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Abstract 

The healthcare industry is different from other industries–patient data are sensitive, 
their storage needs to be handled with care and in compliance with regulative, while 
prediction accuracy needs to be high. This fast expansion in medical image modalities 
and data collection leads to generation of so called “Big Data” which is time-consuming 
to be analyzed by medical experts. This paper provides an insight into the Big Data 
from the aspect of its role in multiscale modelling. Special attention is paid to the 
workflow, starting from medical image processing all the way to creation of personal-
ized models and their analysis. A review of literature regarding Big Data in healthcare is 
provided and two proposed solutions are described–carotid artery ultrasound image 
processing and 3D reconstruction, and drug testing on personalized heart models. 
Related to the carotid artery ultrasound image processing, the starting point is ultra-
sound images, which are segmented using convolutional neural network U-net, while 
segmented masks were further used in 3D reconstruction of geometry. Related to the 
drug testing on personalized heart model, similar approach was proposed, images 
were used in creation of personalized 3D geometrical model that is used in compu-
tational modelling to determine pressure in the left ventricle before and after drug 
testing. All the aforementioned methodologies are complex, include Big Data analysis 
and should be performed using servers or high-performance computing. Future devel-
opment of Big Data applications in healthcare domains offers a lot of potential due to 
new data standards, rapid development of research and technology, as well as strong 
government incentives.

Keywords: Big Data, Multiscale modelling, Medical image processing, 3D 
reconstruction

Introduction
The term “Big Data” has become a buzzword in recent years, as the frequency of its use 
has doubled every year over the previous decade (Andreu-Perez et al. 2015). Big Data is 
described by three primary features known as the “3V”: volume (the quantity of data cre-
ated), variety (data from many categories), and velocity (the rate at which data is gener-
ated) (Luo et al. 2016); (Viceconti et al. 2015); (Oussous et al. 2018); (Belle, et al., 2015); 
(Yang et al. 2017). Recently, additional two “Vs” have been introduced: variability (data 
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inconsistency) and veracity (quality of recorded data) (Viceconti et al. 2015); (Yang et al. 
2017). As a result, the “5V” now identifies huge data concerns (Kouanou et al. 2018).

Big Data applications are used in many disciplines of research, including agriculture 
(Wolfert et al. 2017); (Zhang et al. 2015), internet with social networks (Pääkkönen and 
Pakkala 2015), as well as medicine (Andreu-Perez et al. 2015); (Luo et al. 2016); (Vice-
conti et al. 2015); (Belle et al. 2015) and personalized medicine based on genomics data 
(Cirillo and Valencia 2019) etc. Data volume in the medical area is expanding, and tra-
ditional methodologies cannot handle such amounts adequately. Management, analy-
sis, and storage of biological data are ongoing challenges in biomedical computing. As a 
result, Big Data technologies contain new frameworks for processing medical data play-
ing an important role in data management, organizing, and analysis through the use of 
machine learning and deep learning approaches (Kouanou et al. 2018). It also enables 
fast data access via the NoSQL database (Kouanou et al. 2018). In the area of medical 
image analysis, due to significant improvement in image collecting equipment, the data 
is relatively huge (going to Big Data), which makes image analysis challenging (Razzak 
et  al. 2018). It is said that due to digitalization of medical repositories in hospitals, as 
well as the use of medical images, digital medical archives size is growing at exponential 
rate (Ashraf et al. 2020a, b). According to a McKinsey Global Institute, if US healthcare 
uses Big Data creatively and efficiently, the sector could generate more than $300  bil-
lion in value per year. Two-thirds of the value would be realized through lowering US 
healthcare spending (Belle et  al. 2015). This fast expansion in medical imagery and 
modalities necessitates considerable and time-consuming efforts by medical experts, 
who are subjective, prone to human error, as well as there are interpersonal differences. 
Using machine learning techniques to automate the diagnosis process is an alternative 
response to aforementioned challenges; however, typical machine learning methods are 
unable to cope with complex problems (Razzak et  al. 2018). The successful combina-
tion of high-speed computers with machine learning promises the ability to cope with 
large amounts of medical image data for accurate and fast diagnosis (Razzak et al. 2018). 
In recent years, machine learning (ML) and artificial intelligence (AI) have advanced 
quickly, finding their tole in medical image processing, computer-aided diagnosis, image 
fusion, registration, image segmentation, as well as image-guided treatment. ML tech-
niques extract information (called features) from images and effectively perform deci-
sion making (Razzak et al. 2018).

