensors

K1 = bijkl fourth rank anistropy tensor

Heff effective field

αG Gilbert damping constant

h dynamic magnetic field

Jc free current density

I identity matrix

ωH bias frequency

ωM saturation frequency

ϕM magnetic scalar potential

uij strain tensor

σij stress tensor

cijkl elastic stiffness tensor

λ first Lamé constant

µ = C44 second Lamé constant (shear modulus)

E Young’s modulus

ν Poisson’s ratio

FE elastic free energy

Ut(l) transverse (longitudinal) displacement

ct(l) transverse (longitudinal) wave speed

ρ mass density
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κt(l) transverse (longitudinal) bulk decay rate

ξ Rayleigh speed ratio

r, r̃ reflection (reciprocal reflection)

t, t̃ transmission (reciprocal transmission)

S scattering matrix

M transfer matrix

q harmonic wavenumber

G reciprocal lattice vector

G(ω, k) Fourier domain Green’s function

G(ω, x) real domain Green’s function

S(ω, k) spectral function

n(ω, k, x′) local density of states

GP
ω,x phonon Green’s function

Λ0 arbitrary excitation

D electric displacement

eijk piezoelectric tensor

ϵij dielectric tensor

E electric field

µ̄ stiffened shear modulus

β confinement parameter

cBG Bleustein & Gulyeav surface wave speed

FME magnetoelastic free energy

Bi magnetoelastic coupling coefficients

λijk magnetostriction coefficients
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A.2 Chapter 3

B1 = B anisotropic magnetoelastic coupling constant

ωx(y) axis magnetic angular frequency

ω̃x(y) Gilbert damped axis magnetic angular fre-

quency

ρE, ρM, ... distinction between elastic and magnetic mate-

rial parameters

θ angle of incidence (from the interface normal)

ωFMR Kittel angular frequency

Z impedance

η impedance ratio

a absorption

L length of the resonator unit cell

ξL(R) left and right variable vectors

ηL(R) left and right magnetic material boundary con-

dition vectors

ζL(R) left and right elastic material boundary condi-

tion vectors

I incident amplitude

νL(R) magnetic boundary condition reciprocal basis

ΓR radiative linewidth

UL(R) left and right interface displacement

Υ figure of merit
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TABLE A.3: Parameter table for Chapter 3

Parameters YIG Co Py CoFe Ni
B (MJm−3) 0.55 10 -0.9 22.95 5.5
µ (GPa) 74 80 50 85 76
ρ (kgm−3) 5170 8900 8720 5305 8900
α 0.9x10−4 1.8x10−2 4.0x10−3 6.4x10−2 3.8x10−2

Ms (kAm−1) 140 1000 760 1800 203

A.3 Chapter 4

TABLE A.4: Symbol table for Chapter 4

An, Bn right and left moving wave amplitudes

F point force source

b viscous force constant

κ finite phonon damping

X, Y variables used for solving the linear system of

equations

δs spacer thickness

χθ spacer phase delay

τ± transfer matrix eigenvectors

µ± transfer matrix eigenvalues

D, T determinant and trace

RN , TN reflection and transmission from a finite array

of resonators

C± amplitudes of the transfer matrix eigenvectors

τ̃± reciprocal transfer matrix eigenvectors

R∞ reflection from an infinite array

AN absorption from a finite array
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ζ field modulation coefficient

TABLE A.5: Parameter table for Chapter 4

Parameters Magnetic inclusion Elastic matrix
B (MJm−3) 8.8 0

µ (GPa) 76 127
ρ (kgm−3) 8900 3192

Ms (kAm−1) 203 0
δ (nm) 30 500

A.4 Chapter 5

TABLE A.6: Symbol table for Chapter 5

I incident power per unit distance

S Poynting vector

h film thickness

λi shorthand for: ρiω
2 − µik2

κ Love SAW decay rate

δF free energy variation

FTF
(TF), FS

(S), ... variables relating to the thin film or substrate

δu displacement variation

L Lagrangian

FL free Lagrangian energy

D1(2) functions in displacement and thickness

W incident wave power

d transmission distance

q capping layer wavenumber
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Hani anisotropy field

N′
i effective demagnetizing constants

ρc, µc, ... variables associated with the capping layer

ζ ratio between driving field and magnetic pre-

cession

TABLE A.7: Parameter table for Chapter 5

Parameters Ni LiNbO3 Al
B (MJm−3) 5.5 0 0

µ (GPa) 76 107 26
ρ (kgm−3) 8900 4650 2700

Ms (kAm−1) 480 0 0

A.5 Chapter 6

TABLE A.8: Symbol table for Chapter 6

x′ source position

q
√

k2 − k2
ω

µ̄ stiffened bulk shear modulus of the substrate

µ shear modulus of the substrate

κ decay rate into the bulk

ϕ B&G SAW electric potential

PB(S) bulk (surface) emission rate

σmono
ω,k monopole source stress

σ
dip
ω,k dipole source stress

F(k) wave form factor
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h magnetic slab thickness

µ̃ magnetoelastic shear modulus

Ui(s) incident (scattered) displacement

ki incident wavenumber

Gi sums over slabs Green’s function derivatives

Q reciprocal lattice vector

S(ω, k) response function

TABLE A.9: Parameter table for Chapter 6

Parameters Ni LiNbO3

B (MJm−3) 5.5 0
µ (GPa) 76 107

ρ (kgm−3) 8900 4650
Ms (kAm−1) 480 0
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