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A B S T R A C T

This paper explores deep latent variable models for semi-supervised paraphrase generation, where the
missing target pair for unlabelled data is modelled as a latent paraphrase sequence. We present a novel
unsupervised model named variational sequence auto-encoding reconstruction (VSAR), which performs latent
sequence inference given an observed text. To leverage information from text pairs, we additionally introduce a
novel supervised model we call dual directional learning (DDL), which is designed to integrate with our proposed
VSAR model. Combining VSAR with DDL (DDL+VSAR) enables us to conduct semi-supervised learning. Still,
the combined model suffers from a cold-start problem. To further combat this issue, we propose an improved
weight initialisation solution, leading to a novel two-stage training scheme we call knowledge-reinforced-
learning (KRL). Our empirical evaluations suggest that the combined model yields competitive performance
against the state-of-the-art supervised baselines on complete data. Furthermore, in scenarios where only a
fraction of the labelled pairs are available, our combined model consistently outperforms the strong supervised
model baseline (DDL) by a significant margin (𝑝 < .05; Wilcoxon test). Our code is publicly available at
https://github.com/jialin-yu/latent-sequence-paraphrase.
1. Introduction

Paraphrase generation is an important Natural Language Processing
(NLP) problem, useful in many NLP applications, such as question
answering (Dong et al., 2017), information retrieval (Lee et al., 2006),
information extraction (Yao and Van Durme, 2014) and summarisa-
tion (Liu et al., 2008). Natural language itself is complicated and
may be expressed in various alternative surface forms of the same
underlying semantic content (Miller, 2019; Hosking et al., 2022). Hence
it is critically important to integrate the paraphrase generation model
as a component in real-world NLP systems, to offer robust responses
to end users’ inputs. Traditional solutions to paraphrase generation
are generally rule-based (Kauchak and Barzilay, 2006; Narayan et al.,
2016), utilising lexical resources, such as WordNet (Miller, 1992), to
find word replacements. The recent trend brings to fore neural network
models (Kumar et al., 2020; Zhou and Bhat, 2021; Meng et al., 2021;
Su et al., 2021), which are typically based on a sequence-to-sequence
learning paradigm (Sutskever et al., 2014).

These models have achieved remarkable success for paraphrase gen-
eration, due to complex architectures and sophisticated conditioning
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mechanisms, e.g. soft, hard and self-attention. However, the advancement
of such models is primarily based on the availability of large-scale
labelled data pairs. Instead, this paper explores semi-supervised learn-
ing scenarios, where only a fraction of the labels are available. This
semi-supervised learning setting is favourable and extremely useful for
industry scenarios (Zhu, 2005; Van Engelen and Hoos, 2020), due to
the effort in terms of time and money to obtain good quality human
annotations. A semi-supervised learning model often consists of two
components: an unsupervised learning model and a supervised learning
model.

Thus, for the unsupervised learning part, we propose a novel deep
generative model, motivated by the classic variational autoencoder
(VAE) (Kingma and Welling, 2014; Rezende et al., 2014; Mnih and
Gregor, 2014), with an additional structural assumption tailored to-
wards modelling language sequences, named variational sequence auto-
encoding reconstruction (VSAR). To further explain, traditional VAEs
typically embed data representations in a fixed latent space, with the
general purpose of dimensionality reduction (Hinton and Salakhutdi-
nov, 2006). Here we consider instead a latent variable in the form
vailable online 26 May 2023
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Fig. 1. Variational Sequence Auto-Encoding Reconstruction (VSAR).
f a discrete language sequence with various lengths. This assumption
nforces more structural information to be adopted in the model train-
ng process and can additionally enhance the model interpretability, as
anguage is naturally preserved as discrete variables (Fu et al., 2019).
ollowing the recent prior works successfully incorporating discrete
atent variables to improve paraphrasing (Hosking and Lapata, 2021;
osking et al., 2022), we propose our model, the VSAR model, aimed

o contain a more expressive form of discrete latent variable, shown in
ig. 1.

Furthermore, for the supervised learning part, motivated by dual
earning (He et al., 2016; Su et al., 2019, 2020a,b), we propose a
ovel supervised model, named dual directional learning (DDL) that can
e integrated with our proposed VAE model, which shares a part of
he learning loop of the VSAR model. Combining both unsupervised
nd supervised models enables semi-supervised learning, by exploiting
AE’s ability to marginalise latent variables for unlabelled data.

Our main original contributions in this paper thus include:

• presenting the first study on semi-supervised learning for paraphras-
ing with deep discrete latent variable models;

• introducing two novel models: VSAR (unsupervised) and DDL (su-
pervised), which can be combined for semi-supervised learning;

• proposing a novel training scheme, knowledge-reinforced-learning
(KRL) to deal with the cold start problem in the combined semi-
supervised model (DDL+VSAR);

• studying semi-supervised learning scenarios with the combined
model on the full data and empirically showing that our model
achieves competitive state-of-the-art results;

• presenting a study of semi-supervised scenarios on a fraction
of the labelled data(i.e., when incorporating unlabelled data),
demonstrating significantly better results for our models than for
very strong supervised baselines.

2. Related work

2.1. Paraphrase generation

Paraphrases express the surface forms of the underlying semantic
content (Hosking et al., 2022) and capture the essence of language
20
diversity (Pavlick et al., 2015). Early work on automatic generation
of paraphrases are generally rule-based (Kauchak and Barzilay, 2006;
Narayan et al., 2016), but the recent trend brings to the fore neural net-
work solutions (Gupta et al., 2018; Fu et al., 2019; Kumar et al., 2020;
Meng et al., 2021; Su et al., 2021; Hosking and Lapata, 2021; Hosking
et al., 2022; Chen et al., 2022; Xie et al., 2023). Current research for
paraphrasing mainly focuses on supervised methods, which require the
availability of a large number of source and target pairs. In this work,
we instead explore a semi-supervised paraphrasing method, where only
a fraction of source and target pairs are observed, and where a large
number of unlabelled source texts exist. We made an assumption that
each missing target text can be considered as a latent variable in
deep generative models. Thus, for unsupervised data, each missing
paraphrase output is modelled as a latent variable. Compared to the
standard approach, where the semantics of a sentence is presented as
a dense high-dimensional vector, this assumption enforces the model
to learn more structured representations. Hence, our proposed model
can be considered as a type of deep latent structure model (Martins
et al., 2019). In this paper, we present two models and combine them
for paraphrasing: one for unsupervised learning and one for supervised
learning. Our combined model extends the idea in Miao and Blunsom
(2016), Fu et al. (2019); compared with Fu et al. (2019), our model
utilises conversely a more natural language structure (an ordered se-
quence other than an unordered bag of words); compared with Miao
and Blunsom (2016), our model utilises a self-attention mechanism
other than convolution operations and has the benefit of being able to
model various lengths of latent sequences, rather than a fixed length.

Furthermore, our combined model is associated with prior works
that introduce a discrete latent variable (Hosking and Lapata, 2021;
Hosking et al., 2022), and it uses an arguably more expressive latent
variable, in the form of language outputs.

2.2. Deep latent variable models for text

Deep latent variable models have been studied for text modelling
(Miao et al., 2016; Kim et al., 2018). The most common and widely
adopted latent variable model is the standard VAE model with a
Gaussian prior (Bowman et al., 2016), which suffers from posterior
collapse (Dieng et al., 2019; He et al., 2019). Multiple studies have
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been conducted to combat this issue (Higgins et al., 2017; Razavi et al.,
2019; Wang et al., 2021). In particular, 𝛽-VAE (Higgins et al., 2017)
introduces a penalty term to balance VAE reconstruction and prior
regularisation intuitively and is adopted as one of our baselines.

