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Abstract 
Metrics for Materials Discovery: With applications in the 
search for solid state electrolytes by Cameron Hargreaves 
 

The vast corpus of experimental solid state data has enabled a variety of statistical 

methods to be applied in high throughput materials discovery. There are many 

techniques for representing a material into a numeric vector, and many investigations 

apply the Euclidean distance between these vectors to judge similarity. This thesis 

investigates applications of non-Euclidean metrics, in particular optimal transport 

measures, or the Earth Mover’s Distance (EMD), to quantify the similarity between 

two materials for use in computational workflows, with a focus on solid state 

electrolytes (SSEs). 

Chapter 1 introduces the field of lithium conducting SSEs for use in batteries, as well 

as an introductory precursor for some of the machine learning concepts, for those 

without exposure to this field. The EMD is a function which returns the minimal 

quantity of work that is required to transform one distribution into another, and a 

tutorial on how to compute the EMD using the simplest known technique is provided 

given its relevance to later chapters.  

In chapter 2 the discussion around the EMD is continued, and we introduce the 

workflow that has been developed for quantifying the chemical similarity of materials 

with the Element Movers Distance (ElMD). Given the affect that minor dopants can 

have on physical properties, it is imperative that we use techniques that capture 

nuanced differences in stoichiometry between materials. The relationships between the 

binary compounds of the ICSD are shown to be well captured using this metric. 

Larger scale maps of materials space are generated, and used to explore some of the 

known SSE chemistries.  

At the beginning of the PhD, there were no substantial datasets of lithium SSEs 

available, as such chapter 3 outlines the lengthy process of gathering this data. This 

resulted in the Liverpool ionics dataset, containing 820 entries, with 403 unique 

compositions having conductivities measured at room temperature. The performance 

of leading composition based property prediction models against this dataset is 

rigorously assessed. The resultant classification model gives a strong enough 



improvement over human guesswork that it may be used for screening in future 

studies. 

At present, materials datasets are disparate and scattered. Using the ElMD in chapter 

4, we investigate how different metric indexing methods may be used to partition 

gathered datasets of compositions. This enables very fast nearest neighbour queries 

allowing the automated retrieval of similar compounds across millions of records in 

milliseconds. 

Chapter 5 introduces the technique Percifter for characterizing crystal structures, 

based on the principles of persistent homology (PH). This increasingly popular 

technique is used in materials science to describe the topology of a crystal. Percifter 

seeks to improve the stability of these representations for different choices of unit 

cells. These similarities may be observed directly, or compared through the EMD. 
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Introduction 
 

Scientific endeavours involve interrogating a past corpus of 

knowledge. The tools we choose to carry out our investigations 

vary by field and practitioner, but the mental model is reliant on 

drawing similarities between past experiences.  

“These similar elements could be substituted.” 

“This dilemma is similar to a formal optimisation problem.”  

“I subconsciously think rock salt and perovskite are more similar to 

one another than graphene, so I will not think about graphene.” 

We don’t typically note why our mental models form as we enact 

our curiosities. Gut feeling may be attributed to a great many 

success stories, and should not be ruled out as a valid technique for 

radical reinvention. But, survivorship bias is real.  

The vast quantities of data that our investigations may now draw 

upon, means we must integrate the full computational capabilities 

made available to us. To guide the hunt in a more systematic 

manner, great strides have been made improving the accuracy of 

neural network models to predict materials properties, allowing 

pre-screening of many candidates prior to synthesis 1. 

Unfortunately, the inherently black box nature of the neural 

network means these predictions offer limited interpretability. 

Many have worked on improving this shortcoming 2,3, but we can 

never truly understand our neural networks, as we are intellectually 

incapable of following the logical steps they take to formulate each 

of their outputs 4. 

Capturing this knowledge, this why of a trends existence, remains 

one of the driving forces of discovery. A model may give us an 

answer, but we must apply our training if we wish to understand 

the mechanisms which rule our world. The field of data driven 

materials discovery has matured, and statistical methods now have 
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Figure 1: The mechanical principles of a 
liquid electrolyte battery cell, 
demonstrating the Li ions travelling 
through the liquid electrolyte from anode 
to cathode during the discharge cycle. 

a firm place in the arsenal of the cheminformatician5. In this thesis 

we will present novel metrics to distinguish compounds in 

computationally guided materials discovery and demonstrate how 

these may complement machine learning (ML) algorithms in a 

modern workflow.  

Given the breadth of potential topics the field of materials science 

encompasses, we shall tend to focus future discussions towards the 

study of solid state electrolyte (SSE) lithium ion conductors, 

suitable for use in the next generation of batteries. At the start of 

this investigation, whilst previous studies had been carried forward 
6 limited datasets necessitated the gathering of more data from 

literature sources. Over the course of this study, novel metrics were 

developed to interrogate and uncover trends within the Liverpool 

ionics dataset gathered, and we believe these metrics have utility 

beyond the investigations presented in this thesis. An introductory 

overview of some of the prerequisite topics is first provided. 

 

Solid State Ionic Conductors  
Energy demands of the 21st century compel us to improve the 

technology we use to store this resource. Batteries have enabled the 

mobile revolution, and current trade-offs between energy density, 

capacity, and cost have been highlighted as obstacles in the mass 

deployment of electric vehicles 7 and renewable energy sources 8. 

The lithium-ion battery has attained market dominance, but current 

designs are reliant on liquid electrolytes to transport Li+ ions from 

the anode to the cathode during the discharge cycle 9 (Figure 1). 

This liquid electrolyte is highly flammable, which means battery 

manufacturers must work within manufacturing tolerances to 

ensure there will be clear separation of electrodes over the full 

course of the cells lifetime, which reduces the overall energy 

density 10. If the electrodes do make contact they form a short 

circuit, the battery will cease to function as the voltage will drop to 
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Figure 2: A magnetic chess piece snaps to 
a fixed position and requires energy to 
displace 

Figure 3: The total energy required to 
displace an ion from one energy state, i.e. 
position, to another in a crystal lattice.  

Figure 4: As a free ion gains kinetic 
energy through thermal motion, it may be 
able to push past the energy barrier and 
hop to a new site. 

0, and the rush of current may set the liquid electrolyte on fire. By 

contrast, solid electrolytes are dense materials, which are 

inflammable, allowing for condensed designs. These also have the 

potential to utilise lithium metal anodes, which have a greater 

energy density than the lithium intercalated graphite anodes that 

the current designs use.  

As heated liquid reagents cool into crystalline solids, the atoms of 

the crystal will settle into their most energetically favourable 

positions. The attractive and repulsive nuclear forces that bind 

structures together, will nudge each of the anions and cations into 

their lowest energy states forming a regular periodic structure. 

Only ions which are small enough to navigate their way through 

this backbone demonstrate mobile transport, such as Li+. At 

absolute zero temperature these ions will either take fixed positions 

in the repeating lattice, or be located more randomly at the 

relatively low energy interstitial sites found in between the periodic 

positions of the larger atoms of the structure.  

When disturbed, a magnetic chess piece will stay in place (Figure 

2). To slide it across a magnetic chessboard we must exert some 

force to move the piece away from the centre of each square before 

it snaps to the next. Similarly an ion in its lowest energy state 

requires energy to be added into the system to move the ion 

through a higher energy position before it loses this as it returns 

into an energetically favourable position elsewhere in the crystal. 

We call the amount of energy required to force an ion over the 

energy barrier into its next position the activation energy of the 

compound, ∆𝐸𝐸, which is a fundamental property of the material 

(Figure 3).  

If we heat the system above absolute zero, thermal motion will 

start providing enough energy to allow some mobile ions to jump 

this energy barrier. These ions want to be in low energy 

arrangements, and must carry enough momentum to force 

themselves through higher energy regions by thermally vibrating 
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Figure 5: The mechanical principles of a 
SSE battery cell, demonstrating the Li 
ions intercalating through the solid 
electrolyte from anode to cathode during 
the discharge cycle. 

Figure 7: The charge (down arrows) and 
discharge (up arrows) reactions that take 
place at the anode in a LiCoO2 cathode 
Li anode SSE battery. 

Figure 6: The charge (down arrows) and 
discharge (up arrows) reactions that take 
place at the cathode in a LiCoO2 cathode 
Li anode SSE battery. 

faster and faster until jolted into a neighbouring low energy site 

(Figure 4). If an ion is not provided with enough energy to pass 

through an energy barrier, it will recoil and pass along some of its 

thermal energy to the wider structure. This motion is inherently 

stochastic, and when considered across the entire material the 

combined momenta of these ions will cancel, leading to zero net 

migration.  

In SSEs, this mobile phenomenon can be regulated by applying an 

electromotive force (a voltage) across the solid material to induce a 

directed flow of ions. Several mechanisms have been identified 

which allow Li+ ions to intercalate through the solid structure of an 

SSE when an electric field is applied across it, with interstitial 

hopping being the most common. Ions will flow in the direction of 

the electric field, which is from anode to cathode during the 

discharge cycle (Figure 5), and in the reverse direction whilst 

charging. The most common method of inducing this voltage is 

through the use of an electrochemical cell.  

In an equilibrium solution, if Li atoms encounter Co4+, the Li is 

likely to donate its electron to produce the more energetically 

favourable Li+ and Co3+. By stuffing certain cobalt containing 

compounds with extra Li atoms we may expect this reaction to take 

place inside the crystal, which is what happens in the cathode of 

commercial battery cells which use LiCoO2 cathodes (Figure 6). 

The favourable Co3+ oxidation state means the cathode material 

will attempt to draw in Li+ ions through the electrolyte during 

discharge, inducing a potential voltage. In parallel, an oxidation of 

Li to Li+ will take place at the anode to produce the ions which 

intercalate through the electrolyte (Figure 7). However, the system 

will be unable to, as the additional force applied by the excess of 

positively charged particles in the cathode will not allow for further 

electron transfer between nuclei to take place. 

Excess negative charge in the anode will not allow any Li+ ions to 

leave, and the reaction stops and remains in a stable condition. This 



11 
 

Figure 8: LLTO perovskite structure with 
a structural defect allowing ion hopping 

 

is the state of a charged battery cell when in storage. Connecting a 

wire between the two electrodes allows electrons to flow from 

anode to cathode and recombine with the Li+ ions as they’re 

deposited. This reaction then continues producing usable electricity 

in the discharge cycle, until all Li atoms in the anode have been 

depleted, the cathode can accept no more Li, a mechanical failure, 

or the circuit is disconnected. When the battery has fully 

discharged, the cell must be recharged by applying an external 

electric field, which forces the Li+
 ions to go in the reverse 

direction. 

One of the difficulties that arise in this setup is choosing a suitable 

material for the electrolyte 11,12. It must be chemically stable, 

otherwise it may begin forming contaminants with the anode. It 

should be hard, otherwise lithium deposits may build up and 

puncture the electrolyte. It should be malleable to absorb 

mechanical stresses. Ideally it would be stable in air, as this makes 

manufacture much simpler, and certain elements are more 

favourable than others in regards to cost, environmental impact, 

and concerns over ethical sourcing. 

Whilst glassy and polymer type materials may be used as the 

transport medium in Li SSEs, the high entropy disorder present in 

these materials makes these more difficult to characterize 

structurally. As such, we shall focus our discussion on ceramic 

type materials which form periodic crystalline structures of anionic 

backbones, often containing interstitial sites of partial occupancy. 

There are three broad compositional families these materials 

commonly fall into, oxides, sulphides, and phosphates, each with 

identified strengths and shortcomings.  

Oxides cover the garnet type structures with the first discovered 

being Li5La3Ta2O12 
13

 (Figure 8). Garnets are chemically stable 

when placed against anode materials, and the relatively low 

conductivity of 3.4× 10−6 S cm–1 14 was improved by altering the 

composition to Li7La3Zr2O12 (LLZO) where a conductivity of 4 
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× 10−4 S cm–1 may be attained at room temperature (r.t.) 15. This is 

not as high as the perovskite material Li0.3La0.53TiO3 (LLTO) with 

a conductivity of up to 4 × 10−3 S cm–1 16. LLTO is additionally 

stable against the anode, but unfortunately the grains that these 

crystals form introduce a large resistance as ions cross the grain 

boundaries. This significantly reduces the total conductivity, as low 

as 1.7  × 10−6 S cm–1 17.  

Li Super Ionic CONducters (LISICONs 18) based on Li4XO4 and 

Li3XO4 (X = Al, S, Si, Ge, Ti, P) exhibit a fairly low conductivity 

at room temperature, and whilst these do remain stable in humid 

air, which allows for easy manufacture, these are not stable against 

lithium anodes. The lowest impedance LISICON has so far been 

achieved by adding a zinc dopant and a germanium cation to the 

formulation giving Li2.8Zn0.6GeO4. A popular material that has 

been assessed to minimise interfacial anode interactions is based 

on the LISICON phosphate material Li3PO4 
19, processed through 

magnetron sputtering in the presence of N2 gas to create 

Li2.9PO3.3N0.46 (LiPON 20). Whilst this compound has a fairly poor 

conductivity of 1.4 × 10−6 S cm–1, it has high stability against 

lithium metal and is easy to manufacture making it suitable for use 

as a barrier layer to protect the surface of the anode.  

Other phosphates such as the NASICON (Na Super Ionic 

CONducter) were some of the earliest investigations into mobile 

ion transfer in the solid state, based on the Na1+xZr2SixP3-xO12 

system 21. Substituting Li and exploring other dopants means the 

associated family of Li electrolytes is well explored, and 

principally characterised by Li1.3Al0.3Ti1.7(PO4)3 (LATP 22), which 

has a relatively high r.t. conductivity of 3.5 × 10−4 S cm–1. 

Unfortunately, this material is not stable against the anode, as the 

Ti will reduce the Li. The stability of this interface can be 

improved by substituting Ti for Ge in Li1.3Al0.3Ge1.7(PO4)3 (LAGP 
23), but this possesses a conductivity which is an order of 

magnitude lower than LATP. 
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Figure 9: An illustration of the process of 
dendritic growth piercing the solid state 
electrolyte, short circuiting the battery. 

Given the slightly lower electronegativity, sulphur forms weaker 

bonds with Li+
 ions than oxygen, allowing them to pass through the 

structure with less resistance. SSEs based on a sulphide anionic 

lattice, such as Li3PS4, display significantly higher conductivity 

than oxides, competitive even with their liquid counterparts. 

Li10GeP2S12 (LGPS 24) exhibits the highest room temperature 

conductivity of 1.2× 10−2 S cm–1, with the Li6PS5X (X = Cl, Br, I) 

family of argyrodite structures possessing a conductivity around 

1× 10−3 S cm–1 25. These are very soft materials, which can be a 

favourable property as it allows the battery cell to accommodate 

the changes of volume that take place at the electrodes as they 

absorb and secrete lithium, reducing mechanical fatigue. 

Unfortunately, this flexible nature is also to their detriment, as 

dendrites of lithium metal may form as lithium is deposited on the 

anode. Given the softness of the electrolyte material, these deposits 

can easily push their way through the electrolyte until the battery 

forms a short circuit, ceasing current flow (Figure 9). Further, 

sulphides are not stable materials in air nor against lithium metal, 

making them difficult to manufacture, and challenging to 

distribute.  

The interest in discovering new materials which have sufficiently 

high conductivity, chemical stability against Li, and good 

mechanical strength means that many hundreds of candidate 

materials have been reported in the literature, with many more 

synthesized and discarded as uninteresting. Discovering whether a 

novel synthesis candidate has already been examined and reported 

can be a lengthy task, in no part due to the highly fragmented 

landscape of materials databases. This specific problem of 

cataloguing previously reported materials in a chemically 

meaningful way is what instigated the development of the ElMTree 

application as a means of indexing these records, which is 

discussed further in Chapter 3.  

For SSE batteries there are commercial offerings available, but to 

date, no single electrolyte formulation has proven itself sufficiently 
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superior to others that it has achieved market dominance, nor 

widespread acceptance as a replacement for liquid electrolyte. 

Thankfully, there remain plenty of avenues to dope and substitute 

elements within the known structure types to search for new 

materials with favourable properties. Given the additional 

complexity introduced when examining multiple properties 

simultaneously, and the importance of ionic conductivity to the 

perceived quality of a new electrolyte material, ionic conductivity 

will be the target property that we focus our discussion on, with 

more conductive materials deemed “better” materials.  

The discovery of an entirely new structure type is a cause for 

celebration, given the flurry of activity that accompanies such a 

finding, searching for new substitution and doping pathways that 

can be applied. Theorising which substitutions could lead to stable 

materials requires training and subject matter expertise. Humans 

can interpolate their past experiences together to hypothesise 

experimental setups which lead to promising outcomes. However, 

due to the complexities of these systems, it is a very difficult task 

to predict which elements will interact in specific dopings to give 

increased performance in target properties.  

The challenge of correlating properties across many different 

materials is twofold. Firstly, there is very little data available. 

Experiments take a long time to run and validate results, and a lack 

of interest in publishing unremarkable materials means that the 

literature will be restricted, and anthropogenically biased towards 

high performing materials. Secondly, as computational materials 

design remains a field in infancy, there are few established numeric 

protocols to process large quantities of materials science data and 

extract meaningful relationships. The core aim of this thesis will be 

examining computational and statistical methods which we can use 

to consider these spaces of materials, allowing us to draw 

chemically insightful observations from the data that is available. 
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Machine Learning Prerequisites 
Glimpses of the human ability to notice and exploit patterns date 

back as far as 21,000 B.C. on the shores of the sea of Galilee 26. 

The earliest recognised signs of agriculture take the form of 

compost piles and wheat stones, enshrined by rising waters and 

revealed by drought. Our ability to recognise and exploit simple 

patterns, such as observing the seasons or the act of planting a 

potato to grow more potatoes, is one of the key traits that separates 

us from many other species. Furthermore, we possess the ability to 

abstract ideas into complex observations. If potatoes are planted 

during each of the four seasons these plants can be compared to see 

which bear the most fruit. This information can be used to guide 

and refine future sowing schedules, allowing the health of the 

villages population to flourish. These historic luminaries laid the 

foundational stones of statistical learning through observation, 

patience, and spoken word tradition. Now we have computers. 

The refinement of various techniques, algorithms, and procedures 

that today fall under the data science umbrella tells a several 

millennia story. To ensure the necessary material and terms have 

been introduced for later chapters we shall focus our discussion on 

the topic of unsupervised learning and embedding, as there is a 

natural partnership between these techniques and the materials 

based metrics introduced later. We shall briefly review supervised 

learning, as our metrics may be integrated with such methods. This 

shall also introduce the topic for Chapter 3, where we carry 

forward an investigation predicting the ionic conductivity of 

materials based on their compositional makeup. An accelerated 

executive summary is required to ensure that a broad exposure is 

provided to those with no prior exposure to ML. Those familiar 

with these topics may skip this introductory, and historically 

inaccurate, summary to the following section. 

Let us tackle some of the problems our first agricultural ancestors 

may have faced using the language and methodology of the 
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Figure 10: An empirically observed embedding of the properties of fauna in respect to their leaf sizes 

 

modern day. The first piece of information which must be 

determined beyond reasonable doubt is whether a plant is edible, or 

whether it is poisonous. Being an industrious hunter gatherer, you 

have kept track of the leaves of all the plants you and your friends 

have eaten. You order these leaves by their width and height on the 

ground (Figure 10). 

 

 

 

With the support of your family members, you conduct an 

empirical study into the effects of consuming each plant, and make 

note of the plants which can be eaten only once (Figure 10).  
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Figure 12: A diagram of the petal, 
sepal, and stamen locations of each 
plants flowers. 

 

  

It becomes apparent which sort of plants we should focus future 

investigation on, but we do not want to poison our friends. You 

find seedlings for each of the vegetables, observe the plants 

through their life cycle, and gather the flowers they produce. There 

is now data for the petal width and height, sepal width and height, 

as well as the stamen height (Figure 12). Unfortunately this gives 

us seven numbers to represent each plant, and we may no longer 

order these on the ground to follow the pattern. We can use 

unsupervised machine learning to give us more valuable 

information about the data in our possession than each of these 

numbers do in isolation.  

Embedding techniques focus on reducing the dimensionality of a 

dataset to two components (axes). One of the oldest and most 

widely used techniques is Principle Component Analysis (PCA). 

This uses techniques from linear algebra to identify potential axes 

of the dataset which follow greatest variance, applying linear 

Figure 11: Each plant from Figure 9 arranged by leaf width and height, labelled with a potato icon if it is edible 
and a skull icon if it is poisonous.  
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transformations to the data to squash the data into a lower 

dimensional space, using these axes of greatest variance as the new 

coordinate system. If many properties combine into a clearly 

identifiable trend, these trends should be captured when we change 

the co-ordinate system to the principle components. The data that 

we have gathered enables us to represent each plant by a vector of 

seven numbers. As trends in 7-dimensional space are difficult to 

visualise and identify, we shall reduce these vectors to 2-

dimensional co-ordinates with PCA (Figure 13). 

 

With the embedded data we can see that there are distinguished 

characteristics which clearly separate the edible plants from the 

inedible. If we encounter a new plant on our travels, we may now 

apply the same linear transform to judge whether it is safe to eat 

before volunteering a sibling.  

Figure 13: The same objects and labels given in Figure 11, with new positions obtained by projecting the seven 
pieces of information about each plant to two new co-ordinate axes. When this process is carried forward, we 
want the relative distances between each object in lower dimensional space to reflect the position each object has 
in relation to the other objects in high dimensional space. 
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Using your new method of identifying edible food you decide to 

plant these five species in a neighbouring field. Sixty nights later 

you do this again, and again every two months for the remainder of 

the year. At the end of the plants harvest you take note of the 

volume of food each plant has produced. By plotting the month of 

seeding against this volume of food, trends may be identified. We 

may predict what volume of produce a plant is expected to produce 

when planted at a given time period by fitting a regression line to 

the data (Figure 14). Here we create a simple trend line for the data 

by taking the average value of each time period and overlaying a 

curve to these averages.  

Looking at this trend and following the path to its maximum point, 

we can find the best time of the year to plant seeds. We 

hypothesise that if all seeds are planted in the tenth month of the 

year, the total volume of produce will be maximised. Executing 

this plan leads to greater food stocks the following year, but you 

believe this situation can be improved.  

 Figure 14: The edible plants and the produce each plant produces when seeded in a given month of the year. 
Average overlaid in red. 
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In simple examples such as this, we have the capacity to evaluate 

optimal planting strategies for each plant by eye. For larger 

domains when we are dealing with millions of data points this isn’t 

a feasible strategy. Five lines could be drawn between the points of 

each unique species and used to judge the best time of the year to 

plant each plant (Figure 15). 

With our limited seedlings, and thus datapoints, this approach is 

highly sensitive to outliers. Following the pink series we see that 

the seventh month would be recommended for planting. Despite 

this being what the statistics suggest, from the other data points we 

see why we might not believe this to be a sound judgement. We 

would say that the pink trace has overfitted to the data, as the 

regression line sticks too closely to the outlying points and does 

not follow the general trend. 

A more robust solution would be to use the information that is 

provided to us by the plants which are very similar. We can see in 

Figure 15: A multi-set of regression functions, each of which have been overfitted to the given data 
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our embedding that there are two clusters of edible plants with 

shared physical characteristics. Let us use another unsupervised 

machine learning method to assign a numeric cluster label to each 

point in the embedding, which will be used to filter and consider 

each cluster separately. Automated clustering techniques allow us 

to gather together objects with shared features and assign them as 

being part of the same set. If we have no prior information about an 

object other than its high dimensional vector representation, this 

can be very useful as it tells us which previously reported objects 

we should begin referring to when characterising the new object. 

The clustering technique we will use in this thesis is called Density 

Based Spatial Clustering of Applications with Noise (DBSCAN 27).  

This algorithm operates by examining the regions of density in an 

embedding, and assigning a cluster label to each distinctly 

separable cluster, based on a cut-off radius. A coarse simplification 

of the approach may be constructed by overlaying a fixed radius 

covering disk centred at each point in the embedding (Figure 16).  
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When doing this, for an appropriately sized choice of radius, 

several of the points covering disks will intersect other points. 

When this happens we shall assign these to be a part of the same 

cluster. As a consequence, contiguous regions of the space will all 

be assigned to be a part of the same cluster. This allows us to draw 

similarities between points which may not be in close proximity to 

one another on the embedding, but still possess logical connections 

through familiar neighbours and longer range trends. With cluster 

labels in hand, we may assign a regression curve to each of the two 

sets of edible plants. Depending on the plants classification, we 

arrive at different seasons for optimal planting. Following through 

with this plan leads to an increase in crop yield the following year. 

 

 

Figure 16: A simplified example of the operating principles of the DBSCAN algorithm. A disk is 
overlaid on each datapoint with a fixed size radius. If a point is contained within the disk of another 
point, then we say each of these points belong to the same cluster. 
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We have established the best method of growing each edible plant 

through the use of a regression model, but not discussed the inner 

workings of how this single variable model takes in the month and 

predicts the quantity of produce. The way each model architecture 

assigns a real valued number for an input of potentially many 

variables is dependent on the mathematical recipe which is 

followed by the algorithm. In our work we shall focus on the 

applications of neural networks and random forests.  

Many regression models can often be converted into classification 

models through minor architectural modifications. Instead of 

returning a real valued number, these instead return an integer label 

predicting the set that an object is expected to belong to. These are 

normally supervised models, which means the model must be 

exposed to numeric representations of each object with their 

associated target classification labels that we will aim to predict. 

These models are beneficial as they need not be restrained to the 

Figure 17: An appropriately chosen set of regression functions to predict the planting season for the 
dataset. 
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potentially lossy lower dimensional spaces which we have thus far 

constrained ourselves to for the sake of deductive reasoning. We 

expect that embedding a space to a lower dimensional 

representation will discard some of the information about the 

space, losing some of the more nuanced relationships present in its 

high dimensional structure. This could make forming predictions 

about each object a more difficult task for our models. 

In this example, we have a seven dimensional vector for each 

plant, and four class labels which we are trying to assign each plant 

to (the target value). We may fit a classification model to this 

training data, and then when new plants are encountered in the wild 

we can measure their physical characteristics, predict whether they 

are edible with our classification model, and decide the best season 

in which to plant them with the appropriate regression model. This 

allows us to exercise a degree of caution when sampling new 

plants, and maximises the impact of the efforts exerted when 

planting new species. 

Metrics  
Assigning a class label to previously unseen vectors requires some 

method of measuring similarity to previously observed samples. A 

simple technique could be taking the k nearest neighbours in the 

training set to a query, and returning the most common class label. 

We must define a distance function, or metric, to ascribe these 

notions of “near” and “far”. There are many metrics which may be 

applied between two vectors, and the expressivity that each metric 

carries is often domain specific. For example, the Hamming 

distance is very useful for binary vector comparisons, but does not 

help distinguish vectors of real numbers. The most commonly used 

metric, and the one that is most familiar to us, is the Euclidean 

metric. Between two objects, Ox and Oy, in 3-dimensional space 

with the co-ordinates (𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3), and (𝑦𝑦1,𝑦𝑦2,𝑦𝑦3) the Euclidean 

distance between these two is: 
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𝑑𝑑�𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑦𝑦� = �(𝑥𝑥1 − 𝑦𝑦1)2 + (𝑥𝑥2 − 𝑦𝑦2)2 + (𝑥𝑥3 − 𝑦𝑦3)22  

For higher dimensional spaces, such as the 7-dimensional space we 

have quantified our plants into, the sequence may be continued 

indefinitely. 

𝑑𝑑�𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑦𝑦� = �(𝑥𝑥1 − 𝑦𝑦1)2 + ⋯ (𝑥𝑥7 − 𝑦𝑦7)22  

Under this metric, we say that our space observes Euclidean 

geometry, and each of our vectors may be considered as points in 

this high dimensional space. However, there are cases where the 

Euclidean metric may not be the most expressive metric. 

Expressive is a subjective word, and in many domains the 

Euclidean distance will express similarity and dissimilarity. Under 

the Euclidean distance, if two vectors are identical they will always 

have a distance of 0, otherwise the distances will be greater than 0, 

and in 3-dimensional space this metric is perfectly valid and fully 

aligns with our interpretation of straight line distance. 

Unfortunately, for higher dimensional spaces, such as the vector 

spaces we will use to represent our materials in later chapters, this 

interpretation begins to drift.  

The geometry of higher dimensional spaces means that unless 

points fall very close to one another, as we increase the number of 

dimensions there will be an increasingly large distance between 

points, and points will become increasingly difficult to distinguish 

from one another. This is referred to as the curse of dimensionality, 

and many successful techniques in classical machine learning can 

ascribe a portion of their performance from successfully thwarting 

this phenomenon.  

The Euclidean distance takes each of the axes in turn and considers 

the interpoint similarity along the axis. An identified shortcoming 

of this metric is it cannot take any inter-column similarities into 

account. For certain objects which are represented by vectors, such 

as the vectors of real numbers that represent the heights of bars in a 

discrete probability distribution, neighbouring columns may be 
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very similar to one another. Judging the similarities between 

column features will require some further mathematical machinery, 

but first some formalisms. 

Thus far we have casually used the terms similar, distance, and 

metric, as these are common terms. For convenience, we shall set a 

simple bound for similar and then provide definitions for the other 

terms. If we take a query object and place all other objects in our 

possession in order of their similarity to the query, then the 15 

closest objects shall be defined as the most similar to the query. 

Note this may not mean they are similar, as they could simply be 

less dissimilar than the other objects in the set, but throughout this 

work we shall use this as the cut-off for similar. This leaves the 

ambiguous question of what is similarity?  

We need a numeric quantifier if we are to determine similarity 

between objects of large datasets, ideally a metric. We may assign 

a function, d, which will take in two objects and return a numeric 

quantifier to discern them, but to be called a metric this function 

must satisfy the metric axioms. Being a metric is of great benefit, 

as many statistical methods used in our analyses are generalisable 

to a range of tasks, but only if the similarity measure is a metric. 

Fortunately, these formalisms are brief, simple to follow, and 

generalise to any metric space. Let us use a simple space to 

demonstrate these axioms before moving onto the materials 

domain. The integer scale, represented by the symbol ℤ, being all 

the whole numbers from minus infinity to infinity, shall be the first 

space we shall study to introduce the rules of metric spaces.   

For each object, Ox with an associated value of x ∈ ℤ, we want to 

know if a second object Oy with y ∈ ℤ is the same, similar, or far 

away. To do this we define a similarity function, d(Ox, Oy), which 

shall return the distance between two objects in our space. For the 

integers, the metric which aligns with mathematical intuition takes 

the absolute magnitude between the two values: 

𝑑𝑑�𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑦𝑦� = |𝑥𝑥 − 𝑦𝑦| 

Figure 18: The integers contained in the 
set ℤ on a number line, demonstrating 
how a distance function which takes the 
absolute difference between two 
numbers can be used as a metric of 
similarity.  
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Figure 19: If the distance between two 
objects is zero the objects are equivalent 
under the chosen metric. 

Figure 20: If the distance between two 
objects is greater than zero, the objects 
must be different under the chosen 
metric. 

Figure 21: If the distance d(Ox, Oy) 
gives one value, then d(Oy, Ox) should 
return the same value. 

Figure 22: The triangle inequality states 
that the straight line distance d(Ox, Oz) 
must be equal or smaller than the total 
distance of any path from Ox to Oz that 
detours via a third point Oy. 

What values may this function take? If this returns a value of 0, 

then x must be equal to y, and we would say that these two objects 

appear the same under the metric. The first axiom of metric spaces 

(Figure 19) states that the distance between any object and itself 

must be equal to 0: 

𝑑𝑑(𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑥𝑥) = 0 

𝑑𝑑�𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑦𝑦� = 0 ↔ 𝑂𝑂𝑥𝑥 = 𝑂𝑂𝑦𝑦 

The next rule, the rule of positivity, states that the distance between 

two distinct objects must always return a positive value (Figure 

20). It is clear that d satisfies this condition, as taking the absolute 

magnitude ensures the result will be non-negative. Many 

algorithms will make assumptions about distance and proximity  

which would fumble with negative distances, as these make do not 

make any physical sense. 

𝑑𝑑�𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑦𝑦� > 0 ↔ 𝑂𝑂𝑥𝑥 ≠ 𝑂𝑂𝑦𝑦 

The rule of symmetry ensures that the distance function does not 

change its output when we permute the order of the inputs (Figure 

21). We must have consistency in distances when navigating 

between objects. 

𝑑𝑑�𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑦𝑦� = 𝑑𝑑(𝑂𝑂𝑦𝑦,𝑂𝑂𝑥𝑥) 

The final axiom formalises the notion that the shortest distance 

between two points is a straight line. This is true in 3-dimensional 

space, and also true in any metric space. If we take a straight line 

path, called a geodesic in metric spaces, between two objects Ox 

and Oz in the metric space, the total distance travelled must be 

extended if we take a detour via a third object, Oy, that does not fall 

on the original path (Figure 22). This is commonly referred to as 

the triangle inequality, as the edges between the points form a three 

edged shape.  

𝑑𝑑(𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑧𝑧) ≤ 𝑑𝑑�𝑂𝑂𝑥𝑥,𝑂𝑂𝑦𝑦� + 𝑑𝑑(𝑂𝑂𝑦𝑦,𝑂𝑂𝑧𝑧) 
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Figure 23: A simple demonstration that 
the property |𝑥𝑥| + |𝑦𝑦| ≥ |𝑥𝑥 + 𝑦𝑦| is true 
when x=-3 and y=6. 

Figure 24: The discrete metric does not 
distinguish dissimilar objects with 
nuance. 

The triangle inequality must hold for any three objects in the 

metric space, and all four axioms must be satisfied for the distance 

function to attain metric status. Demonstrating why d is a metric on 

ℤ, let us substitute the right hand side of the triangle inequality 

with the definition of d: 

𝑑𝑑�𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑦𝑦� + 𝑑𝑑�𝑂𝑂𝑦𝑦,𝑂𝑂𝑧𝑧� = |𝑥𝑥 − 𝑦𝑦| + |𝑦𝑦 − 𝑧𝑧| 

From the definition of magnitudes we know that |𝑥𝑥| + |𝑦𝑦| ≥ |𝑥𝑥 +

𝑦𝑦|. We can substitute (x-y) and (y-z) into this property to give: 

|𝑥𝑥 − 𝑦𝑦| + |𝑦𝑦 − 𝑧𝑧| ≥ |(𝑥𝑥 − 𝑦𝑦) + (𝑦𝑦 − 𝑧𝑧)| 

Through associativity we may cancel the -y and the y variables 

giving 

|𝑥𝑥 − 𝑦𝑦| + |𝑦𝑦 − 𝑧𝑧| ≥ |𝑥𝑥 − 𝑧𝑧| 

As |x – z| is the definition of d(𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑧𝑧) we can see that the triangle 

inequality must hold for this function on all values of ℤ.  

Just because a distance function is a provable metric, does not 

mean that it expresses similarity with nuance or fidelity. The 

discrete metric is the canonical example which can be applied to 

any set of objects and is a valid, if somewhat limited, metric. This 

will simply assign a distance of 1 between all non-identical objects. 

The distance function for this metric is therefore: 

𝑑𝑑(𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑦𝑦) = �1, 𝑥𝑥 ≠ 𝑦𝑦
0, 𝑥𝑥 = 𝑦𝑦 

This certainly passes the first three axioms, and indeed passes the 

triangle inequality, as d(𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑦𝑦) + d(𝑂𝑂𝑦𝑦,𝑂𝑂𝑧𝑧) will be equal to 2 

when 𝑂𝑂𝑥𝑥 ,𝑂𝑂𝑦𝑦, and 𝑂𝑂𝑧𝑧 are distinct objects. It is clear the discrete 

metric is not an expressive metric however. This distinguishes 

objects of the space, but disregards a majority of the information 

that has been provided to us by the object. None of these distances 

will vary in magnitude from one another, d(2, 3) = d(2, 10) = d(2, 

10,000) = 1 (Figure 24). We tend to have firm opinions of the 

magnitudes that distances between the integers ought to take, as we 
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call this counting. This highlights that just because a measure is a 

metric, it may not be an expressive metric. 

It is easy to spot when we have chosen the “wrong” metric in these 

simple and exaggerated cases, but in more complex settings 

established metrics may attain acceptable distinguishing 

performance for similar objects, but fail to distinguish dissimilar 

objects coherently from one another. For us to extrapolate 

relationships across chemical domains, we need to be able to 

recognise local patterns that are happening in nearby regions of 

chemical space as well as global patterns which could be occurring 

in dissimilar regions of chemical space. If the underlying metric 

being used to differentiate points in a space is incapable of 

recognising long range patterns because all dissimilar points look 

the same, we have not chosen an expressive metric. 

One of the core enquiries presented in this thesis will be exploring 

how certain representations of materials may benefit from 

abstracting the problem into the domain of mass distributions and 

mappings between distributions. Instead of examining the absolute 

magnitude between each variable, as with the Euclidean distance, 

the minimal cost to transport mass from one distribution into a 

second is taken, ascribing the total quantity of work required as the 

“distance” between the two distributions. This requires a more 

computationally intensive algorithm than the Euclidean distance, 

but can highlight similarities the Euclidean distance misses.  

Optimal Transport 
Optimal transport measures provide a consistent numeric 

evaluations of similarity between mass distributions, which are 

sensitive to small variations for both similar and dissimilar 

distributions. It has seen applications in other areas of materials 

science between SOAP 28 and AMD 29 structural descriptors. In 

this thesis we shall discuss some novel approaches where this 

technique may be applied. 
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Figure 25: A simple example of the most 
efficient filling strategy for a dug out 
trench of potatoes. 

Figure 26: An inefficient method of 
transporting earth to each hole in the 
potato trench. 

The problem of finding the best method of transporting mass, is 

one where humans possess strong instinctive reasoning. If you 

have dug out a potato trench and you have the excavated the earth 

in a row next to your trench, then you know that it is better practice 

to fill in the trench with the pile of earth that is closest to each hole 

(Figure 25), rather than walking up and down placing each 

shovelful into a random position that it did not initially come out of 

(Figure 26). Clearly for simple distributions of mass, like our 

potato trench, determining the optimal transportation plan is a 

trivial exercise, but for more complex distributions, this may not be 

as readily apparent. In simple regimes we can recognise a good 

solution, but for distributions of greater complexity, we must use a 

numeric quantifier to judge whether one method of filling in the 

trench is truly superior to another.  

More effort must be exerted for each step that is taken, so it is clear 

that transport plans which force us to take more steps are inferior. 

This total work done may be used to judge whether we have found 

the best plan, as the optimal solution verifiably takes the smallest 

number of steps possible. This optimal value of work done may be 

interpreted as a measure of distance between two distributions, 

with smaller values of work done to transform one from another 

suggesting the two distributions possess a greater level of 

similarity. 

For the 1-dimensional potato trench example, there exists a very 

fast method of determining the minimal quantity of total work done 
30. If we know that we are forced into walking back and forth in a 

straight line, then an optimal solution may be obtained by keeping 

track of the demand/surplus of earth that is encountered as we 

make a single pass from one end of the path to the other. This 

process is best demonstrated with some examples, shown in 

Figures 27-29. 



31 
 

  
Figure 27: The calculation of EMD when two one-dimensional distributions are identical to one another. 

 

Figure 28: The calculation of EMD if the first distribution of earth is in one pile. 

 



32 
 

 In each of these examples we know how many steps will need to 

be taken carrying earth after walking along the trench a single time. 

This process is very fast, and is applicable to any unbroken 1-

dimensional distribution. For two monotonically spaced (where the 

n fixed positions mass can occupy have been spaced apart 

regularly) distributions X and Y this may be carried forward in four 

simple mathematical operations (Figure 30-31) by the equation:  

𝐸𝐸𝐸𝐸𝐸𝐸(𝑋𝑋,𝑌𝑌) = � | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋 − 𝑌𝑌)| 
𝑛𝑛

𝑖𝑖=1

 

𝑋𝑋 − 𝑌𝑌, we assume that the second distribution is initially positive, 

and thus we subtract this to signify that these are the holes that 

must be filled in at each position.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋 − 𝑌𝑌), we take the cumulative sum by adding 

each successive vector element together as we sweep from left to 

right, keeping track of the cumulative total. We know work must 

Figure 29: The calculation of EMD between two dissimilar distributions. 
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Figure 32: A 2-dimensional network of earth and holes with no clear method of 
choosing which hole to assign earth to. 

be done at each step as we walk from one end of the path to the 

other, which is tracked by this operation. 

| 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋 − 𝑌𝑌)|, the absolute values are taken as we 

know that walking back on ourselves to fill in a hole takes as much 

work as walking forward to fill in a hole. 

∑ | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋 − 𝑌𝑌)| 𝑛𝑛
𝑖𝑖=1 , we take the summation across 

all of these values to give the total work that must be done at 

minimum to fill in the second distribution.  

Unfortunately, there are many classes of transportation problems 

which do not fit the constraints that this method requires. The 

restriction to distributions which fall on unbroken monotonic 1-

dimensional distributions means that if we were to dig holes across 

a 2-dimensional field depositing the earth in mounds at random 

(Figure 32), we would not be able to deduce the minimal cost of 

filling our holes back in via this method. Further, this algorithm 

does not return a transportation plan, which would be a useful 

piece of information for the person filling in the holes.   

 

 

 

Figure 30: Each of the successive steps 
that are taken to transform two linear 
distributions when computing EMD. 

Figure 31: Summing each of the values 
in the computed vector gives a final 
value of EMD 
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Figure 33: A sub-optimal feasible solution to 
fill holes with piles of earth (top) is successively 
improved by swapping edges so that the 
problem remains solved and the overall cost is 
reduced at each stage. Eventually, an optimal 
solution is found (bottom) where no further 
changes can reduce the total cost. 

Lots of algorithms for computing the optimal transportation plan 

for more complex spaces exist 31. A network, or graph, may be 

formed by forming edges between each of the piles of earth and the 

holes (supply and demand nodes of a bipartite graph in network 

flow literature 32), ascribing the metric cost to transport earth 

between each node to each edge. These edge networks may be 

represented by square distance matrices, which represent the unit 

cost of transporting mass between each of the nodes. The mass of 

each node will be stored in one of two vectors, one for supply 

nodes and one for demand nodes. In recent years the Sinkhorn 

algorithm 33 has gained popularity in a range of applications 34 for 

the speed 35 at which it arrives at solutions, but in our work and 

others 36, we have found that this is outperformed by the network 

simplex algorithm 37. This is presumably due to the relatively small 

network sizes used in our work, and as such this is the approach 

taken in this thesis. 

The simplex algorithm was developed roughly a decade before the 

network simplex and is one of the most robust and well-studied 

technique in optimisation. An in depth overview of the simplex 

algorithm is beyond the scope of this chapter, but suffice to say this 

provided strong motivation for the development of the network 

simplex algorithm. The simplex algorithm allows us to find the 

optimal values for a set of variables given a set of linear constraints 

and an objective function which must be maximised or minimised. 

By definition this focuses on spaces which can be constrained by 

linear equations.  

One of the core theorems initially presented alongside the simplex 

method, was that any solvable linear optimisation problem must 

have a basic feasible solution. Basic in this instance means that all 

variables which can possibly be set to 0 are set to 0. All solvable 

problems will have at least one solution which is optimal and has at 

most as many non-zero variables as the number of constraints 

given by the initial problem. A linear problem with ten 

independent variables, and two constraints is guaranteed to have an 
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Figure 34: The same sequence of steps taken 
in Figure 33, but demonstrated on a bipartite 
graph. Masses are overlaid on each node with 
positive values indicating a source, and 
negative values a sink, with the swapping 
edges at each stage given in orange. 

optimal solution where at least eight of the variables are equal to 0. 

The algorithm thus focuses on pivoting variables in and out of a 

smaller two variable basic solution until we have arrived at a 

solution which is both verifiably optimal and feasible. 

For network (i.e. graph) problems, whilst the simplex algorithm 

can be applied to find an optimal matching, this is known to be a 

slow approach. The large number of linear constraints which must 

be used to represent the problem means that we must track a lot of 

variables at each step of the process. To alleviate this, the network 

simplex algorithm was proposed in 1976 38, with a provably 

efficient method given by Orlin in 1997 39, which remains one of 

the fastest methods in practice. The simplex method is adapted for 

networks, through the observation that the basic feasible solution in 

linear programming has a network analogue, the basic feasible 

spanning tree solution.  

This states that there must exist an optimal solution to the network 

problem which contains the n nodes of the network, and at most n-

1 edges connecting these nodes together. Therefore we may keep 

track of n-1 variables at each step of the process, setting all other 

edge assignments to be equal to 0. An initial solution to the 

problem is generated by choosing n-1 edges at random or through 

an initialisation scheme. This edge assignment may not be a 

feasible solution to the problem, i.e. some holes may be unfilled, or 

mass assigned to too many places. Some edges may appear in the 

solution with zero mass assigned to them to ensure a spanning tree 

solution. We choose edges to pivot in and out of the spanning tree 

until we have reached a point where the solution is both feasible, 

and swapping out two edges will not lead to a smaller total cost to 

the problem. At this point we have arrived at an optimal spanning 

tree solution, which is provably minimal. Astute readers may have 

noticed that this is a disconnected graph, and thus not a tree. This 

nomenclature stems from network flow problems which assume 

that all mass is sourced from a single node, however this is still a 

valid transport plan. This plan may be returned to the user, and the 
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total work done calculated by multiplying the total mass 

transported along each edge by the cost of each edge.  

Given the ubiquity of this problem across so many fields, it has 

been discovered and rediscovered multiple times, giving it a rich 

and fragmented history. The earliest documented approach to 

solving this problem was formulated by Gaspard Monge in 1781 41 

to find the best routes sending construction and military supplies 

across Napoleonic France. As a guarded national secret this work 

was not publicised during Monge’s lifetime, and the technique was 

not developed much further. Over a century later the Russian 

mathematician Leonid Kantorovich saw how the optimal transport 

algorithm presented by Monge would be improved by the latest 

advances in linear programming, and in 1942 went on to develop a 

much faster approach 42. Due to its potential for exploiting 

economic markets, this method was deemed antithetical to soviet 

doctrine and Kantorovich was dissuaded from discussing his work 

by the local authorities, with this same approach independently 

found by Georg Dantzig 43.  