Problem definition
Big data in health refers to relevant datasets that are large, time-consuming and 
complicated for healthcare practitioners to manage and process using current 
technologies (Andreu-Perez et  al. 2015); (Wang et  al. 2017). Data is created at an 
unprecedented rate on a daily basis from several heterogeneous sources (e.g., laboratory 
and clinical data, patients’ symptoms uploaded via remote sensors, hospital activities, 
and pharmaceutical data) (Oussous et al. 2018). As a result, new challenges have arisen 
such as storing, collecting, and interpreting vast volumes of data (Margolis et al. 2014). 
Techniques for biomedical imaging that are widely established in clinical settings 
computed tomography (CT), magnetic resonance imaging (MRI), X-ray, molecular 
imaging, ultrasound, photo-acoustic imaging, fluoroscopy, and positron emission 
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tomography (PET-CT) (Belle et  al. 2015). These approaches provide high-definition 
medical images in vast amounts. However, doctors cannot diagnose all of the millions of 
images produced. With the increased availability of biomedical imaging data, additional 
demands are placed on Artificial Intelligence (AI) for machine learning (ML) systems 
to build complicated models. ML is here the fundamental mechanism used to extract 
structured information and knowledge from raw data and convert it into automatic 
predictions for a variety of applications (Xing et al. 2016). Imaging informatics in general 
is mostly used to improve the efficiency of image processing activities such storage, 
retrieval, and interoperation. In this section, we will focus on two important aspects: 
medical data storage and image processing in the area of Big Data.

Medical data storage in the era of big data

Medical image data can range from a few megabytes for a single study (for example, 
histology images) to hundreds of gigabytes per research [for example, thin-slice CT 
examinations with up to 2500+ scans per study (Seibert 2010)]. For example, the 
ImageCLEF medical image collection comprised around 66,000 images between 
2005 and 2007, but in 2013, approximately 3,00,000 images were stored daily (Hersh 
et  al. 2009). In order to adequately process large amounts of healthcare data, their 
storage needs to be in line with several aspects–compliance, security and privacy, cost 
effectiveness, availability and reliability (Fig. 1).

It is vital to explore how Big Data approaches (such as Hadoop and NoSQL databases) 
are utilized to store electronic health records (EHRs) (Luo et al. 2016). When working 
with clinical real-time stream data, effective data storage is critical (Dutta et al. 2011). 
Dutta et  al. assessed the use of Hadoop and HBase as data warehouses for storing 
EEG data and addressed their high-performance qualities (George 2011). Sahoo et  al. 
(2014) and Jayapandian et  al. (2013) also presented a distributed system for storing 
and querying massive volumes of EEG data. Cloudwave, a system they designed, stores 
clinical data using Hadoop-based data processing modules, and includes web-based 

Fig. 1 Healthcare data storage
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interface for real-time data visualization and analysis by exploiting Hadoop’s processing 
capabilities. Achieved results show tremendous save in processing time, Cloudwave was 
able to process five EEG studies in 1 min, in comparison to the stand-alone system that 
need 20 min for the same task. Jin et al. (2011) investigated the feasibility of employing 
Hadoop HDFS and HBase for distributed EHRs. In comparison to a standard relational 
database that is good at handling structured data, the innovative NoSQL is an advanced 
option for storing unstructured data. Mazurek (2014, May 27–30) presented a system 
that integrates relational and multidimensional technologies, as well as NoSQL 
repositories, to enable data mining techniques while also providing flexibility and 
speed in data processing. Nguyen et al. (2011) presented a prototype system for storing 
clinical signal data, in which clinical sensor time series data are stored within HBase in 
such a way that the row key serves as the time stamp of a single value, and the column 
stores patient physiological values that correspond with the row key time stamp. The 
information for the HBase data structure is stored in MongoDB62, a document-based 
database, to increase accessibility and readability.

The Picture Archiving and Communication System is one of the services used in 
medicine for image data storage and transfer (PACS) (Kouanou et  al. 2018), which 
is achieved primarily through DICOM protocols in radiology departments (Luo 
et  al. 2016). PACS are popular for transmitting images to local display workstations 
using existing protocols such as digital image communication in medicine (DICOM). 
However, data transmission with a PACS is very standardized (Doel et  al. 2017), and 
this system depends entirely on structured data to retrieve medical images rather than 
utilizing the biomedical images’ unstructured information (Istephan and Siadat 2016). 
To access PACS, several web-based medical apps have been developed, and growing 
use of Big Data technologies has improved their performance (Luo et al. 2016). Many 
studies have been conducted to manage and analyze structured and unstructured data 
images utilizing the Big Data and artificial intelligence concepts (Kouanou et al. 2018). 
Given the current tendency among health-care organizations to outsource the two 
critical components of PACS (DICOM object repository and database system) to the 
cloud, Silva et al. (2012) suggested a technique to integrate data in PACS. They suggested 
a Cloud input/output stream method in an abstract layer to accommodate many cloud 
providers no matter the differences in data access standards. Yao et al. (2014) built a huge 
Hadoop-based medical image retrieval system that retrieved the properties of medical 
images using a Brushlet transform and a local binary pattern algorithm, in addition to 
Big Data technologies based on the integration of cloud platforms with PACS. Image 
characteristics were then saved in HDFS, followed by MapReduce implementation. 
When compared to the findings without homomorphic filtering, the evaluation results 
showed a lower error rate. Similarly, Jai-Andaloussi et al. (2013) addressed the issues of 
content-based image retrieval systems using the MapReduce processing architecture and 
HDFS storage model. They performed testing on mammography datasets and achieved 
good results, demonstrating that the MapReduce approach may be utilized efficiently for 
content-based medical image retrieval.

