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“And my success (in my task) can only come from Allah.”
- The Holy Koran [Surah Hud 11:88]

“They ask thee concerning The Spirit (of inspiration). Say: 
‘The Spirit (cometh) by command of my Lord: of knowledge 
it is only a little that is communicated to you, (O men!)’”

- The Holy Koran [Surah Bani Isra-il 17:85]
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Abstract

Many previous performance benchmarks for Object Database Management Systems 
(ODBMSs) have typically used arbitrary sets of tests based on what their designers felt 
were the characteristics of Engineering applications. Increasingly, however, ODBMSs are 
being used in non-engineering domains, such as Financial Trading, Clinical Healthcare, 
Telecommunications Network Management, etc. Part of the reason for this is that the 
technology has matured over the past few years and has become a less risky choice for 
organisations looking for better w'ays to manage complex data. However, the development 
of suitable application- or industry-specific benchmarks, based on actual performance 
studies, has not paralleled this growth.

The research reported here approaches performance evaluation of ODBMSs pragmatically. 
It uses a combination of case studies and benchmark experiments to investigate the 
performance characteristics of ODBMSs for particular applications, following the 
successful use of this approach by Youssef [Youss93] for studying the performance of On- 
Line Transaction Processing (OLTP) applications for Relational Database Management 
Systems (RDBMSs).

Six case studies at five organisations show’ that organisations consider a wide range of 
factors when undertaking their own performance studies or benchmarks. Furthermore, 
none of the studied organisations considered using any public benchmarks. Six current and 
derived benchmarks also highlight statistically significant performance differences between 
three major commercial products: Objectivity/DB, ObjectStore and UniSQL. These 
benchmarks indicate the suitability of the products tested for particular application domains.

The research could not find any evidence at this time to support the concept of a generic or 
canonical performance workload for ODBMSs. This is demonstrated by the case studies 
and supported by the benchmark experiments. However, the research shows that 
performance benchmarks serve a very useful role in ODBMS evaluations and can help 
identify architectural and quality problems with products that would not otherwise be 
observed until significant application or system development was already in progress.
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CHAPTER 1 - Introduction

1.1 Introduction

Today, the rate of technological change is rapidly accelerating. Organisations are faced with 
increasingly difficult decisions about their choices for hardware and software platforms. 

Furthermore, increasing deregulation in many countries has forced companies into more 

aggressive deadlines and timescales to compete and survive. At present, object-oriented 

technology is viewed as being able to deliver more reliable and better quality software, 
because it enables the building of more modular software by using well-defined interfaces 
and hiding implementation details. This can be seen in Table 1.1, which shows the results 
of a survey of visitors to Object World UK in 1995.

Flexibility to change 40%

Reduced time to market 24%

Distributed application requirements 23%

Programmer productivity 19%

Application complexity 18%

Ease of use 9%

Financial savings 7%

Don’t know 5%

Other 17%

Table 1.1 - Main Reasons for Moving to Object Technology [Leach95],

According to Leach [Leach95], the top reason shown in Table 1.1 was also number one in 
1993 and 1994.

The total worldwide sales of object-oriented development tools by US companies in 1995 
were valued at US$1.3 Billion [OOS96]. Figure 1.1 shows a breakdown of the various 
strands. Object-Oriented Languages (OOLs) is the largest, followed by Application 

Development Environments (ADEs) and then Object-Oriented Databases (OODBs).
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OODBs

OO Class Libs ORBs

11%

OOLs
34%

Figure 1.1 - OO Development Tools in 1995 [OOS96],

Object-oriented languages are the most mature of all the strands shown, since Simula (the 
precursor to languages such as C++) has been in existence since the late 1960s. Other 
languages, such as Smalltalk, have also been present for several decades. On the analysis 

and design side, current efforts are underway through the Object Management Group 
(OMG) to develop a standard technique to communicate object-oriented designs. This is 
analogous to Electrical Engineering, for example, where a standard notation can be used to 
communicate electrical circuit designs. Such a notation would be understood by engineers 
wherever they were in the world. Object databases, however, are still rarely used in 
production [Dick95b; Loomi96], although Loomis & Chaudhri [Loomi98] contains 

examples of 18 commercial implementations. The reason for this is that a database is often 

at the core of many business processes within a company and changing it would be difficult 
and expensive, as there may be many application dependencies. This view is supported by 

Brodie & Stonebraker [Brodi93], who discuss some of the problems in migrating legacy 

information systems. In contrast, applications can often be re-written in another language 
without affecting existing applications and system or application designs can also be 

produced using a different notation.
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1.2 The Growth of Object Databases

Most of the major commercial object database products were developed towards the end of 
the 1980s and early 1990s. Many of them were built around object-oriented programming 
languages and attempted to provide object persistence for programming language objects. 

The engineering domain was an early adopter of this technology, since in the past, the 
approach may have been to store design objects in a relational database or to use some 

proprietary or flat file system. This often incurred performance and other overheads. For 

retrieval of design objects, for example, many database objects may have to be read and 
reconstructed together in memory. For storage, the design object would need to be flattened 
or decomposed. Some examples to illustrate these problems have been described by 
Loomis [Loomi95], Recently, the technology has become increasingly popular within other 
industry sectors. This shift towards non-engineering applications has been supported by 
survey evidence reported in [Leach95] and shown in Table 1.2.

Commercial application 17%

Other application 14%

Multimedia application 12%

Document management 9%

Workflow and financial modelling 9%

Mapping and GIS 8%

CASE 7%

Network management 5%

Scientific applications 5%

Manufacturing 4%

CAD 1%

Transportation 1%

No applications will run on ODBMS 28%

Table 1.2 - Use of Object Databases [Leach95].

Additional evidence showing the shift away from engineering to more mainstream 
commercial usage is shown in Table 1.3, which contains a breakdown of some of the 

industry' areas using and deploying ODBMS applications, based on a study of 24 
organisations by Barry [Barry97].

The market for this technology has grown steadily over the last decade, although it still 
accounts for only a few per cent of total sales of database systems [Dick95b; Loomi96].
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However, Table 1.2 also shows that there is a large minority that have indicated that they 

will not use object databases. Figure 1.2 shows the software sales of object and object- 

relational database vendors for 1992-93.

1991 1992 1993 1994 1995 1996

Aerospace 1

Finance, Banking, 
Insurance

3 1

Manufacturing 2 2

Research & Development 1

Transportation, Utilities, 

Communications

1 1 1 4

Publishing 1

Software Development 1 1 1 3

Table 1.3 - Year Deployed and Primary' Business [Barry97],

10 15

Software Sales (US$M)

20

□ 1992

□ 1993

25

Figure 1.2 - Database Software Sales [IDC94].

Part of the reason for this slow growth is that the relational vendors have not totally ignored 

developments in object technology in the same way that the hierarchical and network
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vendors ignored developments in relational technology, several decades ago. Furthermore, 

many companies do not wish to move to a new data management strategy [Hodge89]. 

Many of the major relational vendors have announced that they will be providing support 
for object-oriented concepts and Informix has already released a Universal Server on the 
market in late 1996. This, therefore, provides a smoother upgrade path for those 
organisations considering object data management.

1.3 Benchmarks

Jain [Jain91] states that:

“Performance analysis is a key step in the design and procurement of new 

computer systems including processors, languages, operating systems, 
networking architectures, or database systems. ”

He goes on to say that the techniques that may be used for performance evaluation include 
analytical modelling, simulation and measurement. Deciding which of these techniques to 
use is governed by a number of issues. These are illustrated in Table 1.4 and ordered from 
most to least important in the extreme left-hand column.

Criterion Analytical Modelling Simulation Measurement

Life-Cycle Stage of 

System
Any Any Post-Prototype

Time Required for 
Evaluation

Small Medium Variable

Tools Required Performance

Analysts
Computer
Languages

Instrumentation

Level of Accuracv Low Moderate Variable

Varying Parameter 

Values

Easy Moderate Difficult

Cost Small Medium High

Saleability of Results Low Medium High

Table 1.4 - Criteria for Selecting an Evaluation Technique [Jain91].

The three techniques can also be used together to improve the accuracy of performance 
evaluations. For this research project, however, only measurement was used. The process
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of performance comparison of systems by measurements is called benchm arking and the 

workloads used are called benchmarks [Jain91 ].

The collection of papers presented in [Donga93] covers some benchmarks for measuring 

the performance of processors, programming languages and database systems. For 

example, some of the benchmarks for processors and programming languages include:

• Ackermann’s Function.

• Dhrystone.
• Lawrence Livermore Loops.

• LINPACK.
• Sieve Kernel.

• SPEC Benchmark Suite.
• Whetstone Kernel.

Further details about these benchmarks can be found in [Jain91; Donga93], The reader is 

also directed to [Bell84] for a discussion of database performance within the context of 
overall system performance. Survey’s of relational database benchmarks are presented in 
[Inmon89; Gray91; McCan92; Youss93]. Some of the characteristics of good database 
benchmarks have been discussed in [Gray91; McCan92; Youss93],

Performance is often a major selection factor for Database Management Systems (DBMSs) 
[Chaud94a; Chaud94b], A standard technique to evaluate database performance is to use a 
benchmark, since the cost of implementing a full application is often too expensive 
[Ander90]. Generally, a benchmark is designed to be representative of the characteristics 
and load of a real application or to test some specific components of a DBMS [Chaud95a]. 
However, performance evaluation and benchmarking can serve a number of different 

purposes [Jain91; Longb93], such as:

• Specifying performance requirements.

• Evaluating design alternatives.
• Comparing systems.
• System tuning.

• Bottleneck identification.
• Workload characterisation.

• Capacity planning.

• Forecasting.
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Surveys of benchmarks for relational databases, such as [Inmon89; McCan92; Youss93], 

show that the focus of many benchmarks is towards measuring the performance of 
relational operations, such as Selection-Join query processing or towards application 
domains where relational database technology is widely used, such as On-Line Transaction 
Processing (OLTP). These benchmarks are generally unsuitable for measuring the 

performance of ODBMSs, where pointer navigation is a common feature and the 

technology is generally not used for OLTP [Dick95b; Loomi96], As previously mentioned, 
an early adopter of object database technology was the engineering community and 

perhaps, not surprisingly, initial benchmarks for object databases were designed to be 

suggestive or representative of this type of use. However, as the technology has matured, it 
has gained wider acceptance and examples of its use now exist in many application 
domains. This was highlighted earlier in this chapter and supported by evidence from 

several surveys. Public benchmarks for ODBMSs that model the data manipulation 

characteristics of these domains, however, have not been available. Reasons for this 
include a perceived lack of maturity, the lack of standard interfaces among products and the 
general reluctance of vendors to participate in competitive benchmark studies. There are a 

number of reasons, therefore, why new benchmarks for object databases are needed:

1. Performance is typically among the top three selection criteria for users when 
deciding which object database to purchase [Rotze91j.

2. The cost of implementing a complete application to test performance is 
expensive [Ander90],

3. A benchmark is only a valid yardstick for applications that are similar to the 
benchmark [Dietr92; Hallo93a].

4. Treating performance and its measurement generically is wrong and can lead to 
incorrect conclusions [Inmon89],

Points 3. and 4. are particularly relevant to many existing object database benchmarks, 

which focus on engineering applications. Trying to extrapolate the results from such 
benchmarks to other application domains can be highly misleading and dangerous 
[Dick95b; Loomi96].

1.4 Research Objectives

The previous discussion has exposed a shortfall in suitable application- or industry-specific 

benchmarks for object databases. It is the objective of this research project to address this 
deficiency since, by undertaking suitable studies, it should be possible to derive the data 
manipulation characteristics and requirements of particular applications and possibly 
generalise these to industry levels. In this respect, this research project follows the
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approach used successfully by Youssef [Youss93], However, as correctly observed by 
Lakey et al. [Lakey87], many of the applications being developed with object databases and 
the object database products themselves show greater variety than traditional applications 

and DBMSs and the problem in constructing benchmarks is finding a small number of 

example applications that cover the many possible kinds of variability, in both data and 
operation. The question of what operations to measure with object databases has also been 

raised in [Josep89] and [Zom95].

The following research objectives will be described in more detail in Chapter 4 and are 

presented here only briefly. These objectives are:

1. Study the performance of commercial object database applications.
2. Attempt to identify which classes of applications are more suitable for particular 

object database architectures.
3. Determine if a generic, simple and accurate performance model for object 

databases can be derived.

To achieve these objectives, this research will:

1. Take a pragmatic approach to the performance evaluation of object databases.
2. Use empirical techniques, such as case studies and laboratory experiments 

(benchmarks) to support 1.
3. Use appropriate statistical techniques for verification of results to support 2.

Using recognised empirical and statistical techniques will provide rigour, since many 
previous object database performance studies have selected an arbitrary set of operations to 
measure and have provided no evidence to show whether the results reported are 

significant. This author is not aware of any previous efforts to use this combination of 
techniques for evaluating the performance of object databases on the scale attempted in this 

research project.

The results will show that commercial organisations generally undertake performance 
studies or benchmarks for a variety of reasons, such as product selection or evaluating 

design alternatives, before implementing complete applications. Furthermore, public 
benchmarks are never considered, but companies always undertake their own performance 

tests (an observation also reported elsewhere by Chaudhn [Chaud98a; Chaud98b]). 

Additionally, results from a suite of benchmarks described later in this research project 
show that there are statistically significant performance differences between a number of
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major commercial products and that one benchmark alone would not have shown some of 

the observed differences.

1.5 Thesis Structure

This thesis is organised into seven further chapters. Each of these will now be briefly 

described to show the structure of this report.

Chapter 2 will begin with a discussion of the shortcomings of relational technology for 
managing complex and inter-related data. This will be followed by a detailed description of 

the major commercial object databases (GemStone, 02, Objectivity/DB, ObjectStore and 

VERSANT) and object-relational databases (Illustra and UniSQL). This will aid the reader 
in the subsequent chapters on the case studies (Chapter 6) and benchmarks (Chapter 7), 
where these products (and their features and architectures) are referenced.

Chapter 3 presents a survey and critique of the most popular and well-known benchmarks 
related to object data management. This includes benchmarks such as OOl [Catte92], 
HyperModel [Ander90] and 0 0 7  [Carey93], The chapter also discusses the suitability' of 
two well-known relational benchmarks for measuring the performance of ODBMSs: the 
Wisconsin Benchmark and the TP1 Benchmark. The chapter concludes with a discussion 

of the limitations and shortcomings of current object database benchmarks. Some of the 
limitations have been directly observed in the case studies and benchmarks described in 
subsequent chapters.

Chapter 4 describes the Research Design. The problem statement is presented, based on 

the limitations of previous benchmarks discussed in Chapter 3 and the growth in the use of 
object data management for non-engineering applications, as discussed earlier in this 
chapter. The three research objectives are described in detail and alternative research 
techniques are discussed. It is argued that the empirical approach is relevant to this research 
project and that a combination of case studies and laboratory experiments (benchmarks) 
provide a suitable route to theory extension. Possible limitations of the research approach 
are also highlighted. Finally, some statistical techniques are introduced, based on their use 
by previous database performance researchers.

Chapter 5 presents a domain analysis to determine some of the characteristics of 
applications that are often cited as being appropriate for use with object databases. Whilst 
the framework is based on one that was used for engineering applications, it is shown that 
other application domains have many similar requirements. The application domains are:
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Computer Integrated Manufacturing (CIM), Engineering, Financial, Geographical 

Information Systems (GISs), Healthcare, Scientific Data and Telecommunications.

Chapter 6 describes the results of six case studies at five organisations in the UK. The 

organisations include some of the most well-known companies from their respective 

industry-sectors and were selected based on their availability. These companies are Nomura 

International and Reuters (Financial), Earth Observation Sciences (GIS), St. Mary’s 
Hospital (Healthcare) and NEXOR (X.500 Directory Systems). The case studies show a 

variety of factors that can influence performance and confirm some of the problems with 

existing benchmarks, suggested at the end of Chapter 3.

Chapter 7 presents the results of six current and derived performance benchmarks 

undertaken on three commercial products: Objectivity/DB, ObjectStore and UniSQL. The 

benchmarks include the OOl Benchmark [Catte92], the AFIT Wargame Simulation 
Benchmark [Hallo93a] and the CITY Benchmark [Youss93], The three other benchmarks 

include one based on data supplied by NEXOR in one of the case studies described in 
Chapter 6, a benchmark based on GIS data provided by one of the object-relational 

database vendors and, finally, a benchmark based on portfolio management systems from 
the financial domain. Analyses of the performance results show statistically significant 

differences in the three products tested.

Chapter 8 summarises the research findings, contributions of this work and presents the 
major conclusions. It shows that the case research approach has helped to provide insights 
into how object data management is being used in commercial applications. Furthermore, 
the benchmark experiments have shown performance differences between several major 
products, that were not previously reported. The research could not Find any evidence at 

this time to support the idea of a generic or canonical performance workload for ODBMSs. 
It discovered, however, that it is important to undertake performance studies for particular 

applications. Some areas for future research in ODBMS performance are also identified.

1.6 Chapter Summary

This chapter has introduced some of the reasons for the development of object databases, 
briefly discussed why new object database performance benchmarks are needed and has set 

the scene for the remainder of this report by describing the content and structure of 
subsequent chapters.
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CHAPTER 2 - Object Databases

2.1 Introduction

The previous chapter briefly discussed some of the reasons for the development of object 
databases. This chapter expands upon that discussion and looks at some of the reasons that 
led to the emergence of ODBMSs, such as the deficiencies in relational database 

technology. A number of major commercial object and object-relational database products 
are also described. From the descriptions, it will be clear that current products differ 

considerably in many areas, such as architectures, programming language interfaces, query 
capabilities, etc. This variability among products makes the task of developing performance 
benchmarks more difficult, since the number of dimensions that a benchmark developer has 
to consider is far greater than with previous generations of database technology. The 

product descriptions will also aid the reader in subsequent chapters, where some of the 
features discussed are again referenced.

It is assumed that the reader is already familiar with object-oriented concepts (e.g. 
inheritance, encapsulation, etc.) and data management concepts (e.g. concurrency, 
recovery, etc.). Appendix A also describes these concepts.

The remainder of this chapter is organised as follows. Section 2.2 provides a working 

definition of an ODBMS. Section 2.3 discusses some of the limitations of relational 
database technology. Section 2.4 presents a number of commercial object and object- 
relational database products in detail. Finally, section 2.5 contains the chapter summary.

2.2 What is an ODBMS?

ODBMSs can be considered as the convergence of a number of technologies, most notably 

Object-Oriented Programming Languages (OOPLs), semantic models and complex object 
models [Khosh90], Additional influences have come from artificial intelligence [Jeffc89; 
Paton91], Despite this convergence, there is currently no single object data model for 
ODBMSs (in contrast to the Relational Model for RDBMSs). The reason for this has been 
noted by Cattell [Catte94a]:
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“There is no single object-oriented paradigm, and therefore there are a 

variety of object-oriented data models.”

Research and commercial efforts have, therefore, resulted in various interpretations and 
implementations of the paradigm. As a result of this, there is considerable confusion as to 
exactly what constitutes an ODBMS, e.g. [Lagun89], although Kim [Kim90a] has noted 

that many ODBMSs share a set of core concepts.

Today, there are at least a dozen or more good definitions of ODBMSs:

• Atkinson et al. [Atkin89].
• Cattell [Catte94a].

• Committee [Commi90].
• Dittrich [Dittr86].

• Joseph et al. [Josep91],

• Khoshafian & Abnous [Khosh90],
• Kim [Kim90b].
• Lockemann [Locke92].
• ODMG [ODMG93],
• OODBTG [OODBT91].
• Ullman [Ullma87J.
• Unland & Schlageter [Unlan90].

• Zdonik & Maier [Zdoni90].

Strictly speaking, the Object Data Management Reference Model [OODBT91] does not 
define an ODBMS, but proposes a design space for a family of models. In effect this 

provides an umbrella over all the current definitions, since most of the concepts suggested 

by the leading researchers and academics have been included in the proposed reference 

model. Arguably, the most appropriate definition is from the Object Database Management 

Group (ODMG) which has defined an ODBMS as one that transparently extends one or 
more existing OOPLs with DBMS capabilities [ODMG93]. An example is GemStone 
which is based on Smalltalk but also provides support for C++. Other products, such as 
Objectivity/DB and VERSANT, are based on C++ but also provide support for Smalltalk. 

Another group of products, such as ITASCA and 0 2, store objects in a language-neutral 

format and provide several OOPL bindings. Throughout the remainder of this report, the 

ODMG definition will be used.
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2.3 Why do we need ODBMSs?

“Everyone agrees that traditional relational database systems do great on 

business data processing, and lay an egg if you ask them to do anything else 

... If you want them to store documents or CAD-related information, they 
just don’t do very well.” Michael Stonebraker, cited in [Hazza90],

Some of the reasons for the growth of ODBMSs were the inadequacies of existing database 

technology for managing increasingly complex data and the growth in the often-cited next- 
generation applications, i.e. the ubiquitous CASE, CAD, CAM, etc. These shortcomings 

are discussed below.

2.3.1 Lack of Expressive Power

The only data structure (aggregate or object) in the Relational Model (RM) is the table. This 

reduces all data to flat two-dimensional form, with relationships among tables being 

dynamically re-imposed at run-time. The lack of a facility for establishing relationships 
between tables at design time is probably the main backwards step from the structured 
database [White89], Khoshafian & Abnous [Khosh90] have also noted that the “semantic 
eloquence of complex object composition is lost” when real-world objects are mapped to 
tables, resulting in the so-called “semantic gap.”

Lack of expressive power could also be extended to the Data Definition Language (DDL) 
and Data Manipulation Language (DML). For example, SQL provides DDL and DML 

capabilities, but needs to be embedded in a host language for general computation. In 

contrast, OOPLs are seamlessly extended with DDL and DML capabilities, besides being 
computationally complete.

2.3.2 Simple Data Types

To support next-generation applications, a richer set of data types is required, e.g. arrays, 
lists, multimedia data types, etc. Some popular RDBMS vendors have already enhanced 
their products to support new data types. For example, Openlngres allows the 
incorporation of user-defined Abstract Data Types (ADTs) into database tables. However, 
these enhancements are still not comparable to the facilities provided by Object-Relational 

DBMSs (ORDBMSs), such as Illustra and UniSQL, which provide support for 

inheritance, functions/methods and better Application Programming Interfaces (APIs) for 
OOPLs.
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2.3.3 Loss of Data Protection

Most RDBMSs support simple data types, e.g. integer, char. Many programming 

languages, however, enable new enumerated types to be defined. When these enumerated 

types are mapped to the database types, data protection is lost [Hughe91].

2.3.4 “Impedance M ismatch”

“Impedance mismatch ... the metaphor comes from the field of electrical 
engineering, and refers to the fact that an impedance mismatch in an 

electrical circuit will prevent the maximum power transfer from being 

achieved.” [Gray92].

This is often cited as a problem with existing (relational) technology by strong advocates of 
ODBMSs. The issue stems from the fact that two languages are needed when using 
RDBMSs - one database language and one programming language. With ODBMSs, this 
problem disappears, since the same language is used for accessing the database as well as 

programming. However, it should be remembered that in RM, a database sub-language 
was originally defined to provide support for relational operations only and was never 
intended to be a complete programming language. There is evidence to suggest that 
mapping data structures between programs and the database can account for up to 30% of 
the code in an application [Atkin83]. ODBMSs fare little better, since in one respect, the 

programmer is brought down to the level of non-declarative programming again. However, 
this is being redressed by the efforts of ODMG, who are working towards an Object Query 

Language (OQL).

2.3.5 Perform ance

Within the literature, it is widely accepted that certain classes of applications are particularly 
well suited to ODBMSs. These are primarily applications involving the storage and 
manipulation of complex and heavily inter-related data. Traditionally, RDBMSs have been 

unable to provide the necessary7 performance for applications with complex relationships 

and multi-way joins, as discussed by Maier [Maier89],

By its very nature, RM “flattens” entities. Putting these entities together in a meaningful 

way requires joining (described as “unnatural” by Khoshafian & Abnous [Khosh90]) and 
sorting. These operations compete for being the slowest in relational systems [Loomi92], 

In addition, commercial language optimisers are often unable to cope efficiently with
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queries involving large numbers of joins [Gray92], which has resulted in static binding 

strategies being developed by some relational database vendors.

In many ODBMSs, the equivalents of relational joins are pre-computed by explicit pointers. 

Additionally, since ODBMSs can store methods, this incremental knowledge about the 

operations being performed provides the ability to better control the concurrent execution of 
transactions and, hence, provide improved performance. This is possible since, as 
[Dawso89] has noted, the operations are not simply reads or writes, but have more 

semantics, as illustrated by the following example.

For a queue data type, it is possible to have operators such as enque and deque. From 
one point of view these are write and read operations respectively. However, when 

considering the special semantics of these operators, a higher degree of concurrency can be 
achieved. Consider a queue object Q and two transactions, T1 and T2. If T1 performs an 

enque on Q, then T2 is prevented from performing a deque until T1 has committed by 
common read/write semantics. However, for non-empty queues, it is possible to execute 
both operations without conflict, since they do not affect each other’s results.

Atwood [Atwoo92] has also noted that in an ODBMS, the operations that objects of a given 
type are capable of performing are known to the DBMS. The DBMS can therefore exploit 

this knowledge to optimise performance. Performance tools could be built to monitor 

reference trace patterns for frequently performed operations. Anticipatory' pre-fetching is 
then possible for objects that an application is about to reference. Currently, however, no 
commercial ODBMS product uses any of the special semantics just discussed.

In contrast, according to Ketabchi et al. [Ketab90], in an RDBMS, the set of operations is 

limited and fixed (operations on the sets of tuples and the two operations select and 
project). Therefore, any operation that an application wishes to perform must be mapped 
onto this limited set. As applications become complex, so does this mapping, leading to 

large application programs. To retrieve an application-specific object, several DBMS 
operations are required. This makes applications slow.

2.4 Review of Commercial Products

In this section, a number of major ODBMS and ORDBMS products will be described in 

detail. The term major is used based on published sales figures and market share from IDC 
[IDC94],
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Five pure ODBMSs are described first. A number of reports, e.g. [McFar93; Potte94; 

Fiaber95], were used as the basis for the evaluations. Many of the pure ODBMS products 
follow the definition of an object database, as defined by ODMG, i.e. they tend to extend 

one or more OOPL with DBMS serv ices. This is fundamentally different from the object- 

relational database products, which are discussed later.

The pure ODBMS products described are GemStone, Ot , Objectivity/DB, ObjectStore and 
VERSANT. All of these products appear in the case studies described in Chapter 6 and 

both Objectivity/DB and ObjectStore are also benchmarked in Chapter 7.

2.4.1 GemStone

Client Server

Figure 2.1 - GemStone Architecture.

GemStone [Bretl89; Maier90], along with Vbase [Andre90], was one of the first ODBMSs 
commercially available. GemStone is based on the Smalltalk object-oriented language with 

extensions to support DBMS services. It has a client-server architecture (Figure 2.1) and 

can be described as using a page-server [DeWit90]. It can also be categorised as an active1 
ODBMS with the ability to execute methods on the server. This feature can be very useful 
in querying large collections of objects on the server and transferring only the results back 
to the client, rather than shipping large numbers of objects from the server to the client to 

perform the query' processing.

1 The term “active” w hen applied to databases can mean different things [Talbo98], so  in this research 
project its m eaning is the ability o f  an O D B M S to execute m ethods or queries on the server.
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The two major components of GemStone are the GEM and STONE processes. GEM 

handles object access and execution, database file I/O and caching and may execute either 
on the client or the server. Deciding whether to link a GEM with an application to run on 

the client or whether to run the GEM on the server and use a Remote Procedure Call (RPC) 

mechanism to communicate with an application running on the client has performance 

implications, as discussed by Skiadelli [Skiad94]. There is one GEM per logged-on user 

(but a user can have more than one GEM). STONE is the database monitor and manages 

concurrency control, transactions, recovery, etc. There is one STONE per database.

Database definition and manipulation are through a language called Smalltalk DB, which is 
used to define the active behaviour that can be executed on the server. Objects defined in 

this way can also be invoked from other object-oriented languages, such as C++. Because 
Smalltalk only supports single-inheritance, however, the C++ language binding is also 
restricted to this. The GemStone Object Development Environment (GeODE), was also 
developed, enabling users to design applications using drag-and-drop techniques with 
blocks of pre-defined code that could be linked to produce applications quickly (Figure 

2.2). However, GemStone Systems have now ceased further development of this.

Figure 2.2 - Example GeODE Program.

Besides using the message sending paradigm, associative access queries are also possible 
by using what are termed “selection blocks”, delimited by { and }, for fast path traversal 
and comparison using the V notation. This approach, however, violates encapsulation. 

For example, the following query would find 40-year old employees:

MyEmployee select: {:anEmpVar | anEmpVar.age = 40}

GemStone uses the persistence independent of type model - to make a new object persistent 
in an application, a message is sent to a class to create a new object, which is then
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automatically made persistent when a transaction commits. It also uses garbage collection 
and will only delete an object when all references to it are deleted. This is in contrast to 

some other ODBMSs, where explicit memory management is required. Objects can also be 

clustered to improve performance. Clustering can be assigned at anytime in an object’s life 

(not only when it is created). Furthermore, objects can be clustered with other connected 
objects (e.g. an attribute of an object may itself be an object) and even heterogeneous 

collections of objects can be clustered together.

GemStone supports both optimistic and pessimistic concurrency control. In the latter, 

however, explicit locks must be acquired by an application. The work reported in 

[Emmer93], demonstrates that the optimistic approach can have a greater overhead, since 
more time is required to determine conflict resolution, etc. However, this approach may be 
more appropriate for design and engineering environments, whilst the pessimistic approach 
would be more suitable for traditional business applications. Otis [Otis96] adds the 

following about optimistic versus pessimistic locking. Firstly, the optimistic approach, 
whilst using more CPU than pessimistic approaches, is a practical solution even for 

traditional applications given the ratios between CPU performance and disk speeds on 

modem machines. Secondly, in the optimistic approach, read-only queries do not have to 
acquire any locks and this leads to less contention between updating and read-only 
transactions. Also, since there is no need to wait for a lock to be released by another 
transaction that may be holding it, no deadlock detection is necessary'. Currently, 
GemStone supports Read, Write and Exclusive locks. Locks are held across transaction 

boundaries and must be explicitly released. Locking is possible for individual objects or 
collections of heterogeneous objects. However, GemStone does not support locking, 
copying or manipulating a collection of interrelated (composite) objects.

Authorisation is supported in GemStone by segments. An object is assigned to a segment, 
which holds information about the operations that users are permitted to perform on that 

segment. This authorisation is orthogonal to both the location of an object in the database 

and concurrency control.

In terms of relationships, GemStone can support 1:1 uni-directional. Other cardinalities, 

such as 1:N and N:M are also possible by using sets and arrays. However, a bi-directional 
relationship must be modelled as two uni-directional ones and must be explicitly 
maintained.

Location transparency is also supported, so that objects can be moved freely without users 
having to make any code changes. Furthermore, database replicates (a GemStone database 

consists of a number of files, called extents and a replicate is an on-line copy of an extent)
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are also supported - these can be used to improve query performance or for recovery 

purposes.

Object versioning and work-group support (useful for engineering environments) are very 

limited in GemStone. However, schema evolution and schema versioning are provided, 

with support varying from one language interface to another. Runtime schema access, 

definition and modification are also possible.

In conclusion, Dick & Chaudhri [Dick95b] propose that GemStone has the following major 

strengths:

• Smalltalk Engine and Library - the tight integration of GemStone and 

Smalltalk is, without doubt, one of its major features.
• Application Partitioning - the flexibility to configure where a GEM process 

runs enables better utilisation of available processing power.
• Large-Scale, Business-Critical Support - GemStone was designed to 

support MIS and business applications with large quantities of data [Butte91b],

2.4.2 0 2

The 02 ODBMS was originally developed as a research prototype and was subsequently 
released as a commercial product. Originally, it was based on an object-server architecture, 

but because cache inconsistencies were discovered and reported in [DeWit90], the 
architecture was subsequently changed to a page-server. 0 2 can be classed as an active 
ODBMS, since indexed access for large collections is possible on the server [Manol94], 
Furthermore, the OQL also executes on the server. The major architectural components, 

illustrated in Figure 2.3, are:

• Type Manager - creates, stores and maintains type descriptions and 

applications.
• Method Manager - creates, stores and maintains methods.
• Object Manager - handles message passing, garbage collection, indexes, 

clustering.
• Transaction Manager - provides concurrency control, recovery, etc.
• I/O Manager - handles database file I/O.

Object persistence is achieved by persistence through reachability - a persistent root is 
defined and objects that are directly or indirectly connected to this root also become 
persistent. This approach has the advantage that objects can be created without needing to
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specify at creation time whether they are to be persistent. As with GemStone, garbage 

collection is used to clean-up objects that are no longer referenced.

Client

Development
Tools Application

Type
Manager

Method
Manager

Object
Manager

Server

OQL
Optimiser Security

Transaction
Manager I/O Manager

Figure 2.3 - Cb Architecture.

Language bindings include C++ and Smalltalk, both of which are ODMG-compliant 
[Coope96J. Furthermore, Cb is language-neutral and C++, O2 C and Smalltalk applications 
can all access the same objects and execute methods, etc. [Coope96]. Access to RDBMSs 

across LANs or WANs is provided by C^DBAccess.

Nested transactions are not supported by Cb, since it is based on a storage system that 

implements only conventional transactions. Pessimistic concurrency control is provided 
and transaction rollbacks/recovery are supported by a write-ahead (redo) log. In addition to 
inheritance, 1:N and M:N relationships, both uni- and bi-directional, are supported 

[Coope96],

Additional features include object versioning and schema evolution. There is also a meta-
schema that allows applications to interrogate the content and form of a database 

[Coope96], Another recent development has introduced a capability' to integrate Cb with an
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Object Request Broker (ORB) which enables O2 C schema definitions to be translated 
automatically to the Interface Definition Language (IDL).

To conclude, three major strengths of O2 are:

• Proven Storage Technology - O2 uses the Wisconsin Storage System 
(WiSS) to manage persistent objects.

• Tools Support - various graphical tools allow applications to be quickly 
prototyped.

• Theoretical Basis - considerable research has been undertaken to develop a 
more rigorous and formal object model for O2 , as reported in [Banci91].

2.4.3 O bjectivity/DB

Client Client

Figure 2.4 - Objectivity/DB Architecture.

Objectivity/DB is based on a file-server architecture [DeWit90] and some of the database 
components are illustrated in Figure 2.4. However, [Wade96] comments that the server can 

use either NFS or Objectivity’s Advanced Multi-threaded Server (AMS). The original 
product was designed as a multi-language, multi-operating system, multi-network, 
distributed ODBMS [Wade96], Although the first release of the product in April 1990
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supported only C and C++, support for Smalltalk has also been provided recently, in-line 

with the ODMG standards effort for multiple-language bindings. ANSI SQL with 

extensions is also supported, with queries against any objects possible. ODBC support 

allows the wealth of ODBC-compliant tools to be used directly and immediately. All 

language interfaces share the same objects and the same databases. Furthermore, objects 
may be created or modified through any of these interfaces simultaneously [Wade96], 

Persistence-capability is achieved by inheritance - a pre-supplied class (ooObj) provides 

persistence behaviour and objects that need to be made persistent must be members of 

classes that inherit from this class.

Each object has a structured Object Identifier (OID), since Objectivity/DB uses a 
hierarchical storage model which at the top level is viewed as a single logical database. This 
logical database is composed of multiple distributed databases, which are themselves 

composed of a number of containers. Containers contain pages and objects reside on 

pages. The unit of locking is the container, which may hold individual “hot-spot” objects or 

thousands of objects and this granularity can be changed dynamically [Wade96], Moving 

an object, however, requires the allocation of a new OID and updating of all references, 
although this is transparent to the user and is a trade-off between purely logical 01 Ds that 
are slow, since hashing is required on access and relationships become essentially the same 
as an RDBMS indexed join [Wade96],

Objectivity/DB uses non-persistent handles (ooHandle) or references (ooRef) to 
automatically manage pointers to persistent objects and map them to virtual memory 
addresses, providing a level of indirection and helping to improve protection from wild 
pointers for database pages that have been mapped to an application’s address space. 
Handles also pin objects in the client cache which makes access to multiple fields in the 
same object instance more efficient [Dick95a], Although adding a level of indirection adds 
some slight overhead, this is likely to be offset by other database and application 

operations, such as disk accesses [McFar93]. Furthermore, the indirection enables the 

object manager to swap objects, which is necessary for scalability [Wade96], Products that 

give direct pointers to an application give up the ability to swap objects during a transaction 
and are reduced to the virtual memory-mapped approach with the associated problems of 
thrashing, concurrency control and hard limit to swap space size [Wade96],

Support for relationships include 1:1, 1:N and M:N. Both uni- and bi-directional 

associations are supported, although in the former, referential integrity will not be 
automatically guaranteed and must be explicitly programmed in an application. Various 

performance-enhancing options are also available when using associations. For example, a 

short association provides the ability to store objects close to the object containing the
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association, e.g. a department object may contain references to all its employee objects, but 
this is at the cost of location transparency. Another option is to use inlines, which enables 
connections to other objects to be stored as part of an object, providing better performance 

and resulting in less storage overhead.