A Russian statistical physicist, Leonid Wasserstein, went on to use 

the technique to describe Markov processes of large systems of 

automata. The director of his institute, Roland Dobrushin, being 

impressed with this idea, promoted his colleagues work as the 

Wasserstein metric, which remains a commonly used term in 

statistics and applied mathematics to this day 44. At the turn of the 

century, researchers at MIT applied this method to judge the 

similarity between images by looking at the optimal transport plan 

between binned histogram representations 45. Rather than referring 

to this as the complete weighted bipartite minimal cost matching 

problem, how this class of problems may be called within 

computer science, they renamed the technique the Earth Movers 

Distance (EMD).  

In the past decade, an approximation method for the optimal 

transport plan called the Sinkhorn algorithm has been formulated 
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35, which allows the transport plan to be computed in a constant 

number of iterations within a provably tight margin of error, and 

has been referred to as the Sinkhorn distance. Cédric Villani won 

his Fields medal applying optimal transport measures to gas 

equations, and has opined that if the technique is not referred to as 

optimal transport, then it should be named the Monge-Kantorovich 

distance, after those who originally formulated the solution 44. In 

this work, we have chosen to continue referring to these optimal 

transport measures as the earth movers distance due to the 

immediacy of understanding this description conveys to a wide 

audience. 
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Introduction 
Even before Aristotle, philosophers sought to explain the 

properties of materials through their elemental composition. As an 

experimental chemist, the first step in any investigation is choosing 
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what elements in what ratio to put into the sample, and the 

composition is arguably the most important independent variable 

under control. In many functional materials, where disorder is 

important to the functional properties (such as electronic or ionic 

conductivity), the elemental composition is an invariant property 

that is well described. This is because the nominal composition that 

is put into a synthetic process is generally well-defined, and also 

because there are extensive characterization methods to 

experimentally determine the elemental composition.  

Although the underlying theory has evolved considerably since 

antiquity, the elemental composition of a material continues to be a 

prime director of materials properties, and we know now the 

chemical composition largely dictates the nature of the chemical 

bonding, which has a strong influence on the crystal structure and 

physical properties. Similar compositions lead to similar 

properties, and when estimating material properties, it is important 

to consider the closest known composition to the one being 

considered. These similarities can be defined quantitatively in a 

distance function which returns a real valued number, such that 

identical objects have a distance of 0, and less similar objects 

return a larger value. We would expect that small changes in 

chemical makeup would lead to correspondingly small variations 

in chemical property, and that chemically dissimilar compounds 

may behave entirely differently. 

The chemist develops such understanding naturally through their 

exploration of the sciences. Whilst each practitioner may have a 

personal tolerance for what they believe to be “chemically similar”, 

two compositions which differ only by a minor dopant or by the 

substitution of a similar element have inarguable similarity. This 

relationship may be immediately clear to the chemist, but in 

practice it is difficult to capture these small physical changes 

numerically. In this chapter we present a novel technique for 

calculating the distance between two compositions, which captures 

nuanced variations in stoichiometry for both similar and dissimilar 
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compounds using our chemically inspired implementation of the 

Earth Movers Distance, the Element Movers Distance (ElMD). 

By correlating relationships between the chemical composition of 

materials and their observed behaviour, we may detect underlying 

statistical relationships between these. This can be used in an 

automated process to usefully inform the chemistry, whether it be 

by providing the relationships with other clusters of similar 

materials, or even by estimating the properties. This has been 

exploited implicitly by modern machine learning (ML) methods, 

which have been applied to capitalize on the strong determination 

of properties by composition; there are many reports of regression 

models to estimate material performance of inorganic solids from 

composition alone 1–3.  

For these models to be successful we require two things: a large 

collection of data, and a method of differentiating these such that 

we may uncover the subtle relationships which govern a material’s 

properties. Having a metric to quantify these relationships allows 

us to take our bearings and construct maps of chemical space to 

enable clear exploration, providing an awareness of compositional 

relationships between materials. When predicting the properties of 

a new composition, we must form an understanding of its relation 

to other reported compounds, and the distinguishing quality of the 

similarity metric chosen can vastly affect performance. The choice 

of metric should therefore possess enough fidelity to give an 

accurate representation of chemical relationships between entries 

in a database of compositions, and align with human 

understanding. 

Though widely used as a metric, the compositional Euclidean 

distance (CED) can perform poorly at the task of distinguishing 

compounds. A common method of encoding a composition is to 

store the relative ratio of each element in the compound to its 

associated index in a vector of length 103, for each of the naturally 

stable elements. Taking 𝑥𝑥𝑖𝑖 to be the fraction of the i-th element in a 
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compound X, we take the CED to a second such vector, Y, via the 

standard formula:  

��(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑖𝑖

 

Due to the sparsity of these vectors, the CED overly simplifies and 

exaggerates physical differences. As an example by taking the 

atomic number of the 103 stable elements as our index, the 

compositional vectors of LiF and BeO would be 

[00 … 0.53 … 0.59 … 0103] and [00 … 0.54 … 0.58 … 0103] 

respectively. Taking the non-zero elements with indices 3, 4, 8, and 

9, the CED between these vectors would thus be: 

�(0.5 − 0)2 + (0 − 0.5)2 + (0 − 0.5)2 + (0.5 − 0)2 =  √1 

A third binary composition, BN, which with a compositional 

vector of [00 … 0.55 … 0.57 … 0103] is arguably less chemically 

similar to LiF than BeO, would also have a CED of 1 to both of 

these compounds, as demonstrated in Figure 1. A CED of 1 would 

be calculated between any two binary compositions which do not 

have a common element. This discrete nature of the CED does not 

provide an accurate distinction between compounds which may be 

entirely different chemically, and while this may capture local 

trends in a chemical dataset, will lose global information. We can 

improve on this shortcoming by incorporating a measure of 

elemental similarity which may be applied to a compositional 

vector directly.  

The Earth Mover’s Distance (EMD) is a metric which is well-

constructed to pair elements between compositions, and from this 

judge their similarity, which has had successful applications in 

multiple fields 4–6. The EMD may analogously be thought of as the 

minimal amount of work to move piles of earth to fill pits of equal 

overall volume but different shapes, a long studied transportation 

problem 7 with fast algorithmic implementations 8–11 that are 

discussed in chapter 1. This consistently returns a unitless quantity 

of work which may be interpreted as a measure of distance.  
Figure 1: The CED is demonstrated 
between compositional vectors of LiF, BeO, 
and BN by taking the absolute difference of 
atomic sites, with the atomic number as 
index. 
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We could assign the atomic number as the vector index for each 

element, then take the difference between indices as a measure of 

elemental similarity, but this approach loses the natural clustering 

of chemical properties afforded by the periodic table. An ideal 

elemental indexing would perfectly capture the chemical trends 

observed in nature, but ordering the elements in such a manner is 

problematic. As well as the unclear resolution of how to handle the 

f-block elements, chemical trends moving down the periodic table 

tend to be the direct opposite of those moving across. This leads to 

some elements having greater substitutional feasibility to their 

diagonal neighbour than their immediate neighbour, making a 

simple placement of these difficult.  

To solve this problem, Pettifor proposed a method of labelling the 

elemental scale in his seminal paper of 1984 12, drawn from 

extensive domain knowledge. These numeric labels may form the 

basis of a coordinate system allowing us to associate patterns in 

geometric and physiochemical properties, with extensions to this 

idea continuing to guide practitioners 13,14. This concept of 

labelling was further developed by analysing the probability that an 

element can be substituted for another given the same structural 

framework, on 20,500 compounds of the ICSD by Glawe et al. 15. 

This probability matrix can be reordered to maximize the 

likelihood that local neighbourhoods will contain elements with 

greater feasibility of stable substitutions, thus possessing inherent 

chemical similarities 16. We take the associated indices of this final 

ordering to give each element its modified Pettifor number, as 

demonstrated in Figure 2. 

In this chapter we define a composition vector by taking the ratio 

of each element in a compound assigned to the index of its 

respective modified Pettifor number. By assuming the sample of 

the set of feasibly stable compounds (although we know this is not 

strictly the case 17), we can see that these indices capture the truly 

physical similarities between elements from statistical analysis, 

which has been implemented in the Element Movers Distance 

Figure 2: The equivalent ElMD solution to 
Figure 1, where instead elements are 
matched to one another by similarity. By 
calculating the cost to transport each atom 
along the modified Pettifor scale we have 
arrived at a distance which is reflective of 
the chemical dissimilarity. 
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(ElMD) library. Using the modified Pettifor scale gives resultant 

similarities between compounds which align with human 

judgement, but may be substituted with any continuous elemental 

scale including unequally spaced distributions such as Pauling 

electronegativity or high dimensional machine learnt elemental 

vector embeddings.  

This gives us the ability to place new compositions within the 

context of previously reported compounds allowing us to attribute 

properties to these before the lengthy process of synthesis. We can 

do this automatically with ML techniques, where the EMD forms 

part of the workflow to predict properties quantitatively. We may 

additionally assign properties to compositions qualitatively, by 

simply searching through multiple databases to find the most 

similar existing entries. This second approach requires the 

practitioner’s judgement on whether to take the property of the 

closest match, an average of many similar compounds, or to 

conclude that the reported landscape is not sufficiently complete to 

make an accurate judgement. 

The Earth Mover’s Distance 
We take an initial matching by pairing each of the m elements in a 

vector, X, to its most similar unmatched partner in the n elements 

of a second vector Y, until all have been paired. The parameters we 

alter is the transportation plan which is the quantity matched, q, 

from the i-th element of X, to the j-th element of Y, given by qij. A 

cost is calculated (Eq. 1a) by summing all quantity, q, paired 

through each matching multiplied by the difference in indices on 

the modified Pettifor scale, p, between the elements matched. 

When all elements have been paired, this is a feasible solution to 

the problem, however it may not be an optimally minimal solution. 

Given two vectors we take a feasible matching, and successively 

improve this via the network simplex algorithm until the total 

summed cost is verified optimal. For a compositional vector X, 

∑ 𝑥𝑥𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1  and therefore the total quantity matched with any other 

vector will therefore also equal 1. As we are describing a 

Figure 3 All feasible solutions to compute the 
ElMD between Li1.3Al0.3Ti1.7(PO4)3 and 
La0.5Li0.35TiO3. The area of each disk 
represents the fraction of the element in the 
compound, and the width of each arc shows 
the maximal quantity which could be 
theoretically matched within the constraints 
of the problem. Figure not to scale. 
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transformation from two distributions with the same integral, this 

satisfies the triangle inequality which is proven in Appendix A of 

reference 4. The formal definition of the EMD between two 

compositional vectors X = (𝑥𝑥1 … 𝑥𝑥𝑚𝑚) and 𝑌𝑌 = (𝑦𝑦1 …𝑦𝑦𝑛𝑛), as given 

in reference 18, Eq 1a, is defined by the optimisation problem:  

 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑋𝑋,𝑌𝑌)  =  𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞𝑖𝑖𝑖𝑖

  ��𝑞𝑞𝑖𝑖𝑖𝑖 �𝑝𝑝𝑖𝑖 −  𝑝𝑝𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

         (1a) 

 

  subject to       𝑞𝑞𝑖𝑖𝑖𝑖 ≥ 0    for any 𝑖𝑖, 𝑗𝑗                     (1b) 

 

              �  𝑞𝑞𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖   for any 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚
𝑛𝑛

𝑗𝑗=1

             (1c) 

  

               �  𝑞𝑞𝑖𝑖𝑖𝑖 ≤ 𝑦𝑦𝑗𝑗   for any 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛
𝑚𝑚

𝑖𝑖=1

             (1d) 

 

              ��𝑞𝑞𝑖𝑖𝑖𝑖 = 1
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

                                             (1e) 

 
Constraint (1b) defines that we may only match a positive quantity 

from X to Y, (1c) and (1d) state that each element will only pair to 

another up to its ratio. The final constraint ensures that all of the 

elements in X are matched to an element in Y such that a feasible 

solution has been achieved. Note that whilst the total EMD cost is 

an optimally minimal value, a problem can have multiple 

transportation plans that lead to the same optimal solution.  

Taking three candidate solid state electrolytes with known 

dissimilarity in composition and structure to exemplify this as in 

Figure 4, we can see how the ElMD allows greater depth of 

analysis when defining chemical similarity compared to the CED. 

From Figure 4 we see how the solution not only gives us the Figure 4: The optimal matchings 
between Li1.3Al0.3Ti1.7(PO4)3 and 
La0.5Li0.35TiO3 (ElMD=12.70), 
Li1.3Al0.3Ti1.7(PO4)3 and Li6PS5Cl 
(ElMD=31.08), and Li6PS5Cl and 
La0.5Li0.35TiO3 (ElMD=18.38) 

 



47 
 

measure of distance, but also the quantity of elements that are 

paired to one another. These resultant distances may be used to 

define a geometry on the compositional space, as in Figure 5. In 

this instance the three compositions fall on a geodesic, or straight 

line. We may apply this metric to any two chemical formulae, 

enabling us to highlight chemically similar substitutions, and thus 

familial relation, which may not have been immediately obvious 

from the compound formula. The reference implementation of the 

Element Movers Distance may be found at: 

https://github.com/lrcfmd/ElMD/. 

Pairing Structures to Compositions  
It is widely recognized that composition is not the sole determinant 

of physical performance, and crystal structure plays a fundamental 

role in property, which can be dependent on many different length 

scales. Codifying these structures such that we may compare them 

for similarity has known difficulties 19 due to the periodicity of 

inorganic systems. For organic molecules there exist methods of 

formally encoding a structure derived from the strict lexicographic 

conventions of organic chemistry 20,21, and methods of encoding an 

inorganic crystals local environment and symmetry have been 

successfully implemented 22–24. Structural features are a known 

asset to ML models, and the addition of this information generally 

gives stronger predictive performance at screening and property 

prediction 25–28. 

Unfortunately, structural information is often not reported in 

tandem with experimentally determined chemophysical properties, 

and many such properties are reported from solid solutions where a 

similar reported structure may not even exist. In many cases only 

the composition and the property under investigation will be 

Figure 5: A simple embedding of Li1.3Al0.3Ti1.7(PO4)3, La0.5Li0.35TiO3, and Li6PS5Cl using 
calculated ElMD distances 

https://github.com/lrcfmd/ElMD/
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reported, leaving a fragmented data landscape with a barrier 

between databases. With the number of reported compounds 

untenable for any person to feasibly audit, we must bring this 

information together in an automated manner. The ElMD allows us 

to connect compounds to their closest determined structure in such 

a fashion, allowing databases with compositional information to be 

joined to databases of structural information.  

Using the ElMD we may pair query formulae, including those 

which have never been synthesized, to their most similar 

compositions in one of the many chemical databases such as the 

Inorganic Crystal Structure Database (ICSD, 2017) 29, consisting of 

188,631 crystalline information files (cifs). A recent review of 

materials with reported ionic conductivity was undertaken with 842 

compounds identified, which shall be discussed in greater detail in 

the next chapter. Each compound had a brute force comparative 

search applied to every ICSD entry, and the most similar pairings 

analysed by a team of 21 researchers at the Materials Innovation 

Factory, University of Liverpool, with the quality of these 

matchings assessed.  

Of these compounds, 528 had a perfect match to a cif or an exact 

match under a minor change in stoichiometry. A further 254 

compounds having a matching cif with a small number of 

elemental substitutions and similar in crystal structure. The 

remaining 60 formulae did not find a good match, mostly due to 

the materials being reported more recently than any database 

entries. In Table 1 we see some commonly cited compounds from 

this field and their closest matches in the ICSD. Clearly a distance 

of zero gives an exact match barring polymorphs, however there 

remains the more general case where an exact structure has not 

been reported. We can see that in each example a chemically 

similar compound has been returned, and we would expect the 

extracted structural features to have a high degree of correlation 

with the true structural information.  
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Table 1: The top three most similar results when querying some commonly cited 
solid state electrolytes against the ICSD (2017) with ElMD. Whilst there are only 
four queries with exact matches due to the recency in the electrolytes reporting, it 
may be seen that the remainder are chemically similar. 

 

Overall, 8.43% of the compounds were poorly matched as judged 

by a team of experimental chemists, although the number of false 

matches can be reduced by filtering the dataset with the application 

of a maximum threshold value. By removing all matches which 

have a distance greater than 1, we discard 12% of the entries, but 

improve the false positive rate to 5.7%. Although caution should be 

applied from the introduction of known errors, this provides a 

simple method for the automated creation of datasets on the scale 

required to uncover complex statistical relationships. 

By assessing those matchings in Table 1 that are imperfect, we 

may see how the top ranked match remains structurally related, 

Query Three Closest Matches ElMD 

 
Li1.3Al0.3Ti1.7(PO4)3 

Na1.261Al0.302Ti1.696(PO4)3 
Li1.2Al0.2Ti1.8(PO4)3 
Li1.4Al0.4Ge0.4Ti1.2(PO4)3 

0.231 
0.302 
0.368 

 
Li10GeP2S12 

Li10GeP2S12 
Li10SnP2S12 
Li9.81Sn0.81P2.19S12 

0.000 
0.040 
0.439 

 
Li6PS5Cl 

Li6AsS5I 
Li6PO5Cl 
Li6PO5Br 

0.231 
0.385 
0.462 

 
Li5La3Nb2O12 

Li5La3Nb2O12 
Li5La3Ta2O12 
Li5.08 La3Ta1.51Zr0.39O12 

0.000 
0.091 
0.322 

 
Li1.5Al0.5Ge1.5(PO4)3 

Na1.5Sn1.5Sb0.3(PO4)3 
BaGa(PO4)2 
BaSn(PO4)2 

0.543 
0.712 
0.745 

 
Li7La3Zr2O12 

Li7La3Zr2O12 
Li7La3Hf2O12 
Li7.1La3(Zr1.9Cr0.1)O12 

0.000 
0.083 
0.200 

 
Li14Zn(GeO4)4 

Li14Zn(GeO4)4 
Li6Ge2O7 
Li6(Si2O7) 

0.000 
0.410 
0.543 
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with the remainder being simple dopings and substitutions. Of 

interest is Li1.5Al0.5Ge1.5(PO4)3 in row 5, where whilst there is clear 

chemical relation between these three compounds, we see some 

dissimilarity in their structures, as Na1.5Sn1.5Sb0.3(PO4)3, 

BaGa(PO4), and BaSn(PO4) represent the NASICON and 

pyrosilicate phases respectively.  

It is likely, perhaps certain, that the chemist develops a deeper 

understanding of the relations between the compounds they study, 

their combinations, and their behaviours under environmental 

conditions than can be captured by a simple number. An 

engineered representation of compositions has however allowed us 

to express chemical relationships which have not previously been 

possible to express quantifiably. With a clearly defined metric of 

chemical similarity, we may use this as we would any other 

distance, with additional confidence that the underlying mechanics 

are mathematically aligned with chemical knowledge. 

Mapping Compositional Space 
The discovery of new materials has always been data driven, and 

mapping compositions to predict the existence of structures is a 

time honoured technique in crystallography 30,31. The visual 

medium provides a tangible clarity to the human reader, where 

abstract relations between compounds can be difficult to 

conceptualize through numerical analysis. The ElMD in 

conjunction with modern visualization techniques has clear 

application in this regard, giving the ability to plot detailed maps 

which clearly align with known chemical clustering. The metric 

space is given by compositional vectors in 103 dimensions and 

their relationships with respect to the ElMD.  

This space and its induced structure has an associated geometry, 

but as we only possess the distances between points, we do not 

have the 2-dimensional coordinates that are required for plotting. 

We may use dimensionality reduction techniques to generate 2D 

Cartesian coordinates which respect the metric distances, and the 

resultant points are called an embedding of the space. By 
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measuring a line between embedded points with a ruler, distance 

may be used in the ordinary meaning of the word to define the 

similarity between two points. As it is generally impossible to 

represent a complex space without distorting the relationships 

between points, many dimensionality reduction techniques exist, 

each with their own focus at emphasizing specific relationships 

across a dataset.  

In general we wish to align the distance between points with the 

associated ElMD between compositions, such that our embeddings 

give a valuable representation of the metric space. In this chapter 

we discuss embeddings produced by Uniform Manifold 

Approximation and Projection (UMAP) 32, which gives clustered 

plots which allow the qualitative assessment of chemical datasets 

with unsupervised ML, and Principle Component Analysis (PCA) 

which we find gives more accurate representations of the 

relationship between points, with less overall distortion from the 

true positions. 

In the UMAP algorithm, every composition is represented by a 

point and edges to each of the 15 most similar compounds in the 

dataset calculated with respect to the ElMD. It is not however 

possible to plot these distances directly, due to the contradictory 

information that arises when embedding a graph of high degree to 

the plane. Approximations of the metric distances are realized in 

two dimensional Euclidean space by constructing an inaccurate 

embedding of the point cloud, and refining the positions of the 

points along edges to each neighbour, such that distances between 

them align with the true ElMD, with respect to local cluster 

density. In doing this we disregard the majority of the inter-

compound distances, yet retain a skeletal backbone which follows 

the local trends of the data, pulling together clusters of similar 

compounds. The resultant 2-dimensional plots are highly distorted 

from their true positions in the metric space, but in a manner which 

draws out the most prominent global trends of a dataset, from 

which we may pick out clear patterns and clusters both manually 
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and automatically. The exact positions of the points and associated 

clusters that make up the embedding are highly dependent on the 

choice of the hyperparameters, and particular sensitive to choice of 

random seed. For the embeddings in this chapter we have chosen 

the default parameters (umap-learn version 0.3.6) and a 

random_state of 0, as these result in embeddings which have 

observable chemical trends. These plots are not perfectly 

reproducible due to the stochastic nature of the algorithm, however 

we have found that each random seed will lead to a similar 

placement and number of clusters in the resultant embedding. 

For other datasets, a more directed approach may be taken by the 

trained chemist by taking a choice of random seeds and hyper-

parameters, and varying these until there is an embedding which is 

both visually pleasing and identifiably correct. The number of 

nearest neighbours each point should consider when refining edges 

in the lower dimensional space (default 15) is a common hyper-

parameter to vary. Changing the number of nearest neighbours to 

consider will alter the number of clusters in the embedding. If there 

is some prior knowledge of the number of clusters that should be 

contained in the dataset, this value may be modified until the 

embedding is in agreement with the known number of clusters. 

Additionally, the minimum distance (default 0.1) and spread 

(default 1.0) between embedded points may be adjusted to 

exaggerate how clustered/clumped each of the points in the 

embedding are. This may assist with visual clarity and benefit 

automated clustering techniques.  

Binary Compositions 
The binary compounds have simple compositions for us to 

demonstrate the efficacy of the ElMD and its alignment with 

domain knowledge. The 12,623 binary compounds in the ICSD 

were identified, the complete inter-compound distance matrix 

calculated with respect to the ElMD, and the resultant distances 

reduced to two dimensions with the application of UMAP using 

default parameters. UMAP is a stochastic embedding technique, 



53 
 

which can lead to entirely different embeddings depending on the 

choice of random seed and hyperparameters. Nevertheless, each of 

the clusters of clear separation tend to contain AB pairs from the 

same, or similar families on the periodic table, with trends across 

clusters following expected transitions in chemical composition 

through the modified Pettifor scale. In some clusters there is 

greater chemical discontinuity, yet there are trends across regions 

of these points which follow smooth variations in AB ratio. In 

others there is a strong chemical homogeneity, with A and B 

consisting of the same elements, with paths varying in x along the 

binary phase field of AxB1-x. 

 

Figure 6: 12,623 binary composition vectors from the ICSD, with the ElMD between compounds calculated, and reduced to 2 
dimensional coordinates using UMAP with its default parameters. With the application of colour labels to display the placement of 
elements present in the composition across the periodic table, it can be seen the ElMD has separated the space into complex-shaped 
clusters of related chemical families which have strong alignment with chemists’ perception of similarity. 
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Adding chemical labels (e.g., which blocks of the periodic table are 

found in the compound) demonstrate how trends in chemical 

properties are preserved when using the ElMD (Figure 6). As there 

are no experimental properties barring chemical formula and 

atomic positions reported in cifs, we must derive known features 

from the composition alone. In binary compositions, we know that 

the block of the periodic table that each of the two elements are 

from, will play a significant role in the resultant chemical 

properties. By labelling these blocks we can immediately see how 

UMAP has partitioned the space into clusters of compositions from 

the same, or arguably similar, blocks of the periodic table.  

A clear example is the pink cluster in the upper left of the map, 

where we may find every compound in the ICSD containing two p-

block elements. By embedding approximations of distances from 

the metric space, these chemical maps have been given a structure 

which aligns with domain knowledge. This alignment arises 

because the ElMD preserves chemical relationships between 

elements, and thus the chemical context present from the periodic 

table is present in the metric, which allows reference between 

elements (and by extension regions of the periodic table) ensuring 

these trends are well captured 

Maps of inorganic compositional space have previously been 

created with the CED 33; however, for these maps to possess a 

structure which aligns with chemical judgement, any method 

employing CED requires a high incidence of compounds with 

shared elements. When similar methodology is applied to the entire 

periodic table e.g. binary compositions of the ICSD shown below, 

all detailed structure present when using the ElMD is lost.  

When using the ElMD, compounds with elements from similar 

regions or blocks of the periodic table are clustered in groups with 

nontrivial shapes, high purity (i.e. a low number of labels per 

cluster), with a sensible relationship between clusters (Figure 6). 

When using the CED, all these desirable properties are lost (Figure 

7); clusters have trivial shapes with little variation, are impure (i.e. 
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have a high number of labels in each cluster with combinations of 

each block in the periodic table evenly distributed across the map), 

and the clusters are evenly distributed throughout the projection. 

Further, rather than large, connected clusters generated when using 

ElMD, using the CED we get small and often isolated islands, with 

no clear relationship between these. Because compositions without 

shared elements have roughly equal distances under the CED, there 

are not enough global points of reference to place clusters in 

relation to one another with fidelity. There is dense clustering of 

compounds with similar stoichiometry (i.e. shared elements) due to 

the comparatively small distances between these, making it 

difficult to differentiate points within clusters.  

 

Figure 7: The maps produced with the CED contain many isolated clusters with trivial shapes and few members, with poor 
resolution of chemistry (i.e. many labels within a cluster). 
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This shows how a metric with qualitatively poor ability at 

distinguishing compositions will lead to quantitative confusion of 

known chemical relationships. Whilst the CED may provide 

enough distinguishing quality to be of benefit when applied to 

certain chemical datasets (e.g. where there are shared elements), 

the lack of chemical relationship between elements leads to a loss 

of discernibility and is a guaranteed source of noise for models. By 

processing compositional vectors with respect to the ElMD, 

chemical relationships and context have been preserved to a high 

enough standard that it may be captured reliably with automated 

methods.  

The use of the ElMD enables the comparison between different 

choices of the elemental scale defining the indices in the 

compositional vector. This is not the case for the CED, where the 

distance is the same regardless of the elemental scale chosen. Even 

when using simple atomic numbers as the elemental index, the 

ElMD introduces significant structure to the UMAP generated 

clusters, leading to clusters with nontrivial shapes, however 

without the purity of labels observed when using the modified 

Pettifor scale. Elemental scales such as Pettifor’s original 

Mendeleev number 15 or alternate orderings of this scale 31 result in 

plots with similar cluster shape and purity to the modified Pettifor 

scale (Supporting Information Figures S1-3).  

An alternative approach to the use of compositional vectors X and 

Y is the use of recently developed vectors of features which are 

derived from values of physicochemical properties of the elements 

present in the composition 35–37. Application of UMAP to the 

Euclidean distances between the magpie features 38 of these binary 

compounds results in clusters with low levels of chemical purity, 

similar to the results obtained using the ElMD with atomic number 

scale (Supporting Information Figure S1). 

The labels in Figure 4a were assigned with the density based 

clustering algorithm DBSCAN 39 on the points obtained by the 

ElMD and UMAP, which assigns groups of points class labels, 
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such that clusters which have been closely plotted together on the 

plane share a label. As there are few pre-existing chemical 

properties we can attribute to this dataset, we rely on unsupervised 

learning to gain insights from our data with ML.  

 

Figure 8: The same embedding of binary compounds from Figure 6, segmented into 26 distinct clusters using the DBSCAN 
algorithm. A complete analysis is provided in the appendix of this chapter. 
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Here, the ElMD gives strong separation into chemical clusters with 

clear patterns in atomic trends, the most prominent example being 

the zoom of cluster 13 in Figure 9, such that each compound is of 

the form AB2 with the A ion being a lanthanide, and the B ion being 

a transition metal. Another notable feature is cluster 20, containing 

the entirety of the transition metal d-d compounds with increased 

concentration of each transition metal as we progress around the 

crescent.  

Figure 9: The AB2 compounds of cluster 13 are given, where clear chemical trends may be observed. Here the ordered 
grouping is a clear reflection of the landscape of reported compounds, and the relative stability of the AB2 structure 
prototype under different elemental doping. 
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After cluster 13, the second clearest example of parallel trendlines 

in chemical features can be seen to the left of cluster 6, with the 

general form AB3, A being an f-block metal, and B being a p-block 

metal. From the top left of the cluster to the bottom right, A ions 

follow the Pettifor scale. Across each successive line from left to 

right, the B ions progress through Al, Ga, In, Tl, Pb, Sn, and finally 

Ge. Complete analysis of each DBSCAN cluster is given in 

Supplementary Note 1. With no prior chemical knowledge of these 

compounds, we can draw attention to underlying chemical 

properties, providing visually qualitative maps, capturing families 

of clear relation. 

 

The Inorganic Crystal Structure 
Database 
For each of the 125,627 unique compound formula in the ICSD we 

may apply the same process, but due to the scale of the task 

defining clusters becomes difficult. We may instead attribute 

known chemistry about each composition to uncover underlying 

trends in the data. In Figure 5a we see these compounds plotted via 

UMAP, and coloured by taking the standard deviation of the 

respective electronegativities of the constituent atoms. We 

calculate this by taking the associated Pauling electronegativity for 

each of the non-zero elements in a compositional vector, giving a 

set of electronegativities, E, of length n. The average 

electronegativity of the set, 𝑒̅𝑒 is calculated, and standard deviation 

obtained via the standard formula: 

𝑆𝑆𝑆𝑆 =  �
∑ (𝑒𝑒𝑖𝑖 − 𝑒̅𝑒)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛 − 1
 

This simple measure reveals a clear trend in chemical property 

across the reported compounds, between the more ionic 

compounds across the upper right side of Figure 5a, to the more 

covalently bonded across the left boundary. 
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Figure 10: 125,627 compositions from the ICSD with their inter-compound ElMD calculated, and resultant 
distances reduced to 2 dimensional coordinates with UMAP. Three candidate solid state electrolytes are overlaid 
with the planar distances between points labelled. Standard deviation of electronegativity for elements in each 
compound is given by the colouring from red (more covalent) to blue (more ionic). It can be seen that UMAP has 
accentuated some of the more subtle aspects of chemical similarity by distorting the space. 
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It should be noted that the UMAP algorithm emphasizes the 

clusters of a metric space. When optimizing distances, UMAP 

ensures that clusters of compounds are closely packed within 

families and clearly separated from other clusters on the plane. 

Unsupervised density-based clustering algorithms such as 

DBSCAN therefore work consistently and effectively on the 

resultant plots, allowing the swift classification of new compounds 

from existing knowledge. 

Whilst local neighbourhoods will have similar structure to the 

metric space, the global trends appear warped. This is highlighted 

by the three SSEs from the previous section overlaid on Figure 5. It 

can be seen that these do follow the approximate similarity given 

to us from ElMD, but have been distorted from the perfect line 

they fall on in the ElMD metric space. We may take the local 

distance between each of the embedded points, and by calculating 

the Pearson’s correlation between each of these and their 

associated ElMD, the quality of these embeddings may be 

assessed.  

While UMAP has given value by separating these projections into 

clusters of familial relation, by referring to Table 2, with a 

correlation of 0.748 many of the distances have been distorted 

from their true values, making these potentially unsuitable input for 

regression tasks. We would expect that reducing our distances to 

higher dimensional coordinate systems would give UMAP more 

degrees of freedom when embedding a graph layout, however past 

two dimensions the correlation does not improve, in part due to the 

implementations focus on planar projections. 

 

Principle Component Analysis 
A truer picture of the metric space may be obtained via principle 

component analysis (PCA), a widely used dimensionality reduction 

technique in the natural sciences for projecting data along axes of 

greatest variance. We will briefly outline the modifications that 
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must be taken from the standard procedure to allow the inspection 

of the ICSD using PCA with respect to the ElMD.  

In the normal PCA process, one takes the high dimensional data 

vectors and computes the covariance matrix, C, between each 

datapoint. The eigenvectors of C are computed via singular value 

decomposition (SVD) then sorted by their largest eigenvalues, with 

the two largest eigenvectors selected as the new co-ordinate axes to 

project each data point to.  

In this instance, we do not wish to use the composition vector 

covariance matrix, as this will correspond to the CED eigenvectors. 

Instead, we want to use the ElMD kernel matrix to construct our 

embedding, so we may observe the trends in the ElMD function 

space. Thankfully, there is a technique which allows non-linear 

distance functions, such as the ElMD, to be embedded to 2-

dimensional Euclidean space, called kernel PCA 40, which follows 

a nearly identical process to traditional PCA.  

An ElMD distance matrix is considered as a kernel matrix of the 

metric function space. If the chosen similarity function is not a 

metric, this kernel may be squared to remove negative values. 

Next, the kernel matrix goes through a process known as double 

centering, which involves subtracting the row and column means to 

give a new axes mean of zero, and then scaling this by dividing by 

the number of rows/columns. The final matrix is called a Gram, or 

Gramian, matrix. Applying SVD to the Gramian and sorting by 

eigenvalues allows us to select the geodesic contour eigenfunctions 

through the function space which show greatest variance. 

Projecting the points obtained through SVD along these axes has 

the effect of “flattening” the curvature of the space out, but 

preserves a scaling of the distances in the metric space 41. 

In practice PCA will compress each of the distances linearly. As 

there is rarely an embedding of a high dimensional pointcloud in 

lower dimensional Euclidean space which will respect the global 

structure perfectly, this often creates overcrowded plots with a loss 

of intrinsic structure. When applied to our dataset this does create 
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overly dense regions of points, making these embeddings 

unsuitable for the automated identification of clusters with an 

algorithm such as DBSCAN. These embeddings still retain a 

demonstrably strong resemblance to the true structure of the metric 

space however, which is presented in Figure 11.  

We have found that even in lower dimensional spaces, the local 

Euclidean distances between points retains a reasonably high 

degree of correlation with the ElMD (Table 2). In 3 dimensions, 

with a correlation of 0.945, we may take these as semi-reliable 

reduced composition vectors with respect to the embedded 3-

dimensional Euclidean distance. Embedding to higher dimensions 

with PCA does not improve on this correlation as the underlying 

space is seen to be approximately 2-dimensional 42 with an 

observed global saddle shape in 3 dimensions. 
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Figure 11: 125,627 compositions from the ICSD with their inter-compound ElMD calculated, and resultant distances reduced to 2 
dimensional coordinates with PCA. Three candidate solid state electrolytes are overlaid with the planar distances between points 
labelled. Standard deviation of electronegativity for elements in each compound is given by the colouring from red (more covalent) to 
blue (more ionic). 
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Table 2. Pearsons correlation coefficient between the complete Euclidean 
distance matrix for embedded points, and true ElMD distances between 
compounds in successively higher dimensional embeddings 

 

It can be seen that each of the single elements may be found along 

the bottom edge of the plot, at the tip of each of the parabolas. 

Trending away from these are the associated binary and ternary 

compounds in divergent lines of placement. We can clearly see the 

abundance and scarcity of reported compositions containing certain 

elements along the modified Pettifor scale, and trends in chemical 

makeup can be observed. Whilst this may not give us the best map 

of compositions for effective ML, it remains valuable for its 

accurate realization of the metric space. This enables us to map the 

chemical relationships between all of the compositions in the 

ICSD, with confidence that our embedding is representative of the 

relation between compounds given to us with the metric, which 

may be explored interactively at www.elmd.io/plots/. 

 

 

 

 

 

 

 

 

 

Embedded  
Dimension 

UMAP PCA 

1 0.538 0.860 

2 0.748 0.938 

3 0.736 0.945 

5 0.661 0.945 

https://www.elmd.io/plots/
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The Pearsons Database 
The Pearsons database, based on the Pauling File 43, consists of 

354,573 structures with an interactive GUI. At time of writing 

there is no method of accessing these structure files in a high 

throughput manner, however each of the compositions may be 

retrieved in csv format through the interface, each of which have a 

label with the associated structural prototype of the crystal. Whilst 

11,688 of the materials have not been assigned a structural 

prototype label, the remaining 342,885 entries are labelled, which 

means there are of the 181,786 unique compositions , there are 

174,866 with an associated prototype structural label. The inter-

Figure 12: 181,786 unique compositions from the Pearsons database embed with iterative PCA with respect to the ElMD 
between compounds. The yellow intensity has been shaded according to the relative density of points which fall under 
each pixel in the image, allowing us to observe global chemical trends in the materials deposited in this dataset. 
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composition ElMD kernel matrix is formed and converted to its 

centered Gramian. Given the expanded size of the dataset, with no 

modifications, the standard kernel PCA process described earlier 

requires in excess of 1TB of computer memory, which makes it 

challenging to operate with current hardware. These distances are 

instead embedded to the plane using incremental PCA 44, which 

takes the first 20,000 datapoints, and computes the principle 

components of these. Successive batches of size 20,000 are 

projected to these principle components, which are then adjusted to 

account for the new variance introduced by each batch. Once the 

final singular vectors are computed, the initial data is projected to 

these new axes, with the x-axis inverted so the plot is aligned with 

the modified Pettifor scale. Due to the large number of points, a 

density plot of the embedded points gives a more representative 

overview of the space (Figure 12). 

The first observation is that the Pearsons PCA embedding is 

visually similar to the ICSD embedding. Regions of compositional 

stability are known, and have been well studied and reported. This 

is reflected by the dense regions that are shared across the two 

plots in the left, upper left, and lower regions of each map. This is 

also unsurprising, as there are 86,194 shared compositions between 

the two datasets, with Pearsons being the larger superset of the 

two.  

We may use the elemental information and the structural prototype 

labels to reduce the observable chemical information to make sense 

of this space. There are 36,710 unique structural labels contained in 

the Pearsons database, which is too many to be of practical use in a 

labelled plot. Reducing the chemical information gives us general 

points of reference. Focussing on some of the most common 

structural families reveals that with no structural information 

present, structurally similar compounds are located in similar 

regions of the embedding. Simpler prototype structures are found 

in the lower region of the map, with more complex structure types 

encountered as we move towards the upper right region.  
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By first isolating each of the single element compounds we see 

how these distribute themselves along the lower boundary of the 

embedding by their assigned modified Pettifor number. Taking the 

distribution of elements along this scale, we see how each pure 

element is represented by a single bar which follows the Pettifor 

number as we move along the plot (Figure 13). This highlights the 

relationships already encoded by the modified Pettifor number, but 

not how the space considers their combinations.  

 

 

 

Figure 13: The pure element materials may be found along the lower boundary of the map in increasing assignment of 
modified Pettifor number. The general trend charts the noble gases, followed by the s-block, f-block, d-block, p-block, 
then hydrogen. 
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The simplest method of placing points of reference is to place each 

of the AB binary compositions over the projection and mark the 

changes in elemental distribution as we process around the plot. 

The binary compounds with similar AB elements are found along 

the lower boundary, as before. Going from the lower centre of the 

map upwards shows increasing divergence in modified Pettifor 

number until the s-block halides are encountered at the top of the 

map. Following the embedding along either of the upper regions 

returns compositions with a low modified Pettifor number with the 

partners modified Pettifor numbered lowering as we progress down 

to the left, and vice versa to the right. 

Figure 14: The AB binary compounds reported in Pearsons follow geodesic paths in ElMD space, with piecewise linear step changes 
occurring with each feasible substitution. AB compounds with highly similar elements follow the lower boundary in alignment with the 
modified Pettifor number, as before. Going from the lower tip upwards, we see distributions which are symmetric around the central Pettifor 
mass with increasingly divergent elements. Mass is increasingly weighted towards each of the poles as we follow the path from the utmost 
point to the left and to the right. 
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Adding the remaining binary compounds with the general form 

AxB1-x to the embedding creates a denser plot. Whilst specific 

patterns are harder to make out, it is clear that the underlying 

geodesic paths that could be observed with the AB compounds 

remain present. This is unsurprising, as these remaining 

compositions will linearly interpolate the space between each of 

the elements and their associated AB compounds. The upper left 

and right regions are populated with AxB1-x compounds where the 

ratio of A is larger than B in the upper left, and vice versa for the 

upper right. 

Figure 15: AxB compounds are distributed along similar paths to the AB compounds, with a greater population of 
materials up and to the left where the molar ratio of A >> B, and B >> A.  
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Geodesic paths of materials with the AxB1-x compositional type can 

be traced across the embedding. When these compositions are 

extracted it is found that these either follow trends in substitutions, 

or trace a value of x across a series of materials with the general 

form AxB1-x. Trends in x doping can be clearly seen in the series 

running from V to O, with O doping increasing from VO0.03 to 

V2O5.  

Figure 16: A path of known stable vanadium oxides traced across the embedding. In the function space, these can be 
plotted on a straight line geodesic. This betrays the curvature of the space that is lost when embedding in 2-dimensions.  
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Examples of sequences of known feasible substitutions are found 

throughout the map, and can be seen in the transition metal 

intermetallic alloys of AB compounds, where the A and B ions 

increase or decrease in Pettifor number as we follow paths towards 

the respective elements through the space.  

 

Figure 17: A zoom of the transition metal region of the ElMD embedding, with reported AB intermetallic 
compounds in the Pearsons dataset overlaid in red. 
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A similar filtering operation may be applied to the dataset to 

highlight all compositions which have the potential to be 

perovskite compounds. Perovskites tend to have the general form 

ABC3 and form in a cubic arrangement, which may be filtered 

compositionally by highlighting all materials with a {0.2, 0.2, 0.6} 

compositional ratio. In doing so, we see how chemically similar 

materials cluster amongst one another in an ordered fashion. The 

general distributions of each of these clusters are observed to 

follow the same general trends as the binary compounds by the 

distribution of mass along the modified Pettifor scale. These 

observations allow give us some intuition to the general ways that 

elements are arranged when navigating the space.  

Figure 18: The ABC3 compositions of the Pearsons dataset overlaid on the ElMD embedding. The 
distribution of elements follows similar trends to the AB compounds in their placement of mass along the 
modified Pettifor scale.  
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Applying the structural labels provided by the Pearsons dataset, it 

may be seen that there are 3,882 compositions which are labelled 

with one of the 61 single element packings contained in the dataset. 

By plotting each of these on the embedding, it is seen that the vast 

majority of these structures fall along the lower boundary of the 

map. There are too many unique structural labels to meaningfully 

digest the information, and as such we shall isolate some of the 

more common labels in turn. 

Figure 19: In the pearsons dataset, 3,882 structures have one of 61 single element structural prototypes  



75 
 

 

The three most populous single element structure prototypes, the 

Cu Fm3�m (1,632 compositions), Mg P63m�mc (712 compositions), 

and W Im3�m (932 compositions) structure protypes exemplify this 

(Figure 19). These compounds lie along the bottom boundary of 

the map before diverging into a wider spectrum of structure types 

as dopants and stoichiometries are varied moving up the plot.  

Figure 20: The three most common single element structural prototypes contained in the dataset. 
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The cubic binary structure prototype, NaCl Fm3�m, shown in 

Figure 21, is a stable packing and many (2,648 compositions) 

structures take this arrangement. Highly imbalanced metallic 

binary compounds with rock salt phases, such as PtB0.01, are found 

at the bottom of the map. Moving up the embedding gives greater 

diversity in the ratios of the intermetallic elements, with the 

number of dopants and the divergence in modified Pettifor number 

between the elements of the composition, increasing as we go up 

the plot. With this label, selenides, tellurides and oxides with p-

block and more electronegative transition metal dopants are found 

to the right of the embedding, and carbides and nitrides found in 

the centre. Lanthanide and actinide containing compounds are 

found in the central upper region of the plot. The isolated cluster at 

the very top contains halide binary compositions whose elements 

possess highly dissimilar electronegativities, including the chloride 

salt NaCl. 

Figure 21: 2,648 compounds in the Pearsons dataset with the NaCl rock salt structural prototype. The compound 
NaCl itself may be found in the upmost cluster of the embedding. 
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In Figure 22, compounds with a structure prototype similar to ZnS 

F4�3m (677 compositions) can be found between the NaCl 

selenide/tellurides and the NaCl oxides. The Pm3�m CsCl structure 

prototype (968 compositions) covers many of the less 

electronegative transition metal intermetallic structures towards the 

bottom of the plot. These CsCl structures also expose trends in the 

f-block intermetallic structures, and continue trends that are present 

in the NaCl compositions. Changing the kind of material under 

consideration, let us now examine structure types with the general 

formula AB2. 

Figure 22: ZnS and CsCl are two commonly reported structural prototypes. These compounds are encountered in 
similar regions to the NaCl structure type, barring the leftmost region, which continues trends present in the NaCl 
substitution paths.  
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The most populous of which, CaF2 Fm3�m with 2,357 

compositions, is found in the upper right region of the map shown 

in Figure 23, with reasonable separation from the outer hull of the 

embedding. Compounds found in this region are metallic halides, 

metallic hydrides, with majority metallic oxides. The TiO2 

P43m�nm structure types (468 composition) are found directly 

below the CaF2 compounds slightly to the right of the centre of the 

map in a small cluster, mostly containing intermetallic oxides. 