Long-term storage of Big Data in medicine necessitates huge storage capacity. If 
any decision support system is to be conducted utilizing the data, it also necessitates 
quick and precise algorithms. Furthermore, if additional sources of data obtained for 
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each patient are also used during the diagnosis, prognosis, and treatment prediction, 
providing cohesive storage and designing effective systems capable of encapsulating 
the vast range of data becomes a difficulty (Belle et  al. 2015). Compression methods 
can assist overcome data storage and network capacity limits when dealing with very 
large amounts of data. Many approaches for compressing medical images have been 
developed. However, a few approaches for large data compression have been devised. A 
technique for compressing both high-throughput sequencing datasets and data created 
by calculating log-odds of probability error for each nucleotide has been developed, with 
maximum compression ratios of 400 and 5, respectively (Ohno-Machado et  al. 2012). 
Filtering and the Fourier transform were used as signal processing techniques in this 
model (Ohno-Machado et al. 2012). Wolff (2014) investigated the use of the simplicity 
and power (SP) theory of intelligence in massive data. SP theory seeks to simplify and 
combine concepts from several domains, including artificial intelligence, mainstream 
computing, mathematics, and human perception and cognition. The suggested SP 
system achieves lossless compression by matching and unifying patterns. However, this 
system is still in development (Belle et al. 2015).

Big data technologies for medical image processing

Parallel computing is detected as critical infrastructure for managing Big Data. It can per-
form analysis on a cluster of devices or supercomputers at the same time. Big Data tech-
nology with Artificial Intelligence (AI) and massively parallel computing can be used for 
a revolutionary way of prediction and personalized medicine (Dilsizian and Siegel 2014). 
Novel parallel computing models, such as Google’s MapReduce (Dean and Ghemawat, 
MapReduce: simplified data processing on large clusters  2008), have been proposed in 
recent years for a new large data infrastructure. Apache just launched Hadoop (White 
2015), an open-source MapReduce software for distributed data management. Concur-
rent data access to clustered servers is supported via the Hadoop Distributed File System 
(HDFS). Hadoop-based services may also be thought of as cloud computing platforms, 
allowing for centralized data storage as well as remote access through the Internet. As 
such, cloud computing is a revolutionary concept for distributing customizable compu-
tational resources across a network (Armbrust and Griffith 2010), and it may function as 
an infrastructure, platform, and/or software to provide an integrated solution. Further-
more, cloud computing may increase system speed, agility, and flexibility by eliminating 
the need to maintain hardware or software capacity and necessitating less resources for 
system maintenance, such as installation, setup, and testing. Cloud technologies are at the 
heart of many emerging Big Data applications (Luo et al. 2016). Additionally, Hadoop and 
Spark frameworks have been identified as optimal and efficient architecture for biomedi-
cal image analysis (Kouanou et al. 2018).

In addition, High Performance Computing (HPC) uses parallel processing and 
advanced programs, or software packages speed up massive calculations. In that 
sense, Finite Element Method (FEM), which represents continuum method for very 
powerful scientific computation analysis, strongly relies on advanced computer tech-
nology and HPC. Traditional database and software techniques cannot be used for 
these large-scale computations (Demchenko et  al. 2013). High Performance Com-
puting (HPC) can be used in medicine contained in Big Data (Lavignon et al. 2013). 



Page 6 of 22Geroski et al. Journal of Big Data           (2023) 10:72 

Massive multiscale computation with multiscale material models, or finite element 
computation with adaptive mesh refinement can be run only on supercomputers with 
Big Data on parallel disk systems (Parashar 2014). Detailed, complex, and anatomi-
cally accurate model of the whole heart electrical activity which requires extensive 
computation times, and the use of supercomputers are already established in the 
literature (Gibbons Kroeker et al. 2006; Kojic et al. 2019). The authors of this paper 
have recently developed a methodology for a real 3D heart model, by using the linear 
elastic and orthotropic material model based on Holzapfel experiments. Using this 
methodology, the transport of electrical signals and displacement field within heart 
tissue can be accurately predicted (Filipovic et al. 2022). Clinical validation in humans 
is very limited since simultaneous whole heart electrical distribution recordings are 
inaccessible for both practical and ethical reasons (Filipovic et al. 2022).

On the other hand, Apache Spark is a distributed computing platform that has 
become one of the most powerful frameworks in the Big Data situation. Spark 
provides a consistent and comprehensive framework for managing the needs for Big 
Data processing using a range of datasets (graph data, image/video data, text data, 
and so on) from various sources (batch, real-time streaming) (Tchito Tchapga et  al. 
2021). According to its designers, the Spark framework was intended to address the 
shortcomings of the Hadoop framework. In some cases, the Spark framework has 
shown to be quicker than Hadoop (more than 100 times in memory). Performance 
can be quicker than other Big Data technologies with advantages such as in-memory 
data storage and near real-time processing (Tchito Tchapga et  al. 2021). The Spark 
framework can prepare data for iteration, query it frequently, and load it into 
memory. The main program (driver) in the Spark framework supervises many slaves 
(workers) and collects their results, whilst slaves’ nodes read data partitions (blocks) 
from a distributed file system, run various computations, and write the results to disk 
(Fig. 2). This means that the master controls and assigns jobs to slaves.

