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Phase transitions in the classical 
simulability of open quantum 
systems
F. Azad 1, A. Hallam 2, J. Morley 1 & A. G. Green 1*

We introduce a Langevin unravelling of the density matrix evolution of an open quantum system over 
matrix product states, which we term the time-dependent variational principle-Langevin equation. 
This allows the study of entanglement dynamics as a function of both temperature and coupling to 
the environment. As the strength of coupling to and temperature of the environment is increased, 
we find a transition where the entanglement of the individual trajectories saturates, permitting a 
classical simulation of the system for all times. This is the Hamiltonian open system counterpart of 
the saturation in entanglement found in random circuits with projective or weak measurements. If a 
system is open, there is a limit to the advantage in simulating its behaviour on a quantum computer, 
even when that evolution harbours important quantum effects. Moreover, if a quantum simulator is in 
this phase, it cannot simulate with quantum advantage.

The term classical is applied to quantum systems in at least two different ways. On the one hand, if a closed 
quantum system is in a weakly-entangled state, it may be considered classical as long as the entanglement 
remains low. In this limit, the equations of motion of the system are termed semi-classical. On the other hand, an 
open system behaves classically once the coupling to the environment has caused dephasing of the off-diagonal 
elements of the density matrix. These two limits occur on very different timescales—the semi-classical limit at 
early times and the dephasing limit at late times.

Can these views be reconciled and a classical description developed that works from the earliest to the latest 
times? Recent insights have made steps towards such an understanding for open systems. The transition in 
entanglement growth in random circuits as a function of the rate of projective or weak measurement allows a 
classical, weakly-entangled description of the system for all  times1–7. Both are cousins to the quantum Zeno effect, 
by which frequent measurement in a channel impedes transitions in that  channel8. The nature of the many-body 
transition has been studied  extensively9–19 and similar analyses extended to measurement-induced transitions 
in open Hamiltonian  systems20–23. These later cases are closely related to a transition in classical describability 
as a function of coupling to the environment, which we consider.

Our approach is to use a variational parametrisation of trajectories obtained by unravelling the evolution of an 
open system density matrix. The equations of motion of each trajectory can be considered a Langevin extension 
of the time-dependent variational principle (TDVP) — which we derive and present here for the first time. For 
closed systems, the TDVP equations constitute a semi-classical limit; they correspond to classical Hamilton 
equations of motion on the variational  manifold24,25. As the entanglement grows during the Hamiltonian 
evolution, the TDVP equations break down as a larger and larger variational manifold is required in order to 
capture the state and its dynamics. In this sense, the semi-classical description is confined to early times. In our 
stochastic TDVP Langevin equation, we find thresholds in the dynamics of individual trajectories as a function 
of coupling to and temperature of the environment, whereby the entanglement saturates at a low value, and 
a low-bond order matrix product state description gives high fidelity for all time. This quantum Zeno phase2 
constitutes a transition in the classical describability of the open quantum system: the low bond order TDVP 
Langevin equation is an effective semi-classical description that works for all time.

A TDVP Langevin equation
Langevin equations describe the motion of a system coupled to an environment (or alternatively the motion of 
slow collective degrees of freedom in an effective bath described by the faster degrees of  freedom26) by adding 
noise and friction terms to the basic equations of motion of the system. If the environmental degrees of freedom 
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are in thermal equilibrium, the friction and noise satisfy a fluctuation-dissipation relation. Applied to quantum 
systems, the Schrödinger equation provides the basic equations of motion. The ensemble of the resulting 
stochastic Schrödinger trajectories recovers the density matrix evolution and is said to be an unravelling of it.

