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Abstract 

Background:  Quantitative positron emission tomography (PET) scans of the brain 
typically require arterial blood sampling but this is complicated and logistically chal-
lenging. One solution to remove the need for arterial blood sampling is the use of 
image-derived input functions (IDIFs). Obtaining accurate IDIFs, however, has proved to 
be challenging, mainly due to the limited resolution of PET. Here, we employ penalised 
reconstruction alongside iterative thresholding methods and simple partial volume 
correction methods to produce IDIFs from a single PET scan, and subsequently, com-
pare these to blood-sampled input curves (BSIFs) as ground truth. Retrospectively we 
used data from sixteen subjects with two dynamic 15O-labelled water PET scans and 
continuous arterial blood sampling: one baseline scan and another post-administration 
of acetazolamide.

Results:  IDIFs and BSIFs agreed well in terms of the area under the curve of input 
curves when comparing peaks, tails and peak-to-tail ratios with R2 values of 0.95, 
0.70 and 0.76, respectively. Grey matter cerebral blood flow (CBF) values showed 
good agreement with an average difference between the BSIF and IDIF CBF values of 
2% ± and a coefficient of variation (CoV) of 7.3%.

Conclusion:  Our results show promising results that a robust IDIF can be produced for 
dynamic 15O–water PET scans using only the dynamic PET scan images with no need 
for a corresponding MRI or complex analytical techniques and thereby making routine 
clinical use of quantitative CBF measurements with 15O–water feasible.

Keywords:  15O–water PET, Cerebral blood flow, Image-derived input function, Partial 
volume correction, PET

Introduction
Positron emission tomography (PET) is used to quantify the distribution of radioactively 
labelled tracers of interest in the human body. Quantification in PET studies typically 
requires an input function to determine the kinetics of the radiotracers within the vari-
ous tissues [1]. In many research studies, this input function is obtained through arte-
rial cannulation and collection of blood samples either through manual collection or 
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through using specialist equipment to obtain a blood-sampled input function (BSIF) [2]. 
Whilst arterial blood sampling is assumed to be the gold standard in obtaining an input 
function, it is not without practical difficulties. Arterial blood sampling is burdensome, 
subject to errors, and carries a small but not insignificant risk of adverse effects [3–6]; 
therefore, alternative solutions have the potential to be more accurate as well as to pre-
sent lower risks to the participant during the procedure.

In this study, we have used 15O–water to measure cerebral blood flow (CBF), 15O–
water is freely diffusible, metabolically inert, has an extraction fraction close to one and 
is hence considered the gold standard for non-invasive CBF quantification. 15O–water 
quantification traditionally requires an arterial input function; hence, the use of 15O–
water for CBF measurements has not been implemented in clinical routine except in a 
small number of research centres due to the previously discussed problems. However, it 
is known that changes in brain perfusion are involved in many neurological and neuro-
degenerative disorders [7], and as such practical access to accurate, non-invasive, quan-
titative imaging of CBF may be beneficial to the future understanding of diseases where 
CBF measures provide insight.

One common approach to removing the requirement for a BSIF is a population-based 
input function (PBIF) which is based on the individual scaling of a radiopharmaceutical 
and population-specific input curve [8, 9]. Whilst few studies have demonstrated certain 
utility to this method, it has not been widely adopted. This is at least in part due to dif-
ficulties with non-matching injection protocols as well as the need for available data in a 
population that matches the study population being investigated.

Image-derived input functions (IDIFs) are another approach to determining the input 
curve by using a blood pool found within the PET image field-of-view (FoV). For neu-
rological PET, this typically only refers to the carotid arteries as no other large blood 
pools are present in the FoV. One method to calculate an IDIF involves the delineation of 
the carotids using a high-resolution magnetic resonance image (MRI) and subsequently 
co-registering this to the PET image, using the MRI-derived carotid mask for measur-
ing the input function on the PET image. This method produces good agreement with 
gold standard techniques; however, this method requires an MRI to be acquired in addi-
tion to the PET scan as well as additional analysis pipelines to segment the MRI and 
co-register it to the PET scan [10–12] which may not always be feasible for particular 
cohorts [13–15] or in certain clinical settings. IDIFs do have some disadvantages, for 
example, metabolite corrections are still required when using this method. Additionally, 
when using IDIFs in neurological PET the size of the carotid arteries is very close to the 
resolution of a PET scanner, leading to large partial volume effects (PVEs).