Fig. 2 Job execution using Spark technologies–one master cluster and four slaves
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Spark, like Hadoop, is built on parallel processing MapReduce, which seeks to process 
data in a simple and transparent manner across a cluster of computers. Spark enables 
SQL queries, streaming data, machine learning, and graph processing data in addition to 
Map and Reduce operations (Kouanou et al. 2018). In Spark, program can occasionally 
run the algorithm on several clusters at the same time. Although the number of slaves 
can be increased due to dataset size, the increase in the number of slaves results in an 
increase in processing time.

Existing solutions
Although there are studies that investigate Big Data in healthcare, to the best of our 
knowledge, no prior studies describe a complete procedure for managing medical 
images. Some of the existing research recognize Hadoop, as already mentioned, that 
uses MapReduce, as one of the frameworks built for analyzing and transforming Big 
Datasets (Shvachko, et al. 2010); Sobhy (2012). MapReduce is a programming paradigm 
that enables scalability across several servers in a Hadoop cluster for a wide range of 
real-world applications (Belle, et al. 2015); (Dean and Ghemawat, MapReduce: simplified 
data processing on large clusters 2008). However, it struggles with input-output heavy 
jobs (Markonis, et  al. 2012) used the MapReduce framework to speed up three large-
scale medical image processing use-cases: finding optimal parameters for lung texture 
classification using a well-known machine learning method, support vector machines 
(SVM), (ii) content-based medical image indexing, and (iii) wavelet analysis for solid 
texture classification. The entire execution time for obtaining optimal SVM parameters 
was lowered from around 1000 h to approximately 10 h (Markonis, et al. 2012).

Beside Hadoop, the other recognized technology is Spark. Kouanou et al. (2018) cre-
ated a workflow that uses optimum algorithms integrating AI and ML to efficiently 
handle (acquire, analyze, process, distribute…) biomedical images. They present a 
comprehensive and effective process for managing biomedical images based on Big 
Data technology and optimal algorithms (AI and ML) derived from the literature. The 
classification phase in the suggested optimum flow will be treated as a study case uti-
lizing Big Data analysis technologies (Hadoop and Spark) and may be adjusted to the 
remaining steps (Kouanou et al. 2018). They argue that Big Data applications frequently 
employ Not Only SQL (NoSQL) technologies (Sakr and Elgammal 2016; Bruchez 2015). 
NoSQL is a database category that debuted in 2009 and varies from relational databases 
(Bruchez 2015). One of the recurring issues with relational databases is the loss of per-
formance while processing a high volume of data. Furthermore, distributed architectures 
necessitate native adaptation of solutions to data replication techniques and load control 
(Bruchez 2015; Lee et al. 2013). Cloud computing technology may also be utilized to help 
in data sharing because of the self-contained, networked IT (hardware and/or software) 
resources (Hassan 2011). When considering huge data, del Toro and Muller compared 
different organ segmentation approaches. They presented an approach that utilizes both 
the image’s local contrast and atlas probabilistic information (del Toro and Müller 2014). 
When compared to using simply atlas information, an average of 33% improvement was 
obtained. Although some authors state that they investigate deep convolution neural 
network for Big Data medical image classification, the size of the datasets are really not 
Big Data, as number of images per class is 300 (12 classes total) (Ashraf et al. 2020a, b).
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Other work is being done to manage and evaluate healthcare systems using Big Data. 
Behlima offered a Big Data management method for healthcare systems (Benhlima 
2018). Kounau et  al. (2018) proposed a new concept for biomedical image analysis 
using Big Data architecture in 2018. The authors present a workflow that performs the 
steps of acquisition of biomedical image data, analysis, storage, processing, querying, 
classification, and automatic diagnosis of biomedical images. The procedure used 
unstructured and structured image data from a NoSQL database. The authors developed 
a Spark architecture for constructing suitable and efficient techniques for classifying 
a huge number of photos. Belle et al. demonstrated the impact of Big Data analysis in 
healthcare (Belle et  al. 2015); Luo et al. in (2016) conducted a literature review of Big 
Data application in biomedical research and healthcare; Viceconti et al. investigated the 
possibility of using Big Data for personalized healthcare (Viceconti et al. 2015); Archenaa 
and Anita (2015) demonstrated the need for Big Data analytics in healthcare to improve 
the quality of healthcare by providing patient-centric services and decentralized decision 
making. Thus, by incorporating Big Data technologies into a framework or applications, 
greater data handling and performance may be accomplished (Amanullah et al. 2020). 
Another publication by Tchapga et  al. (2021) conducted a survey of biological image 
classification techniques. The paper then shows how to apply these techniques to a large 
data architecture using the Spark framework. They show that ML is vital in biomedical 
image classification, and when paired with Big Data technologies, the processing takes 
less time and can handle a large number of images at once. Although the advantages 
of Spark framework are big, the Spark framework’s performance might suffer in some 
cases, most notably during feature extraction when there are some tiny images in the 
dataset (unlabeled biomedical images/labeled biomedical images). Another example 
is if the sizes of the images evaluated are too varied from one another, resulting in 
imbalanced loading in the Spark.