While much of the research focuses on continuous latent variable
models (Miao et al., 2016; Kim et al., 2018), the text is naturally
presented in discrete form and may not be well represented with
continuous latent variables. Early work on discrete deep latent variable
models (Miao and Blunsom, 2016; Wen et al., 2017) adopted the REIN-
FORCE algorithm (Mnih and Gregor, 2014; Mnih et al., 2014); however,
it suffers from very high variance. With the recent advancement in
statistical relaxation techniques, the Gumbel trick (Jang et al., 2017;
Maddison et al., 2017) was utilised, to model discrete structures in the
latent variable model of the text (Choi et al., 2018; Fu et al., 2019; He
et al., 2020; Mercatali and Freitas, 2021). Our work adopts the Gumbel-
trick with subset sampling (Xie and Ermon, 2019) for natural language
generation tasks and, for the first time, studies discrete language sequences
as a latent variable for the paraphrasing task. Our proposed model is
strongly associated with Miao and Blunsom (2016), He et al. (2020);
however, we study the problem under the semi-supervised setup for
the paraphrase generation tasks. Furthermore, we present a novel
inference algorithm (our knowledge-reinforced-learning (KRL) scheme)
to help aid learning in deep generative models and achieve competitive
performance for both full data and incomplete (fractional) data settings.
In terms of deep latent variable models for text, there has been a
recent surge of interest in learning discrete latent structures (Niculae
et al., 2023). In this paper, we contribute thus to this research field
by modelling the latent variable as a language sequence. Additionally,
some recent work focused on combining latent variable models with
diffusion models, to achieve state-of-the-art performance (Huang et al.,
2023; Schneider et al., 2023) for text-to-audio generation tasks.

3. Variational Sequence Auto-Encoding Reconstruction (VSAR)

In this section, we present the VSAR model (Fig. 1).1 The model
consists of four separate neural network models - a source encoder,
a target decoder, a target encoder, and a source decoder. Under the
unsupervised learning setup, we only observe source text 𝒔 and no
target text 𝒕. We reformulate the problem of modelling fully observed
source text 𝒔, as modelling the partially observed parallel source text
𝒔 and its associated latent target pair �̄�. We adopt Bayesian inference,
to marginalise the latent target string �̄� from the joint probability
distribution 𝑝𝜽(𝒔, �̄�), based on Eq. (7), as shown in Fig. 1.

Thus, in the VSAR model, the latent inference network, parame-
terised as 𝑞𝝓(�̄�|𝒔), takes source text 𝒔 and generates a latent target sam-
ple �̄�. The source reconstruction network, parameterised as 𝑝𝜽(𝒔|�̄�),
reconstructs the observed source text 𝒔 back, based on the latent target
sample �̄�. As the prior distribution, a language model is pre-trained on
unlabelled source text corpus, to approximate the prior distribution
𝑝(�̄�).2 The prior is introduced for regularisation purposes (Miao and
Blunsom, 2016; He et al., 2020), which enforces that samples are more
likely to be ’reasonable’ natural language text.

Motivated by the benefits of parameters sharing in multi-task
learning for natural language generation (Luong et al., 2016; Guo
et al., 2018a,b; Wang et al., 2020), we share model parameters for the
source encoder and the target encoder, denoted as 𝒇 𝒆𝒏𝒄𝒐𝒅𝒆; similarly,
we share model parameters for the source decoder and the target
decoder, denoted as 𝒇𝒅𝒆𝒄𝒐𝒅𝒆. In the following sections, we use 𝒇 𝒆𝒏𝒄𝒐𝒅𝒆
and 𝒇𝒅𝒆𝒄𝒐𝒅𝒆 to represent all encoders and decoders in the VSAR model,
respectively.

1 The language model prior and weak supervision decoding is omitted, for
larity.

2 We leverage linguistic knowledge of the paraphrase generation task, in
hich a paraphrase text string can be considered as its own paraphrase.
21

𝑠

3.1. Weak supervision

In the VSAR model, we empirically found that the quality of the
latent sequence �̄� is very unstable, especially at the beginning of the
training. To combat this issue, motivated by the idea of weak su-
pervision (Du et al., 2021; Chang et al., 2021), we propose to use
pseudo-labels to guide VSAR throughout training. Before each model
performs the forward-pass using the back-propagation algorithm, we
first assign pseudo-labels to each token in the unobserved latent target
sample �̄� based on the current model parameter (from the previous iter-
ation). The pseudo-labels are detached from the computational graph;
hence no gradient is updated during the weak supervision process.
The pseudo-labels can be considered as a weak supervision signal for
‘teacher forcing training’ (Williams and Zipser, 1989).

The encoder model takes the source string 𝒔 = (𝑠1,… , 𝑠𝑛) as input
nd produces its corresponding contextual vector 𝒉𝒔 = (ℎ𝑠1,… , ℎ𝑠𝑛):

𝒔 = 𝒇 𝒆𝒏𝒄𝒐𝒅𝒆(𝒔) (1)

We adopt a greedy decoding scheme to assign pseudo-target labels
𝒕∗ and assume that a good paraphrase ought to have a similar length as
the original sentence (Burrows et al., 2013; Cao et al., 2017); such that
𝒕∗ = (𝑡∗1 ,… , 𝑡∗𝑛). Let 𝑡∗𝑖 be the 𝑖th word in the pseudo target sequence;
we construct this sequence in an auto-regressive manner:

𝑡∗𝑖 = 𝒇𝒅𝒆𝒄𝒐𝒅𝒆(𝒉𝒔; 𝑡∗1∶𝑖−1) (2)

3.2. Target inference

Once the pseudo-target labels 𝒕∗ are assigned, we perform latent
variable inference with the latent inference network. Since the source
string 𝒔 remains the same, we reuse the value of the contextual vector
𝒉𝒔 in the weak supervision section. Let 𝑡𝑗 be the 𝑗th words in the latent
sample and 𝑒𝑗 be the corresponding output of the target decoder model.
We construct the latent sample �̄� using contextual vector 𝒉𝒔 and all
𝑡∗1∶𝑗−1 words in the pseudo-labels:

𝑒𝑗 = 𝒇𝒅𝒆𝒄𝒐𝒅𝒆(𝒉𝒔; 𝑡∗1∶𝑗−1)

𝑡𝑗 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙-TOP𝑘(𝑒𝑗 , 𝜏)
(3)

Here, 𝑡𝑖 is drawn via the Gumbel trick (Jang et al., 2017; Maddison
et al., 2017) with temperature 𝜏 as an additional hyper-parameter,
which controls the probability distribution of the samples. At a high
temperature 𝜏, we equivalently sample from a uniform distribution;
at a low temperature 𝜏, we equivalently sample from a categorical
distribution. Due to the enormous size of the vocabulary, sampling
from this simplex can be difficult, hence we further adopt the TOP-𝑘
subset sampling technique (Xie and Ermon, 2019) to improve sampling
efficiency.

We explore two different schemes commonly used in the literature:
(1) we use a fixed temperature 𝜏 of 0.1, as in Chen et al. (2018); and
(2) we gradually anneal the temperature 𝜏 from a high temperature of
10 to a low temperature of 0.01, as in Balin et al. (2019). Our empirical
results suggest that annealing the temperature 𝜏 during training yields
significantly better results (𝑝 < .05; Wilcoxon test), which are thus used
to report the final results. We use a 𝑘-value of 10, as suggested in Fu
et al. (2019).

3.3. Source reconstruction

For the source reconstruction network, the encoder model takes the
latent target sequence string �̄� = (𝑡1,… , 𝑡𝑛) as input and produces its
corresponding contextual vector 𝒉𝑡 = (ℎ𝑡1,… , ℎ𝑡𝑛):

𝒉𝑡 = 𝒇 𝒆𝒏𝒄𝒐𝒅𝒆(�̄�) (4)

Let �̂�𝑘 be the 𝑘th word in the reconstructed source string, during the
training; we retrieve the reconstructed source string �̂� via:

𝑡
̂𝑘 = 𝒇𝒅𝒆𝒄𝒐𝒅𝒆(𝒉 ; 𝑠1∶𝑘−1) (5)
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Table 1
Semi-supervised learning experiment results for quora.
Model Labelled Unlabelled B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L

DDL 20K – 46.68 33.44 25.46 20.18 11.08 47.57 25.42 45.50
DDL+VSAR1 20K 20K 47.80 ↑ 34.33 ↑ 26.17 ↑ 20.76 ↑ 11.25 ↑ 48.03 ↑ 25.82 ↑ 45.84 ↑

