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Abstract
Oral and gut microbiomes are important for the maintenance of homeostasis in 
the human body. Altered or disturbed mutualism between their members results 
in dysbiosis with local injury and subsequent systemic diseases. The high bacte-
rial density causes intense competition among microbiome residents to acquire 
nutrients, including iron and heme, the latter of high importance for heme auxo-
trophic members of the Bacteroidetes phylum. Our main hypothesis is that the 
heme acquisition mechanism, with the leading role played by a novel HmuY fam-
ily of hemophore-like proteins, can be used to fulfill nutritional requirements and 
increase virulence. We characterized HmuY homologs expressed by Bacteroides 
fragilis and compared their properties with the first representative of this family, 
the HmuY protein of Porphyromonas gingivalis. In contrast to other Bacteroidetes 
members, B. fragilis produces three HmuY homologs (Bfr proteins). All bfr 
transcripts were produced at higher levels in bacteria starved of iron and heme 
(fold change increase ~60, ~90, and ~70 for bfrA, bfrB, and bfrC, respectively). 
X-ray protein crystallography showed that B. fragilis Bfr proteins are structurally 
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1   |   INTRODUCTION

Data obtained from the MetaHIT (the European 
Metagenomics of the Human Intestinal Tract Project; 
http://www.metah​it.eu), the NIH Human Microbiome 
Project (http://hmpda​cc.org), and the AsianGut 
Microbiome Project (http://www.asian​gut.com) have re-
vealed high diversity of the human microbiome, as well 
as the possibility of mouth-gut transmission of some spe-
cies. Both oral and gut microbiomes are important for 
the maintenance of homeostasis in the human body and 
for maintaining epithelial barrier integrity. However, al-
tered or disturbed mutualism between microbiota results 
in dysbiosis with local injury and subsequent systemic 
diseases.1–4

The Bacteroidetes, one of the dominant phyla of bac-
teria composing a significant fraction of the gut microbi-
ome, can be both commensal and opportunistic.5,6 They 
are important for maintaining the immune balance in the 
human body and for protection from inflammatory dis-
eases.7 In contrast to Bacteroides vulgatus and Bacteroides 
thetaiotaomicron, Bacteroides fragilis is one of the least 
abundant Bacteroides species in the gut, but it is the most 
common bacterium identified in anaerobic infections, 
with a high mortality rate.8–10 Disruption of the mucosal 
surface of the gut by inflammation, neoplastic tumor, or 
surgery, and subsequent spread of B. fragilis to the blood 
or surrounding tissues, results in clinically significant 
intra-abdominal infections, abscess formation, endocardi-
tis, and pericarditis, often resulting in sepsis, organ fail-
ure, and death.10–12 Another member of the Bacteroidetes 
phylum, Porphyromonas gingivalis, is a keystone etiologic 
agent of periodontal diseases.13–15 This pathogen is not 
only responsible for dysbiosis in the oral cavity, leading 
to the destruction of tooth-supporting tissues, but impor-
tantly, it has been demonstrated to be engaged in the onset 
and progression of several systemic diseases.16–22

Recent studies showed that mouth-gut bacterial trans-
mission and invasion of the gut by P. gingivalis are also 
able to influence the outcome of various diseases such 
as colitis and bowel disease.23–31 In mouse model stud-
ies, orally administered P. gingivalis invaded the gastro-
intestinal tract, changed the gut bacterial composition, 
and lowered the complexity of the gut microbiota.29–35 
P. gingivalis also led to increased permeability of the gut 
epithelium and endotoxemia, which in turn caused not 
only local inflammation, but importantly systemic in-
flammation.21,25 ,26,28,29,33,35–38 Several studies showed 
the association between periodontitis and inflammatory 
bowel disease and demonstrated that P. gingivalis not only 
enhanced mucosal damage in mice with experimentally 
induced colitis,39 but was significantly more abundant in 
patients with ulcerative colitis or Crohn's disease.36,38–42

The high bacterial density in the gut causes intense 
competition among microbiome residents in their acquisi-
tion of nutrients, including iron and heme. The heme de-
pendence of several auxotrophic Bacteroidetes members is 
due to their inability to synthesize precursors of protopor-
phyrin IX (PPIX). Some Bacteroidetes, including P. gingi-
valis and B. fragilis, are able to synthesize heme in vitro if 
PPIX and inorganic iron are supplied.43–48 Bacteroides and 
Porphyromonas species can also remove non-iron metals 
from metalloporphyrins.46–50 After dechelation, ferrous 
iron can be inserted into the metal-free porphyrin through 
a ferrochelatase activity to form heme (FePPIX), and also, 
in the case of B. fragilis, mesoheme (FeMPIX) or deutero-
heme (FeDPIX). B. fragilis is able to act on and modify 
labile heme molecules in vitro46 and can grow in and in-
corporate mesoheme and deuteroheme into a functional 
b-type cytochrome.51 It has been suggested that chelatase/
dechelatase activity could be performed by P. gingivalis 
HmuS protein46,48,52–55 or homologous B. fragilis BtuS2 
protein,46 both encoded on the hmu operon or hmu-like 
gene clusters, respectively. A recent study demonstrated 
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that the abilities of B. fragilis to utilize heme or PPIX 
for growth, as well as intestinal colonization and intra-
abdominal infection, were reduced in the mutant lack-
ing a uroS gene, which was linked with the suppression 
of chelatase/dechelatase activity.56 In contrast to P. gingi-
valis, to acquire iron, B. thetaiotaomicron and B. vulgatus 
can utilize Fe(III)-enterobactin and Fe(III)-salmochelin 
S4, whereas B. fragilis can utilize Fe(III)-ferrichrome, all 
of which are xenosiderophores produced by enterobacte-
ria.47,57,58 After transporting heme or siderophore through 
the outer membrane of B. fragilis or P. gingivalis, respec-
tively, iron is internalized by the inner-membrane ferrous 
iron transporter system (FeoAB).46,59

A factor that plays an important role in survival of B. 
fragilis in extraintestinal infection is its ability to acquire 
heme from host tissues.60,61 Although B. fragilis proteins 
involved in heme acquisition have been reported, includ-
ing an iron-repressible 44-kDa outer membrane heme-
binding protein (HupA) and hemolysins HlyA, HlyB, 
and HlyIII,62–67 knowledge regarding the mechanisms 
involved in this process is still limited. In comparison 
with B. fragilis, the heme acquisition mechanisms of P. 
gingivalis are much better characterized. Among them is 
a heme utilization system (Hmu system), with the leading 
role played by the hemophore-like protein HmuY, used 
to sequester heme from host hemoproteins and deliver it 
to the TonB-dependent outer membrane receptor HmuR 
for subsequent heme transport through the outer mem-
brane.68 Our analyses have led us to the finding that P. 
gingivalis displays a novel heme acquisition mechanism, 
whereby oxyhemoglobin is firstly oxidized to methemo-
globin, which enables more efficient heme sequestration 
by P. gingivalis HmuY. Generation of methemoglobin in-
volves the arginine-specific gingipain protease A (RgpA) 
produced by P. gingivalis,69 the interpain A (InpA) pro-
tease produced by P. intermedia,70 or H2O2 produced 
by Streptococcus gordonii.71 Interestingly, we have also 
demonstrated that the presence of Pseudomonas aerugi-
nosa pyocyanin facilitates the extraction of heme from he-
moglobin by the P. gingivalis HmuY by rapidly oxidizing 
oxyhemoglobin to methemoglobin.72 HmuY is also able 
to compete with albumin for heme,69 as well as seques-
ter heme from hemopexin.73 We also demonstrated that 
a housekeeping protein, exhibiting a moonlighting func-
tion, namely, glyceraldehyde-3-phosphate dehydrogenase 
(SgGAPDH), produced by Streptococcus gordonii, as well 
as HmuY homologs produced by other periodontopatho-
gens, may bind heme and then serve as heme donors for 
P. gingivalis.73–76 Therefore, our novel paradigm of heme 
acquisition, which is displayed by the black-pigmented 
anaerobes, appears to extend to co-infections with other 
bacteria and offers a synergistic mechanism for the abil-
ity of P. gingivalis to obtain sufficient heme in the host 

environment. These findings have been supported by 
studies demonstrating that P. gingivalis HmuY is required 
for the bacterial survival and invasion of human cells not 
only in vitro,77 but importantly, its significantly higher ex-
pression in patients with periodontitis would confirm its 
requirement under in vivo conditions.78–80

Previously, we identified the presence of, and char-
acterized, HmuY homologs in other periodontopatho-
gens belonging to the Bacteroidetes phylum, namely, 
in Tannerella forsythia (Tfo)73 and in Prevotella interme-
dia (PinO and PinA),74 as well as in Bacteroides vulgatus 
(Bvu).76 Our main hypothesis is that the heme acquisition 
mechanism, with the leading role played by the novel 
HmuY family of hemophore-like proteins expressed by 
members of the Bacteroidetes phylum, can be used to ful-
fill their nutritional requirements and increase their vir-
ulence. Importantly, differences in heme-binding modes 
and heme sequestration ability between P. gingivalis 
HmuY and its homologs expressed not only by cohabi-
tating periodontopathogens but also by gut bacteria, may 
provide P. gingivalis with heme, thus increasing its ten-
dency to cause dysbiosis in both the oral and gut microbi-
omes. Therefore, the aim of this study was to characterize 
three potential HmuY homologs expressed by B. fragilis 
and compare their properties with P. gingivalis HmuY.