The TDVP Langevin equation can be written in its Markovian limit as:

The terms on the left-hand side and the first term on the right constitute the conventional time-dependent 
variational principle (TDVP)  equations24 projecting the Schrödinger equation onto a variational manifold. The 
second and third terms on the right are the noise and friction due to coupling to the environment. F̂n are the 
operators by which the system is coupled to the bath displacement operators. We generally assume these to 
be spatially local. For spin-half chains they are given by the x, y and z−components of the spin operators 
on each site, each of which couples to a separate bath. The bath is described as a collection of harmonic 
oscillators and the noise-correlator is determined by the spectrum of oscillators and the temperature of the 
bath; ��η(t)η(t′)�� = 2γTδ(t − t ′) in the combined classical and Markovian limits.

This approach to unravelling the density matrix evolution has some particularly attractive features. It can treat 
coupling to a finite-temperature and non-Markovian environments, expanding the relevance of environment-
induced many-body Zeno transitions. The TDVP Langevin equation can be used with any variational 
parametrisation that permits a TDVP treatment in the absence of an environment. Consequently, it is possible 
to include the effects of long-range interactions in one  dimension27,28. Furthermore, the approach lends itself 
particularly well for combination with stochastic TDVP evolution of neural quantum  states29–31. Here we use 
one-dimensional matrix product states (MPS)32–34. To date, MPS techniques have been employed in the study 
of open systems largely by starting with the Lindblad master equation and either describing the density matrix 
directly as a matrix product  operator35–37 or else unravelling its evolution over MPS representations of quantum 
 trajectories38–40. These methods cannot treat finite temperature or non-Markovian environments for which 
alternative methods are  required41.

A derivation of Eq. (1) is given in Supplementary Materials 1. We develop the Langevin equation from the 
Keldysh path integral for the time-evolution of the density matrix. The method follows that of Ref.42,43 with the 
modification that the Keldysh path integral is constructed over matrix product  states44. The result adds noise 
and friction to the time-dependent variational principle constructed over matrix product  states24. The same 
construction for other variational classes leads to a similar stochastic equation of motion, which we dub the 
TDVP-Langevin equation. Alternative unravellings of the Lindblad equation for the density matrix evolution over 
 MPS38 apply in different circumstances of relative time and energy scales of the bath and system. We construct Eq. 
(1) over matrix product states using conventional  methods24. Integration of this equation is complicated by the 
friction term. Naively, this requires inversion of a matrix that is proportional to the system size and dimension of 
the variational manifold. However, recognising that it consists of an outer product of vectors allows an efficient 
inversion and integration of the equations of motion. Details are given in Supplementary Materials 1 and our 
code is available at https:// github. com/ Andre wHall am/ Lange vin.

Thermal distributions are fixed points of the TDVP Langevin evolution. A thermal distribution is given by 
a Boltzmann-weighted Haar average over the variational manifold. For MPS of bond dimension D, this average 
can be performed as a Haar integral over the group SU(dD) with d the local Hilbert space dimension [see 
Supplementary Materials 1]. Figure 1 captures the dynamics of the von Neumann entanglement entropy. For 
temperature fixed at T = 0.2 there is a transition in entanglement dynamics beyond a critical value, γT ≈ 0.11 . 
The saturation entanglement becoming intrinsic to the interplay between the Hamiltonian and the dissipative 
bath, rather than by the choice of variational manifold. We detail these results in the following section. Similar 
transitions occur when friction, γ , or noise, γT are kept constant. This data is presented in Supplementary 
Materials 1.

Open evolution of a rapidly entangling system
In the absence of coupling to a bath, TDVP equations eventually fail as the entanglement grows beyond that 
which can be represented on the variational manifold (TDVP equations for the thermofield purification of 
the density matrix may escape this  fate25 at least as far as local observations are concerned). However, just as 
observed in projective measurements of random circuits, the effects of the environment may restrict the growth of 
entanglement. In extremis this might limit entanglement of individual trajectories so that they can be represented 
on low dimensional variational manifolds. The TDVP Langevin equation will then give a good account of the 
dynamics at all times, signifying a transition in its classical representability. This is our interpretation of the 
sequence of results presented in this section.