DDL+VSAR2 20K 100K 50.26 ↑ 36.87 ↑ 28.50 ↑ 22.82 ↑ 11.60 ↑ 51.51 ↑ 28.45 ↑ 49.07 ↑

DDL 50K – 53.31 40.22 31.70 25.80 13.80 55.63 32.15 53.13
DDL+VSAR1 50K 50K 53.33 ↑ 39.93 ↓ 31.39 ↓ 25.49 ↓ 13.45 ↓ 55.51 ↓ 31.90 ↓ 52.95 ↓

DDL+VSAR2 50K 100K 53.79 ↑ 40.47 ↑ 31.86 ↑ 25.93 ↑ 13.67 ↓ 55.58 ↓ 31.89 ↓ 52.93 ↓
Table 2
Semi-supervised learning experiment results for MSCOCO.
Model Labelled Unlabelled B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L

DDL 20K – 66.82 47.25 33.14 23.75 16.66 40.53 14.95 36.94
DDL+VSAR1 20K 20K 66.98 ↑ 47.28 ↑ 33.10 ↓ 23.72 ↓ 16.54 ↓ 40.60 ↑ 14.95 ↑ 36.94 ↑

DDL+VSAR2 20K 93K 67.64 ↑ 48.00 ↑ 33.96 ↑ 24.55 ↑ 16.68 ↑ 40.87 ↑ 15.12 ↑ 37.01 ↑

DDL 50K – 69.39 50.17 36.06 26.49 18.43 42.08 16.31 38.27
DDL+VSAR1 50K 50K 69.43 ↑ 50.21 ↑ 36.08 ↑ 26.45 ↓ 18.31 ↓ 42.20 ↑ 16.33 ↑ 38.31 ↑

DDL+VSAR2 50K 93K 69.91 ↑ 50.65 ↑ 36.52 ↑ 26.93 ↑ 18.51 ↑ 42.39 ↑ 16.46 ↑ 38.40 ↑
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3.4. Learning and inference for VSAR

In the SVAR model, there are two sets of parameters, 𝝓 and 𝜽, which
re required to be updated. Let 𝑺 be the observed random variable for
he source text, �̄� be the latent random variable for the target text,
nd 𝑁 be the total number of the unlabelled source text. We have the

following joint likelihood for the SVAR model, parameterised by 𝜽:

(𝑺, �̄� ;𝜽) =
𝑁
∏

𝑖=1
𝑝(𝑠(𝑖)|𝑡(𝑖);𝜽)𝑝(𝑡(𝑖)) (6)

The log marginal likelihood 𝑳1 of the observed data that will
e approximated during training is log 𝑝(𝑺;𝜽). We adopt amortised
ariational inference (Kingma and Welling, 2014; Rezende et al., 2014;
nih and Gregor, 2014) and build a surrogate function, approximated
ith a neural network 𝑞(�̄� |𝑺;𝝓), parameterised by 𝝓, to derive the

vidence lower bound (ELBO) for the joint likelihood:

1 = log
∑

�̄�
𝑝(𝑺, �̄� ;𝜽) ≥ 𝐸𝐿𝐵𝑂(𝑺, �̄� ;𝜽,𝝓)

=
𝑁
∑

𝑖=1
{E𝑞(𝑡|𝑠(𝑖);𝝓)[log 𝑝(𝑠(𝑖)|𝑡;𝜽)] − D𝐾𝐿[𝑞(𝑡|𝑠(𝑖);𝝓)||𝑝(𝑡)]}

(7)

The most common variational family in the VAE framework relies
n the reparameterisation trick (Kingma and Welling, 2014), which
s not applicable to the non-differentiable discrete latent variable. An
pproach for optimising learning with such latent variables uses the
EINFORCE algorithm (Mnih and Gregor, 2014; Mnih et al., 2014);
owever, this algorithm generally suffers from high variance. In this
aper, we instead use Gumbel-Softmax (Jang et al., 2017; Maddison
t al., 2017) with differentiable subset sampling (Xie and Ermon, 2019),
o retrieve top-𝑘 samples without replacement. Nevertheless, since
ampling a one-hot form vector induces high variance, we apply the
traight-through technique (Bengio et al., 2013) as a biased estimator
f the gradient, to combat this variance.

During training, while optimising the log-likelihood, we perform
earning (𝜽) and inference (𝝓) at the same time. The parameters are
ointly optimised with the same optimiser. Since we are sharing pa-
ameters in our model, in practice, we are updating the same set of
arameters (shared by 𝜽 and 𝝓) with source data only.

. Dual Directional Learning (DDL)

In this section, we introduce the Dual Directional Learning (DDL)
odel, which we use for supervised paraphrase generation. The DDL
22

odel consists of two sets of standard Transformer models (Vaswani (
t al., 2017), each with its own two separate neural networks — an
ncoder and a decoder. We perform standard sequence-to-sequence
earning, with the fully observed parallel source text 𝒔 and its associ-

ated target pair 𝒕, in dual directions. The target generation network
𝑝𝜽𝒕|𝒔 (𝒕|𝒔) takes source text 𝒔 as input and generates target text 𝒕; and
the source generation network 𝑝𝜽𝒔|𝒕 (𝒔|𝒕) takes target text 𝒕 as input
and generates source text 𝒔.

4.1. Parameter learning

In the DDL model, there are two sets of parameters, 𝜽𝒔|𝒕 and 𝜽𝒕|𝒔,
which are required to be updated. Let 𝑺 be the observed random
variable for source text, 𝑻 be the observed random variable for target
text, and 𝑀 be the number of labelled pairs; we then have the following
onditional likelihood for our DDL model:

(𝑺|𝑻 ;𝜽𝒔|𝒕) =
𝑀
∏

𝑖=1
𝑝(𝑠(𝑖)|𝑡(𝑖);𝜽𝒔|𝒕)

(𝑻 |𝑺;𝜽𝒕|𝒔) =
𝑀
∏

𝑖=1
𝑝(𝑡(𝑖)|𝑠(𝑖);𝜽𝒕|𝒔)

(8)

The log conditional likelihood 𝑳2 of the observed data pairs can be
ointly learnt during training as:

2 =
𝑀
∑

𝑖=1
(log 𝑝(𝑠(𝑖)|𝑡(𝑖);𝜽𝒔|𝒕) + log 𝑝(𝑡(𝑖)|𝑠(𝑖);𝜽𝒕|𝒔)) (9)

During training, we perform dual learning (𝜽𝒔|𝒕 and 𝜽𝒕|𝒔) at the same
ime and the parameters are jointly optimised with the same optimiser.

.2. Parameter sharing

Once again, motivated by the benefits of multi-task learning for
atural language generation (Luong et al., 2016; Guo et al., 2018a,b;
ang et al., 2020), we share model parameters for the target generation

nd the source generation network. Although sharing parameters is a
ery simple technique, as shown in Tables 1 and 2, the DDL model
ignificantly improves the performance of paraphrase generation with
espect to the Transformer baseline (𝑝 < .05; Wilcoxon test), which only
andles sequence-to-sequence learning in a single direction.

. Combining VSAR and DDL for semi-supervised learning

In this section, we introduce our semi-supervised learning model

VSAR+DDL), which combines models presented in previous sections.
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For semi-supervised learning, the log-likelihood of the data can be
expressed as follow:

𝑳 = 𝑳1 +𝑳2

=
𝑁
∑

𝑖=1
{E𝑞(𝑡|𝑠(𝑖);𝝓)[log 𝑝(𝑠(𝑖)|𝑡;𝜽)] − D𝐾𝐿[𝑞(𝑡|𝑠(𝑖);𝝓)||𝑝(𝑡)]}

+
𝑀
∑

𝑖=1
(log 𝑝(𝑠(𝑖)|𝑡(𝑖);𝜽𝒔|𝒕) + log 𝑝(𝑡(𝑖)|𝑠(𝑖);𝜽𝒕|𝒔))

(10)

As suggested in Eq. (10), for unsupervised learning and supervised
learning, the likelihood function involves the same set of conditional
probability between 𝒔 and 𝒕. We hypothesise that sharing parameters
between these two models is beneficial. Thus, we share two sets of neu-
ral network parameters from the VSAR and DDL models (i.e. 𝑞𝝓(�̄�|𝒔) ≡
𝑝𝜽𝒕|𝒔 (𝒕|𝒔) and 𝑝𝜽(𝒔|�̄�) ≡ 𝑝𝜽𝒔|𝒕 (𝒔|𝒕)). This allows the strong supervision
ignal from the DDL model to contribute to the VSAR model, directly.
t the same time, the unsupervised signal from the VSAR model can
enefit the generalisation of the DDL model.