State-of-the-art PET scanners have produced IDIFs using PET images alone by delineat-
ing the carotid arteries using the high resolution afforded by these systems. This shows that 
accurate IDIFs can be derived from the PET images alone [16]. However, these ultra-high-
resolution systems are not yet widely available and compensatory techniques for scanners 
with lower resolutions are required until these higher resolution systems are widely avail-
able [17]. Other methods have attempted to estimate the blood time–activity curve directly 
on PET scans using artificial intelligence (AI) [18]. Most of these methods, although result-
ing in excellent within-subject correlations across regions, exhibit a bias between BSIF and 
IDIF-based CBF values that varies considerably across subjects. Furthermore, especially 



Page 3 of 16Young et al. EJNMMI Physics           (2023) 10:15 	

AI-based methods suffer from the uncertainty of whether they can be used on other patient 
groups or perfusion states, than the ones they were trained on. Zanotti-Fregonara and col-
leagues [19] recently provided a thorough overview of methods published up until that 
point and concluded that although IDIFs were an attractive method for obtaining an input 
curve, there were few tracers to which IDIF methods could be applied without considerable 
implementation challenges.

As previously discussed, one major challenge in the accurate quantification of activity 
concentration in carotid arteries is PVEs, a phenomenon of either overestimating or under-
estimating the activity in a PET image or volume of interest (VOI) due to the limited res-
olution of the scanner [20, 21]. These factors cause blurring in subsequent images unless 
accounted for through partial volume correction (PVC) techniques [22–24]. Typically, in 
brain imaging, the PVE is defined as a combination of the spill-out of radioactivity from 
areas of high activity into surrounding tissue and the spill-in of radioactivity from areas of 
high activity into the VOI. Carotid arteries are small in diameter, typically around 5 mm 
[25], and thus particularly sensitive to PVE. Accurate PVC requires both a high spatial reso-
lution, a good knowledge of spatial resolution in the images and a correct segmentation of 
the carotid arteries.

Clinical PET imaging typically employs ordered subset expectation maximisation 
(OSEM) reconstruction algorithms, which is a type of maximised likelihood expectation 
maximisation (MLEM). MLEM or OSEM tends to suffer from high noise when they are 
allowed to run to full convergence due to the sparse count statistics present in a typical 
PET data set. To reduce the noise, the algorithms will be stopped after a certain number 
of iterations. However, this leads to reductions in the accuracy of the data, with potential 
small object distortion and underestimation of activity concentrations in small objects. 
Block sequential regularised expectation maximisation (BSREM) [26], which has recently 
become commercially available on certain clinical PET systems, is a Bayesian penalised 
likelihood reconstruction algorithm which includes an additional noise penalization term 
into the objective function. This addition allows the algorithm to reach full convergence 
without the problems discussed previously introduced by OSEM. Increased accuracy and 
improved ability to resolve small objects are key advantages required to resolve the carotid 
arteries in PET images.

Historically, simpler methods for the determination of the carotid mask directly have 
been less successful due to limited scanner resolution and less advanced reconstruction 
algorithms [10, 13–15, 27]. With higher noise in images leading to difficulties in threshold-
ing and relatively poor resolution complicating PVC, it has traditionally been difficult to 
create IDIFs using the PET image alone. However, the introduction of BSREM and resolu-
tion recovery methods leads to reduced noise and higher signal-to-noise ratio (SNR), as 
well as higher spatial resolution, which can create the possibility of using these techniques 
with accurate quantitative outcomes [28]. Hence, the present work aimed to evaluate a 
thresholding method on penalised likelihood images combined with PVC for the estima-
tion of 15O–water IDIFs.
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Materials and methods
Scan procedure

Anonymised data from sixteen subjects enrolled in a clinical study were included in 
the present work. Eight subjects were healthy controls (mean age 38.6), and eight sub-
jects were diagnosed with multiple sclerosis (MS) (mean age 43.1). MS patients’ data 
were included due to their scans being available from a clinical parent study involving 
the investigation of the effect of acetazolamide on CBF in MS patients. 15O–water 
PET data with accompanying blood measures are rare and so all data from this other 
study were included to maximise the amount of data available. All subjects gave their 
informed consent before inclusion, and the study was approved by the medical ethics 
review board in Uppsala (2014/453).