2   |   MATERIALS AND METHODS

2.1  |  Bacterial stains and growth 
conditions

P. gingivalis A7436, B. fragilis NCTC 9343 (ATCC 25285; 
Pol-Aura, Olsztyn, Poland), and B. fragilis 638R (Institute 
Pasteur, Paris, France) were grown anaerobically (Whitley 
A35 anaerobic workstation; Bingley, UK) at 37°C for 5 days 
on blood agar plates (ABA) composed of Schaedler broth 
(containing hemin and L-cysteine), and supplemented 
with 5% sheep blood and menadione (Biomaxima, Lublin, 
Poland).

P. gingivalis colonies were inoculated into liquid basal 
medium (BM) prepared with 3% trypticase soy broth 
(Becton Dickinson, Sparks, MD, USA), 0.5% yeast ex-
tract (Biomaxima), 0.5 mg/L menadione (Fluka, Munich, 
Germany), 0.05% L-cysteine (Sigma-Aldrich, St. Louis, 
MO, USA), and 7.7 μM hemin (Pol-Aura).

B. fragilis colonies were inoculated into liquid brain-
heart infusion medium (BHI), supplemented with 10 μg/
mL heme (Pol-Aura), 0.2% NaHCO3 (Sigma-Aldrich), 
and 1 g/L cysteine (Sigma-Aldrich) (heme-supplemented 
BHI medium; BHIS), or into minimal medium (DM) 
composed of 1.5 g/L KH2PO4 (Sigma-Aldrich), 0.5 g/L 
NH4SO4 (Sigma-Aldrich), 0.9 g/L NaCl (Sigma-Aldrich), 
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150 mg/L L-methionine (Sigma-Aldrich), 5 μg/L vitamin 
B12 (Sigma-Aldrich), 20 mg/L MgCl2 × 6H2O (Sigma-
Aldrich), 10 mg/L CaCl2 × 2H2O (Sigma-Aldrich), 1 mg/L 
MnCl2 × 4H2O (Sigma-Aldrich), 1 mg/L CoCl2 × 6H2O 
(Sigma-Aldrich), 1 mg/L resazurin (Sigma-Aldrich), 
1 g/L L-cysteine (Sigma-Aldrich), 5 g/L glucose (Sigma-
Aldrich), 1 g/L tryptone (Biomaxima), and 20 mL of 10% 
NaHCO3 (Sigma-Aldrich) per liter (final pH 7.2). To an-
alyze B. fragilis gene expression, bacteria were grown in 
iron/heme-rich conditions (BHIS) and either inoculated 
into BHIS or DM supplemented with various concen-
trations of selected compounds (heme, PPIX, dipyr-
idyl [DIP]) and cultured for 24 h or starved of iron and 
heme (DM without added heme and supplemented with 
160 μM DIP) for 24 h and then inoculated into DM sup-
plemented with various concentrations of selected com-
pounds (hemoglobin, heme, PPIX, DIP) and cultured for 
24 h.

To monitor the influence of heme, PPIX, or copropor-
phyrin III (CPIII) on the growth of B. fragilis, bacteria 
were cultured for two passages in BHI medium, supple-
mented with 0.2% NaHCO3, 1 g/L cysteine, and 160 μM 
DIP. Then, 200 μL of fresh BHI medium, supplemented 
with 0.2% NaHCO3 and 1 g/L cysteine, and additionally 
supplemented with various concentrations of ammonium 
iron(II) sulfate (Sigma-Aldrich) and/or hemin chloride, or 
PPIX, or CPIII, were inoculated with bacteria at a start-
ing optical density at 600 nm (OD600) equal to 0.2. Growth 
curves were measured using a Stratus plate reader (Cerillo, 
Charlottesville, VA, USA) every 1 h for 24 h.

Escherichia coli BL21-CodonPlus-RIL (Agilent 
Technologies, Santa Clara, CA, USA) and DH10β (New 
England Biolabs, Ipswich, MA, USA) strains were cul-
tured under standard aerobic conditions.

2.2  |  Site-directed mutagenesis,  
overexpression, and purification  
of proteins

The modified pMAL-c5x_His plasmid constructed in our 
previous study81 was used to clone DNA sequences (am-
plified by PCR using isolated genomic DNA) encoding 
B. fragilis BfrA (GenBank locus ID: CAH08403), BfrB 
(GenBank locus ID: CAH06766), and BfrC (GenBank 
locus ID: CAH07859) proteins, lacking the predicted signal 
peptides (MRKAI​LFC​LAI​TLL​GTM​LIS​FSACN, MNNKN​
KFR​FAI​LLF​GVL​SAF​IITAC, MKHTG​LFK​TLC​FCA​GCL​
LLSAC, respectively). All proteins were overexpressed in 
E. coli BL21-CodonPlus-RIL cells (Agilent Technologies) 
and purified from soluble fractions obtained from E. coli 
cell lysates, and the fusion tag was removed from puri-
fied recombinant proteins as described previously.73,74 All 

primers used in this study are listed in Table  S1. HmuY 
and HusA proteins were overexpressed and purified as 
described previously.82 Concentration of the purified 
proteins was determined spectrophotometrically using 
the empirical molar absorption coefficients determined 
for apo-forms of BfrA (ε280nm = 42.81 mM−1 cm−1), BfrB 
(ε280nm = 25.08 mM−1 cm−1), and BfrC (ε280nm = 63.57 mM−1 
cm−1) in this study, and for HmuY (ε280nm = 36.86 mM−1 cm−1) 
and HusA (ε280nm = 33.81 mM−1 cm−1) as reported 
previously.82,83

Point mutations were introduced into the respec-
tive genes using a QuikChange II XL Site-Directed 
Mutagenesis Kit (Agilent Technologies). Selected amino 
acids with a potential ability to coordinate heme iron, 
chosen based on amino acid alignment and comparison 
of three-dimensional protein structures, were substituted 
by alanine, resulting in single-point mutations. Sequences 
of site-directed mutagenesis primers are available upon 
request.

2.3  |  Protein-heme/protoporphyrin IX/
coproporphyrin III complex formation and 
titration experiments

Heme (hemin chloride; Pol-aura, Olsztyn, Poland) solu-
tions were prepared as reported previously.69,73 To analyze 
the redox properties of the heme iron, 10 mM of sodium 
dithionite prepared in PBS was used as the reductant, and 
1 mM of potassium ferricyanide prepared in PBS as the 
oxidant.73,74,84 Deuteroheme (FeDPIX) and mesoheme 
(FeMPIX) (Frontier Specialty Chemicals, Logan, UT, 
USA) were prepared as described previously.85,86 PPIX 
(Sigma-Aldrich, St. Louis, MO, USA) stock solution was 
prepared by dissolving PPIX in pure DMSO (99.9%) (Fluka, 
Munich, Germany) and its concentration was determined 
in DMSO using the empirical molar absorption coeffi-
cient ε405nm = 150 mM−1 cm−1.87 CPIII (Frontier Scientific, 
Logan, UT, USA) stock solution was prepared by dissolving 
in 0.1 M NaOH and the concentration was determined in 
50 mM HEPES pH 7.5,88 using the empirical molar absorp-
tion coefficient ε393nm = 150.74 mM−1 cm −1.