.1. Knowledge reinforced learning

Our empirical experiments suggest that our combined model
DDL+VSAR) suffers from a cold-start problem for parameter optimi-
ation, when conducting semi-supervised learning from scratch. We
ound that a key to the success of our model is to have better
nitialisation of the model weight. Hence, we present a novel training
cheme called knowledge reinforced learning (Fig. 2), which includes
wo-stage training. In stage one (pre-training), we conduct supervised
earning with our DDL model on paired training sets, as demonstrated
n Algorithm 1. In stage two (fine-tuning), we initialise the VSAR
odel parameter with the best performance DDL model from stage one;

nd we conduct semi-supervised learning with labelled and unlabelled
ata, as demonstrated in Algorithm 2. The intuition is to inject better
reliminary information into training the VSAR model.

Algorithm 1 Knowledge Reinforced Pre-Training
Input:
Supervised Training Data (𝑆

𝑇 = {(𝑠1, 𝑡1), ..., (𝑠𝑁 , 𝑡𝑁 )}), Supervised Vali-
dation Data (𝑆

𝑉 )
Parameter:
DDL Model: 𝜽𝒔|𝒕 and 𝜽𝒕|𝒔
Parameter Sharing:
Set 𝜽𝒔|𝒕 equals to 𝜽𝒕|𝒔 throughout knowledge reinforced pre-training
Output: 𝜽𝒔|𝒕∗ and 𝜽𝒕|𝒔∗

1: Initialise 𝜽𝒔|𝒕 and 𝜽𝒕|𝒔 with a random seed; set maximum training
epochs as 𝑻 ; set 𝑳𝟐

∗ = 0
2: while maximum epochs not reached do
3: Update 𝜽𝒔|𝒕 and 𝜽𝒕|𝒔 with mini-batch data from 𝑆

𝑇 based on
Equation (9)

4: if 𝑳𝟐 in Equation (9) calculated based on 𝑆
𝑉 larger than 𝑳𝟐

∗

then
5: Set 𝑳𝟐

∗ ← 𝑳𝟐
6: Set 𝜽𝒔|𝒕∗ ← 𝜽𝒔|𝒕
7: Set 𝜽𝒕|𝒔∗ ← 𝜽𝒕|𝒔
8: end if
9: end while
Return: 𝜽𝒔|𝒕∗ and 𝜽𝒕|𝒔∗

5.2. Effect of language model prior

In literature (Higgins et al., 2017; Miao and Blunsom, 2016; Yang
et al., 2018; He et al., 2020), a language model prior is introduced for
regularisation purposes, which enforces samples to more likely contain
23

d

Algorithm 2 Knowledge Reinforced Fine-Training
Input:
Unsupervised Data (𝑈 = {𝑠1, ..., 𝑠𝑀})
Supervised Training Data (𝑆

𝑇 = {(𝑠1, 𝑡1), ..., (𝑠𝑁 , 𝑡𝑁 )}), Supervised Vali-
ation Data (𝑆

𝑉 )
arameter:
SAR Model: 𝝓 and 𝜽; DDL Model: 𝜽𝒔|𝒕 and 𝜽𝒕|𝒔
arameter Sharing:
et 𝝓 equals to 𝜽𝒕|𝒔; 𝜽 equals to 𝜽𝒔|𝒕; and 𝜽𝒔|𝒕 equals to 𝜽𝒕|𝒔 throughout
nowledge reinforced fine-tuning
utput: 𝜽𝒔|𝒕∗∗, 𝜽𝒕|𝒔∗∗; 𝝓∗∗ and 𝜽∗∗

1: Initialise 𝝓 and 𝜽𝒕|𝒔 with 𝜽𝒕|𝒔∗; and initialise 𝜽 and 𝜽𝒔|𝒕 with 𝜽𝒔|𝒕∗;
set maximum training epochs as 𝑻 ; set 𝑳𝟐

∗ = 0.
2: while maximum epochs not reached do
3: Update 𝜽𝒔|𝒕 and 𝜽𝒕|𝒔 with mini-batch data from 𝑆

𝑇 based on
Equation (9)

4: Update 𝝓 and 𝜽 with mini-batch data from 𝑈 based on Equation
(7)

5: if 𝑳𝟐 in Equation (9) calculated based on 𝑆
𝑉 larger than 𝑳𝟐

∗

then
6: Set 𝑳𝟐

∗ ← 𝑳𝟐
7: Set 𝜽𝒔|𝒕∗∗ ← 𝜽𝒔|𝒕
8: Set 𝜽𝒕|𝒔∗∗ ← 𝜽𝒕|𝒔
9: Set 𝝓∗∗ ← 𝝓
0: Set 𝜽∗∗ ← 𝜽
1: end if
2: end while
Return: 𝜽𝒔|𝒕∗∗, 𝜽𝒕|𝒔∗∗; 𝝓∗∗ and 𝜽∗∗

a ‘reasonable’ natural language, especially at the beginning of the train-
ing. Hence, we adopt the same approach and use a prior in our model.
We empirically found the prior useful when the labelled dataset was
relatively small. However, surprisingly, we found that training without
a prior in the VSAR model yields better results with our parameter
initialisation method, when the dataset is large. The improvement is
significant (𝑝 < .05; Wilcoxon test), as shown in Tables 5 and 6. We
report the results without language model prior as DDL +VSAR∗, and
the log-likelihood becomes:

𝑳∗ =
𝑁
∑

𝑖=1
{E𝑞(𝑡|𝑠(𝑖);𝝓)[log 𝑝(𝑠(𝑖)|𝑡;𝜽)]}

+
𝑀
∑

𝑖=1
(log 𝑝(𝑠(𝑖)|𝑡(𝑖);𝜽𝒔|𝒕) + log 𝑝(𝑡(𝑖)|𝑠(𝑖);𝜽𝒕|𝒔))

(11)

To further investigate this issue, we conducted experiments to com-
are the performance of semi-supervised learning when training with
rior (Eq. (10)) or without prior (Eq. (11)) under different data portion
etting. We empirically found that with a low portion of labelled data,
he combined model (DDL+VSAR) with a prior grants significantly
𝑝 < .05; Wilcoxon test) better performance and is more stable. This
ligns with the observations in Higgins et al. (2017), Miao and Blunsom
2016), Yang et al. (2018), He et al. (2020). However, with a large
ortion of labelled data, the combined model (DDL+VSAR) without the
rior is significantly (𝑝 < .05; Wilcoxon test) better.

We argue that this phenomenon relates to our choice of prior, as
t is pre-trained on an unlabelled source text corpus, instead of on
he target text corpus. This approximation leads to a distribution shift
rom the true prior distribution 𝑝(�̄�). Thus, when a low portion of the
abelled data is used in Algorithm 1, the final DDL parameters 𝜽∗𝒔|𝒕
nd 𝜽∗𝒕|𝒔 for the initialisation VSAR model in Algorithm 2 are not good
nough. The prior, in this case, can still benefit the combined model in
he semi-supervised learning setting. However, with a large portion of
abelled data, the initialisation is good enough, and, in such a case, the
istribution shift can harm the combined model.
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5.3. Semi-supervised learning setup

Under the semi-supervised learning setting, we limit the size of
the supervised source and target pairs to be less than or equal to the
unsupervised source text (𝑀 ≤ 𝑁), as we could otherwise just conduct
upervised learning, to take full advantage of the observed data pairs.
his paper presents a thorough study of different sizes for 𝑀 and
. Experimental results under this setting are presented in Table 1,

able 2, Tables 3 and 4.

. Experiments

Here, we describe the datasets, experimental setup, evaluation met-
ics and experimental results.

.1. Datasets

MSCOCO (Lin et al., 2014): This dataset has been widely adopted to
valuate paraphrase generation methods and contains human-annota-
ed captions of images. Each image is associated with five captions from
ifferent annotators, who describe the most prominent object or action
n an image. We use the 2017 version for our experiments; from the

five captions accompanying each image, we randomly choose one as
the source string and one as the target string for training. We randomly
choose one as the source string for testing and use the rest four as the
references.

