
RESEARCH ARTICLE SOCIAL SCIENCES
EVOLUTION OPEN ACCESS

Emergence of specialized third-party enforcement
Erik Mohlina,b,1 , Alexandros Rigosa,b ID , and Simon Weidenholzerc

Edited by Marcus Feldman, Stanford University, Stanford, CA; received April 22, 2022; accepted May 15, 2023

The question of how cooperation evolves and is maintained among nonkin is central
to the biological, social, and behavioral sciences. Previous research has focused on
explaining how cooperation in social dilemmas can be maintained by direct and
indirect reciprocity among the participants of the social dilemma. However, in complex
human societies, both modern and ancient, cooperation is frequently maintained
by means of specialized third-party enforcement. We provide an evolutionary-game-
theoretic model that explains how specialized third-party enforcement of cooperation
(specialized reciprocity) can emerge. A population consists of producers and enforcers.
First, producers engage in a joint undertaking represented by a prisoner’s dilemma.
They are paired randomly and receive no information about their partner’s history,
which precludes direct and indirect reciprocity. Then, enforcers tax producers and
may punish their clients. Finally, the enforcers are randomly paired and may try to
grab resources from each other. In order to sustain producer cooperation, enforcers
must punish defecting producers, but punishing is costly to enforcers. We show that
the threat of potential intraenforcer conflict can incentivize enforcers to engage in
costly punishment of producers, provided they are sufficiently informed to maintain
a reputation system. That is, the “guards” are guarded by the guards themselves.
We demonstrate the key mechanisms analytically and corroborate our results with
numerical simulations.

evolution of cooperation | evolution of institutions | specialized reciprocity | third-party punishment |
policing

Human societies are characterized by high levels of cooperation among large numbers of
genetically distant individuals (1). To maintain cooperation, socially complex societies
typically rely on third-party enforcement (of, for example, social norms, laws, contracts,
and informal agreements), which is often carried out by specialized enforcers (2).
While specialized enforcement can contribute to the effectiveness and impartiality
of governance institutions —which are fundamental for economic growth and social
development (3–5)—, achieving and maintaining socially beneficial institutions of
third-party enforcement is not straightforward. Effective enforcement requires powerful
enforcers, but if an enforcer is powerful enough to protect her clients from crime, then
she may also be powerful enough to extract resources from her clients without providing
any services in return.* In the words of the Roman satirist Juvenal, one is led to ask “who
guards the guards?” In this paper, we develop an evolutionary-game-theoretic model of a
system where cooperation is enforced by guards who guard themselves.

Previous literature has investigated different sanctioning mechanisms that enable
the evolution and maintenance of cooperation. If the interacting parties face each
other repeatedly, cooperation may evolve via direct reciprocity (6) and be sustained
in equilibrium as described by the folk theorems of game theory (7–9), reflecting a
social institution sometimes referred to as mutual enforcement (10). The importance of
punishment as a proximate mechanism promoting cooperation, even in finitely repeated
games, has been documented experimentally (11, 12). If there is a sufficiently high
probability of interacting with another partner from the same community, and if there
is sufficient information about the partner’s past behavior, then cooperation may evolve
as described by theories of indirect reciprocity (13–17) and theories of community
enforcement (18–23). If the probability of interacting with another partner from the
community is too low, and if the information about past behavior is not of sufficient
quality, then neither direct nor indirect reciprocity are able to foster cooperation. In
this case, the possibility of specialized third-party enforcement becomes crucial for
cooperation.

We consider a population where each agent specializes in either production or enforce-
ment. Producers specialize in generating resources for consumption and reproduction.

*To facilitate the exposition, we use the pronouns “she/her” for all agents throughout the article.
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Enforcers are not involved in production but instead specialize in
information acquisition and the use of violence and other means
of coercion (24). They can coercively tax their producer-clients,
identify defectors and cooperators among them (10, 25), and
decide whether to punish each of them. In our theory, specialized
enforcers employ a reputation system, which allows an enforcer to
condition her behavior toward her peers on the latter’s good past
behavior. Good enforcer behavior entails punishing defecting
clients and refraining from attacking other enforcers, unless they
have misbehaved. In this sense, we propose a theory of specialized
reciprocity.

We aim to provide an explanation of how third-party
sanctioning institutions can emerge and be maintained. It is,
therefore, not sufficient to assume that the institutions act in
certain ways without deriving their behavior from that of the
individuals they comprise (26, 27). Our game-theoretic model
takes individuals’ incentives into account and explains why some
choose to work for these institutions and to implement costly
sanctions. The long-run reputation incentives of enforcers create
short-run incentives for producers to cooperate. Thus, we move
beyond important recent models of so-called pool punishment
(28–30) [c.f. (31)]. Importantly, we do not assume that any
enforcer has a local monopoly of violence, neither do we assume
that enforcers act as a unitary organization. Instead, a cohesive
enforcement organization with a monopoly of violence emerges
endogenously in one of the equilibria of the model (32).