The transaction model supported is a pessimistic (locking) one, using Read, Write and 
Update locks and additionally, Multiple Readers, One Writer (MROW) is also provided 
with readers being notified if data have changed since last read. Normally, locks are 

implicitly provided in read mode when objects are accessed from within a transaction, but 
may also be explicitly acquired. Nested transactions are not currently supported and an 
application may only have a single transaction active at a time, although multiple top-level 

transactions (one per thread) are supported in Smalltalk and in C++ [Wade96]. Deadlock 

detection is provided and various options can be programmed to specify what should occur 
when there is a lock conflict. Objectivity/DB uses the standard two-phase commit protocol 
and provides database commit (saving objects to disk and freeing resources) or commit- 
with-hold (acting as a checkpoint and holding resources) as well as transaction abort.

Composite object support is possible through two mechanisms. Firstly, by making a class 
as the type of an attribute of another class and secondly, through associations. As 

mentioned earlier, associations of various cardinalities are supported and operations are 
available that can treat a composite object as a single unit, e.g. for deletion or locking. 
Versioning is also available and some basic operations are provided to support application- 

defined version control. Both linear- and branch-versioning are available and the object 
handle is used to keep track of the version status of an object. Rather than keeping the delta 

(differences between one versioned object and another), Objectivity/DB stores each version 
as a separate object and users can simultaneously access multiple versions and 
configurations as desired [Wade96]. When versioning a composite object, only the 
changed objects within the composite are versioned and any associations are automatically 
managed in this process [Wade96]. Work-group support is also provided through check-
out and check-in and persistent (long duration) locks.

Automatic schema evolution is supported and most changes are handled without user code 
[Wade96]. More complicated changes may require users to add some methods. Dynamic 
schema changes and instance upgrades are supported without requiring application 
stoppage or database shutdown [Wade96].

To conclude, Objectivity/DB has the following major strengths [Dick95b]:
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• High Availability - the product is used in many industries where this is a 

major requirement, e.g. Telecommunications, Manufacturing, Process Control.

• D istribution - the architecture of Objectivity/DB was originally designed with 

this very much in mind.
• H eterogeneity - the product is available on all major UNIX platforms, VMS 

and Windows NT [Dick95a]. Objects created on one platform are automatically 

mapped to another.

2.4.4 O bjectStore
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Figure 2.5 - ObjectStore Architecture.

ObjectStore, like GemStone, is based on a page-server architecture [DeWit90] and major 
elements of the client-server partitioning are illustrated in Figure 2.5. On the client-side, 
only elements above the black line are user-visible. Unlike GemStone, however, it is not 

classed as an active object database, although the client and server processes could be 

configured so that it effectively behaves as one.

ObjectStore uses the persistence orthogonal to type approach which allows any object to be 
made persistent by overloading the new  operator in C++. SQL and ODBC support are also
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provided through the OpenAccess product. A relational gateway, called DBConnect, is also 

available.

ObjectStore is unique among commercial ODBMSs in using a Virtual Memory Mapping 
Architecture (VMMA) based on virtual memory support provided by the underlying 
operating system. All objects are referenced by virtual memory pointers and, therefore, 
both transient and persistent objects are treated in the same way. One drawback with the 

direct memory reference model, however, is that physical database design is more tightly 

coupled to overall system design [Alfre94]. Furthermore, ObjectStore supports extensive 

tuning options, resulting in many different versions of even simple benchmarks 

[Hallo93a],

Performance improvements can be achieved though the use of clustering and indexing. 
Indexes are supported on paths, which can be viewed as pre-computed joins [Lamb91]. 
Objects that are likely to be referenced together can be placed in clusters (fixed-size 

containers) which reside in segments (expandable storage containers). Clustering hints can 

be defined when an object is created. By default, if a virtual memory page fault is generated 

when an application accesses a persistent object, the client traps this and reserves address 

space for the entire segment that contains the object. The client then sends a request to the 
server for this segment. However, this could be too large for the client cache and so users 
can specify that only a certain number of bytes are retrieved. Alternative data fetch policies 
include page-mode or stream-mode. The latter being useful for applications that do not need 

to access all the data immediately.

Access to object attributes is possible through the normal message-sending paradigm, but a 

proprietary DML is also provided that supports associative retrieval, e.g.

set<Person*> teenagers = people[: age >= 13 && age <= 19 :];

which creates a collection of teenagers (people aged between 13 and 19). This type of 

query is guaranteed to be type-safe and is optimised at compile-time.

Relationships of 1:1, 1:N and M:N are supported, both uni- and bi-directional. Three 

mechanisms are available to support these associations. Firstly, by using pointers for uni-
directional without referential integrity - these are similar to pointers in C++. Secondly, by 
macros, which enforce referential integrity for bi-directional associations. Thirdly, by a 

class (os_reference) which has a storage overhead when compared to the other two 
techniques, although it reduces the overhead of virtual memory [McFar93].
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For non-workgroup applications, multiple concurrent users are supported by the traditional 

lock-based approach. Locking is on a Read, Write or Update basis, with support for Multi- 
Version Concurrency Control (MVCC) with multiple readers and one writer also available 

(which eliminates lock waiting). According to [Wade96], MVCC is at database- and 

session-level granularity. The MVCC reader may never update objects in the database 

they’ve opened through MVCC. Each MVCC user sees a different snapshot, each of which 

is stored on the client, causing large portions of the database to be moved to each such 

client and managed separately. The result is that MVCC can be useful for a process that 
wants to read and doesn’t want to interfere with writers, but is not suitable for 

environments with many readers and writers performing multiple transactions. This 

restriction is not just a performance one - MVCC cannot support multiple transactions, i.e. 
some read, some write, etc., from the same users [Wade96], The access mode must be 

explicitly specified when commencing a transaction, but locks (at the page-level) are 

implicitly acquired. Locks are held on the client, so that if another client requests an object, 
the server must do a “call back” to the holding client - this extra network call may be 
expensive in certain circumstances, depending on database access patterns [Dick96]. 

Nested transactions are also supported. For workgroup applications, an optimistic 
approach is available since readers can be allowed to access one version of a configuration 
(described below), whilst allowing a writer to modify another version. This applies to any 

ODBMS that supports versioning [Wade96], In ObjectStore, however, an application may 
access only one configuration and versioning is at the physical level of pages and segments 
[Wade96],

Composite object support is provided by making a class the type of an attribute of another 
class. Composite objects can be treated as one unit for the purposes of locking or deletion. 
Versioning and work-group support are also provided through configurations and 

workspaces and are directly related to composite objects. A configuration can be nested and 
is a unit of locking that is composed of objects from one or more classes. Workspaces are 
used for access control to configurations. Typically, a configuration will be checked-out of 

a global workspace into a local one and then modified. When it is checked-in, a new 

version of the configuration will be created. Both linear- and branch-versioning are 
supported.

ObjectStore provides good support for schema evolution. An eager evolution strategy is 
used by invoking an evolve function from an application. Changes that can be made include 

adding and deleting attributes and classes, changing the type of an attribute and changing 

inheritance relationships. There is also extensive support for runtime access to schema 
information.
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• Compatibility with Other Tools - the unique approach to persistence used 

by ObjectStore enables libraries and third-party tools to be used without 

modifications.
• Retrieval Performance - read performance is rated very highly when the 

data being accessed fit entirely within memory (otherwise thrashing occurs and 
performance degrades [Wade96]).

• Scalability  - using virtual memory' pointers, large databases can be easily 

created. Wade [ Wade96] argues, however, that this is inappropriate, since once 

the data set gets larger than real memory, thrashing slows it down exponentially 
and there is a hard limit (swap space size) in data accessible per transaction.

To conclude, ObjectStore has the following major strengths [Dick95b; Dick.96]:

2.4.5 VERSANT
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Figure 2.6 - VERSANT Architecture.

VERSANT ODBMS is an example of an object-server architecture [DeWit90], but is 

passive in that method execution takes place on the client and only some system-defined
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methods can be executed on the server. However, VERSANT does support query 

execution on the server, which has the benefit that large collections of objects can be 
queried on the server and only the results transmitted over the network to the client (as per 

GemStone).

The two main components illustrated in Figure 2.6 are the VERSANT Manager and 

VERSANT Server. VERSANT Manager executes partly on the client and partly on the 
server and handles object caching and validation, object query support, long transactions, 

schema management, object links, versions and check-out/check-in. VERSANT Server 
handles object retrieval, object updates, page caching, storage class management, index 
support, query support, short transactions and logging/recovery. Databases can be stored 
as files or as raw disk partitions. Roll-forward recovery' is supported.

VERSANT supports language bindings for a number of languages including C++ and 

Smalltalk. In C++, persistent objects are created by sending a new persistent message to 

a persistent-capable class. Clustering of objects is also on a class-basis, allowing objects of 
different classes to be clustered together. For example, all employees of a particular 
department could be clustered with the department. This type of clustering is an approach 
similar to that provided by RDBMSs.

Traditional pessimistic locking is available as well as optimistic concurrency control with 
timestamping. Lock modes include Read, Write, Update and Null. Nested transactions are 
also supported. Locking is at the level of an object, in contrast to other ODBMSs, such as 
ObjectStore which locks at the page-level and Objectivity/DB at the container-level. 
Locking at the object-level is more suitable for applications that require fine-grained control 
of objects, such as CAD applications, as reported by Kempe et al. [Kempe95a; 
Kempe95b], Wade [Wade96] argues, however, that CAD applications would never use 

object-locking, since they tend to use groups of related objects together and object-level 

locking would cause performance problems. He further adds that object locks could be 

useful for holding a lock for a long time on an object, but that other ODBMSs could 
provide the equivalent functionality with versioning of objects. Two types of locks are 

supported - short locks and long (persistent) locks. The latter being used for check- 
out/check-in of objects into personal databases and survive short transactions, application 
executions and system crashes [McFar93]. Locks are implicitly acquired at the start of a 

transaction and commit-and-hold is also supported.

Uni-directional relationships (1:1, 1:N) and bi-directional relationships (1:1, N:M) are 

supported with referential integrity being guaranteed for the latter. Composite objects are
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also supported in a manner similar to ObjectStore and Objectivity/DB. Deletion and locking 

of entire composite objects is also possible.

Location transparency is guaranteed, since VERSANT uses logical OIDs - objects can be 

easily moved without the need to update any relationships. Versioning (both linear- and 

branch-) is also supported with extensive methods available to manipulate and modify 

versioned objects. VERSANT uses a generic object to maintain information about 

versioned objects including the derivation graph, latest version, etc.

Query capability in VERSANT is supported by an Object SQL, based on work undertaken 
at Texas Instruments. Path queries are supported as well as regular expression support for 
string queries. SQL support is also available through a middleware product.

Schema changes include support for renaming classes and attributes, adding or deleting 

attributes, adding or deleting leaf classes and adding or deleting ancestor classes of a class. 
A lazy schema migration strategy is used. Extensive support is also provided for dynamic 

(runtime) schema changes and modifications.

Dick & Chaudhri [Dick95b] conclude that VERSANT has the following major strengths:

• Object-Level Granularity - for some applications that require fine-grained 
access to objects, this would be more suitable than page- or container-based 
approaches.

• Balanced Client-Server - both the client and server can undertake some 

processing, although VERSANT does not have an active object-server.
• Transparent Distribution and Administration - the use of logical OIDs 

enables objects to be easily moved across a distributed database (for databases 

and servers that were known at compile-time [Wade96]).

This concludes the descriptions of the pure ODBMS products. The next tw’o products are 
object-relational databases. Currently, there is no standard definition for an ORDBMS, 
although the design philosophy is to build upon the tried and tested techniques used in 

relational database technology, such as good DBMS services, whilst providing support for 

richer data types and more complex objects.

The products described are Illustra and UniSQL. One of the benchmarks described in 

Chapter 7 is based on a customer benchmark used by Illustra. UniSQL is one of the three 

products tested with a suite of benchmarks in Chapter 7.
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2.4.6 Illustra
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Figure 2.7 - Illustra Architecture.

One of the longest-running research prototypes, investigating the feasibility of extending 

relational databases with object concepts, is POSTGRES [Stone90b; Stone91], 

Specifically, the aims of POSTGRES were, in order of priority, [Hales89]: •

• Provide better support for complex objects.
• Provide user extensibility for data types, operators and access methods.

• Provide facilities for active databases (i.e. alerters and triggers) and inferencing 
including forward- and backward-chaining.

• Simplify the DBMS code for crash recovery.
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• Produce a design that can take advantage of optical disks, workstations 

composed of multiple tightly-coupled processors and custom-designed VLSI 
chips.

• Make as few changes as possible (preferably none) to RM.

The aim being to keep all the features already familiar to users of commercial DBMS 
systems, such as transactions, data loading, tracing, tuning, etc. and to make them work 

well with ideas from OO [Brown96].

The commercial realisation of this was (after several name changes) called Illustra 

[Stone93a; Stone96] and the architecture is illustrated in Figure 2.7. It is very much server- 
oriented, although functions can be executed on either the client or the server. SQL is 
optimised and executed on the server. According to Brown [Brown96], while the queries 
are optimised centrally, the execution may be distributed between the client and server 

processes. However, he adds, there are performance penalties to be paid in this approach, 

since the data need to be moved from the server to the client for client-side evaluation and 
the results of these functions may need to be shipped back to the server to participate in 
other nodes of the query. Currently, the decisions of where to execute a particular function 
is left entirely to the discretion of the application programmer [Brown96], Ideally, this 

decision should just be another aspect of the system’s overall optimisation strategy 
[Brown96].

Illustra uses the familiar rows and columns paradigm as with RDBMSs, but OO features 

include multiple data types, extensibility, multiple inheritance, polymorphism and 
encapsulation. Each record in the database also has an OID, which enables navigational 

access to be used but, undermines the mathematical foundation of relational technology 
[Taylo92]. Brown [Brown96] adds, however, that the OID used by Illustra is value-based, 
not reference-based and is simply another candidate key. Extensibility is provided by plug-

in modules that extend database capabilities with new data types, functions and access 

methods. The storage manager can also be extended. For example, [Brown96] describes 
the time series module that allows the creation of “virtual relations” that break the 
tuple-» page-» buffer-» disk paradigm. Using the time series module, tuples of a relation 
with constrained cardinality, i.e. every tuple is the same length, are loaded into a 
contiguous bit stream. This enables code to access the data very quickly by calculating the 

seek() offsets and jumping around on disk [Brown96], Although this may not have wide 

utility, it seems useful for some data types.

The Illustra general purpose rules system can be used to build and modify policies and 
procedures. DBMS crash recovery has been simplified by using no-overwrite storage. In
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other words, no data are ever deleted, which means that time-travel queries are possible on 

past data and recovery will be instantaneous. A process, called the vacuum cleaner, 
periodically moves old data from primary to secondary storage. However, the no-overwrite 

storage is unlikely to appear in the Universal Server, which is the merged Informix and 

Ulustra product [Brown96],

Language interfaces include SQL (with some SQL3 extensions), C++ and C. Functions 

written in an external language, such as C, can be registered with Illustra. Such functions 
have input and output parameters defined, are equivalent to methods in ODBMSs and can 

be called from SQL queries. For example [Brown96]:

CREATE TABLE Farms OF N E W  TYPE Farm_Type (
Farmer_Name Name NOT NULL PRIMARY KEY,
Boundary Poly NOT NULL,
Farm_House Pnt );

CREATE TABLE Rivers OF N E W  TYPE River_Type (
River_Name text NOT NULL PRIMARY KEY,
W a t ershed Poly NOT NULL )

U N D E R  G e o _ F e a t u r e s ;

These two extended SQL statements show the use of spatial data types (Poly, Pnt) and 
inheritance (UNDER).

SELECT F .Farmer_Name 
FROM Farms F, Rivers R
WHERE C o n t a i n s ( R . W a t e r s h e d , F . B o u n d a r y );

SELECT R.River_Name, COUNT(*)
FROM Farms F, Rivers R
WHERE C o n t a i n s ( R . W a t e r s h e d , F . B o u n d a r y )
GROUP BY R.River_Name;

These two SQL queries demonstrate the use of a function (Contains) which takes two 

parameters of type Poly and returns a Boolean result.

In conclusion, Illustra has the following three major strengths:

• Based on Relational Technology - the familiar rows and columns found 

in RDBMSs are still used.
• E xtensib ility  - various modules can be added to provide additional 

functionality for specific domains or vertical markets.
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F lex ib ility  - both declarative and navigational interaction styles are supported 
and additionally, Illustra is not tightly coupled to any particular programming 

language.

2.4.7 UniSQL
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Figure 2.8 - UniSQL Architecture.

The UniSQL architecture is illustrated in Figure 2.8. It can be classed as both an object- 
server and a query-server. The major components are: •

• Index Manager - to create and delete B-Tree indexes on attributes.
• Workspace Manager - to handle objects loaded from database into memory.
• Multimedia Manager - to manage user-defined multimedia classes and 

methods.
• Query Optim iser/Processor - devises optimal plan for Object SQL queries 

based on cost estimation.
• Storage Manager - handles disk storage, indexes and system catalogs.
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Transaction Manager - provides serialisable transactions, two-phase 

commit, locking and logging (before- and after-updates).

UniSQL integrates relational concepts with object-oriented ones [Kim92] and provides 

extended support for [Finkl93]:

• Nested tables.

• Registered procedures.
• Class (table) inheritance.
• Generalised framework for multimedia data.

The approach is to generalise rows and tables to object instances and classes, respectively. 

The rows and columns paradigm can be used directly with SQL and UniSQL can behave as 

a pure relational database in this configuration. However, support for object-oriented 
concepts such as object identity and inheritance enable UniSQL to also behave as an 

ODBMS. Registered procedures (methods) can be defined in any complied language, 
attached to tables and can be inherited and overridden. Furthermore, since object identifiers 
are used, it is possible to directly connect a row in one table to a “nested” row in another by 
using hashed index pointers. This approach is faster than using index searches (since these 

are I/O intensive as reported in [Baker91]) and allows path navigation using the V notation 
to be used, as demonstrated by the following example derived from [Finkl93; Manol94]:

CREATE TABLE E m p loyee (
name
position
location
skills
employer

char (20), 
char (15), 
CityState, 
Set-of Skills, 
Company );

CREATE TABLE CityState ( 
city char (20)
state char (2) );

A query to find the names of all employees in California would then be:

SELECT name 
FROM Employee
WHERE Empl o y e e . l o c a t i o n . s t a t e  = "CA";

Relationships of 1:N cardinality are modelled by using the Set-of construct above. A cursor 
would then be used to iterate over all the instances in this set.
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UniSQL supports on-line backups and dynamic schema changes. Object migration is 

possible through lazy evaluation techniques. Standard shared and exclusive locking 

techniques are available, with five isolation levels, to maintain database consistency. The 
locking granularity can be either at the object-, class- or page-level and is automatically 

adjusted. Clustering of related classes is also supported, but there is no versioning 
capability. Apart from the ANSI SQL interface, C, C++ and Smalltalk are also available. 
Various graphical tools for database inspection and application development are also 

provided.

In conclusion, UniSQL has the following major strengths:

• Based on Relational Technology - the familiar rows and columns found 

in RDBMSs are still used.
• Support for OO Concepts - subsumes and generalises relational concepts.

• Client-Server Architecture - makes better use of modern hardware 

technology than existing RDBMSs.

2.5 Chapter Summary

This chapter has presented a working definition of an ODBMS as one that transparently 
extends one or more object-oriented programming language with DBMS services, such as 
concurrency, recovery, etc. This definition is based on that described in [ODMG93]. This 

approach is in contrast to relational databases, where there are separate languages for 
database manipulation and application programs. The work reported by Lakey [Lakey89], 

presented in Appendix B, demonstrates that using a single language for database 
manipulation and application program development can provide benefits over using two 

separate languages.

Some of the reasons for the development of ODBMSs, based on the deficiencies of 
relational database technology for managing complex and inter-related data, were also 
discussed. Briefly, these deficiencies can be summarised as: •

• A simple data model that “hammers” the world flat.
• A limited set of atomic data types, e.g. integer, char, floating point, etc.

• No support for useful modelling constructs, such as specialisation/ 
generalisation, aggregation, etc.

• The often-cited “impedance mismatch” problem.
• Poor performance for some applications, e.g. CAD, simulations, etc.
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The features of a number of major commercial object and object-relational database 
products were also presented and showed wide variations in these products. Major 
differences occur in a number of areas, such as architectures, whether queries can be 

performed on the server, support for relationships, tuning options, etc.

From a performance benchmarking perspective, several important issues have emerged in 
this chapter.

Firstly, since the object model is very rich and extensible, the choice of data structures and 
application design is less obvious. This is because the design space is much larger than 

current implementations of RM and there are no widely published techniques equivalent to 
relational normalisation. The increased flexibility that object-orientation brings, therefore, is 

not without certain costs.

Secondly, the discussion of the commercial products showed that implementation choices, 

architectures, etc. vary considerably, making the task of developing a standard generic 

workload very' difficult. Some products are also very flexible in where processes can 
execute. For example, GemStone allows some processes to execute on either the client or 
the server and provides several mechanisms for linking applications to these processes, 

which have performance implications, as reported in [Skiad94].

Thirdly, the tuning options on most products are very extensive. For example, Halloran 

[Hallo93a], commented that the number of tuning options for ObjectStore was staggering. 
Most commercial ODBMS product evaluations or application developments would use 

available tuning features to obtain a more accurate picture of product capabilities. This is 
confirmed by several of the case studies presented in Chapter 6.
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CHAPTER 3 - Survey of Benchmarks

3.1 Introduction

Previous work reported in [Chaud94a; Chaud94b], explained that leading DBMS 
researchers and authors regarded performance as one of the major issues in the selection of 

a particular ODBMS product. One approach to measuring the performance of any DBMS is 
to use a benchmark, since the cost of implementing a complete application to test 
performance is often too expensive [Ander90]. However, a benchmark can be misused, as 
this cynical definition of a benchmark shows [Jain91]:

benchmark v. trans. To subject (a system) to a series of tests in order to 
obtain prearranged results not available on competitive systems.

- The Devil’s DP Dictionary.

Users, therefore, need to be wary of “Benchmarketing” (vendors publishing selected 
performance numbers) and “Benchmarking Wars” (vendors publishing new performance 
numbers in response to another vendors’ performance numbers) [Gray91], These problems 

were particularly experienced in recent times with the OOl Benchmark [Catte92], 
something freely admitted by vendors themselves, e.g. [ODI93a],

Performance evaluation and benchmarking can, as mentioned in Chapter 1, serve a number 

of useful purposes [Jain91; Longb93], such as: •

• Specifying performance requirements.

• Evaluating design alternatives.
• Comparing systems.
• System tuning.
• Bottleneck identification.
• Workload characterisation.
• Capacity planning.

• Forecasting.
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Of these, comparing systems (to select one product from a number of alternatives) may be 

the major reason why users would wish to use benchmarks. Furthermore, in some 

performance work undertaken by researchers comparing various commercial ODBMSs, 
e.g. [Carey93; Hallo93a; Kempe95b], a number of significant observations were reported 

which would not have been made without using performance benchmarks.

From a users’ perspective, there are three choices when considering undertaking a 

benchmarking exercise [Chaud96b].

Firstly, users could use existing benchmarks. The major advantages here are that published 

results will generally be available and essentially someone else has done the hard work. 
However, not all vendors may wish to publish results (something evident in recent times 
following disagreements between the University of Wisconsin and Object Design, Inc. to 

publish 0 0 7  results for ObjectStore). Another serious problem is that available benchmarks 

may not model a user’s application - a benchmark is only a valid yardstick for applications 

that are similar to the benchmark [Dietr92; Hallo93a],

Secondly, users could adapt or modify an existing benchmark to meet their requirements. 
This has the same advantages as the previous approach. However, if the benchmark is 
particularly complex, this requires a detailed understanding of its workings and the 
knowledge of what to modify. Furthermore, useful results may still not be available. For 
example, Tiwary et al. [Tiwar95] described the difficulties they experienced in attempting 
to modify the 0 0 7  Benchmark to meet their CAD application requirements.

Finally, users can opt to develop their own benchmarks. The advantage here is that the 
benchmarks should meet their exact requirements, but the disadvantage is that it can be a 
costly exercise in terms of time and resources. Barry [Barry94], for example, has cited a 

figure of US$100,000 to benchmark several object databases.

The remainder of this chapter is organised as follows. Section 3.2 reviews several of the 
major object database performance benchmarks. Due to space constraints, other 
benchmarks are presented in Appendix B. The format will be to describe each benchmark, 

discuss any published results available and describe what contribution each benchmark has 
made to the understanding of database performance. The appropriateness of using RDBMS 

and ORDBMS performance benchmarks for measuring ODBMS performance is discussed 

in sections 3.3 and 3.4, respectively. Section 3.5 discusses areas where current 
benchmarks are deficient. Finally, section 3.6 contains the chapter summary.
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3.2 ODBMS Performance Benchmarks

Figure 3.1 presents a genealogy of many object database benchmarks and, additionally, 
Figure 3.2 provides several major classifications. Future research should investigate 

rigorous taxonomies, as discussed by Worlton [Worlt93].

As mentioned in Chapter 1, a benchmark is generally designed to be representative of the 
characteristics and load of a real application or to test some specific components of a DBMS 
[Chaud95a]. In Figure 3.2, these are represented as Application Benchmark and 

System Benchmark, respectively. For a critique of the benchmarks, the reader is 

directed to [Hallo93c; Chaud94b; Chaud95a; Chaud95b].

3.2.1 The Original Engineering Database Benchmark (EDB)

The Engineering Database Benchmark (EDB) was developed to measure response time for 
simple queries, typical of engineering applications found on network, hierarchical, 
relational, object-oriented or other custom application-specific database systems 

[Ruben87], Response time being defined by the benchmark developers in their paper as:

"... the real (wall clock) time elapsed from the point where a program calls 
the database system with a particular query, until the results of the query, if 

any, have been placed into the program’s variables.”

Other factors that motivated the development of the benchmark were:

• Caching the Entire Database in Main Memory

This alone can provide an order of magnitude improvement in performance for 
some types of database applications, e.g. [Salem90].

• Avoiding the Overhead of Query Optimisation
Efficient optimisation coupled with main memory residency for object databases 
have also been explored by Li twin & Risch [Litwi92],

• Using Pre-Computed Links
Some RDBMSs can provide direct connectivity by using parent-child links. 
ODBMSs already support this capability.

• Alternative Database Server Architectures
New architectures that take better advantage of client-server capabilities have 

emerged in recent years.
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Rubenstein et al. [Ruben87] noted that whilst relational systems could respond to queries in 

tenths of a second, equivalent operations on in-memory structures could be performed in 
microseconds. DBMS architectures supporting some or all the above factors would provide 

a third alternative, with performance possibly two or three orders of magnitude better than 
that of relational systems, making them more suitable for engineering applications. One of 

the major aims of EDB was to try and identify such systems.

One of the reasons why existing DBMSs are unable to provide the necessary' performance 
for simple operations is that queries parsed, interpreted or compiled at run-time swamp the 

time for any simple operation [Catte88]. The time to parse and optimise an SQL query, for 

example, was reported at nearly a second on a Sun-3 processor [Ruben87]. Additionally, 
traversal of a relationship between two records in a DBMS can take 10,000 instructions and 

generate significant disk I/O [Atwoo91],

The database schema illustrated in Figure 3.3 and Table 3.1 shows that author is required 
to handle the M:N relationship between person and docum ent. Each person can be 

author of zero or more documents. For the benchmark, each document was associated with 

three randomly selected persons.

Figure 3.3 - The EDB Database Schema.

The schema was implemented on INGRES, UNIFY and RAD-UNIFY. UNIFY is an 

RDBMS that supports parent-child links [Catte94a]. A modified version, RAD-UNIFY, 

used a simplified locking scheme to more closely model the requirements of engineering 

applications (one database writer at a time), plus caching to keep as much of the database in 

memory as possible [Ruben87],
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Person Author Document

person id 4 byte int person id 4 byte int doc id 4 byte int
name 40 bytes doc id 4 byte int title 80 bytes
birthdate 4 byte int page count 4 byte int

doc type 4 byte int
pub date 4 byte int
publisher 80 bytes
description 80 bytes

Table 3.1 - EDB Attribute Sizes and Types.

For the sm all database, 20,000 persons, 5,000 documents and 15,000 authors are 
specified, giving a database (just data with no storage overhead) of approximately 2.3 MB - 
sufficient to fit entirely within the main memory of a typical workstation. A scale-up factor 
of 10 is used for the large database.

The benchmark measures the following database operations:

1 . Name Lookup

Retrieve the name of a person with a randomly generated id.
2 . Range Lookup

Retrieve the names of all people with birthdates within a particular randomly 
generated ten-day range.

3 .  Group Lookup

Retrieve the author ids for a given random document id. In relational systems, a 

join would be required, whereas in other DBMSs, logical links (e.g. OIDs) or 
physical links (e.g. record pointers) would be used.

4 . Reference Lookup

Retrieve the name and birthdate of a person referenced by a randomly selected 
author. This is the reverse of 3. Results may be identical to 1. for relational 
systems [Ruben87],

5 . Record Insert

A new author record is added. The time to update any physical structures is also 

measured. In general, relational systems are not very fast for updates 
[Ruben87],
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6 . Sequential Scan
Retrieve the title of each document from the document table. Included for 

completeness.

7 . Database Open
Performed once, at the start and includes a number of initialisation operations 
needed to prepare the database system for the benchmarks.

The benchmark does not measure the effects of clustering author records with either person 

or document records. The reason for this is that person and document records in an actual 

database may be connected to many other record types and cannot be clustered with more 

than one of them at a time [Ruben87],

The results for the small database showed that, excluding DB Open, INGRES and UNIFY 
produced comparable results. UNIFY performed better for Reference Lookup, perhaps due 
to the pre-computed links, whilst INGRES performed better for Record Insert, possibly 

because fewer physical structures needed to be updated. RAD-UNIFY gave the best 

results, in some cases an order of magnitude better than UNIFY, due to the modifications.

The large database results showed a fairly constant scale-up between INGRES and 
UNIFY, when compared to the small database results. RAD-UNIFY performed no better 
than UNIFY in many cases - the advantages of main memory residency and the other 
modifications were lost.

Duhl & Damon [Duhl88] reported upon their experiences and results whilst porting the 

benchmark to the Vbase object database system. For example, they observed that since 
object databases could provide direct connectivity between a single object and many related 
objects (which they referred to as a distributed property), when implementing the schema 
on an object database, author could be eliminated as an intersection entity and be treated 
either as a subtype of person or as an optional property of person. Furthermore, tw'o 

versions of the schema were implemented. Firstly, using person, author and document to 

produce an object-relational version (Vbase-OR) and secondly, using person and document 
to produce an object-oriented version (Vbase-OO). The latter making use of direct 

connectivity' between person and document.

From the results, Duhl & Damon drew the following conclusions:
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1. An object system can meet and in many cases exceed the performance of a fast 

relational system even in a problem clearly from the relational domain (this is 
probably a reference to the schema, which uses an intersection entity and the set 
of benchmark operations which would use joins as a result).

2. An object system can model a relational implementation (Vbase-OR) and 
achieve response times comparable to the relational system.

3. Improvements in performance can be achieved by using an alternative schema 
definition (Vbase-OO).

In general, however, it is difficult to define and measure benchmarks that compare object 

and relational database systems. Manola [Manol89] has suggested several reasons for this. 
Firstly, the responsibilities of the DBMS and application may be partitioned differently. In 

most object databases, for example, the DBMS and application are more closely integrated. 
This makes it difficult to compare on a “like-for-like” basis. Secondly, many developers 
believe that the two classes of database systems are intended for different purposes. A 
contrived benchmark could, therefore, be used to show the superior performance of one 

class of DBMS for certain applications, rather than how much faster one class of DBMS is 
against another.

More recently, Skiadelli [Skiad94] also described some performance work undertaken 
using EDB. This work was used to evaluate the suitability of GemStone and ITASCA for 

use in a data acquisition system (called DAQ) used at CERN in Switzerland for High 
Energy Physics (HEP) experiments. An existing database system developed in-house, 
called QUID, was used to hold parameters for the hardware and software required for a 
particular configuration of the DAQ system. Skiadelli attempted to determine if ODBMSs 

might be more suitable for this task and eventually replace the QUID system. She was able 
to find correspondences for person, author and document in the QUID system and 
proceeded to model these on the two ODBMSs. The results showed that both systems 

provided good performance in comparison to QUID as they were able to use local caching, 
indexing, etc. Furthermore, benefits were also foreseen in other areas such maintenance, 
uniformity and ease of implementation.

In summary, EDB was the first published attempt to develop a benchmark that could be 
used to measure the performance of ODBMSs. It was designed to measure simple 
operations on individual objects or records. The benchmark developers noted, though, that 

engineering applications might also require more complex operations, such as manipulating 

nested objects, so using their performance metrics alone did not make a system acceptable.
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3 .2 .2  T he M od ified  E n g in eer in g  D atabase B en ch m ark

Following experience with the original EDB, Cattell [Catte88] suggested a number of 

modifications.

Firstly, the schema was changed to reflect a database with a better engineering “flavour”, 

consisting of parts and connections, e.g. typical of a circuit board, as illustrated in 

Figure 3.4.

Figure 3.4 - Modified EDB Database Schema.

Secondly, the Range Lookup operation was dropped, as it was found that measurements 
for this differed from the Name Lookup by a constant time. However, an extension was 
proposed to measure complex operations, e.g. transitive closure, by combining the 

Reference and Group Lookup measurements.

The database itself was now populated with 20,000 parts and 60,000 connections for the 
small database. Each part being connected to three other randomly selected parts, giving a 
total database size (just data with no storage overhead) of approximately 1.8 MB.

A new set of operations were proposed to coincide with the changes to the schema:

1 . Lookup

Retrieve the x and y co-ordinates of 500 random parts.
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2 .  Traversal

Retrieve the x and y co-ordinates of a randomly selected part and of all other 

parts connected to that part, to 5 “hops” (total of 364 parts traversed, including 
possible duplicates).

3 . Insert

Generate 500 connection records between randomly selected parts.

After a number of further minor modifications, this benchmark became known as the OOl 

Benchmark, discussed next.

3.2.3 The Object Operations 1 (O O l) Benchmark

The Object Operations version 1 (OOl) Benchmark [Catte91a; Catte92] was developed as a 
successor to EDB. OOl was designed, like its predecessor, to measure interactive 

performance for engineering applications in object and relational database systems.

Cattell & Skeen [Catte92] attempted to identify those features of a database system that 
would enable significant improvements in performance (1,000 operations per second). 
They proposed that such performance would need to sacrifice concurrency control, since 

many engineering applications could be checked-out of a central database into a local 

workstation, where designers could work on them for extended periods of time. 
Additionally, large improvements in performance would not be achieved by minor 
improvements in the data model, physical representation or query languages. However, 
substantial improvements could be achieved by the following changes in DBMS 
architecture: efficient remote access to data, caching a large working-set of data in main 
memory, avoiding the often quoted “impedance mismatch” between programming and 
database query languages and using new access methods with fixed, rather than logarithmic 

access times.

The database schema was identical to that used by the modified EDB. Two logical records, 
part and connection, were defined. These could be stored as a single object type in an 
object database or as two relations in a relational database.

The parts are connected randomly, with the proviso that 90% of connections are made to 

1% of the parts with the numerically closest part numbers.

Tw'o database sizes, sm all (4 MB) and large (40 MB) are specified, with the same 
number of parts and connections according to the modified EDB.
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The operations are identical to the modified EDB. However, there are some slight changes 

to the number of objects processed. For example, the Lookup operation generates 1,000 

random part ids, the Traversal operation traverses 3,280 parts (7 “hops”) and the Insert 

operation creates 100 new parts. Cattell & Skeen claim that these three operations are 

representative of the types of operations in actual engineering applications, as illustrated in 

Table 3.2.

CASE ECAD

Lookup (L) Find programs for a 
particular system or range of 

dates.

Find components with 
particular types.

Traversal (T) Determine a compilation 

plan for a system 

configuration.

Optimise a circuit layout.

Insert (I) Enter new information after 

a module is compiled.

Add new components to a 
circuit board.

Table 3.2 - OOl Database Operations.

Reads (Lookup, Traversal) are performed an order of magnitude more often than writes 
(Insert). Traversals are performed more often than Lookups.

Experiments were initially conducted with three different systems called INDEX (a B-Tree 

file package), OODBMS (a beta version of a commercial object database system) and 

RDBM S (a commercial relational database system) [Catte92].

The results showed that the object database provided the best overall performance. Cattell 

& Skeen proposed that this was due to efficient access methods (e.g. parent-child links), 

minimised concurrency control, use of a local cache and no interprocess communication for 
database calls. All these were achieved without any overhead being incurred for the higher- 

level semantics provided by the object database system.

The RDBMS was the slowest, primarily due to its query-server architecture. For example, 

approximately 100 seconds were just due to the overhead of database calls across the 
network. This could be improved by using the benchmark in batch mode, but would be 

counter to its intent to measure response time for interactive operations. Even when the 

DBMS process and benchmark application were running on the same machine, it was 

found that there was still a significant overhead, again primarily due to communications
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between the application and the DBMS and copying of data back and forth between 

database buffers and program variables [Catte91a]. There is no indication, however, 
whether some of the features described in the last paragraph, such as minimised 

concurrency control, also applied to the RDBMS.

Results from other experiments showed that cost of remote file access was about one third 
more than local access. Additionally, using the file package, an implementation using 
parent-child links provided far superior performance than B-Trees on traversal operations. 

This is an important result, since B-Trees are used extensively in relational database 
systems and techniques such as direct physical links “under-the-covers” may be the way 

forward for relational systems. The UniSQL object-relational database system, for 
example, uses direct links to enhance nested table performance [Finkl93].