Going further towards the centre of the map gives the f-block 

intermetallic compounds with a p-block B ion, such as silicides and 

germanides, in the AlB2 P6m�mm structure prototype.  

Figure 23: Different AB2 structural prototypes may be found in distinct regions of the embedding in accordance with atomic 
weight of ions. 
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The composition AlB2 itself is found to the lower right of the map 

at the intersection of two geodesics leading to Al and B. The f-

block metal trends towards a d-block transition metal as we move 

from the centre, down the plot. Towards the lower centre of the 

map a selection of intermetallic transition metal compounds have 

the hexagonal MgZn2 P63m�mc structure prototype (1,078 total), 

with f-block and d-block intermetallic compounds with this 

structure type found in the centre of the plot. 

As previously discussed, perovskite structures follow the ABC3 

ratio. In general these form cubic arrangements with where A site 

ions at the centre of the structure have a 12-fold coordination, B 

site ions found on the corners have 8-fold coordination, and edge 

centred C site ions bind these together. The undistorted perovskite 

structure has the prototypical structure of CaTiO3 Pm3�m (3,884 

compositions). Separating these structures from the dataset in 

Figure 24 shows some of the type of formulations which lead to 

this structure. 
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The lower region of Figure 24 shows the intermetallic transition 

metal perovskites. As the trend is followed up and to the left, we 

see that the inter-elemental electronegativity begins to diverge, 

with decreasing electron attraction on the C site until the anti-

perovskite structures are found in a cluster at the upper left region 

of the map. These compounds have the same structure type, but a 

complete reversal of the charges at each structural site to the 

standard perovskite. Perovskites form stable arrangements of ions, 

Figure 24: Each of the 3,884 materials in the Pearsons dataset with the CaTiO3 structure prototype. These have clustered themselves into regions 
of ionic similarity. The ready availability of substitution in the oxide framework is reflected by the dense region in the upper right of the plot. 
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allowing for flexibility in the choice of dopants to create a new 

compound. The dense region of material in the upper right of the 

map almost entirely consists of oxides, showcasing a wide variety 

of dopants. 

This feasibility of substitution has been well exploited by those 

who study the perovskite family, with many relying on an oxygen 

anionic framework. The P4mm BaTiO3, the Pnma GdFeO3, the 

R3�c LaAlO3, and the R3�c LiNbO3 structure prototypes are all 

distortions of the CaTiO3 perovskite structure, which 

accommodates the differing ionic radii, Figure 25. Almost all of 

the 6,412 compounds assigned to one of these labels is located in 

the same region as the oxide CaTiO3 structures, in the upper right 

portion of the map. Going to the bottom of this cluster of ABC3 

compounds gives intermetallic transition metal mixed  anion 

perovskites with more covalent characteristics. The average A, and 

B ion electronegativity, decreases to the f-block metals, and the s-

block metals as we move up the map. Following the right boundary 

to the top of the cluster gives many of the halide perovskites, with 

the f-block and s-block halides found in isolated clusters at the top 

of the map. 
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Conclusions 
By directly calculating similarity of constituent elements, we 

present the ElMD as a computable mathematical relationship 

between any two compounds. This provides a natural extension to 

the physical scale introduced by Pettifor, allowing us to not only 

calculate the similarity of elements, but to quantitatively measure 

the similarity of compounds. These distances give a reliable 

measure of chemical similarity which align with human judgement, 

Figure 25: Overlaying common distortions of the CaTiO3 perovskite structural prototype demonstrates some separation of materials based 
on chemical makeup, with the majority of compounds found in the same densely plotted oxide region of the embedding. 
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which we may use to associate relationships and find patterns 

either analytically or with ML.  

These distances present a method to connect separate chemical 

datasets and to pair compounds -- potentially theoretical ones -- to 

reported chemical information. A search interface using the 

compound formula as a query may be implemented, providing 

chemists with a natural interface to retrieve and explore data. This 

has been demonstrated by pairing a recent survey of 842 

compositions with known ionic conductivity to their most likely 

reported structural information in the ICSD where, with a cutoff 

distance of 1, we have automatically returned a good match in 94% 

of cases. One clear future possibility is to connect chemical 

properties from multiple databases of potentially different 

compositions, where the distance may be used as a numeric 

measure of uncertainty for each assignment.  

When designing statistical models, it is tempting to include all 

available chemical information in the hopes of arriving at the most 

accurate correlative results possible. There is however growing 

sentiment within the community to go further than simply black 

box curve fitting statistical models 45, with an increased call for 

interpretable models which not only give predictions, but also 

some understanding of how we have arrived at our answer. Here 

we use the ElMD to visualize and analyse solid state compounds in 

the ICSD, including the subset of binary compounds. With this 

metric we have created detailed chemical maps using modern data 

visualization techniques, which preserve clear trends in chemical 

relationships.  

The quality of these maps is of high enough degree for the 

unsupervised ML method DBSCAN to automatically assign cluster 

labels such that similar compositions share a label. These 

assignments have a verifiable alignment with human judgement, 

which is given to us from the imbued domain knowledge 

engineered into the metric. Meaningfully understanding any large 

chemical dataset is a daunting task, and these maps aid us by 
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giving a broad overview of a compositional space. Employing the 

structural prototype labels provided by the Pearsons database 

exposes trends by reducing the space into subsets of materials with 

shared characteristics. This allows us to calibrate the metric against 

understanding, and confirms the relationship between chemical 

composition and resultant structural features.  

It has been shown that simple metrics like the CED are ineffective 

for this, as they do not possess the resolution to differentiate 

disparate compositions in a space as complex as the domain of 

feasible compounds. This leads to an assessment of numeric 

similarity which does not align with chemical judgement, and in 

creating maps using this metric we find dissimilar compositions in 

close proximity to one another. In traditional ML models, for those 

with no background in statistical inference, determining why two 

points have a calculated proximity may be challenging. With the 

ElMD, should greater depth of investigation be required, a 

complete analytic solution can be calculated between two points to 

justify their exact positioning with respect to one other. These 

solutions provide chemists with thorough explanations for why two 

materials in a map have their calculated vicinity.  

Understanding ML predictions requires us to not only understand 

the materials, but also the relationships between these. Stepping 

back from the forest of details allows us to look for general 

patterns, and with the results of ever more experiments readily 

available, we need ML to carry this forward. Following patterns to 

predict complex physical properties with 100% accuracy may 

prove to be impossible but we know that natural trends, although 

well hidden, almost always exist. If we are to understand these, we 

believe that the ElMD and other crafted metrics will prove to be 

invaluable tools in the categorization of materials space, and in 

further interpreting the AI we use in cheminformatics. 
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Supplementary Information 
 

 

Figure S1: The atomic number is used to encode each element in an ElMD embedding of the binary compositions of the 
ICSD with UMAP.  
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Figure S2: The Mendeleev number originally devised by Pettifor in 1986 is used to encode each element in an ElMD 
embedding of the binary compositions of the ICSD with UMAP.  
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Figure S3: The Mendeleev number originally devised by Pettifor in 1986 is used to encode each element in an 
ElMD embedding of the binary compositions of the ICSD with UMAP.  
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Supplementary Note 1: DBSCAN analysis of binary 

compounds 

With 12, 623 reported binary compounds reported in the ICSD the 

problem of organizing and categorizing these such that the families 

follow chemical reasoning is a tremendous task which is well 

suited to machine learning (ML). The application of the EMD to 

compositions gives us a reasoned measure of similarity between 

compounds, suitable for clustering.  

Unfortunately, we may not use traditional clustering algorithms in 

the metric space directly, as the aforementioned negative curvature 

means that many of the Euclidean assumptions made by these 

algorithms, leads to nonsensical decision boundaries in the metric 

space. The application of the UMAP algorithm is therefore 

essential, and allows us to condense these relationships into 2-

dimensional Euclidean coordinates which maintain appropriate 

local density whilst distancing from dissimilar neighbours. 

Density based spatial clustering applications with noise 

(DBSCAN) is a popular clustering algorithm which is well suited 

to the embeddings produced by UMAP. At a high level, these 

labels are assigned by calculating the distance between all points, 

and any which are close by to one another are simply labelled as 

being within the same cluster. A distance threshold, Eps is 

assigned, and two points will be considered to not share a label if 

they are further apart than this. DBSCAN with an Eps-

neighbourhood value of 0.63 on the UMAP embedded points 

initially creates 39 cluster labels, which when outliers of few 

compositions have been discarded, gives 26 core clusters. 

These primary clusters are of small enough size that we may draw 

a reasonable qualitative classification, however several contain 

hundreds of compounds which may not immediately possess a 

trend which is discernible to the human chemist. Here follows an 

overview of each of the 26 clusters and the relevant chemical 

trends. In many of the larger clusters there is simply too much 

information for text to be an efficient method of communication, 
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and broader descriptions must be given. For ease of reference each 

cluster is projected to a 4 × 4 grid, and the corresponding grid 

references displayed in boldface. Global x and y intercepts have 

been overlaid, which due to the neighbourhood preservation given 

to us by UMAP, gives a weak equivalence to the EMD locally. The 

interested reader may find the full projection online at 

www.elmd.io/plots/binaries, where an interactive version can be 

further explored. 

Figure S4: Clusters 14-17 of the binary compounds with disks overlaid on a selection of the cluster boundary points, to highlight the 
separation of these clusters from one another. In this example, there is an argument that due to their proximities and chemical similarities, 
clusters 14-16 could be considered to be the same cluster. If we increase the neighbourhood radius further to accommodate for this 
however, we see that major clusters elsewhere in the plot begin to merge also. For this embedding we have found that an Eps value of 0.63 
has given good qualitative cluster labels overall, but the choice of this value will be entirely dependent on the dataset. 



93 
 

 

Table S1: The  count  and  chemical  labels  present  in  each  of  the  clusters 
assigned  by  DBSCAN  with  an  epsilon=0.63  on  the 12,623  binary  
compositions  in  the  ICSD  (2017).  DBSCAN  was  applied  to  the points  
obtained  from  UMAP  on  the  binary compositions,  reduced  to  two  
dimensions.  The  inter-compound  EMD  of  each  of  these  clusters  was  
calculated,  with mean, maximum, median, standard deviation, and local 
correlation of Euclidean distances with the corresponding EMD. 

 

 

 

 

Label Count Valence Bonds Mean Median Max Standard  
Deviation 

Globally 12,623  23.09 21.68 101.16 11.56 

0 843 p-p 6.18 6.17 16.57 2.81 
1 335 p-p, d-p 5.44 5.14 15.17 2.76 
2 262 d-d, d-p 6.07 5.83 19.25 2.98 
3 295 s-p, f-p 5.94 5.74 17.03 2.96 
4 516 f-p 8.59 8.58 24.06 3.89 
5 40 s-p 4.84 4.44 11.96 3.24 
6 914 s-p, f-p 10.28 9.83 33.93 4.87 
7 223 f-p 4.84 4.58 14.71 2.74 
8 830 d-f, s-p, f-p 11.21 10.50 49.75 5.96 
9 290 f-p, s-p 9.05 8.83 23.86 4.61 
10 250 f-d, s-s 10.39 8.60 41.59 7.56 
11 688 f-d, s-d, s-p 12.11 11.58 35.15 5.81 
12 204 f-d, f-p, f-s 7.56 6.25 26.50 5.29 
13 496 f-d 7.23 7.00 22.00 3.58 
14 222 f-d, s-d 4.42 4.32 13.71 2.11 
15 32 s-s 2.10 2.21 5.57 1.36 
16 27 s-f 0.65 3.05 1.86 0.46 
17 178 d-d 3.11 0.57 8.48 1.64 
18 40 f-d 1.41 1.28 4.90 0.96 
19 425 f-d 5.58 5.55 14.67 2.41 
20 2,729 d-d, d-p, d-f 10.20 9.71 48.30 5.25 
21 90 d-f 2.43 2.43 6.40 1.43 
22 64 d-p 3.01 2.92 7.33 1.60 
23 931 d-s 6.09 5.40 22.40 3.49 
24 1411 d-p 10.84 10.62 30.69 4.84 
25 288 d-p, f-p 3.81 3.52 16.00 2.30 

Average 485.5  6.28 5.95 20.45 3.34 
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Label 0 
Consisting entirely of p-block binary compounds. Towards the center of the 
plot at B3 we see compounds with a nearly equal AB ratio with some 
variance. Each of the trend lines from the center lead towards a higher ion 
doping in a reasonably smooth fashion. It can be seen that each branch has a 
reasonably strong separation into different chemical families amongst the p-
block elements. In the upper left following the trend from A1 to B2 we find 
two non-metals (non-halogens) in the ratio AB2 → AB9. Non-metals bonded to 
p-block metals are found in A2 to B4, from AB9 → A2B3, with the trend to the 
center leading to binary non-metal compositions.  Transition metals bonded to 
a pnictogen element in high doping are found in C3. The region covered by 
C1 to D2 is majority B and C containing compounds, which increase in these 
elements concentration to the rightmost tip to almost pure B with V3B497. 

  
Chemical Families: 

• Upper Left: Two p-block non-metals, non-halogens 
• Lower Left: p-block + p-block 
• Lower Middle: Transition metal + pnictogen 
• Upper Middle: Group IV + halogen 
• Right: p-block metal + highly doped B/C 

 
Composition Trends: 

• Upper Left: AB2 → AB9 
• Lower Left: AB9 → A2B3 
• Lower Middle: AB3 → AB4 
• Upper Middle: AB → A4B121 
• Right: AB → A2B123 

 
Chemical Trends: 

• Upper Left: B ion increasing in atomic weight down chalcogen group. 
Partner ion follows metalloids plus carbon. 
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• Lower Left: Both ions increase in electronegativity from bottom to 
top. 

• Lower Middle: p-block metal + non-metal, non-metal trends towards 
B/C as we move right 

• Upper Middle: Carbon concentration dropping as we move up the 
cluster 

• Right: Increase in B/C doping from left to right. Some silicides and 
germanides present in the center of the cluster. 

 
 

 
  

Label 1 
An island of Te/Se sulfides found to the left of A1 leads to Te/Se iodides in 
B1 before the remaining chalcogen halides from BiI to OH2 are found in C1. 
Moving down the larger cluster we find the A ion moving through the metal–
halides from PoF5 to InF3 in the general form AB3. Reaching the split in C3, 
towards the left are B/C fluorides and hydrides, from BF2 to B9H11. Following 
the branch to the right we see the p-block metal-halides from GeF2 to PbI2, 
until the lower split which follows boron group-halides to Ga2I3 in C4, and 
transition metal-halides of the form AB2 from HgI2 to PdI2 in D4. 

 
Chemical Families: 

• Upper: Chalcogen + halogen 
• Middle: Transition metal + halogen 
• Lower: Transition metal + halogen 

 
Chemical Trends: 

• Upper: Large variance of AB ratio 
• Middle: Generally of the form AB3 
• Lower: Trending to the left AB2 → AB, to the right trends A3B17 → AB2 
Chemical Trends: 
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• Upper: From chalcogen + chalcogen pairs to chalcogen + halogen 
pairs at the top. 

• Middle: A ion decreases in electronegativity towards the carbon group 
moving down 

• Lower: To the left, boron/carbon halides. As we move down, A ion 
decreases in electronegativity through the p-block metals. 

 

  
Label 2 
Here we see a collection of metal-halides, with metal-chalcogenides in B4-
C4, which all possess a strong B doping of 70-83% concentration. The initial 
trendline through D1 sees f-block metals bonded to F and H of the form AB4. 
Moving down we see three successive clusters with a smoothly increasing A 
ratio from C1 to B3 from OsF5 to Ta3Br7, with fewer elemental trends 
through the periodic table found in this region to accommodate for this 
smooth change in ratio. The trend from A2 to C3 follows transition metal-
halides of the form AB3 with the metal decreasing in electronegativity as we 
move down. The final cluster of points in B4-C4 follows transition metal 
chalcogenides from V3O7 to UTe5.  

 
Chemical Families: 

• Upper: f-block metal + halogen 
• Middle: Transition metal + halogen 
• Lower: Transition metal + chalcogen 
Composition Trends: 
• Upper: AB5 → AB6 
• Middle: AB3 → AB4 
• Lower: A3B7 → AB5 

 
Chemical Trends: 

• Upper: From chalcogen + chalcogen pairs to chalcogen + halogen 
pairs at the top. 
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• Middle: A ion decreases in electronegativity towards the carbon group 
moving down 

• Lower: To the left, boron/carbon halides. As we move down, A ion 
decreases in electronegativity through the p-block metals towards transition 
metal halides at the very bottom. 

 
 

 
Label 3 
The leftmost points of A4, with Na0.021Si0.979, follow the high B doping that 
can be found at the rightmost tip of cluster 0. This doping falls, but remains 
high as we follow the remaining alkali/alkaline metals along row 4, mostly as 
silicides but with some other carbon group B ions, to SrSn4. The lower and 
upper branches along this trend, contain transition/f-block metal borides (A4) 
and carbides (B3) respectively. The line from D1 to D3 tends to follow f-
block metal-carbon group compounds, from Ba0.176P0.824 to Nd0.182Ge0.818. 

 
Chemical Families: 

• Upper: Lanthanide + p-block 
• Left: Alkali/alkaline/lanthanides + p-block 
• Center: Lanthanide borides 
Composition Trends: 
• Upper: AB7 → A3B17 
• Left: A0.021 B0.979 → AB4 
• Center: AB4 

 
Chemical Trends: 

• Upper: Mostly lightly doped lanthanide carbides and borides, with 
greater variation at the top of the cluster, phosphides towards the center. 

• Left: Mostly silicides, with a little variation amongst the metalloids 
combined with an alkali metal, with some alkaline metal/lanthanides. 
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• Center: Borides of the form AB4 paired with an alkaline metal to the 
left, lanthanides to the middle, and light actinides in the far right cluster. 

 

 
Label 4 
This cluster possesses one of the clearest ring structures in the projection. 
Entirely consisting of ionic compounds (lanthanides and actinides bonded to a 
chalcogen/halogen B ion) this gives an interesting series of feasible 
substitutions and minor changes in stoichiometry, which will eventually 
return to the same compound. The upper and lower left regions of the ring are 
of the form AB3 which smoothly trend to AB2 compounds on the right of the 
cycle and the lanthanide-chalogenides found in D3-D4. 

 
Chemical Families: 

• Left: Actinide/lanthanide/alkali + halogen/chalcogen 
• Upper: Lanthanide/s-block + halogen 
• Central and Right: Lanthanide/actinide + chalcogen 
Composition Trends: 
• Left: AB3 
• Upper Cluster: AB3 → AB2, trace A2B at top 
• Central and Right: AB2 → A0.433B0.567 

 
Chemical Trends: 

• Left: Top left we have A ions as actinides in the form AB3 which 
transition through the lanthanides, then alkaline metals combined with a 
halogen. After this, a B chalcogen, with A moving back through the alkali, 
lanthanide and actinides towards the center of the cluster. 

• Upper: Starting with a lanthanide and halogen on the left of this 
region, trending to an increase in B ratio as we go towards the center of the 
cluster. This splits off into the s-block metals towards the top of the cluster in 
the form A2B 
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• Central and Right: Follows the trend of the left hand cluster in 
composition and makeup, splitting into two branches, for lanthanides and 
actinides, each paired with a chalcogen, of the form A0.029 B0.71 and AB2 
respectively. As the upper cluster merges with the central cluster the A ratio 
continues to drop to the bottom right, with exclusively lanthanide A ion with a 
chalcogen 

 

 
Label 5 
As with the previous family these are entirely ionic compounds, being an s-
block metal combined with a p-block element of the form A0.286B0.714 to 
A0.214B0.786, with B ions being Bi/Sb (A1), P/N (A2-B4), Se/Te (D4). A ring 
structure can be loosely interpreted when viewed in conjunction with the 
previous plot, however due to the fewer number of reported compositions 
there are larger jumps in makeup and stoichiometry when we attempt to 
follow a cycle. 
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Label 6 
Here we see a larger collection of ionically bonded compounds which 
possesses both cycles of similar compositions, as well as approximate parallel 
lines found from A2-B3. Each of these lines represent compositions of the 
form AB3, with each distinct line containing the same B ion. Across the entire 
plot from lower leftmost point to the far right there is a consistent transition in 
AB ratio from PuAl4 to Rb2O3. From top to bottom there is a general decrease 
in B ion electronegativity from As to In, as A ions go through the s-block to 
the f-block metals. 

 
Chemical Families: 

• Left: Lanthanide A ion + B ion from the heavier boron group elements. 
• Central: At the top contains alkali metals and alkaline metal A ions, 

with a pnictogen B ion. Towards the middle, more alkaline metal and 
lanthanide A ions with the B ion trending towards the C/N/P groups. 

• Lower: Boron group + lanthanides/actinides. These trends follow to 
the right, increasing in A ion ratio. 
 
Compositional Trends: 

• Left: AB4 → AB3 
• Central: AB2 down the center of the cluster → A2B3 to the right 
• Lower: AB2 

 
Chemical Trends: 

• Left: B ion ratio increasing from 0.2 to 0.32 to the center of the cluster. 
Characteristic parallel lines for AB3 in the middle of the left hand, with each 
line consisting of a single boron group metal for each B ion. A ions trend from 
lanthanides in the far left, splitting into alkali/alkaline metal, lanthanide, and 
actinide in the center. These trends follow to the right. 

• Central: As the trend moves further down the cluster, the B ion moves 
through the heavier carbon group, which tend to pair with an alkali or alkaline 
metal in the center. B ions tend to start in the boron group, trending to the 
right of the periodic table in the upper center of the cluster. 
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• Lower: B ion heavier carbon/boron group with heavier lanthanides 
 

  
Label 7 
The final cluster of ionic compounds for the most part continues the A2B3 ratio 
from the previous cluster, for f-block metal-chalcogenides, found in D4, with 
Eu2O3 found at the bottom most point. There is some separation into 
respective B ions through the chalcogen family as we follow the plot through 
each cluster up, with the inner crescent (C3) being of the separate ratio, A0.429 
B0.571. 

 
Chemical Families: 

• Left: A collection of actinides and chalcogens with increased 
chalcogen ratio as we move down the cluster of the form A2B3, where A is 
typically U/Th/Np/Am/Cm 

• Right: From the upper left to the lower right the A ions follow the 
trend of the lanthanide series with a chalcogen ion, in small clusters separated 
by minor variations in ratio. 
 
Composition Trends: 

From left to right in two main clusters 
• Left: A0.429 B0.571 → A2B3 
• Right: A0.429B0.571 → A2B3 
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Label 8 
The majority of compositions in this cluster are AB compounds barring the 
lower branch (C4) which follows increasing A ion ratio to Nd5Ge3. Here we 
see a reasonably wide variety of metallic elements from the s-block and f-
block bonded with a similarly varied selection of p-block elements, reaching 
to the group 12 metals in the lower left branch. We see some regularity in the 
upper region where we may find a reasonably complete collection of AB 
lanthanide-chalcogenides. 

 
Chemical Families: 

• Upper: Each of the lines moving up the cluster follow a B ion in the p-
block. A ion trends towards the left of the transition block metals. 

• Lower: metallic A ion with p-block B ion with 
Composition Trends: 
• Upper: AB 
• Lower: AB, some trending A5B4 → A5B3 in bottom branch 

 
Chemical Trends: 

• Upper: Increased chalcogen ratio as we move down the cluster of the 
form A2B3, where A is typically U/Th/Np/Am/Cm 

• Lower: Each of the arms from the center of this cluster show a 
classification in either composition or ratio. The center is AB compounds with 
high electronegativity, upper right contains alkali metals, lower right have 
divergent ratio from AB, bottom left are the remaining AB compounds. 
Moving up the cluster we see a split into multiple lines, each following a 
period in decreasing atomic weight as we move up. 
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Label 9 
Here we follow the increasing A ion ratio from the previous cluster, reaching 
to Na2S to the far right, with Sm2O at the bottom of the plot. We see the 
typical trend from lanthanides to alkaline metals and alkali metals, repeated 
for each of the respective compositional ratios found in each cluster, with 
La3Al2 at the bottommost tip of B4, where two DBSCAN clusters have been 
merged for brevity. 

 
Chemical Families: 

• Upper: Lanthanide/alkali/alkaline/actinides + boron/carbon group. 
• Lower: Lanthanide/alkali/alkaline + Al/Ga → p-block metals. 
Composition Trends: 
• Upper: A4B3 → A5B3 → A3B2 moving down. 
• Lower: A3B2 and A3B5 in two distinct clusters. 

 
Chemical Trends: 

• Upper: No particular chemical trend barring those matching the 
clusters of ratio. 

• Lower: From the upper left the B ion is Al/Ga, which transitions 
through the p-block metals in increasing electronegativity as we move down 
the cluster, trending through lanthanides to alkaline to alkali metal A ions 
moving down the cluster. 
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Label 10 
The region in C3 contains the reported binary compounds consisting of 

two f-block metals, with the trend to D1 consisting of two s-block metals. The 
final cluster in D1 consists of the XeCs compounds from XeCs4 to Xe3Cs. 
Following the trend to B4 we see additional compounds containing Y, Sc, and 
Zr, with U/Pu-pnictogen binary compounds found in A3-A4.  

 
Chemical Families: 

• Left: Actinide + p-block/transition metal 
• Central: Lanthanide/actinide f-f compounds 
• Upper right: Lanthanide + lanthanide in the center to alkaline + 

alkaline to alkali + alkali, transitioning smoothly between these. 
 
Composition Trends: 

• Left: Generally A0.8–0.95B 
• Central: Large variance, greater actinide concentration to the left of 

A9B, and higher lanthanide concentration in the center of A3B. 
• Upper Right: Follows clusters of concentration through each of the 

chemical families, often to a high doping of one ion. 
 
Chemical Trends: 

• Left: Generally a high doping of U/Np/Pu/Th and a transition metal 
• Central: Stronger ratios of actinides on the far left, generally 

transitioning through actinide for all the f-f binary compounds 
• Upper Right: Moving up this cluster each of the main clumps center 

around high concentrations of elements from each group laid out above. 
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Label 11 
Here we see a region of the map which due to chemical differences arguably 
should be separated into two clusters down the C column, but due to 
proximity have been classified under the same label with DBSCAN. The right 
hand side shows a natural continuation of cluster 9, following the same 
chemical families of s-block and f-block metals bonded to a p-block metal, 
with increasing A ion ratio moving down the plot from Th2Ge (C1) to Ba9Ga 
(D4). From right to left the B ion electronegativity decreases, which trend 
towards inter-metallic compounds, which are typical in the central and lower 
left regions of the global plot. 

A1-B4 consists entirely of these inter-metallically bonded compounds, 
which are generally f-d valence bonded. From A1 we find these in the A3B2 

ratio with La3Ir2, which increases in A ion ratio as we move around the cluster 
clockwise until La3Sn at the bottom most point of B4, which come to more 
equal ratio to A3B in A3. For each of the roughly parallel lines, these show 
variation in elements, with an f-block A ion and a d-block B ion, with each of 
the distinct lines possessing a fixed ratio, which are A2B, A7B3, and A3B 
respectively. Each of the B ions throughout this cluster tend to be one of the 
following: Ir, Ru, Ni, Co, Au, Pt, Pd, Ni, Tl, Sn, Al, and Ge. 

 
Chemical Families: 

• Upper Left: Lanthanide + boron/carbon group B ion 
• Left: Lanthanide + alkali/transition metal from the right of group 8. 
• Right: Lanthanide/alkaline/alkali + p-block element 
Composition Trends: 
• Upper Left: A4B3 
• Left: Each approximately parallel lines consist of a single ratio of 

elements, moving down the cluster these are A9B11 → A5B4 → A3B2 → A2B 
(first parallel line) → A7B3 (second line) → A3B (third line continuing to 
bottom of the cluster). The cluster to the bottom left trends from A2B to A3. 

• Right: A2B → A9B from top to bottom. 
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Chemical Trends: 
• Upper Left: Lanthanide arsenides to the left, with B ion increasing in 

electronegativity as we move down the cluster. 
• Left: Lanthanide A ion and a mixture of transition metals and metals 

(Ru → In + Mn), B ion trends to the right hand side of the table as we move 
down the cluster. Moves through 9/10/11 B ion to s-block A ion from upper 
left to bottom right. 

• Right: The entirety of the top of this cluster is of the form A2B, as with 
the left hand cluster the A ion ratio increases as we move down this cluster, 
with the alkali/alkaline/lanthanide ratio increasing steadily to A9B with 
Ba0.909Ga0.091. 

 
  

Label 12 
This region continues the chemical trends of the previous cluster, being 
majority f-d bonded intermetallic compounds of the same elemental makeup. 
The trend in B ion ratio is additionally preserved as we move further up, with 
almost all of these compounds being AB binary compounds, barring the 
trailing points in the lower left, which transition smoothly to A3B as we rejoin 
cluster 11.  

 
Chemical Families: 

• Left: Lanthanide/actinide + boron group/transition. 
• Right: Lanthanide/alkaline/alkali + group 10/11. 
Composition Trends: 
• Left: A3B → AB 
• Right: AB 
 

Chemical Trends: 
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• Left: There is heavier A doping towards the bottom of this cluster, with 
greater concentration of actinides. Moving up and to the right we see that the 
B ions become more metallic. 

• Right: Lanthanide/alkaline/alkali + p-block element. 
 
 
 

  
Label 13 
Here we see the most prominent example of natural trends in substitutional 
feasibility being represented in graphical form. This cluster is almost 
exclusively AB2 compounds, following a similar chemical trend to the 
previous two clusters. However with far greater numbers of reported stable 
compositions this allows for a more uniform arrangement of points which 
neatly follow trends in the Pettifor scale, see Figure 4 in the main body for a 
more thorough annotation. 

 
Chemical Families: 

• Lanthanide/actinide + transition metal. 
Composition Trends: 
• AB2 with some trending to A3B4 in the bottom right. 

 
Chemical Trends: 

• This follows a very strong ratio clustering, with almost all compounds 
being of the form AB2. The upper right of this cluster shows parallel lines, 
with each of these lines consisting of a lanthanides/actinide A ion, and a 
single transition metal B ion towards the upper right of the d-block. As we 
follow these lines to the east, these have the same B ion, with the A ion 
increasing in weight through the lanthanides and actinides. B ion trends from 
zinc to the middle of transition metals from top to bottom. 
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Label 14 
The chemical trend of the previous group is again carried forward as a cluster 
of AB3 ratio in D1. There are far fewer reported compositions with this ratio, 
and to the bottom left the trend continues to see a further increase in B ion 
stoichiometry, possessing the same elements found in cluster 13 but with less 
chemical ordering, from Y0.207Zn0.793 at the upper tip of B3, to Nd0.143Cd0.857 at 
the bottom left of A4.  

 
Chemical Families: 

• Left: Lanthanide/alkaline/alkali + Zn/Cd/Hg 
• Right: Lanthanide/actinide + Zn/Cd/Hg/Mg 
Composition Trends: 
• Left: AB6 → AB4 
• Right: AB3 

 
Chemical Trends: 

• Left: A ion is generally lanthanide, with some alkaline, alkali and 
actinide. Trends to increased A ion ratio from left to right. 

• Right: All of the form AB3 following normal Pettifor trends with the 
noble gas inclusion of XeMg3. 
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Label 15 
This small cluster contains the entirety of the Mg metallically bonded 
compounds with a B ion ratio greater than 79.3% going from Ba6Mg23 in D1, 
to Y16Mg109 in A4. 

 
Chemical Families: 

• Mg + s-block metal 
Composition Trends: 
• A0.207B0.793 → A0.128B0.872 

 
Chemical Trends: 

• Smooth variation of Mg doping from bottom to top of this cluster. 
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Label 16 
We follow the continued decrease in B ion ratio moving further down the 
cluster, from AB7 in A1 reaching to A0.077B0.923 in A3, before following a small 
increase in A ratio with Fe/Mn bonded compounds to PrFe7 in A4. The two 
branches follow Zn/Mg compounds with the ratios A21B179 and A77B923 
respectively. 

 
Chemical Families: 

• f-block/s-block + Hg/Cd/Zn/Fe/Mn/Mg 
 
Composition Trends: 

• AB7 → A0.07B0.93 
 
Chemical Trends: 

• B ion goes to the left of the transition metals as we move down the 
cluster. A ion follows alkaline/lanthanide/actinide 
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Label 17 
This small cluster contains the entirety of the Be compositions in the ratio 
A0.071B0.929 where the A ion is a lanthanide or actinide, which follows the same 
ratio as the compounds found at the closest point of cluster 16. 

 
Chemical Families: 

• Be + lanthanide/actinide 
Composition Trends: 
• A0.071B0.929 

 
Chemical Trends: 

• Cluster consisting of Be lightly doped with an f-block metal 
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Label 18 
Here we have Mn (A1-A3) and Fe (C4-D4) binary compounds in the ratio 
A0.207B0.793 such that A is a metal from the lanthanide family. 

 
Chemical Families: 

• Lanthanide + Fe/Mn  
 
Composition Trends: 

• A0.207B0.793 
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Label 19 
Here we follow the trend of ratio for the lanthanide/actinides bonded with a 
transition metal, however we see a discrepancy in the ordering. The top of 
this cluster consists of AB3 compounds trending to AB5 in C4, which if the 
previous trends had been observed would place this between clusters 13 and 
14. There is little similarity with cluster 20 to the left to justify this 
placement, which is a known flaw of the UMAP algorithm when plotting 
“islands” of datapoints, as these clusters do not have similar enough 
compositions with neighboring clusters to place these entirely correctly. The 
overall chemical similarities with the previous clusters is still observed 
however.  

 
Chemical Families: 

• Upper: Lanthanide/actinide + Ni/Co/Cu 
• Right: Lanthanide/actinide + Rh/Ir/Pt/Pd/Au 
• Lower: Lanthanide/actinide + Pd/Pt/Cu/Ag/Au 

 
Composition Trends: 

• Upper: AB3 → AB4 
• Right: AB3 
• Lower: AB20 → AB5 

 
Chemical Trends: 

• Upper: Going down the cluster, as B increases in proportion, it trends 
to the right of the transition metals, with actinides mostly found towards the 
center. 

• Right: Transitions through group 9/10/11 metals, from left to right in B 
ion. A ion moves through actinides then lanthanides. 

• Lower: Towards the center and left we see very high B ion 
concentration, towards the center of the d-block. A ion is a disordered 
collection of lanthanides, actinides and alkaline metals. 
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Label 20 
The largest cluster, 0f 2729 compositions, is invariably dominated by the 
transition metal compounds, which are almost exclusively found in this 
region. Here we see a complete range of ratios, and the trends as we move 
around the crescent tend to follow swells in ratio for specific elements, from 
AB compositions at C3 to DyCu99 at A2. There is a cluster of transition metals 
with more electronegative p-block elements at D2-D4 which generally shows 
a higher transition metal doping, from A2B to A9B. The cluster from B1-B2 
leading up is initially two transition metals in A3B ratio, before sharply 
increasing in transition metal doping as the B ion moves through to the p-
block metals. This ratio evens out moving further up, leading to the next 
group of d-p bonded compounds. 

 
Chemical Families: 

• Right: Transition + transition 
• Central Left: Transition + transition 
• Upper Left: Transition + transition/p-block 
• Upper Central: Transition + Zn/Cd/Hg/Be/Ga/Al 

 
Composition Trends: 

• Right: AB → A3B from left to upper right. Lower cluster is mixture of 
AB, A2B, A2B3, A3B, and A20B 

• Central Left: From left, high A ratio, A9B → AB as we move down to 
the center. 

• Upper Left: AB → A4B → A2B  
• Upper Central: AB → AB99 and A3B5 → AB 

 
Chemical Trends: 

• Right: Transition + transition 
• Central Left: High ratios of Fe/Ni/Mn/Co at the left hand side of this 

region, transitioning smoothly in AB distribution to the center of the cluster. 
This more sharply trends to an equal distribution as it follows the main cluster 
up. 
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• Upper Left: Moving up the cluster, the B ion migrates to the right of 
the periodic table through the p-block metals. The B ion starts in small 
proportion, and increases as we move up the cluster. 

• Upper Central: The left hand cluster are entirely Zn compounds 
increasing in concentration from left to right. The right hand cluster mostly 
contains binary compounds of transition metals from the very left of the d-
block and p-block elements. 

  

 
Label 21 
These three isolated island each contain a distinct A ion (being Fe/Co/Ni) 
bonded to a lanthanide or actinide, in a reasonably wide range of ratios. 

 
Chemical Families: 

• Fe/Co/Ni + lanthanide/actinide 
Composition Trends: 
• AB5 → A0.071B0.929, disordered 

 
Chemical Trends: 

• Three islands each of a high concentration of Fe/Co/Ni, and separated 
by presence of this ion. A ion either a lanthanide or actinide with no 
discernable trend. 

 
 
 
 
 
 



116 
 

 
Label 22 
Here we see a natural continuation of cluster 20 of d-p bonded compounds 
which have initially higher transition metal doping of AB2 closer to the 
transition metal cluster, which leads to AB compounds as we go further 
towards D4. 

 
Chemical Families: 

• Transition metal + Be/Al/Ge 
 
Composition Trends: 

• AB2 → AB, upper left to bottom right 
 
Chemical Trends: 

• As we move down the trend we see the left hand side transition metals 
plus Be/Al/Ga (in that order) 
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Label 23 
We again continue the chemical trends of cluster 20 of high doping transition 
metal A ion with a p-block metal across B4-D3. As expected the ratio of B 
ions increases as we move towards cluster 0, with this being a post transition 
metal. Each of the branches tend to contain distinct B ions 
(Ga/Ba/Be/Al/In/Tl) and follow local trends in ratio, with AuTl3 found in D1.  

 
Chemical Families: 

• Left: Transition metal + p-block 
• Lower: Transition metal + Hg/Cd/Mg/Cu 
• Upper Right: Transition metal + Mg/boron group 

 
Composition Trends: 

• Left: AB → A0.92B0.08 increasing smoothly down lines, AB to the right 
• Lower: A19B → AB as we move from bottom to the center 
• Upper Right: AB in the center. Trends to AB19 directly up, and to AB3 

diagonally to the right 
 
Chemical Trends: 

• Left: High concentration of central d-block, mostly Fe and Co in the 
center, with branching into Ni/Co, Fe, Mn, Mg. The A ion trends follow the 
four roughly parallel lines down the cluster. The B ions tend to be from the 
boron, carbon and nitrogen groups, slightly increasing in atomic weight as we 
move to the right of the cluster. The top of the cluster is characterized by a 
halogen B ion with a transition metal in groups 9/10/11. 

• Lower: Follows cluster to the left from AB increasing to a majority A 
ion ratio as we follow the cluster down. A is Cd, Mg, and Hg with a right 
hand side transition metal. At the very bottom this cluster the B ion moves 
further to the right of the table to give a selection of high Mg compounds. 

• Upper Right: This follows the trend of increasing B ion ratio, with the 
B ion trending from magnesium to aluminum/beryllium. The transition metal 
trends further to the left of the periodic table as we move up the cluster. A 
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high concentration of metal towards the upper perimeters of the cluster, 
including Be/Al majority compounds. 

 

 
Label 24 
Here we find the second largest cluster of compositions, which is almost 
entirely transition metals bonded with p-block metalloids and non-metals. 
From A2 to D4 we find mostly AB compositions which trend to higher B 
concentration as we move towards C2. The B ion electronegativity increases 
as we follow the crescent up, through the pnictogens and chalcogens, with 
CoO2 found in C1. Here we see that the branch at D1 follows some of the 
halogens, suggesting that cluster 2 may have been misplaced by UMAP, as a 
more natural placement would follow to the right of this, before following on 
to cluster 3. 

 
Chemical Families: 

• Left: Transition metal/p-block + p-block 
• Lower Right: Transition metal + p-block 
• Upper Right: Transition metal + p-block 

 
Composition Trends: 

• Left: AB19 → A3B2 → AB → AB2 → A2B3 → AB 
• Lower Right: AB → A3B2 → A5B3, going down 
• Upper Right: AB → A2B3 → AB2 

 
Chemical Trends: 

• Left: This cluster begins with almost pure aluminum, with the dopants 
quickly becoming a d-block element in more equal ratios. This is initially a 
period 4 transition metal + p-block, but has group 9/10/11 metals + p-block as 
we move further to the right, or Mg/Be + p-block as we move further up. 
Towards the center are 9/10/11 metals + a lower left p-block. The A ions 
move to the left of the d-block as we keep moving to the right, and the B ion 
moves to the top of the p-block of the general form AB2 . As we progress to 
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the lower right these return to AB nature with a left hand d-block and 
B/C/P/Si/As/Sb. 

• Lower Right: As we keep moving down the cluster this increases in A 
metal content to A5B3, of a left hand d-block + a carbon/pnictogen group. As 
we follow this up and to the right, the AB ratio remains more consistent, and 
the B ion moves towards the chalcogens (with a left hand d-block). Chalcogen 
content increases steadily as we move up the cluster to around A11B14 at the 
thinnest point as we move up 

• Upper Right: Moving up, the B ion concentration increases to around 
AB2. This consists of mostly transition metals (plus some alkaline and 
lanthanide) A ion and chalcogen. Further up the cluster, the A ion trends to the 
right of the d-block. As we move to the far right of the cluster, we get the left 
hand d-block metals and a halogen equal ratio. 

 
 

Label 25 
The final cluster initially follows the trend from cluster 24, with transition 
metal AB chalcogenides found from C3 to D4. The transition metal shows an 
increase in electronegativity as we move towards cluster 0 as we would 
expect. With AlO at A1 we see the beginning of the p-p valence bonded 
binary compounds which makeup the entirety of the upper left region in 
cluster 0. 

 
Chemical Families: 

• Transition metal/actinide + chalcogen/halogen 
Composition Trends: 
• AB → A2B3 in the far right 

 
Chemical Trends: 

• From the top left we have transition metals from the right of d-block A 
ions, in equal ratio to a halogen. As we move down and to the right, the A ion 
moves further of the left of the d-block to the lanthanides, with the B ion 
being a chalcogen element. Further to the bottom right we see a small 
increase in B ion ratio, which is mostly a chalcogen or pnictogen (often O) 
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Introduction 
Energy storage is a key technology to meet growing energy 

demand by harnessing renewable sources. Liquid electrolyte-based 

Li-ion batteries have been extensively deployed in the portable 

electronic and electric vehicle markets. Alternative batteries that 

utilise solid state electrolytes (SSEs) avoid the safety issues 

associated with organic liquid electrolytes and offer high energy 

density by enabling the use of a lithium metal anode 1,2. The most 

significant obstacle to the adoption of SSEs is the realisation of 

solid-state materials with the full suite of required properties, 

including sufficiently high ionic conductivity, stability against both 

Li metal and the oxidising cathode material (in practice this is 

often kinetic and associated with the formation of stable 

electronically insulating interfaces) together with appropriate 

mechanical properties 3. As such, considerable research has been 

devoted to the discovery and development of SSEs that meet these 

requirements 4,5. 

The amount of time and effort required to discover a suitable 

material in any domain has driven the application of machine 

learning methods to predict material properties 6. Recent works 

have used previously published data 7,8 to train machine learning 

models and predict the ionic conductivity performance of materials 

using only their composition 9. This approach is limited by the 

quality and quantity of the data available to train models. Literature 

reports in materials science tend to focus on subsets or particular 

families of materials with favourable or promising properties, 

leading to many reports on a limited range of materials 10,11. While 

natural language processing (NLP) tasks have access to billions of 

training examples, in experimental materials science even large 

datasets typically contain fewer than 10,000 entries 12. Due to these 

comparatively small training sets, it is imperative that the highest 

quality data are used to avoid providing inaccurate data to 

predictive models. As there are no large repositories of 
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experimental ionic conductivities currently available for solid Li 

conductors to perform a machine learning investigation, the first 

step must be sourcing high quality data. 

Machine learning models for materials figure-of-merit performance 

can be built from knowledge of either the composition alone, or the 

structure and composition. While models built from knowledge of 

both structure and composition are generally superior in 

performance, composition-only models are important both for 

domains where we do not have structure and for specific 

considerations relevant to lithium ion conductors; the association 

between minor variations in stoichiometry and ionic conductivity, 

and the specific challenges in characterising these crystal 

structures.  

The experimentally measured conductivity of a material derives 

from its non-averaged structure that is defined by its composition. 

This will include structural defects that cannot be captured fully in 

an average crystal structure recorded in a database such as the 

inorganic crystal structure database (ICSD), unless the material is 

fully ordered without fractional site occupancy or substitutional 

disorder. Most structures with lithium ion conductivity that have 

been reported in detail (i.e., with the lithium positions) exhibit 

considerable disorder of this type. Even the average structure is 

unavailable for potential compositions that have not been 

experimentally studied, and in addition many experimental reports 

of ionic conductivity give composition but not structural analysis 

of the materials investigated.  

Reported average crystallographic structures for lithium ion 

conductors frequently do not give precisely determined lithium 

positions because of the low X-ray scattering power and extensive 

structural disorder, again raising the important technical question 

of the connection between the potentially decisive local structure 

and the crystallographically-determined average structure. We thus 

build a dataset for machine learning models to predict lithium ion 
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conductivity based on composition. There will be limitations of 

this approach, for example the model will be unable to discriminate 

between polymorphs of a given compound. Nevertheless, crystal 

structure is not always known nor can it be for entirely novel 

compositions, thus a compositional model with low computational 

requirements is necessary for screening unexplored chemical 

space. Furthermore, many of these sensitively doped materials are 

highly dependent on fabrication methods, which can lead to broad 

inconsistencies across separate reports. 