Results

The Repeated Enforcement Game. In each time period, the
members of the population interact in a repeated game consisting
of an indefinite number of rounds. After each round of play, a

new round begins with probability δ, while the game ends with
probability 1 − δ. In each round, the agents face a stage game
that consists of three steps (Fig. 1). The payoff from the repeated
game played in a time period is evaluated as the per-round average
payoff.

In the production step, producers are randomly paired.
Each pair plays a prisoner’s dilemma (PD), which represents
a potentially mutually beneficial interaction (e.g., trade or joint
production). Each producer chooses between: i) cooperation,
which bestows a benefit b upon the partner at a cost c < b to
the cooperator, and ii) defection, which creates no benefit and
carries no cost. Producers have autarky payoffw, which represents
production outside the match.

In the enforcement step, each producer pair is randomly
matched to an enforcer, becoming the enforcer’s clients. The
enforcer taxes her clients, taking a fraction τ of the resources that
each accumulated in the production step. We interpret this as
a situation where the remaining fraction 1 − τ is impossible to
transfer (e.g., because it is directly consumed) or can be defended
by the producer. The enforcer can also choose to punish any of
her clients, inflicting a cost p on each. Punishing costs the enforcer
v per punished producer. We refer to v as variable cost because
it varies with the number of punished producers. Since enforcers
are specialized, the producers are unable to counterpunish.

In the meta-enforcement step, enforcers are randomly paired.
Each enforcer i chooses to attack (action A) or not attack
(action B) her coplayer j in an attempt to grab tax revenue (Rj)
that j obtained in the enforcement step. If neither attacks, they
both walk away with their respective tax revenues. If one enforcer
attacks and the other does not, the attacker takes a fractionψ from
the nonattacker, who also suffers a loss l from being attacked. If
both attack, each suffers a loss l , but no revenue changes hands.

Fig. 1. The three steps of the stage game. In the production step (step 1), the producers are randomly matched into pairs to play a PD, choosing to cooperate
or to defect. The entries of the payoff matrix represent payoffs to the row player. In the enforcement step (step 2), each producer pair from step 1 is randomly
matched to one enforcer. Enforcers tax the producers matched to them and have the opportunity to punish them. In the meta-enforcement step (step 3),
the enforcers are matched into pairs. Each can choose to be peaceful or to attack the other over the revenue they took from the producers in the previous
step. The entries of the payoff matrix represent payoffs to the row player (i) against the column player (j), where Ri and Rj represent revenue earned in the
enforcement step.
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Information, Reputation, and the Cooperation Enforcer
Strategy. We assume that the population is large so that the
probability of meeting the same agent soon again is small.
Moreover, a producer has no information about the behavior
of other producers, apart from knowing what occurred in the
interactions she was herself involved in. These assumptions imply
that both direct and indirect reciprocity among producers are
ineffective.

By contrast, at the beginning of a period, each enforcer can
choose to acquire information by paying a fixed cost f , which
represents the cost and effort of building and maintaining the
requisite information channels. If she chooses to do so, then in
each round, she obtains two kinds of information: i) information
about the outcome of all interactions in the current round in
which any of her clients were involved in the production step
and ii) information encoded in an enforcer reputation system.

Specifically, the cooperation enforcer (CE) reputation system
is based on a CE standard of correct behavior which requires
an enforcer to i) punish every act of defection and no act of
cooperation among her clients in the enforcement step and ii)
attack her coplayer in the meta-enforcement step if and only if
that coplayer has bad reputation. Correspondingly, we define the
CE strategy which consists in always acting in accordance with
the CE standard.

The reputation system classifies agents to be in good standing
or in bad standing. If an enforcer is in good standing and complies
with the CE standard, she remains in good standing. If an enforcer
does not comply with the CE standard, she enters bad standing
and remains there for κ rounds (during which she can expect to
be attacked). If she fails to comply while in bad standing, the
punishment phase restarts. See Fig. 2 for an illustration.

Our reputation system is an extension of Kandori’s reputation
system (20) adapted to our stage game. In the special case of a
PD and a single round of punishment (κ = 1), Kandori’s system
reduces to the reputation system known as “strict standing” (16)
or “stern judging” (33) in the literature on indirect reciprocity.
It is one of the “leading eight” reputation systems that have been
identified as particularly conducive to cooperation (33–36).

Static Equilibrium. As a first test of the viability of maintaining
cooperation by means of the CE strategy, we perform a static
(nonevolutionary) analysis of the repeated enforcement game
employing the concept of subgame perfect Nash equilibrium
(37). We use a maximally inclusive set of strategies for the
enforcers when checking for possible deviations. For a formal
exposition, see SI Appendix, S1.

Our analysis identifies two conditions that need to be satisfied.
First, the cost of enforcer conflict needs to be high enough relative
to both the fixed cost of being an informed enforcer and the
variable cost of punishing clients:

l > 2 max{f, v}. [1]

Second, producers’ loss from being punished needs to be high
enough relative to the cost of cooperation.

p > c (1− τ ) . [2]

If Eqs. 1 and 2 hold, then, for a long-enough punishment
phase (high κ) and high-enough repetition probability (δ), there
is a subgame perfect Nash equilibrium in which all enforcers
follow the CE strategy and all producers always cooperate.