The OOl Benchmark has also been more recently used on a number of commercially 
available ODBMS products including Objectivity/DB, ObjectStore, ONTOS and 
VERSANT. The results published in [Catte92] showed that a number of products provided 
comparable performance for the small remote database. However, more recent work 

reported by Halloran [Hallo93a] showed large performance differences between a number 

of products, as illustrated in Table 3.3.

ITASCA MATISSE ObjectStore

L+T+I Warm 594.23 153.38 6.16

Table 3.3 - L+T+I for Small Remote Database (Secs).

Performance numbers reported by Halloran for the large remote database showed that the 
differences were less pronounced, especially for the cold cache numbers, clearly 

demonstrating that scalability should be an important factor in ODBMS evaluation. 
Additional interesting results emerged from the database load times, with some products 
taking considerable time to complete this process, whilst one system failed the large 
database load completely due to lack of disk space, as shown in Tables 3.4 and 3.5.

ITASCA MATISSE ObjectStore

Load Time (Hrs) 17.15 2.77 0.03

DB Size (MB) 12.18 16.93 4.56

Table 3.4 - Small Database Load (Hrs).
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ITASCA MATISSE ObjectStore

Load Time (Hrs) - ~1.5 Weeks 23.13

DB Size (MB) Not enough space 167.38 44.23

Table 3.5 - Large Database Load (Hrs).

Clearly, only ObjectStore comes close to meeting the 4 MB and 40 MB storage 
requirements for the benchmark and it is also the fastest to load both database sizes. Load 
time could be an important factor for some application domains [Chaud94a].

Whilst OOl and its predecessors have provided some insight into ODBMS performance, 
they have not escaped the following criticisms:

• Simple Data Model

The data model is too simple to measure transitive closures and other traversal 

operations found in engineering applications [Ander90J. Also, there are no 
metrics to measure the effects of type hierarchies, inheritance or complex 
relationships [Duhl88j.

• Simple Operations

Measuring simple operations is insufficient, as many engineering applications 
require support for higher-level conceptual operations. For example, assessing 

the efficiency of transitive closures when clustering objects along some 
relationship, such as aggregation [Ander90],

• S in g le-U ser

No measure for concurrency control and co-operation, to assess multiple users 
editing parts of the same data structure [Ander90]. Also, vendors exploit the 
benchmark by disabling concurrency and recovery' features essential for 
commercial applications [Butte91aj. However, a multi-user version of OOl is 

described in [Seque93], which also presents some results for GemStone 

running on Sequent SMP hardware.
• Comparing Object Databases

The benchmark provides a useful com pan son between relational and object 
systems, but is weak for comparisons between object systems [Duhl88], This 
reason is not elaborated by Duhl & Damon.
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• Random Objects
The benchmark operates on randomly selected objects. Few applications have 
random distributions [Butte91a]. In many engineering applications, closely 
related objects are accessed successively, with greater frequency and to a much 

higher degree than are random, disjoint objects [Duhl88].

• No Clustering

As a result of the last point, “semantic clustering” cannot be measured 

[Duhl88],
• No Dynamic Behaviour

Because the benchmark is very simple, dynamic behaviour is not modelled. 

However, for certain applications such as event-simulation, this would be 

useful [Duhl88],
• Low Level Operations

The benchmark allows comparisons at low level database operations, instead of 

more meaningful comparisons at the application level [Duhl88],

• Database Size
Typically, databases are much larger than those used in the benchmark being 
quoted by ODBMS vendors [Butte91a],

To summarise, the OOl Benchmark became a de facto standard in the late 1980s and early 

1990s for evaluating ODBMS performance, due to its simplicity and timeliness. It 
measured raw performance and did not address higher-level operations. However, the 

results from the benchmark demonstrated that ODBMSs could provide the necessary 
performance requirements for engineering applications, when compared to RDBMSs. 
These requirements were identified and discussed earlier.

3.2.4 The HyperModel Benchmark

The HyperModel Benchmark was developed in response to the growing requirement for 
implementing engineering applications on database systems [Ander90].

Anderson et al. [Ander90] noted that although the best method to benchmark a specific 

application was to implement the whole application on a number of different DBMSs and 
then compare the results, this methodology was generally prohibitive due to the cost in 
time, resources, etc. A generic benchmark was, therefore, the next best alternative.

The design of the HyperModel Benchmark was based on a study undertaken at Tektronix, 
Inc. to identify the functionality and performance requirements of engineering applications. 

The DBMS requirements that were identified from this study were [Berre88; Ander90]:
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• Data Model Requirements
Modelling of complex object structures.

Description of different data types.

Integration with application programming languages.

Dynamic modifications to the database schema.

Support for versions and variants.
• System Architecture Requirements

An architecture of workstations and servers.
- Performance suitable for interactive design applications.

Concurrency control.

Co-operation between users.
Logging, backup and recovery.

- Access control.
- Ad-hoc query language.

Based on the requirements study, the schema illustrated in Figure 3.5 was proposed. The 
justification for this is discussed shortly. In the diagram, lines represent bi-directional 
relationships, with black circles at the end-points representing many and white circles one. 
Aggregation is represented by the arrow, which points to the composite object. The white 
circle on the line indicates an ordered relationship. Generalisation is represented by the 
triangle.

Figure 3 .5 -T h e  HyperModel Database Schema.
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On the original object database systems benchmarked (Vbase and GemStone), the schema 
was implemented as four classes - N ode, T extN ode, Form Node and Link. Nodes 

were connected by three relationships - parent/children, partOf/parts and refTo/ 
refFrom.

The benchmark uses the node-and-link graph structure common in Hypertext applications, 

as shown in Figure 3.6. Two hierarchies are added over the nodes - parent/children  

(1:N cardinality) with each node at level n having links to five other nodes at level n + 1 
(referred to as the “fan out”) and partOf/parts (M:N cardinality). The justification for this 
is that at least one hierarchy is required, since recursive queries are common in many 

applications, but that two hierarchies are better, since multiple hierarchies often exist over 

the same data structure in reality. Additionally, the use of more than one hierarchy enables 
clustering strategies to be evaluated.

Figure 3.6 - Network of Nodes used for HyperModel Database.

The benchmark is run against level 4, 5 and 6 databases (781, 3,906 and 19,531 nodes 

respectively).
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A schema based on Hypertext was chosen, since this was found to be representative of an 

entire class of engineering applications [Berre91],

The benchmark design was strongly influenced by the object database systems under test, 

since neither fully met the data model and system architecture requirements mentioned 
earlier and you “can’t test what isn’t there” [Ander90]. It includes the seven operations of 
the original EDB and adds additional operations to test transitive closure and other more 
complex computational functions [Ander90]. It measures cold and warm results and 
consists of twenty operations in total, grouped as follows [Ander90]:

1 . Name Lookup Operations
Two operations - return an object based on an attribute id or an object id. Use of 

indexing is permitted for attribute id.

2 . Range Lookup Operations
Two operations - return all objects whose attributes fall under a specified range, 

using 1% and 10% selectivity’. Indexing is permitted.

3 . Group Lookup Operations
Three operations - retrieve objects by traversing the parent/children, partOf/parts 

and reiTo/refFrom relationships.

4 . Reference Lookup Operations
Three operations - as 3., but retrieve objects by traversing relationships in 

reverse order.
5 .  Sequential Scan

One operation - retrieve all objects in the database.
6 . Closure Traversal Operations

Seven operations - start with a randomly selected object, perform an operation 
on that object and on all other objects recursively reachable from that object to n 

levels using parent/children, partOf/parts or refTo/refFrom. The use of 

clustering is also tested.
7 . Editing Operations

Two operations - update objects already in the database and commit the changes 

to the database. These operations are designed to test the power of the database 

programming language.

The benchmark could be used to evaluate the effects of indexing, message sending versus 

procedure calls and clustering.

Hormann et al. [Horma90] also described efforts to implement the HyperModel Benchmark 

on several graph storage systems, e.g. GRAS, which according to [Dewal90], required
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two to four months per system. The results in [Horma90] were tabulated for comparison 

purposes with those for GemStone and Vbase from the original paper by Anderson et al., 
but there was no effort to analyse the results. The design of GRAS and its evaluation using 

the HyperModel Benchmark is also described in [Kiese92],

A derivative benchmark is described by Larsen [Larse92]. This work, discussed in 

Appendix B, describes a Test Evaluation Procedure (TEP) based on a simplified version of 
the HyperModel Benchmark. The TEP was implemented on one relational and two object 

databases and included both single- and multi-user tests with detailed performance results. 
The TEP was specifically designed with scalability, simplicity and portability in mind.

In a critique of the HyperModel Benchmark in [Catte91a; Catte92], the following points of 

concern were cited:

• Benchmark Specification
Better implementation details were needed to ensure that the benchmark could 

be used to accurately compare systems in areas such as main memory' size for 
DBMS and cache, processor and disk performance, control of initialisation 

timing, etc.
• V ersions

Applications such as CAD, CASE, etc. used versioning extensively which was 

not modelled.
• C lustering

Complex data structures were used, but there were no guidelines on how the 

data should be clustered using these.

• C lient-Server
A remote database (resident on a server) was more representative of many 
engineering and office applications. In [Ander90] local-only behaviour was 
measured.

• BLO Bs
Read and write operations on Binary Large Objects (BLOBs) were really limited 
by disk speed. Therefore, using only small character and integer fields might be 
more useful. This criticism may be less appropriate today, since there are 
applications that require support for BLOBs, such as GIS, Multimedia, etc.

• Limited Use
The HyperModel Benchmark has been used to measure the performance of 

early versions of only two commercial ODBMSs (Vbase and GemStone).
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Carey etal, [Carey93] also commented that the experimental measurements were presented 

as an appendix to the original paper by Anderson et al., with no real analysis of the results.

In concluding, it is worth noting that the authors also used several other benchmarks on the 

object database systems mentioned earlier. Comparing the results of these benchmarks with 
their own, they found differences that required further study and explanation [Ander90]. 

With this in mind, they posed the following question:

“What do the various benchmarks measure and how can they be used in 

concert to more accurately predict the performance of a particular application 

or mix of applications?”

Chapter 7 shows that using a series of benchmarks can provide greater insight into the 

suitability of object database architectures for particular applications. The benchmark 
developers also proposed that the HyperModel Benchmark could be used as a basis for 
evaluating non-engineering applications, since it tested two important features of object 
database systems - complex object representation and complex operation 

implementation. Additionally, they noted that functionality and performance were only a 
part of object database evaluation and that economic and market factors should also be 
considered - views also shared by others, e.g. [Atwoo91; Rotze91; Stein92].

3.2.5 The 0 0 7  Benchmark

The 0 0 7  Benchmark [Carey93; Carey94] was a recent benchmarking effort from the 
University of Wisconsin-Madison. According to the benchmark developers, since a 
number of different object database products were now quite well established in the 
commercial marketplace, better metrics were needed to evaluate the performance of these 
products. The 0 0 7  Benchmark was specially designed to test the following characteristics 

of object databases [Carey93]: •

• Speed of Pointer Traversals
Traversals over cached data, disk-resident data, sparse traversals and dense 

traversals.
• Update Efficiency

Updates to indexed, non-indexed attributes, repeated updates, sparse updates, 

updates of cached data and creating and deleting objects.
• Query Processor or Query Programmer

Performance using different types of queries with 1%, 10% and 100% 

selectivity.
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Many of these characteristics have not been measured by the two most well-known object 

database benchmarks (OOl and HyperModel). The benchmark schema is also far richer 

than either OOl or HyperModel and is based on the idea of a design library consisting of 
parts and assemblies and is, according to the benchmark developers, suggestive of a 
number of applications such as CAD, CAM, CASE, etc. However, 0 0 7  should more 
correctly be termed a System Benchmark (rather than an Application Benchmark) 

from the characteristics mentioned above and that neither the schema nor operations have 

been based on any performance studies to identify the characteristics of engineering 
applications [Chaud95a]. Figure 3.7 illustrates the entities and relationships. The schema 

illustrated uses modelling notation similar to that described earlier for the HyperModel 
Benchmark. It can be seen that an atomic part and its recursive relationship correspond to 

the part and connection of the OOl Benchmark.

Module

Manual

DesignObj

X

Assembly

___1 \

- • f Composite
Part AtomicPart

Document Connection

Complex Base
Assembly Assembly

Figure 3.7 - The 0 0 7  Database Schema.

A Composite Part could be representative of a procedure in a CASE application. 
Associated with this would be a Docum ent with some descriptive text. Each composite 

part is an aggregate of a number of Atomic Parts, which could represent variables, 
statements or expressions in a CASE procedure. Over these composite parts, a B ase  

A ssem bly  hierarchy has been added to represent higher-level design objects, such as an 
ALU in a CAD application. A Complex Assembly is an aggregate of other assembly 

objects, as illustrated in Figure 3.8.
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Module

Complex
Assemblies

Base Assemblies

1\

£ \7 I \

Level 7 :1 Assembly 

Level 6 : 3 Assemblies 

Level 5 : 9 Assemblies 

Level 4 : 27 Assemblies 

Level 3 : 81 Assemblies 

Level 2 : 243 Assemblies 

Level 1 : 729 Assemblies

Figure 3.8 - 0 0 7  Assembly Hierarchy.

Figure 3.9 illustrates the relationship between base assembly and composite parts.

Base Assembly

Composite Parts _
□  Shared

I  Unshared

Figure 3.9 - 0 0 7  Base Assembly and Composite Parts.

A M odule describes a complete assembly hierarchy. For the small and medium database 
tests (5 and 50 MB respectively), a single module is used. For the large database (500 MB) 

and multi-user tests, multiple modules are proposed. Associated with a module is a 

Manual with some descriptive text.
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Whilst three database sizes and single- and multi-user benchmarks were originally 

proposed, only results for the small and medium single-user database systems have been 

reported so far. There are twenty operations (eleven traversals, seven queries, one 
operation to insert objects, one operation to delete objects), three levels of complexity (“fan 
out”) and 105 tests overall. Since the small database may fit entirely within workstation 

memory, empty and full cache measures are reported for this size only.

The major operations that were implemented and measured were:

1 . Traversals
T1 - raw pointer traversal speed. This traverses an assembly hierarchy and 
performs a depth-first search on its atomic parts. It returns the number of atomic 

parts visited. This is similar to the traversal operation used in OOl.
T2 - traversal with updates. The update is to swap the x and y co-ordinates of 
atomic parts. Three types of updates are used: one atomic part per composite 

part, every atomic part, each atomic part in a composite part four times.
T3 - traversal with indexed updates. Similar to T l, except the update is to a date 

field, which has been indexed.
T8 - traverse the manual object, counting the number of occurrences of the 

character “I”.
T9 - check if the first and last character in the manual object are the same.
TCU - cached update traversal. The aim is to estimate the cost of updating 
objects in the cache.

2 . Q ueries
Q1 - exact match lookup. Ten random atomic part ids are generated. These are 

then used to find the corresponding atomic parts. This is similar to the lookup 

query in OOl.
Q2 - range query with 1% selectivity. Uses the date attribute to retrieve the 

appropriate atomic parts.
Q3 - range query with 10% selectivity.
Q7 -full scan of all atomic parts.

3 .  Inserts
Insert five new composite parts.

4 .  D eletes
Delete five composite parts.

The original benchmark results reported in [Carey93] were for the commercial systems 
Objectivity/DB and ONTOS and the University of Wisconsin research prototype 
EXODUS, with results for the commercial system VERSANT added in [Carey94]. The
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drawback with this is that fair comparisons cannot be made, since products that are tested 

later have the benefit of additional time for improvements and enhancements. The 

comparison between VERSANT and the other products is therefore misleading, since only 
new numbers for VERSANT are reported in [Carey94] and old numbers for the other 

systems remain. Furthermore, since the benchmark was designed for extensive testing and 

did not provide a single number, some confusion resulted when the researchers provided 

three alternative approaches to condense the results and a different commercial product 

came top in each approach. According to [Objec93], the differences in times for the hot 
results were small (milliseconds or seconds) and the cold results were large (minutes or 

hours). Another interesting observation is the database size (including storage overheads) 

with some published figures for the medium database in [Dami93] showing large variations 
between several products, as illustrated in Table 3.6.

O2 ONTOS Objectivity/DB ObjectStore

DB Size (MB) 80.9 122.3 74.9 55.4

Table 3,6 - 0 0 7  Medium Database Sizes.

In Table 3.6, only ObjectStore comes close to the 50 MB specification (its results are from 
[ODI93b]). This illustrates that storage overhead could be an important factor in product 
selection - something also highlighted by Halloran [Hallo93a].

An implementation of the 0 0 7  Benchmark has also been reported for Persistence in 

[Nag95], Berg & Hoeven [Berg96] used 0 0 7  to evaluate a prototype GIS, since they 
suggest that the same types of traversal operations found in 0 0 7  are also common to GIS 

applications.

The benchmark suffers from some of the criticisms levelled at other benchmarks, such as 

OOl and HyperModel [Chaud94b]: •

• S in g le-U ser
Whilst not specifically aimed at 0 0 7 , Barry [Barry94] has suggested that multi-
user benchmarks for multiple uses are needed. A multi-user version of 0 0 7  

was reported as being under development with results due to be reported soon 

[Carey94].

• Low Level Operations
The benchmark measures low-level primitives, but complete operations at the 

application level may be more useful to end-users.
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• Database Size
Larger database sizes are required. Barry [Barry94], for example, has 

suggested that 1 GB would be a useful starting point for object database 

benchmarks.
• Lack of a Single Performance Metric

It is arguable whether this is really a major problem. However, reducing the 

measurements to a single number would provide an easier method of comparing 
database systems, as there is already some confusion, partly caused by vendors 

themselves.
• Lack of Performance Studies

Since the benchmark has not been based on any performance studies, certain 

design decisions are questionable, such as the choice of the database schema 

[Chaud94b]. Furthermore, the 0 0 7  developers used code to simulate what a 
query executor would do to evaluate a test query. However, as mentioned 

earlier, “you can’t test what isn’t there” [Ander90].

Several other researchers have also reported significant problems and limitations with the 

0 0 7  Benchmark:

• Tiwary et al.
Tivvary et al. [Tiwar95] identified the following limitations of 0 0 7  as an 
application benchmark in comparison with their CAD application requirements:

- Difficult to increase object sizes without modifying class descriptions. 

Difficult to specify distribution of object sizes for a class.
No control over database layout.
No use of any clustering mechanism provided by an ODBMS. 
Impossible to map workloads against 0 0 7  traversals.

Uniform workload unrealistic.

Furthermore, they even criticised the benchmark’s applicability for measuring 
system features:

- Tight coupling between 0 0 7  workloads and data structures.
Use of product-specific data structures makes code non-portable.

- Primitive support for instrumentation.

• Hohenstein et al.
The work by Hohenstein et al. [Hohen97a; Hohen97b] is presented in detail in 

Appendix B. Briefly, the criticisms they reported were:
Varying parameters in 0 0 7 , such as the fan-out or the database size, 
does not necessarily mean that it is more representative of specific 

applications.
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Fairness in testing the query programmer is extremely doubtful, since 
query optimisation is not one of the strengths of ODBMSs and hand- 

coded queries are sometimes more efficient.
- Tuning is neglected, but C++ or Smalltalk programmers can master an 

ODBMS after adequate training.
• Jun & Gruenwald

Jun & Gruenwald [Jun97] criticised 0 0 7  (as reported in [Chaud98b]) and 

proposed the following improvements to make it more useful for future object 

database concurrency control work:
Better class definition read and write transactions.
More instance access read and write methods per class.

A deeper class hierarchy.

- A bigger fan-out for nested methods.

In summary, the 0 0 7  Benchmark has provided the object database community with a very' 
comprehensive set of metrics that can be used in evaluating performance. It is too early to 

tell whether it will become a widely used benchmark. There may be an opportunity' now for 

a range of new metrics to be devised which do not focus on many of the low-level 
operations that 0 0 7  measures. As mentioned earlier, higher-level conceptual operations 
need to be measured, since object databases provide better data abstraction than previous 
generations of database systems. Additionally, new metrics are needed to address issues 
such as versioning, clustering and many feature interactions, as suggested by Stein 

[Stein92],

3.3 RDBMS Performance Benchmarks

This section includes several RDBMS benchmarks. The aim is to discuss the 
appropriateness of using these for measuring ODBMS performance.

3.3.1 The Wisconsin Benchmark

The Wisconsin Benchmark [Bitto83] is the most frequently used single-user benchmark for 

relational database systems, according to Khoshafian et al. [Khosh92b]. The reason for its 
popularity has been attributed to its timeliness, simplicity' and portability. Additionally, it 
attempted to measure the performance of relational database systems using a standard 

methodology.

When it was originally developed, the benchmark was used to evaluate the performance of 

a number of commercial relational database systems. The results were subsequently
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reported, with the systems under test being named. Consequently, this led to so-called 
“database wars”, since vendors used the benchmark on each new release of their product, 
highlighting improvements in performance over the previous version, besides claiming 

superior performance over their competitors. DeWitt [DeWit91] noted that had the products 
not been named, then the benchmark would simply have been treated as an academic 

exercise.

The Wisconsin Benchmark is essentially for Selection-Join query processing and therefore 
not suitable for engineering applications, which generally have higher-level conceptual 

operations [Ander90], Additionally, Duhl & Damon [Duhl88] commented that the 

Wisconsin Benchmark was targeted at measuring operations specific to the Relational 

Model and was therefore not suitable for object-oriented systems.

Rubenstein et al. [Ruben87] noted that although there was some overlap between the 

Engineering Database and Wisconsin Benchmarks, the latter was not suitable for 
engineering applications, since these applications and tools required fast response for 

simple operations. Furthermore, they stated that in relational terms, the queries in the 
Engineering Database Benchmark were on a single table, with operations on single records 
or small groups of records representing one logical object. Kim et al. [Kim90c] have also 

commented that the Wisconsin Benchmark was inappropriate for object database systems, 

since there was only a partial overlap between operations in relational and object databases. 
For example, relational databases do not support operations for concepts such as 
inheritance, methods, object navigation and nested objects. Therefore, there is nothing to 
compare the overhead of inheritance or the cost of traversing the sub-components of a 

complex object [Ghand93],

The Wisconsin Benchmark can continue to serve a useful role for evaluating object- 
relational database systems, since the relational sub-system forms one part of the 
ORDBMS. This is something that has also been noted in [Asgar97], However, since its 
design is geared towards a schema and operations for relational processing, it is unsuitable 

for measuring the performance of pure object databases.

3.3.2 The DebitCredit/TPl Benchmark

The DebitCredit Benchmark [Anon85] was developed in response to one of the major 

deficiencies of the Wisconsin Benchmark, namely that it measured only single-user 

performance [Khosh92b].
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The benchmark was designed to measure the Transactions Per Second (TPS) performance 
(or system throughput) of different transaction processing systems. Using the TPS 

measure, various systems could then be fairly compared using a standard price/ 

performance ($/TPS) ratio.

The benchmark modelled a banking system and was based on an earlier benchmark used by 
the Bank of America in 1972/73 to select a teller system [Khosh92b]. For the benchmark, a 

Bank had a number of Branches, each branch had a number of Automated Teller Machines 

(ATMs) and Customer Accounts. Customers could withdraw from or deposit into their 

accounts (hence the name DebitCredit) using teller machines either at their own or another 
branch. The customer account balance, branch total and teller total were updated 
accordingly and a record of the entire transaction was also maintained in a history file. 
Figure 3.10 illustrates the database schema.

Figure 3 .1 0 - The DebitCredit Database Schema.

In addition to many terminal users, DebitCredit simulated a “think time” of 100 seconds 

(interaction time between a customer and the ATM before a transaction was submitted) and 

network traffic time. TP1 was a simplified, informal version of DebitCredit.

The original paper also specified Sort and Scan Benchmarks in addition to DebitCredit. 
However, these appear to have been largely ignored by users.

TP1 measures system throughput for OLTP applications (large numbers of small 

transactions). In contrast, engineering applications typically have a small number of long 

transactions [Ander90], Duhl & Damon [Duhl88] also comment that TP1 was an
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inappropriate benchmark, because it measured high volume transaction processing usage, 

which was not typical of object-oriented systems.

According to Rubenstein et al. [Ruben87], there is some overlap between TP1 and the 

Engineering Database Benchmark. However, as previously mentioned, TP1 measures 
system throughput rather than response time. Additional throughput can be achieved by 

multiprocessing and pipelining, whereas improved response time cannot [Ruben87], 
Because TP1 includes a composite of measures used in the Engineering Database 

Benchmark, TP1 results correlate with results from that benchmark [Ruben87], However, 
it has not been explained by Rubenstein et al. what measures were composites and how 

they established the correlation.

Chapter 7 implements an OLTP benchmark on two object databases and an object-relational 
database. The reasons for this will be justified in detail in Chapter 4. Briefly, however, the 

arguments against measuring OLTP performance for object databases are now somewhat 
dated. As discussed in Chapter 1, object databases are gaining popularity and usage in 
many non-engineering application domains. For example, one of the case studies presented 
in Chapter 6 demonstrates the use of an object database for a financial application that 

exhibits OLTP characteristics.

3.4 ORDBMS Performance Benchmarks

Object-relational databases are a relatively recent development and as such there are few 
reported benchmarks to measure the performance of such systems. However, since they 
attempt to combine features of both object and relational databases, it should be possible to 
use existing benchmarks to measure certain aspects of object-relational database 
performance. As an example, benchmarks to measure OLTP performance should be 
applicable, since the familiar rows, columns and tables paradigm from the Relational Model 

is supported. Furthermore, systems such as UniSQL also support direct physical links, 
which means that benchmarks for measuring pointer traversal speeds, as are commonly 

used for object databases, can also be used. Dick & Chaudhri [Dick95b] also argued that 
new benchmarks for object-relational databases were needed, consisting of mixed 

workloads with both navigational and declarative query processing.

3.5 Where Benchmarks are Lacking

There are a number of areas where current object database benchmarks are lacking. Future 

metrics may address one or more of these deficiencies. The headings below follow a 
similar format to those used in the paper by Rotzell & Loomis [Rotze91].
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3.5 .1  R ep resen ta tive  B en ch m ark  D ata and O p eration s

Benchmarks are only representative if the data and tests coincide with the application in 

mind [Hohen97a]. However, it is very7 difficult to design benchmarks that are relevant to 

applications. Most benchmarks measure low-level features in isolation, whereas application 

performance depends upon the interplay of sets of low-level features. Databases are 

holistic: the whole is greater than the sum of the parts [Bradl94]. Developing benchmarks 
to measure complete operations at the application level has been previously attempted with 

some success, e.g. [Lakey87; Lakey89; Hohen97a; Hohen97b].

Generic benchmarks try to be suggestive of a number of application areas. This may be 

possible in some circumstances where the applications exhibit similar characteristics. For 
example, CAD, CASE and Hypertext have similarities in their requirements for data 

manipulation [Bene9T, Catte94a]. However, benchmarks such as OOl would not be 
particularly representative of MIS or business applications. In the past this was not a 
problem, since many object databases were developed specifically to meet the requirements 
of engineering applications. Increasingly, however, object database vendors are offering 
integration and interoperability with relational systems, as well as trying to compete with 

relational databases in many non-engineering areas, as illustrated in the survey by Everest 
& Hanna [Evere92], Therefore, existing benchmarks may not be very appropriate for 
measuring the performance of these non-engineering applications.

3.5.2 M ultiple Applications

Figure 3.11 - British Aerospace and ONTOS.
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Most benchmarks are single-application oriented. It is therefore difficult to extrapolate 

performance results to environments where multiple-applications are running. For example, 

consider the British Aerospace case study cited in [Wilki93], which illustrates the use of an 
object database (ONTOS) as an integrator of disparate tools used in the production of an 
aircraft wiring harness. A variety of applications access the database, e.g. engineering, 

manufacturing and stock control, as illustrated in Figure 3.11. If a benchmark were used to 

measure the performance of just one application, e.g. engineering, this would provide a 

very limited picture of overall performance, since it would only show the access paths 
through the database used by that particular application. However, benchmarking multiple 

applications is non-trivial.

3.5.3 M ultiple Users

Most benchmarks are single-user and therefore not suitable for commercial applications 

which are always multi-user [Bradl94], Benchmarks that attempt to be representative of 

real-world applications must also be designed to test features such as concurrency control 

and locking, as these can be disabled with single-user benchmarks. However, current 
commercial products differ significantly in their approaches to locking, making it difficult 
to develop fair comparisons between them. For example, some products provide variable 
granularity, enabling locks to be set at the object-, page-, file- or database-levels, whilst 

others do not [Rotze91], However, it is very difficult to design multi-user benchmarks due 
to the number of degrees of freedom, especially in client-server or distributed 

environments. Therefore, results from multi-user ODBMS benchmarks should be 
interpreted with caution [Bradl94J.

3.5.4 M ultiple Databases

Approaches to multiple databases vary considerably between products. Some support 
multiple databases and distributed transactions, whilst others provide multiple databases but 

no distributed transactions. Additionally, some products centralise the object location and 
transaction co-ordination functions, whilst others fully distribute these [Rotze91]. Current 
benchmarks have been designed with only single databases in mind.

3.5.5 C lient-Server

Object databases were developed to take advantage of client-serv er computing, with DBMS 
functionality partitioned between the two. Both OOl and 0 0 7  were designed to test 
database access across a network. However, client-server architectures vary considerably, 
as demonstrated by DeWitt et al. [DeWit90], with each architecture having particular
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strengths and weaknesses. Trying to develop benchmarks that can fairly represent these 

alternative architectures is again, non-trivial.

3.5.6 M ultiple Platform s

Object databases are available on a variety of platforms, ranging from personal computers 
to UNIX workstations. Some products only support particular combinations of platforms 

in their client-server configurations. It is also possible that they may have been optimised to 

run in particular combinations [Rotze91]. However, the majority of object database 
benchmarks have only reported results for UNIX workstations and have not considered 

any form of hardware normalisation to provide some kind of price/performance ratio. 
Furthermore, as reported in Chapter 6, commercial ODBMS applications can consist of 
mixtures of hardware platforms, running different operating systems.

3.5.7 Functional Differences

There are simply too many functional differences between current commercial products to 

be easily compared using benchmarks. Relational databases have a standard interface 
(SQL) and a fairly homogeneous set of application requirements (e.g. OLTP) and products. 

As yet, there is no standard interface for object databases and there is such diversity in 
applications, architectures, features, possibilities for optimisation, etc. which makes it 
extremely difficult to avoid comparing apples with oranges [Bradl94], However, the efforts 
of ODMG to provide standard language bindings for Smalltalk, C++ and Java™ may be 

very beneficial in future object database performance work.

3.5.8 Tuning

Applications are not normally designed in isolation, but are designed with the architecture, 

features and interface of a particular product in mind. It is possible to achieve two or three 

orders of magnitude performance differences with the same application on the same product 
depending on the choice of data model, clustering, concurrency mode, functional 

distribution between client and server, etc. [Bradl94]. Examples of tuning object database 
applications and some of the performance benefits achieved are discussed in [Chaud97],

3.5.9 Development and Maintenance

It is often forgotten that object databases are also components of object technology. As 
such, it should also be possible to benchmark development and maintenance time as well, 

since raw performance is only a part of object database evaluation [Ander90],
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3.6 Chapter Summary

In this chapter, three well-known object database performance benchmarks have been 

discussed. All three of these benchmarks have focused on operations suggestive of 
engineering applications, although only one has actually been based on any requirements 

analysis or performance study.

Table 3.7, adapted from [Khosh92b], summarises the major features of these three 

benchmarks.

OOl HyperModel 0 0 7

Database Generation Synthetic,
uniform distribution

Synthetic, 
uniform distribution

Synthetic, 
uniform distribution

Industry Acceptance Wide, ODBMS 
vendors

No No

Mixed Workload Yes Yes Yes

Number of Users Single Single Single/Multi

Orientation Engineering Hypertext Generic

Performance Metric Response times of 
individual queries

Response times of 
individual queries

Response times of 
individual queries

Specification Detailed Limited Detailed

System Size Scalable Scalable Scalable

Utility" Operations No No No

Table 3.7 - Summary of OOl, HyperModel and 0 0 7 .

These three benchmarks have tended to measure raw performance and pointer traversal 
speeds, although there are many other aspects to object database performance that can be 

measured. For example, a database panel held in conjunction with OOPSLA ’88 identified 
the following possibilities [Josep89]: •

• Navigational (pointer chasing speed).
• Query throughput.

• Query response time.
• Save and retrieve of complex states by Object Identifier (OID).

• Simple bulk operations on all objects.
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• Complete operations at the application level.
• Good metrics depend on application.

The workshop on object database performance held at OOPSLA ’95 also revealed a wide 

range of issues in measuring object database performance, as discussed by Zorn & 

Chaudhri [Zom95]:

• More performance studies of real applications.

• Holistic benchmarks.
• Need for common trace formats.

• Multi-user benchmarks.
• Time-varying nature of applications.

• Impact of design.

In this chapter, areas where current object database benchmarks are lacking have also been 

highlighted and discussed. Many of these deficiencies have been directly observed in the 

case studies, described in Chapter 6. In the next chapter, some of these issues will be 
considered in the research design for developing performance benchmarks for object 

databases.
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CHAPTER 4 - Research Design

4.1 Introduction

Chapter 1 showed that object databases are now being used for many more application 

domains than just engineering. Chapter 2 described seven major object and object-relational 
database products in detail and highlighted a number of architectural and other issues that 
can affect database performance evaluation. Chapter 3 presented several well-known object 
database benchmarks, discussed their limitations and, furthermore, suggested areas that 

future object database performance benchmarks should address. This chapter presents a 

research design that attempts to overcome some of the limitations described in these three 

previous chapters. It is organised as follows. Firstly, the problem statement and problem 
space are presented in sections 4.2 and 4.3, respectively. Then, in section 4.4, the research 
objectives are described. In sections 4.5 to 4.8, the research approach is presented in detail, 

including a description of the techniques used. In section 4.9, a brief description of several 
statistical methods is presented. Finally, section 4.10 contains the chapter summary.

4.2 Problem Statement

As discussed earlier, ODBiMSs are now being used in many different application domains. 

Whilst the history of this technology has been rooted in engineering applications, today it is 
being used for Network Modelling in Telecommunications, Risk Management and 
Financial Applications in International Banking, Multimedia, Healthcare Applications, etc. 

However, this growth in diversity and range of applications has not been matched by the 
development of adequate performance benchmarks. This is a serious problem, since 
benchmarking complete applications is known to be expensive [Ander90; Barry94] and 
there is no indication of the suitability (or otherwise) of particular products for particular 
classes of applications. The latter is significant, since the architectural choices made by 

ODBMS vendors vary considerably, unlike RDBMS products which are fairly 
homogeneous [Bradl94], Another issue is that most previous object database performance 
work lacks any real basis, i.e. there have been no performance studies, as discussed in 
Chapter 3, as well as no methods used to verify benchmark results. What is required, 
therefore, is a more systematic/programmatic approach, based on sound research
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techniques, using statistical methods to verify performance results. This research aims to 

address these deficiencies by using these techniques.

4.3 Problem Space

In the previous section, it was stated that ODBMSs are being used in a large range of 

applications. This is illustrated in Figure 4.1.

Figure 4.1 - The Problem Space [Wagne91],

In the diagram, a. shows that there are a potentially infinite number of problems in the 
space and b. shows partitioning of the space into equivalence classes. Since resources are 
limited and exhaustive testing is impractical, Wagner [Wagne91] proposes that partitioning 

of the space into equivalence classes allows the testing of just a few cases which, by 
induction, would be equivalent to testing the entire class. This makes the problem of testing 
tractable. Furthermore, Wagner divides the problem space into a performance space (a 
subset of the problem space), which can be explored by either an A pplication-Specific  
approach (consisting of one or several points) or a System atic approach (consisting of 
many points). Some of the characteristics of each approach are [Wagne91]: •

• A pplication-Specific

Based on real-world problems.

Measures system performance in the actual context in which the system is
employed.

• System atic

Has wide-ranging utility.

Provides generic evaluation.

Can be used to test system variability and sensitivity.
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The relative merits and drawbacks of these two approaches are discussed in more detail in 

[Stone85] and [DeWit85], Hawthorn [Hawth85] has also suggested that a combination of 
the two may be the best approach to database performance evaluation. For this project, 

what is proposed in later sections is using these two approaches together.

4.4 Research Objectives

The first aim of this research is to study the performance of commercial object database 

applications. This subject is not well documented, although it may be well understood by 

consultants and vendors who are asked to undertake benchmarking for their customers. 
There are also few examples of detailed case studies in the object database performance 

literature and previous benchmarks suffer from a range of limitations and problems, as 

stated earlier, such as the lack of proper studies and no verification of published results.

The second aim is to attempt to identify which classes of applications are more suitable for 
particular object database architectures. This will be approached by undertaking some 

performance benchmarking, based upon the studies and other techniques proposed in the 

following sections. Again, this area is not well understood for real applications, although 
some benchmarks, such as OCAD [Kempe95a; Kempe95b], have proposed and reported 
results for synthetic benchmarks in an attempt to address this area.

The third and final aim is to determine if a generic, simple and accurate performance model 
for object databases can be derived. This is because scientific theories offer generic models 

applicable to a variety of systems [Ohkaw93]. A generic model provides a framework for 

representing a targeted system, but specifics are further provided in each case [Ohkaw93]. 
Inmon [Inmon89] states, however, that treating database performance and its measurement 
generically is wrong. This is because, he argues, a benchmark for measuring the 
performance of an OLTP system, for example, has very different characteristics to a 

benchmark for measuring the performance of a Decision Support System (DSS) and there 
is very little in common between them. However, a generic model for testing the 
performance of ODBMSs would considerably aid benchmark designers, since they can 
then focus on the specifics needed for a particular target application, rather than designing a 
benchmark from scratch. However, Weick [Weick84] comments that scientific theories are 
limited because none of them can be acceptable in terms of generality, accuracy and 
simplicity. This is because, he argues, a theory can at most meet only two of these criteria, 

as follows:

1. General, accurate theories are complex.
2. General, simple theories are inaccurate.
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3. Simple, accurate theories have no generality.