Quora3: This dataset consists of 150K lines of question duplicate
airs, and it has been used as a benchmark dataset for paraphrase

3 https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
24
generation since 2017. However, since this dataset does not contain a
specific split for training and testing, prior models are evaluated based
on different subset sizes of data.

For both datasets (MSCOCO and Quora), in order to improve the
reproducibility of our results, we use a pre-trained tokeniser (’bert-
base-uncased’ version) from Devlin et al. (2019)4 and set the maximum
token length as 20 (by removing the tokens beyond the first 20).
ollowing Li et al. (2019), Fu et al. (2019), Su et al. (2021), we use
raining, validation and test sets as 100K, 4K and 20K, respectively for
he Quora dataset; and 93K, 4K and 20K, respectively, for MSCOCO. For
he complementary study in Tables 7 and 8, we use training, validation
nd test sets as 100K, 24K and 24K for the Quora dataset; and 100K, 5K
nd 5K for MSCOCO, in order to have a fair comparison with the results
eported in Hosking and Lapata (2021), Hosking et al. (2022).

Other available datasets for paraphrase generation tasks include:
araBank (Hu et al., 2019) and PARANMT (Wieting and Gimpel,
017), which are two large-scale datasets created using back translation
echniques from another non-English parallel corpus. Since these two
atasets are less adopted by researchers in the literature, we cannot
irectly compare them against existing works. Still, as an alternative,
o further demonstrate the efficacy of our proposed models, we conduct
emi-supervised learning experiments on these two datasets. For the
araBank dataset, we took the ’ParaBank v1.0 (5 m pairs)’5 and use a

similar setup as for the Quora dataset. The dataset consists of 5M lines
of duplicated pairs; we randomly choose the same subset of the data for
our experiments and use training, validation and test set of size 100K,

4 https://github.com/huggingface/transformers
5 https://nlp.jhu.edu/parabank/

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://github.com/huggingface/transformers
https://nlp.jhu.edu/parabank/
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Table 3
Semi-supervised learning experiment results for ParaBank.
Model Labelled Unlabelled B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L

DDL 20K – 50.48 39.21 31.11 25.16 12.98 57.03 33.77 55.31
DDL+VSAR1 20K 20K 50.69 ↑ 39.41 ↑ 31.35 ↑ 25.45 ↑ 13.14 ↑ 56.99 ↓ 33.92 ↑ 55.20 ↓

DDL+VSAR2 20K 100K 54.04 ↑ 43.41 ↑ 35.44 ↑ 29.40 ↑ 14.94 ↑ 60.66 ↑ 37.50 ↑ 58.90 ↑

DDL 50K – 58.05 48.84 41.59 35.82 18.19 66.45 44.63 64.81
DDL+VSAR1 50K 50K 58.29 ↑ 49.24 ↑ 42.10 ↑ 36.40 ↑ 18.45 ↑ 66.88 ↑ 45.23 ↑ 65.23 ↑

DDL+VSAR2 50K 100K 59.22 ↑ 50.33 ↑ 43.23 ↑ 37.51 ↑ 18.89 ↑ 67.64 ↑ 46.05 ↑ 65.98 ↑
Table 4
Semi-supervised learning experiment results for PARANMT.

Model Labelled Unlabelled B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L

DDL 20K – 62.49 49.47 39.92 32.84 17.40 63.13 40.43 61.15
DDL+VSAR1 20K 20K 63.48 ↑ 50.70 ↑ 41.32 ↑ 34.33 ↑ 18.16 ↑ 64.59 ↑ 41.97 ↑ 62.58 ↑

DDL+VSAR2 20K 100K 66.46 ↑ 54.20 ↑ 44.80 ↑ 37.60 ↑ 19.42 ↑ 67.55 ↑ 45.25 ↑ 65.49 ↑

DDL 50K – 70.55 59.53 50.79 43.78 22.82 71.97 51.30 69.97
DDL+VSAR1 50K 50K 70.41 ↓ 59.48 ↓ 50.81 ↑ 43.87 ↑ 23.02 ↑ 72.06 ↑ 51.45 ↑ 70.07 ↑

DDL+VSAR2 50K 100K 70.91 ↑ 60.12 ↑ 51.48 ↑ 44.53 ↑ 23.25 ↑ 72.57 ↑ 52.03 ↑ 70.57 ↑
Table 5
Experiment results for Quora.

Model B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L

Upper Bound (Copy Source) 63.36 49.99 40.47 33.54 – 63.04 38.15 59.64
Lower Bound (Random Select) 16.10 4.50 1.94 0.79 – 9.13 1.54 8.79

Residual-LSTM (Prakash et al., 2016) 53.59 39.49 30.25 23.69 15.93 55.10 33.86 53.61
𝛽-VAE (Higgins et al., 2017) 47.86 33.21 24.96 19.73 10.28 47.62 25.49 45.46
Transformer (Vaswani et al., 2017) 53.56 40.47 32.11 25.01 17.98 57.82 32.58 56.26
LBOW-TOPk (Fu et al., 2019) 55.79 42.03 32.71 26.17 19.03 58.79 34.57 56.43
IANet+X (Su et al., 2021) 56.06 42.69 33.38 26.52 19.62 59.33 35.01 57.13

Transformer (our implementation) 54.73 41.59 32.96 26.94 14.50 56.90 33.28 54.29
DDL (our model) 55.97 ↑ 43.02 ↑ 34.32 ↑ 28.19 ↑ 14.83 ↑ 58.80 ↑ 35.00 ↑ 56.11 ↑

DDL + SVAR (our model) 55.79 ↑ 42.79 ↑ 34.11 ↑ 28.01 ↑ 14.92 ↑ 58.61 ↑ 34.75 ↑ 55.91 ↑

DDL + SVAR∗ (our model) 55.99 ↑ 43.05 ↑ 34.37 ↑ 28.23 ↑ 14.81 ↑ 58.79 ↑ 35.02 ↑ 56.14 ↑
w
t
o

4K and 20K, respectively. For the PARANMT dataset, we first filter out
the paraphrase pairs (remove entries where the paragram-phrase score6

s higher than 0.95 and smaller than 0.90; set the maximum token
ength as 20 and the minimum token length as 5) and keep the middle
ercentiles, as recommended in Wieting and Gimpel (2017), to remove
oisy and trivial paraphrases. After the filtering, we apply a similar
xperimental setup as the Quora dataset and randomly choose the same
ubset of the data for our experiments and use training, validation and
est set of size 100K, 4K and 20K, respectively.

.2. Baselines

We consider several state-of-the-art baselines, presented in Table 5,
able 6, Table 7, and Table 8. Note that these experimental results are
irectly taken from Su et al. (2021)7 and Hosking et al. (2022). For
valuation, we start with our implementation of the Transformer model
s the absolute baseline, which achieves competitive performance, as
eported in Su et al. (2021). The Transformer model (Vaswani et al.,
017) is considered as the SOTA model, which is very ‘hard to beat’.
e report our model performance based on a similar setup as in Su

t al. (2021) and Hosking et al. (2022).
Recently, large-scale pre-trained language models (PLMs) have been

idely adopted as the state-of-the-art approaches for both understand-
ng and generation tasks in the NLP domain; in this paper, however,

6 The paragram-phrase score measures the semantic similarity between a
air of sentences. For the complete PARANMT dataset, the mean score is 0.69,
ith a standard deviation of 0.26. We select the range among one standard
eviation of the mean, i.e. (0.43, 0.95). Since we wish the dataset to be in an
ctual paraphrase form, we further limit the lower bound to 0.9, to ensure the
uality of the data.

7

25

The authors do not make their code publicly available. 3
PLMs are not selected as the baseline model to compete against, as they
contain external information trained in an unsupervised fashion based
on a large-scale text corpus. Alternatively, in this paper, we focused on
end-to-end learning for paraphrase generation tasks from scratch. This
experimental setting allows us to directly compare with other literature.
Hence, in this paper, we are not compared against any PLMs, other than
leaving this as future work. However, note that all types of PLM models
are primarily based on the Transformer architecture, which we used as
a baseline model to compare with. The implication is that our methods
could potentially be used for improving the performance of PLMs with
limited labelled resources and large-scale unlabelled data points.