One of the articles by Cirillo et al. (2019) focuses primarily on analysis of multi-omics 
data as the main Big Data type in biomedical research and personalized medicine. 
Although these existing solutions each address one of the aspects of Big Data analysis 
(i.e. medical image processing), no solution has addressed the fully automated 
approach meaning the workflow starting from data (medical images), segmentation, 3D 
reconstruction, computational modelling and drug testing. To our knowledge, this paper 
is the first to present the complete workflow with details of methodology and results in 
each of the aforementioned fields.

Proposed solution for carotid artery ultrasound image processing
In this Section, we give a use case of ultrasound image processing, carried out by the 
authors of the paper during the TAXINOMISIS1 project. We present the collected 
dataset during the project, proposed methods and obtained results. To this date, no full 
workflow of image processing and 3D reconstruction in a fully automated manner has 
been analyzed. The goal of TAXINOMISIS project is to create a new concept for carotid 
artery disease stratification by studying the pathobiology of symptomatic plaques, 

1  H2020 project TAXINOMISIS: A multidisciplinary approach for the stratification of patients with carotid artery dis-
ease, 755,320, 2018–2023, https:// taxin omisis- proje ct. eu/.

https://taxinomisis-project.eu/
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identifying disease mechanisms, and developing a multiscale risk stratification model 
that integrates clinical and personalized data, plaque and cerebral image processing and 
computational modeling, and novel biomarkers for high vs. low risk states, in order to 
meet the need for stratified and personalized therapeutic interventions. Figure 3 depicts 
the overall pipeline used inside the project’s US image processing module. The concept 
is collection of Big Data in terms of ultrasound (US) images of carotid artery with plaque 
(Fig. 3A). Collected image serve as the foundation for the whole reconstruction module. 
These images have been annotated and preprocessed (Fig. 3B). The convolutional neural 
networks (CNNs) are trained using these pairs of original and annotated images. The 
trained models are then utilized to extract the segments of the carotid artery (Fig. 3C). 
The deep learning module then directs the input to the reconstruction module (Fig. 3D), 
where the required forms of the carotid bifurcation are formed, as shown in Fig. 3E, in 

Fig. 3 Developed methodology for the reconstruction of carotid bifurcations using US imaging
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order to get the finite element mesh of the reconstructed geometry, as shown in Fig. 3F. 
Finally, the finite element mesh is ready to be employed in the computational fluid 
dynamics (CFD) module for blood flow and plaque progression simulations.

Dataset description

The dataset includes ultrasound images from 39 patients. At the carotid artery level, 
all subfolders corresponding to patients are randomly split into training, validation, 
and testing sets in an 8:1:1 ratio (either for the left or for the right arterial model). The 
dataset includes 179 original images that were supplemented for training purposes. 
When images from a completely new dataset (new slices received from another patient) 
are supplied as model input, random selection is critical to ensuring model robustness. 
This is both required and significant since the carotid arteries are not symmetric about 
the x and y axes. Furthermore, the patient’s age, weight, and height are all crucial factors 
that determine the final outcome.

Image preprocessing

Given the low quality of US images, image preprocessing is a critical pre-step for many 
deep learning algorithms related to image and instance segmentation, as well as object 
recognition tasks. In this scenario, the automatic detection of the image region con-
taining the artery tree under reconstruction is the initial step in preprocessing. This is 
accomplished by picking a 512 × 512 pixel static window for both artery models, left and 
right. The window coordinates are given special consideration so that the entire arterial 
tree is displayed in the region. Following this, all images are labeled, yielding two data-
sets with labeled areas, one for the lumen and the other for the wall.

Images in the dataset are extremely diversified as it is shown in Fig. 4. These differences 
include colors, brightness/contrast, frames and tables. It can be observed that some 

Fig. 4 Dataset samples
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figures have tables containing various parameters on the right side (Fig. 4b and c), while 
others do not, and that color scales can be different (Fig. 4a and d). Additionally, as it 
can be seen Fig. 4d, significantly lower brightness/contrast of the figure caused overall 
dark appearance of the figure, where dark zones occupy a lot more space then on the 
other figures. Also, it can be observed that some figures have frames containing various 
information unlike others, and even that the spaciousness of the figures is different 
(Fig. 4b and c), i.e. they occupy less space on the figures.

Image segmentation

Image segmentation, more precisely automated carotid artery (lumen and wall) 
segmentation, was performed using FCN-8s, SegNet, and U-Net deep convolutional 
networks. In addition to the initial versions of these architectures, U-Net and SegNet 
networks were modified in terms of depth to assess their ability to distinguish regions 
of interest. Finally, the best results were obtained by employing a customized version 
of U-Net CNN (Fig. 5). It features two more blocks in both the encoder and decoder. 
Each encoder block comprises two convolutional layers with 33 filters, followed by 22 
max pooling. Encoder blocks create output with 24, 64, 128, 256, 512, and 768 channels, 
respectively. In each decoder block, 22 upconvolution and skip connection are followed 
by three further convolutional layers with 33 filters, and the final decoder block creates 
the segmentation mask using 11 convolution and sigmoid activation function. All 
convolutional layers are padded such that the resultant activation map has the same 
height and width. As a result, the output segmentation map has the same resolution as 
the original image.