The work by Youssef [Youss93], however, demonstrated that generality, accuracy and 
simplicity are possible in database performance work, although his work was aimed at 

OLTP performance evaluation for RDBMSs. More widely, the problem for database 

performance evaluation could be solved as follows:

1. Generality - a set of core benchmark operations.
2. Accuracy - specifics added to the core for a particular target application.

3. Simplicity - core operations are easier to compare.

4.5 Choice of Research Approach

A discussion and taxonomy of alternative Information Systems (IS) research approaches by 

Galliers [Galli91] is summarised in Table 4.1, below.

Scientific (empirical) Interpreti vist

Laboratory' Experiments Subjective/Argumentative
Field Experiments Reviews
Surveys Action Research
Case Studies Descriptive/Interpretive
Theorem Proof
Forecasting Futures Research
Simulation Role/Game Playing

Table 4.1 - Information Systems Research Approaches.

From the discussion in [Galli91] of the strengths and weaknesses of the above, the 

empirical approaches are well suited for this research project, based on the objectives stated 

in the previous sections. Furthermore, the empirical approaches provide good routes to 

theory extension, which Galliers feels is the most difficult phase in IS research, as 
illustrated in Figure 4.2.

Galliers also suggests examining previous work in one’s particular field of study from the 

perspective of the research approaches that have been used. If previous research has used 
one or two approaches only, it may be useful to adopt another approach. Most previous 

work on ODBMS performance has used laboratory experiments with little or no evidence 

of any of the other approaches being used. Case studies are, therefore, a suitable alternative
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to use, particularly since Youssef [Youss93] used this approach successfully in the 

development of an OLTP benchmark for RDBMSs.

a. b.

Figure 4.2 - Alternative Routes to Theory Extension [Galli91],

Benbasat et al. [Benba87] also cite the following reasons why the case study approach is 

useful in IS research:

1. The researcher can study information systems in a natural setting, leam about 

the state of the art and generate theories from practice.
2. The case method allows researchers to answer how and why questions, that is, 

understand the nature and complexity of the processes taking place. This view 
is also shared by Yin [Yin89], For ODBMSs, the questions include how are 
they being used and how can we develop better benchmarks based on these 

observations? [Chaud94a].
3. A case approach is an appropriate way to research an area in which few 

previous studies have been undertaken. This is indeed the current situation in 

ODBMS performance.

Case research is also useful for exploration and hypothesis generation, which are legitimate 
ways to add to the body of knowledge in the IS field [Benba87]. The research objectives 
stated earlier are precisely aimed at exploration. Figure 4.2 also shows that several
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approaches can be combined in the process of theory building, testing and extension. In 

this research project, only case studies and laboratory experiments will be used. Field 

experiments are an extension of laboratory experiments into an actual organisation 

[Galli91]. They have the same strengths and weaknesses as laboratory experiments, but 
also suffer from two additional weaknesses [Galli91]:

1. It is difficult to find organisations prepared to be experimented on.

2. It is extremely difficult to achieve sufficient control to enable replication of an 

experiment with only the study variables being altered.

Field experiments are, therefore, rejected for this research project.

4.6 Case Research

In this section, the case research design is outlined in more detail. The section headings are 

after the style used by Benbasat et al. [Benba87], since they cover the essential elements of 

the case research approach.

4.6.1 Deciding on Case Research

Benbasat et al. suggest that the following questions should be asked to determine the 
appropriateness of the case strategy:

1. Can the phenomenon of interest be studied outside its natural setting?
2. Must the study focus on contemporary' events?
3. Is control or manipulation of subjects or events necessary?
4. Does the phenomenon of interest enjoy an established theoretical base?

They go on to comment that the case approach is useful when a natural setting or focus on 

contemporary events is needed, but not suitable when there is a strong theoretical base or 
manipulation of subjects or events is required. ODBMS performance does not have a 
strong theoretical base. Furthermore, it is a contemporary' topic and would be better studied 
in natural settings given the many variables that may influence performance, as discussed at 
the end of Chapter 3.

4.6.2 Unit o f Analysis

It would be reasonable to assume that ODBMS technology is still in its infancy in terms of 

deployed systems and total market share when compared to other types of DBMS
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technology. Consequently, the number of production systems is likely to be very small and 

developed to meet very specific problems. This suggests that the unit of analysis will be a 

specific project or application. The corollary is that it may be difficult to generalise from 

this to other applications in other organisations.

In the case approach, whilst the researcher may have less a priori knowledge of what the 

variables of interest will be and how they will be measured [Benba87], the prominent 

processing tasks described by Youssef [Youss93] and according to him also used by other 

researchers in database performance provide a useful starting point:

• What queries will be run?
• What is the relative frequency of each query?

• What is the size of the database?
• What patterns of behaviour are expected?

Furthermore, a requirements analysis to determine what the characteristics of applications 
are in the domains of interest would also serve to identify variables. This will be presented 

in the next chapter. Additional factors, specific to ODBMSs, have also been discussed by 

Lai & Guzenda [Lai91 ] and Stein [Stein92]. Lakey et al. [Lakey87] have similarly 
proposed some factors specific to object database applications from which the following 
detailed questions can be derived:

• What is the level of data sharing, nesting depth and object size?

• What is the amount of sub-structure that is accessed for each object?
• What are the most frequent operations on? Single objects? Collections of 

homogeneous objects? Collections of heterogeneous objects?
• What types of graph structures are used? Trees? Directed Acyclic Graphs 

(DAGs)?
• Do graph structures contain cycles?
• Do path traversals contain objects whose types are not known a priori, or are 

only constrained by a hierarchy of types?

The problem is finding a small number of applications that exhibit the kinds of variability- 

just discussed [Lakey87],

From the case studies, the aim will be to look for generalisations. This research project is 
interested in measuring both the quantitative and qualitative aspects of ODBMS 

performance.
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4 .6 .3  S in g le -C a se  vs. M u lt ip le -C a se  D es ign s

Chaudhri & Revell [Chaud94a] proposed a multiple-case study approach to measuring 
ODBMS performance. This is necessary', since the variety of ODBMS applications is wide- 

ranging. Furthermore, multiple-case designs are useful when the intent of the research is 

description, theory' building or theory testing [Benba87], Additionally, a multiple-case 

design yields more general results, since it allows cross-case analysis [Benba87], As stated 

earlier, one objective of this research is to discover generalisations.

4.6.4 Site Selection

Most organisations approached for this research were initially contacted as a result of scans 

in trade publications, through networking at conferences or through friends and colleagues. 

This follows the approach recommended in [Benba87]. In summary', the main problems 
experienced in finding suitable organisations were:

1. Few organisations in the UK have developed object database applications of 

any size. Many are still experimenting with the technology and, as yet, have not 
committed themselves to it.

2. Some organisations that initially indicated an interest in this research 

subsequently withdrew due to internal re-organisations, out-sourcing, new 
priorities, project being abandoned, primary contacts leaving, etc.

3. Those organisations that had developed applications were reluctant to divulge 
any information, e.g. even which product they were using, mainly for 
commercial reasons, e.g. they did not wish their competitors to know what they 
were doing, even though assurances were given to them about confidentiality 

and the benefits of this research to them.
4. Object database vendors have been unwilling to help, since the market for this 

technology is still small compared to relational databases [IDC94; OOS96; 
Stone96] and they are all competing for a share of this. Performance is a major 

selection factor when user’s are evaluating commercial products [Rotze91], The 
vendors also proved to be very' ineffectual in providing any case studies 

themselves.

The organisations that were finally selected were chosen due to availability'. The research 
objectives were not factors that influenced site selection, since organisations from many 
industry sectors are using ODBMSs, as shown by a number of surveys, e.g. [Leach95]. 
However, a homogeneous sample of organisations, either: (i) developing the same types of 

applications or (ii) from the same vertical markets or domains would have been preferable,
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since this research could then have focused on identifying common characteristics. The 

approach described in (i) was successfully used in the work on RDBMS benchmarks by 
Youssef [Youss93], Unfortunately, neither approach was possible, mainly due to point 3. 

above. The research in this project, therefore, follows theoretical rather than literal 
replication [Benba87], i.e. contradictory results instead of similar results are predicted. 

This is confirmed by the case studies described in Chapter 6, which show wide variations 

from each other.

4.6.5 Data Collection Methods

In the case research approach, multiple methods of data collection are used [Benba87]. This 
has the benefit that it offers the opportunity for triangulation (i.e. the multiple methods of 
data collection lead to similar conclusions) [Benba87] and provides external validity for the 
research findings. According to Yin [Yin89], the sources of evidence include:

• Documentation.
• Archival Records.

• Interviews.
• Direct Observation.

• Physical Artefacts.

Many of these methods were successfully used by Youssef [Youss93], For this research, 
the primary' methods used were: •

• Analysis of System Documentation
System documentation helps to provide insight into static data structures, 

function definitions, design decisions, etc. [Ohkaw93]. One of the case studies 
described in Chapter 6 (the MMIS Project at Earth Observation Sciences), for 

example, provided very' detailed design documents, including algorithms and 
pseudo-code.

• Informal Interviews
For each case study, an initial interview was arranged with the primary contact 

within an organisation. The purpose of the interview was to explain the nature 

of the research and its aims and objectives. Contact was also maintained by 

electronic mail.
• Data Collection

Following [Ohkaw93], the purpose of this activity was to gain insight into the 
dynamic characteristics of applications, such as access patterns, the actual 
numbers of each type of object used and the frequency and cost of operations
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executed on them. This type of information is generally difficult to obtain, since 

it relies on actual execution which in certain domains has not been well 
documented [Ohkaw93], Some of the organisations described in Chapter 6 

provided data that they had already collected from their own performance 

evaluations. In other cases, the relevant organisation also provided its own data 

analysis.

4.7 Limitations

Examining real systems using the methods just discussed may have a number of 
limitations. These are discussed below.

4.7.1 Choice of Data Structures

The flexibility of an object-oriented database architecture renders a variety of design 

alternatives and it is possible to tune the architecture for targeted applications [Ohkaw93], 

This agrees with the views of Lakey et al. [Lakey87] and Bradley [Bradl94]. Furthermore, 
[Ohkaw93] states that:

“Some encodings render more compact representation than others, resulting 
in fewer pages to read for data retrieval and therefore more efficient 
performance.”

As an example, Ohkawa describes the representation of floating-point numbers versus 
integers in GemStone. The former are stored as objects with an object table used to map 
their object identifiers to memory locations, whilst the latter are stored as byte sequences. 
As a result, floating-point numbers consume more space and require an extra level of 
indirection. In an experiment to test these two representations, however, she found that the 

differences were surprisingly small (9% for the largest data sets she used). Additional 

experiments also showed that the overhead of repeated function calls was 12% greater than 

passing a complete set of statements as a large string and, furthermore, the overhead of 
parsing and compiling this string was 16% more than using a pre-compiled method. This 
leads to the conclusion that careful analysis of data structures and frequently performed 

operations can result in performance improvements which, when added together, can 

highlight major differences between ODBMS products.

When examining actual applications, decisions regarding application design and choice of 
data structures will inevitably have been taken by the developers. These will affect any 

performance measurements.
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4 .7 .2  C hoice o f  L anguage

In ODBMSs, traversal operations specified in languages such as C++ result in a waterfall 

of individual object-fetches that is hard to optimise [Boncz96a]. Furthermore, a complex 
loop programmed in C++ with object-referencing operations inside cannot be analysed 
easily by the ODBMS to optimise complex traversals - the task of optimisation is the 
responsibility of the programmer [Boncz96a], Such considerations do not necessarily 

extend to other languages.

4.7.3 Hardware Normalisation

Performance measurements are only valid for the particular versions of hardware and 
software used. In this research project, there is no attempt to define any hardware 

normalisation (or price/performance ratio) as found in benchmarks from the relational 

domain, such as the TP1 benchmark discussed in Chapter 3.

4.7.4 System Behaviour

For the benchmarks described in Chapter 7, this research project, following Wagner 
[Wagne91], assumes well-behaved systems. According to Wagner, this is one that is 
neither erratic nor random. However, such an assumption may be highly artificial, he goes 

on to say, since multi-user, multi-tasking environments using shared or distributed 
databases cannot be considered as having well-behaved performance, because minor 

changes in the environment can cause major changes in performance. Bradley [Bradl94] 
holds similar views. However, random fluctuations were controlled in the manner 

described below.

4.7.5 Random Fluctuations

When modelling using observations from either application-specific or systematic 
approaches, random fluctuations are likely, since uncontrollable factors affecting 
performance will always be present [Wagne91], These random fluctuations can be 

minimised by taking multiple measurements and running experiments at periods of low 
system activity, such as during evenings and at weekends - the approach used by Halloran 

[Hallo93a], proposed by Hohenstein et al. [Hohen97b] and used for the benchmarks 

described in Chapter 7.
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4 .7 .6  S in g le -U se r  vs. M u lt i -U se r  B e n c h m a r k s

For this research project, the benchmarks developed and described in Chapter 7 will be 

single-user only. This is because:

• Benchmarks should initially be run in single-user mode to measure a system’s 

performance under optimal conditions and provide a picture of the resources 

required by different queries [Boral84].

• Single-user evaluations are a crucial first step for multi-user evaluations and are 
capable of probing significant portions of the problem space [DeWit85].

• Tests in single-user mode help to eliminate the effects of non-controllable 

workloads and to isolate benchmark results [Youss93].
• It is useful to understand single-user performance before attempting to measure 

multi-user performance [Bonne95b].

Single-user tests will also keep the problem space manageable. For example, Carey et al. 
[Carey94] describe some initial experiences with a multi-user version of 0 0 7  and report 

considerable variability in observed results when simulating increasing numbers of users. 
Resource limitations discussed in detail in Chapter 7 also restrict the tests to single-user 
only in this research project. Future work should investigate multi-user tests.

4.7.7 Real Data vs. Synthetic Data

Lakey et al. [Lakey87] claim that a requirement of an object database benchmark is that it be 
run using real application data. This is because, they argue, shared sub-objects and their 

degree of nesting are difficult to generate randomly. Furthermore, creating data sets by 
hand is unfeasible because of the size of the data sets needed for testing the storage 
management capabilities of object databases. The advantages and disadvantages of using 

real data have been discussed elsewhere, e.g. [Stone85] and [DeWit85] respectively. For 

this research project, the aim is to examine real data sets where possible with a view to 

finding generalisations, as discussed earlier, but keeping in mind that certain patterns may 
be peculiar to the real data sets.

4.8 Laboratory Experiments

In a survey of case research papers in IS that appeared in a number of journals spanning 

several years, Benbasat et al. [Benba87] noted that many of the examples they encountered 
appeared to be stand-alone, one-shot studies and few authors indicated whether their 

studies were part of systematic/programmatic research plans. For this research project, case
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studies are one of several techniques that are used. Other techniques include: (i) laboratory 

experiments based on the case studies and supplemented by (ii) laboratory experiments 

based on published work and satisfying the following criteria:

1. The work must be based on a requirements analysis or study.

2. The work must be relevant to object databases.
3. There must be sufficient detail to implement the work.

In effect, the aim is to find examples in the literature that allow entry straight into the Case 
Study/Action Research path illustrated in Figure 4.2a, but without the need to actually 
undertake a detailed case study in each case. Based on this, three candidates emerge:

1. The OOl Benchmark [Catte92].
2. The AFIT Wargame Simulation Benchmark [Hallo93a; Hallo93b],

3. The CITY Benchmark [Youss93],

These choices are now justified.

4.8.1 The O O l Benchmark

This benchmark has become ubiquitous, since it is frequently referred-to in the object 

database performance literature. It is included here because:

1. Although this work is not based on any studies and suffers from considerable 

criticisms, as discussed in Chapter 3, Cattell & Skeen [Catte92] claimed that 
other work from the CAD domain correlated with their work. It, therefore, 

meets this criterion by transitivity.
2. The benchmark is primarily designed to test pointer traversals and efficient 

utilisation of workstation cache. As previously discussed, these are operations 
that ODBMSs are good at performing. Furthermore, as discussed in the next 
chapter, many application domains require support for fast traversals. Although 
OOl was not designed to compare ODBMSs, it has highlighted considerable 

differences between some products, as reported by Halloran [Hallo93a]. 
Additionally, sometimes, testing systems with a simple benchmark can be more 
useful than using a complex benchmark, as shown by Dewal et al. [Dewal90]. 
In fact, this is precisely the approach that Halloran used: (i) testing a number of 
ODBMSs using OOl and then (ii) developing a simulation benchmark for the 

system that performed fastest in (i).
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3. Reference implementations for a number of commercial systems are available in 

[Hallo93b],

The OOl benchmark is also useful in that it can serve to provide a base-line against which 

to compare other benchmarks or performance tests. The reason for this is that [Catte94b] 

claimed that, with one exception, most major ODBMS products provided similar levels of 

performance on OOl. Running the benchmark today would help establish whether this 
statement was still correct because vendors continue to extend and enhance the capabilities 

of their products. Furthermore, although OOl has been superseded by other benchmarks, it 
still remains simple, portable and easy to understand. These are qualities that many other 

object database performance benchmarks lack.

4.8.2 The AFIT Wargame Simulation Benchmark

This work is described in detail in Appendix B. Briefly, Halloran [Hallo93a] developed 

this benchmark to test the capabilities of ODBMSs for stochastic discrete-event simulation. 
The particular example that he used was a wargame scenario consisting of a battlefield with 
trucks and planes. Performance results were provided for ObjectStore and a non-persistent 

version using C++. Form this, Fialloran concluded that the overhead of using ObjectStore 

was very7 small when compared to the non-persistent version and attributed this primarily to 
the similarity of ObjectStore to C++. In terms of the criteria cited earlier:

1. The work is based on a requirements analysis, as reported in [Hallo93a],
2. It is relevant, since Halloran left open the research question as to whether other 

ODBMSs might be suitable for this type of application. Furthermore, as 
discussed in the next chapter, simulation is an important requirement for many 
application domains, such as Computer Integrated Manufacturing, Engineering, 

Financial and Scientific Applications. Additionally, there are no published 

results of the behaviour of other ODBMSs for discrete-event simulation.

3. A detailed reference implementation for ObjectStore is available in [Hallo93b],

4.8.3 The CITY Benchmark

The CITY Benchmark describes the behaviour of OLTP systems. These are not generally 
associated with ODBMSs. However, using the criteria cited earlier, its choice for inclusion 

is justified as follows:

1. The CITY Benchmark is based on in-depth studies at three of the largest 

computer sites in the UK: (i) a large international airline, (ii) a “Big Four” bank
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and (iii) a local authority computer centre. It conclusively showed that the 

industry standard benchmarks from the Transaction Processing Performance 

Council (TPC) did not represent OLTP application behaviour [Youss93].

2. Many ODBMSs now provide SQL interfaces. Some products even support a 
dedicated OLTP application server engine, e.g. M.A.T.I.S.S.E. from ADB. 
For ODBMSs, OLTP represents a worst-case scenario, because data are well 

structured, of a fixed-format with simple types and little or no navigation is 

involved. Furthermore, Youssef [Youss93] claims that the CITY Benchmark 

can be applied to ODBMSs, although he did not actually implement any 
benchmarks to test this claim. Additionally, there have been no reported results 
of any OLTP benchmark applied to any of the leading ODBMS products. 
Therefore, there is no knowledge of the behaviour of these products for this 

type of application.
3. The CITY Benchmark is reasonably well described and a full source-code 

listing is provided in [Youss93].

4.9 Data Analysis

4.9.1 Choice of Data Analysis Method

“For many metrics, the mean value is all that is important. However, do not

overlook the effect of variability.” [Jain91],

As discussed earlier, a limitation of most previous ODBMS performance work is the lack 
of any verification or sensitivity analysis. As described in [Wagne91], the standard 
approach to performance modelling is the least-squares regression analysis method, with 
the workload variables being the independent variables and the system resources required 

by the workload being the dependent variables. Youssef [Youss93] used tests of variance 

(including one- and two-way analysis of variance) as well as a difference quotient and 
factor of relative change, whilst Halloran [Hallo93a] used the small-sample test of 
hypothesis for the difference between population means, as described in [McCla91]. This 
research project will also use the small-sample test of hypothesis, as two of the benchmarks 
implemented (OOl and AFIT) follow from Halloran’s work.

4.9.2 Condensing the Performance Results

This research project will not condense the performance results reported in Chapter 7 into a 
single number, for the following reasons:
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• It is Contrary to a Research Aim
As discussed at the beginning of this chapter, the second aim of this research 

project is to identify which classes of applications are more suitable for 

particular object database architectures. This can only be achieved by 

considering the results of each benchmark independently, since each benchmark 

is representative of the data manipulation characteristics of a different 

application domain.
• The Benchmarks use Different Performance Metrics

The OOl Benchmark measures response time, the CITY Benchmark measures 
throughput, whilst the AFIT Benchmark measures both response time and 
throughput. If all the benchmarks used the same performance metric, a single 
number would be possible. However, it w'ould then face the next problem.

• There are Alternative M ethods to Condense Results
The developers of the 0 0 7  Benchmark provided three different techniques to 
condense their performance results: (i) lowest number for a test, (ii) weighted 
ranking and (iii) geometric mean. However, this led to confusion, since a 

different commercial product came top in each approach.

• It is Statistically Unfeasible
As mentioned in Chapter 1, this research project uses statistical techniques to 
provide rigour. Therefore, this author consulted a statistician, who confirmed 
that due to the different performance metrics, condensing the results of this 
research project into a single number would be statistically unfeasible.

4.10 Chapter Summary

This chapter has outlined a research design to tackle some of the limitations of previous 
object database performance work. The problem statement, problem space, aims and 

objectives of this research project have been stated.

The problem space is very large for a number of reasons:

• Object-orientation provides extensive flexibility in object database application 
design. There are currently no published rules on designing object database 

applications, similar to the normalisation and entity-relationship modelling rules 

for relational databases.

• Object databases differ in many respects, such as architectures, features, 
functionality, etc. Vendors have taken a variety of implementation choices, each 
of which have particular strengths and weaknesses.
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• The variability of the applications that object database technology is being used 

for is far greater than previous generations of database technology.

For the case studies, these factors cannot be controlled, since decisions and choices will 
already have been taken by a particular organisation and this research will simply report the 
observed findings. For the laboratory experiments, it should be possible to control many 

factors, such as the client cache size, client-server configuration, database size, page size, 
etc. A full factorial experimental design [Jain91] would be appropriate in this case. 

However, as discussed later in Chapter 7, resource limitations meant that only a partial 
factorial experimental design [Jain91] was used for each benchmark in this research 
project. The factors that were varied and their values are discussed further in Chapter 7.

To summarise, the aims of this research project are to:

1. Study the performance of commercial object database applications.

2. Attempt to identify which classes of applications are more suitable for particular 
object database architectures.

3. Determine if a generic, simple and accurate performance model for object 
databases can be derived.

It has been argued that a combination of the application-specific and systematic approaches 

to ODBMS performance evaluation is required and several alternative techniques have been 

discussed which, when used in combination, will provide a route to theory building, 
testing and extension. This combination of techniques includes multiple-case studies and 

laboratory' experiments (benchmarks).

Some of the possible limitations and problems that may be encountered have also been 
highlighted.

Finally, a number of statistical methods that have been successfully used by other database 
performance researchers were briefly mentioned. The small-sample test of hypothesis will 
be used to verify the benchmark performance results presented in Chapter 7.
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CHAPTER 5 - Application Requirements

5.1 Introduction

This chapter presents an analysis of some of the characteristics of what Cattell [Catte94a] 
calls next-generation applications (discussed below), based upon the framework originally 

presented in [Ahmed92], Whilst this framework was originally applied to engineering 

applications, it will be shown that other applications also have similar requirements in many 
areas. This is important, since most previous work on ODBMS performance has failed to 

identify the important characteristics and requirements of these applications. Furthermore, 

this analysis will serve to identify any generalisations that, as stated in the previous chapter, 
can assist benchmark designers.

The chapter is organised as follows. Section 5.2 discusses the choice of applications. 

Section 5.3 then presents an analysis of these applications using the framework originally 
proposed in [Ahmed92]. Finally, section 5.4 presents the chapter summary’.

5.2 Choice of Applications

The choice of applications is based on some of those that Cattell [Catte94a] cites as 

requiring better support for complex data and complex transactions. The examples 
discussed here will provide sufficient variety, but also be representative enough, since the 

problem space for object database applications is very large, as discussed in the previous 
chapter. Lakey et al. [Lakey87] also point out that these new applications and the object 
database products themselves show greater variety than traditional applications and DBMSs 

and the problem in constructing benchmarks is Finding a small number of example 
applications that cover the many kinds of variability possible, both in terms of data and 
operation. The application domains are: •

• Computer Integrated Manufacturing

Manufacturing systems are a natural choice for object-orientation, since 
generalised frameworks can be developed which can then be tailored for 
specific organisations. Furthermore, as discussed in [Adiga93a], issues such as
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complexity and control, simulation, etc. are easier to support and model using 

object-orientation. An example manufacturing facility described in [Adiga93c] 

illustrates that “what i f ’ analysis and simulation are important aspects for many 

manufacturing sub-systems, since the aim is to maximise both the number of 

finished products and the utilisation of available equipment.

• Engineering
ODBMSs, as discussed in Chapter 2, have traditionally been associated with 

engineering applications and all the object database benchmarks discussed in 

Chapter 3 have been suggestive of these types of applications. However, with 

several exceptions, most benchmark designers have not undertaken a 

requirements analysis of the data manipulation and schema characteristics of 
engineering applications.

• Financial
A data model for financial trading is complex and embodies a large number of 
data elements with numerous relationships [ODI96a]. Object databases enable 

these elements and their relationships to be stored directly without the need to 

decompose them into relational tables. Furthermore, given the volatile nature of 
the financial markets, new financial instruments may need to be modelled at 

short notice. This can be achieved by inheritance. Performance is also an 

important requirement to support split-second decisions by traders - the 
difference between profit and loss.

• Geographical Information Systems
This is an area that has traditionally not been served well by existing database 
technology in a number of areas, such as support for spatial data types, e.g. 

points, lines, polygons, etc. Benchmarking evidence from [Arctu95] also 
shows the difficulties in storing GIS data in a tabular format, with possible data 
inconsistencies and complex joins needed to reconstruct map data. In the same 
paper, the alternative object-oriented representation provided significant benefits 

in both performance and consistency.

• Healthcare
Patient healthcare data increasingly require support for rich data types, such as 
the ability to directly store x-ray images and detailed patient histories including 
medications and treatments. The latter could mean support for queries on 
historical data and nested list structures. A list of requirements for computerised 

medical records by Cheung [Cheun92] highlights the nature and complexity of 

modelling patient data and how semantic data models and object databases can 

help with this task.
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• Scientific Data
In her PhD Thesis, Ohkavva [Ohkaw93] investigated the use of ODBMSs for 

scientific data management. This covers a broad range of areas, but she initially 
described examples from molecular biology and chemistry and concluded that 

scientific data required a range of features currently available only in ODBMSs. 

A variety of other scientific applications is described in [Frenc90b].

• Telecom m unications
Many standards being developed by the International Telecommunications 

Union (ITU) have an object-oriented flavour. Consequently, many telecoms 
companies have chosen ODBMSs to store managed telecoms objects as there is 
no impedance mismatch between the definition and implementation of objects.

Another application domain that has received considerable attention in the literature is Office 
Information Systems (OISs). For example, Nierstrasz & Tsichritzis [Niers89] discuss how 

OO techniques, such as inheritance and part hierarchies, are very useful for capturing 
aspects of OISs. Furthermore, office procedures require support for flexible transactions, 

since they may have a life-span lasting from a few minutes to the lifetime of the office. 
Finally, a graphical environment is required, since office objects are represented by desktop 
interfaces. OISs should be included in a future domain analysis.

5.3 Domain Analysis

5.3.1 Introduction

The difference between a requirements analysis and a domain analysis is that the former is 

often focused on a particular system, whilst the latter is used to identify the conceptual 
structures shared by a class of applications [Priet91], This is appropriate here, since the aim 
in this chapter is to look for some common characteristics from the domain of next- 

generation applications.

Domain analysis is important in developing useful modelling abstractions and is defined in 
[Bodne94] as:

“... how we look at or choose to describe a system, its important features 

and the relations between them.”

In the paper by Bodner et al. [Bodne94], their aim was to identify important features of 
manufacturing, but the same approach could be extended to any of the areas discussed in 
the previous section. In order to do this, a framework would be useful and the one
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The paper by Bjprner [Bj0m97] also contains many references and pointers to formal 

domain models for a number of industries, such as transport, manufacturing, financial 

services, healthcare, etc. However, that level of detail is not attempted in this research.

5.3.2 Data Manipulation Characteristics

This category7 is concerned with identifying the data manipulation characteristics of the 
seven application domains described earlier. When developing application-specific database 
performance benchmarks, it is important to know the patterns of data access and the types 

of queries:

• Computer Integrated M anufacturing

A recurring requirement for manufacturing systems, as discussed in [Adiga93a; 
Adiga93b], is that of discrete-event simulations. As mentioned in the previous 

chapter, this is modelled by the AFIT Wargame Simulation Benchmark and 
results for this benchmark are presented in Chapter 7.

• Engineering

Adiga and Kolyer [Adiga93d] comment that niche applications, such as 
engineering, are characterised by object traversals, which are optimised through 
efficient data storage, e.g. reducing page faults and improved object clustering. 
Hurson et al. [Hurso93] also note that due to the nature of the underlying 

applications (typically engineering), the two most frequent operations in an 
object database are retrieving complex objects and navigating among related 
objects. Consequently, performance of an object database is best measured by 
how fast a large set of RAM-resident objects can be traversed, rather than 
measuring how long it takes to move objects from disk to RAM [Atwoo91], 

The OOl Benchmark is implemented and the results presented in Chapter 7.
• Financial

According to [Chand93a], portfolio managers and traders often perform queries 
on temporal data. Numerically intensive procedures are also required to 

calculate portfolio measures. The latter was directly observed in several case 
studies described in the next chapter. Also, an implementation of a Financial 
benchmark that models a portfolio management system, together with 
performance results, is described in Chapter 7.

• Geographical Information Systems
GISs are characterised by the need to model large and complex data structures 

and, according to [Berg96], support fo r (i) associative queries that use complex 
predicates containing spatial and non-spatial elements and the operations on 
them and (ii) navigational access, since GIS applications are mostly written in
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procedural programming languages such as C or C++ in which GIS objects are 

accessed object-at-a-time. Also, in the GIS-domain, loading spatial features can 

be a ver>' time-consuming task, depending upon the underlying representation 

(OO or relational), as demonstrated by the benchmarks in [Arctu95]. These 
characteristics have been directly observed in one of the case studies described 

in Chapter 6 and a GIS benchmark is implemented in Chapter 7.

• Healthcare
Giffen [Giffe94] states that one of the most common operations is to “pull” a 

patient chart to enter a new clinical note when the patient comes in to be seen. 
During the visit, reference may be made to previous visits, test results, other 

reports, etc. Furthermore, he goes on to say, the second most common reason 
for pulling a chart is to follow-up on an item of information that has been 

received, such as a lab result, x-ray report, consultant report, third party 

requesting information, etc. Many of the hard facts, such as demographic 
information, billing information, etc. can easily be stored in a relational 
database. The clinical note, however, does not fit in a relational database and is 

usually the most useful [Giffe94]. An entire patient object could end-up being a 

huge object, but it would only be necessary to access individual components (1 
KB - 100 KB) at a time [Giffe94],

• Scientific Data
For the scientific community, there are several recurring forms of query 
[Frenc90b]: (l) identity to key value, (ii) identity to synonym list to key value, 

(iii) similarity to key value, e.g. text, number, space and/or time co-ordinates, 
sub-sequence in a series or sequence, proximity in a mathematical graph, (iv) 

recursive application of a rule, e.g. moving down a hierarchy to its tips or 
leaves and (v) recursive sub-component matching. Many of these are also 

common to other application domains, such as Financial and GIS, as 
highlighted in the next chapter.

• Telecom m unications

Managed objects have pointers to other objects, as a result of the model of the 
telecoms systems. Therefore, there is much relationship chasing [Perry96]. 

This is very similar to Engineering.

5.4 Chapter Summary

In this chapter, an analysis of what are often termed as next-generation applications was 

undertaken, using a framework proposed by Ahmed et al. [Ahmed92]. These example 

applications were:
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• Computer Integrated Manufacturing.

• Engineering.

• Financial.
• Geographical Information Systems.

• Healthcare.

• Scientific Data.
• Telecommunications.

Although the framework used was originally designed to identify the requirements of 

engineering applications, the analysis showed that other applications also have similar 

requirements in the following areas:

• Complex Information Modelling Capabilities.
• Semantic Schema Design.
• Dynamic Schema Evolution.
• Rigorous Constraint Management.

• Management of Large Volumes of Data.

• Meta-Data.
• Data Sharing.

• Data Versioning.
• Inter-Client Communication.
• Flexible Transaction Framework.
• Efficient Storage Mechanisms for Fast Data Access and Retrieval.
• Computationally Complete Database Programming Language.
• Compatibility, Extensibility and Integration.
• Graphical Development Environment.

One of the research objectives outlined in Chapter 4 was to look for generalisations. The 

analysis in this chapter has shown that there are many common requirements amongst a 
range of applications, but further detailed investigation is required. In particular, how 

performance is determined or affected by these factors. The next chapter will describe a 
number of case studies to explore the data manipulation characteristics further.
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CHAPTER 6 - Case Studies

6.1 Introduction

Chapter 4 presented a research design, using case studies and benchmarks, to support the 
following research aims:

1. Study the performance of commercial object database applications.

2. Attempt to identify which classes of applications are more suitable for particular 

object database architectures.
3. Determine if a generic, simple and accurate performance model for object 

databases can be derived.

This chapter presents six case studies, undertaken at five organisations, to investigate these 
three aims and to discover any relevant evidence to support them (the reader is also referred 

to the additional material from the case studies presented in Appendix D). The results 

presented below will show that aim number 1. was directly met. Aim number 2. proved 
difficult, since only one organisation evaluated several object database products and could 

provide comparative performance results. Finally, aim number 3. was even more difficult, 
although the evidence indicates that a generic model cannot be derived. Perhaps this was to 
be expected, given the exploratory nature of the case studies described in this chapter and 
the issues previously raised in sections 2.5 and 4.10.

Case study site selection was based on availability, as discussed in Chapter 4, since all the 
major vendors (i.e. GemStone, Illustra, O2 , Object Design, Objectivity, UniSQL and 
VERSANT) were invited to provide just one case study each, but not one of them was able 
to do so. The case studies can be grouped into four major sections: (i) Financial 
S ystem s (HOODINI Project at Nomura, Nomura Treasury Dealing System, DCx Project 
at Reuters), (ii) Geographical Inform ation Systems (MMIS Project at Earth 

Observation Sciences), (iii) Healthcare S ystem s (Uncle Project at St. Mary’s Hospital) 
and (iv) X.500 System s (Messageware Directory Project at NEXOR).
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The remainder of this chapter is organised as follows. Sections 6.2 to 6.7 present the six 
case studies mentioned above. Each case study will be divided into four sections: (i) 
introduction, (ii) queries, (iii) performance results and (iv) discussion. The chapter 

summary in section 6.8 evaluates the case studies in terms of the criteria previously 

described in section 3.5, to see whether any of those factors appeared within the 

applications described in this chapter.
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6.6 The Uncle Project at St. Mary’s Hospital

6.6.1 Introduction

This case study was undertaken with St. Mary’s Hospital, Paddington, London. The 
system studied was a tissue-matching application, based on the Cosmos Clinical Process 
Model (CCPM) and developed using GemStone and Smalltalk. According to Sherlock 

[Sherl94], the prototype implementation has 5,000 lines of code.

The CCPM was developed as part of a larger initiative within the National Health Service 
(NHS) of the UK to develop a conceptual model of all healthcare, called the Common 

Basic Specification (CBS), which aims to cover all aspects of running a Health Service 
[Cairn91], Object-oriented modelling was selected for this task for its ability to represent 
complex structures [Thurs93], The object-oriented modelling method chosen was called 
Ptech (also referred to as Object-Oriented Information Engineering or OOIE), described in 

[Marti92], The relationship between Cosmos and CBS is that Cosmos forms the clinical 
view on the CBS core model through a well-defined mapping [Thurs93J.

6.6.2 Queries

Determining the types of queries for this case study was very difficult, since the system 
was developed as a prototype, with little or no documentation available that described this 

information in detail. Furthermore, the queries were automatically generated from the 
graphical user interface, developed in Smalltalk. The current prototype has been designed 

to support the following activities [Fowle93]:

• Donor/recipient matching in transplantation.
• Some decision support capabilities.
• Some advanced features to support research work in immunology.

These activities have differing data manipulation requirements. Additional problems in 

identifying queries were caused by the client-server structure, shown in Figure 6.11. The
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generic model, views and database storage being managed by the server and the 

applications and presentation services managed by the client.

Client Client

Figure 6.11 - Client-Server Architecture [Thurs93].

Figure 6.12 - Separating Presentation, Views and the Generic Model.