The Hamiltonian that we consider is the tilted field Ising model

with J = 1 , g = −1.05 and h = 0.5 . With these parameters, the Hamiltonian is far from any integrable point 
and rapidly  thermalising45,46.
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Infinite temperature and vanishing friction Fig. 2a shows the variation in von Neumann entanglement across 
the central bond as a function of time for simulations with range of noise strengths. The simulations are carried 
out at bond order D = 160 , which sufficiently fully captures the Hilbert space at this system size. The broad result 
of these simulations is that the entanglement saturates at long times at a value determined by the system size. This 
is consistent with an infinite temperature final state with the maximum entanglement supported by the variational 
manifold. The most interesting aspect of these results is the decreasing rate of early-time entanglement growth 
with increasing noise strength. Crucially we do not find evidence of an intrinsic saturation of entanglement 
– only that dictated by the limitations of the variational approximation. Figure 2b shows the collapse of these 
data after rescaling time by a factor t0 (obtained by fitting to the function S(t) = S0 tanh(t/t0) ). The saturation 
entanglement S0 ≈ 4.6 is the same for all noise strengths. Figure 2c shows the saturation time t0 obtained in this 
way. This fitting is very good beyond γT = 0.15 . Beyond this coupling strength, the dynamics are similar to 
random unitary circuits with conservation laws 3,47. Indeed, setting the external fields in Eq. (2) to zero generates 
the same dynamics. Figure 2d shows a clear linear scaling of t0 with the strength of noise.

Finite temperature and friction Including both noise and friction, we see a transition into a many-body Zeno 
phase in which entanglement saturates. This is demonstrated in two ways; by considering the saturation of 
entanglement at long times and by a high fidelity between low- and high-bond order simulations at long times. 
This transition is evident in the entanglement entropy data for fixed T = 0.2 , shown in Fig.1, where increasing 
coupling strengths causes reduced saturation entanglement. This transition can also be observed in different 
cuts through the noise-friction ( γ − γT ) plane, data for which is presented in the supplementary materials. 

Figure 1.  Basic Properties of MPS Langevin Evolution: The TDVP Langevin equation, Eq. (1) describes the 
evolution of the density matrix through an ensemble of stochastic pure-state trajectories. (a) Half-chain von 
Neumann entropy as a function of time averaged over 70 trajectories at different coupling strengths for chains of 
length 16. Temperature is fixed at T = 0.2 , while friction, γ (and therefore noise, γT ) is varied. Simulations were 
carried out at bond dimension D = 128 . Three different regimes of behaviour are apparent: an initial transient, 
followed by an approximately linear-in-t growth, and finally a saturation. At low values of γ this saturation is 
determined by the variational approximation. At high values it is determined intrinsically by the interplay of the 
Hamiltonian and the dissipative bath. It signals whether a lower bond-dimension (hence less computationally 
intensive) simulation suffices in to capture the entropy dynamics. (b) Scaling collapse of the data shown in a). 
Amplitudes and timescales are rescaled by factors of S0 and t0 , respectively (Fits to S(t) = S0 tanh(t/t0) are used 
as a guide to this rescaling). These are plotted versus γT in the insets (c) and (d), which show clear evidence of 
a transition at around γT ≈ 0.11 , beyond which the saturation entanglement is determined by balance between 
entangling effects of the Hamiltonian and environmental dissipation.
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Figure 2.  Evolution of Entanglement at Infinite Temperature: (a) Half-chain von Neumann entropy versus time 
for different values of γT with γ = 0 (infinite temperature) for chains of length 16. Analogously to Fig. 1, after 
an initial transient, the entanglement grows linearly with time before saturating at a value determined by the 
MPS manifold (here with D = 160 ). The rate of entanglement growth reduces with increasing noise γT due to 
dephasing effects of the bath. Unlike the finite temperature and friction case in Fig. 1 all curves saturate to the 
same entanglement. We anticipate that in the absence of restrictions imposed by the system size and/or choice of 
variational manifold the entanglement would continue to grow linearly in time. (b) Saturation of entanglement 
for higher γT curves illustrated by extending the simulations to t = 120 . (c) Rescaling the time coordinate of 
the data by a factor t0 collapses the data onto a single curve (Fitting to a function S(t) = S0 tanh t/t0 is used to 
extract the rescaling factors. The scaling is remarkably good beyond γT = 0.15 . (d) Timescales extracted in this 
way show a linear dependence upon noise γT.