As is typical in repeated games, there is a vast number of
equilibria with varying levels of cooperation (8, 9). While the full-
cooperation equilibrium outcome requires certain conditions to
be satisfied, there is always a full-defection equilibrium in which
enforcers never punish and always attack.

Dynamic Framework. Our static analysis identifies a key mecha-
nism by which enforcers can be incentivized to enforce cooper-
ation among producers, but it cannot reveal which equilibrium
(if any) is likely to emerge from a decentralized evolutionary
process. To shed light on this question, we embed the repeated
enforcement game in a dynamic evolutionary-game-theoretic
setting. In addition, our dynamic model has a richer structure
than the static model, including the possibility of mistakes and
the endogenous determination of the fraction of enforcers.

Between two consecutive time periods, (i.e., after each instance
of the repeated game), one agent is drawn to revise her strategy.
With probability γP , the agent is drawn among those currently
using producer strategies and can only choose among the
producer strategies, SP . With probability γE , the agent is drawn
among those using enforcer strategies and can only choose among
the enforcer strategies, SE . With probability γP,E = 1−γP−γE ,
the agent is drawn from the whole population and gets to choose
among all (producer and enforcer) strategies, SP∪SE . We assume
γP > γE > γP,E , capturing the idea that revisions among
producers are easier than revisions among enforcers, which in
turn are easier than revisions across producer/enforcer roles.

When revising, agents tend to select strategies that are currently
performing well. With probability 1−ε, a revising agent chooses
a noisy (logit) best response (38) with imprecision parameter η
(such that η → 0 corresponds to the exact best response and

Fig. 2. Reputation system among enforcers. All enforcers start out in good standing and remain in good standing as long as they comply with the standard.
If an enforcer in good standing violates the standard, she enters bad standing of degree �. For every round that an enforcer in bad standing complies with
the standard, she has her degree of bad standing reduced by one. If an enforcer in bad standing violates the standard, she goes back to bad standing of
degree �. An enforcer in bad standing who complies with the standard will eventually arrive at a bad standing of degree zero. This means that she is back in
good standing. Thus, � is the number of rounds of punishment.
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η → ∞ to uniformly random choice). With probability ε, the
revising agent chooses a strategy at random. We refer to these as
revision mistakes (corresponding to mutations in genetic evolu-
tion), but they could also be interpreted as acts of experimenta-
tion. The resulting dynamic captures boundedly rational social
learning or social evolution, rather than genetic evolution (39).

The dynamic constitutes a Markov chain on the set of
population states. Since the agents make mistakes that can lead
them to adopt any strategy, the process is ergodic. Hence, it
induces a unique invariant distribution over the set of strategies
(40–44). In the context of imitation-based processes or birth–
death processes, this distribution is sometimes referred to as a
“mutation–selection equilibrium” (45).

Strategies. The full set of strategies is infinite as strategies can be
arbitrarily complex (since enforcers who acquire information can
condition their actions on each of the infinite possible histories).
This was not an obstacle to our static equilibrium analysis.
However, a systematic dynamic analysis is feasible only if we
restrict attention to a smaller subset of strategies.

Producers use one of two strategies: cooperating producer
(CP), who always cooperates, and defecting producer (DP),
who always defects. Given the limited information on which
producers can condition their action, this is a relatively modest
simplification.

Enforcers are restricted to strategies whose action in the
enforcement step can be conditioned only on whether the client
cooperated or defected in the current round and whose action in
the meta-enforcement step can be conditioned only on whether
the matched enforcer is in good or bad standing. We assume
that strategies that do not condition actions (on either producer
behavior or enforcer reputation) do not acquire information and,
therefore, do not pay the fixed cost f . Since there are two actions
available in each of the enforcement and meta-enforcement steps,
this defines 24 = 16 enforcer strategies.

We represent each such strategy as a string of four binary digits
(zeroes and ones), which respectively correspond to i) the action
against a producer who has cooperated, ii) the action against a
producer who has defected, iii) the action against an enforcer
in good standing, and iv) the action against an enforcer in bad
standing. We use 1 to indicate punishment in the enforcement
step and attack in the meta-enforcement step. For example, 0101
represents the CE strategy. Another strategy that will play an
important role is the defection enforcer (DE) strategy which never
punishes and always attacks. It is represented as 0011. Notice that
our strategy set includes antisocial punishers (e.g., 1010).

Strategies are not necessarily executed perfectly. Each time an
agent faces a choice between actions, with probability 1 − µ,
the agent takes the action prescribed by her strategy and with
probability µ she takes the other action by mistake.

We denote the number of agents using a strategy x by nx (e.g.,
nCE is the number of CE in the population). Moreover, the total
number of producers is nP , and the total number of enforcers is
nE . The total population size is N = nP + nE .