Views provide a searchlight on the shared CCPM [Fowle93]. Views are also needed 
because the generic model may be too abstract for user requirements or comprehension 
[Thurs93], In Smalltalk, a view would be represented by a window on the client PC, 

which would be programmed to produce appropriate information, e.g. blood group 
information. Furthermore, there is a division of tasks between an application view and the 
CCPM when updating information. Validation is provided in the application view to ensure 
that legal values for data are being entered. Consequently, the mappings between the view 
and the CCPM can be complex [Fowle93], To leave all the code within a window would 

provide poor reuse, so the approach taken was to separate the GUI code from the mapping
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code, as shown in Figure 6.12. This approach provides the flexibility to have multiple 

user-interfaces for the same application view [Fowle93] and results in a four-layer 
architecture. The classes defined for views and the generic model are also different; view 
classes have many properties and are structurally simple, whilst CCPM classes have few 

properties and complex links [Fowle93].

Views use a number of standard access routines defined as part of the CCPM. This 
simplifies access for common navigations defined across the CCPM [Caim92a], Fowler 

[Fowle94] describes views and their application in healthcare in more detail.

6.6.3 Perform ance Results

No performance data were available from this case study. Furthermore, the current Uncle 

prototype does not use any optimisations, such as indexes or structural access to attributes, 
as provided by GemStone (recall from Chapter 2 that GemStone allows associative access 
queries by using selection blocks for fast path traversal and comparison, but at the expense 
of encapsulation). Cairns & Fowler [Caim92a] suggest that such optimisations should be 
part of the CCPM to maintain encapsulation of the CCPM framework.

6.6 .4  D iscussion

This case study has demonstrated that object-oriented techniques can be successfully used 

in patient healthcare. However, both GemStone and Smalltalk have shortcomings in 

directly representing the CCPM. For example, bi-directional relationships were modelled 
using a master-slave technique, with the master being responsible for updating both sides 
of a relationship. Furthermore, Ptech contains many rich modelling constructs that could 
not be directly represented in the prototype, but templates and mapping rules had to be 

developed. These deficiencies again demonstrate that applications are not designed in 

isolation, but are designed with the features and functionality of a particular product in 
mind.

6.7 The Messageware Directory Project at NEXOR

6.7.1 Introduction

This case study was undertaken with NEXOR Ltd. in Nottingham. Currently, they are not 

using any ODBMS products, but are considering the use of this technology for the storage 

management of X.500 servers (one of their business areas). The existing X.500 servers 

that they provide at present are based on proprietary storage technology.
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6 .7 .2  Q u er ie s

X.500 can be described as a White Pages Directory Service and contains information 
about network users, organisations and system resources [Coulo94]. This type of service 
is required, since the number of networks and distributed systems is continually growing 

and a name service is needed to serve a similar purpose to telephone directories [Coulo94]. 

Several types of queries could be posed by users of an X.500 system:

• Simple telephone directory queries to obtain a person’s e-mail address.

• Yellow pages queries to obtain information about all organisations that provide 

particular products or services.
• Queries to obtain personal details about an individual, e.g. hobbies.

The types of queries can, therefore, be quite varied and imprecise.

According to Coulouris et al. [Coulo94], data stored in X.500 servers are organised in a 
tree structure with named nodes, each holding a range of attributes. Searches on the tree are 

not only possible by name, but also by a combination of attributes. Furthermore, the name 
tree is called the Directory Information Tree (DIT), which is a virtual hierarchical data 

structure [SURFn95], The entire tree with all the attributes is referred to as the Directory  
Inform ation Base (DIB). Using distributed systems principles, only one DIB would 

exist world-wide, but with parts of it being located in individual X.500 servers [Coulo94],

Figure 6.13 - X.500 Service Architecture [Coulo94].
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A typical interaction sequence would be for a user (client) to establish a connection with a 

particular X.500 server and issue requests to it. If the particular server cannot fulfil the user 
request, because the data are not held in the local segment of the DIB, the contacted server 

will call other servers or redirect the query to another server. Clients and servers are termed 

as Directory User Agents (DUAs) and Directory Service Agents (DSAs), 
respectively, using the terminology of the X.500 standard. Figure 6.13 illustrates one 
possible scenario, with a number of DUAs connected to a particular DSA and the DSA 
issuing requests to other DSAs to complete the DUAs requests. Communication between 
DSAs is through a Directory System Protocol (DSP), part of the X.500 

recommendations.

Figure 6.14 - Directory Information Tree [SURFn95].

Figure 6.14 illustrates a simplified DIT, with the root of the tree at the top, followed by 
countries (NL, FR, UK), organisations (a, b, SURFnet, etc.) and finally people at 

the leaves. There may be another level as well, called organisational units, but this has 

not been shown.

For white pages applications each node, with the exception of root, belongs to one object 

class (i.e. country, organisation, organisational unit, person) as defined by the X.500 
standard and, as mentioned earlier, each node contains attributes that depend upon the 

object class. For example, for the person object class, attribute types such as common  

name, telephone number and e-m ail would be valid, whilst for the organisation object 
class, attribute types such as organisation name and business category would be
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used [SURFn95]. Furthermore, attributes may have multiple values, as illustrated for 

common name (Figure 6.15), which has three values.

A t t r i b u t e  type A t t r i b u t e  v a l u e
Object Class: top

person
Common Name: Anonymous Nobody Other

Anonymous N. Other
A . N . Other

Su r n a m e : Other
Postal Address: • • •

Phone N u m b e r :
Fax N u m b e r :
E - m a i l :
Hobbies Eatinq, Poetry, Crocodile-Wrestling

Figure 6.15 - Example Object Class Entry.

For each object class, one of the attribute types is used to specify a name for an entry. For 
the person object class, for example, this is usually common name [SURFn95], From the 
example shown above, the value Anonymous Nobody Other would be the name of 
this node as it occurs in the DIT.

Coulouris et al. [Coulo94] describe two main methods in which a directory can accessed:

1. Read - this involves providing a domain name (absolute or relative name) for 
an entry along with the attributes that must be read. For example, finding a 

particular persons’ e-mail address.
2. Search - this is equivalent to a yellow pages search and involves providing a 

base name and filter expression. The base name is the node in the tree from 
which the search is to begin and the filter expression is evaluated for every' node 
below the base node. For example, finding the names of all research students in 

room A528 at City University.

Both a read and a search could be costly operations, since large parts of the tree may need 

to be traversed and may reside on other servers. Requests to these serv ers would need to be 

made, as shown in Figure 6.13.
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6 .7 .3  P er fo rm a n ce  R esu lts

Some benchmarks have been developed by this author for NEXOR and several database 

products evaluated, as discussed in the next chapter. These benchmarks were based on data 

and queries provided by NEXOR.

6.7 .4  D iscussion

The types of navigations that would favour a general naming sendee (X.500 is an attribute- 

based name service) include [Coulo94]:

• Iterative.

• Multicast.
• Recursive server-controlled.
• Non-recursive server-controlled.

In addition, two very important issues are: (i) the use of replication to reduce the need to 
send requests to other DSAs and (ii) caching for fast performance. It is interesting to see 

that both these requirements, the model of navigation described above and the tree-like 
structure (DIT) fits very well with object databases. One important consideration with 
X.500, however, is that since it is a standard and does not include implementation details, 
it is conceivable to use a variety of alternative data structures to represent the DIT (which, 

as mentioned earlier, is a virtual data structure), that provide the same functionality defined 
in the standard.

6.8 Chapter Summary

This chapter has discussed six case studies. In terms of the level of maturity, i.e. the time 

that a system has been under continuous development, the case studies can be organised as 

follows, with the most mature project being at the top and the least at the bottom: •

• The Uncle Project at St. Mary’s Hospital.

• The MMIS Project at Earth Observation Sciences.
• The Nomura Treasury Dealing System.
• The HOODINI Project at Nomura.

• The DCx Project at Reuters.

• The Messageware Directory Project at NEXOR.
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• M ultiple Databases - all the systems studied use a single database. It is 

unknown at the moment if the Messageware Director}' system may support 

multiple databases, since some queries may be re-directed to other servers.
• C lient-Sever Architecture - the architectures of the systems studied use 

various client-server configurations and multi-tier architectures.
• Multiple Platforms - some of the systems (e.g. Uncle, Dealing) use mixed 

environments of high-end workstations and PCs.
• Functional Differences - this is difficult to answer in some cases, since 

only one product was being used. However, in other cases where a number of 
products were evaluated, it is apparent that this factor can be important. For 
example, in HOODINI, one object database was chosen in preference to another 

because of its in-cache performance.
• Tuning - with the exception of Uncle and Messageware Director}’, all the other 

systems looked carefully at various tuning options and identified possible 

performance improvements based on the features provided by various products.

• Development and Maintenance - informally, many of the organisations 
have indicated that they have used OO techniques to reduce development time 
and hope that in the medium to long term, maintenance will become easier.

It is apparent from the findings reported in this chapter that none of the public benchmarks 
discussed in Chapter 3 satisfy the requirements described above. Furthermore, whilst there 
are similarities in the data manipulation characteristics of some systems (e.g. tree-traversals 
in HOODINI, MMIS and Messageware Directory), many of the systems have taken 
advantage of certain product-specific features to improve performance, which a generic 

benchmark would obviously not be able to do. Furthermore, even systems from the same 
vertical market have very different requirements, e.g. compare HOODINI with DCx.

Evaluating the findings against the three research aims outlined earlier, it is clear that the 

first aim of studying the performance of commercial object database applications has been 

met. The second aim of identifying which classes of applications are more suitable for 

particular object database architectures has been difficult to determine, since only one of the 
case studies provided comparative performance data. Finally, the third aim of attempting to 

determine if a generic, simple and accurate performance model for object databases can be 

derived has also been difficult to determine, although the evidence available from the case 

studies strongly indicates that generic high-level benchmarks are simply too difficult to 
develop and that there is no standard or canonical workload for object databases.
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CHAPTER 7 - Benchmarks

7.1 Introduction

Chapter 4 presented a research design, using case studies and benchmarks, to support the 

following research aims:

1. Study the performance of commercial object database applications.
2. Attempt to identify which classes of applications are more suitable for particular 

object database architectures.

3. Determine if a generic, simple and accurate performance model for object 
databases can be derived.

The previous chapter described a series of case studies that met the first aim. However, the 
second aim was difficult to achieve, since only one case study provided comparative 

performance numbers from several object database products. The third aim was also 

difficult to achieve, but evidence from the case studies suggested that a generic model was 
not possible since, for example, applications were designed to take advantage of product- 
specific features.

The research design described in Chapter 4 proposed that case studies would be used as 
part of a systematic/programmatic research plan and would be supported by laboratory 
experiments to meet the above aims. Therefore, to achieve aim 2. and discover further 

evidence for aim 3., this chapter describes and reports the results of the following six 

performance benchmarks:

1. The OOl Benchmark (Engineering).
2. The AFIT Wargame Simulation Benchmark (Discrete-Event Simulation).

3. The CITY Benchmark (OLTP).
4. The X.500 Benchmark (X.500).

5. The GIS Benchmark (GIS).
6. The OO-Fin Benchmark (Financial Trading).
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The justification for the inclusion of the first three benchmarks was previously discussed in 

Chapter 4. The X.500 Benchmark was directly driven from the case study work 
undertaken by this author with NEXOR Ltd., as mentioned in Chapter 6. The GIS 
Benchmark was derived form a customer benchmark that was implemented by Illustra, but 

the source code was made available to this author. It has some similar data manipulation 

characteristics, discussed later, to the MMIS project at EOS Ltd. Similarly, the OO-Fin 
Benchmark is included, since it has some similar data manipulation characteristics, 
discussed later, to the HOODINI project at Nomura International.

These six benchmarks provide a cross-section of tests, since they produce some of the data 

manipulation characteristics found in the case studies, such as navigational access and 

throughput. The diversity of data manipulation characteristics among ODBMS applications 
also requires a larger range of tests, as suggested by Lakey [Lakey87], hence the use of six 
benchmarks, instead of just one. A single performance number that condenses the results 

of these benchmarks is not possible, for reasons previously discussed in section 4.9.2. It 
was not possible to develop more benchmarks based on the case study work for the 

reasons previously discussed in sections 2.5, 4.10 and 6.8.

The DBiMS software used in this research was provided by the vendors on the basis that 
their products would not be named, since this research is studying the performance of 
competitive products. Previous researchers, e.g. [Carey93; Carey94], have also reported 
legal difficulties in publishing the results of competitive benchmarks. Other researchers, 
e.g. [Kempe95a; Kempe95b], have published results, but have anonymised the products 

under test. However, from the descriptions of the systems, it was easy to determine the 
mapping [Chaud96b], Anonymising the products under test is, therefore, the only viable 
approach for this research project. The three products tested were ObjectStore, UniSQL 
and Objectivity/DB. These will be named as DBMS-1, DBMS-2 and DBMS-3 in the results 

reported below (without, of course, describing the mapping used between an actual product 

and its anonymised name).

The remainder of this chapter is organised as follows. Section 7.2 describes the hardware 

and software test parameters and configurations used for the benchmark tests. Section 7.3 
presents the statistical test used to analyse benchmark results. Sections 7.4 to 7.9 present 
the six above mentioned benchmarks, respectively. Finally, section 7.10 contains the 

chapter summary. This chapter is somewhat longer than the others, since it contains graphs 

and tables that summarise the results.
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7.2 Factors and Their Values

As mentioned in Chapter 4, it should be possible to control many factors for the benchmark 
experiments, such as the client cache size, client-server configuration, database size, page 

size, etc. A full factorial experimental design [Jain91] would be appropriate in this case. 

However, as discussed below, resource limitations meant that only a partial factorial 

experimental design [Jain91] was used for each benchmark in this research project. The 
results and conclusions presented below are, therefore, only valid for the particular factors 
and their values. The factors that were varied and their values are now discussed in detail.

7.2.1 Summary of Environment Variables

To ensure that fair comparisons between database systems are possible and results are 
reproducible, the following environment variables need to be reported [Larse92]:

• Hardware Platform and Operating System.
• CPU Type.
• Amount of Memory'.
• Disk Type and Size.

• The Name and Version of the DBMS software.

Hardware sun4

Operating System SunOS 4.1.2

CPU Dual SPARC (33 MHz)

Memory 64 MB

Disk Type Computer International SCSI 1000

Disk Size 2 x 800 MB

Swap Space 200 MB

File System UNIX

Compiler SPARCcompiler SC3.0.1 (7/13/94)

DBMS Software Objectivity/DB 3.8.6 

ObjectStore 4.0.2 

UniSQL 3.5.2

Table 7.1 - Environment Variables. 

To this list, three other factors were added:
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• Swap Space [Hallo93a],

• File System.
• The Name, Type and Version of the Compiler.

These environment variables were kept constant throughout all the benchmark tests.

7.2.2 Summary of Factors

Table 7.2 summarises the factors and their values. Most factors were kept constant for all 

tests. The exceptions were tests that required separate measurements for cold and warm 
cache numbers and/or using different database sizes.

Caching Cold and warm cache numbers were reported separately 
where required by a benchmark, otherwise only a single 

number was reported.

Client-Server Cache Sizes The default cache sizes provided by a particular product 
were used for all tests.

Client-Server Configuration The DBMS-2 client and server processes were running on 
the same machine for all tests.

Clustering The default clustering scheme provided by a particular 

product was used for all tests.

Database Size The database size was dependent on the particular 
benchmark and DBMS internals.

Indexing Indexing was used as required by a particular benchmark.

Joumaling/Logging Joumaling/logging was enabled for all tests. Archiving for 
DBMS-3 was disabled.

Page Size The page size was kept constant for all tests.

Query' Programmer The query programmer was used where it was available in 

preference to hand-coding.

Single/Multi-User This research project investigated single-user performance 

only.

Table 7.2 - Summary of Factors. 

These factors are discussed in detail below.
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7 .2 .3  B en ch m ark  R uns

During this research, the server with the DBMS software was also servicing other users, so 
it was necessary to run the benchmarks at off-peak periods, such as overnight and at 

weekends, to minimise the impact that other users and processes could have on the 
benchmark results. However, in some cases, such as lengthy database loads, this was not 

possible. Running the tests at off-peak periods follows the approach used by Halloran 
[Hallo93a] and is in contrast to the approach used by Larsen [Larse92], who tested his 

benchmark software in a full multi-user environment with other users and processes 
running during his experiments.

7.2.4 Database Loads

For DBMS-1 and DBMS-2, a database load was performed from within the benchmark 
program and it was possible to check the database size by examination of the database file 
created using simple UNIX commands. For DBMS-3, it was found that attempting to load 

the database from the benchmark program would take considerable time (possibly several 
days) and would eventually result in memory faults, even with small database sizes. 

Consequently, it was necessary to use the DBMS-3 bulk database load utility to populate 
the database. Various parameters can be passed to this tool, such as the page size and the 

number of pages to be created. Other DBMS-3 tools can calculate the number of pages 
required. Using these tools, the database size was estimated and then created, before using 

the bulk loader. The DBMS-3 load times are, therefore, based on the time to load the 

database using the bulk loader plus the time to update the database statistics plus the time to 
create indexes.

The DBMS-3 bulk loader requires an input file in a particular format. This was usually 
created by simply loading a modified DBMS-1 database and writing a small program to 
dump this database into a file in the format required by DBMS-3. DBMS-1 was used in this 

way for the OOl, GIS and OO-Fin (large database) benchmarks. For the CITY, X.500 and 
OO-Fin (small database) benchmarks, the benchmark code within the respective DBMS-3 
programs was modified to generate the load file directly. DBMS-3 was not tested on the 
AFIT Benchmark, for reasons discussed in section 7.5.3.

7.2.5 Caching

Three of the benchmarks, namely OOl, X.500 and OO-Fin, require both cold and warm 
cache numbers to be reported. The distinction between cold and warm numbers is as 
follows. The first benchmark run produces the cold cache numbers, where the application
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cache is initially loaded with objects irom the database. Subsequent iterations may access 

objects that are already in the cache and are, therclore, referred to as warm numbers.

A precaution that was used was to read a large file after a benchmark test, to clear UNIX 

file system buffers, as described in [Nag95]. This enabled both cold and warm cache 
numbers to be more accurately measured for those tests that required it and is also an 

approach described in [Asgar97].

7.2.6 Client-Server Cache Sizes

Results reported by Hohenstein et al. [Hohen97a; Hohen97b] showed that the client cache 

size for one ODBMS had very little influence on its performance, whilst for another 

ODBMS it was very important. However, to keep the problem space manageable, this 

factor was kept constant for all tests in this research project, by using the default values 
provided by a particular product in its configuration file. This would be a reasonable 

decision, since without investigating caching specifically, it would be difficult to determine 

the best cache sizes for a particular benchmark. Furthermore, this author could not find any 

references to specific cache sizes for the O Ol, AFIT, CITY, GIS or OO-Fin benchmarks.

7.2.7 Client-Sever Configuration

Whilst this research was being undertaken, new servers were being introduced with a new 
operating system in the School of Informatics at City University. Therefore, it was 
necessary to confine the running of the DBMS software to one server that was still running 

the old operating system. Furthermore, it was not possible to use a normal client-server 
configuration, since a client machine with the minimum memory required by the DBMS 

software and running the same operating system as the server was not available. To 
upgrade the DBMS software would have been possible, but time consuming, since there 

were three products, as mentioned above in Table 7.1.

Of the three products tested, DBMS-2 is the only one that uses a true client-server 
configuration with separate client application and database server processes. DBMS-1 uses 

a peer-to-peer architecture and there is no concept of a server process as such, although a 
lock manager process needs to be running for multi-user applications. DBMS-3 provides 

libraries for both single- and multi-user applications and during the tests described below, 

all applications were built with the single-user libraries.
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7 .2 .8  C lu s te r in g

To keep the problem space manageable, this factor was kept constant for all tests in this 

research project, by using the default clustering strategy provided by a particular product. 

This follows the approach used by other researchers, such as Kempe et al. [Kempe95a; 

Kempe95b]. This would be a reasonable decision, since without investigating clustering 
specifically, it would be difficult to determine the best clustering strategy for a particular 

benchmark. Furthermore, this author could not find any references to special clustering 

directives for the OOl, AFIT, CITY, GIS or OO-Fin benchmarks.

7.2.9 Database Size

The OOl, AFIT and OO-Fin benchmarks provide specific values for the number of objects 
to be created. The X.500 and GIS benchmarks are dependent on the quantity of input data 

available or generated, respectively. The CITY Benchmark leaves the choice of database 
size open, based on available system resources. The exact database size for each 

benchmark will also be dependent on DBMS internals.

7.2.10 Indexing

Results reported by Hohenstein et al. [Hohen97a; Hohen97b] showed that some queries 

for a particular ODBMS were slower with indexes than without! However, to keep the 
problem space manageable, this factor was kept constant for all tests in this research 

project, by using indexing (normally a B-Tree), where specified by a benchmark. Specific 
indexing decisions for some benchmarks are also discussed in later sections.

7.2.11 Journaling/L ogging

In all tests, joumaling/logging was enabled for both DBMS-1 and DBMS-2. DBMS-3, 
however, caused serious problems, since it created log and archive files that were as large 
as the database itself. After some initial tests with the OOl Benchmark, it was decided to 
disable archiving since, otherwise, the disk would fill-up very rapidly with numerous and 

possibly very large archive files, particularly if large transactions were in progress.

7.2.12 Page Size

An 8 KB page size was used as the unit of transfer between the database and application in 
all cases, since this matches the page size used by the operating system and was the size 

used by Carey et al. [Carey93] and Halloran [Hallo93a] in their benchmarking work.
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Hohenstein et al. [Hohen97bl also comment that using pages smaller than operating system 

pages has the disadvantage that only parts of them are transferred at a time, increasing the 

total number of transfers.

7.2.13 Query Programmer

Where a product supported a query programmer, a benchmark was written to take 
advantage of it, as it was generally easier to express a query' rather than trying to hand-code 

it.

7.2 .14 S ingle/M ulti-U ser

All the benchmarks measured single-user performance only, as discussed in Chapter 4.

7.3 Data Analysis

As mentioned in previous chapters, few object database benchmark efforts have used any 
verification, sensitivity or statistical techniques on their results. Chapter 4, however, briefly 
described several techniques used by some database performance researchers. The 
approach used by Halloran [Hallo93a] is the most relevant to this research project, since 

several of the same benchmarks are also explored in this research project.

The statistical test used by Halloran was the small-sample test of hypothesis for the 
difference between population means, as described in [McCla91], This research project will 

also use this test to determine if differences exist between the performance results obtained, 

either:

1. Between two different databases using the same benchmark configuration or

2. Between the same database on two different benchmark configurations.

These comparisons can be performed on the mean times for benchmark operations. The 
standard statistical approach to performing comparisons of this nature is to form a null 
hypothesis which states that there is no difference between the population means, against 

an alternative hypothesis which states that there is a difference. In equation form, these can 

be represented as (1) and (2), respectively:

~ ¿fj) = ® (1)

-  ,“ 2 ) * 0 (2)
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Although the population mean times (/.t15lu 2) are unknown, the sample mean times are 

known, since each benchmark is typically performed five times and an average obtained. 
Equation 3 shows the formula to calculate the statistic used to perform the test of the null 

hypothesis versus the alternative hypothesis:

t = ( * i - - E ) - 0  (3)
l(n1-l)sl2 + (n2- l )s^ l  ̂ 1

V n i +  n 2 ~  2 «, «2

Where n is the sample size, x is the sample mean and s is the sample standard deviation 
(calculated using a divisor of n -1  instead of n, since this gives a better estimate of the

population standard deviation). Here a two-tailed test is used, with the rejection region 
being calculated from the Student’s t distribution as t < - 1* or t > and using 8 degrees

of freedom in most cases (with fewer degrees of freedom used in several cases, due to a 

test failure) with a level of significance (a) equal to 0.05. One of the following three 

conclusions can be drawn from the results [Hallo93a]:

1. If t< -2.306 the first benchmark result is faster than the second benchmark 

result.
2. If t >2.306 the second benchmark result is faster than the first benchmark 

result.
3. There is insufficient evidence to reject the null hypothesis at a = 0.05.

The same assumption as Halloran, regarding the population standard deviation being equal 

for both samples, was also used in this research project. This is because, like Halloran, 
random number variations were controlled by using the same random number stream for all 
benchmarks and system loading was controlled by running the tests at periods of low 

activity, such as evenings and weekends.

7.4 The OOl Benchmark

7.4.1 Introduction

This benchmark has been described in detail in Chapter 3 along with some results for a 

number of ODBMSs. The main purpose of this benchmark is to measure the performance 
of interactive engineering applications, based on databases of parts and connections. 
The schema illustrated in Figure 7.1 shows that parts are connected “to” other parts and 
connected “from” other parts. The connection is the relationship between parts and also has
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some attributes. The cardinality of the “to” relationship is exactly three, whilst the 

cardinality of the “from” relationship is zero or many.

0,m

Figure 7 .1 - The OOl Benchmark Schema.

Three operations are specified (Lookup, Traversal and Insert), which are based on those 

that would typically be used by engineers in such environments [Catte92], There are two 

database sizes: (i) a sm all database of 20,000 parts and 60,000 connections 
(approximately 4 MB) and (ii) a large database of 200,000 parts and 600,000 connections 
(approximately 40 MB).

There are four possible configurations of this benchmark in a client-server environment:

1. Small Local Database - running the application and database server on the 
same machine for the small database.

2. Small Remote Database - same as 1. above, but running the application 
remotely (across a network) on a different machine from the database server.

3 . Large Local Database - running the application and database server on the 
same machine for the large database.

4. Large Remote Database - same as 3. above, but running the application 
remotely (across a network) on a different machine from the database server.

According to Cattell & Skeen [Catte92], most ODBMS applications require the second 

configuration and for the OOl Benchmark itself, the second and fourth are required, with 
the others being optional. However, it was only possible to test the first and third due to the 

problems described in section 7.2.7. Some caution is, therefore, necessary when 
interpreting the results reported below, since Halloran [Hallo93a] discovered in the case of
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ObjectStore, for example, that it performed slightly worse for the small local database than 

the small remote database. This he attributed to the fact that both the application and 

database processes were likely to be competing for system resources on the same machine 

in the first configuration. However, running application and database processes on the 

same machine removes network latency effects and is an approach that has been used by 
Dewan & Agarwal [Dewan97] and Hohenstein et al. [Hohen97a; Hohen97b].

One of the requirements of the OOl Benchmark is that 90% of connections between parts 

must be randomly linked to 1% of the closest parts, where closeness is defined as a 

numerically similar part identifier. In his research, Halloran [Hallo93a] removed this 

restriction and discovered that one of the products he was benchmarking (ObjectStore) was 
very sensitive to this Locality of Reference (LOR). Therefore, this adds four further 

configurations to the above list, although Halloran only tested the small local and small 
remote databases with No Locality of Reference (NLOR). Results are also presented below 

for the small local NLOR database.

Complete results for the OOl Benchmark are described in Appendix E, together with a 
statistical analysis. These results are summarised below. The benchmark was performed 

five times, following the approach used by Halloran. The source code for ObjectStore 
described in [Hallo93b] was used as the basis for all three products under test. The DBMS* 
2 implementation was close to the one listed in [Hallo93b], with minor changes required to 

replace DML statements with library interface statements. Conversion to the other two 
products was surprisingly easy and no major problems were encountered. Hohenstein et al. 

[Hohen97a] also comment that porting code from one ODBMS to another for their 

performance tests was a mechanical task as far as standard functionality was concerned. 

Similar experiences have also been reported by Shiers [Shier98],

7.4.2 Factors and Their Values

All factors were kept constant, as mentioned earlier in section 7.2.2, with the exception of 
the database size. This was varied as follows:

1. Small Local Database
2. Large Local Database
3. Small Local Database (NLOR)

Cold and warm cache numbers were also collected, as required by the OOl Benchmark.
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7 .4 .3  Sm all L oca l D atab ase  R esu lts

The following table illustrates database size and load time.

DBMS-1 DBMS-2 DBMS-3

Load Time (Secs) 957.360 260.997 715.300

DB Size (MB) 8.523 4.500 6.070

Table 7.3 - Small Local Database Load Results (Secs).

From Table 7.3, only DBMS-2 comes close to the 4 MB database size, mentioned earlier. 
The DBMS-3 bulk loader gives better performance than DBMS-1 and its database size is 
also smaller.

Benchmark results for the Small Local Database are shown in Table 7.4 and Figures 7.2 
and 7.3. Reported times are in seconds. The L+T+I metric is simply the sum of the 
Lookup, Traversal and Insert numbers.

DBMS-1 DBMS-2 DBMS-3

Lookup Cold 19.020 24.478 57.724
Lookup Warm 12.549 2.812 128.813

Traversal Cold 19.968 35.415 25.942
Traversal Warm 3.916 6.445 9.119

Insert Cold 25.304 21.316 335.230
Insert Warm 26.165 4.745 342.046

L+T+I Cold 64.292 81.209 418.896
L+T+I Warm 42.629 14.002 479.979

R. Traversal Cold 28.786 35.600 31.732
R. Traversal Warm 3.598 6.305 8.650

Table 7.4 - Small Local Database Benchmark Results (Secs).

The OOl Benchmark requires that each test is performed 10 times. The warm numbers 
shown in Table 7.4 represent the averages of iterations 2 to 10.
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The forward traversal operation follows the “to” relationship from one object to another and 
is determined as follows. Since each object is connected “to” three other objects, the total 

number of objects visited for 7 “hops” will be:

(4)

i*0

This is equal to 3,280. The reverse traversal operation follows the “from” relationship, 
which is variable, as mentioned earlier. Therefore, reverse traversal results are normalised, 

so that they can be correctly compared with the forward traversal results. The formula for 

this is described in [Catte92; Hallo93a]:

r  t  —?■1 rt norm alised—  1 rt
N r ,

(5)

Tn is the elapsed time, Nn is the number of parts found in a single reverse traversal 
measure and N/t is the number of parts found in a single forward traversal measure, which 
is always 3,280 parts (with possible duplicates).

□ L+T+l Cold

□ L+T+l Warm

F igu re  7 .2  - Small Local Database Benchmark Results.
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In Figure 7.2, DBMS-2 has high start-up costs (cold cache) when compared to DBMS-1, 

but its warm numbers are generally better. Traversals in DBMS-3 are comparable to the 

other two products, but inserts are very expensive and warm lookups are curiously about 

twice as expensive as cold lookups.

Figure 7.3 shows the L+T+I numbers averaged over the five benchmark tests and DBMS-3 

is clearly experiencing memory problems, as the numbers get worse with each benchmark 
iteration. DBMS-3 technical support were contacted about these strange numbers and were 

provided with the benchmark code and data. They agreed that the results appeared strange 
and were able to reproduce similar numbers, but were unable to suggest any reasons for 

this. For DBMS-2, the traversal and reverse traversal numbers are almost identical, 
suggesting that the entire database may be memory resident.

Figure 7.3 - L+T+I Results for Small Local Database.

7.4.4 Large Local Database Results

DBMS-2 comes closest again to the database size requirement (40 MB) for the OOl 

Benchmark, as shown in Table 7.5. The database sizes scale-up by a factor of ten for each 

product when compared to their sizes for the small database. The DBMS-3 bulk loader 

gives very good performance when compared to the other two products. Load time for
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DBMS-2, however, is very high. This is probably because the OOl Benchmark requires 

the entire database load to be performed in a single transaction. When the pages are 8 KB 
and the objects are small, as with the OOl parts and connections, the cost of updating a 
page appears high, compared to the data that have actually changed. Furthermore, both 

DBMS-2 client and server processes are running on the same machine and competing for 
resources. In contrast, the other products do far better, since there is no server process.

DBMS-1 DBMS-2 DBMS-3

Load Time (Secs) 15,208.068 128,895.250 10,792.000

DB Size (MB) 83.094 43.000 57.664

Table 7.5 - Large Local Database Load Results (Secs).

Benchmark results for the Large Local Database are shown in Table 7.6 and Figures 7.4 

and 7.5. Reported times are in seconds.

DBMS-1 DBMS-2 DBMS-3

Lookup Cold 48.774 176.476 100.969

Lookup Warm 18.612 141.035 210.063

Traversal Cold 53.280 257.402 70.643
Traversal Warm 33.389 240.669 110.803

Insert Cold 38.394 60.138 402.913

Insert Warm 39.171 59.960 424.082

L+T+I Cold 140.448 494.017 574.525

L+T+I Warm 91.171 441.664 744.948

R. Traversal Cold 63.419 543.407 64.873

R. Traversal Warm 51.102 339.906 106.851

Table 7.6 - Large Local Database Benchmark Results (Secs).

The performance of DBMS-2 is more dramatically affected by the database size than 
DBMS-1 (Figure 7.4). DBMS-3 again provides good performance on some tests, but the 
results show that inserts still account for the bulk of the L+T+I results. The DBMS-3 warm 
numbers are worse than the cold numbers in all cases this time.
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□ L+T+l Cold 

OL+T+I Warm

Figure 7.4 - Large Local Database Benchmark Results.

F igu re  7 .5  - L+T+I Results for Large Local Database.
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Figure 7.5 shows the L+T+I times averaged over the five benchmark tests and DBMS-3 
again shows poor use of caching. The reverse traversal numbers for DBMS-1 and DBMS- 

3 are very similar to their respective numbers for the forward traversal. DBMS-2, however, 

is far more expensive.

7.4.5 Small Local Database (NLOR) Results

The following table illustrates database size and load time for NLOR.

DBMS-1 DBMS-2 DBMS-3

Load Time (Secs) 982.905 223.130 702.560

DB Size (MB) 12.609 4.500 6.070

Table 7.7 - Small Local Database (NLOR) Load Results (Secs).

Both DBMS-2 and DBMS-3 maintain the same database sizes when compared to their sizes 

for the small Locality of Reference (LOR) database. DBMS-1, however, is 4 MB larger, 
even though exactly the same quantity of objects is being loaded. This indicates that 
database loading is an important issue with some ODBMSs, which has implications for 
very large databases, where disk usage can become significant. Understanding how to 
“pack” objects more efficiently onto pages would help under such circumstances.

DBMS-1 DBMS-2 DBMS-3

Lookup Cold 17.516 28.700 56.650

Lookup Warm 12.547 2.535 129.579

Traversal Cold 27.124 37.264 43.956
Traversal Warm 5.132 5.867 12.539

Insert Cold 80.670 51.812 425.074

Insert Warm 73.649 8.194 422.432

L+T+I Cold 125.310 117.777 525.680
L+T+I Warm 91.327 16.596 564.549

R. Traversal Cold 29.208 39.272 43.004

R. Traversal Warm 6.993 5.634 14.814

T ab le  7 .8  - Small Local Database (NLOR) Benchmark Results (Secs).
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□ L+T+l Cold

□ L+T+l Warm

Figure 7.6 - Small Local Database (NLOR) Benchmark Results.

F ig u r e  7 .7  - L+T+I Results for Small Local Database (NLOR).
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Benchmark results for the Small Local Database (NLOR) are shown in Table 7.8 and 

Figures 7.6 and 7.7. Reported times are in seconds. The diagrams show that DBMS-1 is 

far more sensitive to locality of reference than the other two products. DBMS-2 produces 
slightly worse cold numbers, but the warm numbers are comparable to its locality of 
reference results. This must again be due to its ability to cache the entire small database in 
memory'. DBMS-3 again performs worse overall. Reverse traversal numbers for all three 
products are similar to their respective forward traversal numbers.

Raw results and a statistical analysis are presented in Appendix E. Some of the results are 
significant at a =0.05.

7.5 The AFIT Wargame Simulation Benchmark

7.5.1 Introduction

Figure 7.8 - The AFIT Wargame Simulation Benchmark Schema.

This benchmark was developed by Halloran [Hallo93a] as part of his Master’s Thesis and a 
full source code listing for ObjectStore is provided in [Hallo93b]. Its purpose and 

operations are described in detail in Appendix B. Briefly, the benchmark was designed to 
test the ability' of an ODBMS to directly run a discrete-event simulation model. Simulation 
is an important requirement for many application domains, as described in Appendix C.
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The particular environment being modelled by this benchmark is a vvargame scenario, 

consisting of a battlefield with aircraft and taicks.

Figure 7.8 illustrates the schema. Environm ent and Player are virtual classes. 
H exBoard is a passive simulation component, whilst Aircraft and Truck are active. 

There is a containment relationship illustrated between M odel and the three classes 

Environment, Event and Logltem . A 1:1 relationship exists between Player and Event, 

since Event holds schedule details for all Aircraft and Trucks.

The benchmark design deliberately separates the various components that support the user 
interface from the database and simulation objects. In this way, it would be possible, with 
minimum effort, to replace either the database or the user interlace. In fact, for the results 

that are reported in the following sections, it was very' easy to replace the DBMS and leave 

the user interface intact. This is the qualitative measure of this benchmark.

In his thesis, Halloran reports results for this benchmark for the small database that he 

defines and due to time constraints was unable to extend his work to either the large 
database or the other ODBMS products that he was testing. His work will be revisited and 

extended in this section (although obviously not all the same ODBMSs are under test). 
Other justification for the inclusion of this benchmark has been discussed in Chapter 4.

Four possible benchmark configurations are defined:

1. Small Local Database - running the application and database server on the 

same machine with 1,000 trucks, 500 aircraft and a 50 x 50 hex board.
2. Small Remote Database - same as 1. above, but running the application 

remotely (across a network) on a different machine from the database server.
3. Large Local Database - running the application and database server on the 

same machine with 10,000 trucks, 5,000 aircraft and a 100 x 100 hex board.