The formation of porphyrin-protein complexes was 
examined in 20 mM of sodium phosphate buffer, pH 7.4, 
containing 140 mM of NaCl (phosphate-buffered sa-
line, PBS). UV-visible absorption spectra were recorded 
in the range 250-700 nm with a double beam Jasco V-
750 spectrophotometer using cuvettes with 10 mm path 
length. Titration curves were analyzed using the equa-
tion for a one-site binding model, and dissociation con-
stant (Kd) values were determined as reported earlier73,74 
using OriginPro 8 software (OriginPro Corporation, 
Northampton, MA, USA).
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2.4  |  Size-exclusion chromatography

Analytical size-exclusion chromatography was carried out 
under air (oxidizing) and reducing conditions. Samples 
(0.8 mg, 400 μL) in 50 mM Tris-HCl buffer, containing 
140 mM NaCl, pH 7.4 (Tris buffer, TBS), were applied 
onto a Superdex 75 Increase 10/300 GL column (Sigma-
Aldrich) connected to an ÄKTA Pure FPLC system (GE 
Healthcare, Chicago, IL, USA). To analyze proteins under 
reducing conditions, 30 mM of sodium dithionite was 
added to the separating buffer (TBS).

2.5  |  Heme sequestration experiments

The albumin-heme complex was prepared by incubating a 
120-μM stock solution of human albumin (Sigma-Aldrich) 
in PBS at a 1:1.2 protein-to-heme molar ratio and sub-
sequently passed through Zeba Spin Desalting Columns 
(Sigma-Aldrich) to ensure that no un-complexed heme re-
mained. Human hemopexin (Sigma-Aldrich) was solubi-
lized in PBS and incubated with heme as described above. 
Human methemoglobin (Sigma-Aldrich) was solubilized 
in PBS. The hemoproteins were incubated with B. fragi-
lis proteins as described previously.73 Co-incubation of 
HmuY with B. fragilis proteins was carried out in PBS and 
monitored by UV-visible spectroscopy under air (oxidiz-
ing) or reducing conditions, using each protein at 5-μM 
concentration.73

2.6  |  Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis  
(SDS-PAGE) and Western blotting

For SDS-PAGE, samples were prepared and analyzed as re-
ported previously.73 Separated proteins were stained with 
Coomassie Brilliant Blue G-250 (CBB; Sigma-Aldrich). For 
immunoblotting, samples were separated by SDS-PAGE, 
transferred onto nitrocellulose membranes (Millipore, 
Billerica, MA, USA), probed with polyclonal rabbit anti-
bodies raised against purified BfrA, BfrB, and BfrC pro-
teins (ProteoGenix, Schiltigheim, France), and complexes 
formed were detected using HRP-conjugated anti-rabbit 
IgG antibodies (Sigma-Aldrich) and chemiluminescence 
staining (Perkin Elmer, Waltham, MA, USA).73

2.7  |  Determination of susceptibility of 
proteins to proteolytic digestion

To examine the susceptibility of the Bfr proteins to bacte-
rial proteases, P. gingivalis and B. fragilis cells were grown 

in rich iron/heme conditions (ensuring proper cell vi-
ability and efficient proteolytic activity) in the presence 
of added purified HmuY or Bfr proteins at a final con-
centration of 5 μM.73 All cultures (1 mL) were started at 
OD600 = 0.2 for P. gingivalis and OD600 = 0.4 for B. fragilis 
and collected at 0-, 6-, and 24-h time points. The num-
ber of bacterial cells at the starting point was ~2 × 108 or 
~4 × 108 per 1 mL of the culture medium for P. gingivalis 
and B. fragilis, respectively, and increased during cultiva-
tion. As controls, P. gingivalis or B. fragilis cultures with-
out addition of the purified proteins or culture medium 
alone supplemented with proteins were analyzed. At the 
indicated time points, aliquots of samples were examined 
by SDS-PAGE and CBB staining.

2.8  |  Bacterial cell fractionation

Portions of bacterial cultures were centrifuged at 
4000 × g for 20 min at 4°C and supernatants were fil-
tered using sterile 0.22 μm filters (Roth, Frederikssund, 
Denmark) to separate the cell-free culture supernatant 
and cells. To separate OMV, the filtered supernatants 
were concentrated using Amicon Ultra-4 Centrifugal 
Ultracel-100KDa filter units (Millipore) and ultracentri-
fuged at 100 000 × g for 2 h at 4°C using a Beckman fixed-
angle rotor (Type 70 Ti; Beckman Coulter, Indianapolis, 
IN, USA). To examine soluble proteins, the culture su-
pernatant was concentrated 25× with Amicon Ultra-4 
Centrifugal Ultracel-10KDa filter units (Millipore). The 
cell pellet was washed twice with PBS and used to ana-
lyze the whole cell fraction.

2.9  |  Reverse transcriptase-quantitative 
polymerase chain reaction (RT-qPCR)

RNA was purified from 0.5 × 108-4 × 108 B. fragi-
lis cells as described previously.73,74 Reverse tran-
scription was carried out with 200 ng of RNA using a 
LunaScript RT SuperMix Kit (New England Biolabs). 
PCR was performed using a SensiFAST SYBR No-ROX 
Kit (Bioline) and the LightCycler 96 System (Roche, 
Basel, Switzerland). The amplification reaction was 
carried out as follows: initial denaturation at 95°C for 
2 min, 40 cycles of denaturation at 95°C for 5 s, primer 
annealing at 60°C for 10 s, and extension at 72°C for 
20 s. The melting curves were analyzed to monitor the 
quality of PCR products. Relative quantification of the 
respective bfr gene expression was determined in com-
parison with the 16S rRNA gene's expression (GenBank 
locus ID: BF638R_rRNA0004) as a reference, using the 
∆∆Ct method and LightCycler 96 software (Roche). All 
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samples and controls were run in triplicate in three 
independent experiments for the target and reference 
genes. All primers are listed in Table S1.

2.10  |  Differential scanning fluorimetry 
(DSF)

To determine conformational stability of the purified pro-
teins, thermal unfolding and refolding were examined. 
Samples comprising proteins in apo-form or proteins 
with added heme were prepared in PBS and examined 
using a label-free fluorimetric analysis with Prometheus 
NT.48 apparatus (Nano Temper Technologies, Munich, 
Germany). NanoDSF grade capillaries were filled with 
1 mg/mL protein solutions and heated from 25 to 90°C 
with a 1°C/min heating rate at low detector sensitivity 
with an excitation power of 8%. Unfolding and refolding 
transition points (Tm) were determined from the first 
derivative of the changes in the emission wavelengths 
of tryptophan and tyrosine fluorescence at 330 nm and 
350 nm, respectively, automatically identified by the 
Prometheus NT.48 control software (Nano Temper 
Technologies). Two independent measurements were 
performed.

2.11  |  Protein crystallization, X-ray 
data collection, processing, and structure 
determination

Both BfrB and BfrC proteins were crystallized by the hang-
ing drop method at room temperature. For crystallization 
of BfrB, 2 μL of 10 mg/mL protein (in 20 mM Tris/HCl, 
pH 7.5) was mixed with 2 μL of reservoir solution, con-
taining 2.6 M of ammonium sulfate and 100 mM of acetate 
buffer, pH 5.5, and equilibrated over 400 μL of reservoir 
solution. Thin plates appeared within a few days. Crystals 
of BfrC protein were obtained by equilibration of 1.5 μL of 
10 mg/mL protein (in 20 mM Tris/HCl, pH 7.5) with 1.5 μL 
of reservoir solution (condition G2 or 2-26 from JCSG plus 
screen; Molecular Dimensions Limited, Calibre Scientific, 
Rotherham, UK) over an 80-μL reservoir. Crystallization 
solution contained 0.02 M of magnesium chloride hexahy-
drate, 0.1 M HEPES, pH 7.5, and 22% w/v Poly (acrylic acid 
sodium salt) 5100. Crystals grew within 1 week. Crystals 
were flash frozen in liquid nitrogen using reservoir solu-
tion with 20% glycerol for BfrB and 20% ethylene glycol 
for BfrC and stored in liquid nitrogen before the data 
collection.