Dynamic Analytical Results. In order to obtain analytical results
regarding the invariant distribution, we need to make a number
of simplifying assumptions. As a first simplification, we only
consider the CE and DE strategies for the enforcers, in addition
to the CP and DP strategies for the producers. Second, we
abstract away from action mistakes and variable cost (by setting
µ = v = 0) and consider exact best reply, η = 0. Third, we
focus on the limit where the (expected) number of rounds per

period and the number of punishment rounds get arbitrarily large
(δ → 1 and κ → ∞). Fourth, we assume that punishment
is sufficiently severe (p > (1− τ ) c) and sufficiently cheap
(f < l). Finally, we let revisions among the producer strategies
be arbitrarily more common than revisions among the enforcer
strategies, which in turn are arbitrarily more common than
revisions among all the strategies. See Methods for details.

We first consider the dynamic that arises in the absence of
revision mistakes (mutations), i.e., if ε = 0. The resulting
“unperturbed” best-response dynamic has two absorbing sets of
states (see SI Appendix, Fig. S1 for an illustration). One of these
sets corresponds to a cooperation equilibrium in which only CP
and CE are present, while the other absorbing set corresponds to
a defection equilibrium in which only DP and DE are present.
In the cooperation equilibrium, the fraction of enforcers (CE) is

αC =
τ (w + b− c)
w + b + f − c

, [3]

and the fraction of producers (CP) is 1 − αC . In the defection
equilibrium, the fraction of enforcers (DE) is

αD =
wτ

w + l
, [4]

and the fraction of producers (DP) is 1 − αD. Both equilibria
are locally stable. The boundary between the basins of attraction
is given by a region that converges to the plane nCE

nE = f
l in the

limit as N → ∞. Depending on the initial value of nCE
nE , the

process converges to one of the two equilibria (see SI Appendix,
Fig. S3 for an illustration). It can be verified that payoffs and the
share of enforcers are higher in the cooperation equilibrium than
in the defection equilibrium (see SI Appendix, Observation S1).

Now, consider the dynamic with rare mutations (where ε
is vanishingly small, but positive). As ε → 0, the invariant
distribution puts almost all weight on a single state (one of the
equilibria). Such a state is called stochastically stable (40–43).
For a comparison with other stochastic evolutionary approaches,
see SI Appendix, S3. When the population is sufficiently large,
the cooperation equilibrium is stochastically stable if(

l
f
− 1

)(
1 +

l
w

)
> 1 +

f
w + b− c

. [5]

If the inequality is reversed, then the defection equilibrium is
stochastically stable. Thus, stochastic stability of cooperation is
enabled by a high destructiveness of conflict between enforcers l ,
a low (fixed) cost of information f , a high benefit of cooperation
b, and a low cost of cooperation c. The effect of w is ambiguous.

Dynamic Numerical Results. We now turn to simulations to
verify that the analytical conclusions hold under less-restrictive
parameter assumptions and to explore further results. In order to
approximate the invariant distribution, we simulate the learning
process over many (106) periods for different initial conditions
and compute the time average of the shares of the different
strategies. We define a baseline set of parameter values as our
benchmark (Fig. 3 and SI Appendix, Table S1). We compare
the baseline with an alternative set of parameter values. In the
baseline setting, we have b = 4, c = 1, f = 0.3, v = 0.1, and
l = 5, whereas in the alternative setting, b = 3, c = 2, f = 0.4,
v = 0.3, and l = 4. All other parameters have the same values
in the two specifications. Note that our baseline continuation
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A D

EB C F

Fig. 3. Shares of strategies in the invariant distribution and typical time series under baseline and alternative parameter values. Strategies are based on
the CE standard. (A and D) Strategy shares when there are 16 enforcer strategies. (B and E) Strategy shares when there are 2 enforcer strategies. (C and F )
Typical realization of the evolution of shares of strategies over 2× 105 iterations of the repeated game, with revision noise " = 0.01. Invariant distributions are
approximated by time averages over 106 iterations for seven different, randomly drawn initial conditions. Baseline parameter values: b = 4, c = 1, v = 0.1,
f = 0.3, l = 5. Alternative parameter values: b = 3, c = 2, v = 0.3, f = 0.4, l = 4. Common parameter values in both settings: � = 0.9, � = 8, w = 2, � = 0.3,
p = 2,  = 0.7, � = 0.005, � = 0.01, " = 0.05, (P,E , E , P) = (0.1,0.3,0.6).

probability, δ = 0.9, implies that the expected length of the
repeated game is 10 rounds.

The analytical results presented above indicate that coopera-
tion should be more difficult to attain in the alternative than in the
baseline. We first consider the full set of 16 enforcer strategies,
with the aim of selecting the most successful ones for further
analysis. Fig. 3 A and D displays the results. In the baseline,
CP dominates among the producers, whereas in the alternative
setting, DP dominates. Among the enforcer strategies, the best
performers are CE (coded 0101) and DE (0011) in both the
baseline and the alternative.