Each subject underwent two dynamic PET scans both starting simultaneously with 
a controlled bolus injection of 5 MBq/kg of 15O–water (10 ml at 1 ml/s followed by a 
30-ml saline flush at 2 ml/s) on a GE Discovery MI PET/CT scanner (GE Healthcare, 
Waukesha) [29]. Approximately 10  min before the second scan, the subjects were 
administered acetazolamide (9 mg/kg up to 1 g). The pharmacological manipulation 
was not of interest to the current study—all scans were included. The time between 
scan starts was approximately 20 min to allow for radioactive decay.

Blood sampling

Blood sampling at 3 ml/min was performed using an automated blood sampling sys-
tem. This system measures activity in blood via a 6-cm-thick bismuth germanate 
crystal connected to a photomultiplier tube and multichannel analyser (MCA). The 
minimal readout time of the MCA is 1  s. (Veenstra-Comercer, Joure, The Nether-
lands) [30]. Two additional 2 ml blood samples were taken at 5 and 10 min post-injec-
tion and measured in cross-calibrated well counters for calibration of the individual 
online blood curves. Arterial input curves were corrected for the delay and dispersion 
[31] and resampled to the same frame times as the PET data. Dispersion correction 
was done using a fixed constant of 13 s, based on a measured dispersion of 8 s in the 
sampling system (data not shown) and an additional 5 s dispersion in the body [32].

Image reconstruction

The 15O–water PET scans were reconstructed into 26 frames of variable duration 
(8 × 5 s, 4 × 10 s, 1 × 15 s, 4 × 20 s, 2 × 30 s, 7 × 60 s) onto a 256 × 256x71 matrix of 
0.98 × 0.98x2.79 mm3 voxels using time-of-flight BSREM with a noise penalisation 
factor (β-value) of 300 (Q.Clear, GE Healthcare) [26] including resolution recovery as 
well as applying OSEM with 3 iterations, 16 subsets and a 5-mm Gaussian filter. All 
necessary corrections for quantitative images were applied according to the software 
supplied by the manufacturer.

Carotid definition and PVC

During the early frames of the 15O–water scans, the carotid arteries can be isolated 
by intensity thresholding due to the presence of the tracer in the carotids before it 
enters the brain tissue. For this step, the images were initially masked to the neck 
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region of the PET image to improve the isolation of the carotids. This was performed 
by defining a volume of interest (VOI) consisting of the bottom third of the image 
FoV to exclude most of the brain. The early frames of the PET image were averaged 
and subsequently thresholded at a percentage of the median of the maximum pixel 
values in each slice across these early frames. These early frames were identified by 
manual inspection of the individual frames at the beginning of the scan up to frame 
6 (corresponding to the first 30 s) to identify when the tracer had entered the carotid 
arteries and so are well defined before being more dissipated in the vascular system. 
Early frames were deemed acceptable if the entire internal carotids contained enough 
signal to be visually distinguishable from background but with little to no signal still 
in the brain. Each subject would also have a unique VOI drawn around the carotid 
arteries, with the x, y and z coordinates measured and applied on the image to max-
imise the isolation of the carotids for further assessment and minimise noise. Figure 1 
gives a demonstration of the method by which the frame and coordinate choices were 
made. An average image of the chosen frames would then be created. The median 
value of the maximum pixel values in each slice was created by dividing the averaged 
image into axial slices and tabulating the maximum pixel intensity in each slice. This 
resultant thresholded image was then binarised to produce a carotid mask which was 
overlaid on the full time series of the PET scan to extract a time–activity curve (TAC). 
An example of this can be seen in Fig. 2.