X-ray data were collected at Diamond Light Source 
UK, beamline I24 at 100 K using a Pilatus3 6 M detector 
and 0.999 Å wavelength. Data were integrated during 

data collection by Xia2_Dials software89 and scaled using 
AIMLESS90 as implemented in the CCP4i2 interface91 to 
1.77 Å for BfrB and 1.8 Å for BfrC. Both crystal structures 
were solved by MOLREP,92 for BfrB using chain A of the 
holo-HmuY structure (PDB ID: 3H8T) and for BfrC using 
the model predicted by RosettaCommons server (https://
www.roset​tacom​mons.org/softw​are/servers). Both mod-
els were automatically built by ArpWarp,93 followed by 
manual model building and restrained refinement using 
Coot94 and REFMAC5.95 TLS refinement was used for 
BfrB. X-ray data collection and refinement statistics are 
given in Table 1.

2.12  |  Molecular dynamics (MD) 
simulations

MD simulations were performed with Gromacs 2022.496 
using the Gromos54A7 force field.97 Subunit B of the BrfA 
crystal structure (PDB ID: 4GBS) was selected for the 
simulations, replacing methyl-lysine residues with lysine. 
Models with Fe-heme added manually as covalent links 
to Met146 or Met175 were constructed. The structures 
were prepared for MD runs in each case by adding hy-
drogen atoms and assigning charges to protein residues. 
Following solvation with SPC water98 and charge neutrali-
zation with Cl− ions, the simulation box contained ~19 000 
atoms. Following energy minimization employing protein 
restraints, the system was equilibrated under the microca-
nonical ensemble at a temperature of 310 K for 200 ps and 
then switched to the isothermal-isobaric ensemble using 
the Parrinello-Rahman barostat99 at 1 atm pressure. The 
system was further equilibrated for 200 ps. Production 
runs using a time-step of 2 fs, with replicates for each 
model, were then made for up to 100 ns. The Particle-
Mesh-Ewald (PME) sum method100 was used for all elec-
trostatic calculations with a cutoff distance of 1.0 nm. MD 
trajectories were examined using the VMD program.101

2.13  |  Bioinformatics and 
statistical analyses

Comparison of amino acid sequences was performed 
using the Multiple Sequence Alignment Clustal Omega 
available from the European Bioinformatics Institute 
(EMBL-EBI).102 Three-dimensional protein structures 
were visualized using the UCFS ChimeraX available from 
the UCSF Resource for Biocomputing, Visualization, and 
Informatics (http://rbvi.ucsf.edu).103 Three-dimensional 
protein structures of TonB-dependent outer membrane 
receptors have been modeled using AlphaFold104,105 and 
presented with Swiss-PdbViewer 4.1.0.106 The statistical 
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analysis was performed using Student's t-test and the 
GraphPad software (GraphPad Prism 8.0 Inc., San Diego, 
CA, USA).

3   |   RESULTS

3.1  |  Compared to P. gingivalis, B. fragilis 
encodes three potential HmuY homologs

B. fragilis encodes three potential HmuY homologs, 
termed here BfrA (B. fragilis NCTC 9343 locus ID: 
BF2707, BF9343_RS12925, BF9343_2622), BfrB (locus 
ID: BF1028, BF9343_RS04845, BF9343_0985), and BfrC 
(Locus ID: BF2165, BF9343_RS10160, BF9343_2078) 
(Figure 1). Comparison of amino acid sequences of pro-
teins belonging to the HmuY family showed differences 
between them (Figure  2), whereas no differences have 
been found among proteins produced by examined B. 
fragilis NCTC 9343 and 638R strains (data not shown). 

Compared to P. gingivalis hmu operon, a slightly differ-
ent arrangement of genes composing hmu-like gene clus-
ters exists in Bacteroides species (Figure 1). In B. fragilis, 
similar to B. vulgatus and B. thetaiotaomicron, upstream 
of bfrA (the gene encoding the first HmuY homolog, 
BfrA), a gene encoding calycin-like domain-containing 
protein is located. In the case of the second and third 
B. fragilis HmuY homologs, BfrB and BfrC, shorter op-
erons are composed of genes encoding TonB-dependent 
outer membrane receptors (HmuR homologs), and 
PepSY domain-containing protein or DUF4903 domain-
containing protein, respectively.

Similar to the first TonB-dependent outer membrane 
receptor encoded in the hmu-like operon of T. forsythia (I) 
and the receptor in the hmu-like operon in P. intermedia, 
the receptor encoded close to the bfrA gene in B. fragilis 
also possesses two conserved methionine residues, which 
is in contrast to P. gingivalis HmuR107,108 and the second 
outer membrane receptor encoded in the hmu-like operon 
in T. forsythia (II), the latter two proteins possessing two 

Protein (PDB ID) BfrC (8B61) BfrB (8B6A)

Data collection

Space group P22121 I21

Cell dimensions a, b, c (Å)
α, β, γ (°)

52.08, 89.84, 99.06
90, 90, 90

92.47, 42.31, 110.39
90, 95.49, 90

Resolution (last shell) (Å) 66.8–1.81 (1.84–1.81) 38.44–1.77 (1.81–1.77)

No. reflections (last shell) 43 116(2286) 40 527 (1756)

Rmerge 0.163(1.421) 0.76 (1.46)

Rpim 0.071(0.871) 0.11(1.078)

CC(1/2) 0.996(0.372) 0.983 (0.346)

I/σI 6.1(0.7) 4.2 (0.5)

Completeness (%) 99.4(91.6) 96.9 (75.4)

Redundancy 6.0(3.9) 3.9 (2.5)

Wilson B (Å2) 22.8 13.0

Refinement

Resolution (Å) 66.8–1.81 38.44–1.77

No. reflections 40 765 38 371

Rwork/Rfree b 0.198/ 0.249 0.206/0.259

No. atoms

Protein 3779 2689

Water 496 523

B-factors (Å2)

Protein 19.523 19.65

Ligand 23.108 43.36

Waters 39.975 29.83

Rms deviations

Bond lengths (Å) 0.012 0.013

Bond angles (°) 1.732 1.660

T A B L E  1   X-ray data collection and 
refinement statistics.
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conserved histidine residues (Figures  S1 and S2). TonB-
dependent outer membrane receptors encoded by the 
genes located close to the bfrB and bfrC genes do not pos-
sess the first conserved methionine or histidine residue 

located in a similar position in the conserved plug do-
main region. Instead, histidine residues are located a few 
amino acid positions downstream (Figures S1 and S2). In 
the region located in the β-barrel structure, the receptors 

F I G U R E  1   Organization of genes encoding P. gingivalis HmuY and its homologs in selected Bacteroides species. Genes encoding HmuY 
family proteins are shown in red, genes encoding TonB-dependent outer membrane receptors in black, and additional genes, not present in 
the P. gingivalis hmu operon, in yellow, blue, or pink.
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      |  9 of 26ANTONYUK et al.

encoded close to the bfrB and bfrC genes possess con-
served histidine residues surrounded by two conserved 
amino acid motifs (Figures S1 and S2). All these findings 
suggest a potential heme-binding function of Bfr proteins 
and subsequent heme transfer through the outer mem-
brane performed by respective TonB-dependent outer 
membrane receptors. Therefore, we assumed that Bfr 
proteins may belong to the HmuY family of proteins with 
hemophore-like properties.

3.2  |  Iron/heme levels influence 
expression of bfr genes

We found that, analogously to members of the HmuY 
family so far characterized, the expression of bfrA, bfrB, 
and bfrC genes increased when B. fragilis, first grown in 
rich iron/heme conditions (BHIS), was further cultured in 
conditions of lower iron and heme availability (Figure 3A, 
open bars). In general, this effect correlated significantly 

F I G U R E  2   Amino acid sequence comparison of B. fragilis Bfr proteins with the best-characterized HmuY family members. Amino 
acids engaged in HmuY in heme binding, experimentally confirmed by site-directed mutagenesis and crystallographic analysis, are shown 
in red, whilst those confirmed experimentally by site-directed mutagenesis or predicted amino acids engaged in heme binding in HmuY 
homologs are shown in blue or green, respectively. Pg, P. gingivalis; Tf, T. forsythia; Pi, P. intermedia; Bv, B. vulgatus; Bf, B. fragilis; Bt, B. 
thetaiotaomicron.
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10 of 26  |      ANTONYUK et al.