Furthermore, this version of architecture U-Net employs batch normalization after 
each convolutional layer, which performs significantly better on given data than the 

Fig. 5 U-Net architecture. Blue boxes represent the feature maps, white boxes are the feature maps copied 
from the encoder and concatenated with the decoder feature maps. Spatial resolution is shown on the left 
side of feature maps, and the number of channels is written on top of boxes
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original U-Net model. A ReLU activation follows each batch normalizing layer. As a 
loss function, the model is trained using a mix of binary cross-entropy and soft dice 
coefficient. In order to increase the number of images, to strive towards Big Data, data 
augmentation is performed. Because of relatively small size of the training set, the 
number of training photos was augmented further utilizing data augmentation tech-
niques. Figure 6 shows examples of original and labeled images for the lumen and wall.

Figure 7 also depicts the convergence of the loss function for training and validation 
data for the lumen segmentation.

Fig. 6 Ultrasound imaging of the carotid arteries: original images (first row), lumen masks (second row), wall 
masks (third row)

Fig. 7 The convergence of loss function, precision, recall and F1-score values over training (red) and 
validation data (blue)

Table 1 U-Net results on test dataset for lumen and wall

Target tissue Precision Recall Dice 
coefficient 
(F1-score)

Lumen 0.89 0.78 0.83

Wall 0.82 0.91 0.85
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The results for binary classification were reported in terms of three standard 
metrics - precision (P), recall (R), and F1-score coefficient. Table 1 shows the findings 
of the lumen and wall for the test sets, respectively.

Training and testing were carried out on a GIGABYTE NVIDIA GeForce GTX 1080 
Ti 11GB, GDDR5X, 352bit GPU. Python V3.6.7 is used as the programming language, 
while the code is written in Keras, which uses the Tensorflow framework as the 
backend.

3D reconstruction of carotid artery

The 3D reconstruction of the patient’s carotid artery is accomplished utilizing the 
patient’s available clinical imaging data. One of the most significant issues with the 
patient data set is the scarcity of 2D transversal slices. Furthermore, the longitudinal 
slices from the CCA and ECA branches were absent from the accessible dataset in the 
previously described approach. To address the issue of missing slices, the generalized 
model described in the literature was adopted as the foundation. This foundation is 
then tailored to the unique patient by incorporating accessible data into the geometry. 
Figure 8 shows the reconstructed model, where the elements of the model highlighted 
with a blue square have been adapted to the specific patient. The CCA and ICA 
branches’ transversal cuts (annotated by the A, B, and D lines in Fig. 8B) are utilized 
to specify the forms of their cross-sections. The cross-section of the ECA branch is 
specified as circular since the clinical dataset lacked the transversal cut from this 
branch. The ICA’s longitudinal cut is utilized to extract the centerline and diameters 
in this section, whereas the ECA and CCA branches are deemed straight. The arterial 
wall is also reconstructed using the available clinical data, in combination with 
generic data presented in literature, using the same approach that is used for lumen. 
Within the improved methodology, the longitudinal US images contained the whole 
carotid bifurcation. Hence the segmented data included lines of lumen and wall for 
all three branches. These lines are then used to define the shapes of all three branches 
where the parts of the model marked with a blue square are the ones that have been 
adapted to the particular patient. As it can be observed, the whole model is adapted 
to the particular patient. The lengths of the branches and their positions in space are 
also now patient-specific and not generic.

Fig. 8 Comparison of two reconstructed carotid bifurcations; A reconstructed geometry using with severe 
stenosis after bifurcation; B reconstructed geometry with mild stenosis after bifurcation
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Proposed solution for drug testing on personalized heart models
In this Section, we give a use case of computational modelling of the heart, carried out 
by the authors of the paper during the SILICOFCM2 project. We present the collected 
dataset during the project, proposed methods and obtained results. To this date, no such 
complex methodology including computational modelling and drug testing has been 
performed. The challenge of the SILICOFCM project includes the development of a 
computational platform for in silico clinical trials of familiar cardiomyopathy that would 
analyze patient specific features (i.e. genetic, biological, pharmacologic, clinical, imaging 
and patient specific cellular aspects) with the aim to optimize medical treatment 
strategies. One of the workflows for testing of different types of drugs has been shown in 
Fig. 9. The experimental observations in many clinical trials are used as an input for FE 
models yielding us the precise model of  Entresto®action.