Since mutations are drawn uniformly randomly from the entire
set of strategies, the presence of a large number of enforcer
strategies contributes to making the dynamic process more noisy.
Reducing the mistake probability (“mutation rate”) would make
the process less noisy but would also make it more difficult to
approximate the invariant distribution. For this reason and in
order to verify the robustness of our analytical results, we next
remove all enforcer strategies except the top performers CE and
DE. Fig. 3 B and E presents the results. In the baseline, CP
dominates among producers and CE dominates among enforcers.
In the alternative, DP dominates among producers and DE
dominates among enforcers.

Our analytical results on stochastic stability relied on letting
revision mistakes vanish. Then, the dynamic process will spend
most of the time in, or near, the two equilibria. In Fig. 3 C and
F, we display times series for the baseline and the alternative with
a reduced amount of noise (ε = 0.01). It is clear that most of
the time is spent in the equilibria, with occasional rapid shifts
between them.

We now turn to exploring the effect of each of the model’s
parameters on the level of cooperation and the distribution
of strategies. The stochastic stability analysis, Eq. 5, indicates
that the stability of cooperation is affected by the fixed cost of
information f relative to the destructiveness of conflict between

enforcers l . Recall that we set variable cost of punishment v = 0
in the analytical derivations. However, we expect v to have
a similar effect as the fixed cost f . Fig. 4 A–F confirms our
predictions. Cooperation among producers is decreasing in f , v,
and c and increasing in l . Changing b and w has limited effects
on cooperation.

The analytical results state that, to deter defection among
producers, the loss from punishment p needs to be large enough
relative to c, which is in line with Fig. 4G. From Eqs. 3 and 4
we expect the tax rate τ to affect the equilibrium fractions of
enforcers, which is confirmed in Fig. 4H.

For the cooperation equilibrium to exist, the continuation
probability δ needs to be large enough (Fig. 4J ). Only in this way
may the temptation to attack an enforcer in good standing be
outweighed by the future loss from ending up in bad standing.
For the same reason, the length of the punishment phase κ
needs to be large enough. However, a long punishment phase
may have the drawback that CE agents who enter bad standing
due to a mistake will remain in bad standing for a long time.
Fig. 4K reveals that the effect of changing κ is limited (see also
SI Appendix, section D in S4).

In the baseline model, the vector of revision probabilities is
(γP,E , γE , γP) = (0.1, 0.3, 0, 6). We compare this to the case
where all kinds of revision opportunities are equally likely, and
the case where all revision opportunities allow both producer
and enforcer strategies (Fig. 4L). The results are only mildly
affected. In SI Appendix, Fig. S3, we report results indicating
that the cooperation equilibrium is reasonably robust to small
amounts of action mistakes (µ), logit imprecision (η), and
revision mistakes (ε).

Alternative Reputation System. So far, we have assumed a single
reputation system, with respect to which all strategies are defined.
This is in line with much of the literature on indirect reciprocity;
exceptions include (33, 36). Nevertheless, we wish to probe the
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A

D

B C

E F

G H I

J K L

Fig. 4. The time averages of nCP/nP (circles), nCE/nE (squares), and nP/N (triangles) for different values of parameters. Dotted vertical lines indicate baseline
values. (A) fixed cost f of information; (B) variable cost v of punishment; (C) loss l from being attacked; (D) benefit b of cooperation; (E) cost c of cooperation;
(F ) autarky payoff w; (G) loss from being punished p; (H) tax rate �; (I) gain to unilateral attacker  ; (J) continuation probability �; (K ) length of punishment �; (L)
revision probabilities ; we compare the baseline model, in which the vector of revision probabilities is

(
P,E , E , P

)
= (0.1,0.3,0,6), to the case of equally likely

revision opportunities (1/3,1/3,1/3), and the case where all revision opportunities are maximally permissive (1,0,0).

robustness of our results when there is competition from other
reputation systems. The CE reputation system used so far was
defined in terms of the CE standard of behavior. As a counterpart,
we now define a parochial enforcer (PE) reputation system, in

terms of a PE standard of behavior. This standard does not care
about actions against producers (unlike the CE standard), but it
requires attacking a coplayer in the meta-enforcement step if and
only if that coplayer is in bad standing (like the CE standard).
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A D

B C E F

Fig. 5. Shares of strategies in the invariant distribution under baseline and alternative parameter values. (A and D) Strategy shares when there are 16 enforcer
strategies based on the PE standard. (B and E) Strategy shares when there are 2 enforcer strategies based on the PE standard. (C and F ) Strategy shares when
enforcer strategies are CE PE, and DE. Invariant distributions are approximated by time averages over 106 iterations for seven different, randomly drawn initial
conditions. Baseline parameter values: b = 4, c = 1, v = 0.1, f = 0.3, l = 5. Alternative parameter values: b = 3, c = 2, v = 0.3, f = 0.4, l = 4. Common
parameter values in both settings: � = 0.9, � = 8, w = 2, � = 0.3, p = 2,  = 0.7, � = 0.005, � = 0.01, " = 0.05, (P,E , E , P) = (0.1,0.3,0.6).