PVE was estimated as follows: To determine underestimation due to spill-out, the 
carotid mask was smoothed with a Gaussian filter and then multiplied with the binary 
mask. Dividing the sum of all values in the smoothed mask with the sum of all the values 

Fig. 1  Frames 3 (A), 4 (B), 5 (C), 6 (D) and 7 (E) of an example subject whereby A would be excluded due to 
no presence of tracer in the carotids. B–D are included in the averaged image due to presence of signal in 
the carotid and E would be excluded due to the carotids no longer being discernible in the image. As C has 
the carotids best defined, this image would be used to measure the x, y and z coordinates to draw an VOI 
around the carotids to define a carotid mask
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(i.e. the number of nonzero voxels) in the binary mask gives the spill-out error (α). To 
account for spill-in, the binarised carotid mask was inverted, smoothed with the same 
Gaussian filter, multiplied with the carotid mask and division of the sum of all values 
in the resulting image with the number of nonzero voxels in the carotid mask gives the 
spill-in error (β). To estimate the surrounding tissue TAC, an 8-voxel dilation of the 
carotid mask was subtracted from a 10-voxel dilation of the carotid mask. These dila-
tions were experimentally determined to be outside of any spillover effects from the 
carotids whilst remaining within the neck region for all patients to allow measurement 
of the tissue TAC. This created a sleeve around the carotids, thought to be representative 
of the tissue surrounding the carotids but not suffering from spillover from the carotids. 
The PVE-corrected blood curve CB(t) was then calculated as follows:

Here, CB
PET(t) is the uncorrected TAC of the carotid mask, and CT(t) is the surrounding 

tissue TAC.

Optimisation of Gaussian kernel and mask threshold

The optimal values of the threshold used to create the carotid artery mask and the 
Gaussian kernel used for PVC were determined based on the area under the curve 
(AUC) of IDIFs compared to BSIF as well as the resulting whole-brain grey matter CBF 
values (see next section). AUC of peaks (0–60  s) and tails (60  s–5  min) of IDIFs, as 
well as peak-to-tail ratio, was calculated for a range of threshold values (38–46%) and 
Gaussian kernel widths (2.0–2.4 mm) around the theoretically expected optimal values. 
These were based on a threshold value of 41% resulting in a correct volume provided 
the object is homogeneous and sufficiently large compared to the spatial resolution [33] 
and reconstruction of the NEMA NU2:2012 spatial resolution measurement result-
ing in a spatial resolution of 2.6 mm (data not shown). Since this last measurement is 
done using 1.1-mm inner diameter glass capillaries, the true resolution is expected to be 
somewhat smaller than 2.6 mm. The mean relative bias in AUC for the peaks, tails, peak-
to-tail ratios as well as grey matter (GM) CBF values across all subjects and scans was 

CB(t) =
1

α
C
PET

B (t)− β × CT(t)

Fig. 2  Example subject maximum intensity projection over the entire dynamic scan (A) and binary carotid 
mask (red) and surrounding tissue mask (green) overlayed onto a single frame of a dynamic 15O–water PET 
scan (B)
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calculated to determine the optimal threshold and kernel settings. This relative bias was 
calculated by taking the average of the percentage differences between IDIFs and BSIFs. 
Additionally, PET images were reconstructed and placed through the same processing 
pipeline to identify if similar results can be found for OSEM reconstructions with differ-
ent kernels as compared to the BSREM reconstructions.

Additional validation was performed using a phantom study. A 6-mm-diameter 68 Ga-
filled (2.1 MBq/ml) tube was submerged in water in a 20-cm-diameter cylindrical phan-
tom and a 10-min PET acquisition was performed. Images were reconstructed using 
the same settings as the patient images. Masking and PVC were applied to the image 
slices where the tube was approximately parallel to the scanner axis (ca. 5  cm length) 
as described above, again using 38–46% thresholds and 2.0–2.4-mm kernel widths, and 
the bias of the resulting radioactivity concentrations relative to the known concentration 
was calculated for each threshold and kernel value.