Drugs that affect changes in macroscopic parameters-ENTRESTO®

ENTRESTO®(Sacubitril/valsartan) has been shown to be superior to enalapril in 
reducing the risks of death and hospitalization for heart failure (HF). There are also 
publications which evaluate the effects of sacubitril/valsartan on clinical, biochemical, 
and echocardiographic parameters in patients with heart failure and reduced ejection 
fraction (HFrEF). The first-in-class angiotensin receptor neprilysin inhibitor (ARNI) 
sacubitril/valsartan combines the angiotensin II type-1 receptor blocker (ARB) 
valsartan with the neprilysin inhibitor sacubitril.  Entresto®was superior to enalapril 
in decreasing risks of death and new admission for HF in patients with HFrEF in 
the Prospective Comparison of ARNI with ACEI to Determine Impact on Global 
Mortality and Morbidity in Heart Failure (PARADIGM-HF) study (McMurray et al. 
2014). Romano et al. (2019) investigated the effects of sacubitril/valsartan on clinical, 
biochemical and echocardiographic, parameters in HFrEF patients. They find that 
 Entresto®can be “hemodynamic recovery” drug. A modulation of neurohormonal 
activation determined by this drug may lead to a hemodynamic effect that may 
impact cardiac hemodynamic and in association with Nt-proBNP concentration 

Fig. 9 Pathways of drug action in SILICOFCM drug testing workflow through macroscopic structural and 
boundary condition changes

2  H2020 project SILICOFCM: In Silico trials for drug tracing the effects of sarcomeric protein mutations leading to 
familial cardiomyopathy, 777,204, 2018–2022, www. silic ofcm. eu.

http://www.silicofcm.eu


Page 15 of 22Geroski et al. Journal of Big Data           (2023) 10:72  

abatement could lead to a ameliorate NYHA (New York Heart Association) class 
and reduce diuretics administration and consequently to preserve renal function. 
 Entresto®reduced E/A ratio, MR, TR velocity and Nt-ProBNP concentration. This 
hemodynamic effect ameliorates the NYHA class and reduce diuretic dose at 
follow-up. MR, mitral regurgitation from moderate to severe grade; E/A: peak e-wave 
velocity/peak a-wave velocity ratio; TR velocity: tricuspid regurgitation peak velocity 
(Fig. 10).

For example, the main  Entresto®component, valsartan, strongly interacts with Angi-
otensin II receptor inducing the left ventricular hypertrophy in patients with essential 
hypertension. Left ventricular hypertrophy (LVH) represents an independent risk fac-
tor in patients with essential hypertension. In a randomized, double-blind trial, 69 
predominantly previously untreated hypertensive patients with echocardiographically 
proven LVH, i.e., left ventricular mass index (LVMI) > 134 g/m2 in men and > 110 g/
m2 in women and/or end-diastolic septal thickness > 12  mm, received the angioten-
sin II antagonist valsartan for 8 months (Thürmann et al. 1998). The study revealed 
that the dose of 80 mg/day decreased LVMI from 125 to 105 g/m2 in 8 months. End-
diastolic posterior and end-diastolic septal wall thickness also significantly decreased. 
Left ventricular end-diastolic and end-systolic diameter also decreased.

The influence of valsartan predominantly indicated significant increase in left ventric-
ular end-diastolic and end-systolic volume, while ejection fraction remained in the same 
boundaries (Table 2).

Table 3 shows observed changes for Doppler echocardiographic parameters.
Pressure before and after Entresto treatment alongside the pressure volume diagram 

for left ventricle has been presented in Fig. 11.

Fig. 10 Hemodynamic recovery
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It is obvious that Entresto drug significantly increase ejection fraction for the left ven-
tricle volume rate.

Realistic geometry of heart model with left chamber and atrium parts

Using experimental data and DICOM files provided from specific patient, we 
have reconstructed realistic heart model as STL format with left atrium (Fig.  12a, 
noted blue) and chamber part (Fig.  12a, noted yellow) with accompanying mitral 
valve cross-section between (Fig.  12a, noted green), and also aortic part (Fig.  12a, 
noted orange) of the model with aortic cross-section included in fluid part of the 
model, which is surrounded by solid wall (Fig. 12a, wireframe). Finite element model 

Table 2 Influence of 80 mg/day dose of  Entresto®

Parameter 0 months 8 months

LVMI—left ventricular mass index 125 g/m2 105 g/m2

PWTd—end-diastolic posterior wall thickness 13.6 ± 0.7 mm 12.4 ± 1.0 mm

IVSd—end-diastolic septal wall thickness 13.7 ± 1.2 mm 12.2 ± 1.1 mm

LVIDd—left ventricular end-diastolic diameter 47.24 ± 5.13 mm 46.22 ± 5.54 mm

LVIDs—left ventricular end-systolic diameter 29.07 ± 4.83 mm 28.46 ± 4.15 mm

FS—fractional shortening 39 ± 8% 38 ± 6%

LVEDV—left ventricular end-diastolic volume 91.00 ± 27.38 mL 94.97 ± 21.94 mL

LVESV—left ventricular end-systolic volume 31.31 ± 15.67 mL 34.07 ± 11.59 mL

EF—ejection fraction 65 ± 10% 65 ± 7%

Table 3 Doppler Echocardiographic Parameters

Parameter 0 months 8 months

VmaxE, maximal velocity of early diastolic filling phase 75.30 ± 18.27 cm/s 70.14 ± 12.42 cm/s

VmaxA, maximal velocity of late diastolic filling phase 82.64 ± 19.35 cm/s 78.07 ± 16.48 cm/s

∫E, time/velocity integral of early diastolic filling phase 10.76 ± 3.02 cm 11.61 ± 2.33 cm