Figure 3.  Evolution of Saturation Entanglement at Finite Temperature: In the main figures we show the 
dependence of the von Neumann entropy as a function of noise and friction: a) versus γT at fixed T, b) versus γ 
at fixed γT , c) versus γT at fixed γ . In each case, at low values of noise and friction, the saturation entanglement 
S̄ , is determined by the choice of variational parametrization through the bond order. As the noise and friction 
are increased, there is a cross-over where the saturation entanglement decreases from this value. Each bond 
dimension captures the saturation entanglement for a sufficiently large noise and friction. This is indicated 
when the entanglement begins to follow the entanglement given by the highest bond dimension simulation. At 
the transition, the saturation entanglement of the lower bond dimensions converges to that of the highest bond 
dimension. Beyond this point the saturation entanglement is determined intrinsically by the interplay between 
the Hamiltonian and the environment. In each corresponding inset figure, we have extracted critical dissipation 
strengths where these transitions occur as a function of bond dimension.
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 (i) Saturating entanglement In order to demonstrate this, we first show in Fig. 3 the long-time average of the 
von-Neumann entropy, S̄ . The simulations are carried out for a time 60 (in units of J) and averaged over 
the interval 50 -60. A graph showing the typical time-dependence from which such saturation values are 
computed is shown in Fig.1 a). For low noise and friction, the saturation is determined by the limitations 
of the variational manifold. Panels a), b) and c) show S̄ as a function of γT at fixed γ , T at fixed γ , and γT 
at fixed γ , respectively. A threshold is reached for each bond dimension where it adequately captures the 
saturation entanglement, thus indicating a transition to increasingly classically simulatable dynamics. 
The transition can be seen from the point where the trajectories obtained at different bond dimensions 
give the same saturation entanglement. From this we can extract a critical γ or γT as a function of 
bond dimension that we show in the insets. Note that since these data show the entanglement averaged 
over time 50-60, in some cases the saturation entanglement has not yet been reached. The transition is 
therefore expected to be slightly sharper than that shown in the figures. Compare for example Fig. 1d 
with Fig. 3a for example.