Cerebral blood flow

CBF values and images were calculated using a basis function implementation of the sin-
gle-tissue compartment model [34–36], as implemented in the Turku PET Centre library 
tools [37], using either the BSIF or IDIF as input function. Only the first 5 min of the 
acquisition were used. Regional cerebral blood flow (rCBF) values were extracted for all 
regions as defined using the Hammers atlas [38] after spatial normalisation to a common 
MNI (ICBM 152 [39, 40]) space using FSL [41, 42] (Additional file 1: Fig. S1).

Statistics

The accuracy and precision of the IDIF-based CBF and Vd values compared to the BSIF-
based values were assessed using Pearson’s correlation coefficient, orthogonal regression 
and Bland–Altman analysis. This was done across subjects using whole-brain GM CBF 
values, and within subjects using all CBF values for all regions included in the template.

Automation

The method for isolating the carotids and building the carotid mask described above 
currently requires manual intervention for each subject with a choice of the frames to 
include as well as the selection of x, y and z coordinates for the VOI. An automated 
method was also employed which used region growing methods to create the carotid 
masks as well as using the same frames and coordinates for the VOI to isolate the carot-
ids. The details of the automated method and results can be found in the Supplementary 
Material.

Results
Optimisation of Gaussian kernel and mask threshold

Figure  3 shows the relative percentage bias in IDIF AUC as well as the whole GM 
CBF for each combination of thresholds and Gaussian kernels. A threshold value of 
42% and a Gaussian kernel width of 2.0 mm resulted in the lowest peak AUC bias, 
whereas a 40% threshold and 2.1-mm kernel were optimal for tail AUC. Since bias for 
whole-brain GM CBF was lowest for a 42% threshold and a 2.1-mm kernel, this com-
bination was evaluated further. This was confirmed in the phantom measurement, 
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with the image-based radioactivity concentration after masking and PVC within 1% 
of the radioactivity measured using a dose calibrator for a 42% threshold and 2.1-
mm kernel. Additional results using the automation method for optimisation of the 
Gaussian kernel and mask threshold can be found in the supplementary material. 
Additional file 1: Fig. S2 shows the same analysis performed on OSEM reconstruc-
tion images, with the lowest bias in peak, tails and CBF having little convergence. 
The OSEM results demonstrated much higher variance compared to the BSREM 
results and were not evaluated further.

Input curves

Figure 4 shows a representative example of IDIFs both before and after PVC using a 
42% threshold and 2.1-mm kernel compared against BSIFs. PVC was shown to have 
a large impact on the resultant IDIF for all scans with no-PVC IDIFs poorly match-
ing the BSIFs. Figure 5 shows scatter plots of the correlation between AUC for PVC 
adjusted peaks (A), tails (B) and also the ratio between peaks and tails (C) for the 
optimal threshold, with an average AUC difference between peaks, tails and ratio 
of 5% ± 5.6%, 1% ± 11% and 6% ± 13%, respectively, with R2 values of 0.95, 0.70 and 
0.76.

Fig. 3  Mean percentage bias of AUC of peaks (A) and tails (B) and the bias of peak-to-tail ratios (C) and GM 
CBF (D) for a range of Gaussian kernels and threshold levels using BSREM reconstruction. AUC​ area under the 
curve, GM grey matter, CBF cerebral blood flow
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Cerebral blood flow

Total GM CBF and Vd comparisons are shown in Fig. 6. The R2 between BSIF and IDIF CBF 
values was 0.92, the repeated measures can be seen in Additional file 1: Fig. S3 and showed 
an R2 of 0.915. GM CBF values typically showed good agreement with an average difference 
between the BSIF and IDIF CBF values of 2% ± 7% with a coefficient of variation (CoV) of 
7.3% calculated as the standard deviation (SD) divided by the mean in the whole group (SD/
mean). Results for whole-brain CBF values can be found in Additional file 1: Table S1 and 
Fig. S1.