4. Large Remote Database - same as 3. above, but running the application 
remotely (across a network).

Due to the restrictions previously discussed in section 7.2.7, only results for the small local 

database can be reported. Furthermore, the large local database was not attempted, since the 

benchmark uses a Graphical User Interface (GUI) to enter test parameters, that requires 

continuous monitoring and user interaction. It was found that even running the small local 

database tests consumed considerable time. Extending the benchmark with a batch 
capability for larger databases should be a future enhancement. The benchmark measures 
seven major operations:
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1. Model Creation - the elapsed time to create a new model.

2. Scenario Creation - the elapsed time to create a scenario.
3. Sim ulation Execution - the simulation is run for one hour with the time slice 

set to 60, 600, 1800 and 3600 seconds.
4. Simulation Throughput - the simulation is run as fast as possible with the 

time slice set to 60 seconds.
5. Version Creation - the time to create a complete copy or new version of a 

model.
6. Map Creation - the time to create the map.
7. Report Creation - the time to create the summary report.

Furthermore, whilst the movements of Aircraft and Trucks are not particularly interesting, 
Halloran argues that the load on the system is constant and, therefore, should provide a 

good indicator of how an ODBMS is able to cope with the running of a simulation model 

directly within the ODBMS.

7.5.2 Factors and Their Values

All factors were kept constant, as mentioned earlier in section 7.2.2. Only the Sm all 

Local Database was tested.

7.5.3 Small Local Database Results

DBMS-1 DBMS-2

Model Creation 0.482 0.140

Scenario Creation 71.682 3.496

Hr Run (TS=60) 7,582.355 621.042

Hr Run (TS=600) 7,941.710 537.571

Hr Run (TS=1800) 8,225.547 532.404

Hr Run (TS=3600) 7,685.126 526.138

Throughput 2.104 0.198

Version Creation 178.372 22.384

Map Creation 9.936 12.812

Report Creation 2.094 1.312

T ab le  7 .9  - Small Local Database Benchmark Results (Secs).
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The benchmark design does not provide any distinction between cold and warm numbers 

and does not require these to be reported separately. The Small Local Database results are 

presented in Table 7.9 and Figure 7.9. Reported times are in seconds.

Results for DBMS-3 are not available, as the schema for this benchmark is more complex 

than the other benchmarks and it was felt that creating a dump program would consume 
considerable time and effort. Similar problems for generating inter-related data for an 

object-relational database have also been reported by Asgarian et al. [Asgar97].

□ DBMS-1

□ DBMS-2

Time Slice (TS) Secs

Figure 7.9 - Small Local Database Benchmark Hour Run Results.

The results reported for this benchmark by Halloran [Hallo93a] showed that ObjectStore 
and a non-persistent (C++) version of the benchmark produced very similar results, leading 
Halloran to conclude that ObjectStore was well suited for use in simulations. Clearly, the 
results above show very big differences between DBMS-1 and DBMS-2. One reason for 

the observed performance of DBMS-1 could be due to the slow updates/writes, as 

discussed in the last chapter. Frequent writes are needed, since the simulation model 
constantly updates active simulation players. From the above results, DBMS-1 is less well 

suited for this type of application than DBMS-2, despite the small size of the database. 
Further investigation is recommended to determine the reasons for the large differences.
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Raw results and a statistical analysis are presented in Appendix F. Some of the results are 

significant at a =0.05.

7.6 The CITY Benchmark

7.6.1 Introduction

The CITY Benchmark was developed by Youssef [Youss93], It is based on studies of 
OLTP systems at three of the largest computer sites in the UK: (i) a large international 
airline, (ii) a “Big Four” high street bank and (iii) a local authority' computer centre. The 

results of these studies showed a common pattern of OLTP behaviour at these 

organisations, although they were in totally different business areas. According to Youssef, 
the OLTP model emerged after analysis of more than 40 Million transactions, 4,800 
discrete applications and 5,000 relational tables. The work also showed that the industry- 
standard TPC benchmarks did not represent OLTP behaviour.

The CITY Benchmark uses five tables, with simple data types (char, varchar, integer, 
floating point, etc.). The table names, number of attributes and row sizes are shown in 
Table 7.10.

Table Name No. of Attributes Row Size (bytes)

DB100 7 100

DB200 14 200

DB300 21 300

DBUPD 14 200

DBINS 14 200

Table 7.10 - The CITY Benchmark Tables and Sizes.

The relationships between the tables are illustrated in Figure 7.10, using the notation 
commonly seen in Entity-Relationship (ER) modelling. DBINS is not illustrated, since it 
has no relationships with any of the other tables and initially starts with no rows, but rows 
are added during the benchmarking process.

The CITY Benchmark source code listed in [Youss93] is written in C and Embedded SQL 

(ESQL). Three programs are described:
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1. Create Tabl es Program.

2. Load Tabl es Program.
3. Benchmark Transactions Program.

Figure 7.10 - The CITY Benchmark Tables and Relationships [Youss93].

Translation of the source code to DBMS-3 ESQL was very straightforward, requiring 
minimum amendments. Similarly, a C++ version for DBMS-3 was easily derived. It was 
decided to write these two versions for DBMS-3 to determine whether any performance 
differences between the C++ and ESQL versions existed.

Translation of the source code to DBMS-1 and DBMS-2 versions was a little more 
difficult, requiring more care and attention, since no previous implementation of this 
benchmark on an ODBMS has been reported. The approach used in this research project 

was to map a table to a class and each row to an object instance. In the case of DBMS-1, 
each class was stored in a separate container, since this is the only mechanism available for 

indexing in this product and is also the approach used by the DBMS-1 SQL interface (not 
tested on this occasion, since the SQL libraries provided by the vendor would not link with 

the compiler used in this research project). In the case of DBMS-2, an extent was defined 
for each class over which the indexes were created. However, only one segment was used. 
This latter decision was possibly a major reason for DBMS-2’s poor performance, 

discussed shortly. Future work should investigate storing each extent in a separate 

segment.
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7 .6 .2  F actors and T heir V alues

All factors were kept constant, as mentioned earlier in section 7.2.2, with the exception of 

the database size. This was varied, as discussed in the next section. The benchmark was 

also implemented on DBMS-3 using both C++ and ESQL to test different language 

bindings.

7.6.3 Benchmark Results

In his thesis, Youssef proposes using table sizes of 1 Million rows, but subsequently 

recognises that the actual number generated for a benchmark run will depend upon available 

system resources. Consequently, it was decided to use five different sizes, to test 

scalability, as illustrated in Figure 7.11.

Figure 7.11 - Database Size.

Both DBMS-1 and DBMS-2 have similar storage requirements. For DBMS-3, the same 

database w’as used for both the C++ and ESQL applications. In his thesis, Youssef 

undertook a one-way Analysis of Variance (ANOVA) test of several time periods (900, 
3,600 and 9,000 seconds) and found the differences to be statistically insignificant. 

Consequently, it was decided to use runs of one hour (3,600 seconds). Using this
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approach, it was possible to test two different database sizes of a product with five runs per 

database size, giving ten overnight runs. For example, starting a set of tests at 21:00 hours, 
ten runs would be completed by early next day. The total time was slightly variable, since 

not each benchmark run would complete to exactly one hour and, as mentioned earlier, 

each test was separated by reading a large file to flush file system buffers, adding to the 

overall time.

Table 7.11 shows the total number of rows/objects for each database size (marked 10, 20, 

30, 40 and 50 in the extreme left-hand column).

DB 100 DB 200 DB300 DBUPD Total

10 10,000 10,000 10,000 10,000 40,000

20 20,000 20,000 20,000 20,000 80,000

30 30,000 30,000 30,000 30,000 120,000

40 40,000 40,000 40,000 40,000 160,000

50 50,000 50,000 50,000 50,000 200,000

Table 7.11 - Database Size.
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Figure 7.12 illustrates large differences in load times among the three products. One of the 

requirements of the CITY Benchmark is that indexes are created before the database is 
loaded. This seems unusual, since the indexes can easily be created after the load is 
completed. Updating indexes whilst objects are being loaded must be more expensive in 
DBMS-1, hence the observed numbers. Problems were encountered with both the C++ and 

ESQL versions of DBMS-3 whilst trying to load the database. DBMS-3 was running short 

of workspace to update the indexes. Consequently, it was necessary' to use the bulk loader 

again. The CITY Benchmark load program for DBMS-3 was modified to create a load file 
in the required format for the bulk loader, rather than attempting to load the database 
directly. After the file was loaded, the utility’ to update database statistics on classes/tables 

was used and then finally the indexes were created. There could be several reasons for the 

superior load times demonstrated by DBMS-3:

1. Indexes are created after the database is loaded. This is necessary’, due to the 
workspace problems just discussed.

2. Using the bulk loader, all rows in DB100 are loaded, followed by all rows in 

DB200, etc. This might be more efficient than loading one row at a time for 
each table, as described in the CITY Benchmark.

Future work should investigate the creation of indexes for both DBMS-1 and DBMS-2 

after the respective databases are loaded.

The CITY Benchmark does not distinguish between cold and warm numbers, although 
database caching is also available in many RDBMSs. This could be a future enhancement, 

but the implementation used for this research project remains as true to the original as 
possible. The results of the benchmark tests are illustrated in Figure 7.13. Clearly, DBMS- 
1 gives far superior performance. Both the DBMS-3 C++ and ESQL applications give a 
fairly constant performance level, whilst DBMS-2 gives such poor performance that it 
barely registers on the graph below. This result is a little surprising, since it shows that 
ODBMSs can provide high throughput for OLTP applications, but the choice of ODBMS is 
critical.

Since OLTP is not usually associated with ODBMSs and to get a slightly better picture of 
performance, some additional code was added to the CITY Benchmark transactions 
program for each product. The data gathered were on soft and hard page faults (no physical 

I/O and physical I/O, respectively).
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7.7 The X.500 Benchmark

7.7.1 Introduction

One of the case studies presented in the previous chapter was with NEXOR Ltd. This 

company is currently investigating the development of an X.500 directory system on top of 
an ODBMS. The case study described some of the characteristics of X.500 and, from the 

discussion, an ODBMS was well suited to this type of application.

NEXOR were initially interested in trying some simple queries. They provided a data file 
and test script to his author, based on data and tests they currently use with their proprietary 

X.500 system. The data file was 4 MB in size and comprised data for several thousand 

nodes. This quantity of data would be representative of a medium-sized company, for 

example, which has its own X.500 server.

The tests NEXOR provided used string comparisons, consisting of exact match, partial 

match and soundex queries on surname fields. So, example queries could be to find all 
X.500 entries with the surname “smith” (exact match), “s*m*th” (wildcard search, with 
any characters matching the “*”) and “~smith” (soundex). Since none of the products under 

test provided support for soundex queries, this was omitted in this research project.

Benchmarks were written for each DBMS to load the node data into a database. Each node 
was indexed, using a B-Tree index, on the surname field, whilst the remaining fields of 
node data where held as an ordered list. Two types of queries were then investigated: 

exact match and wildcard.

For the exact match, several surname values were hard-coded in the benchmark to represent 

the first node entry in the file, the last node entry in the file and several others chosen 

arbitrarily. A surname value was also used that was not present in the data file to represent 

a node that did not reside on the current server (and in which case, a request might be sent 

to another server, for example). A surname was chosen at random from the list of hard-
coded values. Several of the DBMSs had enhancements to their query' programmer to 
manage some string comparisons. DBMS-2, for example, allows the use of the C string 

comparison function “strcmp”, which is specially recognised by its query' optimiser.

The wildcard queries were similarly hard-coded with a set of values. These values were 
“*2 *”  ̂ “*q *” antj Qf these values was selected at random for a

query. DBMS-1 cannot use indexes for this type of query in its query' programmer.
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Similarly, DBMS-2 is unable to manage this type of query well, since the C string 
comparison function “strstr” is required, which its query optimiser has no knowledge of. 

In both these cases, the entire list of surnames must be searched (worst-case scenario), so a 

value that was not from the above list of values was not used, since the entire database 
must be searched anyway. DBMS-3 supports an OQL which can manage this type of 
wildcard query, but the following results show that its performance gets worse with warm 
cache numbers again, indicating memory management problems.

7.7.2 Factors and Their Values

All factors were kept constant, as mentioned earlier in section 7.2.2. The database size was 
dependent on the input file. Cold and warm cache numbers were also collected, as 

discussed below.

7.7.3 Benchmark Results

Table 7.12 shows that both DBMS-1 and DBMS-2 are more economical with disk space 

than DBMS-3. Overall, however, there is a high overhead in storing the 4 MB of raw data. 

The DBMS-3 database load was again not possible from the C++ program, but a load file 
needed to be generated from the NEXOR data file, which was read into the database using 
the bulk loader.

DBMS-1 DBMS-2 DBMS-3

Load Time (Secs) 103.710 204.520 319.890

DB Size (MB) 8.766 7.750 13.086

Table 7.12 - Load Results (Secs).

DBMS-1 DBMS-2 DBMS-3

Exact Cold 0.510 2.812 1.518
Exact Warm 0.100 0.130 0.274

Wildcard Cold 10.546 33.916 56.933
Wildcard Warm 9.746 5.060 200.015

Table 7.13 - Benchmark Results (Secs).
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In Table 7.13, reported times are in seconds. Cold and warm numbers are reported, since 

caching frequently accessed node data is an important requirement for X.500 directory 

systems, as discussed in section 6.7.4.

Figures 7.16 and 7.17 show the tabulated results graphically. DBMS-1 is laster lor both 

exact and wildcard cold queries, with DBMS-2 suffering high start-up costs again. 
However, the warm cache numbers for DBMS-2 improve more dramatically than the other 

tw’o products. The performance of DBMS-3 on the exact cold and warm tests is comparable 

to the other two products, but its warm cache numbers for the wildcard query are very 

high.

□ Exact Cold

□ Exact Warm

DBMS-1 DBMS-2 DBMS-3

Figure 7.16 - Exact Results.

These preliminary results show that for small data sets, an ODBMS and ORDBMS can 
manage exact match queries in under 1 second - NEXOR would eventually like to scale to a 

system where it’s possible to search 1 Million node entries in under 1 second. Wildcard 
queries are more expensive and indicate that a dedicated text search component in 

conjunction with a DBMS would be more appropriate. The Verity text search engine, for 
example, can be integrated with ObjectStore. Similarly, the Informix Universal Server has 
plug-in datablade modules from Excalibur, Verity and Picdar that provide text content 

search.
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□ Wildcard Cold

□ Wildcard Warm

Figure 7.17 - Wildcard Results.

Raw results and a statistical analysis are presented in Appendix H. Some of the results are 

significant at a =0.05.

7.8 The GIS Benchmark

7.8.1 Introduction

This benchmark was originally developed by Illustra Information Technologies (now part 
of Informix) for a potential customer in the United States. The potential customer was 
interested in creating a yellow-pages type service with a mixture of spatial and textual 
information. A user of this system would be able to enter a set of keywords, e.g. 
‘restaurant’, ‘take away service’, ‘no smoking’, etc. as well as a geographical region of 
interest, e.g. ‘within 2 miles of my home’, to be able to pose queries of the form ‘show me 
all the non-smoking restaurants with a take away service within 2 miles of my home’. The 
database would be constructed by collecting information about businesses and their 

locations using spatial co-ordinates expressed as Latitude and Longitude points.
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The original aim of the benchmark was to demonstrate that Illustra was able to handle this 

type of query' better than RDBMSs or RDBMSs with spatial extensions. However, this 

type of querying is perfectly suited to ODBMSs as well and similar queries may be possible 
in the MMIS system in the future, e.g. ‘show me all the active volcanoes over 14,000 feet 

in the pacific rim’.

The benchmark comes with several data generation programs and query scripts. One of the 
programs takes the number of businesses and generates locations for them according to a 

binomial distribution, using either x and y co-ordinates (to represent a point) or pairs of x 

and y co-ordinates (to represent a Minimum Bounding Rectangle or MBR). The keywords 

are drawn from a large file and each business is allocated a set of these. The size of this set 
is also binomially random, below a maximum value. Table 7.14 shows the parameters for 

the benchmark used by Illustra.

Total Number of Businesses 200,000 +/- 20,000

Spatial Area 100,000 x 100,000

Total Number of Keywords Available 50,000 +/- 2,500

Number of Keywords per Business ~17

Total Number of Kevwords Used 3,400,000

T able  7.14 - GIS Benchmark Parameters.

The benchmark script developed by Illustra consists of extended SQL statements and 

overloaded functions that try to simulate the types of queries that users would pose to the 
database. Since Illustra supports various indexing structures depending upon the datablade 
that is being used (datablades have been discussed previously in section 2.4.6), two 

different versions of the benchmark schema are described. The first uses the following:

CREATE TABLE VendorTmp (
L o c ation Pnt NOT NULL,
Ve n d o r  Id int NOT NULL,
Keywords setof(text) );

This schema supports a B-Tree index on the Keywords, which are actually stored in a 

backing table. The second version is:

CREATE TABLE VendorTmp ( 
Location Pnt 
V e n d o r l d  int 
Keywords doc );

NOT NULL, 
NOT NULL,
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This creates a D-Tree (document tree) provided by the document datablade. According to 
Illustra, using this version of the schema provides an order of magnitude performance 

improvement over the B-Tree approach.

The total number of queries is 30 for the first schema and 41 for the second and comprise 
combinations of spatial and textual predicates. The benchmark requirement is that the total 

number of tuples returned is 1100-1200 and that any single query' does not return more 
than 100 tuples. There is no requirement in the benchmark documentation to measure cold 

and warm numbers separately and elapsed time and number of queries per second are 
reported for 1 to 5 concurrent users.

Converting the benchmark to ODBMSs was reasonably easy, with the overloaded SQL 

functions being represented as C++ member functions. The B-Tree schema was adapted, 
since none of the three products used in this research supported a D-Tree. The “Pnt” data 

type was replaced with pairs of x and y co-ordinates, since the code to check for 
overlapping MBRs was available from the R-Tree example program developed in the GiST 
research project [GiST97], whereas Illustra supports “Box” and “Circle” data types and 

operations. It was felt that using overlapping MBRs was a reasonable approximation.

When implementing the schema, it was decided to use two object classes: one to hold the 

vendor MBR co-ordinates and vendor identifier and a second to hold keywords with each 
keyword holding a list of references to those vendors that had that keyword. This is similar 

to implementing a backing table, as used in Illustra. Since some queries are by keyword, it 
was felt that this approach would provide fast access to vendors, as keywords can be 

indexed. For those queries involving keywords and spatial co-ordinates, a search on 
keywords will produce a small working set, which can then be queried on spatial co-

ordinates. This follows the approach used in the MMIS project at EOS Ltd. Finally, for 
those queries that consist entirely of spatial co-ordinates, a search of the entire database 

would be needed anyway, since no spatial indexing was available in the three products 
under test.

Since there was insufficient detail in the benchmark documentation to establish how the 
concurrent users were simulated, the benchmarks were confined to just one user in keeping 
with the aims of this research project, outlined in Chapter 4.

7.8.2 Factors and Their Values

All factors were kept constant, as mentioned earlier in section 7.2.2. The database size was 
dependent on the quantity of data generated, as discussed in the next section.
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The parameters used are shown in Table 7.15. The number of businesses was reduced to 
100,000 and the number of keywords to 25,000 with all other parameters remaining the 

same, giving a data file of 11 MB. The reason for this was that the load process became 

very lengthy using the original parameters. This is because as each keyword is read from 

the input file, it is necessary to check whether that keyword is already in the database. 
Furthermore, since the number of vendors that have a particular keyword is not known in 
advance, each time that a new vendor is added to the set of vendor references for a 

keyword, the set for that keyword becomes larger, which means that the DBMS needs to 
move it in virtual memory if there is insufficient space in the current location.

7 .8 .3  B en ch m a rk  R esu lts

Total Number of Businesses 100,000

Spatial Area 100,000 x 100,000

Total Number of Keywords Available 25,000

Number of Keywords per Business ~17

Total Number of Keywords Used 1,700,000

Table 7.15 - Benchmark Parameters. 

The following table illustrates database size and load time.

DBMS-1 DBMS-2 DBMS-3

Load Time (Secs) 104,514.997 108,820.267 2,340.940

DB Size (MB) 29.977 21.000 29.391

Table 7.16 - GIS Database Load Results (Secs).

Table 7.16 shows the high cost of database loading for both DBMS-1 and DBMS-2 in 

comparison to DBMS-3. DBMS-3 was loaded by dumping a DBMS-1 database, as 
previously discussed. The results appear to support the assumption that memory' relocation 

is taking place with the other two products, hence the observed times. If the data are 

already in a suitable format, however, the load is comparatively fast, as in the case of 
DBMS-3.

DBMS-2 is clearly the top performer, as illustrated in Table 7.17. There is a detailed 

breakdown of the results by the type of query (i.e. keyword, spatial, keyword and spatial)
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in Appendix I, although the benchmark only requires the overall time and throughput 

(number of queries per second) for the complete set of queries to be reported, which have 

been tabulated below.

DBMS-1 DBMS-2 DBMS-3

30 Queries (Secs) 113.918 36.338 430.837

Throughput 0.263 0.826 0.070

Table 7.17 - GIS Database Benchmark Results (Secs).

One of the major problems encountered with this benchmark was trying to get the number 
of returned objects to be consistent with the actual requirements. Since keywords are 

generated randomly, it is difficult to know in advance which keywords actually appear. 

Furthermore, the spatial co-ordinates (pairs of x and y co-ordinates) are even more difficult 
to determine, since they are also generated randomly. Therefore, to pose intelligent queries 
that return the stated number of objects becomes very difficult. Use of actual spatial data 
and the context in which they are used would help in this case.

Raw results and a statistical analysis are presented in Appendix I. Some of the results are 
significant at a =0.05.

7.9 The OO-Fin Benchmark

7.9.1 Introduction

Dewan & Agarwal [Dewan97] describe the OO-Fin Benchmark for object-relational trading 

systems. The original goal of this benchmark was to measure the performance and 
scalability of Persistence against a proprietary in-house solution built by Morgan Stanley. 
Persistence is an example of an object mediator [Thomp93] and provides automatic 
mapping of objects to relational tables. The benchmark simulates portfolio analysis 
operations found in financial trading systems and was designed to answer the following 
three questions [Dewan97]:

1. Read Penalty - is the overhead for mapping relational information into objects 
acceptable?

2. Cache Benefit - what is the performance benefit for using an object cache to 

navigate object structures rather than querying the database?
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3. Cache Scalability - how is the performance of an object cache affected as the 

number of objects in the cache are increased?

For pure ODBMSs, the first question would obviously not apply. For ORDBMSs, the first 

question will apply if a relational storage manager is being used and objects need to be 
“flattened” to save them into the database.

Three classes are defined, with the relationships between these classes illustrated in Figure 

7.18. These classes represent [Dewan97]:

• Portfolio  - total investments for a particular customer.
• P osition  - profit and loss in a particular financial instalment.
• TaxLot - result of a trade for recording profit and loss on a transaction basis.

The cardinality of the relationships is that a Portfolio is associated with 20 Positions and 
each Position with 50 TaxLots.

Figure 7.18 - The OO-Fin Database Schéma. 

The structure of these classes is illustrated in Table 7.18.

Class Name No. of Attributes Instance Size (bytes)

Portfolio 10 133

Position 16 222

TaxLot 41 452

Table 7.18 - The OO-Fin Attributes and Sizes.
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A detailed breakdown of the attributes is not provided, other than indicating that keys are 

used over which indexes are created. Also, database sizes are not specifically reported, 
except the largest one, which comprises 100 Portfolios, 2,000 Positions and 100,000 

TaxLots, giving a size of approximately 44 MB. Cold and warm measurements are taken to 

read a Portfolio object and navigate through all its Positions and TaxLots in a depth-first 

manner to simulate a calculator operation traversing portfolios to determine total risk 
[Dewan97].

In implementing the OO-Fin Benchmark on DBMS-1, DBMS-2 and DBMS-3, two 
database sizes were used: (i) a sm all database of 10 Portfolios, 200 Positions and 10,000 
TaxLots and (ii) a large database of 100 Portfolios, 2,000 Positions and 100,000 

TaxLots. Furthermore, each object instance was allocated a unique identifier to allow 
indexing, although an index was only created on Portfolio objects, since embedded 
references (pointers) to sub-objects are supported by all three of the products under test. 
Since the types of the attributes for each class were unknown, an appropriate-sized filler 
was used after the approach used on the DCx project at Reuters. It was decided to test cold 
and warm measures for two operations. Firstly, a lookup operation to find a random 
portfolio and traverse all its sub-objects and secondly a traversal operation to find all 
portfolios in a database and traverse all their sub-objects. These are analogous to the Trader 

Browser and Portfolio Browser operations used on the FIOODINI project.

7.9.2 Factors and Their Values

All factors were kept constant, as mentioned earlier in section 7.2.2, with the exception of 
the database size. This was varied as follows:

1. Small Local Database

2. Large Local Database

Cold and warm cache numbers were also collected, as required by the OO-Fin Benchmark.

7.9.3 Small Local Database Results

DBMS-1 and DBMS-2 have similar database sizes (Table 7.19). The DBMS-3 load time is 

high, since this was one of the few occasions where it was able to load objects directly 
from the C++ program, rather than using the bulk loader. Clustering in DBMS-3 should 

also be optimum - for each portfolio, its positions are created and for each position, its 
tax lots. This should provide fast access to the entire sub-tree for any portfolio object. This
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would be in contrast to the bulk loader which would load all portfolios, followed by all 

positions and finally all taxlots.

DBMS-1 DBMS-2 DBMS-3

Load Time (Secs) 34.630 59.430 496.002

DB Size (MB) 4.953 5.000 5.953

Table 7.19 - Small Local Database Load Results (Secs).

Reported times in Table 7.20 are in seconds. From this table, the in-cache performance of 

DBMS-2 is again evident. DBMS-3 is also faster than DBMS-1 on the warm traversal - one 
of the few cases where it has performed better than another product. The results also agree 

with the OOl Benchmark results - the speed of traversals in DBMS-3 is comparable to the 

other two products.

DBMS-1 DBMS-2 DBMS-3

Lookup Cold 1.832 7.908 5.756

Lookup Warm 1.413 0.795 2.529

Traversal Cold 9.636 15.654 37.378
Traversal Warm 5.113 1.429 2.058

Table 7.20 - Small Local Database Benchmark Results (Secs).

Figure 7.19 shows that DBMS-3 cold numbers are better than DBMS-2 this time, but once 

the objects are loaded into the cache, DBMS-2 performs better than the either of the other 
two products.

As mentioned earlier, the DBMS-3 warm numbers are better than DBMS-1 (Figure 7.20).
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DBMS-1 DBMS-2 DBMS-3

□ Lookup Cold

□ Lookup Warm

Figure 7.19 - Small Local Database Benchmark Lookup Results.

Figure 7.20 - Small Local Database Benchmark Traversal Results.

191



7 .9 .4  L arge L oca l D atab ase  R esu lts

The following table illustrates database size and load time.

DBMS-1 DBMS-2 DBMS-3

Load Time (Secs) 589.127 753.731 5,203.310

DB Size (MB) 48.164 47.000 56.781

Table 7.21 - Large Local Database Load Results (Secs).

In Table 7.21, the DBMS-3 load time is an order of magnitude worse than the other 
products. The load was performed using the bulk loader, since memory problems were 
occurring in the C++ program. This result is a little surprising, since DBMS-3’s bulk 

loader has given good performance on other benchmark tests. The differences between 

DBMS-1 and DBMS-2 are comparatively small in terms of database size.

Warm traversal results are not available for DBMS-3 in Table 7.22, as the product was 

suffering memory' management problems again. Only one cold traversal result could be 
obtained, as shown. It was predicted that warm numbers would take considerably longer, 
based on experience with other benchmarks on DBMS-3. However, lookup results are 
again comparable to the other two products.

DBMS-1 DBMS-2 DBMS-3

Lookup Cold 1.638 7.364 5.386
Lookup Warm 1.532 2.025 3.190

Traversal Cold 51.904 212.454 16,305.694
Traversal Warm 55.745 134.463 N/A

Table 7.22 - Large Local Database Benchmark Results (Secs).

In Figures 7.21 and 7.22, DBMS-2 does worse than DBMS-1 on both the cold and warm 
numbers. In Figure 7.22, this is reminiscent of the Large Local Database results for the 

OOl Benchmark and is probably caused by the larger working set. Strangely, DBMS-1 

performs slightly worse on the warm test, whereas its warm cache numbers on all other 

benchmarks have always been better than its cold numbers. DBMS-3 warm numbers are 

missing for reasons mentioned earlier. The DBMS-3 cold traversal number in Table 7.22 is 

not shown in Figure 7.22, as it swamps the results for the other two products.
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□ Lookup Cold

□ Lookup Warm

Figure 7.21 - Large Local Database Benchmark Lookup Results.

□ Traversal Cold

□ Traversal Warm

Figure 7.22 - Large Local Database Benchmark Traversal Results.
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Raw results and a statistical analysis are presented in Appendix J. Some of the results are 

significant at a = 0.05.

7.10 Chapter Summary

This chapter has presented the following six database performance benchmarks:

1. The OOl Benchmark (Engineering).
2. The AF1T Wargame Simulation Benchmark (Discrete-Event Simulation).

3. The CITY Benchmark (OLTP).

4. The X.500 Benchmark (X.500).

5. The GIS Benchmark (GIS).
6. The OO-Fin Benchmark (Financial Trading).

The aims of each benchmark have been discussed, as well as results presented from 

running these benchmarks on various configurations for three database systems. In many 
cases, it is the first time that implementations of these benchmarks have been attempted for 
these three products. The results obtained have shown some interesting insights into the 

suitability of each product for the application-domain whose data manipulation 
characteristics each benchmark represents. As mentioned earlier, the second aim of this 
research project was to identify what classes of applications were more suitable for 
particular object database architectures, which has been met by undertaking this 
performance study. The third aim has also been met, since it has been determined that a 
generic, simple and accurate performance model for object databases cannot be derived 

(supporting the evidence from the previous chapter). Specifically, the results have shown:

• The O O l Benchmark - this benchmark has shown that there are major 

performance differences between pure object databases, although it was not 
originally designed for this type of comparison. DBMS-1 provides good 

performance on both cold and warm numbers and sustains this performance 
independent of database size. DBMS-2’s warm cache numbers are exceptionally 
good for small database sizes. However, its cold numbers indicate that it has a 
high start-up cost. Furthermore, DBMS-2 is more sensitive to the database size 

than DBMS-1. The results for DBMS-3 have been very disappointing. It has 

demonstrated serious memory' management problems, which vendor technical 

support has been able to reproduce, but unable to diagnose.
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• The AFIT Wargame Simulation Benchmark - this benchmark was only 

tested on two products, since the schema was more complex than the other 

benchmarks and it was felt that the probability of success for implementing it on 
DBMS-3 was low. The results for DBMS-1 and DBMS-2 differed widely, 

possibly showing the high cost of updates/writes in the former, but significantly 
better performance in the latter. One recommendation is that this benchmark 

should be extended with a batch capability, since it requires considerable user 
interaction and monitoring, which can be very time-consuming.

• The CITY Benchmark - this benchmark is possibly the first time that an 

OLTP benchmark has been implemented on pure object databases. The results 
for DBMS-1 showed that it provided superb OLTP performance. DBMS-2’s 

performance, however, was so poor that it barely registered on some of the 

graphs. These results show that object databases can support high-volume 
transaction processing applications, but the choice of product is critical. Two 
implementations for DBMS-3 (C++ and ESQL) demonstrated performance 
differences between language interfaces. This confirmed the results reported in 

Chapter 6 for the Nomura Treasury' Dealing System, where performance 
differences were observed between two Smalltalk variants.

• The X.500 Benchmark - this was a benchmark directly developed as a 
result of a case study undertaken in Chapter 6. Example data and operations 

were provided by NEXOR Ltd. and exact match and wildcard queries were 
implemented on all three products. The results showed that all the products 
could manage exact match queries on cached data in under 1 second, meeting 

one of the objectives of the testing for this company. However, wildcard 
queries were more costly, since neither DBMS-1 nor DBMS-2 could use any 
indexing and DBMS-3 again demonstrated memory management problems.

• The GIS Benchmark - this benchmark describes queries consisting of 
predicates that involve: (i) keywords, (ii) spatial co-ordinates and (iii) a mixture 
of both keywords and spatial co-ordinates. Implementations of the benchmark 
on all three products were influenced by the lack of spatial indexing. 
Consequently, a schema was used that was not ideal. Furthermore, loading was 
very lengthy on DBMS-1 and DBMS-2. The benchmark results showed that 
DBMS-2 was the clear winner. The DBMS-3 bulk loader again demonstrated 

that data could be loaded quickly if they were already in a suitable format.
• The OO-Fin Benchmark - this benchmark was designed to represent 

portfolio analysis in financial applications. DBMS-1 demonstrated good 

performance on both cold and warm tests and the numbers were also less 
affected by database size than the other products. DBMS-2 again showed a high 
start-up cost (cold cache numbers), but superb warm cache performance for
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small database sizes. As with the OOl Benchmark, DBMS-2 showed more 

sensitivity to the database size than DBMS-1. This could be due in part to the 

client-server configuration (both running on the same machine) and its virtual 
memory mapping architecture. DBMS-3 also showed that it was scalable in 

terms of database size, but its performance for the tests on the larger database 

was very mixed.

These benchmarks have demonstrated that there is great variation in the performance of the 

three products under test. Moreover, the tests have highlighted certain product 

characteristics, such as the apparent high cost of updates/writes for DBMS-1 and the 

unmatched warm cache performance of DBMS-2 when the working set fits entirely in the 
client cache. Furthermore, the results have shown that DBMS-3 has serious memory 
management problems, as its performance worsens with more test iterations, whilst the 

other products generally provide superior performance on the same tests. Another 
interesting discovery has been the DBMS-3 bulk loader, which has demonstrated that if the 

data are already in a particular format, then loading them into a database using a dedicated 

utility can save considerable time in some cases.
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CHAPTER 8 - Conclusions

8.1 Introduction

This chapter summarises the research findings and contributions of this work, presents the 
major conclusions and suggests areas that require further investigation for future work.

The remainder of this chapter is organised as follows. Section 8.2 summarises the major 

areas where contributions have been made by this work and some of the difficulties 

experienced during this research project. Section 8.3 presents the major conclusions. 

Section 8.4 suggests areas for future work in object database performance. Finally, Section
8.5 presents the chapter summary.

8.2 Summary

This research project has described an approach to object database performance evaluation, 
using multiple-case studies and benchmarks. This work has been driven by the lack of 

suitable performance studies and the increasing use of object database technology for 
mainstream commercial applications.

This research work has identified deficiencies and problems with existing object database 
benchmarks. Some of those deficiencies have been directly observed in the case studies. 
For example, many previous public benchmarks have not considered database tuning as an 
important issue, whilst the results of this research have shown that commercial systems are 

rarely evaluated without considering such issues and that applications are designed with the 
features and architecture of a particular object database product in mind.

Six case studies were undertaken at five organisations. The case studies proved to be very' 
difficult to undertake, for four main reasons:

1. Few organisations in the UK have developed object database applications of 
any size. Many are still experimenting with the technology and, as yet, have not 

committed themselves to it.
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2. Some organisations that initially indicated an interest in this research 

subsequently withdrew due to internal re-organisations, out-sourcing, new 

priorities, project being abandoned, primary contacts leaving, etc.

3. Those organisations that had developed applications were reluctant to div ulge 

any information, e.g. even which product they were using, mainly for 

commercial reasons, e.g. they did not wish their competitors to know what they 
were doing, even though assurances were given to them about confidentiality' 

and the benefits of this research to them.

4. Object database vendors have been unwilling to help, since the market for this 
technology is still small compared to relational databases [IDC94; OOS96; 

Stone96] and they are all competing for a share of this. Performance is a major 

selection factor when user’s are evaluating commercial products [Rotze91]. The 

vendors also proved to be very' ineffectual in providing any case studies 
themselves.

It has also been very difficult to draw out standard performance factors from the case 

studies, as the level of information provided by each organisation varied considerably. 
Other issues, such as the capabilities of each product also made this difficult, as discussed 

in previous chapters.

The benchmark tests have highlighted some performance characteristics for each of the 
products used in this research. The tests have provided useful insights into the suitability of 

these products for a number of different application domains, represented by each 
benchmark.

DBMS-1 consistently provided superior cold cache performance than either of the other 
two products. Although it does appear to have problems with updates/writes, as shown by 
the AFIT Wargame Simulation Benchmark, it does provide far superior throughput, on the 

CITY Benchmark, than the other two products. This was a little surprising, since object 

databases are generally not associated with OLTP systems.

DBMS-2’s warm cache performance is generally better than the other two products, 
although does degrade more significantly with larger databases, as demonstrated by the 

OOl and OO-Fin benchmarks and observed in one of the case studies. DBMS-2 also has a 
high start-up cost, relative to the other products. Loading a DBMS-2 database for testing 

can also be very lengthy, as shown by the OOl Benchmark.

Product literature from DBMS-3’s vendor claims that it provides balanced performance for 

both navigational and OLTP applications. However, the results presented in this research
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project show that it generally performs worse than two other products across a range of 
tests that include both navigational and OLTP access. DBMS-3 also has serious memory 
problems, particularly when attempting to load the database from a C++ application. For 

relatively simple data, the bulk loader gives very good performance, but the data need to be 

in a particular format, which could be difficult to generate with complex schemas and was 

the major reason why the AFIT Benchmark was not attempted with DBMS-3. Code 

portability7 is also affected to some degree, since it is easy to use a combination of SQL, 
OQL and C++ constructs within a single program. SQL is useful, since it is possible to 

define a cursor on a table/class and retrieve rows/objects one at a time for further 
processing. OQL does not support this, but is able to retrieve single objects or groups of 
objects that satisfy some selection criteria. Retrieving large numbers of objects into the local 

cache using OQL is not appropriate, particularly given the memory problems that were 

observed on several benchmarks. DBMS-3 also requires more work in creating a database, 

since several tools are needed to calculate the number of database pages required. During 
this research, it was found that calculating this number for each benchmark test was a non-
trivial task, requiring considerable work, despite the tools available. A further problem with 

DBMS-3 was the large database log files that it created. There was no mechanism to disable 

this feature, although archiving could be stopped.