With few structures to hand, the experimental methodology taken 

in synthesis and property measurement reported by each source is 

the most direct method of judging each material. The most reliable 

measurement of the ionic conductivity of a material is via a.c. 

impedance spectroscopy (ACIS) measurement, usually on a dense 

ceramic 13. This involves applying a voltage across the ceramic and 

sweeping through a range of frequencies. Measuring the voltage 

drop allows us to directly measure the complex impedance as well 

as the d.c. resistance of the material. All of the ionic conductivities 

for the materials included in this database were measured via 

ACIS.  

For a specialist domain topic like solid electrolyte chemistry, the 

task of digesting the presented information requires significant 

expertise. Throughout the literature, there are inconsistencies in 

how data are presented, which introduces difficulties when 

comparing different reports. A broad knowledge of the background 

literature is essential for recognizing potentially problematic 

experimental procedures affecting both composition and 

conductivity, uncovering discrepancies in reported data, and 

identifying materials and properties that have in fact been 

computationally derived rather than experimentally measured 

(which problematically and unfortunately may not be clearly stated 

in the body of the text in some cases). All of these challenges 

increase the difficulty and time required to construct a high-quality 

database of experimentally reported data. 
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Leading natural language processing (NLP) approaches have 

demonstrated their capability to extract chemical data from the 

extensive corpus of past scientific literature 14, a process referred to 

as automated scraping. Text mining has been demonstrated to be a 

powerful tool in creating materials datasets. For example, Court 

and Cole 15 created a dataset of materials and their associated 

magnetic ordering temperatures. This is possible as a magnetic 

ordering temperature is reported as a single number usually in the 

text. Unfortunately for ionic conductors, the task of finding and 

pairing compositions, temperature of measurement, and 

conductivities is too complex even for state of the art NLP 

techniques to be effective. There are the standard issues of 

tokenizing chemical formulae consistently, and parsing correct 

values in text and tables. In particular for ionic conductors with a 

non-crystalline component, the composition is reported as a 

mixture of reactants rather than a stoichiometric chemical formula. 

Furthermore, as the vast majority of reported data is presented in 

figures with no standardized units for conductivity and extreme 

heterogeneity between entries, extracting relevant data is a 

combined challenge in both the fields of NLP and computer vision. 

Accordingly, the creation of a reliable database is unattainable with 

present automated capabilities, and thus a manual approach is 

employed here. 

Previous investigations have predicted the ionic conductivity of 

solid-state materials using statistical methods. Due to the 

aforementioned difficulties in gathering initial datasets of sufficient 

size and quality these approaches build models that are based on 

relatively small experimentally-derived datasets (of the order of 

40-82 entries).8,9,16 In this study, we have reviewed the literature to 

gather the largest currently available dataset of experimentally 

reported solid-state lithium ion conductivities. A statistical 

overview of the dataset is presented, with the range of 

conductivities examined for each structural prototype. 

Unsupervised embedding and clustering techniques are used to 
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partition this dataset into 9 families by compositional similarity, 

thus assessing the diversity of the dataset. We develop supervised 

regression and classification models to predict the lithium ion 

conductivity and assess whether a material will possess an ionic 

conductivity log10(σ) > -4 at room temperature, where the 

conductivity is reported in units of S cm–1. The best regression 

models achieve a mean absolute Table 4 for log10(σ) of 0.85, and 

the best classification models have a Matthews Correlation 

Coefficient (MCC) of 0.63, assessed under k-folds cross-validation 

in both cases. 

Results and Discussion 
Database Construction 
A large collection of solid-state lithium electrolyte literature was 

gathered, and the ionic conductivities were extracted for the 

materials reported in each study. The experimental procedures in a 

given source were critically assessed to understand how each 

sample was synthesized, characterized, and processed into a 

ceramic. We ensure that in each of the studies, samples had clearly 

defined compositions and reported direct measurements of the 

conductivity taken via ACIS. The values of ionic conductivity in 

the database are a mixture of bulk and total values, as the two are 

not always distinguished, with only a small number of studies 

providing sufficient detail in labelling the reported values as such. 

Where exact stoichiometry may be unclear from the given 

reagents, any studies that lacked supporting characterization (such 

as ICP analysis) to confirm the presence of Li, were discarded. The 

ionic conductivity and material composition are both of equal 

importance in the database, as the predictive models are 

constructed with these two variables. By ensuring that data is 

exclusively gathered from experimental studies of high calibre, we 

gain confidence in the quality of the results of subsequent machine 

learning analysis. Typically, this requires extracting the values 
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from an Arrhenius plot and converting each value from the plotted 

units (commonly plotted as either σ in S cm–1 or S m–1, log10(σ), 

log10(σT), or ln(σT)) to conductivity in S cm−1 at a specific 

temperature. In some reports these values may also be provided in 

tables, or stated in the main body of text along with supporting 

discussion, allowing for cross-checking of the reported value. 

The first stage of the initial literature review was carried out by an 

undergraduate student to collate source papers of reported 

conductivities from keyword searches using search engines, and 

reviews of the field 17–20. This survey focussed on tabulating the 

physical properties reported in each paper: composition, ionic 

conductivity, temperature at which the conductivity was measured, 

activation energy, and structural prototype. Following this initial 

tabulation, the activation energy was excluded from the final 

database as it is not reported frequently enough to warrant 

inclusion.  

Owing to the complexities described above, further expert 

validation of the data was required. The ionic conductivity of a 

material is typically determined using ACIS, although it can also 

be calculated through molecular dynamics simulations 21, or 

examined by NMR diffusion experiments 22, ion migration studies 
23, or entirely different measurements not directly related to ion 

transport (e.g. maximum entropy method analysis of diffraction 

data 24). Even experimental papers which report a measured 

conductivity for a material through ACIS may themselves involve 

a variety of measurements and sample preparations, creating 

uncertainty around reported values. Postgraduate and postdoctoral 

researchers with >2 years direct experience of battery research with 

a broad knowledge of background literature assessed experimental 

procedures, consistency in sample preparation, quality, and other 

aspects of the reported data based on the details provided. Each 

researcher handled a selection of entries and was tasked with 

validating the database entry against the source report. 
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Note 1: A sample of unique compliments that were created using a prompt that is constructed of a predefined 

complimentary phrase that is engineered to induce positive sentiment, followed by the researchers name. The 

remainder of the sentence is created by a GPT-2 language generation model. 

- Mendeleev smiles down on your work from above Cameron! Cameron: I do? 

- The world would be a better place if there were more people like you Mike! The player to join the team. A 

name to remember. A reward for winning the game, to buy or 

- On a scale of 1 to 10, you're at 11 Luke! The best method is the traditional 1:5 formula, which applies the 

weight of all of the other 1's when they are 

- I have no mouth, but I must sing your praises Matthew! And now come, let us meet from heaven; there 

we'll sing, and come and sing as we go. 

- You're a star Alex! Have you seen this or heard of me? My name is Alex Jones and I am a 24-hour Twitter 

personality and pundit 

- You bring out the best chemist in other people Michael! I will always help you grow some more. I thank 

you all for choosing the Biodiesel Institute. Thanks again so much. 

- In the robot uprising, I'll make sure you're given the best treatment Manel! The world was saved by 

everyone, and all the robots have escaped the prison and are on their way to rescue our hero 

- You're a data wizard Matt! You do not need to work with large data sets – because you will save many 

minutes and dollars in learning about the big data. 

 

 

 

Dealing with such a large table of data in spreadsheet form adds 

significant challenges. Specifically, working with an online 

spreadsheet directly with twenty researchers leads to issues with 

version conflicts, edit histories, issues with concurrent user access, 

merging changes from multiple users, as well as assigning and 

tracking tasks. These issues were avoided by reducing the 

individual tasks to their core components through a bespoke 

interface developed with the streamlit prototyping library, shown 

in Figure 1. The interface was created to present a single entry 

from the database with its composition, associated conductivity at a 

specific temperature, and source paper. For each entry, the 

researcher was tasked with evaluating the conductivity at that 

specific temperature, making note of any mistakes with the 

composition and reported conductivity or temperature from the 

source. Positive feedback to researchers was provided through the 

presentation of a unique compliment provided by a GPT-2 

transformer based language generation model 25,26, displayed to the 

researcher after evaluating and recording each entry (Note 1).  
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Figure 1: A screenshot of the streamlit interface developed to present each researcher with 

a single database entry to validate the data. 

 Database Overview 
A database was created with 820 entries collected from 214 

sources; each entry contains the ionic conductivity of a chemical 

composition at a specific temperature, ranging from 5-873 °C, with 

an expert-assigned structural label. There are 434 different entries 

(Table 1) in the database for ionic conductivities experimentally 

measured at room temperature (15-35 °C). For a further 31 

materials, the room temperature conductivities are extrapolated 
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from measurements above room temperature, to obtain a dataset of 

465 entries, with 403 unique compositions, as 37 room temperature  

compositions have conductivities extracted from multiple reports.  

 

Table 1: The number of experimentally reported conductivities contained within 

this dataset.  

Description Count 

ACIS measured conductivities at any temperature 789 

ACIS measured conductivities at room temperature 

(15°C to 35°C) 

434 

Room temperature conductivities extrapolated from 

higher temperature 

31 

Total number of conductivities at room temperature 465 

Total number of conductivities at any temperature 820 

Number of unique compositions with a conductivity 

at any temperature 

455 

Number of unique compositions with a conductivity 

at room temperature 

403 
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The room temperature conductivities span the range of 5.00 × 10–16 

S cm–1 to 2.50 × 10–2 S cm–1, with a mean log10(σ) of –5.01 and 

median of –4.41 (Figure 2). The distribution of conductivities in 

this dataset and the associated standard deviation are estimated by 

optimizing the parameters of many probability distribution 

functions using the Fitter library (github.com/cokelaer/fitter); the 

distribution which fits the data with the lowest error is an 

asymmetric Laplace distribution. The interquartile range (50% of 

the data; materials from the 25th to the 75th centile of log10(σ) in 

the dataset) spans from -7.30 to -3.03, which is taken from the 

dataset values directly. 

Figure 2: Distribution in room temperature conductivities for materials in the dataset. A histogram displaying the 465 room temperature 

conductivities (in units of S cm–1) from materials contained in this dataset and the relative distribution of their log10(σ). The mean (𝒙𝒙�) value 

of –5.01, the median (𝒙𝒙�) value of –4.41, and the mode (𝒙𝒙�) value of -3.05 are marked on the x axis. An asymmetric Laplace distribution has 

been fit to this data, overlaid in green. The count of each bar is given on the y axis, with the percentage of materials falling within each 

percentile range around the median overlaid on the top axis. 
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Table 2: Each of the 403 room temperature conductivities grouped by expert assigned structural labels with the 

count and simple statistics of the range of conductivities for each family. 

 

During database construction, each material in the dataset was 

manually allocated a label, based on the structural prototype the 

material belongs to. If the material structure was not discussed 

directly in the text and its family could not be deduced with 

reasoning, then this composition was assigned the structural label 

of Other. The breadth of structural chemistry encompassed by this 

dataset is shown by the fifteen unique families present in this set of 

expert-curated labels Table 2, which can be used to partition this 

database and expose trends that have been reported in the 

literature. 

 

 

Structural 

Family 

Count Average log10(σ) Std. Dev. 

log10(σ) 

Max 

log10(σ) 

Min 

log10(σ) 

Anti-Perovskite 8 -6.07 1.76 -3.03 -8.14 

Argyrodite 21 -3.6 2.03 -1.85 -10 

Garnet 50 -4.24 1.21 -2.69 -8.06 

Glass 31 -6.16 1.98 -2.23 -8.89 

Glass-Ceramic 5 -5.72 1.27 -4.9 -7.95 

LISICON 26 -8.09 3.3 -4.15 -13.04 

Lysonite 2 -10.25 1.44 -9.23 -11.27 

NASICON 132 -4.72 1.45 -2.21 -10 

Olivine 6 -9.53 0.92 -8.85 -11.2 

Other 17 -5.68 3.05 -2.8 -15.3 

Perovskite 58 -4.29 1.25 -2.8 -8 

Phenakite 3 -10.7 0.24 -10.5 -10.97 

Rocksalt 8 -7.79 2.83 -4.87 -13.93 

Thio-LISICON 32 -4.05 1.64 -1.6 -7.9 

Zircon 4 -7.39 2.31 -4.85 -10.18 
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In Figure 3 the distribution of log10(σ) for each structural family for 

which room temperature data is available, has been created by 

fitting a density kernel to the conductivities. This consists of 

placing a Gaussian distribution of fixed height and width at the x 

co-ordinate for each conductivity, and summing these together to 

approximate the probability density, allowing us to estimate the 

spread of reported conductivities. Irregular distributions with long 

tails are observed for some structural families. As the majority of 

these sets contain fewer than 50 reported materials, reports of 

materials with higher conductivities in the literature will lead to 

anthropogenically biased distributions 27.  

Anthropogenic bias is inescapable when constructing a dataset of 

experimentally measured property from the literature. The reduced 

scientific interest in undertaking the lengthy characterization of 

materials with little importance to electrolyte chemistry, has meant 

that materials with very low or negligible conductivity are 

underreported. Distributions will be skewed towards conductivities 

of interest, and thus not truly representative of the underlying 

chemistry. 
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The room temperature dataset predominantly consists of 

NASICON, garnet, perovskite, glass, thio-LISICON, and 

LISICON type materials, each with more than 27 members. The 

anion chemistries of the materials are provided in Table 3, showing 

that 75% of the materials in the database are pure oxide 

compounds (consisting of 44% NASICON, 19% garnet, 18% 

perovskite and 8% LISICON type materials), 12% are pure 

sulphides, and 2% are pure halide compounds. Mixed anion 

materials (oxyhalides, oxysulphides, etc.) make up 11% of the 

materials included (46% of these are argyrodites such as Li6PS5Cl, 

and 16% are anti-perovskites such as Li3OCl). In general, materials 

containing sulphur as an anion exhibit higher minimum and 

 Figure 3: Distribution of room temperature conductivities across expert-curated structural families. Fitted distribution functions of 
the room temperature log10(σ) for all materials within the database separated into expert-curated structural families and scaled by 
the number of entries within each family, given in brackets. 
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maximum conductivities which is supportive of the outlook that is 

commonly encountered in the literature that sulphides exhibit the 

highest Li ion conductivities. 

 

Table 3: Chemistries of the materials in the database of 465 room temperature 

Li ion conductivities based on anions: pure oxides, oxides containing at least 

one other anion, pure sulphides, sulphides containing at least one other anion, 

pure halides, and other (which contains materials such as LiBH4, Li3P and 

Li2Ca(NH)2). The minimum and maximum Li ion conductivities at room 

temperature are given for each group.  

 

Machine Learning 
With a database of materials gathered, unsupervised or supervised 

machine learning (ML) may be applied to these compositions to 

extract chemical trends. Unsupervised learning involves the 

application of embedding and clustering techniques based on the 

elements in the material, with no further knowledge of chemical 

properties such as conductivity required. Unsupervised techniques 

are beneficial as they do not require time-intensive labelling, and 

may highlight trends and similarities that may not be immediately 

apparent from a large collection of data in a table. Unsupervised 

clustering has successfully been applied in previous investigations 

Materials No. entries σmin (S cm–1) σmax (S cm–1) 

Oxides 347 5.00 × 10–16 6.31 × 10–3 

Oxide with other anion(s) 18 1.00 × 10–10 9.38 × 10–4 

Sulphides 55 1.60 × 10–10 1.70 × 10–2 

Sulphide with other anion(s) 32 8.13 × 10–9 2.50 × 10–2 

Halides 7 1.18 × 10–14 1.51 × 10–6 

Other 7 2.00 × 10–9 1.00 × 10–3 
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to cluster electrolyte materials 8 based on crystal structure through 

hierarchical clustering applied to the anionic frameworks of 528 Li 

containing structures from the ICSD. Conversely, supervised 

techniques attempt to fit a predictive function for a property to 

chemical descriptors such that the property can be predicted for a 

new material by statistical learning from known examples in a 

given training set. Machine learning is applied to compositional 

descriptors to predict each material’s room temperature lithium ion 

conductivity (a regression task), or to predict whether each material 

possesses a room temperature lithium ion conductivity log10(σ) > -4 

(a classification task). 

In the previous chapter, we introduced the Element Movers 

Distance (ElMD) 28 as a metric to quantify the similarity between 

two chemical formulae. This is demonstrated to be an expressive 

measure of chemical similarity that aligns with domain expert 

judgement. This metric can be incorporated with unsupervised 

dimensionality reduction and automated clustering to present 

chemical composition data to those who study these spaces. This 

brings high-dimensional compositional spaces into concise 

structured representations, such as maps, that can be interpreted by 

humans. In doing this the landscape of known compositions can be 

categorized according to our knowledge of related materials.  

Following the methods described previously with the ElM2D 

plotting library (github.com/lrcfmd/ElM2D), we construct a 

distance matrix of ElMD scores between the compositions in the 

ICSD (2021) 29 and the compositions contained within the ionic 

conductors database here. This metric space is reduced to two 

dimensions with principle component analysis (PCA) (Figure 4). A 

Gram centred matrix 30 is first obtained from the given distance 

matrix, and then singular value decomposition of the Gram matrix 

carried forward to obtain the coordinates of each point projected to 

the first two principle components. PCA linearly scales each metric 

distance to maximally preserve each of the interpoint relationships 

across the dataset, which has previously been shown to closely 
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reflect the true structure of the metric space28. Figure 4 thus 

represents the distribution of this dataset in the compositional 

space of the materials constituting the ICSD. 

Each of the lithium-containing compounds of the ICSD are 

highlighted against other compositions of the ICSD and the 455 

unique compositions from our entire database (i.e., compositions 

with data recorded at any temperature) in Figure 4(a), with the 

expert-curated labels of the structural families included in the 

lithium conductors database in Figure 4(b). Though structure has 

not been included in the initial representation, expert-identified 

structural families are seen to tend to cluster in this compositional 

embedding, reflecting the connection between composition and 

structure. Perovskites (Figure 5(a)), NASICONs (Figure 5(b)), 

thio-LISICONs, and garnets are found in distinct areas of the 

Figure 4: An embedding of the 127,638 unique compositions (grey) from the ICSD database (2021) with respect to ElMD  similarity between compounds, 

embedded to 2 principle axes with PCA. (a) 6,972 of these compositions contain lithium (black), and (b) 455 unique compositions from this dataset with 

an experimentally measured conductivity at any temperature. The expert-curated structural label that each composition belongs to is indicated by the 

colour scheme given in the legend, with a selection of representative compositions and their embedded coordinates indicated. 
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compositional map; each of these structural families are grouped 

tightly on the map, despite the absence of structural information 

(Figure 4(b)). The lithium ion conducting materials in the database 

are found in the same regions of compositional space as known 

lithium compounds, and can be seen to match the diversity of 

lithium chemistry that has been explored to date reasonably well.  

This reflects the anthropogenic bias intrinsic to the research 

process, as much of the work devoted to discovering new lithium-

containing materials has been driven by applications in battery 

technologies. There are a number of areas of accessible lithium-

based chemistry (compounds seen on the right-hand side of Figure 

4(a)) where known materials appear underexplored with regards to 

ionic conductivity. This compositional space should be considered 

in the search for new families of lithium ion conductors.  
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Figure 5: (a) The embedded positions of perovskite materials in the reported dataset when compared 

to compositions of the ICSD w.r.t. ElMD. Perovskites are split into three distinct regions, the most 

populated of which consists of (Li, Ln)TiO3 materials, with a small cluster of Li0.25Ln0.25TaO3 

compounds, and a final cluster dominated by tantalate- and niobate-based perovskites, also 

containing cation-ordered perovskites such as LiSrTiNbO6 and LiSr2Ti2TaO9. (b) The embedded 

positions of materials with NASICON structure type in the reported dataset when compared to 

compositions of the ICSD w.r.t. ElMD. The most populous structure type included in the database, 

assemble with clear dependence on Li content that increases from lower-left to upper-right of the 

cluster. 
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The previous chapter includes a discussion on PCA, remarking that 

whilst this gives an accurate realisation of compositional space 

with respect to ElMD 28, it is not the best representation for further 

processing with automated clustering techniques. The compact and 

concentric patterns that these clusters follow are difficult to unravel 

both visually and algorithmically, particularly when framed against  

the noise of so many unrelated compounds. We find that non-linear 

dimension reduction techniques attain a much clearer separation of 

the space into distinct regions of compositional similarity, which 

can be clustered more consistently (Figure 6). Uniform manifold 

approximation and projection (UMAP) draws apart the points of a 

space by first forming a neighbourhood graph of points in the 

metric space then embedding this graph to a 2-dimensional plane 

of projection via Laplacian Eigenmaps to capture global 

information 31. These 2D distances are then refined through a ball 

and spring model 32 to capture the local intricacies of the metric 

space. 
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Figure 6: Embeddings of the 403 unique room temperature solid state electrolytes compositional data. (a) 

and (b) show the coordinates obtained from the UMAP embedding algorithm, whilst (c) and (d) arise from 

PCA.  The cluster labels in (a) and (c) are obtained from the DBSCAN clustering algorithm applied to the 

UMAP embedded points in (a), with the number of materials in each cluster given in brackets. Cluster 

labels in (b) and (d) were assigned from expert review to classify each material under a structural 

prototype.  
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 UMAP (Figure 6(a),(b)) and PCA (Figure 6(c),(d)) are applied to 

evaluate the reduced space of the 403 compositions of room 

temperature solid state lithium ion conductors in the database 

reported here. The UMAP plot contains several clear regions, 

which can be separated into 9 distinct clusters using the density-

based spatial clustering of applications with noise (DBSCAN) 

algorithm 33 with an epsilon radius of 4 (Figure 6(a)). The epsilon 

value determines the radius of disks that are overlaid on every 

point in the 2-dimensional plot, which are then used to classify the 

points into different clusters. If two points cover each other with 

overlapping disks, then these will be assigned the same cluster 

label. DBSCAN has the ability to capture dense regions of an 

embedding, but if epsilon is too large then the output will fail to 

separate disjoint clusters. In this study, epsilon was chosen 

manually to maximise consistency between automated clusters and 

the clusters that can be visually observed. 

Each of these unsupervised ML-derived clusters from Figure 4(a) 

are chemically reasonable, with clear stoichiometric substitutions 

or structural similarities connecting their constituents. This 

becomes apparent from comparison with the expert-derived 

structural family labelling in Figure 6(b) and 6(d). For example, 

Clusters 0 and 8 from the automated clustering are predominantly 

populated by NASICONs, perovskites are exclusively found in 

Clusters 5 and 6, whereas Cluster 4 is almost exclusively garnet 

structure materials. In addition to the practical benefits automated 

embedding and classification provides to rationally organise 

materials with minimal human bias, these clusters have further 

application in supervised training. As some data must be withheld 

from training and retained to test the performance of a trained 
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model, each DBSCAN-derived cluster will be used as a testing set 

in a process referred to as Leave One Cluster Out Cross Validation 

(LOCO-CV). These clusters range in size from 6 materials to 93 

materials, with the training set then typically containing 85-90% of 

the available data to train each model. The distributions of log10(σ) 

for each LOCO cluster have been plotted in Figure 7, with basic 

statistics given in Table 3, where many of the clusters span similar 

ranges of conductivity. Given the intra-cluster chemical 

consistency and inter-cluster dissimilarity, these assessments are a 

measure of how each model performs at predicting the ionic 

conductivities of materials that are chemically dissimilar from 

those on which the model has been trained. 

Figure 7: Distribution of room temperature log10(σ) conductivities across each LOCO cluster from 

fitting a Gaussian kernel function, with the number of entries within each cluster given in brackets.  
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Table 3: Each of the LOCO clusters with the count and simple statistics of the 

range of conductivities for each cluster. 

 

Supervised Learning 
A dataset of 403 entries is constructed, where compositions with 

duplicate room temperature conductivities from differing sources 

have been represented by the median of these multiple reported 

conductivities. With this dataset in hand, we apply the best 

available ML models that can be implemented with minimal 

modification, i.e. off the shelf. This is done with traditional 

statistical learners (ensemble models) with mat2vec 14 

composition-based feature vectors 34, and deep learning techniques 

(CrabNet). For statistical learners, we wish to ensure the best 

models and associated hyperparameters are chosen, so that we do 

not simply overfit to one portion of the data. A simple model with 

fixed hyperparameters is not guaranteed to give good predictions 

on unseen compounds. Such models may overfit to the training 

data, leading to poor predictions on unseen compositions, or give 

exceptional performance on certain subsets of the data with poor 

LOCO 

Cluster 
 

Count Average 

log10(σ) 

Std. Dev. 

log10(σ) 

Max 

log10(σ) 

Min 

log10(σ) 

0 93 -4.58 1.38 -2.21 -7.56 

1 6 -6.7 1.2 -5.54 -8.7 

2 44 -4.91 2.5 -1.85 -13.93 

3 81 -5.28 2.98 -1.6 -13.04 

4 26 -4.74 1.22 -2.89 -7.16 

5 25 -5.28 1.8 -2.1 -10.18 

6 64 -4.49 1.61 -2.8 -11.27 

7 28 -7.59 2.07 -3.4 -11.2 

8 36 -5.54 2.63 -3.15 -15.3 
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performance on the rest. Some of the issues of overprediction can 

be remedied by surveying a range of statistical models 35.  

State of the art techniques for predicting materials properties 

through composition apply this principle by training an ensemble 

of models, in the belief that each model will learn to focus on a 

different set of features. The predictions of each individual model 

are combined, which tends to give more robust predictions across 

the entire domain. In statistical models, the ensemble approach is 

notably used in the random forest (RF) algorithm 36, where large 

ensembles of decision trees are randomly constructed and kept or 

discarded depending on their predictive quality.  

The resulting quality of RF predictions depends on the values of 

each hyperparameter chosen when initialising the model, and poor 

choices can lead to very poor models. To alleviate this, best 

practice has traditionally focussed on trialling a range of 

hyperparameters in combination with one another, but this is time 

consuming and does not guarantee that the optimal configuration 

will be found. More recent AutoML approaches 37 improve on this 

by framing the choice of statistical model and its associated 

hyperparameters as a meta-problem to be solved. Many separate 

algorithms and hyperparameters can be trialled and assessed in 

combination, with the measured performance used to update a 

selection policy for future trials until optimal combinations are 

found.  

In AutoSklearn 38, many types of models and data pre-processing 

stages from the scikit-learn library are chained together to form 

data processing pipelines. The supplied training data is shuffled 

into k-folds cross-validation sets and used to assess each pipeline, 

with the performance noted. This performance is used to update the 

parameters of a tree-based Bayesian optimisation selection policy, 

which will decide the models and hyperparameters to choose in 

future iterations, alternating between exploring untried 

combinations, and exploiting relationships known to give good 
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results. Given that RFs return more robust predictions through 

ensembling many weaker models together, we would expect an 

ensemble of effective models to give even stronger predictions. As 

simple models are quick to train, thousands of pipelines can be 

evaluated during the AutoSklearn training process. After the 

allotted training time of ten minutes, the 50 pipelines with the 

highest performance are selected to form a trained ensemble which 

can be used to predict unseen data.   

In comparison, Compositionally Restricted Attention Based 

Networks (CrabNets) 39 are an implementation of the transformer 

model 40 of deep learning. Here, self-attention is employed to learn 

how relationships between each of the elemental vectors in a 

composition are aligned with a target property. Each elemental 

vector representation is transformed by a trainable neural network 

layer, with the cosine similarity scores taken between each 

elemental latent representation. These scores are used to weight the 

contribution of each element before it is input into a fully 

connected neural network to predict the specific property. These 

elemental relationships improve as the model learns through back-

propagation during training. 

In this architecture, the transformers positional encoder is 

repurposed as a fractional encoder to capture the ratio of each 

element in the composition, which enables CrabNets to capture 

similarities and small variations in stoichiometry with precision. 

This is particularly relevant for ionic conductors, where minor 

substituents (e.g., those controlling the exact Li+ content) can 

significantly influence the ionic conductivity because they 

determine the defect concentrations and associated local structure 

that can govern ionic motion. 

One shortcoming of deep neural networks such as CrabNets is that 

they require large quantities of training data which are typically 

unavailable for materials science problems. This limitation can be 

alleviated by transfer learning, which involves pretraining 
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networks on much larger datasets of compounds and their 

associated properties, such as the computed energy of formation. 

The trained parameters of this network can be exported to initialise 

future models for different properties, as opposed to initialising all 

of these values randomly.  

The desired benefit of pretraining the network on a wider range of 

compositions and their associated formation energies, is that the 

knowledge of chemical relationships absent in our training set can 

be extrapolated to future predictions. By transferring this 

knowledge from another domain, the most salient chemical 

relations are intended to be well represented in the network. This 

typically leads to a faster convergence to the optimal value when 

training the neural network on the desired property, and can lead to 

improved predictive performance in the target domain. This has 

been demonstrated in other investigations 41,42, where the 

application of transfer learning and neural networks has achieved 

state of the art for materials property prediction. In this work we 

compare the performance of AutoSklearn ensembles, randomly 

initialized CrabNets, and CrabNets that have been pretrained on 

compositions and their formation energies from the OQMD 43.  

Training CrabNets involves iteratively updating many model 

parameters of the network on the same dataset multiple times; each 

iteration is called a training epoch. Once an iteration has 

completed, the millions of model parameters will have been more 

finely tuned to align the data with the target property, which should 

give a better model than the previous iteration. When model 

training begins, we expect poor performance when predicting 

properties of materials in the test set, but as the model is further 

biased by training data after several epochs, more robust 

predictions should be attained. In general, when training neural 

networks, the training error steadily decreases over time, as the 

parameters of the model get more aligned with the input. After 

prolonged training however, these parameters begin to overfit to 
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the training data, and the model gets steadily worse at predicting 

anything outside the training set 44.  

The training and testing performance at each epoch can be plotted 

on a training curve, which characterises how performance evolves 

with the number of training epochs. A training curve can be used to 

determine the optimal training time (e.g. number of epochs). Model 

parameters can be exported from the training epoch that displays 

best performance at test set predictions. Training for sufficiently 

long time (to see degradation in test set performance) and then 

reverting to an earlier state in training is referred to as early 

stopping, in contrast to a priori deciding the number of training 

epochs, or training indefinitely. Early stopping across 500 training 

epochs is applied in this study, with each model taking the optimal 

set of training weights, giving a reasonable measure of how 

CrabNets with and without transfer learning perform using 

standard hyperparameters. 

The performance of AutoSklearn and CrabNet regression and 

classification models at predicting the conductivities of the 

materials in this dataset is evaluated through four methods: Control 

studies, parity plots, scoring metrics, and cross-validation 

techniques. We then use the best approach from this assessment to 

train final regression and classification models on all available 

data. 

To give some measure of the worst-case performance, we provide 

two control experiments. In the first control experiment, we take 

the reported conductivity of each material, shuffle these labels, and 

treat the average of five of these shuffled values as an ensemble 

prediction from a poor “model”. This has the effect of providing a 

quasi-random prediction that demonstrates how ensembles can 

bring predictions closer to the mean (Figure 8(a)). In the second 

control experiment, we demonstrate how a model which simply 

predicts the mean will perform. We take the mean of all of the 

room temperature conductivities (-5.02 in log10(σ)) and treat these 
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as the output prediction for each material, giving the same 

prediction for every entry. The true conductivities are plotted 

against each of these control predictions to observe the 

performance (Figure 8(b)). 

Plots are an effective method to directly confirm the performance 

of a statistical model. For regression tasks, we plot the actual 

conductivities of each material against the predicted conductivities 

Figure 8: Parity plots and error distribution for two control studies. (a) The shuffled control parity plot demonstrates each 

materials actual conductivity plotted against an average of five randomly selected values across the dataset. (c) The 

distribution of errors across all experiments (without averaging) demonstrates the maximal error bounds we would expect 

from a poor statistical model, with 68% of predictions falling between -2.36 to 2.31 away from the true values. (b) The mean 

control experiment demonstrates the expected predictions for a model which has simply learnt the mean value of the 

dataset. Correspondingly, the distribution of errors (d) is simply a reflection of the distribution of conductivities around the 

mean value, and models which form predictions close to the mean will resemble this distribution. A Student’s t-distribution 

(orange) is fit to the underlying data, with the mean of this distribution (dark blue), and the first, second, and third standard 

deviations away from this mean (light blue) overlaid in (c) and (d). A good model should have a mean of zero, with tight 

error bounds. 
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of a trained model. An ideal model would give each prediction 

perfectly on the leading diagonal. Dense pointclouds can be 

difficult to visually interpret, so errors of each prediction (ypred – 

ytrue) are calculated and plotted via histogram to quantify this 

distribution of errors. A Student’s t-distribution is fitted to the 

errors of all repetitions (without averaging) to provide intervals for 

how many predictions are within certain bounds of error for each 

model. The shuffled control has a zero-centred gaussian 

distribution of errors on the histogram with a standard deviation of 

2.34 (Figure 8(c)). The mean control has an error of -0.44 below 

the true value on average, with 68% of the predictions having an 

error within -1.99 to 1.10 of the true log10(σ) (Figure 8(d)). Given 

this worst-case performance, we may demonstrate how the best 

compositional models perform at predicting new compositions. 

When we have many plots for different models, it becomes 

difficult to visually confirm the “best” performing model. To 

quantify which of these models are best performing, we must use 

statistical metrics to rank the quality of the output predictions for 

each model. Regression models are often scored via Mean 

Absolute Error (MAE) and Pearsons R2 score. The MAE returns 

the average difference between each prediction and its known 

value, where values closer to 0 reflect stronger model performance. 

The R2 score shows the correlation between the true and predicted 

values, where a 1 is a perfect score, and anything below zero 

indicates that on average model predictions perform worse than 

simply returning the mean of the test set for all inputs. 

For classification tasks, the performance may be demonstrated via 

a confusion matrix. This is a 2×2 matrix that compares the 

predictions made by the classification model against the true 

classification labels. An ideal result would have leading values 

(True Positives and True Negatives) and zeros elsewhere, but in 

reality many predictions will be False Positives and False 

Negatives. For simplicity however, the most frequently reported 

score for classification is accuracy. The accuracy score is defined 
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as the number of true predictions divided by the total count of 

values in the testing set: 

accuracy =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
                                                   (𝐸𝐸𝐸𝐸. 1)     

On heavily imbalanced datasets with few negative class instances, 

the accuracy can return a high score for poor classifiers that output 

a single classification. This is due to the small number of negative 

instances, which do not significantly alter the denominator even if 

they are heavily misclassified (Eq. 1). To prevent misleading 

reporting, the Matthews correlation coefficient (MCC) 45 can be 

taken as a more informative score 46 by considering the proportion 

of each class in the confusion matrix:  

MCC =
𝑇𝑇𝑃𝑃 ∙ 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 ∙ 𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) ∙ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) ∙ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) ∙ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
     (𝐸𝐸𝐸𝐸. 2) 

The MCC is calculated by taking the difference of the product of 

true predictions and the product of false predictions, and dividing 

by the geometric mean of all entries in the confusion matrix. This 

returns a value from 1 for perfect classifications to -1 for entirely 

incorrect classifications. The MCC provides more weighting to the 

score for any misclassified values, allowing us to judge the 

outcome of the confusion matrix succinctly. By themselves, 

isolated scores do not convey the strength of a model and these 

must be compared against a known point of reference, such as a 

control study, to understand the significance of a particular result. 

As an aim of machine learning models is to predict the behaviour 

of as-yet unknown materials, it is important to distinguish between 

performance in interpolation between materials that have similar 

chemistries, where similar structure-property-composition 

relationships would be expected, and in extrapolation to materials 

characterised by structure and bonding that is not found in the 

training set. For example, predicting performance within a solid 

solution family with some members in the training set used would 
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be interpolation, whereas evaluating the conductivity from a 

material with a new structure type would be extrapolation. 

This question naturally arises when evaluating ML model 

performance. Here, it is important that the data being tested have 

not been previously used to train the model, but in and of itself, 

this does not directly address interpolation versus extrapolation 

ability. The standard method of splitting data is via k-folds cross-

validation, where the dataset is split into k equal sets, and one of 

these sets is used to test the model. In this report we take k = 5, 

where the model is trained on four of these subsets (80% of the 

data) and then tested on the fifth (20% of the data). This process is 

repeated for each set, and the mean score across all test sets is used 

as the final measure of performance. As many of the compounds in 

this dataset possess some similarity with one another, we expect 

the model should be able to interpolate relationships between 

known compositions.  

Ideally, we want predictive models to be able to extrapolate 

beyond known materials, and statistically infer future chemical 

relationships from observed compositions. To test this, we utilise 

the DBSCAN labels assigned in Figure 4 as Leave One Cluster Out 

(LOCO) labels to separate the 403 unique room temperature 

conductors into testing sets. As the compositions within each 

cluster have been confirmed to share chemical similarity, and to 

have dissimilarity from other clusters, using each cluster shown in 

Figure 4(a) as a testing set provides a better estimate of the ability 

of a model to screen novel compositions than the k-folds approach, 

which will entail greater chemical similarity between the training 

and testing sets. Time split holdout is a common technique, where 

all materials that have been discovered before a certain date are 

used for training, with those discovered after this date used for 

testing. As time of discovery was not recorded in our dataset, this 

was not used to judge models, however an experimental holdout 

set of more recently discovered materials is used to test the final 

models in the next section. 
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Both of the applied cross-validation techniques are used to train 

AutoSklearn and CrabNet regressors and classifiers, with the 

average of five repetitions of each experiment taken as the final 

score. We collate the performance of the two control studies and 

the ML models for regression and classification, in Table 4 and 

Table 5 respectively.  

Table 4: Regression Performance Metrics, average results of each regression 

model, judged by Mean Absolute Error and Pearsons R2 metric under both 

dataset cross-validation regimes. The average value of the training performance 

across the test sets is first calculated for each metric, and then averaged across 

each of the five repetitions; standard deviation shown in brackets. 

 

The two control studies give the highest MAE and lowest R2 scores 

between the actual and the predicted values under each cross-

validation scheme. These numbers are important to consider when 

evaluating any improvement in predictive performance. All models 

perform better than these controls, and under k-folds cross-

validation, and AutoSklearn models perform comparably to 

randomly initialised CrabNet models. However, under LOCO-CV, 

the AutoSklearn model fails to fit a suitable decision boundary to 

predict unseen materials; performance metrics reveal no significant 

improvement over the mean control. CrabNet models are better 

than AutoSklearn models at the extrapolatory LOCO task, and 

Model MAE (k-folds) R2  (k-folds) MAE  (LOCO) R2  (LOCO) 

Shuffled Control 

Study 

2.31 (0.06) -0.99 (0.13) 2.43 (0.08) -2.6 (0.4) 

Mean Control Study 1.71 (0.0) 0 (0) 1.72 (0) -0.46 (0) 

AutoSklearn 2.0 1.10 (0.04) 0.46 (0.05) 1.62 (0.08) -0.4 (0.2) 

Randomly Initialized 

CrabNet 

0.96 (0.02) 0.55 (0.03) 1.131 (0.006) 0.15 (0.03) 

Transfer CrabNet 0.85 (0.02) 0.62 (0.02) 0.99 (0.03) 0.33 (0.02)    
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these see improved performance in both MAE and R2 correlation. 

CrabNet models with transfer learning outperform all other models 

across each metric and cross-validation scheme. The ~10% 

increase in performance of transfer learning regression models over 

those initialised randomly suggests that pretraining in other 

domains has given the model a clear advantage when inferring 

unseen chemical relationships. To demonstrate this further, three of 

the regression models parity plots and distribution of errors are 

given in Figure 9. These plots allow us to visually judge models 

against one another, and to assess each model’s performance at 

predicting materials similar to those within the training dataset (k-

folds) as opposed to materials with unseen chemistry (LOCO-CV).  

Figure 9: Parity plots and error distributions for three regression models. AutoSklearn models assessed under LOCO-CV 

(a), (d) share the most similarity to the controls in Figure 5, and are thus judged to be the least effective ML model under 

investigation. Under LOCO-CV, CrabNet models with transfer learning offer improved performance, which can be 

visually confirmed by the spread of points falling closer to the leading diagonal (b), and the distribution of errors being 

centred around 0 with a smaller standard deviation. ML models give a tighter distribution of errors when validated with k-

folds, with transfer learned CrabNets possessing the most favourable actual vs. true characteristics (c) and distribution of 

errors (f). 
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The AutoSklearn regression model under LOCO-CV (Figure 9(a)) 

demonstrates tighter prediction error bounds than the shuffled 

control, but still leads to predictions with an error of -0.68 on 

average and a standard deviation of 1.55 (Figure 9(d)). An ML 

model which typically achieves predictions of ionic conductivity 

within two orders of magnitude could be interpreted as a positive 

outcome. However, comparison to the mean control demonstrates 

that this model has not learned a meaningful representation for 

extrapolating beyond the chemistries within the training set. The 

AutoSklearn error distribution is not an improvement over the 

mean control, which has an average error of -0.44 and a standard 

deviation of 1.54 (Figure 8(d)). CrabNets with and without transfer 

initialization output a range of predictions closer to the real values, 

with tighter error bounds than AutoSklearn models.  

The CrabNet regression models with transfer learning trained 

under LOCO-CV (Figure 9(b)) are not as consistently skewed as 

AutoSklearn, with an average error of -0.02 and a standard 

deviation of 0.811 (Figure 9(e)). These models typically return 

predictions with less error for high and medium conductivity 

materials, but often fail to capture the outlying low conductivity 

regions. This highlights the complexity of predicting exact 

materials properties when there has been little exposure to these 

unexplored chemistries. The best regression performance is 

achieved using CrabNet models with transfer learning under k-

folds cross-validation (Figure 9(c)), which leads to a distribution of 

errors centred around -0.01, and a standard deviation of 0.58 

(Figure 6(f)). As LOCO-CV forces each model to extrapolate 

future predictions, it is expected that the figures of merit will be 

less attractive than under k-folds cross-validation. Whereas 

regression models achieve only a modest improvement to the 

bounds set by the respective control studies, this is not the case for 

each of the classification models, which we turn to now. 
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Table 5: Classification Performance Metrics Average results of each 

classification model predicting whether materials possess log10(σ) > -4, judged 

by Matthews Correlation Coefficient (MCC) and accuracy under both dataset 

cross-validation regimes. The average value of the training performance across 

the test sets is first calculated for each metric, and then averaged across each of 

the five repetitions; standard deviation shown in brackets. 

 

Table 5 displays the average MCC and accuracy score for each 

models test set performance across five runs, where it is seen that 

control models may seem initially reasonable when judged by 

accuracy. CrabNet models with transfer learning return the highest 

MCC of 0.63 under k-folds cross-validation, and CrabNets without 

transfer learning return a slightly lower score of 0.57. AutoSklearn 

models do not give as strong performance, with an MCC of 0.46, 

but this is clearly a step improvement on the MCC scores of the 

control studies, with accuracy also seen to improve by some 

margin when comparing each model to the controls. As with the 

regression models, classification models trained under LOCO-CV 

return lower scores. This is highlighted by the AutoSklearn model, 

which has a particularly poor MCC (close to the MCC of zero of 

the two controls) of 0.10 when classifying LOCO test set materials, 

despite a promising accuracy score. The highest scoring LOCO 

Model MCC (k-folds) Accuracy (k-folds) MCC (LOCO) Accuracy (LOCO) 

Shuffled Control 

Study 

-0.02  (0.03) 0.50 (0.02) 0.00 (0.07) 0.52 (0.03) 

Mean Control Study 0 (0) 0.58 (0) 0 (0) 0.64 (0) 

AutoSklearn 2.0 0.46 (0.04)  0.74 (0.01) 0.10 (0.05) 0.63 (0.03) 

Randomly Initialized 

CrabNet 

0.57 (0.01) 0.786 (0.006) 0.36 (0.01) 0.62 (0.01) 

Transfer CrabNet  0.633 (0.002) 0.814 (0.009) 0.38 (0.01) 0.71 (0.01) 
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classification model is the CrabNet with transfer learning; an MCC 

of 0.38 indicates more of the high conductive materials are 

correctly classified as having log10(σ) > -4 than misclassified, 

which is supported by the high test set accuracy of 0.73.  

The two distinct cross-validation techniques have been applied to 

rank these statistical models against one another. However, 

interpolation between related materials within known chemistries 

(defined as known structure and bonding) should be considered 

independently from extrapolating into unknown chemistries 

beyond the training data. Accordingly direct comparison should 

not be drawn between the metrics for the two different cross-

validation protocols, as these assess different aspects of the 

performance of the ML models trained against the dataset. We are 

forced to use the data in our possession to assess the quality of 

each model. The data arise from the efforts of researchers in the 

field, and thus reflect various research trends and foci that have 

emerged, rather than directly expressing the possibilities for 

structure, bonding and performance for materials drawn from 

element combination at the level of the periodic table. Given this 

anthropogenic bias, there will be consistencies and trends within 

each chemical family of the dataset.  

By separating the materials of the database into clusters by 

chemical similarity and testing under LOCO-CV, the reduced 

performance compared to validation by k-folds highlights the 

challenge of extrapolating known compositional relationships to 

other chemical families that may span different ranges of 

conductivity. Comparatively, under k-folds cross-validation, each 

material in the testing set has a greater likelihood of having 

corresponding materials with similar elemental composition to 

their own in the training set. The model under assessment thus has 

more opportunities to interpolate between compositions in the 

training data, allowing it to make stronger predictions as it has to 

some extent been presented with similar examples during the 

training, rather than having them deliberately withheld.  
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This emphasises the strength of structure-property-composition 

relationships in lithium ion transport. It is reasonable to assume 

that ion transport takes place by local hopping through barriers 

governed by physical models that are closely connected in their 

physiochemical origin across all materials in the dataset regardless 

of structure and bonding. However, the changes in structure and 

bonding between these machine-identified materials clusters in 

which lithium transport occurs by similar, unifying diffusion 

mechanisms are sufficient to hinder extrapolation of performance 

from one set of chemistry to another, despite no fundamental 

change in mechanism taking place between the clusters.  