We define a PE strategy which never punishes in the enforce-
ment step and punishes in the meta-enforcement step if and only
if that coplayer is in bad standing. More generally, using this PE
reputation system, we can define 24 = 16 strategies, just as we did
for the CE reputation system. For example, 0001 represents the
PE strategy and 0011 is the DE strategy, which never punishes
and always attacks, thereby ignoring the reputation system.

The results for the full set of sixteen enforcer strategies are
presented in Fig. 5 A and D. Defection dominates among
producers for both the baseline and the alternative parameter
values. The enforcers are dominated by strategies PE, DE, and
1001. Next, we select the two best-performing enforcer strategies
(strategy 1001 is excluded, since the only reason that it coexists
with the PE strategy is that there are so few cooperators in the
population). Fig. 5 B and E displays the results when DE and
PE are the only enforcer strategies. Again, defection dominates
among the producers, and PE dominates among the enforcers.

Finally, we add CE to the set of enforcer strategies. This means
that there is competition between the two different reputation
systems. The results are shown in Fig. 5 C and F. In the baseline,
cooperation dominates among the producers, and CE dominates
among the enforcers. In the alternative, there is slightly less
cooperation than defection and more CE than other enforcer
strategies, but the differences are smaller, as expected. In SI
Appendix, Fig. S2, we repeat the analysis from Fig. 4 with PE
added to the set of enforcer strategies. We conclude that the
cooperative equilibrium supported by the CE strategy is robust
to the inclusion of reputation systems that do not incentivize
cooperation among producers.

Discussion

Cooperation among producers is strongly affected by parameters
governing the interactions between enforcers (f , v, and l), while
only c has a clear effect among the parameters that govern
producer–producer interactions (the effect of b is very small).

Moreover, the severity of punishment p needs to be above a
certain threshold for cooperation to take hold. By comparison, in
models of direct and indirect reciprocity, cooperation is typically
determined only by the costs and benefits of cooperation. In
those models, cooperation among producers is incentivized by
indefinite repetition of the producer interaction. By contrast,
in our model of specialized reciprocity, cooperation among
producers is incentivized by enforcers’ punishment of defectors
which, in turn, is incentivized by indefinite repetition of the
enforcer interaction.

From the perspective of the enforcers, punishing a DP can
be viewed as contributing to a public good: It incentivizes
cooperation among producers, which leads to a larger surplus
that can be taxed by enforcers. For an individual enforcer,
there is a temptation to avoid the cost of punishing, but this
is detrimental to the future payoff of the enforcers. In the
cooperation equilibrium, the enforcers manage to solve this
second-order public goods provision problem by acting as a
cohesive enforcement organization. The result is that in the
cooperative equilibrium, both enforcers and producers earn
higher payoffs than in the noncooperative equilibrium.

The extensive literature on the evolution of cooperation
contains very few attempts at modeling third-party enforcement
institutions, and, as far as we know, none as explicit as ours.
Static models of third-party enforcement have been developed
by, for example, refs. 10, 26, and 46, where enforcers are mainly
disciplined by the fear of losing paying clients, and by ref. 47,
where enforcers are disciplined by fear of contagion (21) rather
than by reputation concerns.

Our aim has been to develop a stylized evolutionary-game-
theoretic model that elucidates key mechanisms for how spe-
cialized third-party enforcement may emerge and be sustained.
Consequently, the model is abstract and not tailored to any
specific application. Still, it accurately describes important
features of some real-world governance institutions, where i)
there is specialization between producers and enforcers, ii)
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producers struggle to achieve cooperation in the absence of third-
party involvement, and iii) enforcers discipline clients and other
enforcers for violations of commonly held norms or conventions.
In particular, we argue that the Sicilian mafia (25) and American
prison gangs (48) function as enforcer organizations in our sense.
They operate in environments where the state is unwilling or
unable to enforce cooperation and where other decentralized
forms of enforcement (based on direct or indirect reciprocity) are
ineffective.

Mafia. While the mafia is typically associated with extortion
and other criminal activities, Gambetta (25) (see also ref. 49)
argues that the core activity of the Sicilian mafia is to provide
private protection. Similar accounts have been given of organized
crime in Russia (50) and Japan (51). Members of the mafia are
specialized in information gathering and conduct of violence.
They oversee (typically illegal) transactions and punish breaches
of norms or implicit contracts. As an illustration, Gambetta (25,
p.15) recounts what a cattle breeder in Palermo told him: “When
the butcher comes to me to buy an animal, he knows that I want
to cheat him [by giving him a low-quality animal]. But I know
that he wants to cheat me [by reneging on payment]. Thus, we
need Peppe [that is, a third party] to make us agree. And we
both pay Peppe a percentage of the deal.” The mafia may exploit
its clients (corresponding to a high tax rate in our model), but
it does provide protection and enforcement services (as in the
cooperative equilibrium).