F I G U R E  3   Analysis of bfr transcripts (A) and Bfr proteins (B) in B. fragilis cultured in different conditions. (A) Levels of transcripts 
analyzed by RT-qPCR. Relative expression fold change represents mRNA levels in bacteria grown in indicated conditions versus bacteria 
grown in rich iron/heme conditions (BHIS), the latter set as 1.0. Bacteria were cultured in BHIS and then either inoculated into BHIS 
(reference samples) or into minimal medium (DM) supplemented with indicated compounds and cultured for 24 h (empty bars) or bacteria 
had been starved of iron and heme (DM without added heme and supplemented with 160 μM dipyridyl, [DIP]) for 24 h and then inoculated 
into DM supplemented with indicated compounds and cultured for 24 h (red bars). (B) Levels of proteins analyzed by Western blotting using 
antibodies directed to respective Bfr proteins (α-BfrA, α-BfrB, α-BfrC). WC, whole bacterial cells; SP, fraction comprising soluble proteins; 
OMV, outer membrane vesicles; HM, bacteria grown in rich iron/heme conditions (BHIS); DIP, bacteria grown in low-iron/heme conditions 
(DM without added heme and supplemented with 160 μM dipyridyl). Black arrow indicates soluble BfrA protein and blue arrows indicate 
membrane-associated BfrC protein. (C) Specificity of antibodies was analyzed using 250 ng of purified BfrA, BfrB, and BfrC proteins. 
Ponceau S, proteins stained on a nitrocellulose membrane with Ponceau S.
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      |  11 of 26ANTONYUK et al.

with decreasing concentration of added heme (from 5 to 
0.1 μg/mL) in the presence of 160 μM iron chelator (DIP). 
The most pronounced increase in respective transcript 
levels was observed in the case of bacteria grown in DM 
medium supplemented with 160 μM DIP (ensuring iron 
chelation) and 0.1 μg/mL heme (ensuring bacterial prolif-
eration): fold change increase ~60, ~90, and ~70 for bfrA, 
bfrB, and bfrC, respectively. Only bfrA gene expression 
was higher when bacteria had been cultured in the pres-
ence of iron (derived from DM medium) and with a very 
low concentration of heme (1.0 or 0.1 μg/mL) or PPIX 
(0.1 μg/mL). In addition, we examined gene expression in 
bacteria further starved of iron and heme. For this pur-
pose, we first grew bacteria in minimal medium (DM) 
without added heme or PPIX, but supplemented with 
160 μM DIP, and then in DM supplemented with 50 μM 
DIP and heme, PPIX, or hemoglobin (Figure 3A, red bars). 
Expression of all genes increased when DM was supple-
mented with PPIX in the presence of DIP, suggesting an 
insufficient amount of iron to form heme from available 
iron and PPIX amounts. Only mRNA encoding the BfrA 
protein increased when free heme or heme bound to 
methemoglobin was used as a heme source with limited 
access to iron (50 μM DIP). Similar to transcript levels, all 
Bfr proteins were also produced at higher levels when bac-
teria had been starved of iron and heme (Figure 3B).

Fractionation of B. fragilis cultures showed that the 
BfrA protein was associated mainly with the whole bacte-
rial cell, with a small amount present in the fraction com-
prising outer membrane vesicles (OMV), as well as in the 
form of soluble protein (Figure  3B). The distribution of 
BfrB protein in all fractions examined was similar to that 
observed for P. gingivalis HmuY, whereas the BfrC protein 
was found mainly in the form associated with the whole 
bacterial cell and with OMV. Among all examined anti-
bodies which were directed against Bfr proteins, anti-BfrC 
antibodies exhibited the lowest specificity and sensitivity 
(Figure 3B,C).

3.3  |  Bfr proteins differ in their stability 
as compared to P. gingivalis HmuY protein

All Bfr proteins are less resistant to thermal denatura-
tion than HmuY and its homologs so far characterized 
(Figure S3).73,74 Among all the proteins examined in this 
study, similar to P. intermedia PinO, only BfrB was able to 
refold after thermal denaturation. The addition of heme 
to Bfr proteins did not significantly influence their sus-
ceptibility to thermal denaturation. Compared to HmuY, 
all Bfr proteins were degraded in P. gingivalis cultures 
(Figure  S4). However, neither HmuY nor Bfr proteins 
were degraded when added to B. fragilis cultures.

3.4  |  BfrA and BfrB may bind heme  
but in a manner different from  
P. gingivalis HmuY

Heme-binding ability was first examined using concen-
trated purified, recombinant proteins, possessing the N-
terminal 6 × His and maltose-binding protein (His-MBP 
fusion tag) which had been overexpressed in E. coli. UV-
visible absorption spectral maxima were observed only 
in the case of BfrA and BfrB, suggesting heme binding 
(Figure  S5A). Subsequently, samples of proteins lacking 
the fusion tag and complexed with heme were examined 
visually (Figure  S5B), which revealed a color typical for 
heme-binding proteins in the case of BfrA and BfrB. Based 
on these preliminary findings, we assumed that BfrA and 
BfrB may bind heme.

Free ferric heme in solution exists as a monomer-dimer 
equilibrium, giving absorption maxima in the Soret region 
at 365 and 385 nm (Figure  4). In the BfrA-Fe(III)heme 
complex, in addition to the broad Soret peak at ~401 nm, 
a broad, low-intensity feature in the Q band region at 
~529 nm could also be observed (Figure 4A). Upon reduc-
tion with sodium dithionite, a single Soret maximum is 
seen at 426 nm, with well-resolved asymmetric bands in 
the Q band region at 528 and 558 nm (Figure 4B). After 
re-oxidation, the ferrous form shifts back to the ferric form 
(Figure 4C). In the BfrB-Fe(III)heme complex, the Soret 
peak has a maximum at 391 nm (Figure 4A), the Q bands 
are found at 512 and 544 nm, and the charge transfer CT1 
band is located at 645 nm. Interestingly, upon reduction, 
multiple maxima could be observed in the Soret region at 
414, 433, and 446 nm (Figure 4B), and Q band maxima are 
clearly visible at 538 and 571 nm. After re-oxidation, the 
ferrous form shifts back to the ferric form with a maxi-
mum of 398 nm (Figure  4C). Heme-binding features of 
BfrA and BfrB proteins were further confirmed by measur-
ing UV-visible absorption difference spectra (Figure S6).

Although BfrA and BfrB bind heme, differences in 
binding strength can be observed. The strongest heme 
binding was found for BfrA under reducing conditions 
(Kd = 6.42 ± 0.83 × 10−8 M) and for BfrB under air (oxidiz-
ing) conditions (Kd = 1.4 ± 0.3 × 10−8 M). The heme bound 
to BfrA was mostly lost during size-exclusion chroma-
tography under air (oxidizing) conditions, whereas in 
the case of BfrB, a small portion eluted in complex with 
heme (Figure S8). Under reducing conditions, only BfrA 
was able to preserve bound heme. As shown in Figure 
(Figure S7), only BfrA may bind modified hemes, FeDPIX 
and FeMPIX, and only under reducing conditions.

Based on the UV-visible absorption spectra, we sus-
pected that BfrA and BfrB proteins may have evolved 
specificity not only toward heme binding through heme 
iron coordination, but could also bind iron-free PPIX. 
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12 of 26  |      ANTONYUK et al.

Among all the Bfr proteins tested, only BfrB was able to 
efficiently form a complex with PPIX under air (oxidizing) 
conditions (Kd = 9.8 ± 2.89 × 10−8 M) (Figure 5A, left panel, 
Figure 5B,C), and with lower ability under reducing con-
ditions (Kd = 1.6 ± 0.2 × 10−6 M), similar to P. gingivalis 
HusA.82

Similar to P. gingivalis HmuY,84,85 the binding of PPIX 
to other Bfr proteins seems to be significantly lower 
(Figure  5D,E, left panel). We also observed that BfrB is 
able to bind CPIII, although with lower efficiency as 
compared to PPIX (Figure 5A, right panel, Figure 5B,C). 
However, in contrast to heme and PPIX, CPIII did not sup-
port B. fragilis growth (S9 Figure). For comparison, we ex-
amined binding of PPIX and CPIII to P. gingivalis HmuY 
and HusA (Figure 5D,E). HmuY bound CPIII, similar to 
human serum albumin (HSA), whereas HusA was not 
able to bind CPIII.

In contrast to BfrA and BfrB, we did not find evidence 
of an interaction of BfrC with all porphyrins examined 
under conditions used in this study (Figures 4 and 5 and 
Figures S5–S8).

3.5  |  Three-dimensional structures of 
BfrB and BfrC proteins are similar to 
BfrA and HmuY

The three-dimensional structure of B. fragilis BfrA (PDB 
ID: 4GBS) in the apo-form has been determined and de-
posited in the database by others (the Joint Center for 
Structural Genomics, JCSG, La Jolla, CA, USA). In this 
study, we determined three-dimensional structures of B. 
fragilis BfrB and BfrC proteins by X-ray crystallography 
(Table 1).