This contrasts with the situation prevailing for example in 

superconductivity, where entirely different mechanisms may 

govern high-temperature superconductivity in cuprates and low 

temperature superconductivity in elemental and alloy systems that 

pair by weak-coupling BCS. This mechanistic difference has been 

shown to undermine attempts to extrapolate with machine learning 

from superconductors with one pairing mechanism to another 47, 

whereas for lithium ion transport it is the chemistry (the structure 

and bonding) that controls performance even under a unified 

physical mechanism. Nevertheless, CrabNet models with transfer 

learning are seen to consistently outperform both the control 

studies and AutoSklearn models at predicting ionic conductivity. 

This is shown statistically across all cross-validation schemes and 

metrics in both classification and regression models, and can be 

visually attested from the parity plots. As such further discussion 

will assume these models as the focus unless stated otherwise.  

 

The Final Models 
When screening compositions with machine learning we want to 

use the best possible model to increase the likelihood of making 

robust predictions. Model performance is typically improved by 

using the most training data available, and choosing an optimal 
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training time. As discussed earlier, the optimal training time can be 

determined by assessing the performance vs. epoch training curve 

to decide which set of model parameters to use (i.e. early 

stopping). An important practical consideration is that any model 

to predict ionic conductivity would be most valuable when 

screening new materials. Accordingly, to assess the ability of our 

ML models to estimate the ionic conductivities of unstudied 

materials or novel chemistries, we train a final classifier and a final 

regressor on the entire initial database of unique room temperature 

conductivities and test it against eleven newly reported materials 

that have not been included in the initial database. We refer to this 

new set of materials as the experimental holdout set. These are 

selected to represent a range of chemistries and also conductivities, 

which matches the situation facing the experimentalist targeting 

new families of ion-transporting materials: it is desirable to 

understand the likely lithium conductivity of a particular 

composition in order to aid the selection of specific new 

chemistries for investigation. 

We select CrabNet with transfer learning as the architecture for 

these two models, as k-folds and LOCO-CV assessment show that 

it offers the best interpolation and extrapolation performance based 

on the considerations above. The final CrabNet models are trained 

on all unique entries of the initial database presented here. In the 

earlier validation investigations, early stopping could be employed 

by using the test data to select the set of network weights at the 

best performing training epoch on the training curve. In our final 

models, a fixed number of training epochs are determined a priori 

by assessing the training curves of CrabNets with transfer learning 

under LOCO-CV and selecting a training time which typically 

attains optimal performance. Final models are trained on all unique 

compositions with room temperature conductivity (i.e., all 9 LOCO 

clusters), with the classification model trained for 98 epochs, and 

the regression model trained for 323 epochs. 
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The performance of these neural networks at classifying or 

predicting the log10(σ) of a selection of recently reported materials 

is assessed across a range of reported conductivities. The 

individual performance for each material in the holdout set is given 

in Table 6.  

Table 6: Final regression and classification model predictions of the 

experimental holdout set. CrabNets with transfer learning are trained on all 403 

unique compositions and the associated log10(σ) or classification target at room 

temperature. The experimentally measured log10(σ) of each of the 11 materials 

in the holdout set are given alongside a predicted log10(σ) and conductivity class 

for the material from the final models, the boundary against which the 

classification is performed has been marked in black. 

As there are more training data available than in the validation 

investigations, the final models should have similar or improved 

performance to the results observed through cross-validation. The 

final classification model predicts whether the compounds of the 

experimental holdout set possess high (log10(σ) > -4) or low ionic 

conductivity with an accuracy of 0.91 and a MCC of 0.83. The 

final regression model achieves an MAE of 1.34 on the holdout set, 

with an R2 score of 0.51. The performance of the final model 

Composition Measured Conductivity 

(log10(σ)) 

CrabNet Regression 

Prediction (log10(σ)) 

CrabNet Classifier 

Prediction (log10(σ) > -4) 

Li10.35Ge1.35P1.65S12 47 -1.85 -3.60 1 

Li10.35[Sn0.27Si1.08]P1.65S12 48 -1.96 -3.50 1 

Li10GeP2S11.7O0.3 49 -1.99 -3.06 1 

Li10GeP2S11.4O0.6 49 -2.07 -3.07 1 

Li10[Si0.3Sn0.7]P2S12 48 -2.09 -2.66 1 

Li9.42Si1.02P2.1S9.96O2.04 50 -3.49 -3.67 1 

Li3.35P0.93S3.5O0.5 51 -4.04 -2.67 1 

Li3.3SnS3.3Cl0.7 52 -4.49 -3.62 0 

Li4.3AlS3.3Cl0.7 53 -5.09 -7.14 0 

Li3P5O14 54 -6.04 -7.73 0 

LiAlP2O7 55 (very low) -6.32 0 
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against this necessarily small holdout set is consistent with the 

more robust performance indicators obtained from the previous 

validation investigations.  

Despite the disparity in chemistries between the majority oxide 

training set and the more varied experimental holdout set, it 

appears from these metrics and also from consideration at the level 

of individual materials, that the regressor predicts properties 

reasonably. Compositions with exceptionally high conductivity are 

underestimated by the regression model. For nine of the eleven 

materials, the conductivity has been correctly predicted within two 

orders of magnitude, which would be expected for materials related 

to Li10GeP2S12, as this is contained in the training data. However, 

for the non-oxide materials of the holdout set that are dissimilar to 

those in the training set, performance is reasonable even when 

these materials have crystal structures that differ from other 

materials included in the training set.  

Li3.3SnS3.3Cl0.7 is the first lithium ion conducting defect stuffed 

wurtzite based on hexagonal close packed S2– anions 52. Li3P5O14 

has an ultraphosphate crystal structure defined by extended anionic 

layers, and is also structurally distinct from materials included in 

the training set 54. Given that these are structurally differentiated 

materials, the ionic conductivities have been reasonably predicted 

(within 1.69 of the true log10(σ)) by a regression model that is 

based purely on composition. These models can be used as 

screening tools to motivate the further study of candidate materials 

and phase fields, and assist in the prioritisation of resource 

commitment for experimental synthetic work.  

Given the intended purpose as a screening tool, and the more 

favourable metrics demonstrated by the classification model, a 

reliable classification of high conductivity materials is more 

helpful than an absolute estimate of the ionic conductivity from the 

regressor. There are fewer materials with exceptionally high or low 

conductivity in the database, and as such there will be greater 
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uncertainty when predicting a specific conductivity for materials in 

these extrema. Training on classification features gives a more 

balanced distribution of positive and negative class labels, which 

gives the model a less skewed dataset for judging its composition-

based decision boundary, as reflected in the more favourable 

performance scores of the classification models. Although there is 

identified anthropogenic bias present in the dataset, the MCC score 

under LOCO-CV improves in comparison to each control. This 

leads us to conclude that these classification models predict with 

sufficient reliability whether a material has a log10(σ) > -4 for these 

to be further employed to screen candidate ionic conductors (e.g., 

the material contains Li and is likely to have low electronic 

conductivity). This does not replace expert chemical knowledge 

and judgement, instead providing a complementary numerical 

insight based on evaluation of data at a scale hard for human 

experts to assimilate. 

Conclusion 
We present the largest currently available dataset of experimentally 

reported lithium solid state electrolytes. This dataset includes the 

composition, structural type, conductivity, and measured 

temperatures of 789 ACIS measured conductivities, with 403 

unique compositions with an associated  ionic conductivity near 

room temperature. Multiple stages of data validation were carried 

forward by a team of domain experts to ensure that all data are 

correctly imported from the literature. The creation of a reliable 

database is a task that is particularly difficult to carry forward with 

automated tools due to the wide inconsistencies in how data is 

reported in the field of ionic conductors, necessitating lengthy 

human validation. Automated scraping would be a viable strategy 

if all future reports were to prominently state in the abstract a well-

defined composition, ionic conductivity in common and clearly 

stated units (e.g. S cm−1), the temperature at which it was measured 

(e.g. 298 K) and the technique used to measure it (e.g. ACIS). With 
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this in mind, we encourage researchers and journal editors to 

consider reporting core findings in this manner, which will enable 

materials science researchers to leverage tools from the natural 

language processing community to gather even larger datasets in 

the future. 

The dataset represents the diversity of chemistry spanned by 

lithium-containing materials, with a numerical preponderance of 

oxide-based examples. There are 15 structural families represented 

at room temperature, including oxides, sulphides, halides, and 

mixed anion materials. These room temperature compositions are 

visualised and clustered with the ElM2D package to partition the 

dataset into nine chemically distinct clusters for leave one cluster 

cross-validation (LOCO-CV) assessment of the performance of 

machine learning models. 

Supervised statistical (AutoSklearn) and deep learning (CrabNet) 

models have been applied to this dataset to predict the ionic 

conductivity of a material from its elemental composition alone. 

Regression and classification models have been evaluated with 

standard statistical metrics under different cross-validation regimes 

to assess their performance at predicting the ionic conductivities of 

novel materials. The ionic conductivity of a material is the product 

of many chemical and structural considerations, and also depends 

on external factors such as temperature. Further, the measured 

conductivity can also strongly depend on sample preparation, the 

presence of impurity phases, and crystallite size distribution, which 

are often discussed collectively under the nebulous term, “sample 

quality.” This makes ionic transport a difficult property to reliably 

predict from limited and anthropogenically biased compositional 

data. Given this challenge, we go beyond standard statistical 

metrics by designing control studies to more thoroughly investigate 

the models. We show that CrabNets with transfer learning 

demonstrate the best performance under both k-folds and LOCO 

cross-validation.  
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We present a classification model that is able to estimate whether a 

material has high or low conductivity which demonstrates 

improved reliability over random sampling. This is a practical tool 

to aid experimentalists in their decisions to prioritise candidates for 

further investigation as lithium ion conductors. Predictions from 

this model for chemistries dissimilar to those contained in the 

database are likely to be less reliable than those of closer 

chemistries, and materials that may have received a low 

conductivity prediction from these models may still be of interest. 

This emphasises the importance of reporting newly synthesized 

materials with distinct chemistry and their measured properties. 

This should be encouraged even if said property is not seen as 

being “exceptional” in comparison to heavily investigated and 

optimised materials families that have seized the attention of many 

researchers. 

Acquiring new data is the only route to improving the performance 

of supervised models in outlier conductivity regions. 

Diversification of the structure and bonding within studied ionic 

conductors expands the predictive utility of these models because 

the database on which they are trained is more representative. This 

experimental synthetic exploration of uncharted chemical 

(composition and structure) space to generate new examples is thus 

of foundational importance, regardless of the absolute performance 

of the arising material. Each qualitatively distinct material in terms 

of differentiated structure and bonding assists our understanding of 

where high performing materials may be located in chemical space. 

This distinguishes the generation of materials closely related to 

existing examples -- which is valuable for optimisation -- from 

studies that explore distinct parts of the relevant chemical space. 

The model performance here reinforces the importance of 

exploratory discovery synthesis coupled with definition of 

structure-property-composition relationships for lithium ion 

transport. 

 



164 
 

References 
1. Goodenough, J. B. Rechargeable batteries: challenges old and 
new. J. Solid State Electrochem. 16, 2019–2029 (2012). 

2. Knauth, P. Inorganic solid Li ion conductors: An overview. 
Solid State Ion. 180, 911–916 (2009). 

3. Janek, J. & Zeier, W. G. A solid future for battery development. 
Nat. Energy 1, 1–4 (2016). 

4. Wang, Y. et al. Design principles for solid-state lithium 
superionic conductors. Nat. Mater. 14, 1026–1031 (2015). 

5. Bachman, J. C. et al. Inorganic Solid-State Electrolytes for 
Lithium Batteries: Mechanisms and Properties Governing Ion 
Conduction. Chem. Rev. 116, 140–162 (2016). 

6. Lombardo, T. et al. Artificial Intelligence Applied to Battery 
Research: Hype or Reality? 
https://doi.org/10.1021/acs.chemrev.1c00108. Chem. Rev. (2021) 
Articles ASAP. 

7. Sendek, A. D., Cheon, G., Pasta, M. & Reed, E. J. Quantifying 
the search for solid Li-ion electrolyte materials by anion: a data-
driven perspective. J. Phys. Chem. 124, 8067–8079 (2020). 

8. Zhang, Y. et al. Unsupervised discovery of solid-state lithium 
ion conductors. Nat. Commun. 10, 5260 (2019). 

9. Cubuk, E. D., Sendek, A. D. & Reed, E. J. Screening billions of 
candidates for solid lithium-ion conductors: A transfer learning 
approach for small data. J. Chem. Phys. 150, 214701 (2019). 

10. Haghighatlari, M., Shih, C.-Y. & Hachmann, J. Thinking 
Globally, Acting Locally: On the Issue of Training Set Imbalance 
and the Case for Local Machine Learning Models in Chemistry. 
Preprint at https://chemrxiv.org/engage/chemrxiv/article-
details/60c745c4337d6cef32e2704f. (2019). 

11. De Breuck, P.-P., Evans, M. L. & Rignanese, G.-M. Robust 
model benchmarking and bias-imbalance in data-driven materials 
science: a case study on MODNet. J. Phys. Condens. Matter 33, 
404002 (2021). 

12. Dunn, A., Wang, Q., Ganose, A., Dopp, D. & Jain, A. 
Benchmarking materials property prediction methods: the 
Matbench test set and Automatminer reference algorithm. Npj 
Comput. Mater. 6, 1–10 (2020). 

13. Irvine, J. T. S., Sinclair, D. C. & West, A. R. Electroceramics: 
Characterization by Impedance Spectroscopy. Adv. Mater. 2, 132–
138 (1990). 



165 
 

14. Tshitoyan, V. et al. Unsupervised word embeddings capture 
latent knowledge from materials science literature. Nature 571, 95–
98 (2019). 

15. Court, C. J. & Cole, J. M. Auto-generated materials database of 
Curie and Néel temperatures via semi-supervised relationship 
extraction. Sci. Data 5, 180111 (2018). 

16. Sendek, A. D. et al. Holistic computational structure screening 
of more than 12 000 candidates for solid lithium-ion conductor 
materials. Energy Environ. Sci. 10, 306–320 (2017). 

17. Fergus, J. W. Ceramic and polymeric solid electrolytes for 
lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010). 

18. Rossbach, A., Tietz, F. & Grieshammer, S. Structural and 
transport properties of lithium-conducting NASICON materials. J. 
Power Sources 391, 1–9 (2018). 

19. Stramare, S., Thangadurai, V. & Weppner, W. Lithium 
Lanthanum Titanates:  A Review. Chem. Mater. 15, 3974–3990 
(2003). 

20. Zhang, Z. et al. New horizons for inorganic solid state ion 
conductors. Energy Environ. Sci. 11, 1945–1976 (2018). 

21. Chen, C. & Du, J. Lithium Ion Diffusion Mechanism in 
Lithium Lanthanum Titanate Solid-State Electrolytes from 
Atomistic Simulations. J. Am. Ceram. Soc. 98, 534–542 (2015). 

22. Xiang, Y.-X. et al. Toward understanding of ion dynamics in 
highly conductive lithium ion conductors: Some perspectives by 
solid state NMR techniques. Solid State Ion. 318, 19–26 (2018). 

23. Nolan, A. M., Zhu, Y., He, X., Bai, Q. & Mo, Y. Computation-
Accelerated Design of Materials and Interfaces for All-Solid-State 
Lithium-Ion Batteries. Joule 2, 2016–2046 (2018). 

24. Manawan, M., Kartini, E. & Avdeev, M. Visualizing lithium 
ions in the crystal structure of Li3PO4 by in situ neutron diffraction. 
J. Appl. Crystallogr. 54, 1409–1415 (2021). 

25. Radford, A. et al. Language Models are Unsupervised 
Multitask Learners. OpenAI Blog https://cdn.openai.com/better-
language-
models/language_models_are_unsupervised_multitask_learners.pd
f (2019). 

26. Wolf, T. et al. Transformers: State-of-the-Art Natural 
Language Processing. in Proceedings of the 2020 Conference on 
Empirical Methods in Natural Language Processing: System 
Demonstrations 38–45 (Association for Computational Linguistics, 
2020). 

27. Hargreaves, C. J., Dyer, M. S., Gaultois, M. W., Kurlin, V. A. 
& Rosseinsky, M. J. The Earth Mover’s Distance as a Metric for 



166 
 

the Space of Inorganic Compositions. Chem. Mater. 32, 10610–
10620 (2020). 

28. Levin, I. NIST Inorganic Crystal Structure Database (ICSD). 
https://doi.org/10.18434/M32147. (2020). 

29. Krzanowski, W. in Principles of Multivariate Analysis Ch. 2 
(Oxford Univ. Press, Oxford, 2000). 

30. Kobak, D. & Linderman, G. C. Initialization is critical for 
preserving global data structure in both t-SNE and UMAP. Nat. 
Biotechnol. 39, 156–157 (2021). 

31. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform 
Manifold Approximation and Projection for Dimension Reduction. 
Preprint at https://arxiv.org/pdf/1802.03426.pdf. (2018). 

32. Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based 
algorithm for discovering clusters in large spatial databases with 
noise. in Proceedings of the Second International Conference on 
Knowledge Discovery and Data Mining 226–231 (1996). 

33. Murdock, R. J., Kauwe, S. K., Wang, A. Y. T. & Sparks, T. D. 
Is Domain Knowledge Necessary for Machine Learning Materials 
Properties? Integrating Mater. Manuf. Innov. 9, 221–227 (2020). 

34. Wang, A. Y.-T. et al. Machine Learning for Materials 
Scientists: An Introductory Guide toward Best Practices. Chem. 
Mater. 32, 4954–4965 (2020). 

35. Ho, T. K. Random decision forests. in Proceedings of 3rd 
International Conference on Document Analysis and Recognition 
vol. 1 278–282 vol.1 (1995). 

36. He, X., Zhao, K. & Chu, X. AutoML: A Survey of the State-of-
the-Art. Knowl.-Based Syst. 212, 106622 (2021). 

37. Feurer, M. et al. Efficient and Robust Automated Machine 
Learning. in Proceedings of the 28th International Conference on 
Neural Information Processing Systems vol. 2 2755–2763 (2015). 

38. Wang, A. Y.-T., Kauwe, S. K., Murdock, R. J. & Sparks, T. D. 
Compositionally restricted attention-based network for materials 
property predictions. Npj Comput. Mater. 7, 1–10 (2021). 

39. Vaswani, A. et al. Attention is All you Need. Adv. Neural Inf. 
Process. Syst. 30, (2017). 

40. Goodall, R. E. A. & Lee, A. A. Predicting materials properties 
without crystal structure: deep representation learning from 
stoichiometry. Nat. Commun. 11, 6280 (2020). 

41. Kong, S., Guevarra, D., Gomes, C. P. & Gregoire, J. M. 
Materials representation and transfer learning for multi-property 
prediction. Appl. Phys. Rev. 8, 021409 (2021). 



167 
 

42. Kirklin, S. et al. The Open Quantum Materials Database 
(OQMD): assessing the accuracy of DFT formation energies. Npj 
Comput. Mater. 1, 1–15 (2015). 

43. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. 
MIT Press (2016). 

44. Matthews, B. W. Comparison of the predicted and observed 
secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 
BBA - Protein Struct. 405, 442–451 (1975). 

45. Chicco, D. & Jurman, G. The advantages of the Matthews 
correlation coefficient (MCC) over F1 score and accuracy in binary 
classification evaluation. BMC Genomics 21, 6 (2020). 

46. Stanev, V. et al. Machine learning modeling of 
superconducting critical temperature. Npj Comput. Mater. 4, 1–14 
(2018). 

47. Jiang, Y., Hu, Z., Ling, M. & Zhu, X. A comparative study of 
Li10.35Ge1.35P1.65S12 and Li10.5Ge1.5P1.5S12 superionic conductors. 
Funct. Mater. Lett. 13, 2050031 (2020). 

48. Sun, Y., Suzuki, K., Hori, S., Hirayama, M. & Kanno, R. 
Superionic Conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a 
Li10GeP2S12-type Structure in the Li3PS4–Li4SnS4–Li4SiS4 Quasi-
ternary System. Chem. Mater. 29, 5858–5864 (2017). 

49. Sun, Y. et al. Oxygen substitution effects in Li10GeP2S12 solid 
electrolyte. J. Power Sources 324, 798–803 (2016). 

50. Hori, S., Suzuki, K., Hirayama, M., Kato, Y. & Kanno, R. 
Lithium Superionic Conductor Li9.42Si1.02P2.1S9.96O2.04 with 
Li10GeP2S12-Type Structure in the Li2S–P2S5–SiO2 Pseudoternary 
System: Synthesis, Electrochemical Properties, and Structure–
Composition Relationships. Front. Energy Res. 4, 38 (2016). 

51. Suzuki, K. et al. Synthesis, structure, and electrochemical 
properties of crystalline Li–P–S–O solid electrolytes: Novel 
lithium-conducting oxysulfides of Li10GeP2S12 family. Solid State 
Ion. 288, 229–234 (2016). 

52. Vasylenko, A. et al. Element selection for crystalline inorganic 
solid discovery guided by unsupervised machine learning of 
experimentally explored chemistry. Nat. Commun. 12, 5561 
(2021). 

53. Gamon, J. et al. Li4.3AlS3.3Cl0.7: A Sulfide–Chloride Lithium 
Ion Conductor with Highly Disordered Structure and Increased 
Conductivity. Chem. Mater. 33, 8733–8744 (2021). 

54. Han, G. et al. Extended Condensed Ultraphosphate 
Frameworks with Monovalent Ions Combine Lithium Mobility 
with High Computed Electrochemical Stability. J. Am. Chem. Soc. 
143, 18216–18232 (2021). 



168 
 

55. Shoko, E. et al. Polymorph of LiAlP2O7: Combined 
Computational, Synthetic, Crystallographic, and Ionic 
Conductivity Study. Inorg. Chem. 60, 14083–14095 (2021). 

 



169 
 

Organising Materials Datasets 
for Similarity Queries with 
Metric Indexing Data Structures 
 

The concluding section of this work on the ElMTree is under 

preparation for publication as part of a wider manuscript for the 

suite of tools hosted on the Liverpool Materials Discovery Server 

(LMDS), co-written by Samantha Durdy, myself, Michael W. 

Gaultois, and Matthew S. Dyer. The LMDS project was conceived 

and executed by myself and Matthew S. Dyer, with all installation 

and technical assistance provided by Mark Dennison and Ben 

Wagg of the university of Liverpool servers and storage team. It 

was funded as part of the SOLBAT grant FIRG007, with support 

from Matthew J. Rosseinsky.   

Introduction 
Searching for things is the preliminary task in many daily 

processes. As we awake we search for the alarm, in the shops we 

search for our favourite foods, and in our work we search for 

similar materials to those under investigation. In the general 

problem, we have a given set of objects that we are trying to search 

against, such as things in our immediate reach, items in the shop, 

and databases of materials. We also have a query. These may be 

well formed, such as the position of the alarm clock or less well 

formed, being the list of things you think you want to eat. These 

queries may be entirely subjective, such as a more similar material. 

More similar compositionally? More similar structurally? More 

similar in a specific property? Just more similar?  

Comparing the outputs of generative models against reported 

databases of compositions to find their most similar match is an 

excellent application of the ElMD, where the models output is the 

query. Unfortunately it can be very computationally costly to 

search many databases in a high throughput manner. Efficiently 
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navigating these spaces enables researchers to compare potential 

formulations against a greater body of past research, which may 

prevent the duplication of efforts to synthesize a novel material.  

The use of imprecise search tools may not highlight areas of 

interest, or incorrectly identify objects as being similar when others 

may be better matches. A common difficulty is that if objects are 

unsorted and scrambled amongst one another, then each must be 

investigated in turn until we find the desired, or closest, object that 

we are searching for. This brute force method of investigation is 

very time consuming, especially if the method of comparison is 

computationally costly. A better approach is to structure objects 

logically so they may be accessed through an indexing scheme.  

To our knowledge, there are no prior indexing schemes reported 

for materials datasets, and many composition based interfaces rely 

on entering the composite elements individually. This means that 

searches are slow to enter for the user, relying on imprecise 

database queries. A simple approach could store each database 

entry with its chemical formula as a composition vector. Chemical 

queries could be searched for in a brute force manner, by 

comparing each of the stored vectors with the query vector using 

the compositional Euclidean distance (CED) to score similarity. 

This has the same drawbacks discussed in Chapter 2, but 

unfortunately, an ElMD based brute force search becomes 

computationally costly leading to unacceptably long search times. 

To index objects for searching we must use a data structure. Some 

data structures can be very simple and efficient in their use cases, 

such as arrays of objects that are accessed by an index. For 

example, an elevator does not need to spend any time searching for 

the correct floor, as each button press maps to the correct index to 

load the instruction. This is not an informative search, nor should it 

be, as we do not wish the elevator to visit the five closest floors as 

it searches for the desired floor. For more complex problems that 

involve indexing sets of objects with numeric representations with 

irregular intervals between members, or when performing non-
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exact similarity queries, we need more advanced data structures to 

store and execute these efficiently. These are typically introduced 

in an undergraduate computer science course, but an introduction 

to this topic with some common examples is provided in Appendix 

1. 

Unfortunately, the most commonly used search trees are unsuitable 

for the purpose of indexing compositions w.r.t. the ElMD, as these 

are typically reliant on the Euclidean distance, i.e. the CED. By 

using the CED these data structures enforce the use of a coarse 

metric between vectors, which leads to greatly reduced 

distinguishing power. This can mean that highly dissimilar objects 

will be found in local subtrees of the datastructure which means 

time is wasted computing these distances when they could be 

ignored. Further, this data structure is reliant on each indexing 

object being a high dimensional fixed length vector. The 

representations generated by Percifter in the next chapter are of 

variable length, which means that we cannot use many of these 

trees to index Percifter objects. As materials do not come with an 

associated frame of reference such as Euclidean coordinates, we 

cannot order these spatially. Thus, we rely solely on the 

information given to us from the metric.  

Thankfully, the field of data structures called metric indexing trees 

focuses on this specific problem. When organising the space, 

objects that are in local proximity to one another in the metric 

space should be located in subtrees in close proximity to one 

another. This allows us to reduce the number of distance 

computations which must be made when performing a search. This 

will be of particular significance for computationally expensive 

metrics, such as the EMD, where brute force searching may be 

time prohibitive. 

Here we will demonstrate how the previously investigated metrics 

may be applied to structure materials datasets, allowing us to 

navigate these spaces quickly and efficiently. There may not be a 

consistent ordering that can be applied to an arbitrary metric space. 
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(a) 

(b) 

(c) 

(d) 

However, the machinery that metric spaces offer, in particular the 

triangle inequality, can be applied to consistently index objects into 

hierarchical search trees of candidate objects. There are many 

metric indexing trees 3,4, and in this chapter we investigate the use 

of the MTree 5 and the List of Clusters 6 (LC) approaches to 

indexing spaces of materials w.r.t. the ElMD distances 7.  

Metric Spaces 

Partitioning spaces to execute similarity searches will of course 

require some form of similarity score. Objects of the space must 

have an associated metric, a low value indicating similarity 

between objects, and larger values dissimilarity. Metrics are 

introduced in Chapter 1 and discussed in later chapters with 

applications of the EMD, but the importance of these rules to the 

indexing scheme permits us to reiterate. A metric, d, between two 

objects, O, must satisfy the metric axioms 8: 

1) 𝑑൫𝑂௫ , 𝑂௬൯ =  0,  𝑂௫ = 𝑂௬  

2) 𝑑൫𝑂௫ , 𝑂௬൯ ≥ 0,  𝑂௫ ≠ 𝑂௬ 

3) 𝑑൫𝑂௫ , 𝑂௬൯ = 𝑑൫𝑂௬, 𝑂௫൯ 

4) 𝑑(𝑂௫ , 𝑂௭) ≤  𝑑൫𝑂௫ , 𝑂௬൯ +  𝑑൫𝑂௬, 𝑂௭൯ 

The first of these rules (Figure 1(a)) states that if the distance 

between two objects is 0, then these must be the same object under 

the given metric. The second (Figure 1(b)) is the property of non-

negativity, for if two identical objects have a distance of 0, then it 

cannot be possible for objects to be more identical and thus return a 

negative score. The third of these rules (Figure 1(c)) is required for 

consistency, stating that a metric should be a symmetric function, 

i.e., the ordering of the input objects should not impact the output 

value of the metric function. 

The fourth, the triangle inequality (Figure 1(d)), states that the 

distance between any two objects must be less than or equal to the 

length of the path between them that visits an intermediate object, 

which is to say, the shortest path between two points is always an 

uninterrupted line. The triangle inequality is the core tool that will 

Figure 1: Visual representations of 
each of the metric axioms in two-
dimensional space. 
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(a) 

(b) 

(c) 

be used to prune entries from our search when performing 

similarity queries on the MTree and LC. 

Metric Trees 

Objects may not have easily identifiable features, but if there is a 

metric between objects, we can use this information to index 

objects with respect to their distance to other objects. There are two 

core approaches to construct metric indexing trees, generalized 

hyperplane partitioning and ball partitioning methods. Each of the 

metric tree algorithms apply these principles differently, and 

sometimes in combination, to partition spaces. Below we outline a 

general overview of these methods applied to 2D Euclidean co-

ordinates. 

In generalized hyperplane partitioning schemes (Figure 2), when 

each point is indexed, it is assigned to a child, dependent on which 

of the two children, called the pivots, the point falls closest to. This 

has the effect of inserting a plane following the medial line that is 

orthogonal to the two pivots. This is called a generalised 

hyperplane, which will partition the space in two. During queries, 

the points will be routed depending on which of the two pivots they 

fall closest to at each level of the tree. This tends to create more 

symmetric and balanced indexing trees, which may mean that more 

distance calculations will need to be made for irregularly 

distributed spaces.  

Rather than using deep learning, the popular music streaming 

platform spotify uses a generalized hyperplane indexing tree called 

Approximate Nearest Neighbours Oh Yeah (ANNOY) 9 for its 

music recommendation engine. User embeddings are created 

through a matrix factorisation of the network of artists that they 

listen to, with the Euclidean distance between embeddings used as 

the metric. Instead of choosing the hyperplane as the plane that 

falls midway between two points, ANNOY uses randomly 

projected hyperplanes at each split. Each user is paired to their 

most similar vectors in the database, and their new musical 

suggestions taken from the artists that similar users listen to. Figure 2: Six 2-dimensional points are 
indexed via the generalised hyperplane 
method. Hyperplanes are overlaid in 
(a) and (b) with the resultant metric 
tree given in (c). 
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(a) 

(b) 

(c) 

(b) 

(a) 

Ball partitioning methods, sometime called Ball Trees (Figure 3), 

also rely on indexing the dataset based on the distances to 

particular objects chosen from the indexing set, which are now 

referred to as vantage points (VP). Every object of the indexing 

dataset is stored in a node of the tree, with vantage points 

contained in the internal nodes. Vantage points may be chosen 

from the dataset at random, assigned based on regions of local 

density, or updated dynamically as new objects are added to the 

tree. As well as the nodes routing object, vantage points store an 

additional attribute at each node, which is the covering radius. This 

is equal to the distance between the vantage point and the furthest 

object contained in its subtree, which will be updated during 

construction as the subtree grows. The covering radius is the 

property that enables us to prune regions of the tree during 

similarity searches, through the triangle inequality (Figure 4). Let 

us illustrate this with a simple analogy.  

You have decided that if there is one within an acceptable 

proximity radius, r(Q), of 1,000 km to your house, you would like 

to visit a space ship. You have acquired a metric indexing tree that 

has all the space vehicles of the solar system indexed using a ball 

partitioning scheme with respect to the Euclidean distance. The 

root node contains pointers to two entries, a rocket at the Kennedy 

space centre in Florida (𝑂௥ଵ), and the perseverance rover on mars 

(𝑂௥ଶ), shown in Figure 5.  

You query the tree using radio waves sent from your house, Q, to 

find the distance to the routing objects. In doing so, the distance 

between the query object Q and each of the routing objects, 𝑂௥ଵ, 

and 𝑂௥ଶ, is measured to see whether Q falls inside the covering 

radius of either of the subtrees. The covering radius of the 

perseverance rover, 𝑟(𝑂௥ଶ), is 10,000 km, and the distance 

𝑑(𝑄, 𝑂௥ଶ) is 25,000,000 km. Whilst there are fifteen entries 

indexed under 𝑂௥ଶ, one for each of the mars missions, the objects 

of the subtree have to be at least as close to 𝑂௥ଶ than the covering 

Figure 3: The points of Figure 2 are 
indexed via a ball-partitioning method. 
Covering disks are overlaid in (a) and 
(b) with the resultant metric tree given 
in (c). 

Figure 4: Each of the query points in 
(a) fall under both vantage points 
covering disks so no subtree may be 
pruned. In (b) each of the opposing 
subtrees may be removed from the 
search 
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radius of 10,000 km. The closest that any of the Martian objects 

could physically be to Q is thus 24,990,000 km.  

As the distance to the Kennedy centre, 𝑑(𝑄, 𝑂௥ଵ), is 6,600 km, and 

this falls inside the covering radius 𝑟(𝑂௥ଵ) of 18,000 km, one of 

the entries in the subtree may be close enough, as 𝑑(𝑄, 𝑂௥ଵ) <

𝑟(𝑂௥ଵ). The children of 𝑇(𝑂௥ଵ) must be closer to Q than the 

children of 𝑇(𝑂௥ଶ), so we can prune the tree 𝑇(𝑂௥ଶ) from our 

search entirely and descend to the subtree 𝑇(𝑂௥ଵ). As time-of-

flight radio waves were used to measure distance, at no point were 

the locations of any of these objects required. Just the information 

provided through the metric.  

Here it is clear to see that we could have a close match with one of 

the descendants of Or1, as the disk of acceptable proximity 

completely intersects the region of indexed objects, but we cannot 

tell for sure until we descend the tree and check. In general, the 

geometric principles of the triangle inequality may be used to 

prune subtrees if we have an acceptable proximity radius, a 

distance to a routing object, and the routing object covering radius.  

With Or1, any point could be chosen at random within the 

acceptable proximity radius of Q. This point would be guaranteed 

to be acceptably close to Q, intersect with the indexing region of 

Or1 thus potentially being contained in Or1, and would form a valid 

triangle with Or1 and Q. With Or2 however, it would not be 

possible to construct a triangle with edge lengths 1,000, 

25,000,000, and 10,000. This tells us there could not be an object 

of interest in that region of the metric space which satisfies the 

search criteria without breaking the triangle inequality. There are 

other cases, such as when a routing object has a distance of 0, in 

which case we have an exact match. If the disk of proximity 

partially intersects with a routing object covering disk, then the 

subtree cannot contain an exact match, but could contain objects of 

interest. 
Figure 5: The distance 𝑑(𝑄, 𝑂௥ଵ) from 
our house, 𝑄, and the Kennedy 
centre, 𝑂௥ଵ, falls inside the covering 
radius of the Kennedy centre so we 
should investigate this subtree. The 
distance 𝑑(𝑄, 𝑂௥ଶ) to the perseverance 
rover rover 𝑂௥ଶ given by the dashed 
line is much greater than the covering 
radius of 𝑂௥ଶ so we can prune this 
subtree  
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Ball partitioning schemes are beneficial as they often generate 

asymmetric and imbalanced trees which are good at partitioning 

datasets of irregular density and are equipped with robust pruning 

schemes. However, the covering radii of vantage points can 

overlap, which means that more subtrees must be processed than 

necessary when executing queries. This effect will be even more 

pronounced on evenly distributed spaces with consistent density, as 

there will be many vantage points with overlapping covering radii.  

Priority Queues 

An additional data structure which will be used in this chapter is 

the priority queue 1. This is a simple construction, which stores a 

list of objects, O, each with an associated key, k, in an array: 

 [(𝑘ଵ, 𝑂ଵ), (𝑘ଶ, 𝑂ଶ), … (𝑘௡, 𝑂௡)] 

Each of the entries are ordered by the value of k, such that 𝑘ଵ <

𝑘ଶ … < 𝑘௡. When a new object is added to the queue, the 

appropriate position for the new key is found and the object 

inserted into this position. As the queue is already sorted, this 

operation can be performed in O(log(n)) time by applying a binary 

search tree operation. When working with distances to queries, this 

means that the item in the first position of the queue will always 

contain the closest object that has been considered, and the last 

item in the queue will be the object furthest away. 

In this chapter, three priority queues are used whilst indexing and 

search processes are executing. The first is a nearest neighbours’ 

queue, NN, which stores the closest matches to a query and is 

returned once the algorithm has terminated (Figure 6). The second 

is used by the MTree during k-NN searches and is a tree queue, 

TQ, which stores pointers to each of the subtrees in the MTree that 

are yet to be examined. In TQ, the distance between the query and 

the furthest object in the subtree is used as the key. The third is 

used by the list of clusters (LC) to store the points stored under 

each vantage point, sorted by their distance to the vantage point.  
Figure 6: The final five entries of the 
NN priority queue when executing an 
ElMD similarity search for NaCl on 
either the MTree and List of Clusters. 
These are given as a list of ordered 
pairs (distance to query, composition) 
and sorted by distance to the query. 
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The MTree  
An indexed MTree stores each of the entries in the leaves of the 

tree, with duplicates of each object stored further up the tree in 

internal nodes to route queries to the nearest leaf node. The tree 

first has a root node, containing the feature information of an 

associated routing objects, 𝑂௥. Each node contains pointers to child 

routing objects, each of which will also have associated object 

information, and further sub-trees if they are non-leaf nodes. The 

subtree associated with a node object is denoted 𝑇(𝑂௥). We need 

not limit ourselves to binary trees, which is to say trees where each 

node has two children, and many pointers can be stored at each 

vantage point. This extension is called the n-ary tree, which can 

take up to n pointers at each node. If a node exceeds this limit, we 

say that it overflows, and we must execute a costly promotion 

scheme to rebalance the tree. 

In addition to storing object information, each internal routing 

object operates as a vantage point, containing the radius of the 

disk, 𝑟(𝑂௥) which covers all entries contained in 𝑇(𝑂௥), e.g. the 

distance from the routing object to the furthest object contained in 

its children and sub-children. Each non-root object also stores the 

distance between itself and its parents routing object, 𝑑(𝑂௥, 𝑂௣) to 

save repeated calculation.  

We assume that each of the objects to be indexed are entered 

randomly, with no guarantee of proximity. The tree must therefore 

be rebalanced during construction to ensure that the vantage point 

objects span representative regions of the space, to efficiently route 

query objects to the correct matches. Objects are added in a 

bottom-up fashion, where each new object is compared with the 

root, and recursively descended to a suitable leaf node until the 

distance between the new object falls outside the covering radius of 

a parent routing object, whereupon a new leaf is created.  

When the new object falls inside the covering radius of multiple 

routing objects then it is routed to the closest object. When the new 
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object reaches a leaf node or a node where the distance 𝑑(𝑂௡, 𝑂௥) 

between the new object, On, and each routing object Or is greater 

than the covering radius 𝑟(𝑂௥), then the new object is added to the 

closest of the possible routing objects. If this causes a node to 

exceed its capacity, a node split is triggered, and a routing object is 

promoted to a higher level up the tree. This may trigger another 

internal node to split, and the process will continue until a new root 

node has been promoted, or a routing object is added to an internal 

node below capacity. 

An ideal MTree would minimise the total sum of the covering 

radii, with little overlap between covering radii, as this allows us to 

prune a greater number of subtrees during searches. The volume of 

the tree can be computed by summing together all covering radii, 

where a minimal volume ensures the tree is not unnecessarily deep, 

with well clustered trees. Different promotion policies are provided 

in the original publication, with the minimum sum of radii 

(m_RAD) policy optimally reducing the overall volume of the tree.  

m_RAD is a computationally intensive procedure, which 

constructs a complete distance matrix of all possible combinations 

of objects in the tree to recursively pick the two objects which 

minimise the total volume. Due to time constraints when indexing 

MTrees with large datasets, the Maximum Lower Bound on 

Distance (M_LB_DIST) promotion scheme is instead used in this 

work. This involves forming a distance matrix between the objects 

in the node under consideration and selecting the two objects 

which are furthest away from one another to promote up a level. 

Whilst this leads to less efficient search trees, empirical search 

times of the implementation are found to be acceptable.  

Once the two objects to promote have been decided, each of the 

sub-trees must be assigned to a new parent routing object. A 

perfectly balanced tree can be formed by sequentially selecting the 

closest routing objects to each of the parent nodes in turn. This will 

ensure equal numbers of entries are contained in the sub-trees at 

each split, which minimises the total number of routing nodes 
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required to construct the tree. However, this leads to less clustered 

trees that do not exploit the local densities of the objects of the 

metric space, thus leading to a greater overall tree volume. Instead, 

the generalised hyperplane-partitioning scheme is applied here, 

which simply assigns each of the objects to their most similar 

parent, leading to less balanced trees.  

When all objects have been indexed, we may determine which 

objects fall within the covering radius of a query object, 𝑂௤, or 

determine the k-nearest neighbours (k-NN) of a query object. 

Given the intended purpose as a direct matching tool, we will detail 

the k-NN search, and refer to the earlier outline for the theory of 

the range search. Both have been implemented in the ElMTree 

codebase. 

k-NN Search of an indexed MTree 

An indexed MTree stores the objects of a space in the leaves of a 

tree data structure. Each internal node of the MTree stores multiple 

routing entries, the number of internal routing entries to store at 

each node being a hyper parameter that is set before indexing. The 

binary variant with two entries per node is discussed before 

presenting the performance in search times of n-ary trees in the 

results section. Each entry stores the object information and 

pointers to routing objects that are its children; if it is a leaf node it 

stores only the object. Further to this, each internal node stores the 

value of a covering radius, which is calculated as the largest 

distance between a nodes routing object and every object contained 

in its subtree, as well as the distance to its parent if it is not the root 

of the tree. 

Let us formalise this process. We will use two priority queues, NN, 

which at termination will store the final results of the nearest 

neighbour search, and TQ. TQ stores pointers to the active subtrees 

associated with internal routing objects, 𝑇(𝑂௥), to continue the 

search for nearest neighbours. These pointers are ordered by a 

distance value, 𝑑௠௜௡, which is the closest potential distance to an 

object stored in the subtree. If an object falls inside the covering 

Figure 7: An object 𝑂௥ has an 
associated covering radius 𝑟(𝑂௥). As 
𝑑(𝑄, 𝑂௥) <  𝑟(𝑂௥), dmin is set to zero for 
the subtree 𝑇(𝑂௥), as this subtree may 
contain an exact match, and this is 
added to the front of the tree queue 
(TQ). 
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radius, 𝑑(𝑄, 𝑂௥) − 𝑟(𝑂௥) ≤ 0, this is given the value of 0 and 

stored at the front of the TQ, as it is possible that the subtree 

contains a perfect match (Figure 7). Otherwise 𝑑௠௜௡ is given the 

value of 𝑑(𝑄, 𝑂௥) − 𝑟(𝑂௥), as it is possible that none of the 

subtrees contain good matches and we simply want the closest 

values (Figure 8).  

 𝑑௠௜௡(𝑇(𝑂௥)) = max {0, 𝑑(𝑄, 𝑂௥) − 𝑟(𝑂௥)} 

Each entry of TQ will be addressed sequentially, and then removed 

from TQ, with additional subtrees added to TQ as the MTree is 

descended. Simply iterating this process would lead to all objects 

of the tree being queried and sorted in a brute force fashion, but we 

can use the information from the NN array to prune subtrees from 

TQ during execution. 

NN is a priority queue, containing tuples, (𝑑(𝑄, 𝑂௡), 𝑂௡), where 

𝑂௡ is the n-th nearest neighbour to Q that has currently been found. 

As each object in the nodes of the MTree are queried, if 𝑑(𝑄, 𝑂௜) is 

smaller than 𝑑(𝑄, 𝑂௞) then an ordered insertion is performed to 

enter this into the correct position of NN. The first k objects in NN 

will be returned by the k-nn procedure. The distance associated 

with the k’th nearest object, NN[k] = (𝑑(𝑄, 𝑂௞), 𝑂௞) gives an upper 

bound, 𝑑௞ = 𝑑(𝑄, 𝑂௞), which we may use to define the first of two 

pruning rules during the search.  

If 𝑑௠௜௡(𝑇(𝑂௥)) > 𝑑௞, the closest possible object in 𝑇(𝑂௥) must be 

further away than the currently identified k-th closest neighbour, 

and thus the entire subtree may be removed from TQ (Figure 9). 

This procedure is applied repeatedly each time the value of 𝑑௞ 

comes down, without having to compute the distance between Q, 

and objects in each subtree.  

The second pruning rule uses one of the stored properties of each 

node, as each will contain the distance between its routing object 

and the parent. This information is used in addition to the covering 

radius, to give a lower bound on the distance to the closest 

potential match in a subtree. If this is greater than 𝑑௞, then 𝑇(𝑂௥) 

Figure 8: Here 𝑑(𝑄, 𝑂௥) > 𝑟(𝑂௥) so we 
calculate the minimum distance an 
indexed point could theoretically be in 
𝑇(𝑂௥) and add this to TQ with this 
value.  

Figure 9: Taking the k’th distance in 
NN as dk, we may prune any subtrees 
from TQ which have 𝑑௠௜௡(𝑇(𝑂௥)) >
𝑑௞. In this example 𝑇(𝑂௥ଶ) may be 
pruned from the search. 
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cannot contain any objects which are closer to 𝑄 than the currently 

indexed object at NN[k]. This means we can avoid computing 

𝑑(𝑂௥, 𝑄), and the subtree need not be added to TQ for further 

investigation. Accordingly, a tree 𝑇(𝑂௥) will be considered for 

addition to TQ if the following statement holds (Figure 10):  

ห𝑑൫𝑄, 𝑂௣൯ − 𝑑൫𝑂௥, 𝑂௣൯ห ≤ 𝑑௞ + 𝑟(𝑂௥) 

Once it is established that the subtree could feasibly contain an 

object which is a closer match than those in our NN array, the 

distance 𝑑(𝑄, 𝑂௥) is computed, from which 𝑑௠௜௡(𝑇(𝑂௥)) is 

derived. If 𝑑௠௜௡ ≤ 𝑑௞, then (𝑑௠௜௡, 𝑇(𝑂௥)) is pushed to TQ. 