 (ii) Fidelity as  t → ∞ We can identify an analogous transition in the fidelity of each trajectory at different 
bond dimensions versus a reference trajectory with bond dimension D = 128 . In this case, we find that 
beyond a critical combination of γ or γT , the fidelity of the state at low bond dimension remains close to 
1 for long times. We expand upon this result in Fig. 4, where we identify a divergent classical simulation 
time. We note that the fidelity is more sensitive to the time-step as friction is increased – an issue typical 
of numerical integration of systems of stochastic differential equations. This makes accessing the critical 
point of the transition numerically intensive for the parameters and Hamiltonian we consider. The 
entropy is less sensitive to this.
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Figure 4.  Divergent Classical Simulation Time Simulations carried out at a bond order D give a good account 
of the system evolution up to a time t∗(D) . We extract these values versus a reference D = 128 simulation, 
which serves as the reference account of the system. We do this in two ways, by comparing the difference in von 
Neumann entanglement entropy between these states and the fidelity with this state. t∗(D) is the time when the 
simulation with lower bond dimension deviates appreciably from the reference trajectory. The row with panels 
a), b), c), shows t∗(D) extracted from the entropy, while panels d), e), f) shows t∗(D) extracted from the fidelity. 
The fixed variables are split across the columns – a), d), shows varying γT at fixed T = 0.2 , b), e) varying γ at 
fixed γT = 0.25 , and c), f) varying γT at fixed γ = 0.2 . Panels g) and h) show typical evolution of entanglement 
and fidelity with time. These data are taken from the the trajectory with noise γT = 0.1 which is close to the 
critical point for T = 0.2 . A simulation is judged to have ceased to provide a good account of the system when 
the trajectory deviates beyond ǫ = 0.05 , and the time at which this occurs is t∗(D) . In g), this is the point where 
�S/SD=128 = |SD=128 − SD|/SD=128 > ǫ . Analogously in h), t∗(D) is the time when the fidelity is appreciably 
different from 1, i.e. |�ψD=128(t)|ψD(t)�| < 1− ǫ . A divergent t∗(D) , within either method of extraction, 
indicates a transition in the classical simulability of the open quantum system.
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Limits on classical simulability
Whilst the TDVP Langevin equation cannot efficiently describe a system in the many-body Zeno phase, the 
question of how tight is this bound on simulation remains. Can efficient methods of classical simulation be 
found that extend into the region that we have identified as the many-body Zeno phase? For example, as a 
system approaches thermalisation, it is more efficient to use a density matrix  description49–51, a variational 
representation of its  purification25 or a neural quantum  state63 than an unravelled description in terms of pure 
state trajectories. Indeed, these latter descriptions are efficient both at early times where entanglement is weak 
and at late times as thermalisation occurs. Nevertheless, there are good grounds to believe that our bound on 
classical simulability is strong.

Our reasoning is as follows: the complexity of open system quantum dynamics is not monotonic. There is a 
large information or complexity barrier between efficient early- and late-time descriptions in the generic case. 
The question of whether an efficient classical description is possible is essentially asking whether coupling to 
the environment suppresses this complexity barrier. When a system initially in an unentangled state is weakly 
coupled to a finite temperature bath, the early-time evolution is characterised by a growing complexity similar 
to that due to the growing entanglement in the closed system. The TDVP Langevin approach applies in this 
limit. Alternative approaches such as MPO representations of the density matrix or neural quantum states have 
similar (or higher) complexity in this limit. At late times the complexity decreases as the system approaches 
thermalisation, and ultimately a hydrodynamic description is appropriate.

We address the issue of classical simulability from the early time side of the complexity barrier where TDVP 
Langevin evolution of matrix product states is appropriate—and where its efficiency is at least as good as 
alternative schemes. This allows us to ascertain whether the complexity barrier has been suppressed by coupling 
to the environment. MPO descriptions of the density matrix, MPS descriptions of its purification or neural 
quantum states are efficient both in the early- and late-time limits. Such descriptions must still surmount the 
complexity barrier and their late-time efficiency does not help in this. Indeed, we anticipate that analyses using 
different variational parametrizations to determine whether the early-time growth of the complexity barrier is 
suppressed will yield similar results notwithstanding the issue of their late-time efficiency.

What is the origin of this complexity barrier and how high is it? The peak in complexity emerges in the balance 
between the entangling effects of the system’s Hamiltonian and the thermalising effects of the bath. We identify 
two timescales: i. the timescale at which entanglement saturates ( Ssat ∼ L log d ) in the absence of thermalisation 
tsat , (also known as the Thouless  time52); ii. the timescale ttherm at which the system approaches thermalisation 
with the bath (this ttherm should not be confused with internal relaxation timescale, which for brevity we assume 
is much longer than ttherm ). On this timescale the complexity decreases to that of the reduced density matrix on 
the length scale of the thermal correlation length ξ(T) ; i.e. an operator entanglement ∼ ξ(T) log d and operator 
bond dimension dξ(T).