The crystal structure of BfrB (PDB ID: 8B6A), deter-
mined at 1.77 Å resolution, has two identical chains in 
the asymmetric unit. Each chain contains a β sandwich in 
its core, formed by two β sheets; one with four antiparal-
lel β strands and another from five antiparallel β strands 
composed of non-consecutive residues (Figure  6A and 
Figure S10A). In total, the structure contains 13 β strands 
and three small α helices. The positively charged cavity 
(Figure  S10B) is located on the side of the core among 
three extended loops; two of them contain two antiparallel 

F I G U R E  4   Analysis of heme binding to purified Bfr proteins. Proteins (5 μM) were titrated with heme under air (oxidizing) (A) or 
reducing (B) conditions. Proteins in complex with heme were also monitored under air (oxidizing conditions), subsequently reduced by 
sodium dithionite, and re-oxidized by potassium ferricyanide (C). Protein-heme complex formation was monitored by UV-visible absorbance 
spectroscopy.
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      |  13 of 26ANTONYUK et al.

β strands and connect by a short α helix. Interestingly, 
this cavity site does not contain His or Met residues, but 
among others, it has residues identical to those responsible 

for heme binding in HmuY: Tyr54, Tyr165, Tyr89, Arg88, 
and Thr133 (Figure 6A). A negatively charged sulfate ion 
(SUL), which comes from the crystallization solution, 

F I G U R E  5   Analysis of protoporphyrin IX (PPIX) and coproporphyrin III (CPIII) binding to examined proteins. Proteins (5 μM) were 
incubated with an equimolar concentration of PPIX or CPIII (A, D, and E), and the protein-porphyrin complex formed was monitored by 
UV-visible absorbance spectroscopy (A and D) or difference absorption spectra were recorded (E). Dissociation constants (Kd) of BfrB-PPIX 
and BfrB-CPIII complexes were determined using titration of 5 μM BfrB protein with PPIX or CPIII (B). PPIX and CPIII structures were 
obtained from PubChem (https://pubch​em.ncbi.nlm.nih.gov/). Atoms in the structures are colored in gray (carbon), white (hydrogen), red 
(oxygen), and blue (nitrogen). BfrA, BfrB, BfrC, B. fragilis HmuY homologs; HmuY, P. gingivalis hemophore-like protein; HusA, another P. 
gingivalis hemophore-like protein; HSA, human serum albumin.
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is bound within this site, ligated by Tyr54, Tyr165, and 
Arg88. It is possible that the sulfate ion is bound by amino 
acid residues responsible for the heme binding, but not as 
strongly as heme in HmuY (Figure S10C).

The crystal structure of BfrC (PDB ID: 8B61), deter-
mined at 1.81 Å resolution, also has two identical chains 
in the asymmetric unit. Each chain consists of a roughly 
globular β sandwich of two β sheets composed of four 
antiparallel β strands and six antiparallel β strands from 
non-consecutive residues (Figure 6B and Figure S10A). In 
total, the BfrC structure consists of 5 β sheets, 6 β hairpins, 
5 β bulges, 15 β strands, 6 α helices, 22 β turns, and two γ 
turns. Two arms are protruding from the main body of the 
protein, both composed of two β sheets with the longer 
arm containing a long flexible loop and small helical struc-
ture. The top arm extends beyond the others due to the 
presence of a longer loop and a helix formed by 11 amino 
acid residues. Poly(acrylic acid), which comes from the 
crystallization solution, is bound in a cleft of the long arm, 
which can indicate the possible ligand binding pocket. 
Interestingly, the only residues from the heme-binding 
pocket of HmuY are maintained in BfrC, i.e., Thr137 and 
Tyr88, which could explain the difficulty of heme binding. 
Based on the structural data, the three-dimensional struc-
ture of BfrB (Figure  6A) is similar to BfrA (Figure  6C), 
HmuY (Figure 6D), and Bvu (Figure 6E).

Structural comparison of HmuY homologs so far 
characterized shows a similar overall fold of the core 
(Figure 6F). Rms deviation between 189 Cα atoms of BfrC 
chain A and Cα atoms of HmuY chain A (PDB ID:3H8T) 
is ~2.2 Å and ~2.5 for matching secondary structure; for 
181 Cα atoms of BfrB it is 1.45 Å and 0.85 Å for match-
ing 111 Cα atoms; for BfrA it is 1.24 Å for matching 98 Cα 
atoms. The central cavities positioned similar to the heme-
binding pocket of HmuY are positively charged in all four 
proteins (Figure  S10B). The main differences are in the 
conformation of extended loops surrounding the central 
cavity (Figure  6), residues located in the heme-binding 
pocket itself, and in the opening of the cavity. In HmuY, 
His134 and 166 are responsible for iron heme coordina-
tion, while Arg79, Tyr80, Thr124, and Tyr173 are respon-
sible for heme binding (Figure  6D). In BfrB conserved 
Arg88, Tyr89, Thr133, and Tyr165 are present, which could 
allow for binding of the heme molecule (Figure 6A). In 
BfrC many residues taking part in heme binding in other 
homologous proteins are missing (Figure 6B). BfrA, BfrB, 
and BfrC have similar β sheet arrangement of the core,81 
but they are different in the extended loop length and 
conformations and the opening of the central cavity. The 
structure of BfrB is closer to BfrA; alignment for 89 core 
Cα atoms of BfrB to BfrA gives 1.45 Å rms deviation, while 
for 93 Cα atoms of BfrC aligned to BfrA, rms deviation 

F I G U R E  6   Comparison of the overall structures and central cavity features of hemophore-like proteins. Apo-protein structures of B. 
fragilis Bfr proteins (A–C) and B. vulgatus Bvu protein (E) are compared with HmuY-heme complex (D). Amino acids potentially involved in 
heme iron coordination are indicated in red. Overlap of structures of all hemophore-like proteins is shown in (F).
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is three times bigger at 4.53 Å, which is due to the wider 
opening of the BfrA heme-binding cavity (Figure 6F).

3.6  |  BfrA coordinates heme iron

Our attempts to crystallize HmuY homologs in complex 
with heme or PPIX failed. Therefore, to identify potential 
heme iron coordinating ligands, we singly replaced several 
amino acid residues (indicated by amino acid sequence 
comparisons, crystallographic data, and theoretical mod-
eling) with an alanine residue and analyzed the ability of 
BfrA site-directed mutagenesis variants to bind heme. UV-
visible absorption spectra recorded under oxidizing condi-
tions, where heme is bound to BfrA weakly, demonstrated 
that single amino acid substitution of all examined poten-
tial heme ligands (His145, Met146, Met147, and Met175) 
resulted in a slight blue shift of the Soret maximum com-
pared to that recorded for the native protein, suggest-
ing a disturbance in heme binding (Figure  7A). Under 
reducing conditions, a significant effect on heme bind-
ing to the M175A variant could be observed (Figure 7B). 
Determination of heme dissociation constants confirmed 
weaker heme binding to all BfrA mutagenesis variants 
under air (oxidizing) conditions (Figure  7A). Under re-
ducing conditions, substitution of Met175 resulted in a 
significantly decreased ability of heme binding. In addi-
tion, a lower binding ability could be observed in the case 
of the Met146Ala variant (Figure 7B).

No significant changes in the UV-visible spectra were 
observed for the modified BfrB protein variants as com-
pared to the unmodified BfrB protein, suggesting no heme 
iron coordination (Figure 7).

Further, MD simulations were performed using a start-
ing BfrA structure (PDB ID: 4GBS) with either Fe(heme)-
S(Met175) or Fe(heme)-S(Met146) ‘bonds’ in place. 
Simulations with Fe-Met146 exhibited closure of the open 
loops (from the initial crystal structure) and interaction 
with Met175 as a possible outcome of the protein dynam-
ics. Figure 8A shows the changing distance between the 
Fe atom attached to S(Met146) and the S atom (red line) 
and backbone O atom (black line) of Met175, for two in-
dependent MD runs. In the starting model based on the 
crystal structure, these two methionine residues are about 
12 Å apart. The closest approach of S or O of Met175 to 
the Fe is ~2.8 Å (Figure 8B). As shown in Figure 8A, there 
is persistent ‘contact’ between the Met175 and Fe(heme)-
Met146 once this configuration is first formed (after ~70 ns 
in one simulation and ~5 ns in the other). Obviously, no 
bond between these atoms can be formed in the simu-
lations, but the result indicates the possibility that both 
methionine residues are capable of binding the heme 
(given that heme binds to Met146). Similar MD runs were 

carried out for an initial setup with Fe(heme) bound to 
S(Met175), but no identical close interactions with Met146 
were found in the current set of simulations.