Within-subject correlation of BSIF- and IDIF-based rCBF values of the average of all 
VOIs in the Hammers atlas is reported in Table 1. The within-subject agreement was gener-
ally very high with an average R2 correlation of 0.99 and a minimum correlation of 0.966, as 
also visually illustrated in Fig. 7 which shows example CBF parametric images of the same 
representative subject seen in Fig. 4.
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Discussion
In this study, we propose a stand-alone, non-invasive method for deriving an input func-
tion from dynamic 15O–water PET scans to quantify CBF. Both the input functions 
themselves and the resultant CBF measures correlated well with the reference blood 
sample-derived metrics. AUC measurements showed good agreement between the 
IDIFs after PVC and BSIFs both in the average differences between AUC measurements 
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Table 1  Correlation and agreement between BSIF- and IDIF-based CBF values

BSIF blood-sampled input function, IDIF image-derived input function, CBF cerebral blood flow

Region Variable Baseline Acetazolamide

Whole-brain GM CBF across 
subjects

Mean (SD) CBF (ml/cm3/min), BSIF 0.64 (0.18) 0.74 (0.14)

Mean (SD) CBF (ml/cm3/min), IDIF 0.63 (0.16) 0.73 (0.14)

Correlation (R2) 0.91 0.90

Slope 0.92 0.96

Bias  − 2.5%  − 1.7%

Limits of agreement  − 17.8%  − 14.3%

12.9% 10.9%

SD of differences (ml/cm3/min) 0.047 0.047

CoV of differences 7.3% 6.4%

rCBF within subjects Mean (SD) correlation (R2) 0.99 (0.01) 0.99 (0.01)

Mean (SD) slope 0.98 (0.16) 0.98 (0.20)
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and R2 correlations for the AUC comparisons. This translated into CBF and Vd measures 
where the CoV of the differences between IDIF- and BSIF-based baseline CBF values of 
7.3%. This is lower than the CoV found in a previous test–retest study at 8.8% [43], and 
another study measuring a variation of 8.4% [44]. This indicates that differences between 
IDIF- and BSIF-based CBF values fall within the test–retest variability of CBF measure-
ments using a BSIF, which can be seen as an indication that the presented IDIF method 
is quantitatively accurate and robust. The IDIF GM CBF and Vd values also showed a 
good overall correlation to the BSIFs as demonstrated in panels A and C in Fig. 6. Reac-
tivity after acetazolamide administration in subjects was lower than previously seen in 
other studies, this result is likely due to an error in study design and subjects could have 
been administered a higher dose. However, this does not appear to be a true clinical 
finding in these patients.

Whilst the BSIF is often considered as the gold standard for the measurement of radi-
otracer concentration in plasma, it also contains measurement errors. Examples of this 
include the delay and dispersion correction, vascular structure, blood distribution and 
blood haematocrit which can lead to large errors when calculating metrics such as cere-
bral blood flow (CBF) in 15O–water PET scans [32]. Other 15O–water studies attempting 
to use IDIFs have used more complex methods of analysis such as machine learning-
based approaches or the use of time-of-flight (TOF) MRI. These yielded R2 correla-
tions for whole-brain GM CBF of 0.73–0.90 and an average bias of 3–18% [10, 12–15, 
18], whilst our, PET-only method yielded an R2 correlation of 0.92 for GM CBF and an 
average bias of 2.1%. This suggests that there is a high level of reliability in our method 
with the additional benefit of not requiring complex analysis techniques or additional 
scans. CBF values were observed to be higher than those observed in previous stud-
ies, this could be explained by differences in the VOIs used where our study used a GM 
mask rather than a whole-brain mask leading to reductions in PVEs and increasing the 
CBF. Additionally, previous studies have used different models to estimate the CBF and 
which could lead to different values. Using a whole-brain mask gives values more aligned 
with those from previous studies (Additional file 1: Table S1). One possible explanation 
for the observed lower  CBF in the whole brain compared to just the GM could be the 

Fig. 7  Parametric images of the CBF derived from IDIF after PVC (A) and BSIF derived CBF (B)
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presence of additional vasculature in white matter regions, which are included in the 
whole-brain mask but not in the GM mask. This additional vasculature could be contrib-
uting to the  CBF values being lower due to the CBF in white matter regions reportedly 
being lower than in GM regions [45, 46]. Another possible explanation could be PVE, 
where there is an underestimation of the actual CBF values in the grey matter mask. The 
use of a whole-brain mask may reduce the impact of PVE, leading to the observed CBF 
values being higher.