The complexity barrier between early and late times depends upon the relative size of tsat and ttherm . The worst 
case is when ttherm ≫ tsat , this is the complexity of an arbitrary state of the system. Whereas if ttherm < tsat then 
the complexity barrier may be considerably less—and an efficient classical simulation possible. In this limit, as 
shown by the results presented here, the ballistic early growth of entanglement may also be suppressed. Moreover, 
a complete understanding of the thermalisation process from this complexity point of view is also lacking. A 
reliable estimate of the height of the complexity barrier is therefore still unavailable.

It is worth comparing this discussion with recent classical time-evolution algorithms that permit an efficient 
description of local observables in a closed, thermalising system valid for all  time25,53,54—the central idea in these 
works is that correlations beyond a certain lengthscale never affect local observables and so may be neglected. 
When coupled to an external bath the explicit restriction to local observables is not required since the bath 
explicitly decoheres longer-range correlations. Whether an internal or external bath, the underlying principles 
seem rather similar.

Discussion
This work introduces a new method to investigate the dynamics of open many-body quantum systems, the 
TDVP-Langevin equation. We derive this by considering an appropriate limit of the Keldysh path integral 
constructed over a variational manifold. We carry this out explicitly for the MPS manifold. Our investigations 
reveal a phase transition in the applicability of this approach as a function of coupling to the environment—when 
the bath temperature and induced friction are sufficiently high, entanglement growth in individual trajectories is 
suppressed, and a low bond order description works for all time. This is a transition in the classical simulabiity 
of the open quantum system.

We believe that this transition is related to several other transitions in quantum dynamics that have 
been observed as a function of coupling the the environment or measurement, including the restriction of 
entanglement growth in random circuits with projective measurement, the quantum Zeno effect (and perhaps 
the KT transition in the spin-boson  model56–57).

The implications of this result may be far-reaching. In the context of using the TDVP-Langevin equation to 
simulate open quantum systems, an efficient description for long times is possible for systems in the many-body 
quantum Zeno phase. Indeed, when a target system is in such a phase, there is no (asymptotic) advantage in using 
a quantum computer to simulate it. Since many chemical reactions of potential interest for quantum computation 
occur embedded in a dissipative aqueous environment, this is certainly a point worthy of consideration. An 
attractive feature of the TDVP Langevin approach to describing the dynamics is that it permits the use of the same 
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semi-classical parametrization – the variational parameters – from early to late times and ultimately connects 
to the very late-time hydrodynamic limit.

Moreover, viewed from the perspective of a description of a quantum computational device or simulator, 
the transition into the many-body Zeno phase indicates transitions in the ability to solve quantum problems. 
While thresholds of noise for quantum error correction have been identified in the case of gate-based quantum 
computation, no such thresholds currently exist for adiabatic computation. It is intriguing to speculate that 
determining whether a putative adiabatic computational device is in its Zeno phase or not might provide similar 
bounds on  performance57,58.

We envisage a number of ways in which this work might be developed. Extending the approach to local 
observables in closed quantum systems presents some exciting possibilities. In this case the bath would refer to 
other elements of the system itself and its properties self-consistently determined through the  evolution26,59, Such 
a description has the promise of connecting early-time semi-classical descriptions to late-time hydrodynamics 
and thermalisation. Exploring the Fokker-Planck formulation of the TDVP-Langevin equation would bring a 
complementary perspective to our  analysis61–62.

The accurate description of a quantum system from early to late times is generally not possible because of 
growing entanglement. However, coupling to the environment can limit this growth and render this achievable. 
This work has coordinated physical insights from several different perspectives to develop such a numerical 
scheme. We hope both that the algorithm itself will prove useful and that it will inspire further insights.

Data and Code Availability
The datasets generated and analysed in the current study are available in the UCL data repository at https:// rdr. 
ucl. ac. uk/ artic les/ datas et/ All_ data_ for_ phase_ trans itions_ in_ the_ class ical_ simul abili ty_ of_ open_ quant um_ 
syste ms_/ 22732 289. Code used to produce this data is available at https:// github. com/ Andre wHall am/ Lange vin.
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