3.7  |  BfrA sequesters heme from host 
serum albumin

To examine whether HmuY homologs from B. fragilis 
can function as hemophore-like proteins, we analyzed 
their ability to sequester heme bound to host hemopro-
teins. UV-visible absorbance analysis demonstrated that 
only BfrA could sequester heme from the serum albumin-
heme complex, and only under reducing conditions 
(Figure 9A). The ability of heme sequestration from he-
mopexin by BfrA is possible under reducing conditions, 
but not convincing due to very similar absorption maxima 
for both proteins (Figure 9B). None of the Bfr proteins was 
able to sequester heme bound to hemoglobin, even that 
bound to the methemoglobin form (Figure S11).

3.8  |  HmuY sequesters heme bound to 
BfrA and BfrB

To analyze any possible competition in heme acquisition 
between P. gingivalis and B. fragilis, we examined potential 
heme transfer between the HmuY and Bfr proteins. We 
found that HmuY efficiently sequestered heme which had 
been bound to BfrA (Figure 10A) and BfrB (Figure 10B) 
under both air (oxidizing) and reducing conditions. In 
contrast, BfrA and BfrB were not able to capture heme 
bound to HmuY.

4   |   DISCUSSION

To obtain a desired breakthrough in the field of un-
derstanding and treatment of infection-based inflam-
matory diseases, it is first necessary to characterize 
the proteins crucial to the growth and virulence of key 
members of the human microbiome, especially those 
responsible for the cause of dysbiosis. One of the most 
important growth-stimulating and virulence factors for 
members of the Bacteroidetes phylum is heme when a 
non-heme iron source is available.44,45,48,62 In vivo, free 
heme is not readily available because it is toxic and is 
therefore rapidly bound by host heme-scavenging pro-
teins, which maintain the concentration of the free 
heme at very low levels.110–115 In advanced periodontitis 
or in intestinal diseases, free heme is released mainly as 
a result of bleeding and hemolysis, and the subsequent 
proteolysis of hemoglobin. There is also an intracellular 

 15306860, 2023, 7, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.202300366R

 by T
est, W

iley O
nline L

ibrary on [11/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 of 26  |      ANTONYUK et al.

pool of labile heme, present at the highest level in the 
cytoplasm116,117 or that released from cytochromes.118 
Importantly, heme present in dietarily consumed hemo-
globin and myoglobin forms the largest source of iron 
and PPIX for gut bacteria.119 It has been demonstrated 
in a mouse intestinal colonization model that dietary 
heme can enhance the abundance of Gram-negative 
Bacteroides species relative to the Gram-positive 
Firmicutes population.120,121 Moreover, co-infection of 
B. fragilis with a hemoglobin protease producing an E. 
coli strain during experimental polymicrobial infection 
enhanced the ability of B. fragilis to utilize iron from 
heme.122 Also, among human hemoproteins, serum 

albumin and hemopexin can serve as important heme 
sources for pathogenic bacteria, especially those spread-
ing into different niches of the human body, which is 
the case of both P. gingivalis and B. fragilis. Although 
hemopexin can be bacteriostatic for B. fragilis for a lim-
ited period, the bacterium secretes a protease capable 
of degrading this hemoprotein, with resultant heme re-
lease.123 It is also worth mentioning that bacteria must 
adapt to oxidative stress due to the presence of heme 
and iron excess in the gut which otherwise may be toxic. 
One of the possible ways of mitigating this potential 
toxic effect could be via expression of hemophore-like 
proteins to bind and neutralize excess heme.

F I G U R E  7   Analysis of site-directed mutagenesis variants of BfrA and BfrB proteins in complex with heme. UV-visible absorption 
spectra were recorded for the protein-Fe(III)heme complexes (A) and protein-Fe(II)heme complexes (B). All spectra were recorded at a 
1:1 protein:heme molar ratio for singly replaced selected amino acid residues by an alanine residue in BfrA or BfrB proteins. Dissociation 
constants (Kd) were determined using difference absorbance spectra measurements during titration of 5 μM BfrA protein and its variants 
with heme.

 15306860, 2023, 7, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.202300366R

 by T
est, W

iley O
nline L

ibrary on [11/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  17 of 26ANTONYUK et al.

We hypothesize that B. fragilis may utilize related heme 
acquisition mechanisms, similar to the Hmu system of P. 
gingivalis. The genetic organization of respective genes 
located in the P. gingivalis hmu operon, in hmu-like oper-
ons in other periodontopathogens, and in hmu-like gene 
clusters in other Bacteroidetes members so far charac-
terized55,73,74,76 is different from their typical counterpart 
hem operons found in other Gram-negative bacteria.124,125 
Compared to E. coli, members of the Bacteroidetes phy-
lum possess a different outer membrane architecture, rich 
in lipoproteins and TonB-dependent outer membrane re-
ceptors,126,127 including Bfr proteins128–130 (and this study). 
Based on the proximity of all bfr genes to genes encoding 
outer membrane transporters, we conclude that Bfr pro-
teins could promote nutrient acquisition, including inter-
nalization of heme or iron-free porphyrins. Moreover, the 
high capacity of B. fragilis to generate antigenic variation 
of surface components,131 including production of three 
HmuY homologs, may be useful when B. fragilis escapes 

into other body niches, where iron and heme are efficiently 
sequestered by iron- and heme-scavenging host proteins. 
The albumin-heme complex can be an important vital 
heme source for B. fragilis, through heme sequestration 
performed by BfrA. This feature could enhance higher B. 
fragilis potential to generate opportunistic infections, as 
compared to B. vulgatus or B. thetaiotaomicron.

Expression of all genes was regulated by iron, and low 
levels of iron increased gene expression, which could be 
helpful for B. fragilis to produce Bfr proteins in host niches 
other than the gut. In addition, bfrA gene expression was 
higher when bacteria had been starved of iron and heme 
and then cultured in the presence of heme or hemoglobin 
with limited availability of iron. Such conditions ensure 
cell proliferation but do not provide sufficient amount of 
heme, which results in higher bfrA mRNA production. 
This suggests potential regulation of the bfrA gene ex-
pression also by heme and engagement mainly of BfrA 
in heme supply as an iron and PPIX source. However, it 

F I G U R E  8   Molecular dynamics of Fe(heme)-Met146 models constructed from the BfrA crystal structure. (A) The distances between 
the Fe atom and the sulfur and backbone oxygen atoms of Met175 from two independent MD simulations are shown. The left panel shows 
a close and persistent contact between Fe-Met146 and Met175 throughout the simulations. In the right-hand panel, the separation between 
Fe-Met146 and Met175 fluctuates from ~12 to ~24 Å for the first 70 ns before the structure adopts a configuration with a much shorter 
separation (~3 Å), which is maintained for the next 50 ns. These close contacts suggest that both Met residues can be considered as potential 
ligands to the Fe-heme. No other amino acid residues besides Met175 made similar close contacts to Fe-Met146 during the simulations. (B) 
The left panel shows the Fe(heme)-Met146 construct on the crystal BfrA protein structure. This was the starting structure used for the MD 
simulations. The right panel shows a snapshot during MD simulations capturing the close contact interaction (2.8 Å) between Fe(heme)-
Met146 and Met175.
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18 of 26  |      ANTONYUK et al.

is also worth mentioning that, compared to bfr genes, ex-
pression of the hmuY gene increases up to ~1200 times, 
depending on the growth conditions, growth phase, and 
examined strain.73,74

Detailed characterization of the HmuY-heme com-
plex has demonstrated that both Fe(II)PPIX and Fe(III)
PPIX are in a low-spin hexa-coordinate environment 
in the protein, and His134 and His166 are ligands 