∫A, time/velocity integral of late diastolic filling phase 10.66 ± 2.98 cm 10.46 ± 2.60 cm

∫E/∫A 1.06 ± 0.33 1.16 ± 0.29

Fig. 11 Pressure volume diagram with details of pressure distribution before and after Entresto treatment
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consists of 1.5 M hexahedral 3D elements, divided by 1 M nodes. Model geometry 
is generated using STL files. Solid nodes are constrained around inlet/outlet cross-
sections (Fig. 12a; red and magenta rings), and in the zone close to the mitral valve 
cross-section. Other solid nodes are free. In the Fig. 12c, two cross- section regions 
are marked to define prescribed inlet and outlet zones. Inside the fluid domain, 
mitral valve cross-section is presented (part of the model between ventricle and 
atrium; Fig. 12c, red line). Fibers direction in solid domain of realistic heart model 
are showed in Fig.  12b, and section C on the same figure shows distribution of 
velocity field in realistic heart model, at 0.1s. It can be seen that velocity values are 
the highest at inlet and outlet boundary cross-sections (red and green lines, Fig. 12c), 
which is logical due to prescribed inlet function and prescribed values at that cross-
section at the beginning of simulation. Regarding the material models used, we have 
selected Holzapfel material model for obtaining passive stresses in the heart wall, 
and for muscle activation Hunter material model for active stresses is used.

Prescribed inlet velocity function profile is shown in Fig.  13a, and aortic valve 
cross-section, while outlet velocity function profile is shown in Fig. 13b. Activation 
of the muscle is achieved using calcium function, displayed in Fig. 13c.

Field of displacements in solid wall of realistic model of heart, during four different 
time steps of one cardiac cycle, is given in Fig. 14. At first step (0.1s), just the pas-
sive part of the material model has an impact on solid wall structure and until 0.4s of 
simulation model volume is increasing until the mitral cross-section is opened and 
fluid flows into the left chamber part. When the mitral valve is closed and injection 
of fluid is finished, fluid starts to eject from the chamber through the aortic cross-
section, calcium function inside Hunter material model starts to act (0.5s), causing 
the start of the muscle contraction until the 0.9s of simulation after which model 
slowly returns to its undeformed state.

All of these models represent integration of Big Data technology, HPC and FEM 
computing.

Fig. 12 a Realistic heart FE model with representative cross-sections and fluid parts; b Direction of fibres in 
solid part of realistic model; c Fluid velocity field at 0.1s (mitral and aortic cross-section noted)
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Fig. 13 a Inlet function of velocity, at mitral valve cross-section; b outlet velocity function–at aortic valve 
cross-section; c Calcium concentration function used for activation of the muscle

Fig. 14 Field of displacements in solid wall of realistic model of heart; four different time periods. 
Non-deformed configuration noted as black mesh
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Conclusion
The availability of Big Data, novel deep learning algorithms and increasing computing 
power are three developments driving the deep learning revolution. While the potential 
advantages of deep learning are enormous, so are the early efforts and costs. Massive 
companies like Google DeepMind, IBM Watson, research laboratories, and prominent 
hospitals and vendors are collaborating to find the best solution for big medical imaging 
and image processing. Siemens, Philips, Hitachi, and GE Healthcare, among others, 
have already made substantial investments (Razzak et al. 2018). Similarly, research labs 
such as Google and IBM are investing in the delivery of efficient imaging applications, 
for example, IBM Watson is collaborating with more than 15 healthcare providers to 
discover how deep learning may be used in the real world (Razzak et al. 2018). Similarly, 
Google DeepMind Health is cooperating with the NHS in the United Kingdom to apply 
deep learning to various healthcare applications (for example, anonymized eye scans 
analysis might aid in the detection of disorders that lead to blindness) on a dataset of 
1.6 million patients.

There are many papers discussing existing solutions related to Big Data and its 
application in medical domain, however, no studies have addressed complete workflow 
starting from data (medical images), image processing (i.e. segmentation), but also 
the aspect of 3D reconstruction, computational modelling and drug testing. To our 
knowledge, this paper is the first to present the complete workflow with details of 
methodology and results for two solutions (i) carotid artery ultrasound image processing 
and 3D reconstruction and (ii) in-silico drug testing on personalized models of heart. For 
both cases carotid artery and left ventricle model ultrasound image processing and 3D 
reconstruction was done using convolutional neural network U-net, while segmented 
masks were further used in 3D reconstruction of geometry. In the left ventricle and total 
heart personalized case computational finite element modelling was used to determine 
pressures before and after drug testing. Both cases demonstrate the necessity of using 
Big Data technologies.

There is no doubt that Big Data has great potential for improving health care. 
However, there are numerous challenges that healthcare faces when using Big Data 
technologies; the most major issue is the integration of multiple datasets. This gets 
more challenging when databases contain diverse data types (for example, integrating an 
image database or a laboratory test results database into current systems), restricting a 
system’s capacity to query all databases to obtain all patient data. Future development of 
Big Data applications in healthcare domains offers a lot of potential since it is based on 
new data standards, appropriate research and technology, collaboration among research 
institutions and enterprises, and strong government incentives.
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