Further, in line with the cooperative equilibrium of our
model, which features peace among the enforcers, the mafiosi
keep track of each other and sanction those who do not
conform to the organization’s code of conduct. For instance,
according to “the commandments” (25, p.147), stealing from
other members of the mafia, and stealing in general, is forbidden.
From the 1950s until the 1980s, the mafiosi’s (enforcers’) control
of each other was formalized by the commissione, a loose
association among Sicilian mafia families that “offered a forum
for bargaining over market distribution, for seeking agreement
on coordinated actions, and for upholding standards of behavior
beneficial to the industry as a whole” (25, p.245). The foremost
aim of the commissione in the latter context was to regulate
the use of violence (among and within mafia families but also
toward nonmembers) by requiring permission for killings and
sanctioning those who violated these norms. Of course, at times,
attempts to coordinate and cooperate among members of the
mafia were not successful, resulting in periods of warfare (e.g.,
1961–1963 and 1981–1985). This breakdown of cooperation is
in line with our stochastic evolutionary model where the system
may spend most of the time in an equilibrium but is occasionally
interrupted by periods of instability, and there may be a transition
to another equilibrium (as illustrated in Fig. 3 C and F ).

Prison Gangs. Skarbeck (48) studies prison gangs in the Cali-
fornian prison system, especially the so-called “Mexican mafia.”
Prison gangs are ethnically segregated and, within their respective
ethnic group, they function as the enforcers in our model. For
instance, when a Hispanic member of a street gang (correspond-
ing to a producer) arrives in prison, they seek the protection of
the Mexican prison gang. Prison gangs also provide governance
outside of prison by enforcing agreements and adjudicating
disputes among street gangs. Much like the enforcers in our
model, the prison gangs have an incentive to maintain order on
the streets because they obtain revenue from taxation of drug
dealers.

The Mexican prison gang has a constitution that governs
relations among members. It specifies, among other things, that
“a member must not raise a hand against another member without
sanction” and “a member must not steal from another member”
(48, p.118). This corresponds closely to the CE standard of
correct behavior in our model.

The gang-based governance order of the Californian (and more
generally the US) prison system emerged after the 1960s, when
the number of prisoners grew dramatically relative to the number
of guards and the prisons became overcrowded. Previously, order
was maintained both by the presence of prison guards and a
private enforcement system based on personalized relationships
and reputations (as in direct and indirect reciprocity). When
the prison population grew, neither of these mechanisms could
sustain the peace. Prison gangs emerged to provide enforcement
services. Similar forces seem to be at play more generally in prisons
across the globe (52).

Further Applications. On the other side of the law, bar asso-
ciations in the Anglo-American legal system, with their self-
regulatory functions, may be thought of as enforcers playing
their part in the cooperative equilibrium of our model. Indeed,
the New York City Bar Association, the oldest in the United
States, was founded in 1870 by attorneys who were “anxious to
do something about corruption at the bench and its consequences
for the profession itself ” (53, p.357).

From a historical perspective, we speculate that the emergence
of enforcement organizations from a situation without local
monopolies of violence may have parallels in the formation
of warrior elites in early Bronze Age Europe (54). During that
era, being a warrior became a specialized occupation, partly due
to the training needed to master new sets of weaponry. The
period was also characterized by the emergence of stable long-
distance alliances among elites. The increased lethality of military
technology (corresponding to increased l in our model) may have
been one of many factors that stimulated the development of such
alliances.

Materials and Methods
Reputation System. The CE and PE reputation systems are two different ways
of extending Kandori’s reputation system (20) to our setting. They agree on
how to condition treatment of enforcers on their standing, but they disagree on
whether treatment of producers should matter for standing.

Each agent i has a score zi ∈ {0, 1, 2, ..., κ}, with the interpretation that if
zi = 0, then i is in good standing, and if zi > 0, then i is in bad standing
and shall be punished/attacked for the next following zi rounds, including the
current round. Scores are updated as follows: If an enforcer is in good standing
(zi = 0) and complies with the relevant (CE or PE) standard, she remains in
good standing. If an enforcer does not comply with the standard, she enters bad
standing with zi = κ . If a player with zi = k > 0 complies with the standard,
her score is updated to zi = k−1. In case of action mistakes, scores are updated
in accordance with actual actions taken.

Subgame Perfect Nash Equilibrium Analysis. Let s∗ =
(

sCP , sCE
)

denote

the strategy profile in which each producer i follows strategy CP, and each
enforcer i follows strategy CE. We can then prove that if Eqs. 1 and 2 hold, there
is some κ and some δ∗ < 1 such that if δ ∈ (δ∗, 1), then s∗ constitutes a
subgame perfect Nash equilibrium (SI Appendix, Theorem S1). The theorem and
proof are similar to Theorem 2 of ref. 20, adjusted for the fact that we have a
sequential stage game, and two kinds of players: producers and enforcers.