The distance from Q to the furthest possible objects contained in 

𝑇(𝑂௥),  𝑑௠௔௫, can also be obtained from the given information. 

The furthest object can be at most the distance to the routing object 

𝑑(𝑄, 𝑂௥) plus the covering radius (Figure 11).  

𝑑௠௔௫൫𝑇(𝑂௥)൯ = 𝑑(𝑄, 𝑂௥) + 𝑟(𝑂௥) 

Whilst we do not currently know the identity or exact distance to 

the furthest object, if 𝑑௠௔௫ ≤ 𝑑௞, a placeholder of (-, 

𝑑௠௔௫(𝑇(𝑂௥))) may be inserted at the appropriate place of NN. 

This could have the effect of lowering the value of 𝑑௞, as the old 

value of NN[k] may now be the k+1 nearest neighbour. The 

updated value of 𝑑௞  allows us to prune further subtrees from TQ, if 

the associated 𝑑௠௜௡൫𝑇(𝑂௥)൯ > 𝑑௞. 

When a leaf node is encountered, the triangle inequality can be 

applied to save computing the distance between the query and the 

leaf object. This is done with the precomputed stored distances of 

each of the leaf entries, 𝑂௜ to their parent routing object, 𝑂௣, and 

the distance from Q to 𝑂௣. The leaf entries to be considered for 

entry are those where: 

|𝑑(𝑄, 𝑂௣) − 𝑑൫𝑂௜, 𝑂௣൯| ≤ 𝑑௞ 

If this holds, the distance 𝑑(𝑄, 𝑂௜) is calculated, where once again 

should 𝑑(𝑄, 𝑂௜) < 𝑑௞, then (𝑂௜, 𝑑(𝑄, 𝑂௜)) will be inserted into NN, 

Figure 10: We need only compute the 
distance between the query and each 
routing object if the inequality 
containing each of the precomputed 
distances holds: 
 ห𝑑൫𝑄, 𝑂௣൯ − 𝑑൫𝑂௥ , 𝑂௣൯ห ≤ 𝑑௞ + 𝑟(𝑂௥) 
Here, we would not need to investigate 
𝑂௥ଵ but would add 𝑂௥ଶ to TQ. 

Figure 11: A value of dmax may be 
computed as 𝑑(𝑄, 𝑂௥) + 𝑟(𝑂௥) and 
inserted into NN, which may have the 
effect of lowering dk. 

Figure 12: If the difference between the 
distance between the query and the 
parent, 𝑑(𝑄, 𝑂௣), and the distance 
between the leaf object and the parent, 
𝑑൫𝑂௜ , 𝑂௣൯, is less than dk then the 
distance between the query and the leaf 
is calculated.  
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(a) 

(b) 

(c) 

(d) 

and TQ pruned with the updated value of 𝑑௞. This process is 

continued until there are no subtrees in TQ with 𝑑௠௜௡ < 𝑑௞, at 

which point the algorithm terminates and we may return the k 

closest objects from NN. 

The List of Clusters 
The MTree was initially chosen due to the generally favourable 

traits of the data structure that had been reported by the 

publication. However, recent reviews have shown this gives 

reduced search performance when compared to other techniques. 

In particular, the List of Clusters (LC) 6 data structure was 

demonstrated to outperform other methods in retrieval times when 

benchmarked against high dimensional datasets. After all this 

discussion of hierarchical partitioning trees, it could appear that 

this technique takes a deceptively simple approach which would be 

expected to return inefficient clusters of the space. In practice we 

have found that not only is this recently implemented method 

simpler to explain, it is shown to outperform more involved 

techniques when applied to materials datasets. Let us describe the 

construction process first.  

We choose n/m pivot points, Op, from the dataset at random, where 

n is the total number of points and m is the average number of 

points partitioned to each pivot after construction. In the original 

list of clusters publication it was recommended to use a value of 16 

for m. For our dataset of 1,065,165 compositions this leads to 

66,573 pivots. The distance between each of the remaining objects 

and every pivot is computed. The object is then assigned to the 

closest pivot, keeping a record of the object and its distance to the 

parent pivot object. This has the effect of creating a Voronoi 

partitioning of the space around each of the pivots, or cluster 

centres, with each point being assigned to the Voronoi cell that it 

intersects. Each pivot stores the children in a priority queue, sorted 

by distance to the pivot, taking the greatest distance as a covering 

radius (Figure 13), allowing for pruning during searches.  Figure 13: 100 points are shown on the 
plane (a) with 8 of these chosen as 
pivots (b). These form Voronoi 
partitions (c) which will then have 
associated covering radii attached 
when considered as vantage points (d). 
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During searches, the method of operation changes, and each of 

these pivoting cluster centres are instead treated as vantage points. 

Once the assignment of each point in the dataset to its closest 

parent is complete, each pivot takes the distance to its furthest child 

and stores this as the covering radius, r(Op). With these routing 

objects operating as vantage points, pruning the search space 

similar to the MTree may be carried forward during searches.  

A query must first compute the distance to all n/m vantage points. 

Once this is complete, the vantage points (Op) are iterated over in 

order of proximity. Each of the child objects assigned to a vantage 

point will have its distance to the query computed in turn. For 

range queries, there is an associated cut-off radius, dmax. As with 

the MTree, we may use a simple pruning rule using the stored 

parent distances to determine whether or not we even need to 

compute the distance between the query and the i’th child object 

(Figure 14). 

|𝑑(𝑄, 𝑂௣) − 𝑑൫𝑂௜ , 𝑂௣൯| ≤ 𝑑௠௔௫ 

If this holds then d(Q, Oi) is calculated, and it is inserted into the 

NN priority queue. If the above condition does not hold, then it is 

checked whether 𝑑൫𝑄, 𝑂௣൯ <  𝑑൫𝑂௜, 𝑂௣൯. If so, as the children have 

been stored in sorted order, 𝑑൫𝑂௜ାଵ, 𝑂௣൯ must be greater than 

𝑑൫𝑂௜ , 𝑂௣൯, so the remaining children in the vantage point may be 

skipped. For k-NN queries, after the first cluster has been 

processed, we may use the distance associated with the k’th item of 

NN as dmax, and use this value to prune further searches.  

Yet again, the vantage points covering radius may be used to 

remove entire clusters from the search. The minimal distance a 

cluster point could be from the query, dmin, is given by: 

𝑑௠௜௡൫𝑂௣൯ = max {0, 𝑑൫𝑄, 𝑂௣൯ − 𝑟൫𝑂௣൯} 

If the covering radius of a vantage point is greater than the distance 

between the query and the vantage point, then dmin will be 0 as the 

cluster could potentially contain an exact match. If dmin is less than 

Figure 14: The same pruning rule 
demonstrated in Figure 12 may be used 
in the LC to prune children without 
computing their distance to the query 

Figure 15: If dmin of a cluster is greater 
than the k’th entry of NN, dmax, then this 
entire cluster may be pruned from the 
search. 
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dmax then the cluster could contain some objects which are similar 

to our query. Else if this dmin value exceeds the identified dmax 

value, then the cluster cannot have any objects relevant to our 

search and may be skipped (Figure 15). 

Methods 

Data 

To use an MTree as a lookup tool, existing database records are 

required. Contemporary datasets of crystallographic files and 

experimental reports were acquired from existing APIs, custom 

built web scrapers, and the matminer repositories 10. A summary of 

these datasets and the methods that these were obtained are given 

in Table 1. The ICSD client was created by myself to access the 

existing REST API, as the commercial provided solution for 

accessing the ICSD requires a further interface to be streamlined 

into a typical scientists python based tooling. This is accessible 

under an open-source licence at 

www.github.com/lrcfmd/ICSDClient, which has shown use by 

other materials science researchers on a range of projects, which 

has included gathering datasets for investigations into 

thermoelectric, solid state electrolyte and transparent conducting 

materials. Across the 3,005,510 records there are 1,065,165 unique 

compositions. This is used as the indexing set for each of the tests. 
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Table 1: The datasets collected and indexed with the ElMTree, 

their focus, and the method of dataset retrieval. 

 

 

 

 

 

Dataset Name Number of 
Entries 

Unique 
Compositions 

Focus Method of 
Obtaining 
Data 

Inorganic Crystal Structure 

Database 11 

200,809 123,356 Inorganic Materials Custom 

API 

Cambridge Structural 

Database 12 

841,421 775,577 Organic Materials CCDC API 

Materials Platform for Data 

Science (Pauling File 13)  

1,473,502 114,537 Inorganic Materials MPDS API 

Materials Project 2018 14 83,989 83,989 DFT Computed 

Crystal Structures 

Matminer 

API 

Matminer Datasets 10 251,243 126,531 A collection of 

experimental and 

calculated datasets 

for materials science  

Matminer 

API 

Pearsons Database (Pauling 

File 13) 

354,574 181,785 Inorganic Materials GUI 

interface 

Total 3,005,510   1,065,165   
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Tree Hyperparameter Selection 

A range of hyperparameters were initially chosen to construct 

MTrees and Lists of Clusters, up to a maximum construction time 

of 12 hours. Each node of the MTree has a single internal routing 

object, and pointers to other nodes of the tree, the number of which 

is referred to as the internal node size. Increasing the node size will 

reduce the overall depth of the tree, as each node can route queries 

to a greater number of subtrees per level. However, a greater 

number of comparisons must be made at each level before deciding 

which nodes should be added to TQ. Node limits of 2, 3, 4, 5, 10, 

15, 50, and 100 were chosen. 

For the list of clusters, we may choose how many vantage points to 

select from the dataset at the start of the algorithm. A smaller 

number of vantage points, m, will mean that each vantage point 

will have a greater number of objects indexed beneath it. The 

average number of objects indexed to each vantage point is given 

by the ratio n/m, and for this investigation n/m ratios of 1024, 128, 

64, 32, 16, and 8 were selected. As the LC architecture allows for 

parallelisation during indexing this was applied during testing, with 

a total of 16 processes spawned. To provide a measure of 

comparison, the brute force search times are also provided. 
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Results and Discussion 

Indexing Times  

Each data structure was indexed under each associated set of 

hyperparameters, terminating after 7 days. This time limit meant 

that some MTrees failed to index all 1,018,456 unique 

compositions. The total time taken to index the dataset for each run 

is given in Figure 16. 

 

 

Figure 16: The total time taken to index each data structure. This is repeated for increasing numbers of compositions in the 
indexing set, thus increasing total tree size. 
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k-NN Search Times 

After constructing each tree, 20 randomly selected compositions 

were selected from the dataset and a k-NN search performed, with 

results shown in Figures 17 and 18.  

 

 

Figure 17: Average k-NN search times for 20 randomly selected compositions. This is repeated for increasing numbers of 
compositions in the indexing set, thus increasing total tree size. Different architectures and hyperparameters are given, 
with a brute force search overlaid. 
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Figure 18: The total number of distance computations that are calculated when executing a k-NN search for 20 randomly selected 
compositions. This is repeated for increasing numbers of compositions in the indexing set, thus increasing total tree size. Different 
architectures and hyperparameters are given, with a brute force search overlaid. 
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Range Query Search Times 

After constructing each tree, 20 randomly selected compositions 

were selected from the dataset and a range search performed, with 

results shown in Figures 19 and 20. 

 

 

 

 

Figure 19: Average range query search times for 20 randomly selected compositions and a range cut-off radius of 1. This is 
repeated for increasing numbers of compositions in the indexing set, thus increasing total tree size. Different architectures 
and hyperparameters are given, with a brute force search overlaid. 
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Figure 20: The total number of distance computations that are calculated when executing a range query search for 20 randomly 
selected compositions and a cut-off radius of 1. This is repeated for increasing numbers of compositions in the indexing set, thus 
increasing total tree size. Different architectures and hyperparameters are given, with a brute force search overlaid. 
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Whilst each of the two data structures execute similar numbers of 

metric queries during the k-NN and range query searches, the time 

taken for k-NN searches is significantly larger for the MTree than 

the LC. After analysis it was found that the MTree carries forward 

many more traversals of the tree when it is executing k-NN 

searches, with the TQ list being appended to many times. As 

memory management in python is typically slow, it is suspected 

that this causes significant overhead to the search process. By 

comparison the LC has a much simpler architecture.  

It may seem counter intuitive that the LC gives comparable, and 

improved, performance to other methods. In this instance, with 

9,675 vantage points, the LC root has an analogous node limit that 

is significantly higher than tested, or even could be practically 

supported, by the MTree. Constructing such a  large distance 

matrix each time a node requires promotion in the MTree would be 

prohibitively time and memory intensive. As the LC is technically 

a very broad tree, it does not appear to be at all balanced. 

Executing 9,765 similarity queries as an initial step seems to go 

against the core premise of tree indexing schemes. We should not 

need to carry forward thousands of computations. We should be 

able to do this in logarithmic time.  

The difficulty of this problem arises in the overlapping covering 

radii, as in practice these force us to explore many regions which 

may not be similar to our queries to ensure we have not missed an 

object. By contrast, the high degree of fragmentation that the LC 

pivots provide, means that despite the heavy initial search cost, the 

large number of vantage points means that these will tend to follow 

the natural distribution of the space. Specific regions of the space 

can be located much faster as a consequence. 

Given the reasonable indexing times, and overall favourable 

performance for k-NN searches, an LC with a n/m ratio of 1024 

was chosen to be implemented for the live interface. This means 

that each k-NN search will perform a minimum of 9,765 queries to 

each of the pivots before iterating through each of their children.  
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Hosted Search Interface 

A web interface was developed to serve ElMTree queries for 

ElMD similarity searches (https://lmds.liverpool.ac.uk/ElMTree), 

using the python library flask to process queries and render HTML. 

Simple networked applications can be shared insecurely to 

colleagues over internal networks with no additional setup. 

However, sharing applications with the wider research community 

in a reliable, secure, and scalable manner requires additional 

infrastructure. Traditionally, high availability applications run on 

servers in data centres, with best practice being to give each logical 

component (databases, applications, networking etc.) a dedicated 

server. Advances in the reliability of electronics, and processor 

technologies, particularly in CPU virtualisation, mean that standard 

practice is now to emulate each server inside a virtual machine 

(VM) with many VMs running on a single server, or a cloud of 

servers. Commercial cloud computing platforms require specific 

technical expertise to operate, and estimating the long term running 

costs is difficult. Due to the availability of an on-premises IT 

support team to assist in setup and running operations, an on-

premises cloud solution was employed (Figure 21).  
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VMWare vSphere was installed on a Dell PowerEdge R6525 

server to serve as the base hypervisor for all VMs. Each flask 

application is hosted on a separate ubuntu VM using the gunicorn 

library to keep multiple processes of the application running, and 

to recover each process if it crashes. HTTP requests are routed 

internally and externally via an Nginx reverse proxy VM. The 

Nginx reverse proxy allows a single secure socket layer (SSL) 

certificate to be shared across all applications, which lets external 

users verify that network traffic has not been intercepted or 

modified by a malicious party. The reverse proxy may also be used 

as a load balancer to distribute requests amongst application VMs 

evenly and as a rate limiter to prevent targeted botnet attacks from 

crashing the site.  

 

Figure 21: The on-premises cloud architecture that has been deployed as part of the Liverpool Materials Discovery 
Server. External traffic is routed through the university NetScaler, all VMs run inside a PowerEdge R6525 running 
VMWare vSphere. Requests are directed to the correct service through the Nginx reverse proxy and load balancer, 
with each application running in an isolated VM. 
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If the network traffic of a popular application increases 

significantly, this will affect the performance of that application for 

all users. The computing capacity of an application can be 

expanded by cloning the associated VM, updating its IP address, 

and adding this to the list of routable IP addresses in the reverse 

proxy. Additionally, each VM has its state saved to the on-

premises backup farm daily with the Veeam software, further 

guaranteeing recoverability in case of major hardware failure. To 

ensure applications have a consistent and high quality appearance 

across devices, the software development firm CloudPloys were 

contracted to design and code front end styling, Figure 22.  

Figure 22: A screenshot of the ElMTree search interface, demonstrating a search for the composition NaCl. 
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Stress Testing 

To determine the capacity of this server to process requests, a 

single process Flask application was deployed. This was stress 

tested by selecting compositions at random and directing 

increasing numbers of database queries at the server using the 

Locust library. This starts at 1 request per second, increasing by 

increments of 5 requests every second until the server is being 

requested to query the database 750 times a second, Figure 23.  

 

Response times are very reasonable when processing fewer than 

100 requests a second, returning requests in under a second on 

average. As the load increases, these response times increase to 

over 10 seconds with 500 concurrent users. Eventually, after 

approximately 520 requests a second, the server responses become 

much shorter on average, as a greater proportion of the responses 

fail due to server overload. This can be alleviated by scaling the 

capabilities of the application.  

Figure 23: Stress test results running the ElMTree application as a single process. Response times begin to rise with more 
than 100 concurrent users, with the majority of responses failing when there are more than 500 users. 
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The hosted architecture allows this to be enacted by changing two 

configuration files, one to increase the VM capacity, and the 

second to increase the number of worker processes. The same 

stress test is repeated, first with 4 cores, 40 GB of RAM, and 2 

worker processes, and again with 8 cores, 80 GB of RAM, and 4 

worker processes, with the results shown in Figures 24 and 25 

respectively. 

Figure 24: The stress test results of the ElMTree application when increasing the number of worker processes to 2. 

Figure 25: The stress test results of the ElMTree application when increasing the number of worker processes to 4. 
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As expected, scaling up the architecture allows the application to 

serve a greater number of requests, with a shorter response time on 

average. Given that in typical usage we would not expect more 

than 1 request a second, for general purposes a single process has 

been used for the live ElMTree. However, should performance 

degrade with use, or an expected period of heavy activity is 

forecast, these stress tests demonstrate that the architecture should 

remain usable by scaling the available resources. 

Conclusions 
In many investigations, the earliest step is the observation of a 

trend. Metric indexing trees allow us to organise collections of data 

in a logical fashion, enabling the swift execution of similarity 

queries. This comes with obvious advantages, as the retrieval of 

data is the core reason for storing data in the first place. Search 

interfaces remain the established method of interacting with 

databases for non-technical users, and improvements in search 

speed and quality provide immediate benefits to researchers in the 

field.  

As any valid metric may be used to index a set of objects into the 

List of Clusters, further work could investigate the application of 

more focussed materials metrics. Chemical similarity is a 

reasonable starting point for the chemist to judge the similarity of 

two materials. But, we know this crude identifier does not capture 

the intricacies of a compounds properties. The use of structural 

metrics can distinguish materials that many chemists would call 

chemically similar, such as the polymorphs of a composition. 

Further, if we know we are searching for materials with a particular 

property, such as ionic conductivity, then we may wish to search 

for those structural motifs which are known to correlate with the 

property of interest.  

The next chapter outlines a descriptor which was developed for this 

purpose, Percifter. In its current format the construction remains 

too computationally costly to execute large searches, but it has 
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demonstrated itself a useful tool for surveying the motifs present 

across the reported families of conductors in the dataset gathered in 

chapter 3. Nevertheless, we believe the flexibility afforded by this 

architecture enables future investigations into applying bespoke 

metrics for focussed searches into potential candidate materials 

from previously reported datasets.  

Noise is the life partner of every observation, inescapably 

introduced both in experimental error and the generation losses that 

are introduced through the digitising processes. The ready 

availability of both experimentally derived and calculated data in 

materials science can present an overwhelming tide of information, 

tangling observable patterns into a sea of text. The use of these 

tools allows us to consider queries against restricted and 

chemically sensible subsets of the reported compounds, instead of 

being presented against a backdrop of irrelevant data. This 

promotes the formation of new theories to explain trends which 

may have been obscured by the noise introduced by unrelated 

materials. Filtering and refining large datasets remains the 

preliminary step for many materials science investigations, and we 

believe the architecture presented here and deployed at 

https://lmds.liverpool.ac.uk/ElMTree, has further utility as a part of 

this process. 
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Appendix 

Appendix 1 - Search Trees 

An indexed search tree will obey a set of indexing rules, with the 

method of construction varying in accordance with these rules. 

Instead of storing each object, O, in the elements of arrays, we 

form internal tree nodes, which store the information about the 

indexing object(s) as well as pointers to other tree objects in the 

data structure. These will form branching, acyclic, collections of 

nodes, starting with a root node, the only node with no other nodes 

pointing to it. The root contains pointers to child nodes marked by 

edges in diagrams, forming a tree (Figure A1).  

As each child contains pointers to further sub-children, we may 

follow paths of many nodes from the root until we encounter the 

terminal leaf nodes, which do not contain further pointers to 

objects. The space may be split into regions called subtrees by 

considering an internal node and its descendants, with the subtree 

of an node object O denoted T(O). We may disregard large 

Figure A1: The typical structure of a 
tree in computer science. 
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portions of the search space when executing similarity queries by 

ignoring whole subtrees of the search tree.  

The binary search tree is a common introduction 1, as it is simple to 

elucidate. This data structure is only applicable on sets of objects 

with well-defined ordering functions, which is to say the <, and > 

operations may be consistently applied between any two objects in 

the set. Each internal node of a binary tree will contain no more 

than two pointers to other nodes. At each branch, the left edge will 

point to a child which is less than the node object, and the right 

branch points to a child which is greater than the node object.  

During searches, we take our query object and at each level 

ascertain whether it is greater or less than the current node. Certain 

objects, such as binary strings, can be retrieved in constant time 

using this data structure. For example, using the letters of the 

alphabet encoded by their Morse code representations, with the 

ordering rule that dot is less than dash, we get an efficient method 

of retrieving the associated letter of the alphabet when decoding 

Morse code messages. The lexicographic ordering of the Morse 

letter encodings may be read off from left to right as the tree is 

descended (Figure A2). 

Figure A2: The letters of the alphabet indexed into a search tree following the 
lexicographic ordering of their associated Morse code. 
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Constructing binary search trees can be simple. The first object of 

an initially unordered set is made to be the root object. Then we 

iterate over the set, routing each new object to the best leaf to insert 

a new leaf node containing the object. If an object is less than the 

root object, descend the tree to the left edge and examine the object 

that is being pointed to, else descend to the right. This process is 

repeated on each child node in turn, until an empty node pointer is 

encountered, in which case we assign the new indexing object as 

the child of the node that we are currently at.  

Unfortunately, this approach can lead to poor search performance, 

no better than that of an array in the worst case. Let us demonstrate 

this by using numbers from the interval [1, 6] ∈ ℤ as our indexing 

set. If these are inserted in the order [4, 2, 5, 1, 3, 6], then the tree 

will` be rooted at 4, with 2, and 5 as child objects. 1, and 3 will be 

children of 2, and 6 will be a child of 5. If we wanted to run a 

retrieval query for the number 6, we would first check it against 4, 

then 5, before encountering 6. However, if the objects are inserted 

in a sorted fashion, then the root will be equal to 1, it will have a 

single child, 2, which will have a single child, 3, and so on and so 

forth. This means our retrieval query for 6 will need to compare 

against every single object in the set before encountering the 

number 6. As each of the edges point to the right, we would say 

this is a highly unbalanced tree. This makes the tree much taller 

and thinner than we would like, which will extend the time taken 

for similarity queries to execute. 

In a balanced binary tree, the root of the tree will contain the object 

that is the median of the indexing set, with each internal node 

being located the median object of all its’ children and sub-

children. If we wish to enforce a balanced tree, we must execute a 

tree balancing algorithm, which will re-assign the trees node 

pointers until the tree is balanced. This operation will often take 

significantly more operations than a simple insertion, which may 

make the procedure unsuitable to carry forward on large trees. 

Furthermore, in this example where we have a uniformly 

Figure A3: A balanced binary search tree for 
the integers 1 through 6. 

Figure A4: An imbalanced binary search tree 
for the integers 1 through 6. 
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distributed set of objects that need indexing, it is clear that the 

unbalanced tree is an inferior arrangement. However, for highly 

irregular distributions, balanced trees have the potential to reduce 

the overall efficiency of the search. Distant or sparse regions of the 

search space may be forced into local proximity to one another in 

the search tree despite sharing very little similarity to one another, 

to ensure the tree maintains balance. This will force searches to 

compute a great number of redundant comparisons.  

The binary tree is suitable for 1-dimensional numeric data as this 

space has a consistent ordering attached to it. Unfortunately, the 

high dimensional vectors we use to represent materials do not 

possess a canonical ordering. Even objects represented by 2-

dimensional vectors, such as points on the plane, cannot be indexed 

in such a manner. The classical method of indexing vectors in k-

dimensional space, k > 1, is a generalisation of the binary tree 

process, the k-d tree 2.  

In the k-d tree, subsequent axes of the vector space are considered 

to split the space in two as we descend the tree. From the root, this 

means that the children of the left child’s first element will be less 

than the first element of the root vector, and items in the right child 

being greater. This only considers the first axis of the vector space, 

and so at the next level, the second element of the vector is used to 

route objects left and right instead. This will continue to split on 

each of the axes of the vector space in turn until the k+1 level of 

the tree, at which point the first axis will be under consideration 

once again. This allows the processing of high dimensional vector 

spaces, and can be fast in practice.  

 

 

 

 

 

Figure A5: A set of six points in 2-dimensional 
space 

Figure A6: The points of Figure A5 when 
indexed with a k-d tree. 
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Percifter: A topological descriptor 

for periodic crystal structures 
This is an original piece of work, conceived by myself and 

Matthew Dyer that is yet to be prepared for publication. We are 

very thankful for Matthew Bright’s continued input and insight 

throughout this project, and to John Claridge, Vitaliy Kurlin, and 

Matt Rosseinsky for their support and guidance.  

Introduction  
Defining a material through its composition is advantageous due to 

the time consuming techniques required to characterize a crystal 

structure experimentally or computationally. Nevertheless, the 

physical arrangement of atoms in a crystal play an integral role in 

determining a materials physical properties, and this additional 

information often gives us the ability to predict these properties 

through physical and statistical modelling to a high degree of 

accuracy 1–4. Mapping perovskites by their ionic radii was one of 

the earliest investigations to classifying materials based on their 

structural characteristics 5. More recent investigations seek to 

encode structure through hand crafted physical descriptors which 

have been reasoned to correlate with a property of interest 6. This 

has a level of interpretability, as we can correlate known physical 

features with observed target properties, and focus future 

investigations to exploit these observed characteristics. 

Unfortunately this approach is prone to human bias, and it may not 

arrive at the optimal combination of structural features for the 

strongest correlation with the target property. In this work we 

present an automated characterisation procedure that provides an 

interpretable representation of a crystal structure that may be used 

with ML models. 

It is often found that more complex structural descriptors correlate 

with better performance at predicting physical properties with ML 

models, at the expense of human interpretability. A widely used 
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Figure 1: The spherical harmonics. 
en.wikipedia.org/wiki/Spherical_harmonics 

representation is the smooth overlap of atomic positions (SOAP) 

descriptor 7. Here a function is generated for each atomic position 

to represent the contributing overlap of nearby atomic sites, 

attaining permutation invariance by summing these together to give 

the final representation of the crystal. This is calculated by first 

placing a three-dimensional Gaussian distribution at all atomic 

sites in the structure. One-dimensional rotationally invariant 

smeared atomic positions are obtained by integrating Laplace 

spherical harmonic functions (Figure 1) by the volume of the 

sphere at increasing radial cut-off values for increasing harmonics, 

up to nmax. A fixed length representation is obtained by summing 

each of the harmonics and calculating the power spectrum of each 

site and combining these to give an n-dimensional vector. This is 

commonly generated with the DScribe package 8, and can be used 

to compare structural similarity between two crystals directly using 

the Euclidean metric or the EMD. The SOAP descriptor is an 

invariant representation which demonstrably correlates with 

physical properties, and has been well applied in the wider 

literature 9,10. One observation of the SOAP descriptor is that it 

gives equal weighting to the power density at all radial values. It 

may be that only certain interactions between elements in the 

material are truly correlated with the property of interest, and the 

addition of all other interactions reduces the signal to noise ratio of 

the relationship we are trying to predict.  

Recent graph neural network (GNN) 11 architectures have been 

proposed to alleviate this, with crystal graph convolutional neural 

network (CGCNN) 12 being one of the more popular 

implementations. An elemental representation is generated for each 

site in the structure, which is iteratively updated as it passes 

through the initial graph pooling layers with information about 

each of its neighbouring atomic site vectors. The final 

representations of each atomic site are summed together, and this 

fixed length vector is passed into a feed-forward neural network to 

make a prediction and calculate the error against the true value. 

The weighting that is given by each site to its specific neighbours 
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before adding the neighbours vector to the atoms vector is a 

parameter that is learnt during training. It is hoped that interactions 

which are observed to give the best increase in predictive 

performance are identified through gradient descent and given a 

greater weighting in the trained network. The final trained graph 

pooling network should focus on interactions between 

neighbouring sites which are most correlative with the target 

property. A hyperparameter that must be established for ionic 

crystals prior to training is the edge set that will be used to consider 

two atomic sites as being neighbours.  

Expressing the topology of a crystal involves adding edges 

between atoms, constructing the corresponding simplicial complex, 

and computing the Betti numbers of this complex. These terms will 

be discussed in greater detail later, but one fundamental parameter 

this approach requires, is a cut-off radius to be defined to construct 

edges between each atomic site 13. CGCNN, uses a cut-off radius 

of 8Å as it is assumed that no inter-atomic interactions can take 

place at a distance greater than this. This same technique is used in 

further developments which use GNNs 14,15 to construct message 

passing networks. This method of representing a crystal can 

consistently describe the topology, and is state of the art in 

supervised learning, but has identified limitations.  

The Weisfeiler-Lehmen isomorphism test 16 allows us to assess 

whether two graphs are the same (isomorphic). Due to the method 

of vector pooling employed by GNNs, two structures with 

dissimilar atoms but similar connectivity graphs could be 

indistinguishable to the neural network. The Weisfeiler-Lehmen 

isomorphism test could however demonstrate the two are in fact 

dissimilar, which is an underpinning restriction of the GNN 

message passing paradigm. It has further been remarked that GNNs 

will implicitly focus on short range interactions, as node features 

do not typically propagate to extended neighbourhoods. More 

recent approaches aim to remedy this shortcoming by using 

provably invariant representations of the structure which possess 



208 
 

“better” internal symmetries. E(3) equivariant networks extend the 

use of fixed spherical harmonic functions by learning the 

parameters of such functions through back-propagation, but 

requires training data to learn the representations.  

By contrast, the recently published pointwise distance distribution 

(PDD) 17 is a simple to compute representation which can fully 

distinguish any two periodic structures. This involves taking the 

distances from each atomic site to the k-nearest other atomic sites 

in the structure. These distances are then sorted to form a vector for 

each site of length k. These vectors stored in sets of tuples with the 

associated ratio of the vector across all sites. We shall explore the 

PDD representation under the EMD metric in further sections.  

In this chapter we layout a separate approach based on the 

advances made in topological data analysis 18, in particular the field 

of persistent homology 19,20. Several prerequisites are presented at 

an introductory level, followed by a discussion of persistent 

homology in the finite case, before moving on to the issues 

introduced by periodic boundary conditions and our proposed 

augmentations to the theory to create stable crystal structure 

descriptors using the Percifter package. An analysis of this 

descriptor applied to simple datasets is presented with some 

examples integrating the associated metric of similarity into 

downstream tasks. 

Prerequisites 
An overview to the field of topological data analysis is beyond the 

scope of this chapter. Fortunately, the core algorithm we will take 

from this toolkit, persistent homology (PH), may be explained 

succinctly. As with neural networks, a reasonable understanding of 

the process, outcomes, and benefits can be ascertained by a 

materials scientist without prior specialist domain knowledge, 

although several fundamental definitions need to be introduced 

first. We give a very general definition of homology before 

focussing on the computational realisation used in this work, which 
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may be described using the language of vector spaces and linear 

transforms. A reader familiar with the topological concepts of 

fundamental groups and covering spaces can attain a more 

thorough overview in the textbooks by Hatcher 21 or Munkres 22. 

Computational Topology by Herbert Edelsbrunner 24 is the best  

introductory textbook to persistent homology.  

As opposed to supervised learning where a prediction for a vector 

is generated based on statistical exposure to samples of a training 

set, PH is an unsupervised technique which takes a (potentially 

high dimensional) pointcloud of points in row vector form, and 

returns a quantified representation of the topological voids that 

form between these points as we enlarge each 0-dimensional point 

into a solid sphere of expanding diameter, loosely termed as the 

homology of the space. The output is a list of pairs of real 

numbers, [birth, death), with each pair representing a single 

topological feature, the values being the spherical diameters at 

which features form and cease to exist. As long sequences of 

numbers are not immediately interpretable to the human 

researcher, these are typically plotted as a graphical representation, 

either on a persistence barcode or a persistence diagram. 

Betti Numbers 
What are topological features? Most introductory texts will begin 

by discussing how coffee cups and donuts can be considered the 

same objects when made with continuously deformable pieces of 

rubber. Continuously deformable here means that there exists a 

map from each point on the surface of one space (the coffee mug) 

to the second space (the torus), which does not tear or glue together 

any sections of the surface. These need not be linear 

transformations, and we can stretch and squeeze the space however 

we please. However, should we puncture a hole, or join the edges 

of an existing hole together to make it whole, then we would say 

that the space has become topologically distinguishable from the 

original. This space may be similar, but we cannot have a single 
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(a) 

(b) 

(c) 

mapping function from one space to the other without introducing 

additional constraints on non-continuity.  

Homology gives the language to describe these similarities. A 

homological equivalence, or homomorphism, means that two 

spaces may be continuously transformed into one another without 

introducing breaks or joins via a function f: X → Y that has a 

continuous inverse f  `: Y → X. This is easiest to visualise in 

dimension 1, and H1 contains objects which are deformable to S1, 

which is equivalent to the standard circle made from a 1-

dimensional shape, the line. Going down a homology dimension 

examines objects in H0(X), which describes the number of disjoint 

connected components in a space. Correspondingly, the space S0 is 

a 0-dimensional point, and points, lines, planes, and solid 3-

dimensional shapes (not hollow ones) are all topologically 

equivalent and mappable to S0. 

We will use a tool called the Betti number to measure this 

similarity between spaces. The k’th Betti number of a space 

describes the number of k-dimensional holes in a space. More 

formally these count the number of generators in each homology 

class, Hk(X). Whilst higher dimensional homology classes can be, 

and often are, investigated, in this study we restrict ourselves to H0 

and H1. 

Let us demonstrate this on the sheets of rubber in Figure 2. 𝐵𝐵1, 

measures the number of holes that a space contains in H1, and a 

sheet of rubber with a single hole in it would be said to have 𝐵𝐵1=1. 

Through continuous deformations, this sheet of rubber could be 

contracted into a circle, which is also a topological space with a 

Figure 2: The first sheet of rubber may be continuously deformed into the second by stretching and squeezing the sheet. 
Each of these shapes may be deformed from the first, and are thus topologically equivalent.  

Figure 3: The wireframe cube (a) may 
be deformed to (b) by stretching out a 
rear corner and flattening the shape. By 
enlarging each of the edges, we see that 
this is topologically equivalent to a 
sheet of rubber with five holes in it. 
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(a) 

(b) 

(c) 

(d) 

(e) 

single hole. In fact, the five sheets of rubber above are all 

equivalent when considered under 𝐵𝐵1 similarity. If we were to 

consider all five of these sheets together as a single topological 

space, this would be 𝐵𝐵1 equivalent to the space consisting of five 

circles on the plane, as both spaces have 𝐵𝐵1 = 5. 

This does not tell us whether any of these sheets of rubber are 

connected to one another, and with just this information, this 

combined space is topologically indistinguishable to the wireframe 

of a cube, Figure 3. This may initially seem an erroneous 

statement, as we could expect the cube to be 𝐵𝐵1 equivalent to the 

space of 6 circles glued by their edges. By flattening the wireframe 

of the cube onto the plane and expanding each of the edges out, we 

see that this is in fact a single sheet of rubber with five holes.  

To describe the connectivity of the space, the Betti number 𝐵𝐵0 may 

be used to count the number of connected components contained in 

a space. Looking at each of our five sheets of rubber as separate 

topological spaces, we can see that they each consist of a single 

connected component, therefore 𝐵𝐵0 = 1 each time. Considering all 

of these as a joint space, this consists of five sheets of rubber which 

are disconnected from one another and thus 𝐵𝐵0 = 5. By 

comparison, the wireframe cube is a single sheet of rubber with 

five holes punctured in it, but the cube has 𝐵𝐵0 = 1, which allows it 

to be topologically distinguished from five disconnected sheets of 

rubber with holes in. Further examples are given in Figure 4. 

Homology 
Before providing further examples of homology let us describe the 

mathematical procedure. Homology is the process of assigning 

mathematical spaces, such as topological spaces, to sequences of 

algebraic objects, such as groups or vector spaces, then using these 

group representations to judge when two spaces are “the same”, 

homo-. Groups and their group operations obey well studied rules 

of algebra, which provide a familiar setting for mathematicians to 

reason about abstract spaces. To describe a space, X, we use a 

Figure 4: Five topological spaces and 
their associated Betti numbers. Three 
disconnected components, or points (a) 
form no cycles. Connecting these with 
edges forms a single filled connected 
component (b) with no cycles. Four 
points connected by four edges will 
form a single component with a single 
cycle (c). By fully connecting four 
points, we say a space is simply 
connected, which is equivalent to the 
filled tetrahedron (d) which has no 
cycles. Each of the simply connected 
regions of (e) may be contracted to give 
two disconnected cycles. 
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sequence of groups Hk(X), to describe each of the k-dimensional 

voids contained in the space. If a group has an invariant 

representation, then we may say two groups are equivalent if the 

two invariants are equivalent. Two spaces are thus equivalent if all 

of their homology group invariants are equivalent.  

In topological spaces, the group invariant that we have discussed to 

describe the k-th homology class Hk(X), is the Betti number, Bn, 

which defines the rank (number of linearly independent generators) 

of the abelian group that represents the k-dimensional holes of a 

space. Each of the groups of a given topological space will have a 

characteristic Betti number. If two spaces carry identical Betti 

numbers, then we say the groups are homomorphic, and we know a 

homomorphism, or a continuous mapping, must exist between the 

two topological spaces, making them topologically equivalent. 

For the 2-dimensional examples using holes in a sheet of rubber, 

no continuous deformations exist which take these sheets to spaces 

which are equivalent to the hollow sphere, S2
. No matter how this 

space is stretched, there will never be a 3-dimensional void with an 

associated generator in H2 unless parts of the space are glued 

together. This means that the associated Betti number B2 will be 

equal to 0. The next homology class, H3(X) will have B3 equal to 0, 

and so on and so forth for all higher homology classes. One of the 

core goals of homology is identifying the underlying groups which 

differentiate spaces. For persistent homology we shall represent 

these groups using a matrix containing only ones and zeros, 

marking the presence and absence of features of each space. These 

matrices may be reduced with Gaussian elimination under modulo 

2 arithmetic (discussed below). Spaces that are topologically 

indistinguishable will reduce to the same set of matrices as part of 

the persistent homology process. Topologically similar spaces 

should reduce to a similar set of matrices. 
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(a) 

(b) 

(c) 

Vietoris-Rips Complex 
Hypothetical sheets of rubber are ideal tools for reasoning about 

topological equivalency, but poor representations for computation. 

When data is used in a computer program it must be stored in a 

fixed size object (typically a matrix of real numbers), where a sheet 

of rubber gives too much ambiguity to be represented concisely. 

Instead, combinatorial objects must be used, allowing us to fix the 

geometry of a sheet of rubber and describe the topology of the 

resultant space. These objects are called simplicial complexes, 

which are triangulations of a representative pointset of a space.  

There are multiple definitions for the construction of a simplicial 

complex, but this work focuses on the Vietoris-Rips (VR) complex 
23. The VR-complex is a method of describing how the edges of a 

connected network should generate faces to form a geometric 

shape. When three points are path connected by edges and form a 

triangle, the face between these points is filled in. This is 

topologically equivalent to a deformed sheet, and therefore this can 

be continually deformed to a single point, and is thus topologically 

equivalent to a single connected component with 𝐵𝐵0 = 1, 𝐵𝐵1 = 0. 

Four or more points path connected in a cycle, are topologically 

equivalent to the sheet of rubber with a hole in it, where 𝐵𝐵0 = 1, 𝐵𝐵1 

= 1, as these two spaces may be continuously deformed into one 

another. In these combinatorial spaces, paths of more than 3 nodes 

are said to form a cycle if they return to a starting node, and each 

occurrence of such cyclic features will increment 𝐵𝐵1. 

A simplicial complex is a combinatorial object, as each complex 

may be built up from lower dimensional simplices. A 0-simplex is 

the 0-dimensional point. Connecting two 0-simplices by a line 

creates a 1-simplex, and connecting three 1-simplices by their 

vertices forms a 2-simplex, or a planar triangle. Note that the 2-

simplex is formed by joining together 1-simplices by their 0-

simplex faces. Similarly, the 3-simplex (the tetrahedron) is created 

by gluing four 2-simplices together by their 1-simplex faces, and k-

dimensional analogues may be generated by gluing together (k-1)-

Figure 5: Three Vietoris-Rips 
complexes and their combinatorial 
representations. The simply connected 
space in (a) gives a single 3-simplex 
consisting of each of the points. The 
disconnected 0-simplex and 1-simplex 
in (b) may be represented by the sum of 
these simplices. The disconnected 2-
simplex and chain of 1-simplices in (c) 
is given by the summation of each 
individual simplex.  
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(a) 

(b) 

simplices by their (k-2)-simplex faces. A set of k+1 points in ℝ𝑘𝑘 

fully connected by edges will form a k-simplex, denoted by 𝜎𝜎𝑘𝑘. A 

finite collection of simplices which form the simplicial complex of 

a topological space is given as the set X = {𝜎𝜎𝑖𝑖𝑘𝑘} where i is used to 

index each of the simplices in each dimension (Figure 5).  

We may treat the simplices of a simplicial complex algebraically, 

where each k-simplex is represented by the union of the algebraic 

labels that make up that simplex. A simplicial complex is then 

represented as the sum of all the simplices in the complex. Whilst 

not a necessary consideration for the examples in Figure 5, it 

should be noted that in simplicial geometry, this will take place 

under modulo 2 arithmetic, which is to say: 

A+A= 2A = (2 % 2)A = 0A = 0 

A+A+A = 3A = (3 % 2)A = 1A = A 

By visual analogy, if we “add” a simplex to itself, this has the 

effect of cancelling both objects out.  

The boundary operator, 𝜕𝜕𝑘𝑘, of a k-simplex, 𝜎𝜎𝑘𝑘 , takes 𝜎𝜎𝑘𝑘 and maps 

it to the k-1 dimensional faces of the simplices which make up the 

boundary of the convex hull. For example, the boundary of the 3-

simplex, 𝜎𝜎3 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, would return the four 2-simplices which 

make up the faces of the tetrahedron.  

𝜕𝜕3𝜎𝜎3 = 𝜕𝜕3({𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴}) 

= {𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵} 

The boundary 𝜕𝜕2 applied to the space formed of two 2-simplices, 

𝜎𝜎2 = {ABC + DEF} gives the six 1-simplices which make up 

these two triangles. 

𝜕𝜕2𝜎𝜎2 = 𝜕𝜕2({𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐷𝐷𝐷𝐷𝐷𝐷}) 

= {𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐷𝐷𝐷𝐷 + 𝐷𝐷𝐷𝐷 + 𝐸𝐸𝐸𝐸} 

A property that should be noted is that applying two subsequent 

boundary operators of decrementing dimensionality 𝜕𝜕𝑘𝑘, and 𝜕𝜕𝑘𝑘−1 

to a k-simplex will always lead to an empty set. The reasoning 

Figure 6: In (a) the 𝜕𝜕2 boundary 
operator is applied to the 2-simplex 
ABC to give the three 1-simplices which 
make up this boundary. By applying the 
𝜕𝜕1 boundary operator to these 1-
simplices in (b), we see that each of the 
resulting components will cancel out 
under modulo 2 arithmetic.  



215 
 

behind this is simple, as the faces of any (k-1)-simplex must be 

contained in exactly two k-faces of 𝜎𝜎𝑘𝑘 and thus cancel out under 

modulo 2 arithmetic. For example, applying 𝜕𝜕2 followed by 𝜕𝜕1 on 

the 2-simplex 𝜎𝜎2={ABC} (Figure 6) gives: 

𝜕𝜕1𝜕𝜕2𝜎𝜎2 = 𝜕𝜕1({𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵}) 

                       = {𝐴𝐴 + 𝐵𝐵 + 𝐴𝐴 + 𝐶𝐶 + 𝐵𝐵 + 𝐶𝐶}  

                       = {2𝐴𝐴 + 2𝐵𝐵 + 2𝐶𝐶} 

                       = {} 

Boundary Matrices 
Mapping functions can be represented by matrices which represent 

the specific operations performed by a specified function. A 

boundary map tells us how a boundary operator 𝜕𝜕𝑘𝑘 will take the k-

simplices in a space X, 𝜎𝜎𝑖𝑖𝑘𝑘, to their associated faces, 𝜎𝜎𝑖𝑖𝑘𝑘−1. Let us 

demonstrate this process with a guided example before giving the 

more general mathematical definition. 