Due to substantial PVE in the initial images, there was always a large difference in the 
BSIF and IDIF before PVC, with the IDIF values typically ~ 50% below the BSIF values. 
Alongside our carotid definition, we developed a method for accounting for the PVEs 
present in neurological PET images which attempts to account for the spill-in and spill-
out. Despite our results being specific to 15O–water PET, it will be possible to also apply 
the technique to other tracers if the period of early tracer delivery is included in the 
scanning and the field-of-view includes the carotids. 15O–water has an advantage for 
the method development because it reaches equilibrium in tissue quickly and requires 
no metabolite corrections. It also has the advantage of comparatively short scan times, 
leading to fewer motion artefacts in the resultant images. For other tracers, there may 
therefore be additional requirements to make this technique feasible and this will be the 
subject of further studies.

Limitations

Whilst we observed high reliability across subjects, some issues could affect the robust-
ness of the presented methods. Firstly, delineation of the carotids for subjects with 
smaller than average carotid arteries as the resolution of the images is close to the diam-
eter of a typical adult carotid artery (5–6 mm), this would also be the case for subjects 
with existing pathology that narrows or block the carotid arteries and could also lead to 
similar difficulties in resolving the carotids even at the highest resolution available. Addi-
tionally, patient motion may affect the accuracy of the results. Blood gas levels were not 
checked in these patients, due to this it is uncertain if reactivity changes were impacted 
by blood PaCO2 levels.

The method presented in this work requires high signal-to-noise first-pass images for 
the thresholding to perform correctly, and a high spatial resolution to enable accurate 
PVC. Both requirements are met by the use of block-sequential expectation maximisa-
tion, allowing full convergence whilst limiting image noise, including resolution recov-
ery. Hence, a limitation of the current approach is that it cannot be readily applied to 
PET scanners with low resolution or less optimal reconstruction methods. Further 
research studies into the effects of different reconstructions should be conducted to 
establish how transferable our IDIF method is to images from other vendors.

An additional parameter that could be explored is the regularisation parameter β used 
during the penalised reconstruction. The effect of the β value on isolating the carotids 
or the subsequent IDIF was not investigated, this could have marginal but measurable 
improvements. Additionally, other reconstruction methods from other vendors have 
not been explored and so would need to be verified before implementation on a system 
without access to the specific implementation used in this work.
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Due to the requirement for manual inspection of the PET data for each subject, the 
method for deriving the carotid masks and therefore the IDIFs is still somewhat time-
consuming, and knowledge of the PET data is needed. Repeating the analysis from 
the beginning showed that the reproducibility of this method is high with a compara-
ble R2 score on the second attempt. Current methods require manual inspection of the 
dynamic PET data to determine optimal VOI definition and temporal frame inclusion 
or exclusion. Whilst this method can be employed in other scenarios it requires spe-
cialistic knowledge and can suffer from the subjectivity of the reader in which frames to 
include or exclude. In this case, an automated method would allow the implementation 
without any need for specialist knowledge and would remove the subjectivity inherent in 
manual inspections. However, ad hoc analyses showed a substantially weaker correlation 
between the IDIFs and the BSIFs AUCs as well as subsequent GM CBF resulting from 
an automated approach (Additional file 1: Figs. S4 and S5) compared to using a manual 
approach (Figs. 5 and 6). Thus, although the encouraging result for the manual approach, 
further work is required for clinical routine 15O–water PET applications.

Conclusion
This study shows that a robust IDIF can be produced based on images for dynamic 
15O–water PET scans with no need for a corresponding MRI or complex analytical 
techniques. With further development of the method, adequate scanner resolution and 
robust reconstruction parameters, this technique can potentially be employed for clini-
cal dynamic 15O–water PET scans and thereby making routine clinical use of quantita-
tive CBF measurements with 15O–water PET feasible.
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