6.3. Experimental setup

In this section, we introduce our primary experimental setup. We do
not use any external word embedding, such as Glove (Pennington et al.,
2014), word2vec (Mikolov et al., 2013) or BERT (Devlin et al., 2019)
for initialisation; rather, we obtain word embedding with end-to-end
training, in order not to use any prior knowledge and better understand
the impact of our model. We use the ‘base’ version of the Transformer
model (Vaswani et al., 2017), which is a 6-layer model with 512 hidden
units and 8 heads for each encoder and decoder network. In each
encoder and decoder, we have a separate learnable position embedding
and its associated word embedding component.

We use a greedy decoding scheme for paraphrase generation, which
is fast and cheap to compute. For model optimisation, we use Adam
(Kingma and Ba, 2015) as our optimiser with default hyper-parameters
(𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1𝑒 − 8). We conduct all the experiments

ith a batch size of 512 for the Quora and MSCOCO datasets. We set
he learning rate as 1𝑒 − 4 for MSCOCO and 2𝑒 − 4 for Quora based
n empirical experiments. All experiments are run for a maximum of

0 epochs on NVidia GPU Cluster with A100 GPU. Experiments are
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Table 6
Experiment results for MSCOCO.

Model B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L

Upper Bound (Copy Source) 64.97 44.90 30.69 21.30 – 39.18 12.96 34.61
Lower Bound (Random Select) 32.34 10.99 3.81 1.68 – 17.58 1.51 16.27

Residual-LSTM (Prakash et al., 2016) 70.24 48.65 34.04 23.66 18.72 41.07 15.26 37.35
𝛽-VAE (Higgins et al., 2017) 70.04 47.59 32.29 22.54 18.34 40.72 14.75 36.75
Transformer (Vaswani et al., 2017) 71.31 49.86 35.55 24.68 19.81 41.49 15.84 37.09
LBOW-TOPk (Fu et al., 2019) 72.60 51.14 35.66 25.27 21.07 42.08 16.13 38.16
IANet+X (Su et al., 2021) 72.10 52.22 37.39 26.06 21.28 43.81 16.35 39.65

Transformer (our implementation) 68.72 49.64 35.87 26.63 18.59 42.09 16.53 38.35
DDL (our model) 70.75 ↑ 51.72 ↑ 37.62 ↑ 27.95 ↑ 19.37 ↑ 43.00 ↑ 17.01 ↑ 39.06 ↑

DDL + SVAR (our model) 70.84 ↑ 51.84 ↑ 37.75 ↑ 28.04 ↑ 19.39 ↑ 43.05 ↑ 17.04 ↑ 39.07 ↑

DDL + SVAR∗ (our model) 70.99 ↑ 51.91 ↑ 37.82 ↑ 28.12 ↑ 19.39 ↑ 43.00 ↑ 17.03 ↑ 39.02 ↑
b
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repeated three times, with different random seeds (1000, 2000 and
000), and the average result is reported in Tables 1–6.

.4. Evaluation

In this paper, we evaluate our models first based on quantitative
metrics: BLEU (Papineni et al., 2002),8 ROUGE (Lin, 2004),9 and i-
BLEU (Sun and Zhou, 2012). The main justification behind this is to
compare with existing work in the literature directly, which focused
on end-to-end learning of paraphrase generation tasks from scratch,
using deep neural network models. BLEU (Bilingual Evaluation Under-
study) and ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
scores are based on ‘n-gram’ coverage between system-generated para-
phrase(s) and reference sentences. They have been used widely, to
automatically evaluate the quality and accuracy of natural language
generation tasks.

Previous work has shown that automatic evaluation metrics can
perform well for paraphrase identification tasks (Madnani et al., 2012)
and correlate well with human judgements in evaluating generated
paraphrases (Wubben et al., 2010). Recent papers introduce additional
i-BLEU (Sun and Zhou, 2012) metrics, to balance the fidelity of gen-
erated outputs to reference paraphrases (BLEU), as well as the level
of diversity introduced (self-B). For all metrics apart from self-B, the
higher the value, the better the model performs.

Additionally, we present qualitative evaluation results in Tables 9
and 10, based on the Quora dataset. Our qualitative evaluation aims
to examine two aspects, as follows: (1) how does our proposed su-
pervised model (DDL) compare with the very strong supervised learn-
ing baseline Transformer, given different sizes of labelled pairs data
sets; and (2) what are the benefits of our proposed semi-supervised
model (DDL+VSAR) when incorporating more unlabelled data, given
the labelled pairs data set size remains constant.

6.5. Results and discussion

6.5.1. Learning with unlabelled data only
In an initial experiment, we explored the ability of the VSAR model

to perform paraphrase generation tasks using only unlabelled data.
This experiment was conducted to see if the model could accurately
capture the information required for paraphrase generation, without
the aid of labelled data. However, the results of our initial experiment
showed that the VSAR model alone was not able to produce high-
quality paraphrases, and often resulted in sentences that were either
incomprehensible or meaningless. These results motivated us to pursue
a semi-supervised learning solution for paraphrase generation, which
would provide the model with guidance from labelled data. For un-
supervised learning with VSAR, we found that while the lower bound
indicated by 𝑳1 (Equation (7)) decreased during training in a fully

8 https://www.nltk.org/
9 https://github.com/huggingface/datasets/tree/master/metrics/rouge
26
Table 7
Complement results for Quora.

Model B-4 self-B i-B

Separator (Hosking and Lapata, 2021) 23.68 24.20 14.10
HRQ-VAE (Hosking et al., 2022) 33.11 40.35 18.42

Transformer (our implementation) 26.92 35.33 14.47
DDL + SVAR (our model) 28.15 ↑ 38.92 ↓ 14.73 ↑

DDL + SVAR∗ (our model) 28.16 ↑ 39.07 ↓ 14.71 ↑

Table 8
Complement results for MSCOCO.

Model B-4 self-B i-B

Separator (Hosking and Lapata, 2021) 20.59 12.76 13.92
HRQ-VAE (Hosking et al., 2022) 27.90 16.58 19.04

Transformer (our implementation) 26.87 13.50 18.79
DDL + SVAR (our model) 27.87 ↑ 15.42 ↓ 19.21 ↑

DDL + SVAR∗ (our model) 27.92 ↑ 15.21 ↓ 19.29 ↑

unsupervised setting, the model still generated low-quality paraphrases.
This further validated the need for a semi-supervised learning solution,
which is introduced in Section 5 of this paper.

6.5.2. Learning with a fraction of data
In this section, we present results which are based on a fraction

of labelled data in Tables 1, 2 3 and 4. In all four tables, we present
the results of two models — the supervised learning model, DDL and
the semi-supervised learning model, DDL + VSAR. In a semi-supervised
learning setting, VSAR is trained on unlabelled data, and DDL is trained
on labelled data. The DDL+VSAR1 model employs equivalent sized
labelled and unlabelled datasets, which come from the same source and
target pairs, so there is no additional information applied in this case.
The DDL+VSAR2 model employs the full unlabelled dataset in addition
to the existing labelled dataset, which is the true semi-supervised
setting.

Results suggest that the DDL+VSAR1 model achieves competitive or
etter performance on most metrics’ scores compared to the supervised
DL model only trained on labelled data; especially with a lower

raction of the data (for example, the significant improvement for 20K
s more noticeable than for 50K). Furthermore, fixing the labelled data
ize, the DDL+VSAR2 model achieves significantly better performance
y using additional unlabelled data, than all other models reported in
oth tables (𝑝 < .05; Wilcoxon test), which means the semi-supervised
earning does work in this scenario.

.5.3. Learning with complete data
In this section, we present results based on all labelled data in Ta-

les 5 and 6. Each table comes with three sections. In the first section,
e present an upper bound10 (copying the source as a paraphrase) and

10 Note, here the upper bound does not refer to performance upper bound,
rather than an indicator of satisfaction-level performance.

https://www.nltk.org/
https://github.com/huggingface/datasets/tree/master/metrics/rouge
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Table 9
Selected paraphrase generation results for Transformer (TRANS) versus DDL model with
different amounts of labelled data (denoted in brackets), represented in the case of
Quora dataset.