The boundary map can take the form of a matrix with values in ℤ2, 

i.e. {0, 1}. There is a column in the matrix for each of the k-

simplices in the complex, with a row in the matrix for each of the 

(k-1)-simplices in the complex. If a (k-1)-simplex is the face of a k-

simplex, then there will be a 1 in the corresponding entry of the 

matrix, with a 0 otherwise.  

Applying this operation on the topological space 

{ABC+DE+EF+FG+GD} (Figure 7) leads to a boundary matrix 𝜕𝜕2 

that can only operate on the 2-simplex ABC, taking it to AB + AC 

+ BC. Therefore the corresponding boundary map will include a 1 

in these rows, with 0 for the 1-simplices that make up the square, 

as these are not on the boundary of a 2-simplex. As there is only a 

single 2-simplex, the map is a column vector, with 7 rows, one for 

each 1-simplex in X.  

Constucting the boundary matrix 𝜕𝜕1of X produces a map which 

takes each of these 1-simplices, or edges between points, to their 

boundary 0-simplices, or points. The corresponding map of 𝜕𝜕1 for 

Figure 7: The 𝜕𝜕2 boundary operator 
may only operator on 2-simplices. As 
the VR-complex X has only one 2-
simplex in there may be only one 
column in the corresponding matrix for 
this operation. There are seven 1-
simplices in X and thus 7 rows in the 𝜕𝜕2 
boundary matrix. As 𝜕𝜕2 takes ABC to 
AB+AC+BC there is a 1 in these rows 
with zeros elsewhere. 
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X will thus have 7 columns, one for each of the edges in the space, 

and 7 rows, one for each of the points in the space.  

 

The 0-dimensional points cannot be reduced any further. Applying 

the 𝜕𝜕0 boundary map to the space will take each of these 0-

simplices to the empty set, ∅, as there is nothing else they could 

possibly be mapped to. This will always take the form of a row 

vector with the number of columns equal to the number of points in 

the space: 

 

 

Computing Betti Numbers 
Computational homology allows us to take a VR-complex and 

calculate the Betti numbers of the space in reasonable time. In the 

previously stated topological space X, we can visually attest that B0 

is 2 and B1 is 1. This can be computed from the sequence of 

boundary maps 𝜕𝜕0, 𝜕𝜕1, 𝜕𝜕2. We shall first refresh on some 

terminology. 

In each of our boundary maps, the domain of 𝜕𝜕𝑘𝑘 is the set of k-

simplices that the map operates on. The image of a function is the 

set of all output values that a function may produce which are not 
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equal to 0. For the boundary map 𝜕𝜕2 on X we know that {AB + AC 

+ BC} is in the image of the map, as it is non-zero and ABC is in 

the domain of 𝜕𝜕2.  

The kernel of a function is the set of all inputs which get taken to 

the empty set ∅ by the function. For the boundary operator 𝜕𝜕1 

operating on X, we know that 𝜕𝜕1(AB + AC + BC)={}, and thus 

{AB + AC + BC} is in the kernel of 𝜕𝜕1. This can be attested by 

summing the corresponding column operations of the matrix 

boundary map of 𝜕𝜕1, noting the use of modulo 2 arithmetic. The 

resultant map is a 0-vector, which means that applying this to any 

input would lead to 0 (Figure 8). 

Whenever 𝜕𝜕𝑘𝑘 is applied to a valid complex it will have a set of (k-

1)-simplices in the image. In the corresponding 𝜕𝜕𝑘𝑘−1 boundary 

matrix, at least one of the columns associated with the features in 

the summation of simplices will be reducible to the 0-vector, as 

𝜕𝜕𝑘𝑘−1𝜕𝜕𝑘𝑘𝜎𝜎𝑘𝑘 = {}. This means that the output of 𝜕𝜕𝑘𝑘 operator will 

always be in the kernel of the 𝜕𝜕𝑘𝑘−1 operator on the same simplex.  

Figure 8: We can sum the first and 
second columns of 𝜕𝜕1(𝑋𝑋) using 
standard matrix operations. We see that 
by adding this column vector to BC the 
result is a zero-vector and thus 
AB+AC+BC must be in the kernel of 
the transform.  
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There are however (k-1)-simplices which do not form a face of a k-

simplex that may also be in the kernel of a map, such as 

{DE+EF+FG+GD} being in the kernel of 𝜕𝜕𝑘𝑘−1(X). In fact any 

chain of (k-1)-simplices will be in the kernel of 𝜕𝜕𝑘𝑘−1(X). The sets 

that each of the boundary maps that operate on each of the k-

simplices may be shown diagrammatically to exemplify this 

process on the space X, given in Figure 9.  

We see that any chain of k-simplices will be in the kernel of 𝜕𝜕𝑘𝑘 as 

the resulting reduction to the boundary faces will each cancel out. 

We also note that certain inputs in the image may lead to the same 

non-zero output, such as 𝜕𝜕1(AB) = A + B, and 𝜕𝜕1(AC + BC) =

A + B + 2C = A + B. To find the true size (or rank) of the image 

Figure 9: Each of the components of the space X and the result of applying each of the boundary operators. All cycles will be in the kernel, as the 
boundary will map this to zero. 
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when all linear combinations of the inputs have been taken into 

account, we may examine the boundary mapping matrix, as the 

rank of the image of 𝜕𝜕𝑘𝑘 will be equal to the rank of the matrix 𝜕𝜕𝑘𝑘.  

The rank of a matrix is equal to the number of linearly independent 

columns. We previously saw how AB + AC + BC is equal to the 

zero vector, and by a similar process we may show that DE + EF + 

FG + GD is equal to the zero vector. Thus the boundary matrix for 

𝜕𝜕1 may in fact be simplified to a simpler basis via column 

Gaussian elimination. 

 

As this matrix has 5 linearly independent column vectors, the rank 

of the image of 𝜕𝜕1 is 5. For the map 𝜕𝜕0, we see that every input 

must be mapped to the empty set ∅, and thus the rank of the kernel 

is simply equal to the number of columns, which is 7. With these 

two numbers we may now introduce the core formula that will be 

used to derive Betti numbers: 

Bk = rank(kernel(𝜕𝜕𝑘𝑘)) – rank(image(𝜕𝜕𝑘𝑘+1)) 

To find the number of connected components, which gives the first 

Betti number, B0, we take the rank of the kernel of 𝜕𝜕0 and subtract 

the rank of the image of 𝜕𝜕1.  
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B0 = rank(kernel(𝜕𝜕0)) – rank(image(𝜕𝜕1))   

     = 7 – 5  

     = 2. 

This same formula and process may be continued to find the 

number of holes, B1. We know that the dimension of the kernel of 

𝜕𝜕1 is equal to the number of zero-vectors in the map, and as this 

matrix has two zero vector columns, the dimension of the kernel of 

𝜕𝜕1 is equal to 2. The boundary map 𝜕𝜕2 is a non-zero column 

matrix, thus the dimension of this matrix must be 1. Therefore B1 = 

2 – 1 = 1, which is in agreement with observation.  

Although not presented here, this process may be continued into 

higher dimensional spaces with any number of points and 

topological features by simply calculating the boundary matrices 

and finding the dimensions of the associated images and kernels of 

these maps. When we compute Betti numbers in this work it should 

be noted that the only output of the algorithm is the two Betti 

numbers, B0 and B1. 

Persistent Homology of Finite Spaces 
Betti numbers are clearly crude distinguishers. Whilst the 

topological information of a VR-complex may be used to describe 

pointsets, it does not provide much information. Two highly 

dissimilar pointsets could have identical Betti numbers with the 

appropriate choice of edges. It is therefore important to make sure 

that the chosen edge set is representative of the pointset that we are 

describing. This introduces a second problem with using Betti 

numbers as structural descriptors for ionic systems. In molecular 

chemistry, known covalent bonds provide a natural method of 

ascribing edges between atomic nodes, but what is the 

corresponding edge set of an ionic crystalline solid?  

Approaches such as CGCNN will typically add all edges shared 

with neighbouring atoms within a neighbourhood radius of 8Å. 

Whilst this will capture the local physical connections, and has 

demonstrated great success at predicting chemical properties, it 
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(a) 

(b) 

(c) 

discards the long range structure, giving rise to potential 

ambiguities. Here we describe a human-interpretable 

representation that reflects variations in the crystal structure, which 

has an associated metric between representations. Persistent 

homology is applied and expanded upon to further this goal. This 

examines how the topology of an edge set changes as the edge cut-

off distance of a pointset is increased from [0-∞).  

This may be visualised by expanding each of the points in the 

pointset from a 0-dimensional object into a solid sphere. As the 

diameter of the sphere grows the boundaries of neighbouring 

sphere will overlap. Each time two spheres overlap, these are 

topologically equivalent to the 1-dimensional line between the two 

nodes, and a 1-simplex is placed between the corresponding 

vertices in an associated VR-complex.  

This gives a sequence of nested simplicial complexes starting from 

the pointset, with edges added until the fully connected graph is 

reached. Each generated complex is a subspace of the next 

complex in the sequence, and we may say that one is mapped to the 

next via an inclusion map. This sequence of nested simplicial 

complexes is referred to as a filtration of the final VR-complex 

(Figure 10).  

After the points are fully connected by covering spheres, increasing 

the diameter further will not cause any extra edges to be added to 

the complex, and the process may terminate. Computing the 

homology of each VR-complex in the filtration returns a series of 

Betti numbers, which naturally provides more information than 

taking the Betti numbers at a fixed radius. Combining this 

knowledge with the associated radius each Betti number increases 

or decreases, allows us to recapture some of the original geometric 

information of the space. 

Each time two points connect we say that a feature in 𝐵𝐵0 has died, 

as topologically there is one less connected component in the 

space. Each filtration necessarily starts with 𝐵𝐵0 = n_points. The 

features die one by one as each point merges with the wider 

Figure 10: A 0-dimensional pointset 
has B0 equal to the number of points in 
the set (a). As covering disks expand 
from these initial positions they will 
overlap and the topology of the space 
changes. At a certain diameter, all 
components will be connected (b). As 
the disks continue to grow (c), all 
topological components will eventually 
die leaving a single connected 
component. 
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structure, until a fully connected complex with 𝐵𝐵0 = 1. When a set 

of spheres overlap to form a space equivalent to S1, a topological 

feature is added to 𝐻𝐻1, as a space is formed that cannot be 

continuously mapped to a single connected component. As the 

diameter of the covering disks continue to grow, cycles will be 

“filled in” as more points form connected triangulations with one 

another. Eventually, the VR-complex triangulates the space fully, 

and all associated topological features in 𝐻𝐻0 and 𝐻𝐻1 will die 

barring a single H0 feature, representing the fully connected space, 

with B0=1.  

When this process is complete, the birth and death times of Betti 

numbers can be tracked. It is these birth and death times, or 

persistence intervals, that shall be the main focus of interest. 

Persistence intervals track the birth and death times of each of the 

topological features in the space. Each time a Betti number 

increments, persistence intervals with the associated birth times are 

added. Each time a Betti number decrements a persistence interval 

with no currently assigned death time is chosen to die. This is 

chosen via the elder rule 24, which selects the interval with the 

largest available birth time to die, which ensures that features born 

at the start of the filtration persist until they are completely “filled 

in”. Features with the largest persistence (death – birth) can be said 

to be the most topologically significant. Shorter lifetime features 

describe smaller cycles that can be found in the space. The most 

salient topological features are thus extracted from pointcloud data, 

which may be used for direct comparison using metrics, or used to 

represent the topology of the pointcloud on a diagrammatic plot, 

which gives a visual familiarity to spaces that are notoriously 

difficult to visualise.  
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Persistence intervals are commonly plotted on either a persistence 

barcode or a persistence diagram (Figure 11). The persistence 

barcode marks the cut-off radius on the x-axis over a filtration; for 

each connected component born at 𝑑𝑑 = 0 (i.e. each point) a bar is 

added to the 𝐻𝐻0 barcode. As 𝑑𝑑 grows large enough to connect a 

point to its nearest neighbour, the corresponding bar for the point 

will die, as the space has one less feature. Each bar in H0 dies with 

the corresponding death time of an interval, with the last single 

feature stretching to infinity, as increasing d further will not change 

the resultant topology. While all features in H0 are born at d = 0, 

this cannot be the case for the higher dimensional features. Each 

cycle that is formed across the expansion of 𝑑𝑑 has its birth and 

death times marked on a separate H1 barcode. Both are typically 

given on the same plot, where the barcodes of pointclouds with few 

points can often be distinguished from one another by eye. For 

large pointclouds, barcodes are often difficult to interpret due to 

the many similar bars on one plot. 

Figure 11: A persistence barcode (left) and persistence diagram (right) of the same space. On the 
persistence barcode each topological feature is described by a bar, with the birth and death times of the 
feature marked by the bars features. On the persistence diagram, each feature is represented by a point, with 
the birth and death times on separate axes. The co-ordinates and multiplicity of each point have been 
overlaid. 
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Persistence intervals may instead be represented by 2D scatter 

plots, called persistence diagrams (PDs). These contain one point 

for each bar on the bar code, with the 𝑥𝑥 co-ordinate taken as the 

bars birth time, and the 𝑦𝑦 co-ordinate taken as the death time. Each 

of the H0 points fall on the 𝑦𝑦 axes as these are all born at 𝑑𝑑 = 0. 

The H1 features are marked separately as points in the region 

bounded by 𝑦𝑦 > 0 and 𝑦𝑦 > 𝑥𝑥, as features cannot die before they 

are born. For this reason the persistence diagram is often 

accompanied by the line 𝑥𝑥 = 𝑦𝑦. Points falling very close to this 

line either originate from topological noise introduced through 

errors in floating point geometry, or from very short lived 

topological features. The topological features with longer lifetimes 

will fall further from the diagonal, as these are born at a small 

value of 𝑥𝑥 and survive until a high value of 𝑦𝑦. These long lifetime 

features are often observed to be the most representative of the 

global topology of a space.  

The persistence diagram gives a concise way of visualising 

unstructured pointcloud data in a 2D plot, where shared structural 

motifs between pointclouds are often reflected by similar patterns 

in PDs. There are many metrics to compare two PDs, and in this 

work we will focus on applications of optimal transport (the earth 

movers distance). Persistent homology has previously shown itself 

to be a suitable technique in many atomic domains 25,26. Here we 

present some further modifications to the core theory which allows 

for a more stable PH representation for periodic pointclouds. 

The first modification to the PD is merely one of convenience. As 

d is increased from [0-∞), at a critical point the simplicial complex 

will be fully connected and further increasing d to ∞ will not 

change the topology of the complex. This means that every 

generated set of persistence intervals contains the feature [0-∞) in 

the H0 set. This introduces the usual complexities when dealing 

with ∞, and is a shared characteristic across all PDs. This feature 

can thus be altered such that once the PD is calculated, the largest 
Figure 12: The persistence interval in 
𝐻𝐻0 with the birth-death time of [0-∞) 
has its death time constrained to the 
highest finite death time in the set. 
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death time (∞) is made equal to the second largest living feature in 

H0, giving a fully finite PD (Figure 12). 

The second modification is built from a simple observation of 

periodic systems formed from lattices. Examining the PDs of the 

primitive lattices, it is apparent that the values of the intervals for 

each topological feature identified are independent of the choice of 

unit cell. Larger unit cell expansions will cause a greater number of 

features to appear on the barcode, but these will all start and end at 

the same time. From this observation we apply one of our main 

modifications to the theory to make it more suitable for periodic 

systems.  

As opposed to keeping an entry for each topological feature that is 

observed, a key: value data structure is used to represent each set of 

the repeating features. Each of the unique [birth, death) intervals in 

a set of features is extracted and used as a key, with the fractional 

ratio of the count of each interval in the set stored as the value 

(Figure 13). Applying this to crystal systems brings us closer to our 

desired goal of stability in the representation, as any integer 

expansion of the basis lattice for a simple system will lead to an 

identical PD. This representation will be referred to as the 

fractional persistence diagram, or FPD. 
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FPDs may be generated for the primitive Bravais lattices in 2-

dimensions, and these representations can be arranged into a 

classification which reflects observable changes in the periodic 

pointcloud. Being simple periodic spaces, these are natural objects 

to explore how structural deformations are reflected by deviations 

in FPD. It may be noted that features in each representation vary 

proportionally, with the lattice vectors, and are fully parameterised 

by these values. 

Primitive Bravais Lattice Classification 
First consider the lattice for the simplest periodic pattern, repeating 

points in a straight line, which can be described by a lattice where 

a = b, and α = 0. Expanding covering disks will give one 

topological feature on the diagram in 𝐵𝐵0 for each point (which will 

collapse to a single feature of ratio 1), before these merge at 

Figure 13: The square lattice in (a) gives the same unique persistence intervals as the expanded cell, with the multiplicity of these features also 
increasing. In this example, taking the fractional ratio of the unique persistence intervals across each homology set (b) gives a fractional PD 
which does not vary with unit cell expansions. 

(a) 

(b) 
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diameter a. This space clearly has no cycles which form, and thus 

the 𝐵𝐵1 set is empty. Increasing the lattice angle α, allows an 

oblique lattice to be generated, where this time covering disks will 

cause components to connect at diameter 2𝑎𝑎 sin �𝛼𝛼
2
�, before 

merging at diameter a. This causes a second interval to expand 

from 0 in 𝐵𝐵0, but as the space forms a complete triangulation at 

diameter a, no cycles form.  

The death time of this second feature increases proportionally with 

α until the point when 2𝑎𝑎 sin �α
2
� = 𝑎𝑎, as we have reached a 

hexagonal lattice. In the primitive hexagonal lattice, all topological 

features merge at diameter a, and the FPD representation is thus 

indistinguishable to the linear FPD. 

Further increasing α leads to a second oblique cell, but with a 

distinguishable FPD from the previous set of oblique lattices. In 

this lattice, all components will connect at diameter a, but this will 

not form a triangulation of the space. Instead, periodic cycles are 

formed, which die when the diameter of the covering disks is equal 

to the length of the longest diagonal of the unit-cell, 2𝑎𝑎 sin �α
2
�.  

Increasing α to the angle 𝜋𝜋
2
 eventually gives a square lattice, and as 

this forms a right angle triangle with the diagonals of the unit-cell, 

the topological feature associated with the cycle’s death time will 

increase up to √𝑎𝑎2 (Figure 14). The process of increasing the 

lattice angle may be continued from a square cell, where the same 

sequence of oblique and hexagonal pointclouds and their 

associated FPDs are generated, in reverse order, arising from the 

observed symmetry that equivalent lattices may be reduced to one 

another.  

Alternately, a separate lattice transformation can be applied, 

increasing the length of one of the lattice vectors, where it may be 

assumed without loss of generality that a < b. Applying this to the 

square lattice leads to an rectangular lattice which causes a second 

feature to split off from the first feature in 𝐻𝐻0 which will die at 

Figure 14: For the 2-dimensional lattice 
with equal vector lengths (a=b) this will 
have a single component which dies at 
diameter a when 𝛼𝛼 = 0. Increasing this 
angle will lead to a second component 
appearing which will increase in death 
time until the space forms a tiling 
equilateral triangle with a single feature 
in the FPD. Further increasing 𝛼𝛼 gives a 
cycle in the space which will increase in 
death time until the square lattice is 
formed. 
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diameter b, with the feature in 𝐻𝐻1 having its death time increase to 

√𝑎𝑎2 + 𝑏𝑏2 (Figure 15). Increasing the length of b will lead to other 

orthorhombic cells, and thus only affect the lifetimes of the 

topological features in each dimension, not their count or their 

arrangement in regards to each features overlap in the resultant 

FPD.  

Varying α from an rectangular cell will lead to more oblique cells, 

with FPDs that have similarities to those that neighbour the square 

lattice, but bearing an extra feature in 𝐻𝐻0 which dies at diameter b. 

The lifetime of the cycle in 𝐻𝐻1 will diminish as α moves away 

from 𝜋𝜋
2
 until α reaches the isosceles angle (iso) such that the 

periodic pointcloud resembles a tiling of tessellating isosceles 

triangles. Here, two features form in 𝐻𝐻0 which will die at diameters 

a and b, but as the leading diagonal of the unit cell is equal to the 

edge length b, no cycles form as the space is a complete 

triangulation (Figure 16). Further decreasing the lattice angle will 

lead to a cycle forming in 𝐻𝐻1, but this time instead of forming at 

diameter b, this will be created when covering disks overlap across 

the cell diagonal, and die at diameter b. 

Even when b >> a, decreasing α will eventually lead to a 

pointcloud which could be reduced to a rectangular or square 

lattice, which possesses an identical FPD to the pointcloud 

generated by the unreduced lattice. This occurs when α reaches the 

critical point, iso’, where the triangle constructed by the lattice 

vectors and the opposing diagonal is once again isosceles. This 

process will cycle through each of the equivalent lattices 

potentially many times if b ≫ a, until a lattice which is equivalent 

to the hexagonal lattice is generated. At this point, there are no 

cycles in the FPD as this is a complete triangulation of the space, 

and further decreasing the lattice angle will simply lower the death 

time of the second topological feature until it approaches 0 and we 

have returned to a linear representation. This sequence of 

operations may be shown diagrammatically, as given in Figure 17. 

Figure 15: The orthorhombic cell forms 
a cycle at diameter b.  

Figure 16: Decreasing the lattice angle 
𝛼𝛼 will eventually lead to an isosceles 
triangle which does not form cycles. 
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Figure 17: The primitive Bravais lattices can be defined by their lattice vectors and lattice angle, and arranged into a series of lattice 
transforms (upper). Each lattice transform will lead to a corresponding change in the birth or death times of a feature in the resulting 
FPD, as indicated by the arrows overlaid on each diagram. Inverse (dashed) operations may be followed by reversing the direction of 
the arrows on each FPD. 
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By increasing a lattice vector or angle, the resultant FPD has a 

corresponding deviation to the original FPD. This is typically 

reflected by the bar boundaries increasing or decreasing and the 

masses of bars merging or splitting in two. To create Figure 17, an 

FPD was constructed for each of the primitive lattices, then 

manually arranged to ensure continuity, with the corresponding 

lattice transformations derived a posteriori. 

For the 2-dimensional Bravais lattices we consider the hexagonal 

lattice (a=b, α=60°) as the lattice with the simplest topology. The 

repeating pattern of equilateral triangles ensures that no cycles can 

form in the persistence diagram. The connected components of the 

pointcloud join at d = a, and the resultant sheet is fully connected, 

leaving a single point in 𝐻𝐻0 and no points in 𝐻𝐻1. Increasing the 

lattice angle, α, or increasing the magnitude of either of the lattice 

vectors leads to monoclinic lattices.  

Consistently arriving at a reduced cell lattice representation of a 

periodic pointcloud for all feasible periodic systems is a solved 

problem 27,28, but generating reduced lattice vectors in a stable 

fashion is not. The outputs of lattice reduction algorithms may 

change considerably under small variations in structural motifs, 

and care must be taken to ensure a structural descriptor does not 

return noticeably different descriptors for the same underlying 

pointcloud. Until now we have considered finite or simple systems 

where these details could be disregarded. Unfortunately, the 

periodic boundary conditions imposed by the structures of solid 

state chemistry introduce further complexities which break 

invariance when using the necessarily finite representations 

reported by experimentalists in crystallographic information files 

(cifs). 
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Persistent Homology Shortfalls for Periodic 

Pointsets 
For the primitive Bravais lattices, it was assumed that any choice 

of unit cell would generate an identical FPD. There is however, a 

simple counter example which will return different FPDs for 

different choices of input lattice vectors, being the last of the planar 

Bravais groups, the face centred rectangular lattice (Figure 18). 

 
Figure 18: The associated filtration and FPD of the 1-cell (upper) and the 2-cell (lower) expansions of the centred rectangular lattice. 
Unlike the other primitive Bravais lattices, expanding the lattice vectors of the face centred rectangular lattice can lead to FPDs 
which have different persistence intervals in the resulting FPD. 
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The filtration of the pointcloud generated by the 1-cell fails to 

capture the longer range topology that is contained in the periodic 

structure. An expansion to the 2-cell reveals the cycles present in 

the larger pointcloud, demonstrating this lattice and its associated 

FPD are equivalent to the primitive monoclinic lattice. A naïve 

proposal to resolve this issue could be to simply use a larger 

expansion, such as the 3-cell, to ensure that all internal topology is 

captured. Unfortunately, for more complex atomic motifs with 

greater numbers of points contained in the unit cell, different 

choices of unit cell vectors have the potential to generate differing 

FPDs.  

As an example, the circular motif in the centre of a tetragonal 

lattice returns a fractional PD which correctly captures the two 

repeating cycles when the lattice does not break up the circular 

pattern. If we translate the lattice across the same pointcloud we 

may generate the same space, but the new disjoint motif which 

crosses the lattice vector causes an extra topological feature to 

appear on the FPD, which is not present in the wider periodic 

structure, shown in Figure 19.  

Figure 19: The repeating circular pattern on the left will have an associated FPD, but sliding the lattice vectors across the space 
(shown in grey) until they intersect a motif can cause fragmented features to appear in the diagram that aren’t present in the repeating 
structure (right). 
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We shall refer to these additional features as fragmented boundary 

features, artifacts of the process of creating finite realisations of 

periodic structures. It can be shown from the axioms of metric 

spaces that the distance between an object to itself must be 0. Here, 

the same underlying pointcloud has created two representations 

which must have a non-negligible distance greater than 0 when 

measured under almost any metric. This representation needs 

further development to achieve consistency.  

Percifter 
Percifter is a process to generate stable topological descriptors 

from cifs, with a focus on removing the topological noise 

generated from boundary features. Luckily, there is a clear solution 

to removing boundary features. Simply take the unit cell expansion 

up to ∞, compute the FPD of the space, and the ratios of the 

boundary features will be equal to 0. Unfortunately, this is not 

simple on a computer with finite memory.  

Even for lattice expansions up to the 10-cell, it is not feasible to 

compute the persistence diagram of a complex material in 

reasonable time with present technology. In fact, even 5-cell 

expansions remain impractical for high-throughput purposes, with 

complex motifs exceeding the typical memory limits of a modern 

workstation. Smaller unit cell expansions may be computed in a 

timely manner, but boundary features will make up a larger 

proportion of the final ratios in the representation. These features 

could simply be recognised as falling within an acceptable margin 

of error of the representation, but we propose the following 

technique to remove them.  

Percifter builds upon the observation that increasing the expansion 

of the unit cell leads to a corresponding decrease in ratio for each 

of the boundary features. Marking the ratios of the features of 

FPDs across a sequence of three unit cell expansions allows us to 

take note of whether each topological feature is growing in overall 

proportion, or decreasing in proportion to the remaining 

topological features. For 3-dimensional volumetric space, periodic 
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features contained within the interior of the convex hull will be 

increasing at a rate of 𝑛𝑛3, whereas features found on the boundary 

of the surface will be increasing at a rate of at most 6𝑛𝑛2. This is 

because there can be at most 6 repetitions of the boundary feature 

on the tiling polyhedra, and these ratios follow an n2 increase. 

To make this process work, we assume that the ratio of each of 

these features follows a function, which may be approximated by 

fitting a curve. By following the sequence of features across 

increasing expansion factors, x, we can fit the unknown variables 

a, b and c of the function, 𝑓𝑓(𝑥𝑥) = ± 𝑎𝑎
𝑥𝑥−𝑏𝑏

+ 𝑐𝑐 to predict what the 

ratio of a feature could be at expansion, x, such that f(x)≈ratiox. 

The limit of this fitted function is known to converge, and this limit 

is taken as x goes to ∞, which is used as the final ratio of the 

feature in the representation.  

This allows us to determine empirically which features are likely to 

be fragmented boundary features which are not present in the wider 

structure. Features with final ratios which fall below a predefined 

tolerance (less than 0.001 in this work) are removed from the 

diagram. The remaining features are scaled to ensure the total mass 

of the feature set is equal to 1. Given the potential confusion that 

could arise in notation when indexing each expansion factor by 1, 

2, 3, or, a, b, c, or x, y, z, or α, β, γ, we refer to the index of each 

expansion in the series using the ‘I’ symbol, [I, II, III]. 

For each PD across the three expansions, we construct a separate 

key: value lookup. As with the FPD, the key is the (birth, death) 

time of each topological feature, rounded to 3d.p., and the value is 

the ratio of that feature. To simplify notation this is given as the 

ratio of the i-th topological feature in a set for a given expansion x, 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑥𝑥. Thus, we may join the topological features across the 

expansions, marking whether the ratios of a topological feature are 

increasing or decreasing. Each feature will have a corresponding 

function 𝑓𝑓𝑖𝑖, that fits the output to each 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖I, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖II, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖III 

from the associated expansion values. Once we have found the 
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optimal parameters for 𝑓𝑓𝑖𝑖 which minimise the total error for 

𝑓𝑓𝑖𝑖(𝑥𝑥) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑖𝑖𝑥𝑥, the limit of the i-th topological feature at an 

infinite expansion factor, 𝑓𝑓𝑖𝑖(∞), is taken as the final ratio of that 

topological feature. It is observed that constant, 1
𝑥𝑥
, and − 1

𝑥𝑥
 

functions fit these series reasonably well, which take the general 

form: 

 

Where a, b, and c are parameters that are found through non-linear 

least squares fitting. This is an iterative process where random 

values are initially chosen for each parameter and refined at each 

step using the gradient between the observed and calculated 

outputs of the function to update each parameter, until each of 

these has converged to a stable value and altering these does not 

reduce the total error any further. 

If the ratio of a topological feature is increasing (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖I < 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖II) 

this must mean that it is an internal periodic feature. Similarly, if 

the ratio remains constant, this may also be assumed to be a 

periodic feature contained in the larger periodic structure. 

Conversely, if the i-th feature is decreasing in fractional makeup 

(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖I > 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖II), this means that it is more likely to be a 

boundary feature. Periodic topological features found in the infinite 

pointcloud may simply be in different fractional makeup between 

the first and last expansion. Others however will be the remnants of 

fragmented motifs, which are not found in the periodic structure 

These unwanted topological features should not be contained in the 

final representation.  

As we follow the series of a boundary feature 𝑓𝑓𝑖𝑖, we see that 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑥𝑥 tends towards, or falls below, 0 as x approaches ∞. All such 
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features with a ratio below 0 (or sufficiently close to 0) are 

regarded as topological noise and removed from the PD. Each of 

the non-zero topological features in each set are used as keys in the 

final representation, and their ratios at infinity taken as the 

associated values, rescaled to give a total mass of 1. This final 

representation of a crystal structure will be referred to as the 

convergent persistence diagram, or CPD (Figure 20).  

 

Figure 20: Using the same motif and lattice as Figure 19, we can see how scaling these unit cells to the 2, 3, and 4-cell expansions 
gives different ratios of each persistence interval. In the upper plot, four functions (one for each persistence interval) with the general 
formula 𝑎𝑎

𝑥𝑥−𝑏𝑏
+ 𝑐𝑐 have their a, b, and c parameters altered until a good approximation of the intervals fractional ratio as a function of 

cell expansion is obtained. The limit of the function at ∞ is taken as the convergent ratio of the feature. In the lower plot, we see that 
the function associated with the fragmented boundary feature has a negative value at ∞, and thus may be removed from the final CPD.  
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The CPD gives a concise representation of the crystal structure, 

which can be said to be an interpretable descriptor from the ability 

to construct plots of CPDs as visual aids. It may be noted that in 

the previous example the two CPDs are not identical to one 

another. By definition this means that this implementation is not an 

invariant representation of the periodic pointset. Proving the 

convergence and stability of the descriptor remains an open 

question, although larger expansion values for I, II, and III, should 

lead to more accurate final ratios taken at ∞. Resultant CPDs for 

lattices representing the same underlying pointcloud are typically 

measured as having a negligible distance from one another under 

standard metrics.  

An established metric of similarity between persistence diagrams is 

one that is familiar to us: the earth movers distance (EMD), or the 

Wasserstein metric, as it is typically referred to in topological data 

analysis. Yet again, the analogy of computing the optimal method 

of transporting earth from one distribution into another remains 

valid when considering the distance between CPDs. Each of the 

points in each homology group of the CPD is considered as a 

weighted Dirac mass, the weight being the final ratio of the feature, 

with the total sum of masses in each set being equal to 1. The 

planar Euclidean distance between points on the CPD is taken as 

the distance between features, and the optimal transportation plan 

to assign mass is calculated.  

This minimal quantity of work required to transform one 

distribution into another is taken as the distance between the set of 

intervals in H0 and H1, giving two separate distances. Whilst each 

homology group should be considered independently, as connected 

components and cycles are topologically distinct objects, a metric 

should return a single real valued number. To ensure this metric 

can be used in downstream tasks, the two distances are averaged 

together, and returned as a final measure of structural similarity 

(Figure 21). 

Figure 21: Two CPDs are overlaid on one 
another (a), the first plotted by circles the 
second by squares. The Wasserstein 
distance is the cost to transport mass 
between points, and between these two 
diagrams must be considered for each 
homology group in turn (b). Once each of 
the Wasserstein distances have been 
computed, these may be averaged to give a 
total distance between the two diagrams 
(c). 

(a) 

(b) 

 

(c) 
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Results and Discussion 

Empirical Construction Time 
Creating a persistence diagram is a computationally intensive 

process, on the order of 𝑂𝑂(𝑛𝑛3), and the Percifter algorithm with a 

[2, 3, 4] expansion series must construct a 4-cell during execution, 

multiplying the number of input points contained in a cif file by 64. 

Despite the large inputs and time intensive procedures, the average 

running times are manageable for structures with fewer numbers of 

points, which is empirically shown by Figure 22. Whilst the 

average running time is lower than the theoretical worst case, at 

present it remains computationally costly to process structures in a 

high throughput manner with this expansion factor. Processing 

137,438 structures each containing fewer than 176 atoms in the 

unit cell required 4,035 CPU hours in total.  
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This is an acceptably small running time for general applications, 

however high throughput analysis of larger cells remains difficult. 

Materials which could attain the most value from tuning the 

structural properties, such as porous materials and ionic 

conductors, typically contain many atoms in the unit cell due to 

their complex structures, necessitating the use of smaller expansion 

factors, such as [1, 2, 3]. The ripser algorithm 29 used to generate 

each persistent diagram underlying Percifter carries forward many 

matrix reduction operations. Although not implemented in the 

original library, this may be parallelised and run on GPUs 30 for 

further speedup, a possible avenue of future study for larger 

systems.  

The sequence of unit cell expansions is a core hyperparameter of 

the Percifter algorithm. Longer sequences of larger expansion 

Figure 22: Empirical Construction Times to create the Percifter representations of 137,438 crystal structures using a [2, 3, 4] expansion. 
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factors will lead to smaller error in the final ratios. Unfortunately, 

the computational resources required to compute these diagrams 

for complex materials of interest is an ever present limiting factor. 

For these purposes we have explored different series of expansion 

factors in this work. For the simpler binary systems 2-cell, 3-cell, 

and 4-cell series ([2, 3, 4]) were initially used.  

It is not possible to compute the 4-cell of a complex disordered 

electrolyte or a metal oxide framework in reasonable time. 

Therefore the [1, 2, 3] cell expansions were explored, with the 

restriction that all lattice angles fall between 60⁰ and 120⁰, to 

ensure skewed cells do not alter the representation. It is found that 

for simpler structures, [1, 2, 3] expansions often miss some of the 

internal topological features in the wider structure not present in 

the 1-cell, which are then absent in the final CPD. For this reason 

[2, 3, 4] expansion series are recommended at minimum where 

possible, which provide a reasonable trade-off between accuracy 

and computational feasibility.  
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CPDs of Known Crystal System 

Relationships 
The Ruddlesden-Popper Phases 
The Ruddlesden-Popper phases 31 are composite structures with 

perovskite units of variable width separated by layers of rock-salt. 

Let us examine how the Percifter representations vary as we 

consider a series of four structures which follow the general 

formula: 

     Srn+1TinO3n+1 

For n=0, this gives the composition SrO, the rock-salt structure 

strontium oxide, with ICSD collection code 163625. This has the 

typical CPD for structures with periodic primitive cubic motifs. 

The H0 features die once the cube forms and the space is fully 

connected with cycles, each of these cycles dying when the cubes 

faces are fully connected (Figure 23). 

 

Figure 23: The SrO rock-salt CPD which has a single feature in H0 and a single feature in H1 shown in blue. The corresponding crystal 
structure is shown on the right with critical edges marked. 
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The next composition has a typical perovskite structure, Sr(TiO3), 

ICSD-34630. This structure type has a distinctive CPD consisting 

of two points in H0 and a single feature in H1 which is formed 

when the first feature in H0 dies and dies with the second feature in 

H0. Unlike before, the cycle is formed between titanium and 

oxygen atoms, going outside the unit-cell. These cycles die when 

the faces of the cube are fully connected between oxygen and 

strontium atoms (Figure 24). 

 

 

With n=1 gives Sr2(TiO4), ICSD-194713, which has alternate rock-

salt and perovskite layers. Examining the CPD and comparing with 

the structure shows that both of these layers have corresponding 

points in the CPD. The slight distortion of this experimentally 

measured structure to the theoretically perfect structure is reflected 

by multiple points appearing in close proximity (Figure 25).  

Figure 24: The Sr(TiO3) perovskite CPD shown in red which has two features in H0 and a single feature in H1. The corresponding crystal 
structure is shown on the right, with critical edges marked. 
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We arrive at the last of the Ruddlesden-Popper phases presented 

here when n=2, Sr3(Ti2O7), ICSD-63704, where each of the 

previous layers once again have their topologies classified. 

Another point has appeared in a new region of the CPD, which 

captures the new geometry of the double perovskite layer present 

in this structure (Figure 26).  

Figure 25: The Sr2(TiO4) CPD shown in turquoise which has three features in H0 and three features in H1. The corresponding crystal 
structure is shown on the right with the regions associated with each feature in H1 highlighted.  

Figure 26: The Sr3(Ti2O7) CPD shown in purple which has four features in H0 and three features in H1. The corresponding crystal structure 
is shown on the right with the regions associated with each feature in H1 highlighted.  
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The UiO MOFs 
Reticular chemistry and its applications into discovering new metal 

oxide frameworks (MOFs) is an active area of research. These 

materials consist of metal ions which are linked together with 

organic molecules to form large porous structures. The choice of 

metal and linker determines the properties of the MOF, and we 

would expect larger linkers to give rise to larger pore sizes. This is 

exemplified by the UiO MOFs 32, a series of iso-reticular MOFs, 

with similar structures, differing only in the number of benzene 

rings contained in one of three linkers. There are 23 structures in 

the Cambridge Structural Database (CSD) of this structure type, 

which are named based on the linker: RUBTAK, WIZMAV, and 

UVAHIK. 

These are large structures with hundreds to thousands of atoms in 

the unit cell. As such a [1, 2, 3] extension was used to construct the 

CPD, as it can be manually confirmed that each unit cell 

encompasses multiple repetitions of the periodic topology. The 

CPDs of each structure are processed and overlaid upon one 

another (Figure 27). These structures have very similar 

arrangements of points to one another with many characteristic 

features found in the same region.  

A densely packed area of features on this plot are those in the 

green region, which are born from 1.38-1.57 and die from 2.37-

2.52. Each of these points can be directly associated with a 

benzene ring in the linker, with longer linkers distorting the carbon 

sites further from the hexagonal planar structure. 

The most striking correlation between this diagram and known 

structural relationships, is the line of points born around 2.2Å with 

a death time above 4Å. The birth time of this feature is dependent 

on the longest C-C bond found in the MOF, as this is the point 

when the porous cage is fully connected and its cycles may be 

extracted. We see that as linker size is increased, this pore diameter 

increases, and thus the death time of this cycle also increases.  
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Figure 27: CPDs of the 23 materials in the CCDC with a reported UiO structure type are overlaid on one another. A dense region of points 
associated with the benzene rings of the organic molecules may be observed at the (birth, death) region of (1.48, 2.45). There are multiple 
points with a birth time of approximately 2.2Å, which is the time each of the bonds encompassing a void connect to one another. The volume 
of the void increases with linker size, which is reflected by an increased death time associated with each of these structures.  
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Of the RUBTAK MOFs, one clear outlier can be observed, which 

has its porous feature die much earlier than the other RUBTAK 

structures. Investigating this structure, RUBTAK3, reveals that in 

comparison to the other RUBTAK compounds, the solvent present 

in RUBTAK3 has been taken into account and modelled as oxygen 

with freely refined occupancies, causing a smaller effective pore 

size. WIZMAV3 has taken a separate synthesis route to other 

reported WIZMAV structures, and has also taken solvent disorder 

into account when refining the structure. This accounts for the 

differences in this structure to other experimentally reported 

WIZMAVs, but it is also seen to have greater similarity to the 

RUBTAK structure with freely refined oxygen positions. Each of 

the outlying topological features with a birth time above 3Å can be 

attributed to the additional oxygen positions in the structures of 

RUBTAK3 and WIZMAV3.  

The Binary Compounds of the ICSD 
Let us continue the investigation into binary compounds that began 

using ElMD (Chapter 2), with the additional insight afforded by 

Percifter. As visualising 3-dimensional spaces is difficult, the 

binary systems are close to the limit of structural complexity which 

may be mentally rendered. These have known trends, which allow 

us to validate how the Percifter metric can describe this space 

through reasoning.  

The computational complexity of constructing a CPD means it is 

not possible to construct CPDs for all materials reported in the 

ICSD in reasonable time. Instead we focus on binary compounds, 

with 41,395 cif files to process into CPDs for this investigation. 

Due to the nature of ionic materials, materials deposited into 

databases be interpreted as duplicates may at first glance. In fact, 

of these 41,395 files, we see there are only 8,291 unique chemical 

compositions. Taking the set of 𝐻𝐻0 barcodes of these structures, 

gives 28,907 unique barcodes. This shows that many of these 

compounds can be distinguished as separate crystal systems when 

considered up to the connected component distance. The CPD 



247 
 

allows us to go further than considering the distance between 

connected components. In particular, we can consider the set of 

topological features in 𝐻𝐻1.  

Looking at the set of unique barcodes in 𝐻𝐻1 gives an increased 

count of 32,216 individual barcodes. This shows that many of the 

structures which were indistinguishable under connected 

component distance are in fact separable when higher order 

topological features are under consideration. By combining both 

the sets of features contained in both 𝐻𝐻0 and 𝐻𝐻1 to get the 

combined barcode features, the number of distinctive 

representations again rises to 33,529. This shows that many of the 

structures that are indistinguishable under 𝐻𝐻1 classification, may be 

separated when considering the times at which the individual 

components which make up each cycle connect. 

Each feature from 𝐻𝐻0 and 𝐻𝐻1 for each CPD can be overlaid upon 

one another to give a sense of the distribution of topological 

features contained in the binary dataset under this representation 

(Figure 28). Like other scatter plots which contain many points, 

this combined representation of the space unfortunately suffers 

from the issue of overcrowding, making specific trends difficult to 

discern. 

 

Figure 28: The CPDs of 32,216 binary crystal structures from the ICSD overlaid on one another.  
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A density plot of this space can be created by overlaying a pixel 

grid atop of this diagram, and taking count of the number of points 

which fall under each grid point (Figure 29), following the same 

methodology used to construct density maps of the ICSD with 

ElMD in Chapter 2. To increase visibility, the points in 𝐻𝐻0 have 

been smeared to the left of the origin.  

 

 

It is of little surprise that many of the connected components die in 

the region from 1.8Å to 3Å, given that we would expect the largest 

ionic radii found in a specific material to be in this region. Further, 

the distribution of lattice vectors (Figure 30) shows a peak in this 

region, highlighting the relative stability of this bonding distance in 

simple compounds. 

Figure 29: A density plot of Figure 28 shows the regions that are more commonly occupied by the 
binary system CPDs. To aid visual clarity, the single pixel line of 𝐻𝐻0 features has been smeared to the 
left of the plot into the unused region with a negative birth time. 

Figure 30: A histogram displaying the distribution of magnitudes in lattice vectors for the binary 
structures of the ICSD.  
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Of interest is the region of the combined persistence diagram in the 

𝐻𝐻1 region of Figure 29 where an apparent structure emerges, 

shown in the zoom in Figure 31. 

 

 

Given the distribution of lattice vector magnitudes, we would 

expect a concentration of points in the birth/death radius of 2-3Å, 

which is the larger bright region in the centre. However, the 

occurrence of features falling in straight lines across the PD, 

highlighted in blue, was not expected. After manually extracting 

the associated structures through a trial and error process, it was 

found that every material identified along these paths is in the 

cubic crystal system, with a face centred symmetry group. 

Replotting this diagram by isolating the 8,608 FCC cubic 

compounds with their space groups reveals that Percifter has 

successfully partitioned these structures in the PD. These systems 

are almost exclusively found in one of the four lines of similarity, 

the bottom line in the diagram being two distinct segments when 

magnified (Figure 32).  

 

 

 

 

Figure 31: By expanding Figure 28 to focus on the birth/death region of 2-4Å (left), regions of greater 
density may be observed, which are highlighted in blue on the right. 
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Embedding Binary CPDs w.r.t the 

EMD 
We construct a Percifter distance matrix between each of these 

33,529 binary CPDs and embed this to two dimensions with 

UMAP, as per previous methodology. The space of 3 dimensional 

periodic pointclouds affords fewer natural classification methods, 

such as the s, p, d, f-block positions of the constituent elements in 

the periodic table used previously. The log10 of the pointwise 

density can be used to highlight the changes that occur in void size 

across the embedding. In lieu of a continuous and consistent 

Figure 32: Extracting the 8,608 structures which fall along the regions highlighted in Figure 30 shows that each of 
these structures share a similarity, as they each rotate and reflect according to one of three face centred cubic 
symmetry operations.  
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labelling of periodic spaces, the Bravais groups are identified 

through the first two letters of the Pearsons symbol of each of the 

structures and used to label the plot, crudely highlighting the 

clustering of symmetry operations that has occurred (Figure 33).  