8.3 Conclusions

The three main objectives for this research were outlined in Chapter 4:

1. Study the performance of commercial object database applications.

2. Attempt to identify which classes of applications are more suitable for particular 

object database architectures.
3. Determine if a generic, simple and accurate performance model for object 

databases can be derived.

The first objective was met by undertaking six case studies. The studies highlighted the 

following issues:

1. Representative benchmark data and operations are important for commercial 
object database evaluations. None of the organisations participating in this 

research project ever considered using any public benchmarks.
2. Multiple applications are found in deployed object database systems, but appear 

less frequently in commercial benchmarking work due to the time and cost 

involved.
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3. Multiple users are a common feature of deployed object database systems, but 

are again generally not simulated in commercial benchmarks also due to time 

and cost.
4. Commercial object database applications do not use multiple databases.
5. Client-server architectures are standard in commercial object database systems.
6. Multiple platforms are sometimes used in commercial environments, in contrast 

to most public benchmarks, that use a homogeneous environment.
7. Functional differences between object databases can cause substantial 

performance differences, as demonstrated by one of the case studies.

8. Tuning is an important factor for commercial object database evaluations and 
rarely do such evaluations proceed without considering tuning issues.

The second objective was met by undertaking laboratory experiments. Six benchmarks 
were implemented and each benchmark represented the data manipulation characteristics of 

a particular application domain. The benchmark results showed the following:

1. Major performance differences among the three products under test were 
observed. These differences varied according to the benchmark, demonstrating 
that a single generic benchmark was difficult to develop.

2. Statistical analvses showed that the results from manv tests were significant, 
giving greater credibility to this research project. This is something that most 
previous object database performance researchers have not attempted.

3. DBMS-1 consistently provided the best cold cache numbers and also 
demonstrated superior performance for OLTP applications, but updates/wntes 

appear to be a bottleneck.
4. DBMS-2 has high start-up costs, but once data were available in the client 

cache, its warm cache numbers were very7 good for small working sets. Its 
performance is also more significantly affected by the database size. For 

simulations its performance is very good, but for OLTP, its performance is very 
poor.

5. DBMS-3 behaved very strangely on some tests, with its warm cache numbers 

getting worse with more benchmark iterations, which vendor technical support 
was unable to explain. On other tests, its performance was comparable to the 

other two products. Its bulk loader also provided a useful way to load large 

quantities of simple data.

The third objective was met as a result of both the case studies and benchmarks. This 
research project has determined that a generic, simple and accurate performance model for
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object databases cannot be derived at this time. From the case studies, the reasons for this 

are as follows:

1. The quantity, quality and type of information available from each organisation 

varied considerably. This is expanded further below.
2. Access to system documentation varied. For example, some organisations 

provided substantial system design documents, whilst others generally didn’t 
have such information available, since their development work was undertaken 

on a part-time, ad-hoc basis.
3. It was too difficult to find common performance factors although, superficially, 

tree traversal was a common operation in many of the studied systems. 

Additionally, some of the difficulty stemmed from the more complex design due 
to object-orientation and lack of facilities for data collection. Future work 
should consider using techniques for measuring object-oriented designs to get 

accurate measurements about factors such as inheritance, distribution of 
attributes, etc. for creating representative benchmark schemas.

4. Obtaining information on transactions and application access patterns from 

systems was generally not possible, since some organisations were still 
evaluating products, whilst others were not interested in performance issues as 
such. Furthermore, collecting application tracing and profiling patterns by hand 

proved to be impossible from just the supplied documentation. A tool is really 

needed to collect this kind of information automatically and at least one of the 
vendors does sell such a tool, but was unable to make it available to this author.

5. It proved to be impossible to get time to see primary contacts at each case study 
site beyond the initial contact, which was used to describe the purpose and 
objectives of this research. Generally, people were extremely busy.

The results of the benchmarks, discussed above, also showed wide variations in 

performance between the three database systems under test. It was not possible to find 

common characteristics from these benchmarks that could lead to a generic model. For 
example, discrete-event simulation has very different data manipulation requirements to 
OLTP. However, one of the suggestions for future work described in the next section 
proposes a larger study. Better support from users and vendors in addition to improved 
tools for collecting data about access patterns should enable future researchers to determine 
whether a standard workload can be developed.
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8.4 Future Work

Some areas for future performance work in object databases have already been suggested 

by Zorn & Chaudhri [Zom95]. From this research project, a number of issues have also 
emerged, which are discussed below.

8.4.1 Analytical M odelling and Simulations

Jain [Jain91] states that the techniques that may be used for performance evaluation include 
analytical modelling, simulation and measurement. This research used measurement only. 

Object database performance work using analytical modelling has been reported by Rabitti 

et al. [Rabit93], although no model verification was described. Future work should, 
therefore, focus on simulations. For example, by constructing an application system model 

and then varying factors, such as page size, pointer swizzling, etc.

8.4.2 Database Features

This research project showed the importance of a number of database features in Chapter 5, 

such as schema evolution and versioning. However, these were not observ ed in the case 

studies described in Chapter 6. They were also not considered in the benchmarks 
undertaken in Chapter 7, to keep the problem space manageable. Future work should 
investigate the performance implications of such issues, since object database systems use 
different mechanisms, as discussed in Chapter 2.

8.4.3 Larger Databases

Larger databases should be used for future object database performance benchmarks. This 

is because some large scale object database systems are now under development, that 
involve tens or hundreds of GB of data as well as hundreds of concurrent users, as 

described by Loomis & Chaudhri [Loomi98] and supported by survey evidence from Barry 
[Barry97]. Most previous benchmarks have focused on small databases of a few or tens of 

MB. This has also been the case with this research project, since disk space was a limiting 
factor. The difficulty in performing such large-scale tests is that there may be large 
overheads involved, which could make them expensive [Dick95b; Loomi96]. Obviously, 

there is a trade-off between attempting a large-scale benchmark effort versus implementing 

an actual application.
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8 .4 .4  L arger S tu d ies

Undertaking a larger study of commercial object database applications should now be 
considered. This is because the market is more mature and many more organisations are 

using or considering this technology than when this author began his research. Evidence 
for the larger take-up comes from a number of studies, such as [Barry97], Other survey 

evidence from [DBWor97] shows that many organisations are considering this technology 

for future applications. Figure 8.1, for example, shows that almost 50% of respondents to 

the DB World survey of IT professionals in the UK indicated that their organisations may 
use object data management in the future.

%

Figure 8.1 - Technology Areas Companies May Use [DBWor97].

A new study should consider a range of industry' sectors, since there is interest in a variety 
of domains, as illustrated in Figure 8.2. The case studies and benchmarks used in this 
research project have already demonstrated that data manipulation characteristics differ 
greatly across domains. In-depth studies in particular vertical markets will produce 

benchmarks that are more representative of the data manipulation characteristics of those 
markets. However, a larger study with better support from users and vendors should also 
be able to establish common characteristics, as suggested in Chapter 4:
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1. Generality - a set of core benchmark operations.
2. Accuracy - specifics added to the core for a particular target application.

3. Simplicity - core operations are easier to compare.

To achieve this goal, future researchers may wish to consider techniques such as 

Ethnographic Workflow Analysis (EWA) to study usage of actual object database 

applications. This approach has been successfully used to study the work practices of 
physicians in the design of a Physician’s Workstation, as described in [Fafch91].
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Figure 8.2 - Industry Areas Considering ODBMSs [DBWor97],

8.4.5 M ulti-User Benchm arks

The mechanisms for locking and transaction management for various object database 
systems were described in Chapter 2, but were not considered in the performance 
benchmarks undertaken in this research, as justified in Chapter 4. The results of the case 

studies presented in Chapter 6 did show that multi-user tests were sometimes performed, 

but cost was often a limiting factor for its more widespread use. Furthermore, the 

organisations participating in this research indicated that they would always prefer to 

undertake their own multi-user performance tests, demonstrating that public multi-user 
benchmarks have little or no utility as far as commercial evaluations are concerned. Some
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researchers, e.g. [Carey94], have also reported difficulties in collecting multi-user object 

database benchmark results. This casts doubt over the utility of a generic multi-user 

benchmark, but is an area that should be investigated further in collaboration with industry'.

8.4.6 New Benchmarks

The classification of benchmarks presented in Chapter 3 (Figure 3.2) revealed a number of 
gaps. These are obvious candidates for future database performance work.

8.4.7 Programming Language Bindings

Some issues were highlighted in Chapters 6 and 7 and suggested for future research. For 

example, a more detailed analysis of the trade-offs between alternative object database 
language bindings. One of the case studies showed that the choice of language can be 
important. Additional evidence came from the two alternative implementations of the CITY 

Benchmark on DBMS-3.

8.4.8 Rigorous Domain Analysis

The domain analysis in Chapter 5 is a candidate for enhancement. The categories selected 
were based on those used by Ahmed et al. [Ahmed92] for engineering applications. 

Although the analysis showed that many other applications have similar requirements, a 
formal approach, as discussed by Bjomer [Bj0m97], should provide greater accuracy.

8.4.9 Rigorous Taxonom ies

As suggested in Chapter 3, future research should investigate rigorous taxonomies, as the 
benchmark survey in this thesis was mainly presented as lists and trees. These provide 
useful starting points, but better forms of categorisation may be possible. The reader is 

directed to Worlton [Worlt93] for a discussion on taxonomies for performance metrics.

8.4.10 Tuning

A number of factors, such as cache contents, cache size, special fetch policies, size of 
database commits, etc. were not investigated within this research. Many tuning factors 

were kept constant to keep the problem space manageable. Furthermore, the focus of this 
research work was on high-level benchmarks to represent specific application domains. 
However, there is evidence to suggest that low-level issues can influence performance 
significantly. For example, Moorley [Moore96] discusses some results obtained for the
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0 0 1  Benchmark on a commercial object database system. He observed that the commit 

time appeared to have a high overhead. He speculated that this was possibly because each 

of the OOl measures was completed within a single transaction. Modifying the lookup test, 

so that each lookup was done within its own transaction, increased the observed time from

6.5 seconds to 27 minutes, causing Moorley to conclude that 99.6% of the time was spent 
on transactional overheads. Recent work reported by Hohenstein et al. [Hohen97a; 
Hohen97b] has also demonstrated the importance of tuning. Each of the three object 

database products they tested was more or less sensitive to particular factors. The 

importance of tuning and its impact on performance has also been discussed elsewhere by 

Chaudhri [Chaud97].

8.5 Chapter Summary

This research project has demonstrated that a pragmatic approach to object database 
performance evaluation can provide important insights into how object database systems 
are being used in commercial environments. By using a systematic/programmatic research 

plan, consisting of multiple-case studies and laboratory experiments, this work has 
highlighted issues that organisations consider when evaluating object database systems, as 

well as identify significant differences in the suitability of products for certain applications. 
Furthermore, the evidence and results presented in this work have shown that a generic 
model of performance for object databases cannot be determined at this time. The reasons 
for this are varied and numerous and include issues such as the flexibility of the object- 

oriented approach to modelling, the architectural and feature differences between products 
and the lack of a canonical or standard workload, unlike OLTP for relational systems.

The commercial products under test in this research project have, as mentioned above, been 
subjected to systematic performance evaluation. Also, this author is not aware of any 
previous efforts to compare object and object-relational database systems. Overall, the 

results have shown that the “best of both worlds” approach used by an object-relational 

product do not provide any significant benefits for either transaction processing or 
navigational access. However, ORDBMSs are still in their infancy and as the technology 
matures, improvements will occur. These will require suitable performance benchmarks 

that can test system components, such as optimisers that can manage more complex data, as 

well as tests to represent the requirements of particular applications. Bulk loading of data is 

also an issue that object database vendors should investigate, since database loading is 
currently very time-consuming in some pure ODBMSs.

In Chapter 1, it was stated that new performance benchmarks for object databases were 

needed for the following reasons:
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1. Performance is typically among the top three selection criteria for users when 

deciding which object database to purchase [Rotze91].
2. The cost of implementing a complete application to test performance is 

expensive [Ander90].
3. A benchmark is only a valid yardstick for applications that are similar to the 

benchmark [Dietr92; Hallo93a].

4. Treating performance and its measurement generically is wrong and can lead to 

incorrect conclusions [Inmon89].

Taking these points in turn, this research project has demonstrated that performance is a 
very important factor for users when deciding which object database product to purchase. 

However, benchmarks have also been used to investigate design alternatives. This research 
has also shown that organisations often consider performance benchmarking before 

implementing complete applications, because the cost of testing a complete application is 

prohibitive. Furthermore, the case studies have shown the importance to users of 

identifying the data manipulation characteristics of applications as well as considering 
product-specific features. The case studies have also demonstrated that a generic 

performance model for object databases is difficult to determine and the benchmark 
experiments have confirmed this.

These conclusions demonstrate that benchmarks continue to fulfil very useful roles, but 
considerable care and attention are required by both academics and users when studying 
object database performance, since the performance problem space is far greater than with 
previous generations of database technology.

Finally, for the future, this author encourages the establishment of an organisation to 
develop and promote object database benchmarks. Such an organisation should comprise 

representatives of academics, users and vendors to ensure that the interests of all these 
communities are adequately served.
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APPENDIX A - Object Databases

A.l Introduction

Chapter 2 described some object database products in detail. This appendix provides 
support material for that chapter and would be suitable for the reader that is not familiar 
with object or data management concepts.

A.2 Object Requirements for ODBMSs

“My Cat is Object-Oriented.” [King89],

“If I hear the phrase ‘everything is an object’ once more, I think I will 

scream.” [Stone88].

The concepts presented here are not exhaustive and the terminology used should be 
compared with [OODBT91], which provides general characteristics of object models. An 

additional useful source is [Stefi86], which provides a comprehensive discussion of object 

concepts from a programming language perspective.

A.2.1 Object

An object is a software representation of a real-world object. Objects can be physical items, 
such as a computer, disk drive, etc. or abstract concepts, such as a University Board of 
Studies meeting. Software objects are self-contained modules that include data (sometimes 

called instance variables) and code that acts on that data (called methods). Instance variables 
are “everything an object knows” and methods are “everything an object can do” 

[Taylo91],

An object is an instance of a class, where “classes are descriptions of things, objects are the 

things themselves” [Winbl90], However, in some languages, such as Smalltalk, even 

classes are considered as objects.
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The state of an object can be defined as the values of an object’s instance variables at any 
point in time. Alternatively, it may be defined as the result(s) returned after an object has 

performed certain operations. An object’s state can be modified by sending it messages to 
invoke one or more of its methods.

An object’s instance variables can be simple base types, such as integer, char, etc., more 

complex types, such as arrays, sets, other aggregates, etc. or complex objects themselves, 

such as a Computer Aided Design (CAD) drawing.

An object can participate in a number of different (orthogonal) relationships. Some 

examples described by Kim [Kim90b] include:

• class and object (instance-of).
• generalisation (is-a).
• aggregation (class-composition).
• composition (part-of).

• versioning (version-of).

Each object can, therefore, have a number of different roles depending on which 
relationship we view it from. Taylor [Taylo91] has noted that an ODBMS can support any 

number of alternative structures for the same set of data and that these structures are not 
simply views of the data superimposed on a single underlying model (viz. relational), but 
are all equally valid and exist independently of each other. Prabhu [Prabh92] has also 
commented that existing data models provide poor relativism (alternative ways of looking at 
the same thing). With ODBMSs, better support for multiple ways of viewing the same 
information have become possible.

A.2.2 Object Identity

A unique Object Identifier (OID) is associated with every' object and distinguishes one 

object from another. This logical identifier is invariant across all possible modifications of 
an object’s state [Dawso89J. An OID would also be invariant across physical address, 

object structure and object name. This is in contrast to tuples (rows) in the Relational Model 
(RM), which are value based.

Given the uniqueness of an OID, it is then possible to compare objects for several forms of 
equality. Furthermore, the OIDs, instance variables, methods or even object hierarchies of 
two objects can be compared to determine whether they are the same. If the OIDs of two 

objects are the same, it is the same object.
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OIDs permit the referential sharing of objects. Also, because a relationship between objects 

is explicitly defined, the existence of the relationship is ontologically dependent on the prior 
existence of the objects that participate in the relationship [Atwoo90]. In contrast, RM 
supports implicit relationships, whose semantics need to be re-created at run-time. SQL 
also incorporates additional capabilities, such as foreign key constraints, to recapture lost 

semantics [Khosh92a].

An OID is system generated, in contrast to RM where explicit identifiers need to be created 
by users. However, an alternative to using pure OIDs was suggested in [Commi90], where 

identifiers are system generated only when meaningful user generated values are not 
available, e.g. social security number, student number, employee number, etc.

Some ODBMSs do not use OIDs as have been described so far. ObjectStore [Lamb91], for 

example, uses virtual memory' addresses instead.

Ullman [Ullma88] has argued that pre-relational database languages can be classified as 

object-oriented, since they support the notion of object identity. Although we can view 
hierarchical, network and relational models as special cases of a general object model, 

object identity is a semantic concept, whereas virtual addresses or pointers (as used in 
hierarchical and network systems) represent memory locations on an underlying von 
Neumann machine [Khosh92a], Furthermore, as Duhl & Damon [Duhl88] comment:

“An object identifier also contains information about the object’s type. This 

differentiates simple connectivity, as with pointers, found in the network 
model, from what could be called typed direct connectivity. This additional 

type information embedded in the object reference can be used to provide 
information for semantic validation.”

Pre-relational languages also do no support concepts such as methods, classes or 

inheritance.

For a more detailed discussion of the similarities and differences between object-oriented 
and earlier generations of database systems, the reader is referred to [Kim90a] and 

[Kim90b],
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A.2.3 Method

A method is equivalent to a procedure, function or subroutine in traditional programming 

environments. An object’s methods define its interface (or protocol).

A .2.4 M essage

A message is a request to a specific object to invoke one of its methods to perform some 

operation. It is equivalent to a procedure, function or subroutine call in traditional 
programming. As noted by Atkinson et al. [Atkin89], the syntax to send a message (invoke 
a method) may vary between programming paradigms. For example, the following would 

be equivalent:

• “john hire”.
• “john.hire”.
• “hire john”.
• “hire(john)”.

A.2.5 Type and Class

Type and class are often used interchangeably. However, one of the few ODBMSs that 
differentiates between a type and a class is 0 2 [Deux90; Deux91], In 0 2, a class 
encapsulates attributes and behaviour. Objects are instances of a class. Types are 

components of a class and describe the structure of its instances. Values are instances of a 
type and are not encapsulated. An 0 2 object may, therefore, have a complex structure 
consisting of values and objects.

The class construct can be either intentional (object factory) or extensional (object 

warehouse). ODBMSs that attempt to provide the seamless integration of a programming 

language and database system by extending an Object-Oriented Programming Language 
(OOPL) with DBMS capabilities fall into the former category'. An example is GemStone, 
which extends Smalltalk.

A.2.6 Inheritance

Classes can inherit the attributes and behaviour of other classes. They are then organised 

into an inheritance hierarchy, where classes further down the hierarchy (subclasses) are 

specialisations of those above them and classes higher in the hierarchy (superclasses) are 

generalisations of those below them. New subclasses can be created by programming only
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the differences from their superclass(es). Also, subclasses can override attributes and 

methods inherited from superclasses.

A subclass may have only one superclass (single inheritance) or two or more superclasses 

(multiple inheritance). Single inheritance is similar to the concept of parent/child records in 
hierarchical database systems. Multiple inheritance can similarly be compared to 

ovvner/member records and sets in network databases. Multiple inheritance provides the 

capability to model greater complexity, but at the expense of more complex software. 

Conflict resolution, error logging or some other strategy will be necessary, if the 
superclasses of a class contain attributes and/or methods with the same names. Smalltalk 
supports single inheritance and C++ multiple inheritance.

A .2.7 Encapsulation

The manipulation of an object is only possible through its defined external interface (strict 
encapsulation). The implementation of the instance variables and methods is hidden. As a 
result, the implementation can be changed without affecting existing program code that uses 
an object’s interface. This provides logical data independence [Atkin89], Encapsulation, to 
paraphrase [Winbl90], makes boundaries among objects clear, communication among 

objects explicit and hides implementation details.

It has been suggested in [Atkin89], that strict encapsulation may not be desirable for 
ODBMSs and that access to implementation details may be required, e.g. by the query' 
optimiser, which is a trusted component of the DBMS. Also, structural access to instance 

variables may be needed for performance reasons when using an ad-hoc query language.

A.2.8 Abstract Data Type (ADT)

The ability to distinguish between an object’s interface and its implementation results in an 
Abstract Data Type (ADT). The class construct specifies an ADT.

A.3 Data Management Requirements for ODBMSs

This section examines how the data management paradigm has been influenced by the 

object paradigm and some of the problems and challenges that have appeared.
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A .3.1  P e r s is te n c e

Within OOPLs and languages in general, most data are of a transient nature and cease to 

exist when the process(es) that created them terminate, unless explicit commands are issued 

to make the data persistent. An ODBMS, however, would enable data to be saved 

implicitly. Khoshafian & Abnous [Khosh90] have discussed a number of alternative 
strategies for persistence: persistence extensions and persistence through reachability.

ODBMSs that define persistence extensions use the class construct to specify structure, 
extension and persistence, similar to a relational table. ODBMSs using persistence through 

reachability specify an object space with a persistent root. Objects that can be reached from 
this root are also persistent.

A.3.2 Transactions

The properties of a transaction are [Loomi90]:

1. It is application-defined. It obeys the application’s rules of consistency.

2. It is all-or-nothing. All parts of a transaction complete and any updates are 
committed to the database, otherwise the entire transaction aborts.

3. After a transaction has committed, changes to the database cannot be undone, 
except by running another transaction.

The second property has certainly had to be re-examined for ODBMSs, since in many 
application areas, such as CAD, transactions could be very' lengthy. For example, data 
could be checked-out of a central database into a local workstation, worked on for hours or 

even days and then checked-in again. To lock data for such lengthy periods of time would 
result in poor levels of performance if concurrent access to the data were required by many 
users.

A new model to support these long transactions for ODBMSs has been suggested in 
[Rotze90]. Brown [Brown91] has also recognised that new models are required to support 
conversational, long duration, complex and non-atomic transactions.

A .3.3 Concurrency

One of the major benefits of a DBMS is that data can be shared by multiple users and 
applications. However, with multiple transactions attempting to access the same data at the 

same time, some form of control is required to ensure that the database is always in a
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consistent state. To support these two competing demands upon the database, a serialisable 
order of execution for transactions is usually imposed.

Khoshafian & Abnous [Khosh90] discuss three possible strategies (time-stamp ordering, 

optimistic algorithms, pessimistic algorithms) to ensure the serialisability of transactions. 
Some additional important characteristics of transactions have been noted in [OODBT91],

Stone & Hentchel [Stone9()a] note that ODBMSs offer “long transactions, gaining 

optimistic concurrency”, although some commercial ODBMS systems, for example 
GemStone, offer several of the above mentioned strategies.

A .3.4 R ecovery

Recovery is used to return the database to a consistent state after a failure, e.g. transaction, 

system, media.

This is another area that has required re-examination since, according to Michael 
Stonebraker (cited in [Hazza90]), most ODBMSs run their data manager in the same 
protection environment as the user program (usually the client workspace). Consequently a 
protection boundary does not have to be crossed for data lookup. Although this improves 

performance, it results in the loss of a protected database. This could cause problems for 

recovery if there is a failure.

A .3.5 Q uery ing

A criticism of data manipulation in object databases is that record-at-a-time navigational 

access is required [Date90]. However, many ODBMSs provide declarative SQL-like 

DDL/DMLs, e.g. OPAL (GemStone), OQL (Zeitgeist), OSQL (IRIS). These languages 

vary in their support for data abstraction, ranging from the direct manipulation of attnbutes 
to access through an objects’ public interface. Some of these languages are also 
computationally complete. Additionally, commercial ODBMS vendors now provide rich 
graphical tools for database design, administration, examination and the development of 
user applications, therefore making the direct manipulation of the underlying structures 

unnecessary.
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A .3.6 S ecu rity  and A u th orisa tion

Barry [Barry91] has stated that some ODBMSs provide very' extensive support for 

security, whilst others do not even provide a log-on password. This has been confirmed by 

a review of some commercial products in [OOS92].

Security and authorisation have not been adequately addressed by object database vendors, 
since many commercial products were dev eloped for work-group applications, where such 

issues were perhaps not considered to be of prime importance. However, these issues need 

to be addressed for other application domains, where access to sensitive data must be 

restricted. In contrast, many relational systems offer certifiable security levels [Loomi92].

Further discussion of issues related to this subject can be found in [Kim90a],

A.4 Objects + Persistence - The Choices

ODBMSs seem attractive in that they can be combined directly with OOPLs and Object- 

Oriented Analysis and Design (OOAD) Methodologies to provide a full object-oriented 

environment [Chaud96a], However, many organisations may not be able to take advantage 

of this potential. They may, for example, have adopted a particular design methodology (or 
combined several methodologies) already and may also be using languages, such as C++ 
and Smalltalk, for new developments. To manage persistent objects, there are a number of 

possibilities. These are now discussed in more detail.

A .4.1 File System s

Figure A .l - File Systems.

This option is suitable for single-user systems and enables object attributes to be stored in 

standard operating system files (Figure A .l). These files can be shared between
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applications, but will prove difficult to share between more than one user at a time. In such 
cases, users will effectively have to “roll-their-own” DBMS - a non-trivial task.

A.4.2 Relational Database Views

“You can do anything with an RDBMS that you can with an OODBMS, 
except you have to roll your own.” Mark Hanner, cited in [Hodge89],

This approach provides a way to store object attributes in relational tables and has been 

successfully used by at least one international airline. An object class is mapped to a 

relational view and object attributes are then stored in one or more relational tables (Figure

A.2). However, problems arise when dealing with inheritance, where there are a number of 
different approaches that can be used, such as horizontal or vertical partitioning (discussed 
later). Some of the issues concerning the use of object-oriented techniques with relational 

systems are more fully discussed in [Burle93],

Figure A .2 - Relational Database Views.

A.4.3 Relational Database BLOBs

Most relational systems provide support for Binary Large Objects (BLOBs). However, the 
semantics of such objects are unknown to the database. Typically, a column in a table can 

be defined to support a BLOB type, but this would be a pointer to an external file that 

contains the actual object (Figure A.3). Other restrictions may also apply, such as limiting 

the number of BLOBs per table.
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Figure A.3 - Relational Database BLOBs.

A.4.4 Object M ediators

Figure A .4 - Object Mediator.

The term “object mediator” was previously used in [Thomp93] to describe a new set of 

tools that provide automatic mapping of objects to relations (Figure A.4). Perhaps the best 
example of this is Persistence. However, ev en such tools as these have restrictions. For 
example, Persistence does not currently support multiple inheritance or aggregation 
[Kelle93]. Other alternatives that might also be included under this section are Subtleware 

and Rogue Wave’s Tools.h++. Tools.h++ provides classes that enable developers to write 

to an abstract interface that hides the Application Programming Interfaces (APIs) of 

RDBMSs.
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A .4.5  O b ject S erver

Figure A .5 - Object Server.

An approach that attempts to provide a more seamless integration of objects and relations is 

taken by Hewlett-Packard with its OpenODB/Odapter technology. This uses an object 

server sitting on top of a relational storage manager (Figure A.5). OpenODB [Ahad92] uses 
H P’s own Allbase storage manager, whilst Odapter can be used with the Oracle RDBMS. 

With any layered approach, however, performance will always be a major issue.

A.4.6 Extended Relational Databases

The phrase extended relational refers to a range of database products with various 
enhancements/extensions. Sometimes the phrase post-relational is also used. However, 
there is no standard definition of what is meant and enhancements/extensions vary7 widely 

between products. Perhaps one of the best examples is Openlngres, which provides a 

library supporting spatial data types.

A .4.7 Object-Relational Databases

The phrase Object-Relational DBMS can be attributed to Stonebraker [Stone93a] and refers 
to those products where there is strong integration between object-oriented and relational 
concepts (Figure A.6). Two products that exemplify this approach are Illustra and 

UniSQL. The underlying philosophy is to try and marry the best of both worlds - keeping 
all the benefits of relational technology that have accrued over the past twenty or more 

years, such as good optimisers, declarative query languages, etc., but at the same time
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trying to provide some of the benefits of OO, such as better abstraction. However, even 

these two products differ markedly from each other, as discussed in Chapter 2.

Figure A.6 - Object-Relational Database.

Larry Ellison of Oracle announced several years ago that Version 8 of Oracle would be 
“fully object-oriented” [Lauch92], Since then, there has been much speculation and debate 
about the exact nature of the object-oriented support that Oracle would provide. However, 

given the significant customer base Oracle already has, any extensions or enhancements 
will need to ensure backward compatibility with existing customer applications. A layered 

approach would be simpler, but would have performance drawbacks, whilst re-architecting 
the database engine would provide a better long-term solution. Additionally, Oracle is 
actively involved in standards efforts that are concerned with object-oriented extensions to 
SQL. The end result may, therefore, be a combination of several approaches, such as 

server support for an Object SQL and some object-oriented layering over Oracle 7.

A.4.8 Object Databases

Figure A .7 - Object Database.

Using the ODMG definition, this category contains those products that provide DBMS 
extensions to one or more OOPLs (Figure A.7). Whilst, in the past, some products were
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closely tied to one OOPL, vendors are increasingly providing support for multiple OOPLs. 

Many products now offer similar functionality and features and even some architectural 

differences are being eroded. For example, the distinction between what has been termed as 
“active” or “passive” object databases [Manol94J has become blurred, as discussed by 
Wilcox [Wilco94], Taylor [Taylo92] differentiates active and passive object databases 

primarily in terms of where methods are stored.

An active object database (Figure A.8) stores methods inside the database and this, 

according to Taylor, provides the following benefits:

• Dynamic binding at run-time.

• “Active” data dictionary.
• Can be updated dynamically.
• Concurrency control for methods.
• More secure (protected by DBMS).
• Methods are treated the same as data (first-class).

Figure A ,8 - Active Object Database.

A passive object database (Figure A.9) stores methods outside the database which Taylor 

claims has the following disadvantages:
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• Methods are bound at compile/link time.

• More complicated, since changes require re-linking and re-deployment.

• Possibility of corruption to database.
• No concurrency control for methods, as they are held in external files.
• Breaks encapsulation and treats methods as second-class, denying them the 

protection and services of the DBMS.

Figure A.9 - Passive Object Database.

Object Server Page Server

Active ITASCA Ch
GemStone

Passive VERSANT Objectivity/DB 

ObjectStore

Table A .l - Method Execution vs. Server Architecture [Manol94].

This differentiation, however, is somewhat simplistic, since some products such as 

ObjectStore (which could be classified as “passive” according to Taylor’s approach), for 
example, can be configured with the client application running on the server, able to 
execute methods and act as a network server for the ultimate client [Manol94], Another
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important issue is the distinction between various server architectures (discussed later) and 

where methods are executed, as shown in Table A. 1.

A.4.9 Object + Relational

Figure A .10 - Object + Relational.

For a variety of reasons, including the dominance of relational technology for most new 
MIS applications (there is still a great deal of data held in hierarchical and network systems 
as well), it may not be possible to replace existing databases with new ODBMSs. A co-
existence approach may provide a way forward. One method could be to use an object 
database as a fast cache for a relational database (Figure A. 10). This approach has recently 

been used by one commercial bank (discussed in Chapter 6). The benefit is that full DBMS 
capabilities are provided by the object system and existing legacy applications can still 

access the relational system. Another example was reported by Hewlett-Packard in the 
development of a Physician’s Workstation, where OpenODB was used to cache some 
frequently referenced patient data from an existing medical system, resulting in 
performance improvements for some queries [DeSme94],

A.4.10 Relational Gateways

Gateway products are currently offered by a number of object database vendors. GemStone 
Systems, for example, provide a product that connects GemStone with Sybase. Similarly, 

Object Design have developed a product that provides access to DB2. The use of a gateway 
also enables organisations to keep their investment in existing database technology, whilst
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developing applications using new tools and techniques with object databases (Figure 

A .11).

Figure A. 11 - Relational Gateway.

A.4.11 Objects + Persistence Summary

Figure A. 12 - Summary' of Persistence Approaches [DBMS94].

There are several ways that the various approaches to managing persistent objects just 

discussed can be summarised. One is illustrated in Figure A. 12. This shows that file 

systems provide very limited or no support for DBMS facilities, whilst relational databases

224



have good multi-user capabilities and query support (SQL) and object databases provide 
extensibility and support for complex structures. Object-Relational DBMSs provide the best 

of all worlds. The relational vendors are moving across to the right as all the major players 
have announced a commitment to producing ORDBMSs. Similarly, object vendors are 

moving upwards and many already provide some relational capabilities, such as SQL++ 

from Objectivity and DBConnect from Object Design.

A.5 Classification Models of ODBMSs

A number of ODBMS classification models have been suggested in the literature. Although 
there is considerable overlap among the models, a summary of these models is now 
presented. This work has also been previously reported in [Chaud93].

A.5.1 Data Models

This approach has been discussed by a number of authors, e.g. [Khosh90; Catte94a].

• Non-First Normal Form (NF2) Models
NF2 models extend RM, whilst trying to maintain a strong mathematical 
foundation. The FNF constraint of RM is relaxed to allow repeating groups. 
POSTGRES [Stone90b; Stone91] is an example of a product following this 
approach. Another example is DASDBS [Schek90] w here a DBMS kernel is 
augmented with application-specific front-ends.

• Object-Oriented Languages
There are more than 80 object-oriented languages in the world [McClu92]. 
ODBMS products that are based on object-oriented language models include 

GemStone, 0 2, ORION [Kim89; Kim90a; Kim90c], ObjectStore and ONTOS.
• Functional Models

A number of ODBMSs have been built based on the DAPLEX Functional Data 
Model [ShipmSl], Attributes, methods and relationships are all represented by 
functions in these models. Subtypes and referential integrity are also supported. 
Example products include OpenODB based upon the IRIS research prototype 

[Fishm89; Wilki90], PROBE [Manol86] and VISION.

• Semantic Models
There are many semantic models, but SDM, developed by Hammer & McLeod 
[Hamme81], was one of the earliest attempts to add more semantics (e.g. 

objects, type hierarchy, etc.) to RM. SDM models structural abstractions (like 
frames in AI systems) and does not support behavioural abstractions. It uses a 
diagrammatic representation similar to semantic networks, with nodes and
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links, to depict entity types and relationships. SIM fFritc90] is perhaps the best 

example of a database system based on a semantic model (SDM). Further 

discussion of semantic models and their database implementations can be found 

in [Prabh92],

A .5.2 A rchitectures

Classification by data models is a useful way to distinguish the genealogy of a system, i.e. 

which previous systems and philosophies have contributed, but a better method is by 
architecture [Catte94a]. Cattell [Catte91b; Catte94a] has suggested the following 

architectural classification.

• Object Managers
These are extensions of existing file systems or virtual memory, have a limited 
data model, no query language and provide the most basic functionality (storage 

of persistent objects). Examples include POMS, Mneme and Observer. 

Persistent-Data Servers [Simme92j are another development akin to object 
managers. They attempt to provide an alternative persistence mechanism to 
ODBMSs and file systems. They offer some DBMS features and perform like 

file systems, whilst maintaining the structure of data on disk, independent or the 
application that created them.

• Extended Database Systems
These systems attempt to provide multi-programming language access by 
supporting a database language neutral model, sacrificing performance for data 
independence. New or extended database query languages that prov ide richer 

modelling concepts such as classes, inheritance, types and functions are 
provided by these systems, e.g. OSQL (IRIS), POSTQUEL (POSTGRES). 
Also, there can be full support for concurrency control, transaction 

management, etc. Examples include IRIS, POSTGRES, PROBE, Starburst 
[Haas90; Lohma91], SIM and VISION.

• Database Programming Languages
Existing programming languages (e.g. C++, Smalltalk, Lisp) are extended to 

provide DBMS features such as persistence, concurrency, etc. The database 
query language and application programming language execute in the same 

workspace and share the same type system. Examples include GemStone, 0 2, 

Objects tore, ORION and ONTOS.

• Database System Generators
Since no DBMS can provide all the specialised functions and operations needed 

by a specific application area (e.g. text processing, GIS, etc.), these toolkits
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enable customisable DBMSs to be built. Examples include EXODUS [Carey86; 

Carey89] and GENESIS [Bator86], Further discussion of the data management 

requirements for environments such as project management, office documents, 

geographical and spatial information can be found in [Oxbor91].