Source: what are best courses for journalism ?

Reference: what are the best courses on journalism ?

TRANS (20K) which is the best software for beginner ?

DDL (20K) what is the best digital marketing course ?

TRANS (50K) what are the best courses on nagpur ?

DDL (50K) what are the best courses for journalism ?

TRANS (100K) what are the best courses about journalism ?

DDL (100K) what are the best courses for journalism ?

Source: what helps asthma without an inhaler ?

Reference: what are some ways to help someone with asthma
without an inhaler ?

TRANS (20K) what happens if a range of a range ofr collides
with a range ofr 000r

DDL (20K) how can i save my without doing waves in a
month ?

TRANS (50K) what can be done to work in a ppr ?

DDL (50K) what are some of the uses an asthma without an
inhaler ?

TRANS (100K) what is the procedure to be an emergency inr ?

DDL (100K) how can i help asthma without an inhaler ?

Source: how can i get 1 million users to sign up to my
app ?

Reference: how can i get a million users on my social app ?

TRANS (20K) how can i get a friend store ?

DDL (20K) how can i get a game of app on my app ?

TRANS (50K) how can i get a million million on my startup ?

DDL (50K) how do i get the first million users app in my app
?

TRANS (100K) how can i get a million users to write an app ?

DDL (100K) how do i get a million users to sign up for my app

Source: can anyone suggest me the best laptop under 35 k
in india ?

Reference: which is the best laptop under 35 , 000 inr ?

TRANS (20K) what are the best laptop options available for a
laptoprsrsrsrsrsrsrsrsrsrs

DDL (20K) which is the best laptop to buy in india ?

TRANS (50K) which is the best laptop under rs . 50000 in india
?

DDL (50K) what are the best laptops under 35 , 000 in india ?

TRANS (100K) which is the best laptop to buy under rs . 50000
in india ?

DDL (100K) which is the best laptop to buy under 35 , 000 in
india ?

Source: how do i manage my microsoft account ?

Reference: how can i do manage my microsoft account ?

TRANS (20K) how do i manage my google account ?

DDL (20K) how do i manage my microsoft office ?

TRANS (50K) how do i manage my ip address ?

DDL (50K) how do i manage microsoft microsoft office ?

TRANS (100K) how do i manage my microsoft account ?

DDL (100K) how do i manage my microsoft account ?

a lower bound (randomly selecting the ground truth as a paraphrase)
calculated based on the test split (as in Chen et al. (2020)). This is
used as an indication of how well the model performs. In the second
section, we present major state-of-the-art models published in recent
27
Table 10
Selected paraphrase generation results for semi-supervised model (DDL+VSAR) when
incorporating different amounts of unlabelled data (denoted in brackets) and the same
amount of labelled data (20K), represented in the case of Quora dataset.

Source: is it possible to go to the core of the earth ?

Reference: if i really wanted to , can i dig all the way to
the core of the earth ?

DDL(20K) is it possible to go to the earth ?

DDL(20K) + VSAR(20K) how do i go about the earth ?

DDL(20K) + VSAR(50K) how do i go about the earth ?

DDL(20K) + VSAR(100K) is it possible to go to the core of the earth ?

Source: what are best courses for journalism ?

Reference: what are the best courses on journalism ?

DDL(20K) what is the best digital marketing course ?

DDL(20K) + VSAR(20K) what is the best digital marketing agency ?

DDL(20K) + VSAR(50K) what is the best digital marketing course ?

DDL(20K) + VSAR(100K) what are the best courses for journalism ?

Source: how should i stop thinking about someone ?

Reference: how do i stop thinking about someone ?

DDL(20K) how do i stop thinking about me ?

DDL(20K) + VSAR(20K) how do i stop thinking about thinking ?

DDL(20K) + VSAR(50K) how do i stop thinking about something ?

DDL(20K) + VSAR(100K) how do i stop thinking about someone ?

Source: what motivates all people ?

Reference: what motivates people ?

DDL(20K) why do people often keep all people ?

DDL(20K) + VSAR(20K) why do people get tattoos ?

DDL(20K) + VSAR(50K) what inspires to be so hard ?

DDL(20K) + VSAR(100K) what motivates people ?

Source: how can i get 1 million users to sign up to my
app ?

Reference: how can i get a million users on my social app ?

DDL(20K) how can i get a game of app on my app ?

DDL(20K) + VSAR(20K) how do i get a person from a app ?

DDL(20K) + VSAR(50K) how can i get a billionaire by youtube ?

DDL(20K) + VSAR(100K) how can i get 1 million users back from my app
?

Source: is vegetarian good for health or non - vegetarian
?

Reference: which is good food for our health : vegetarian or
non - vegetarian ?

DDL(20K) is smoking considered a vegetarian vegetarian ?

DDL(20K) + VSAR(20K) is vegetarian considered good for health ?

DDL(20K) + VSAR(50K) is vegetarian better than vegetarian ?

DDL(20K) + VSAR(100K) is vegetarian health good or bad ?

Source: how do i manage my microsoft account ?

Reference: how can i do manage my microsoft account ?

DDL(20K) how do i manage my microsoft office ?

DDL(20K) + VSAR(20K) how do i manage my microsoft size ?

DDL(20K) + VSAR(50K) how do i manage my google account ?

DDL(20K) + VSAR(100K) how do i manage my microsoft account ?

years. In the third section, we present our own implementation of
the Transformer model, which we consider as our absolute baseline,
and present results for our models. Our implementation is competitive
with the ones reported in recent papers. For our models, DDL is
our supervised model, DDL+VSAR is our semi-supervised model, and
DDL+VSAR∗ is our model with no prior used. Compared with state-of-
the-art supervised models, our models, in general, achieve statistically

significant better BLEU scores and competitive Rouge scores for both
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datasets (𝑝 < .05; Wilcoxon test). Our complementary experimental
results are presented in Tables 7 and 8, which we compare with two
more recent state-of-the-art models. Our models once again achieve
statistically significant better or competitive performance than the
reported (𝑝 < .05; Wilcoxon test), which means our semi-supervised

odel is competitive with state-of-the-art supervised baselines.

.5.4. Qualitative evaluation for supervised learning with labelled data
In Table 9, we present examples from the Quora test data set

nd their corresponding model outputs from our proposed supervised
earning model DDL (introduced in Section 4) and outputs from a very
trong baseline model Transformer (denoted as TRANS), using varying
mounts of training data. The table first presents the source and golden
eference pair, followed by the outputs of the models (DDL and TRANS)
rained on 20K, 50K, and 100K labelled dataset pairs. Each example
as generated based on a random seed setting of 1000, ensuring a fair

qualitative evaluation; additionally, we always make sure that a smaller
amount of labelled pairs is a subset of examples from a larger data size
group, this allows us to better quantify the benefits of adding more
unlabelled data.

It is quite clear from the results that the generated paraphrase is
more accurate in terms of semantic information, and that it matches
better with the reference, when more labelled data is used. Although,
at the same time, we observe that the advantages of DDL become
more significant when the number of labelled pairs is scarce (i.e. with
20K, the improvement is more significant than with 50K and 100K).
Additionally, our DDL model demonstrates a clear advantage over the
TRANS model in capturing the essence of the information, as seen in its
ability to capture critical details (e.g. capture asthma and inhaler in the
second example; capture number 35000 instead of 50000 in the fourth
example). The DDL model also showed more efficient learning, as it
was able to achieve comparable results using 50K data, as opposed to
100K data for the TRANS model in several examples. These observations
further reinforce the effectiveness and efficiency of our proposed DDL
model.

6.5.5. Qualitative evaluation for incorporating unlabelled data
In Table 10, we present qualitative examples from the Quora test

data set and their corresponding model outputs from our proposed
semi-supervised learning model DDL + VSAR (from Section 5) given
the same amount of labelled data (20K, same data instance as in
Section 6.5.4) plus difference size of unlabelled data (20K, 50K and
100K). For comparison, model output with DDL (Section 4), trained
with the same 20K examples, is provided. Similarly, as in Table 9,
we use the same random seed of 1000 to generate these examples. In
Table 10, we first presented the source and golden reference, followed
by model outputs trained based on 20K labelled pairs by the DDL
model, the same 20K pairs used for the DDL+VSAR model (similar to
DDL+VSAR1 setting in Tables 1, 2, 3 and 4), the same 20K with 50K
unlabelled data (extra 30K) for the DDL+VSAR model and the same
20K with 100K unlabelled data (extra 80K) for the DDL+VSAR model
(similar to DDL+VSAR2 setting in Tables 1, 2, 3 and 4).