Payoffs. Each agent i’s payoff in the repeated game is the average round-payoff
she receives, i.e.,

∑T
t=1 πi (t) /T , where πi (t) is i’s payoff in round t and T
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is the realized number of rounds in that period. For our analytical results, we
calculate payoffs under the limiting assumption of no action mistakes (µ = 0),
infinite repetition (δ → 1), and infinite punishment (κ → ∞). We assume
τw > v, which implies positive tax revenue Ri > 0. Under these assumptions,
it is straightforward to derive expected payoffs of producers.

A DE ends up in bad standing as soon as she has been matched with a DP in
the enforcement step or matched with a CE in the meta-enforcement step. She
will then remain in bad standing for the rest of the period, since κ →∞. Thus,
the probability that all DE are in bad standing approaches one as the number of
rounds that have been played grows (provided that there is at least one DP or
one CE in the population). Moreover, as the number of rounds of the repeated
game grows (as δ → 1), the fraction of rounds in which almost all DE are in
bad standing goes to one (see SI Appendix for a formal argument). Hence, the
average payoffs will be approximately equal to the payoff obtained when all CE
are in good standing and all DE are in bad standing (section C in SI Appendix,
S2).

Exact Best-Reply Learning. The evolutionary process employed for our
dynamic analytical results is as follows. Starting from period 2, at the beginning
of each of the following nP periods, one producer is drawn at random (without
replacement) and may choose among the producer strategies SP . Once all
producers have decided on their strategy, one enforcer is drawn at random
and may choose among the enforcer strategies SE . After this, the producers,
one by one, again receive the opportunity to update their strategy, followed
by an enforcer, and so on. Once all enforcers have updated their strategy, and
all producers have had the opportunity to update following the last enforcer,
one agent is selected at random from the whole population and may choose
her strategy from the full set of strategies SP

∪ SE . The process is repeated ad
infinitum.

Under the best-response process, an agent assumes that the rest of
the population do not revise their strategies. When a revision opportunity
arises, the agent chooses the strategy that would have maximized her
previous per-round expected payoff. The resulting unperturbed best-response
dynamic has two absorbing sets of states. One set EC corresponds to the
cooperation equilibrium. The other set ED corresponds to the defection
equilibrium

EC = {n ∈ N |nCP = nP , nCE = nE and αC N− 1 ≤ nCE ≤ α
C N}

ED = {n ∈ N |nDP = nP , nDE = nE and αDN− 1 ≤ nDE ≤ α
DN}.

Here, N denotes the set of population states. Assuming p > (1− τ ) c
and N sufficiently large, the basins of attraction for the absorbing sets are
characterized as follows (SI Appendix, Lemmas S1–S3).

1. From a state with nCE >
f
l (nE − 1) + 1, the process converges to EC with

probability one,
2. from a state with nCE <

f
l (nE − 1) or nE < 2, the process converges to ED

with probability one, and

3. from a state with nCE−1
nE−1 ≤

f
l ≤

nCE
nE−1 and nE ≥ 2, the process converges

to either EC or ED with positive probability.

Stochastic Stability. We analyze the invariant distribution in terms of stochastic
stability (40–43). This technique effectively compares the number of revision
mistakes (or “mutations”) that are required to move into and out of the different
basins of attraction. As ε → 0, this distribution puts almost all weight on a
single state. Such a state is called stochastically stable (41). We employ the
notions of radius and coradius of ref. 43 to identify conditions under which each
of the two equilibria is stochastically stable (SI Appendix, Theorem S2). Suppose
p > (1− τ ) c, and f < l. In a sufficiently large population, if Eq. 5 holds, then
the cooperation equilibrium EC is stochastically stable. If the inequality in Eq. 5
is reversed, then the defection equilibrium ED is stochastically stable.

Simulations and Figures. In order to approximate the invariant distribution,
we simulate the learning process for seven different (randomly drawn) initial
conditions and compute the time average of the shares of the different strategies
over the seven runs. We iterate the repeated game over 106 periods (i.e., 106

instances of the repeated game and equally many revisions), with one agent
revising in each iteration, in a population of 50 agents. We verify that each of
the seven different runs is close to the average (the largest SE is 0.024 and most
are much smaller, with median value 4× 10−4), indicating that we have found
a good approximation of the invariant distribution. For a description of how we
handle unmatched agents (in the case of an odd number of producers or an odd
number of enforcers), see section A in SI Appendix, S4.

Noisy best responses are generated by a logit choice function, i.e., an
individual picks strategy X from the strategy set S with probability

qS(X) =
exp(πX/η)∑

Y∈S exp(πY/η)
. [6]

The various πY are the realized average payoffs of Y -strategy agents in the
current round.

Data, Materials, and Software Availability. All code as well as the raw
data used to create Figs. 3–5 and SI Appendix, Figs. S2 and S3 are publicly
available on GitHub: https://github.com/alex-rigos/Community-Enforcement.
All simulations and numerical calculations were performed with Julia 1.7.
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