F I G U R E  9   Heme transfer between Bfr proteins and host hemoproteins. B. fragilis BfrA and BfrB proteins were incubated with an 
equimolar concentration of (A) human serum albumin (HSA) or (B and C) hemopexin (Hpx) under air (oxidizing) conditions (A, left panel) 
or reducing conditions formed by addition of sodium dithionite (A, right panel, B, and C). Changes in the spectra were monitored using UV-
visible absorbance spectroscopy.
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coordinating the heme iron.83,84 In contrast to HmuY, 
the UV-visible absorption spectra of BfrA in complex 
with heme are rather characteristic of a pentacoordinate 
high spin ferric heme bound to the protein, with the 
sixth coordination position available to other ligands. 
Under reducing conditions, however, hexacoordinate 

low-spin ferrous heme can be observed. We first as-
sumed that BfrA could use Met175 and another methi-
onine (Met146, Met147) or histidine (His145) residue 
to coordinate the heme iron, preferentially under re-
ducing conditions. Results obtained from MD simu-
lations indicated that Met175 and Met146 could serve 

F I G U R E  1 0   Heme transfer between Bfr proteins and HmuY. BfrA (A) or BfrB (B) proteins in apo-form or in complex with heme 
were incubated with equimolar concentrations of apo-HmuY or with HmuY-heme complex under air (oxidizing) conditions (left panel), 
or reducing conditions formed by the addition of sodium dithionite (right panel). Changes in the spectra were monitored using UV-visible 
absorbance spectroscopy.
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as heme iron coordinating ligands. This process might 
occur similar to B. vulgatus Bvu, where two methionine 
residues could be engaged in heme iron coordination, 
preferentially under reducing conditions.76 The lack of 
significant changes in UV-visible absorption spectra of 
the BfrA-heme complex recorded under reducing con-
ditions for singly substituted protein variants could be 
due to the supportive engagement of the surrounding 
amino acid residues (Met147, or less probably His145) in 
heme binding, similar to the supportive role of Met136 
in the HmuY protein after substitution of His134.83,132 
The BfrA protein might also be used to deliver modi-
fied hemes into the B. fragilis cell, thus allowing for its 
growth in the presence of these porphyrins.46 We did not 
examine the HmuY homolog expressed by B. thetaiotao-
micron (termed Bth), but based on the high similarity 
of this protein to B. fragilis BfrA, we assumed similar 
heme-binding properties.

According to our hypothesis, although general struc-
tures of all hemophore-like proteins so far examined are 
similar, differences observed in heme-binding pockets 
or their surrounding loops result in different porphyrin-
binding properties. Worth noting is the structure of BfrC 
protein, where a long α helix protrudes from the poten-
tial heme-binding pocket, which might prevent heme 
and PPIX binding. Although three-dimensional struc-
tures of all three Bfr apo-proteins are now known, the 
lack of knowledge of their structures in complex with 
heme/PPIX prevents us from confidently determining 
which amino acids are engaged in heme iron coordina-
tion in BfrA or which amino acids are responsible for 
PPIX binding to BfrB. Our mutational and spectroscopic 
analyses demonstrated that BfrB may preferentially 
bind PPIX, without heme iron coordination. Therefore, 
we assume that the function of BfrB could be similar 
to another P. gingivalis hemophore-like protein, namely, 
HusA, which binds PPIX,109,133 although with lower 
ability compared to BfrB (this study). Interestingly, we 
found that BfrB may also bind CPIII, one of the copro-
porphyrin isomers, possessing four propionates and 
therefore being different from PPIX, which has two pro-
pionate and two vinyl groups. CPIII can be found in the 
gut, and at higher levels in some human diseases such as 
porphyrias.134 However, the possibility of whether CPIII 
could be used in vivo by B. fragilis instead of heme re-
quires further elucidation since this compound did not 
support B. fragilis growth under in vitro conditions used 
in our study.

The colon niche and colonic mucosa exhibit an anaer-
obic environment,135 allowing survival of both P. gingivalis 
and B. fragilis. However, an oxygen gradient exists not only 
along the human gastrointestinal tract but also across the 
intestinal wall.136,137 Being an anaerobic, asaccharolytic, 

and highly proteolytic species, P. gingivalis may degrade 
the mucins and extracellular matrix components in the 
colon, infiltrate the mucus layer, invade the mucosa, and 
degrade immunological factors, resulting in increased 
potential for local and systemic inflammation. Deeper 
layers of the intestinal wall are generally normoxic.138,139 
Therefore, HmuY, regardless of redox conditions, could be 
beneficial in heme binding, as compared to BfrA, enabling 
better growth and virulence of P. gingivalis, and thus re-
ducing the abundance of B. fragilis, which might contrib-
ute to dysbiosis in the gut microbiome.

We demonstrated that P. gingivalis HmuY, function-
ing as a hemophore-like protein, can sequester heme 
from methemoglobin directly,69 similar to classical bac-
terial hemophores, which are secreted proteins engaged 
in heme transfer from the host hemoproteins to the outer 
membrane receptors.140,141 HmuY is also able to compete 
with albumin, which is the normal front-line heme scav-
enger in vivo,69 as well as acquiring heme from serum 
hemopexin.73 Due to the excess of albumin, heme is first 
bound to albumin and then transferred to hemopexin.111 
Hemopexin is the serum heme-binding protein with the 
highest affinity for heme (Kd ~ 10−13-10−10 M),113,142 which 
allows efficient heme extraction from human serum albu-
min (Kd ~ 10−7-10−8 M).90 Here, we found that only BfrA 
was able to capture heme bound to serum albumin, and 
only under reducing conditions, which is in accordance 
with similar properties of T. forsythia Tfo, P. intermedia 
PinO and PinA, and B. vulgatus Bvu.73,74,76 This effect 
could be explained by the lower affinity of albumin for 
Fe(II)heme compared to Fe(III)heme,114,115 which may 
facilitate heme capture by BfrA. The reducing conditions 
would also influence the properties of iron coordination 
by methionine residues more effectively compared to his-
tidine residues, demonstrating that Met-ligand binding in 
the BfrA protein would be destabilized under oxidizing 
conditions.143,144 In contrast to HmuY homologs charac-
terized so far, P. gingivalis HmuY can efficiently sequester 
heme from the albumin-heme complex under both air (ox-
idizing) and reducing conditions.69,73 Possible competition 
in heme acquisition between P. gingivalis and B. fragilis 
could be suggested, at least in part, by the fact that HmuY 
efficiently captured Fe(III)heme which had been bound to 
BfrA and BfrB. Based on these results, we conclude that 
heme bound to BfrA and BfrB might represent a heme 
reservoir for P. gingivalis, thus increasing this pathogen's 
virulence.

5   |   CONCLUSIONS

Here, we report that B. fragilis expresses a heme-binding 
protein, BfrA, with properties of hemophore-like 
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proteins, which adds to the increasing number of mem-
bers of the novel HmuY family. Importantly, our analysis 
confirms that various members of this family may have 
developed specific heme-binding pockets and the abil-
ity to sequester heme from host hemoproteins or even to 
acquire heme bound to heme-binding proteins produced 
by cohabitating bacteria. The independent evolution of 
these properties has resulted in different mechanisms of 
heme iron coordination in HmuY versus BfrA. HmuY 
binds heme very effectively both in oxidizing and reduc-
ing environments, while BfrA appears to prefer reducing 
conditions which would be encountered in the lower gut. 
In contrast, the second potential member of the HmuY 
family produced by B. fragilis, BfrB, prefers the binding 
of iron-free porphyrins. Although BfrC is structurally 
similar to HmuY and its homologs characterized so far, 
the protein is able to bind neither heme nor PPIX.

Our findings further demonstrate that the HmuY pro-
tein may compete with other members of the HmuY fam-
ily to increase P. gingivalis virulence and its ability to also 
contribute to dysbiosis in the gut microbiome. We observed 
that BfrA and other HmuY homologs may bind heme, but 
importantly they may provide the HmuY protein with 
heme. Therefore, we assume that P. gingivalis HmuY might 
be superior in heme sequestration when P. gingivalis in-
vades the gut microbiome. Further clarification of this 
mechanism is important because of the need to character-
ize one of the basic mechanisms that allow the survival of 
pathogens in the hostile environment of the host and that 
play a key role in dysbiosis, especially during the course of 
infections accompanying inflammatory systemic diseases. 
In addition, understanding the mechanisms that regulate 
this process could enable development of novel therapeu-
tic approaches that are designed to control chronic inflam-
matory processes in both microbiomes. In this respect, our 
current experiments comprise construction and analysis of 
B. fragilis mutant strains lacking respective bfr genes to as-
sess their importance in B. fragilis virulence.
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