We can clearly observe that the generated paraphrase matches
better with the reference when more unlabelled data is utilised during
the training of the DDL+VSAR model. The latent sequence generated
when incorporating unlabelled data in the VSAR model improve the
paraphrase generation performance. In general, we observe a pro-
gressive improvement in capturing the essence of information when
incorporating more unlabelled examples. Compared to the prelimi-
nary experiment where the VSAR model failed to learn in a fully
unsupervised scenario (Section 6.5.1); through qualitative results in
Table 10 and quantitative results in Tables 1, 2, 3 and 4; we show
that we are able to conduct semi-supervised learning by combining our
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unsupervised model VSAR and our supervised model DDL.
6.5.6. Error analysis
In this section, we present an error analysis of our proposed model.

In general, our model works well for semi-supervised settings, as
demonstrated in Tables 1,2, 3 and 4, however, there are cases that
the generated examples from our models get worth quality or no
improvements in terms of quality when more unlabelled pairs are
utilised. We find that in cases where the DDL+VSAR model has no
improvement when seeing more unlabelled data, the golden reference
of test examples is relatively easy to paraphrase and is presented in
shorter sentence form. However, we also observed scenarios when our
DDL+VSAR model overcomplex paraphrases when more unlabelled
data points are used, as shown in Table 11. We notice that observing
unlabelled data increase the model’s ability to handle more complex
paraphrase, however, at the same time encourage the model to return
a complex answer. This is an interesting discovery and suggests that
the quality of unlabelled data also plays an important role in the
semi-supervised learning process.

6.5.7. Algorithm run time
In this section, we further discuss the algorithm run time and

GPU memory requirement of our proposed models. Regarding the DDL
model, it is equivalent to training a standard transformer model with
additional cost terms (from two directions: source to target and target
to source). Hence, training a DDL model does not require additional
run time and requires no additional GPU memory. Regarding the
VSAR model alone, since we are sharing the parameters for source
reconstruction and latent inference (as shown in Fig. 1), the cost of
training is similar to the DDL model, plus some additional GPU memory
cost due to the need of saving gradient from latent samples in order
to perform back-propagation. Since a single sample is used during our
training, the extra GPU memory cost is not significant, and we do not
recognise the extra run time for training the VSAR model. Regarding
the semi-supervised learning model, DDL+VSAR, we need to first pre-
train a DDL model from the labelled data, then initialise the model
weight from the DDL model and jointly fine-tune the DDL+VSAR model
from both labelled and unlabelled data. The total run time is doubled
compared to the process of pre-training and fine-tuning. Although we
find that pre-training already set the model at a near-optimal parameter
space, and hence we could potentially use fewer epochs for the semi-
supervised learning to ensure the algorithm scale well to large-scale
data.

7. Limitations and future work

Here we briefly discuss two main limitations which are identified
in this research with each associated future work. The first limitation
involves the quantitative evaluation metrics, such as BLEU and Rouge
score, used in this research. These metrics are based on the overlap
of n-gram contexts between generated outputs and reference text, and
while they are commonly used to compare with published results
(as shown in Tables 5, 6, 7 and 8) , they cannot directly assess the
quality of the generated text. More recent evaluation metrics, such as
BERTscore (Zhang et al., 2020), have been proposed, but there is still no
universal agreement on what are the best quantitative measurements.
One future work direction is to look into this area and propose better
evaluation metrics for capturing the quality of generated paraphrases,
which will ultimately create a meaningful impact on natural language
generation research.

The second limitation is the absence of user-based studies to eval-
uate systems implemented based on our proposed methods, which
are often considered a more comprehensive measure of the model
performance. Although in this paper, we observed promising results in
Section 6.5. Current evaluations in this work rely on public benchmark
datasets, which may be biased towards the subset of data the model

is trained on. Due to resource constraints, user-based evaluations were
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Table 11
Selected paraphrase generation results for error analysis, represented in the case of
Quora dataset.

Source: what is web marketing ? i want to learn
internet marketing ?

Reference: what ’ s the best way to get started in
internet marketing ?

DDL(20K) + VSAR(20K) what is the most valuable website for
the internet ?

DDL(20K) + VSAR(50K) what is the best way to learn internet ?

DDL(20K) + VSAR(100K) what is the best digital marketing course
available online and offline in india and
why ?

Source: what do you feel is the purpose of life ?

Reference: from your perspective , what is the
purpose of life ?

DDL(20K) + VSAR(20K) what is the purpose of life ?

DDL(20K) + VSAR(50K) what is the purpose of your life ?

DDL(20K) + VSAR(100K) what do you think is the purpose of life
?

Source: why do you believe in ghosts and the
supernatural ?

Reference: do you believe in ghosts , why ?

DDL(20K) + VSAR(20K) do you believe in ghost ?

DDL(20K) + VSAR(50K) do you believe in ghosts ?

DDL(20K) + VSAR(100K) do you think you ’ ve ever found in a
supernatural event ?

Source: why do so many people post questions
on quora that could be easily and
thoroughly answered by simply typing
the question into any search engine ?

Reference: why do so many people ask soppy
questions on quora , which can easily be
googled ?

DDL(20K) + VSAR(20K) why do people ask questions on quora
instead of googling it ?

DDL(20K) + VSAR(50K) why do people ask questions on quora
instead of googling it ?

DDL(20K) + VSAR(100K) why do people ask questions on quora
that can be answered with a quick web
search ?

Source: where can i find delicious cupcakes at
gold coast ?

Reference: where can i found different cupcake
flavors in gold coast ?

DDL(20K) + VSAR(20K) where can i get best quality gourmet
cupcakes in gold coast ?

DDL(20K) + VSAR(50K) where can i get best quality cupcakes in
gold coast ?

DDL(20K) + VSAR(100K) where can i get best flavors , designs
and decorations for cupcakes at gold
coast ?

Source: is vegetarian good for health or non -
vegetarian ?

Reference: which is good food for our health :
vegetarian or non - vegetarian ?

DDL(20K) is smoking considered a vegetarian
vegetarian ?

DDL(20K) + VSAR(20K) is vegetarian considered good for health
?

DDL(20K) + VSAR(50K) is vegetarian better than vegetarian ?

DDL(20K) + VSAR(100K) is vegetarian health good or bad ?

not performed in this research and represented a promising area for
future study.
29
For future work, in this paper, we have explored a more structured
approach to modelling unobserved paraphrase as a discrete latent
variable. A future direction worth exploring is to apply and extend
this technique in pre-trained language models (PLMs). Recent advance-
ments in PLMs suggest that they can achieve very good performance
given a relatively small proportion of data or even performs well in
few-shot or zero-shot scenarios in document retrieval tasks. However,
challenges still exist in the cases of natural language generation (NLG)
tasks, and our proposed method in this paper can serve as a stepping
stone to using both labelled and unlabelled data for NLG tasks.

8. Conclusions

In this paper, we have introduced a semi-supervised deep generative
model for paraphrase generation. The unsupervised model (VSAR)
is based on the variational auto-encoding framework and provides
an effective method to handle missing labels. The supervised model
(DDL) conducts dual learning and injects supervised information into
the unsupervised model. With our novel knowledge-reinforced-learning
(KRL) scheme, we empirically demonstrate that semi-supervised learn-
ing benefits our combined model, given unlabelled data and a fraction
of the paired data. The evaluation results show that our combined
model improves upon a very strong baseline model in a semi-supervised
setting. We also observe that, even for the full dataset, our combined
model achieves competitive performance with the state-of-the-art mod-
els for two paraphrase generation benchmark datasets. Additionally,
we are able to model language as a discrete latent variable sequence
for paraphrase generation tasks. Importantly, the resultant generative
model is able to exploit both supervised and unsupervised data in
sequence-to-sequence tasks effectively.
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