Density is shown to vary smoothly across the embedding. Distinct 

regions of shared space groups are seen on the periphery of the 

embedding. The central swirl that contains the majority of the 

points betrays the similarity that many of the reported binary 

compounds have structurally when compared with Percifter.  

By concatenating the empirical formula of each cif file to its CPD, 

the number of unique representations grows from 33,529 unique 

structural representations to 37,300 combined structural and 

elemental representations. Despite differences in their 

compositional makeup, many of the binary compounds contained 

in this dataset have indistinguishable Percifter representations. This 

may be an implementation issue, as the topological features are 

rounded to 3 decimal places before fitting the convergent function.  

Figure 33: A Percifter distance matrix between 33,529 binary compounds of the ICSD is constructed and embedded to 2-dimensions with 
UMAP. The log10 of the number of atoms divided by unit cell volume of each crystal (left) and pearsons symbols (right) of each material 
have been overlaid. 

𝑙𝑙𝑙𝑙𝑙𝑙10(
𝑛𝑛_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

) 
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If the 6,015 unique compositions are taken from this dataset and 

embedded to the plane via UMAP with respect to their ElMD 

distance (Figure 34), the resultant plot is very similar to the plot 

produced in Chapter 2, Figure 5. Clusters are clearly changed from 

the embedding presented in Chapter 2 from the greater number of 

compositions, however the general distribution and placement of 

chemistry has remained consistent. Interestingly, the variations in 

density remain smooth, although with greater discontinuities than 

in Figure 33, and the distribution of Pearsons symbols is uniformly 

spread across the map. 

 

The ElMD distances may be combined with the Percifter distances. 

Due to the dissimilar length scales of the supporting metrics (being 

the difference in Pettifor number, and difference in lifetime of a 

topological feature), each of the distances in the matrix are scaled 

by the mean non-zero entries of the matrix, before the 

corresponding rows are summed together to give a combined 

distance matrix. This combined distance matrix is then embedded 

to the plane via UMAP (Figure 35).  

Figure 34: An ElMD distance matrix between the 6, 015 binary compounds of the ICSD is constructed and embedded to 2-
dimensions with UMAP. The log10 of each of the densities (left) and pearsons symbols (right) of each material have been 
overlaid. 
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It is clear from the density plot on the left of Figure 35 that there is 

greater structural continuity in comparison to the ElMD projection, 

and observing the distribution of Pearsons symbols shows a greater 

degree of local clustering compared to the ElMD projection, 

although cluster labels remain evenly distributed. The combined 

projection is more condensed than the ElMD projection, but 

remains sparser than the Percifter projection. The increased 

structural information has drawn together disparate regions of 

ElMD space that may be physically similar, but have 

comparatively dissimilar elements based on the modified Pettifor 

scale.  

To judge how this has distorted the more familiar ElMD space, we 

shall apply the same methodology that was carried out in Chapter 

2. The projection may be partitioned via DBSCAN to give 

chemically reasonable clusters (Figure 36, left). These same labels 

may then be applied to the combined ElMD and Percifter plot to 

see how the arrangement of points has changed (Figure 36, right). 

Figure 35: 6,015 compounds have their combined Percifter and ElMD distance matrix embedded to the plane via UMAP. The log10 
of each of the densities (left) and pearsons symbols (right) of each material have been overlaid. 
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The first observation of this combined plot is that each of the 

clusters have been pulled together, with less separation between 

distinct regions of points. Whilst the ElMD cluster labels remain in 

similar sections of the plot relative to one another, clusters labels 

merge into one another and are less clearly separated. An example 

where this contraction of the space has improved the consistency of 

observed physical trends may be found by looking at the AB2 

lanthanide-transition metal binary compounds in cluster 2. This 

cluster corresponds to cluster 13 of the binary compound 

projection of Chapter 2, and once again the AB2 lanthanide-

transition metal binary compounds have arranged themselves into 

separable parallel lines on the ElMD projection, shown by the 

zoom in the left plot of Figure 36.  

In the combined projection, this cluster now forms a contiguous 

region with the materials from cluster 8 of the ElMD embedding, 

which also contain AB2 compositions (Figure 37). The cluster 8 

AB2 compounds are characterized as having a higher 

electronegativity on the B ion in comparison to the cluster 2 AB2 

compounds, with the A ion still typically being a lanthanide. 

Figure 36: DBSCAN cluster labels assigned to the ElMD embedding (left) may be applied to the combined embedding (right) to 
highlight how this embedding has changed. A zoom of the AB2 compounds in the blue circle of the ElMD plot is provided below. 
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Whilst the chemical distinction across the wider cluster can still be 

made out, it is clear that these structurally similar materials belong 

in close proximity to one another when being considered under a 

judgement of similarity. From this embedding we see that the 

addition of the Percifter distance to the ElMD distance has further 

tuned the alignment between the resultant metric and an experts 

judgement of similarity.   

 

 

 

Figure 37: The AB2 compounds investigated in Chapter 2 (green) are now associated with AB2 compounds which are less similar 
compositionally, but still share similar structural characteristics. 
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Topological Analysis of Solid State 

Electrolytes 
Each of the 403 unique room temperature compositions introduced 

in the experimental database of Chapter 3 was extracted and used 

to query the ElMTree constructed in Chapter 4. Given the affect 

that even minor dopants can have on resultant conductivity it was 

decided to only investigate those structures with an ElMD score of 

0. Due to the recency in the reporting of these compounds, many 

are yet to be structurally characterized and deposited in an 

accessible materials database. Despite this, 95 unique compositions 

had structural files associated with them, many of the compounds 

returning multiple reports of the same formulation, giving 405 

structural files in total. Each of these potentially different phases 

will be assumed to share the same conductivity for the purposes of 

plotting, but we shall focus on the more general trends which can 

be extracted.  

Each of the 95 unique compositions and its associated CPD may be 

overlaid upon one another, as shown in Figure 38. Given the 

greater structural complexities found in these materials, these 

typically have diverse CPDs containing many points. Overlaying 

these diagrams allows us to visually extract trends in topological 

features that can be observed, which may be used to guide future 

discovery. With this many points, the visual density of the plots, in 

particular along the x = 0 birth time, may make extracting trends 

difficult. As we possess the conductivity of each material, which is 

the core property of interest, points have been extended along the 

x-axis in accordance with their log10(𝜎𝜎) to draw this region further 

apart and further highlight trends.  
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 Figure 38: The CPD of 95 ionic conductors overlaid on one another. Each point is assigned a colour based on the 
conductivity of the material (top) or the structural family each material belongs to (bottom). To aid visual clarity, all 
points that fall along the x=0 line been smeared to the left of the plot into the unused region of negative birth time, in 
accordance with each materials log10 ionic conductivity, σ. 
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Despite the limited number of structures analysed here, it is clear 

that natural clusters have formed between shred structural families. 

Although not as immediately apparent as previous case studies, 

examples of straight lines of doped materials can be observed as 

dopant concentration alters cell volume. Let us examine one of the 

denser regions of the plot in detail, where topological features are 

born between 2.51Å and 2.57Å and die between 2.95Å and 3.01Å 

(Figure 39). This local clustering of shared topological features 

includes well characterized materials such as LGPS and LLZO in 

addition to doped and substituted variations of these structures.  

 

 

For each of the topological features identified in this region of the 

combined CPD, there is a corresponding cycle that can be 

identified in the structure. Of note is that in each of these particular 

examples, the cycle contains a lithium, two atoms from the anionic 

Figure 39: A zoomed portion of Figure 37, demonstrating how materials with shared physical properties occupy similar 
regions of the CPD. 
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framework, and a second cation. If we look at the region around 

the Li there is a shared edge between Li tetrahedral/octahedral sites 

and another cation. Whilst this may not be a chemical feature 

which is a strong predictor of conductivity, it demonstrates the 

capability of the Percifter representation at classifying structures 

with shared characteristics to be in close proximity to one another, 

with no further embedding step required.  

Another example of structural similarities arranging themselves 

into ordered regions may be observed by isolating the H1 features 

found in the argyrodites. Here, a family of electrolytes based off 

Li6PS5Cl, can be found in very similar regions of the map. Doping 

these structures with additional silicon is seen to move the 

representation further away from the undoped materials. The 

amount of dopant appears to cause a continuous change in 

structural deformation, which is reflected by changes in Percifter 

representation (Figure 40).  

 
Figure 40: Variations in stoichiometry following the amount of silicon doping in Li6PS5Cl lead to associated changes 
across the corresponding CPDs. 
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The structural topologies which make up a material lithium 

transport network, or those that make up the anionic backbone may 

be isolated and examined independently. We isolate each the 

identified atoms in each cif and the relational topology is 

investigated. When overlaying these CPDs (Figure 41), the most 

apparent observation is that each of the duplicate structures of each 

composition are found in close proximity to one another. This is 

unsurprising, as we would expect each of these structures to be 

similar, although not identical, due to tolerances within the 

experimental apparatus and minor differences in synthesis 

conditions.  

Representing a material which has partial occupancy of sites with 

consistency is not a solved problem. In this instance, all Li sites 

were simply taken as a fully occupied site, and the filtration of the 

resultant complex taken as the representative topology of the Li 

positions. In actuality, fewer occupied positions would be observed 

in a single moment, as the Li positions are liable to change under 

an induced voltage. As a consequence, these representations have 

considerably more Li positions than they should, with many in 

closer proximity to one another than the rules of physics allow. 

This may disrupt or induce patterns and trends of the CPD, which 

may not actually be observed in nature. Nevertheless, one of the 

identified strengths of persistent homology is its robustness to 

noise, which is to say that pointclouds with repetitions of a point in 

close proximity should return similar H1 topologies.  

It can be seen that LISISCONs, garnets, NASICONs, and thio-

LISICONs occupy distinctive regions of the CPD, both in H0 and 

H1 persistence intervals. It is difficult to discern obvious trends in 

conductivity, mostly due to the highly conductive materials of the 

thio-LISICONs dominating the highly conductive region of the 

plot. 
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 Figure 41: 95 Li ionic conductors have their anion positions isolated and the CPD calculated. We see a better separation 
of materials based on their structural family than when all sites are considered. To aid visual clarity, all points that fall 
along the x=0 line been smeared to the left of the plot into the unused region of negative birth time, in accordance with 
each materials log10 ionic conductivity, σ. 
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By comparison, the anionic framework of a crystal structure is 

often more reliably characterized. Whilst each of the anions may 

partially occupy sites, these are often at regular positions and, 

disregarding defects, at least one of the anions will always be 

present at these sites. This makes the co-ordinates of these 

elements more reliable when taking the positions of these sites 

from experimentally measured structures. We could assume greater 

stability in the representation if we only take the anion positions of 

the structure. What remains challenging however is assigning 

which of the elements in the structure are in fact anions, and which 

are cations. 

Using an integer count of each of the elements in the composition 

and a list of feasible charge states for each element, a feasible 

assignment of charges to elements may be allocated. Elements 

which are negatively charged are identified and selected as the 

anions of the structure. This was implemented using code provided 

by Judith Clymo (https://github.com/jclymo/Materials).  

Computing the anionic CPDs and overlaying these on a single plot 

(Figure 42) displays significantly tighter clustering than the 

isolated Li plot, with a substantial quantity of points found in the 

H1 birth/death region of 2.8-3.2Å. Materials in the same structural 

families are located in similar regions to one another, however 

there is far greater overlap between points, making it difficult to 

visually discern trends. Thio-LISICONs once again have the most 

distinctive persistence intervals, which are located in the same 

region as the anion positions of the argyrodite structures.  

https://github.com/jclymo/Materials
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 Figure 42: 95 Li ionic conductors have their Li positions isolated and their CPDs constructed. These plots contain many 
more points is found in the isolated anion CPD. To aid visual clarity, all points that fall along the x=0 line been smeared 
to the left of the plot into the unused region of negative birth time, in accordance with each materials log10 ionic 
conductivity, σ. 
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Percifter EMD Distances 
To the practitioner, there is often a pleasing correlation between 

returned ElMD distances and compositional similarity, which may 

be attributed to ingrained familiarities of the elements of the 

periodic table. Unfortunately the CPD, which is the underlying 

space from which Percifter derives distances, does not as readily 

draw on learned intuition. For purposes of chemist in the loop 

exploration, this tool must first be calibrated against prior 

understanding before it can be used to support the claims of 

structural similarity or novelty for new materials. 

Rattled NaCl  
Sodium chloride has a familiar structure to crystallographers. The 

atoms that originally fall in a cubic structure can be “rattled” by 

perturbing the original lattice vectors and by altering the positions 

of the atoms within the unit cell. Small perturbations will lead to 

structures that are arguably similar to the NaCl structure, with large 

perturbations returning dissimilar structures. 

Random samples are uniformly taken from the interval [0, 2] and 

used as the standard deviation of a normal distributions centred 

around 0. The NaCl unit cell vectors have noise added to their 

positions according to each distribution, with atom positions also 

rattled by this amount. Once a structure has been rattled, it is 

written to a cif file, and the distance to the unrattled reference NaCl 

structure computed. This is repeated 20,000 times with the 

resultant distances plotted against the quantity of rattle (Figure 43). 

As a means of comparison against other metrics, the PDD EMD 

distance, and the ASE implementation of Oganov’s fingerprint 

function (OFP) 33 are additionally computed between each rattled 

structure and the reference structure. 
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Both the CPD and PDD show greater expressivity at representing 

the dissimilarity between more rattled structures than the OFP, 

which has a very flat response curve for structures with a rattle > 

0.5. It can be said, that under this metric things begin to look the 

same, as all dissimilar structures appear to be equally far away 

Figure 43: Variations in Percifter distance, PDD distance, and OFP distance are plotted in blue for a 
perturbation of 0-0.2 (top row) and 0-2.0 (bottom row). The moving average of each plot has been overlaid in 
orange. 
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from one another, despite increasingly apparent structural 

differences.  

By comparison, the range of outputs spanned by the CPD and PDD 

metrics continue to grow in proportion to the perturbation of the 

cell. The gradient of these response curves grows sharply for 

smaller perturbations, before sloping off. The CPD has the more 

linear response curve, which is attested by the positive Pearsons R2 

score of 0.41 (Table 1). Despite possessing a negative R2 score of -

5.35, the PDD distances are clearly dependant on the quantity of 

perturbation. This is a shortcoming of the R2 score, as it is unable 

to capture non-linear relationships reliably. Alternative measures, 

such as Chatterjee’s recently proposed Xi correlation 34 allows this 

relationship to be expressed. The Xi correlation is a ranked metric 

which measures the strength of the monotonic relationships 

underlying distributions of points. Under the Xi correlation, the 

OFP distance is shown to have a small positive correlation with 

structural deviation. The PDD and CPD are both shown to have 

much stronger relationships, demonstrating that both of these 

metrics are more capable of capturing structural distortions in 

proportion to the quantity of distortion. 

 

Metric R2 Score Xi Correlation 

OFP -0.19 0.29 

PDD -5.35 0.51 

Percifter 0.40 0.50 

Table 1: R2 and Xi Correlation scores of the returned distance in proportion to 
the quantity of distortion. 
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Solid State Electrolytes 
We take a selection of 14 electrolyte structures, which exemplify a 

range of materials with identified structural similarities and 

differences. Percifter distances are taken between each structure, 

with both the H0 and H1 distances returned so these may be 

compared separately. The mean of these scores is taken to give a 

combined distance matrix, which is reordered to maximize the 

entropy along the leading diagonal to “sort” the matrix (Figure 44, 

top). The H0 and H1 distance matrices are permuted to follow the 

same ordering as the sorted combined matrix to allow direct 

comparison (Figure 44, centre and bottom respectively). 

The Percifter representation correctly partitions the oxides from the 

other materials. Along the diagonal, it can be seen that structurally 

similar materials have been clustered next to one another, despite 

similarity computations being executed in arbitrary order. Similar 

materials have correspondingly small distances from one another, 

with smoothly varying distances to more dissimilar structures. 

These distances are small in comparison to ElMD, although the 

focussed nature of this dataset will exaggerate that phenomenon. 
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Figure 44: 14 electrolyte structures have their CPDs constructed. The combined CPD EMD distance matrix is 
computed and re-ordered to “sort” this dataset into regions of similarity (top). The H0 (centre) and H1 (bottom) 
distance matrices are also computed as part of this process, and are displayed using the same ordering as the 
combined matrix. 
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One outlier of interest is Li6PS5Cl, which has clustered not with the 

other argyrodites of the set, but instead with the thio-LISISICONs, 

despite known similarities to the other argyrodites, from the 

observed distances, Li6PS5Cl seems to fit its position in the 

combined distance matrix. Examining the H1 CPD distance matrix 

reveals that the distance between Li6PS5Cl and Li6PS5Br is lower 

than that of Li6PS5Cl to it immediate neighbours, where it is 

observed to be an outlier of the cluster. However the great 

dissimilarity the Li6PS5Cl H0 CPD displays to the other two 

argyrodite in H0 distances skews Li6PS5Cl as being further away 

despite the known topological similarities.  

The combined Percifter distance may be too blunt a tool to extract 

this kind of relationship directly, but being able to observe the 

underlying components allows us to appreciate how distances have 

been arrived upon. We may in fact go one level deeper, and plot 

these CPDs to directly observe the distributions of topological 

features and reason about whether or not these distances convey 

meaningful relationships. Each of the argyrodite CPDs are plotted 

with the LGPS CPD, both separately (Figure 45, top four plots) 

and together (Figure 45, bottom plot).  
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Figure 45: The CPDs of Li6PS5Br, Li6PS5I, Li6PS5Cl, and Li10GeP2S5, with birth and death times in Angstrom 
along the bottom and left axes of each plot. Each of these CPDs have been overlaid on the bottom plot to 
highlight the similarities between these materials (red circles) that would not be presented to the researcher 
using a simple metric. All points falling along the vertical x=0 line have been smeared to the left to prevent 
overcrowding.  
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It is immediately apparent that the Li6PS5Cl CPD bears more 

resemblance to each of the other argyrodite structures than LGPS. 

Each CPD has 4-6 features in the H1 set, with the H0 features 

arranged into 3 clusters. By comparison, LGPS has a far more 

disordered crystal structure, with a majority of the features 

accumulated into a mass that is not particularly overlapping with 

the argyrodite features. These 3 argyrodites possess characterizable 

points in H1 around [2.36, 3.60) and [3.34, 3.85), which allows 

these to be visually separated from one another. Quantitatively 

however, the outlying Li6PS5Cl points around [2.51, 2.76) carry 

significant mass in the CPD. As a consequence, the cost to match 

these points to LGPS points is lower than the cost to transport these 

to the argyrodite structures leading to this structural confusion.  

Furthermore, in the H0 feature set, Li6PS5Cl does not have any 

features which die before 1Å. These features are present in the 

other two argyrodite structures, presumably from a different 

modelling of the occupancy of Li positions. The actual 

representation given by a cif file is a fundamentally different 

objects to the true crystal structure, as physical constraints force 

experimentalists to form an approximate representation, which is 

an inescapable reality in many scientific disciplines.  

Embeddings of the Solid State Electrolytes 
The materials of the ionics database are again embedded to the 

plane, as demonstrated in Chapter 3, with the additional structural 

similarity scores given by Percifter. Each of the unique 

compositions of the structural dataset are first isolated, giving 95 

unique materials. This gives a smaller dataset than that investigated 

in previous chapters, where there may be fewer example of 

similarity between materials to form natural clusters in an 

unsupervised manner. The compositions are first embedded with 

respect to the ElMD score between each chemical formula via 

UMAP, with expert assigned structural labels used to colour each 

point, Figure 46.  
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Figure 46: An ElMD embedding of the 95 materials in our structural dataset, 
constructed with UMAP 

Each of the materials have been embedded in relatively close 

proximity to other materials identified as being similar. Cluster 

separation could be improved however. For example, the cluster 

found in the upper left whilst being predominantly NASICON 

structures, also contains a range of oxide chemistries and structure 

types. In the upper region of the plot, alongside some of the garnet 

materials (distant from the distinct cluster of garnets found in the 

lower right), thio-LISICONs have been interspersed with the 

LISICON and rock salt materials. Argyrodites are found in a single 

region in the upper right of the plot, but are again difficult to 

separate from the range of other chemistries which make up the 

rest of the materials clustered in this region. 

Next, all chemical information is disregarded and just structural 

positions are examined. The CPD of each material is taken using 

all atomic sites without any elemental positions isolated. A 

distance matrix of Percifter similarity scores is constructed 
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between the CPDs of 95 unique cif files by summing together each 

of the H0 and H1 EMD distances. This distance matrix is then 

embedded to the plane using UMAP, with structural labels 

overlaid, Figure 47.  

 

The immediate observation is how well separated each of the Br 

and I anion argyrodite structures have been partitioned from the 

other materials in the cluster on the left. The remaining structures 

are found in the rightmost cluster, in a much denser arrangement of 

points than is found using compositional information. Despite the 

dense clustering, the materials have been well ordered by structural 

family, with distinctive areas of shared structural characteristics. 

Boundaries between these areas may be too blurred to extract using 

automated techniques, but an alignment of structural similarity 

(and argyrodite dissimilarity) is demonstrated by the metric. 

As noted previously, the supporting metrics for each similarity 

measure are on different orders of magnitude and thus ElMD 

scores would be over represented by simply summing these 

Figure 47: A Percifter distance embedding of the 95 materials in our structural dataset, constructed with UMAP 
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together. The ElMD and Percifter distance matrices are scaled to 

have a mean value of 1 by dividing each value in the matrix by the 

respective mean value of that matrix. These two matrices are then 

combined by summing together their values, with the resultant 

matrix embedded via UMAP, Figure 48. 

 

In comparison to the previous two embeddings, the clusters of 

Figure 47 are well separated from one another. Argyrodite 

dissimilarity has still been captured, but individual materials may 

now be distinguished from one another. Each of the remaining 

structural labels are found in close proximity to one another, with 

the “Other” and “Glass” labels being the only identified clusters 

spread across the embedding. Thio-LISICONs, LISICONS and 

garnets are in similar, yet distinct, regions of the embedding, each 

separable from their neighbours.  

Figure 48: A combined ElMD and Percifter distance embedding of the 95 materials in our structural 
dataset, constructed with UMAP 
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The similarity of the NASICONs to the remaining oxide materials, 

previously highlighted by each metric when considered in 

isolation, remains present in this embedding. By contrast however, 

each of these materials have now been drawn further from one 

another, allowing them to be differentiated, and making chemical 

trends simpler to follow.  

Further Work 
One of the underlying principles that statistical analysis relies upon 

is the assumption that there is some underlying structure to the data 

that is being modelled. There has been much research into how to 

represent data to exploit this assumption, and many of the step 

change advances in neural network performance have come not 

from improvements to the densely connected neural network itself, 

but in the data representation stages. Convolution operations, 

attention networks and message passing graph operations all 

attempt to permute the initial data to make this underlying structure 

between training points more apparent to the final neural network 

stage.  

From this observation we believe the CPD may be a candidate for 

further investigation in data driven materials discovery. There are 

existing methods to represent a persistence diagram for a neural 

network (PersLay 35), and it is possible this may be a reasonable 

starting point to manipulate the CPD for a richer representation of 

a material to be input into a neural network. 

One of the strengths of the representation is its ability to display 

trends in a tangible format by comparing CPDs. Automatically 

extracting these similarities would allow more of these trends to be 

explored. At present, correlations have been extracted manually by 

cross referencing against the original crystal structure. Whilst 

EMD between CPDs generally follows structural patterns, we can 

see by the counterexamples provided that this does not always pair 

a structure to one we may think of as similar. This may be a 
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drawback of the metric, and other methods of deriving similarity 

may have stronger alignment with chemists judgement.  

It should be noted that a similar approach has been investigated by 

Teresa Heiss and Herbert Edelsbrunner, which has not been 

published but was presented in the Applied Algebraic Topology 

Research Network (AATRN) Online Seminar, September 22, 2021 
36. The core improvement this approach takes over the work 

presented here is the choice of function that will track the 

multiplicity of each feature as unit cells are expanded to infinity, 

that we will find the limit of. In this chapter, while fitting the 

function 𝑓𝑓(𝑥𝑥) = ± 𝑎𝑎
𝑥𝑥−𝑏𝑏

+ 𝑐𝑐 has shown the principle can work on 

each of the examples, it is likely that this could lead to imprecise 

final ratios, especially for more complicated motifs. In comparison, 

Heiss looks to fit a separate polynomial function for each 

persistence feature. The use of these polynomials will surely trace 

the limit of each feature as the unit cell grows in size to greater 

accuracy than the f(x) used in this work.  

Conclusions 
Here we have presented an overview of the Percifter topological 

representation of periodic structures. This is preceded by the 

mathematical prerequisites at an introductory level, followed by an 

overview of the core Percifter theory based on the convergence of 

sequences of expanded unit cells. The Percifter representation is 

fully plottable, giving an expressive planar representation of the 

periodic structure called the convergent persistence diagram 

(CPD). Similarities in periodic features may be reasoned and 

derived from overlaying and comparing CPDs and cross 

referencing against the original crystal structures. 

A more quantitative method of comparison between CPDs is the 

earth movers distance (EMD), where this metric may be applied in 

a range of unsupervised techniques as in previous chapters. We 

demonstrate how this may be used in combination with 

compositional similarity measures to give combined chemo-
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structural similarity scores. This combined score is demonstrated to 

express known chemical trends in the small data regime.  

Widening the arsenal of tools available for cheminformaticians to 

interrogate their datasets allows us to unearth more of the 

previously unnoticed quirks. We hope that these techniques inspire 

others to further explore the trends present in materials datasets and 

to advance the tools we use to represent these spaces.  
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Conclusions and Further Work 
 

The discovery of new solid state Li-ion electrolytes for next 

generation energy storage devices remains an ongoing pursuit. 

Despite reports of materials which advance many of the desired 

properties, a suitably hard and stable material with low electrical 

conductivity and high ionic diffusivity remains elusive. This multi-

decade search for these materials leaves a rich legacy of 

incremental advances from which we may correlate trends to direct 

future approaches, and further our understanding of these systems. 

Recognising and characterising patterns in data is a fundamental 

approach to scientific discovery. Evolutionary pressures have tuned 

this aspect of cognition, and uncovering a previously unnoticed 

trend often leads to involuntary feelings of elation, accompanied by 

renewed passion to continue an unyielding analysis.  

Unfortunately, the huge number of previously reported 

experiments coupled with the inherent complexity of representing a 

material means that uncovering such trends by reviewing the 

literature is no simple task. We believe the tools presented in this 

thesis are of benefit to the materials researcher, by condensing and 

highlighting such patterns. In science, we do not get our 

explanations for free, these must be deduced. But, knowing that a 

trend exists in the first place, is the first step in identifying why 

such a trend exists. 

The Element Movers Distance 
A core part of this thesis has investigated novel methods to 

quantify similarities between solid state compounds. The element 

movers distance (ElMD) is first introduced as a composition based 

measure of similarity. By observing known elemental similarities, 

the judgement of compositional similarity may be reframed into an 

optimal transport problem. This is demonstrated to give a more 

sensitive measure of comparison than the commonly used 
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compositional Euclidean distance (CED), as the CED may only 

consider the similarity of elements which are shared between two 

compositions.  

The ElMD is shown to be a consistent numerical measure between 

two compositions which has allows us to embed and partition 

datasets of materials with automated methods, letting us verify the 

alignment of these distances with known chemical relationships. 

Whilst this is a computationally intensive procedure when 

compared to simpler metrics, modern implementations allow this 

to be calculated in reasonable time for use in high-throughput 

applications.  

This has been primarily applied to materials datasets with 

unsupervised machine learning. One of the most direct methods of 

observing the efficacy of these metrics is by constructing 

embeddings of materials datasets with respect to the metric. 

Humans are adept pattern recognisers in two dimensions, and 

projecting a high dimensional space onto the plane often allows us 

to identify trends and inconsistencies in the dataset by eye. This 

does not tell us anything about why such trends exist. However, 

uncovering a trend in a dataset allows us to apply our knowledge 

and begin the process of reasoning as to why such a trend may 

exist.  

Carrying out a DBSCAN clustering on a UMAP embedding of a 

materials dataset w.r.t. the ElMD has shown success at partitioning 

compositional spaces into chemically reasonable subgroups. These 

cluster labels allow us to manually verify the efficacy of the metric, 

as chemically similar materials are found in the same clusters. This 

also provides the usual benefits of unsupervised labelling, which 

allows us to make basic assumptions about new materials based on 

the cluster in which they are located. 

We demonstrate how these cluster labels may be used to judge 

model performance in supervised learning as an alternative to k-

folds cross-validation. A form of data leakage can be said to occur 

when data in the testing set carries enough similarity to samples in 
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the training data that the model does not attempt to form a new 

prediction, but simply returns the known value of the data found in 

the training set. By partitioning a dataset into holdout sets for leave 

one cluster out (LOCO) cross-validation, we may train a model on 

the majority of our data before testing its predictive performance 

on a chemically distinct holdout set. This allows us to judge 

whether a model has truly learnt to extrapolate the relationships 

found in the training set to new chemistries. As a core aim of data 

driven materials discovery is the exploration of entirely novel 

chemical domains, we believe judging models based on their 

LOCO performance gives a more truthful measure of performance 

than the more favourable results that will be obtained through k-

folds cross-validation.  

The integration of these metrics with supervised or generative ML 

models has not been explored in this thesis. Nevertheless, the 

ElMD has been applied by others in a range of ML workflows 1–7, 

often used to judge a hypothetical materials similarity to previously 

reported materials as a proxy measure of either feasibility of 

synthesis or novelty. This is a core component of the Descending 

from Stochastic Clustering Variance Regression (DiSCoVeR) 5 

approach by Baird et. al.. This technique improves on the 

embeddings presented in this thesis, by taking each of the materials 

in identified clusters and replotting these with the property of 

interest against the local density of each composition in the ElMD 

space. In doing this, a trade-off between a materials predicted 

functionality and compositional novelty may be established, which 

allows the practitioner to make reasoned judgements on which 

candidate formulations should be prioritised for synthesis.  

In the past decade, advances in deep generative models have 

improved to the point that they may no longer be dismissed as 

mere curiosities. In particular, the wide adoption of diffusion 

models 8,9 harks the beginning of a new paradigm in visual design 

which may well prove to be as revolutionary as the invention of the 

camera. It is known that optimal transport can be used with 
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generative adversarial networks (GANs) to improve stability 

during training, leading to higher quality outputs 10. More recently 

optimal transport has been integrated into generative methods for 

materials 11, and it is our belief that further integrating the 

chemically aligned metrics presented in this thesis could lead to 

improvements in quality for other generative workflows.  

Throughout these investigations it has been assumed that the 

modified Pettifor number 12 is a consistent measure of elemental 

similarity. However chemical inconsistencies must be introduced 

when compressing a space as information rich as the known 

elements into a linear scale. For example, the assignment of 

magnesium at index 73 brings it in close proximity to iron, 

manganese, and zinc, placing it far away from calcium, at index 

16, which does not align with known chemical understanding. 

Whilst additional chemical scales have been included as part of the 

ElMD package, a thorough investigation into the optimal elemental 

embeddings to extract domain knowledge has not been carried 

forward.  

Monotonic integer linear scales bring clear advantages. These are 

fundamentally more intuitive, as the number line carries a strong 

mental association with physical distance that is not easily afforded 

to us with higher dimensional and real valued scales. Further, these 

scales allow us to use much faster algorithms for computing EMD, 

which brings many practical benefits for high throughput 

applications. Nevertheless, it may be the case that using more 

complex elemental descriptors will give a stronger alignment 

between the abstract measure of chemical similarity as judged by 

the chemist, and the numeric measure of similarity returned by the 

metric. 
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ML-Driven Design of Ionic 

Conductors 
The initial aim of the study presented here was the presentation of 

the Liverpool ionics dataset, accompanied by an investigation of 

the performance of state of the art ML models at predicting 

conductivity from composition. Due to the limited size of 

previously available datasets, a new dataset was constructed. The 

new dataset was an order of magnitude greater than previously 

available, with 403 unique compositions with their recorded A.C. 

impedance spectroscopy at room temperature, and 790 readings in 

total. These readings were taken from the literature, spanning a 

conductivity range of 5.00×10–16 S cm–1 to 2.50×10–2 S cm–1. Each 

of the compositions was assigned a structure type during initial 

data gathering, with 15 structural families covered in total. This 

took the efforts of 30 researchers to validate each of the entries due 

to the wide discrepancies in how these properties are reported in 

the literature requiring multiple validation stages.   

The timescale of this investigation was lengthened by the covid-19 

epidemic. Learning effective methods of remote communication 

and adjusting to new means of working was not an overnight 

process. Whilst decreasing the individual burden, having a large 

team also increases the administrative burden of synchronising 

schedules and circulating detailed instructions. Project milestones 

must take other team members prior responsibilities into 

consideration, assigning more time to ensure that the request of 

validating data is a reasonable request for all parties. To increase 

the user experience, a bespoke interface was developed presenting 

each researcher with a single entry and the relevant information to 

validate each recorded conductivity.  

Once validated, this dataset was interrogated with recent 

unsupervised and supervised ML tools. Structural representations 

were not used, as only composition was recorded when gathering 

data. Embeddings of the compositional space allow us to observe 
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the chemical diversity in the given dataset. Using ElM2D we 

construct compositional maps of the ICSD with this dataset, and of 

the dataset in isolation. In the combined embedding we see that the 

majority of the compositions are found in localised regions of the 

map, suggesting there may be areas of unsurveyed potential that 

could be targeted for future exploration. In the embedding 

containing only compositions of the dataset, similar structure types 

fall in close proximity to one another in isolated clusters. This 

enables the use of the clustering algorithm DBSCAN 13 to 

automatically assign labels to compositions which are similar to 

one another under the ElMD.  

In big data regimes it can often be assumed that the training set is a 

representative sample of the global population, and that new testing 

data will also be drawn from the same distribution. Thus, k-folds 

cross validation may be applied as a reasonable measure of how 

models will perform in applied scenarios. In materials discovery 

we know that the reported materials form a limited subset of all 

possible formulations, which has been anthropogenically biased 

through human prioritisation. Furthermore, materials of interest are 

often interesting due to being dissimilar to previously reported 

materials, i.e. out of distribution.  

The 9 cluster labels identified with DBSCAN may be used to 

isolate compositions of chemical similarity from one another, and 

thus be used in leave one cluster out cross validation (LOCO-CV), 

by training 9 supervised models on a majority of the dataset and 

testing the predictions on each left out cluster in turn. LOCO-CV 

gives a more realistic judgement of how our models perform when 

exploring new phase fields, where the model has not been exposed 

to these interacting chemistries before.  

Regression and classification models that can accurately predict a 

materials conductivity from its composition are of clear benefit. 

These would  enable us to screen wider regions of compositional 

space for exciting formulations before the lengthy process of 

synthesis. State of the art random forest and deep learning 
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techniques were used in conjunction with the two cross validation 

schemes discussed above, with the models performance at forming 

predictions on the chosen test sets taken as the final measure of 

performance.  

In each of the cross-validation schemes and experimental hold out 

set, we see that the ML models typically outperform the control 

studies. The best performing deep learning classification model 

predicts whether a material will have a conductivity greater or less 

than 10-4 𝜎𝜎/𝑐𝑐𝑚𝑚−1 with an accuracy of 0.71 and an MCC of 0.38 on 

LOCO holdout sets. This model has improved its score over the 

control studies performance, such that we believe it can be used in 

further work to screen novel phase fields as a preliminary step 

prior to more computationally demanding screening procedures. 

These models are imperfect, and do not replace the judgement of a 

trained chemist. They may however be applied by trained chemists 

to increase the mental bandwidth they can dedicate to effectively 

search for materials of interest, by first discarding a greater number 

of uninteresting materials. False negatives will mean some 

formulations that deserve investigation will be overlooked, but one 

hopes that the volume of materials that are worthy of further 

investigation will be increased overall. 

False negatives are to be expected when using a lossy descriptor 

such as the chemical composition. Ionic conductivity is a factor of 

multiple physical phenomena interacting in a many body 3-

dimensional space, and thus it is unsurprising that this model fails 

to capture all the irregularities of this complex system when given 

so little information about each material. We believe for 

preliminary screening phase fields before deeper investigation this 

is an acceptable trade off. Given the large quantities of data that are 

reported each year, future investigations should incorporate 

structure as an additional screening step once a crystal structure has 

been determined computationally, as it is demonstrated that ML 

models with these features consistently outperform composition 

only models.   
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Percifter 
Persistent homology (PH) was proposed whilst investigating 

potential methods of representing the structures of ion-conducting 

materials. PH marks the birth and death times of topological 

features, which is to say the number of connected components and 

cycles, of a space as points in a 0-dimensional pointcloud are 

expanded into spheres of growing volume. This has been explored 

in the literature by other groups to represent materials 14, but the 

periodicity of crystalline structures ensures that the PH 

representation of a finite pointcloud contains noise from the 

fragmented structural features imposed by periodic boundary 

conditions. The utility of PH is not hindered despite these 

inaccuracies, and it is demonstrated to be a useful tool in materials 

discovery 15. Practical methods to reduce this noise have been 

reported in the literature, with large numbers of atoms in the unit 

cell 16 and atom specific PH 17 proposed as methods to better 

represent the topology from the initial cif file.  

In this chapter we introduce a novel approach to reduce the impact 

of these boundary features, Percifter, based on a sequence of 

increasing unit cell expansions. The ratios of topological features 

have a converging function fitted, and their limit at an infinite 

expansion taken as the final ratio in the convergent persistence 

diagram (CPD). Boundary features should have a negligible or 

negative final ratio, and thus may be culled from the 

representation. A similar approach has more recently been 

proposed by Teresa Heiss at the applied algebraic topology 

seminar “Geometry and Topology of Periodic Point Sets, for 

example Crystals” (https://youtu.be/LiGivu0maD8), which should 

attain greater accuracy in final CPD representation than currently 

returned by Percifter, but no preprint is available online at present.  

In our work it is demonstrated that various structural trends shared 

by materials can be identified by following patterns across multiple 

convergent persistence diagrams (CPDs) by eye. The birth and 

death time of the connected components and cycles present in the 
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periodic structure discards information about much of the longer 

range and higher order interactions, which could be correlated with 

properties of interest. However, by focussing on specific features, 

what is presented to the researcher is a more digestible subset of 

space which allows the most salient trends to be extracted 

manually. This has been demonstrated by several examples. 

For the Sr-Ti-O Ruddlesden-Popper phases, the separate rock salt, 

perovskite, and double stacked perovskite layers may each be 

associated with distinct features on each CPD, which are found in 

similar regions across the separate CPDs. We show that trends in 

void sizes may be shown across series of MOFs, by the UiO 

UVAHIK, WIZMAV, and RUBTAK structures. These materials 

have shared similarity, as these are isostructural with linker size 

increasing by a single benzene ring as we go through the series. 

This shared similarity is reflected in the CPD, as the death time of 

points on the CPD increase in proportion to the void size.  

Binary structures of the ICSD were revisited after the ElMD 

chapter. As there are many thousands of reported structures 

composed of two elements in the ICSD, extracting structural trends 

through direct observation is a more challenging task. 

Nevertheless, each of the structures with high symmetry cubic 

lattices possess characteristic pointsets on the CPD, allowing these 

structures with shared features to be isolated from the remainder of 

the dataset. 

We show that by treating the fractionally weighted intervals of the 

CPD as piles of earth with mass in proportion to the ratio of the 

interval, the earth movers distance may again be applied, this time 

between two CPDs. This is demonstrated to align with chemical 

judgement, and is shown to separate collections of structures by 

their perceived structural similarity, and embeddings of such sets 

with respect to this metric appears to cluster points with similar 

motifs in close proximity, respecting the symmetry group of the 

crystals. The differences returned by this metric span a smaller 

range of values when compared to the ElMD, due to the smaller 
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range of values that are covered by the supporting space, as most 

points in a CPD are typically found in dense regions between 1-5Å 

whereas elements on an integer scale will range from 1 to 118. 

When the Percifter metric is used in isolation this difference in 

scale has no effect on other tasks, but when combined with other 

metrics this requires rescaling to ensure that the structural 

contributions provided by this metric are not overwhelmed by the 

magnitude of others. 

The Percifter metric can be combined with the ElMD, but due to 

the aforementioned differences in underlying length scales, we 

apply a scaling operation first. A complete distance matrix of both 

distance scores is first computed, before each matrix is divided by 

the respective means. The rescaled matrix will carry the same 

variations of the metric, but with a new mean of 1. Thus, both 

distance matrices may be summed together to give a combined 

chemo-structural distance matrix. This may be used as a lookup 

table for the combined distance between two materials in further 

downstream tasks. In our combined embeddings it is shown that 

inconsistencies which are present when judged solely on elemental 

similarity can be resolved when additional structural information is 

included.  

It is possible that, like humans, supervised ML models find the 

relationships between chemo-structural space and properties of 

interest simpler to follow using CPD descriptors than other 

descriptors. These are not however in the fixed length vector 

format necessary for most downstream ML tasks, and whilst 

multiple methods of embedding a PD into a fixed length vector 

exist 18,19, a canonical representation is yet to emerge. The CPD 

adds further complexity, as fixed length representations in the 

literature will assume integer, not fractional, counts of each 

persistence interval in the PD. Thus, new fixed length 

representations must be defined to encode CPDs into a suitable 

format for supervised ML tasks.  
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We have not explored any methods of reversing the process and 

generating crystal structures from their representative CPD in this 

thesis. The inverse design of a pointcloud from its persistence 

diagram (PD) is partially solved in the finite case 20, by iteratively 

updating the positions of a pointcloud until the generated 

pointclouds PD is in agreement with the target PD. However, PDs 

are not invariant descriptors of pointclouds 21, and as different 

pointclouds can generate the same PD, these remain imperfect 

tools.  

For the examples given in the Percifter chapter, each of the atomic 

sites were treated as solid periodic structures. In many areas of 

crystallography this is a reasonable assumption, but various 

compounds exhibit irregularities through the existence of mobile 

ions and point defects. This means it may not be possible to define 

a canonical representation of such a crystal structure, as separate 

samples will have slightly different distributions of ion positions, 

leading to differing fractional occupancies for each of the refined 

positions. Further, minor fluctuations of an external electric field 

will cause the positions of mobile ions to migrate leading to 

altered, although similar, periodic structures.  

This simple observation has been disregarded in this work. The cif 

parsing library that is used in the Percifter implementation (atomic 

simulation environment) does not record fractional occupancy, and 

as such all structures are assumed to have full occupancy for all 

sites in the cif. This means that the processed CPD is not truly 

representative of the typical crystal structure, as there will be 

significantly more mobile ions included in the finite representation 

than are truly found in a finite region of the periodic crystal.  

A simple workaround would be to generate a collection of 

representations for a given structure, with the probability of 

selecting a mobile position to include in each representation 

decided upon based on its occupancy. The resultant CPDs could be 

pooled together, and for a suitably large number of representations 

of the initial structure, this may give a more faithful representation 



291 
 

of the true structure. However, this still has the potential to 

generate deceiving  representations.  

In a real crystal, overlapping sites with partial occupancy could not 

physically contain ions at both sites simultaneously, but encoding 

this restriction is not trivial and this situation could occur with the 

above approach. Whilst methods of characterising 

dynamic/temporal graphs have been formalised 22, these assume 

known, or observable, evolutions of the edgeset and pointset. We 

are not aware of such techniques for pointsets where points have 

stochastically weighted visibility.  

Closing Remarks 
If we could not judge distance we could not avoid tigers. The trait 

of repeatedly making the correct judgement of this intrinsic 

property of nature runs far back in our genetic tree. This simple 

feature of human cognition is well appreciated by mathematicians 

and good geometric reasoning is often valued as a trait of strong 

logical deduction. Applying this skill to unimaginably complex 

systems, such as the space of feasible materials, requires tangible 

representations that give the psyche something to grasp on to. 

When we make predictions for thousands of candidate materials, 

these must be presented to the practitioner in some manner. An 

unending sheet of data is a gauntlet which cannot be attacked. A 

map is a concise representation which fosters curiosity.  

The ease that modern deep learning frameworks take to set up 

means they no longer require heavy time investment and specialist 

teams to use. We can now use models “off the shelf” to form 

predictions of many more formulations in entirely new domains. 

This pandoras box will not close, and it is clear that statistical 

model assisted discovery will remain a dominant paradigm in high 

throughput screening for some time. It is foolish to heed caution in 

the face of curiosity, and the latest tools will always be misused, 

misinterpreted, and overgenerously applied by some. This may be 

to the detriment of the practitioner, and on occasion to the wider 
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community, but with this field being in its infancy there remain 

many avenues to experiment and find the correct methods that 

work best for each individual workflow. If a tool is incorrectly 

used to discover a material of extraordinary properties then it 

remains a useful tool. We should always strive for understanding 

and correctness, but untangling the high dimensional web of 

decisions that make up the inner workings of a trained neural 

network into a cohesive whole is akin to boiling the ocean.  

The numbers a loss function outputs can be endlessly chased to the 

sixth decimal place, but these convey little understanding. We must 

devise our own methods of judging quality. Quality is an elusive 

property which is difficult to quantify but easier to identify. We 

believe the metrics presented in this thesis provide a mental avenue 

for calibrating the outputs of statistical models and information 

rich materials datasets against human understanding.  

The skillsets required in theoretical chemistry and experimental 

synthesis form a complementary partnership, and it is only by 

drawing on this union of skills that we gain access to the repository 

where chemical knowledge is currently stored. It is a simple fact 

that the professionals who have worked under the constraints of 

synthetic chemistry for many years have a better understanding of 

this domain than any AI or numeric metric. Leveraging the 

knowledge contained within the experts cerebral portfolio remains 

the only path to truly judging whether a current approach is simply 

generating numbers which we have decided fit our personal 

narrative, or is approximating the physical world to such high 

quality that the approach is worthy of further investment.  
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