• Relational Object Shells
Backward compatibility with RDBMSs is the main motivation for the 

development of these systems [Catte91b], Rasmus [Rasmu92] has also noted:

to prove useful, object-oriented databases must be able to be 
integrated into a relational world. ”

This integration could be achieved by interfacing or encapsulation. The latter 

approach is more elegant and requires a wrapper to be built around a relational 
database, thus providing object-level interfaces and hiding the syntax and 

semantics of the underlying database. In this scenario, the relational database 

simply becomes an abstract data definition [Rasmu92J. A shell would store 
objects as virtual tables [Winbl90]. There is, however, a performance trade-off, 
since retrieving complex structures using search-and-match can be time- 

consuming in RDBMSs. Storing the same structures in a full ODBMS would 

enable them to be retrieved in a single query. Other approaches to integrating 
existing databases with object systems have been proposed in [Ahad88; 
Nelso90; Preme90j

A.5.3 Storage Server Models

This approach was proposed by Joseph et al. [Josep91],

• Typeless Page Servers
These systems do not directly manipulate objects, but manipulate virtual 

memory pages on which objects reside. A user application and the server share 
transient and persistent virtual memory7. This approach is, therefore, architecture 
specific, since page formats differ between hardware platforms. Examples 
include EXODUS and ObjectStore.

• Typeless Object Servers
Object servers control access to objects or groups of objects. They have very 

limited knowledge about the objects themselves (e.g. whether objects have a 
type, whether objects may be related, etc.). They cannot execute methods or 
access the states of objects. Examples include Mneme, Observer and Zeitgeist.
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• Class-Based Object Servers
Such systems manipulate objects or groups of objects and can interpret an 
object’s state to provide additional serv ices, such as queries. These systems are 

typically built on relational storage managers, mapping objects onto tables. Two 

alternatives to representing inheritance are through either horizontal or vertical 

partitioning. In horizontal partitioning, the inheritance graph is flattened, leading 
to class evolution problems. Using vertical partitioning, each inherited 
definition is represented by one table, requiring the use of joins. The storage 

manager provides support for full DBMS features, such as backup, recovery', 

concurrency, etc. Examples include IRIS and POSTGRES.

• Type-Based Object Servers
These object servers can execute methods and enable computations to be moved 

from client to server. Any of the other three server types discussed can be 
enhanced with extra layers of software to become type-based object servers. 

Examples include O2 and ORION.

A,5.4 Alternative Object Database Strategies

Khoshafian & Abnous [Khosh90] have proposed six different approaches to ODBMSs.

• Novel Database Data Model/Data Language Approach
Khoshafian & Abnous |Khosh90] have suggested that many research projects 
have pursued this approach. Of the commercial systems available, SIM has 

been cited because of its novel DDL/DML.
• Extend an Existing Database Language with 0 - 0  Capabilities 

With the ANSI X3H2 committee currently working towards the definition of 
SQL3 (SQL with object extensions), this is the path that is most likely to be 
pursued by existing relational database vendors wishing to provide greater 
support for object concepts.

• Extend an 0 - 0  Programming Language with Database Capabilities
An OOPL already supports object concepts, but lacks DBMS facilities, e.g. 

querying, transactions, persistence, etc. With this approach, the language is 
extended to support these facilities. One example is GemStone.

• Extendible ODBMS Client Libraries

An alternative to the previous approach provides libraries that extend the 
facilities of a language to provide classes of aggregates (e.g. sets, lists, arrays, 
etc.), types and methods for transaction handling, etc. ObjectStore, ONTOS 
and VERSANT are good examples of this approach.
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• Embed Object Database Language Constructs in a Host Language
This approach is similar to using Embedded SQL (ESQL) in a host language. 

Cb uses this approach to provide database access from C.
• Application-Specific with an Underlying ODBMS

The example cited in [Khosh90] for this approach is TeamOne, which is a 
configuration management system for engineering applications. This system 

supports an object repository for project design files, with access and 

modification achieved by manipulating encapsulated objects.

A.5.5 Language Data Models

Wells et al. [Wells92] refer to three approaches to ODBMSs, based on language data 

models.

• Programming Language Neutral
The data model in this approach has no direct relationship with the 
programming languages that manipulate data within programs. As mentioned 
earlier, such an approach aims to provide maximum data independence, 
although inevitably leads to the “impedance mismatch” problem. Examples 

include IRIS, 0 2, ORION, POSTGRES and PROBE.
• Database Programming Language

This approach provides the highest level of transparency of database access 

from a programming language, since the language has been specifically 
designed with database facilities in mind. Examples are Galileo [Alban86] and 
Taxis.

• Programming Language Specific
The data model in this approach is an extension of the type system of an 
existing programming language. Although the main objective is to ameliorate 
the “impedance mismatch” problem, difficulties can arise when users wish to 
use another language for their application programs - most ODBMSs do not 
provide direct language interfaces for conventional languages, such as COBOL, 

FORTRAN, etc.

A.5.6 Client-Server Architectures

A classification method based on client-server architectures and the unit of transfer between 

client and server was described by DeWitt et al. [DeWit90], Three approaches were 
suggested - object-server, page-server and file-server. Cattell [Catte94a] added that 

relational databases can be viewed as a fourth architecture, called a query-server. It is worth
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noting that the object-server and query-server architectures use logical units of transfer 

(objects and tables respectively).

• O bject-Server
This architecture uses objects as the unit of transfer between client and server. 
VERSANT is an example of a commercial ODBMS that is based on this 

approach.
• Page-Server

Pages are the unit of transfer in this architecture. This approach is used by 

commercial products such as GemStone and ObjectStore.

• F ile-Server
This architecture is a special case of the page-server approach and uses a remote 

file service, such as NFS, to directly manipulate pages. Objectivity/DB is the 
best example of a commercial product using this approach.

• Q uery-Server
This approach is included here for completeness, since some ORDBMSs use it. 

SQL requests are transmitted from client to server. The server responds with 

relational tuples.

A.5.7 Evolution vs. Revolution

Ultimately, perhaps all the classification models discussed so far can be generalised as 
evolutionary' - extending existing (relational) databases with support for object concepts or 
revolutionary - abandoning existing database technology in favour of a fresh start. These 

two approaches have received some attention in the literature, e.g. [Brodi89; Spier91]. A 

number of market research reports, e.g. [Jeffc91 ], indicate that there is room for both types 

of database systems, although ultimately it may not matter, since the two database 
technologies appear to be converging. For example, POSTGRES uses a set-oriented query 

language (POSTQUEL), but navigational access is also possible, since each record has an 

OID [Stone91], With this in mind, an important point noted by Taylor [Taylo92] is that as 

soon as relational database vendors begin adding pointer navigation to their products, they 

bring into question the entire mathematical foundation of relational technology.

A.6 Standards

The OODBTG [OODBT91] reported that there were strong arguments in favour of a 
standard object data model. This has been difficult to achieve due to reasons previously 
discussed, such as the lack of a single object-oriented paradigm [Catte94a], However, a 

reference model was defined in [OODBT91]. The purpose of the reference model was:
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1. To provide a common language of ODBMS definitions.
2. To provide a means to differentiate ODBMS systems from other DBMS 

systems.
3. To provide a means to differentiate ODBMS systems from one another.

4. To enable future standards work in the related programming and data 

management areas to have a basis to work from.

More recently, the task of developing standards for ODBMSs has commenced under the 
direction of ODMG [ODMG93], which was specifically formed for this task by the 

ODBMS vendors themselves.

A,6.1 Areas for Standardisation

Cattell [Catte94a] suggested standardisation efforts in a number of areas that are now 

discussed in more detail.

• Object Data Model
It is difficult to say how many ODBMSs there are in the world today. Everest & 
Hanna [Evere92], for example, have cited more than 80 organisations world-

wide that are:

“... believed to have some form of an Object-Oriented Database 
Management system (ODM) implemented or in development.”

Their report also highlights major differences in terminology for many things, 
such as exactly what constitutes an object. ODMG has taken many definitions 
from those used by the Object Management Group [Soley92] to help 

standardise terminology across ODBMS vendor products.

• Object Query Language (OQL)
Currently one ODBMS vendor’s query language cannot be used on another 
vendor’s system. However, a common standard is being developed by ODMG. 
Outside of ODMG, there has also been debate as to what form this language 
should take [Works91] and whether SQL with object extensions is suitable 
[Beech90] or not [Orens90]. Some of the arguments in favour of using SQL as 

the basis for an OQL are:
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• It already has an ANSI defined standard.

• SQL with object extensions would allow backward compatibility with 

existing applications that used standard SQL.
• It would provide a language neutral model, rather than tying down the 

query language to a particular programming language.

Additionally:

• It is “intergalactic dataspeak” [Commi90].

• “Our perspective is that SQL is the standard language for database 

access. Like democracy, it may not be perfect, but it’s better than 
anything else that’s around.” Ken Jacobs, cited in [Hazza90],

• “It is socially irresponsible to invent new languages if an existing 

language is a good approximation to what is required.” [Beech88].

However, Gray et al. [Gray92] describe the following drawbacks to using an 

Object SQL (based upon DAPLEX):

• Syntax of OSQL may be similar to SQL, but the semantics may be quite 
different, e.g. implicit joins, unexpected behaviour of familiar 
constructs, etc.

• Limited computational power.

• Restrictive structure.
• Awkward syntax.

In terms of query formulation, Kim [Kim90a] notes that the structure of an 
object-oriented query is basically that of a relational query'. There are, however, 
significant differences between ODBMS query languages. For example, most 

languages support path expressions in query formulation, but vary in the degree 
of encapsulation. In ORION, attributes can be directly referenced, whereas in 

IRIS, functions are used. Access through a behavioural interface obviously 

provides better data abstraction than access through state.

* Programming Language
Portability of application code between ODBMSs is also desirable. Lack of 
portability is something that relational systems have suffered from, since most 
use proprietary 4GLs. The ODMG approach has been to define precise 

language interfaces for Smalltalk and C++. Adherence to these interfaces should 

ensure application portability.
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• SQL
With the advent of heterogeneous distributed databases, a common form of 

communication between various types of DBMSs is required. SQL may be the 
best choice, since it has already become a standard communications protocol for 

many client-server applications. Also, so-called legacy systems cannot be 

ignored as significant quantities of data are already held in tables, accessed by 

SQL. In fact, some ODBMSs are already offering gateways that allow SQL 

access to the popular relational systems and permit SQL queries to be viewed as 

objects. Differences in SQL implementations, however, will cause problems 
with interoperability. For example, Edelstein [Edels91] has noted that RDBMS 

vendor implementations of SQL are known to suffer from the following major 

differences:

• Syntactical differences.
• Semantic differences.

• Dictionary tables.
• Return codes.
• Host language interface.

Presumably these are in addition to other “minor problems” [Commi90].

A.6.2 Achieving Standards

There are several ways standards may be achieved [Kim91].

• Industry-W ide Efforts
Since the lack of a standard for object databases was seen as a limitation for 
their more widespread use [ODMG93], the ODMG effort was undertaken. The 
focus of the work by ODMG has been to provide application portability 

between object databases at the levels of schema, language bindings and query 

language. The major components of ODMG-93 include:

• Object Model.
• Object Definition Language (ODL).
• Object Query Language (OQL).
• Object Manipulation Language (OML).

The Object Model is based on the OMGs Core Object Model and adds a DBMS 

profile, as shown in Figure A. 13. The Object Definition Language is based on
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the OMGs Interface Definition Language (IDL) for specifying interface 

signatures and is equivalent to Data Definition Languages in other DBMSs. 

Currently, Smalltalk and C++ bindings to the ODL syntax have been defined. 

The Object Query' Language is strongly typed and is similar to SQL, but it is 

possible to query lists, arrays, bags, etc. as well as sets. There was also some 
work underway to provide convergence of OQL and SQL3, as discussed by 

Manola [Manol94], The Object Manipulation Language extends C++ and 

Smalltalk to support operations, such as create, delete, access and update, on 

database objects as well as provide support for transactions. Some criticisms of 
the ODMG effort can be found in [Kim94a; Alagi97a; Alagi97b; Alagi98].

ORB component
Remote
Operations

CORE
component
Objects —

■ Operations
Attributes
Relationships
Persistence
Queries
Transactions

ODBMS component

Figure A .13 - ODMG Object Model.

• De Facto Standard
Of the current commercial vendors, Object Design, Inc. (ODI) has 

approximately a 30% market share of world-wide ODBMS sales. Whether this 
can be sustained in the long-term remains to be seen, particularly with the major 

RDBMS vendors beginning to offer significant object extensions. Furthermore, 
the SQL3 standard provides for some support of object-oriented concepts.

• Major Companies
IBM currently has business partnership agreements with several of the 

commercial ODBMS vendors. It also has its own research efforts such as 

Starburst and Cloris [Evere92]. English [Engli92] has mentioned some other 

products from major systems vendors. As previously mentioned, Oracle 8 

contains object extensions.
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APPENDIX B - Survey of Benchmarks

B.'l Introduction

Chapter 3 described and critiqued the three most well-know object database benchmarks: 
OOl, HyperModel and 0 0 7 . However, as Figure 3.1 showed, many more benchmarks 
have been developed to test the performance of object and object-relational databases. Since 

the classification presented in Figure 3.2 results in some benchmarks appearing in multiple 

categories, they will be ordered according to the following scheme in this appendix:

1 . Application Benchmarks
• CAD/Engineering

Behavioural [Kempe90]
Engineering Database Benchmark (EDB) [Ruben87]

OCAD [Kempe95a; Kempe95b]
Object Operations 1 (OOl) [Catte88; Catte91a; Catte92]

Sequent[Seque93]
• Data Warehousing

Siemens [Hohen97a; Hohen97b]
• Financial Trading

OO-Fin [Dewan97]
• Geographical Information Systems (GISs)

- SEQUOIA [Stone93b]
• Hypertext

HyperModel [Berre88; Ander90; Berre91]
Lakey [Lakey87; Lakey89]
Test Evaluation Procedure (TEP) [Larse92]

• Language-Based Editors
Opus-Merlin [Emmer92; Emmer93]
Recognition Editors [Peder93; Peder94a; Peder94b; Peder94c]

• T elecom m unications
British Telecom (BT) [Baker91]
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• YVargame Simulation
- Air Force Institute of Technology (AFIT) [Hallo93a; Hallo93b]

• W orkflow M anagement
LabFlovv-1 [Bonne95a; Bonne95b; Bonne96a; Bonne96b]

• World Wide Web
Quantum Objects [STR97]

2 .  System Benchmarks
• Analytical M odelling

Performance Evaluation System for Object Stores (PESOS) [Rabit93]
- Teeuvv [Teeuvv93a; Teeuw93b]

• C lient-Server Architectures

Alta'ir Complex Object Benchmark (ACOB) [DeWit90]

• C lustering
- CluB-0 [Harru91]

- Grid [Gerlh92]
• G eneric/Param eterised

BEAST [Geppe94]
- BUCKY [Asgar97]
- JUSTITIA [Schre94; Schre95]

Kim & Garza [Kim94b]
0 0 7  [Carey93; Carey94]
Simple [Kelte89; Dewal90; De\val92]
University of Southern California (USC) [Ghand93]

Future research should investigate rigorous taxonomies, as discussed by Worlton 

[Worlt93],

B.2 Application Benchmarks

B.2.1 A Benchmark to Scale Behaviourally Object-Oriented Databases

Most well-known benchmarks for object databases focus on the structural dimension of 
object modelling and do not consider the behavioural dimension. Kemper & Chriesten 

[Kempe90] described several benchmarks that attempted to model both.

The object types and behaviour modelled were based on actual CAD/CAM applications and 

could be considered as typical of those found in many engineering applications. The object 
types were referred to as cuboid (a small object with no references to other objects), brep
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(an object with highly interconnected sub-objects) and robot (a large object with many 

sub-objects).

The benchmarks were implemented on a relational database (SQL/DS) and an experimental 

non-first normal form database system that incorporated the notion of ADTs, called R2!)2. 
R2!}2 was configured in a client-server architecture, with a local database and local cache 

on the client. Kemper & Chriesten argued that since engineering applications exhibited 
reference locality, the overhead of loading objects into the client cache should be 

compensated by the high hit-rate - a view shared by Kim et al. [Kim90e].

The metrics used included the storage requirements for the two systems (reasonably 
comparable), transfer time (the time to transfer objects from the global database to the local 

database and subsequently to transform the objects into main memory representation), 
repeated sequential access to cached objects, varying the cache sizes, random access and 

select (direct access to an attribute versus predicate expressed with a user-defined function).

Although R2!)2 did perform worse than SQL/DS on some tests, the benchmark developers 

concluded that improvements in performance could be achieved by the close integration of 
object behaviour into the database query language. This is an approach that has been used 
by most commercial ODBMS vendors that have seamlessly extended object-oriented 
programming languages with database capabilities.

B.2.2 The Engineering Database Benchmark (EDB)

This benchmark is discussed in section 3.2.1.

B.2.3 The OCAD Benchmark

Test

random
interval
string

Figure B .l - The OCAD LargeVolume Database Schema.

Kempe et al. [Kempe95a; Kempe95b] described the OCAD Benchmark for measuring the 

performance of CAD applications on ODBMSs. In fact, three benchmarks were actually 
specified: a LargeVolum e database benchmark for testing scalability and the ability of an
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ODBMS to manage large amounts of data (Figure B .l); a C lassH ierarchy database 

benchmark to test the composite object modelling capability of an ODBMS (Figure B.2); 
and finally a benchmark that was used to implement a simple spatial index. The first two 

benchmarks are reminiscent of the work reported in [Kempe90].

Single-user performance was tested and warm measures taken, typical of CAD 

applications. The C++ interface of the products under test (Objectivity/DB, ObjectStore, 

ONTOS DB and VERSANT) was used, with the underlying clustering strategy provided 
by each product being utilised. For legal reasons, the four products were not directly 

named in specific performance results, but from the descriptions of these systems, it is 

possible to determine which results refer to which product.

Figure B.2 - The OCAD ClassHierarchy Database Schema.

Several of the LargeVolume operations are similar to the operations of 0 0 7  and results for 
two database sizes (6 MB and 60 MB) revealed that all the systems exhibited similar 

performance levels for the small database (this agrees with results from 0 0 7 ), but for the 

larger database, major differences were observed. For example, for one ODBMS the 

database was very large due to indexes, whilst another failed to load due to memory' 
problems. Other observations revealed that query optimisers for some ODBMSs were still 
very primitive.
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The ClassHierarchy database operations comprised two traversal operations (one with 
updates) that touched 488 parts of the complex object hierarchy in a depth-first manner. 

Again, two database sizes (700 KB and 6 MB) revealed very' interesting results. For 

example, one ODBMS that uses logical identifiers provided similar performance to one that 

uses memory pointers (a particular selling point used by the manufacturers of the latter 
product). Furthermore, one system failed the large database tests (this is the same product 
that was mentioned as failing in the previous paragraph). There was also noticeable 
degradation of performance with several products when moving from the small to the large 

database, even though the size of the complex object traversed was the same. This has 

implications for many production environments, where the database may be growing over a 

period of time and underlines the importance of testing scalability.

Thirdly, the spatial index was not directly supported by any ODBMS and had to be 
simulated using B-Trees. These B-Tree indexes were created on the x and y co-ordinates of 
a bounding box. A set of spatial operations on two database sizes (600 KB and 6 MB) 
again revealed interesting results. One system again failed the large database tests (the same 

product as mentioned in previous paragraphs). Results also revealed major differences in 

the intelligence of ODBMS query optimisers. A further observation was that an object- 

server architecture provides superior performance to page- and file-server approaches when 
data are not clustered according to the spatial index. The benchmark developers did not 

explain this further.

Finally, some results were also reported for tests to measure the sensitivity of an ODBMS 

to changes in object size. By varying the string attribute used in the LargeVolume database 

from 500 to 1400 bytes, the OCAD developers reported that an object-server architecture 
was highly sensitive to object size, whereas the performance of a page-server was superior, 
since the growth in object size does not necessarily result in equal growth in the number of 
pages transferred from server to client.

To summarise, the OCAD Benchmark has provided some very interesting results for a 
number of the major ODBMSs. It has shown how scalability is still a major problem for 
some products and that query optimisers are still very primitive. Perhaps most startlingly, 
the OCAD developers could not recommend without reservations any of the products for 
CAD applications. This is very surprising, since engineering and CAD applications have 
been the driving forces in the early adoption of object database technology, as discussed 

previously.
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B .2 .4  T he O bject O p eration s 1 (O O l)  B enchm ark

This benchmark is discussed in section 3.2.3.

B.2.5 The Sequent Benchmark

This is a multi-user version of the OOl Benchmark.

B.2.6 The Siemens Benchmark

There are very few examples in the object database performance literature of application- 
specific benchmarks. Generally, such benchmarks are undertaken by organisations for their 
own internal use, as shown by the case studies in Chapter 6. The results are also rarely 

made public. However, one recent example of an application-specific benchmark developed 

at Siemens is described by Hohenstein et al. [Hohen97a; Hohen97b],

The motivation for the work by Hohenstein et al. was that they were interested in 
measuring the performance of complete operations at the application level, rather than low- 

level operations in isolation. They evaluated three object database systems - two based on 
the page-server architecture and the third on the object-server architecture. The application 
that they used for their tests was based on a relational implementation of a data warehouse. 
The specific steps that they used to perform their evaluation were as follows:

1. Finding Characteristic Transactions.
2. Defining an Object-Oriented Database Schema.
3. Migrating Data.
4. Reimplementing the Application in Object-Oriented Terms.
5. System-Specific Adaptation and Tlining.

6. Measurements and Feedback.

The first product that was evaluated was one of the two page-server systems. This allowed 
some tuning of the client cache and the unit of transfer (page size). Some tests were 

performed varying the page size and running queries with and without indexes. The results 
showed the importance of choosing good parameters, since the best performance number 
obtained was one-third of the time of the worst performance number. Other observations 

for this particular product were as follows. Firstly, page sizes above 1 KB were better for 

standard queries, since more objects could be transferred to the client for query evaluation. 

Secondly, small page sizes were sufficient for lookups of objects, since an index could do 

a direct selection. Thirdly, some queries were actually slower with indexes than without!
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Finally, the size of the client cache was not a major influence on the performance of this 

system.

The second product was the other page-server system. This also provided tuning of the 

client cache size and unit of transfer, as well as some server-specific parameters, such as 
the sizes of log files. Investigating alternative query forms with and without indexes 

revealed a number of interesting observations, as follows. Firstly, preprocessing of 
frequently used queries resulted in worse, rather than better, performance. Secondly, 
indexing could be very effective. Finally, the size of the client cache was the most 
important influence on performance in this system.

The third product tested used an object-server architecture. It provided many tuning 

parameters, but no benefits were found from varying the queries, as with the two other 
products. The most effective optimisations were as follows. Firstly, indexes on every 
subclass gave the best query performance (and implied, therefore, that a deep class 
hierarchy would have a negative impact on performance). Secondly, three different commit 
options were available: (i) invalidate the client cache and release locks, (ii) keep the client 
cache and release locks and (iii) keep the client cache and keep locks (which provided the 
best performance). Finally, several options were also available to Hush the transaction log 
file, such as after every transaction or asynchronously to disk.

A comparison of the three products showed that the page-server systems were better at 
complex searches, especially when large quantities of objects needed to be transferred to 
the client. However, the object-server provided the best overall performance, particularly 

using the third commit option, mentioned above.

A comparison with the original relational database implementation showed that the object 
databases were good at performing simple queries. Also, traversals of relationships in the 
two page-server systems were better than the equivalent SQL queries and additional 
benefits could be derived by using clustering. Furthermore, code savings were possible 
with the object database implementations due to the seamless integration of an object- 
oriented programming language with the DBMS, as well as support for powerful modelling 
constructs, such as inheritance and polymorphism. However, only the object-server was 
competitive in performance with the relational database, mostly due to its low commit 
overhead. The benchmark developers also speculated that in a multi-user environment, the 
object-server would perform better than the page-server systems, as it supported object- 

level locking.
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To summarise, the benchmark developers concluded that the performance differences they 

observed were substantially different from results that had been reported by some object 
database performance researchers. Also, exploring many of the tuning options had shown 

that considerable performance improvements could be achieved. Furthermore, one of the 

most important issues that emerged was the choice of architecture, with the object-server 
clearly providing the best performance. Finally, the benchmark developers concluded that 

standard benchmarks were not always meaningful and application-specific tests were 

essential. This agrees with the results of this research project.

B.2.7 The OO-Fin Benchmark

This benchmark is described by Dewan & Agarwal [Dewan97] and was primarily designed 
to measure the performance and scalability of Persistence (mentioned in the previous 

appendix) against an in-house object to relational mapping tool used at Morgan Stanley. 

The schema is illustrated in Figure B.3 and is designed to represent a financial trading 

application.

Figure B.3 - The OO-Fin Database Schema.

The cardinality of the relationships is that a P ortfo lio  is connected to 20 P osition s and 
each position to 50 TaxLots. The benchmark was used to determine the overhead of 

mapping relational information into objects (performed by Persistence and the in-house 

tool), the benefits of caching and cache scalability. Various database sizes were tested, with 

the largest being 100 Portfolios, 2,000 Positions and 100,000 TaxLots (approximately 44 
MB in total). The tests were performed on the same machine and measurements were taken 
for both cold and warm reads. The results of the cold read showed that both Persistence
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and the in-house tool reported similar performance numbers, with the access time per object 

instance being almost independent of the number of instances in the cache. For the warm 

read, Persistence again demonstrated constant performance, whilst the performance of the 
in-house tool degraded with database size, possibly due to the different techniques it used 

to manage objects [Dewan97J.

Besides the superior performance demonstrated by Persistence, the results also showed that 

it was 250 times faster than using just an RDBMS. This is because Persistence provides a 
mechanism, called a Live Object Cache (LOC), that enables objects constructed from 

relational database tuples to be held locally in a client cache and the LOC effectively 

behaves like an object database cache.

The benchmark developers also proposed a number of extensions, which they indicated 

they would address in future tests:

• Scalability - use data sets greater than 1 Million objects.
• U pdates - test various update operations, such as batching changes until a 

transaction committed.
• Distribution - perform tests using an Object Request Broker (ORB).

B.2.8 The SEQUOIA 2000 Benchmark

The SEQUOIA 2000 Benchmark [Stone93b] is based on real data and queries typical of 
those found in GISs. The authors claim that the benchmark is also representative of other 
applications such as engineering and can therefore be used in a more generic manner.

Geographic systems are characterised by three major features - large database size, complex 

data types (such as spatial data) and queries on complex data. Existing benchmarks such as 
OOl and 0 0 7  are, therefore, not appropriate since they focus on very small database sizes 

and the efficiency of pointer traversals in main memory on simple objects.

The benchmark consists of ten queries, oriented towards four data types (raster, point, 
polygon, directed graph) and one operation for database load. Three database sizes were 

discussed, but results were reported only for the smallest database (1 GB) with a larger 

database (18 GB) reported as being in preparation.

Results were reported for GRASS (a public domain GIS), IPW (a raster image processing 
workbench) and POSTGRES (a DBMS research prototype investigating the feasibility of 
extending the Relational Model with objects). The most complete benchmark results were
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available for the POSTGRES implementation, which found a number of problems and 

limitations of this system. It is difficult to draw further conclusions until the benchmark has 

been more widely implemented - a significant problem, since most commercial relational 

and object database systems do not support all the complex data types required. However, 
the authors have realised this and partial results may also be reported. The benchmark is 
also criticised by Boncz et al. [Boncz96b] for the simplicity of the queries and lack of 

thematic data.

SEQUOIA 2000 is a storage benchmark, but network and visualisation benchmarks have 

also been developed as part of this project.

B.2.9 The HyperModel Benchmark

This benchmark is discussed in section 3.2.4.

B.2.10 Benchmarks Proposed by Lakey

Lakey et al. [Lakey87] and Lakey [Lakey89] proposed a number of benchmarks to 
compare object and relational database systems based on complete operations at the 
application level, rather than measuring low-level primitives. By using conceptual schemas 
and operations on those schemas, it was argued that it was possible to develop benchmarks 
that could be implemented on any database system. Furthermore, it was suggested that 

since ODBMSs themselves differed markedly in terms of implementation and there was a 

lack of consensus on a standard object-oriented model (at the time this work was 

undertaken), the proposed approach could also be used to compare ODBMSs. Three major 
factors were also proposed that distinguished object database benchmarks from other data 

management systems:

1. Operations in object database applications are more likely to follow conceptual 

access paths, rather than logical or physical ones [Stein92], For example, in 
conventional DBMS applications, an operation may include a sequential scan of 

a relation for report generation or single record lookups using an indexed field. 
However, for object databases, a typical operation may be to compute the 
weight of an object by combining the weights of all its sub-components 

[Stein921.
2. In an object database, a programming language is more tightly integrated with 

data management. The language acts as the Data Definition Language (DDL), 
Data Manipulation Language (DML) and Data Control Language (DCL), 

besides being computationally complete. This contrasts with SQL, for example,
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which provides DDL, DML and DCL facilities only, requiring a host language 
to provide general computation. Consequently, it is better to evaluate how well 
the language and data management features work together, rather than as 

individual components.
3. Traditional metrics tend to focus on individual query response time or 

transaction throughput. Other factors, more difficult to quantify, such as rapid 
prototyping, ease of implementation, maintenance, etc. are not considered.

Since the aim of this work was to compare object and relational database systems, 
GemStone and University INGRES were chosen. The principal reason being the 

availability of suitable software. Furthermore, relative performance was measured within 
each system, since the two products could not be tested on identical hardware 

configurations. Five candidate applications were considered:

• Block Structured Programs.
• Document Processing.

• Hypertext.
• Persistent LISP Objects.
• VLSI Design.

These applications were chosen as they were considered to be of an object-oriented nature 
and published work describing relational schemas was already available. The Docum ent 

P rocessin g  and Hypertext applications were actually implemented and benchmarked.

After implementing and running her benchmarks, Lakey [Lakey89] concluded that schema 
design was a major performance factor for both systems - improvements might be possible 
with alternative designs. Other quantitative and qualitative observations she made were that 

GemStone was superior to INGRES in several areas:

• I/O management (it accessed the disk only when objects were needed).

• Data model (closer to the real world).
• Ease of implementation (model definition, method implementation and statistics 

generation could be defined using just one language).
• It could better manage information for applications within the database itself, 

such as class definitions and application objects.

However, modifying schemas and bulk database loading and unloading were easier to 

undertake in INGRES than GemStone.
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B .2.11 T he T est E valu ation  P roced u re  (T E P)

Larsen [Larse92] describes a Test Evaluation Procedure (TEP) to compare object and 

relational database systems using a simplified version of the HyperModei Benchmark. The 

TEP was partly based on a requirements analysis for two different applications termed 

adm inistrative and technical. Interestingly, there appear to be significant similarities in 

the requirements for the two application types.

After a discussion of object and relational database technologies and in a survey of database 

performance benchmarks, Larsen critiqued HyperModei:

• The benchmark description was too generalised and details on how to create test 

applications were left unspecified.
• The overall benchmark schema was described, but not how queries should be 

performed.
• There were no guidelines on how measurements should be made, e.g. whether 

measurements should be taken inside or outside transactions.
• The two database systems under test in [Ander90] had different programming 

language bindings which may have meant that any hidden behaviour was not 

revealed.
• The benchmark was expensive to implement, perhaps requiring four to six man 

months per system (this included the time required to learn each product and to 

create the implementation and operating procedures).
• Most of the operations appeared to measure the same things.

• The benchmark was very weak in its cold measurements, since it performed a 
very large number of benchmark iterations, which meant that considerably more 

warm measurements were taken.

Following the critique, Larsen proposed a simplified benchmark schema and operations. 

This is reminiscent of the approach used on the original Engineering Database Benchmark 
[Ruben87], which was also simplified in its design and number of operations, as reported 

by Cattell [Catte88J. The modified schema used by Larsen is illustrated in Figure B.4.

Figure B.5 shows the parent/children hierarchy with the number of nodes at each level. 
Non-terminal nodes are of type N ode and terminal nodes of type TextN ode. Each node 
(of type Node or TextNode) is connected to five other random nodes in the database for the 

refTo/refFrom  relationship. As with the original HyperModei, tests were run against 

level 4, 5 and 6 databases (781, 3,906 and 19,531 nodes, respectively).
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parent/child

Figure B .4 - The TEP Database Schema.

Figure B.5 - Network of Nodes used for HyperModel Database.

The proposed benchmark operations consisted of six retrieval and traversal operations 
(with and without updates) of varying complexity for both single- and multi-user. Indexing
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and transaction mechanisms were also tested. The multi-user tests were configured so that 

applications were executed simultaneously on different client computers against the same 

database, which was held on a remote server. The aim was to test the ability of the DBMS 

to support concurrent access to the same data structures as well as how it was able to cope 

with deadlock situations. Interestingly, all the tests were conducted with other users 

logged-on to the computer systems, leading to the obvious conclusion that the tests were 
not undertaken in a controlled manner and casting doubt over the reproducibility of the 

results.

Test measurements were reported for the RDBMS and one ODBMS, with the results for a 

second ODBMS included as an appendix. The times for the database load operations 

showed that the ODBMS was faster in all cases. The ODBMS was also smaller for each 

level after loading (ranging from a quarter to a half of the size of the RDBMS). This was 
probably due to the direct connectivity betw’een objects in the ODBMS, rather than 

requiring multiple tables to recreate the link structures as used in the RDBMS. For the 
single-user tests, the ODBMS did provide better performance than the RDBMS for many 
operations for level 4 and level 5 databases, but was noticeably worse for level 6 databases. 
Larsen speculated that this was due to client cache evictions, since the database at level 6 

could not be stored entirely in workstation memory. The multi-user results followed similar 

patterns to the single-user results, with differences in performance between the tw'o 
database systems becoming larger as the number of users was increased. Overall, however, 
Larsen commented that the performance differences in many cases were not of the one or 
two orders of magnitude in favour of the ODBMS over the RDBMS as had been suggested 
elsewhere.

On the basis of his results, Larsen concluded that an ODBMS would not be suitable for the 

administrative application, but would be more appropriate for the technical one, although 
the two ODBMSs and RDBMS did well against the requirements analysis undertaken as 

part of his research. Additional conclusions were that good ODBMS performance was very 
dependent on a number of issues, such as object clustering and that scalability should also 

be tested as demonstrated by the cache evictions that were observed with the level 6 
databases. However, since the two object databases used by Larsen were not named (or 
even described in enough detail to determine their architectures), it is difficult to determine 

whether the reported results contradict results presented elsewhere.

B.2.12 The Opus-M erlin Benchmarks

The ESPRIT-III project GoodStep was aimed at enhancing the 0 2 object database to make 

it particularly suitable as a database for Software Development Environments (SDEs). An
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integrated SDE is described in [Emmer93] as one that includes a number of tools to support 
many of the life-cycle stages, such as document development (with possibly many 

connections between documents at varying levels of granularity). Typically in an SDE, 

there will be tools to provide graphical representations of system design (e.g. Entity- 

Relationship diagrams) and other tools to provide code generation. These tools will 
exchange information between each other. For such environments, the response time must 
be below 1 second for the SDE to be considered user friendly [Emmer93]. To assess the 

performance of an object database (which dominates the performance of an SDE built on 
top of it), the Opus-Merlin Benchmarks were defined.

The difficulty in developing an appropriate benchmark, however, is complicated by the 
differences between commercial ODBMSs in areas such as functionality, features, lack of a 

standard interface, etc. Consequently, an abstract benchmark was proposed that could then 
be implemented on any object database. The approach was to take two documents that 

represented certain module information. One contained details of modules and their import 
interfaces. The other defined the import and export information in detail. Next, a series of 

transformation rules was applied to convert the textual representation to an Extended Entity- 
Relationship (EER) model. Further simplification rules were applied to reduce the size of 

this model, which could then be implemented on a specific system. Furthermore, four sets 
of benchmark operations were proposed, divided into two groups called increment 
operations and traversal operations. The former being those that created, changed or 

deleted objects and the latter being those that performed traversals. Interestingly, running 
these tests in the specified order will leave the database unaltered and so additional runs can 
be undertaken without the need to create a new database. The complete benchmark was also 
designed in a modular manner consisting of sub-systems, enabling significant code re-use 
for implementations on a variety of different products.

Detailed results for this benchmark were described in [Emmer92] for GemStone and a 

prototype graph storage system called GRAS [Kiese92], The results showed that although 
GemStone was functionally very rich (e.g. support for schema definition, transaction 

management, distribution, etc.), it provided superior performance to GRAS in all but one 
case. Furthermore, it utilised disk space more efficiently and its benchmark times were 
within 1 second. Additionally, using GemStone in a remote client-server configuration 

didn’t add any significant response time overheads. In [Emmer93] it was reported, 
however, that the pessimistic transaction management approach used by O2  was superior to 

the optimistic approach used by GemStone, since additional time was required in the latter 
at commit time for conflict detection. The benchmark developers concluded in [Emmer92] 
that with further improvements in ODBMSs (something that usually occurs with each 

software upgrade) and faster hardware platforms, performance could be improved where
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benchmark times may be under 500 milliseconds (a figure arbitrarily chosen by the 

benchmark designers), making object databases even more suitable for SDEs.

B.2.13 Benchmarks for Recognition Editors

Pedersen [Peder93; Peder94a; Peder94b; Peder94c] describes some work to investigate the 
feasibility of utilising ODBMSs for LBEs. According to Pedersen [Peder93], the definition 

of an LBE is as follows:

“Language-based editors facilitate construction of documents that are correct 

from the syntactic and static semantic viewpoint of the language concerned.
The language may be any structured language, such as a programming 

language or a specification language.”

Following a discussion of tree-based editors and recognition editors in [Peder93], three
strategies for persistence were considered:

1. Direct Persistence - the LBE is coded in a persistent language.
2. Direct Integration - a full ODBMS is used.
3. Loosely-Coupled Integration - an ODBMS is used as a back-end server.

The third option was considered as being the most favourable, since it was able to provide 
the benefits of a DBMS, such as persistence, whilst providing data-sharing with other 

tools.

In [Peder94b], a requirements analysis for a recognition editor benchmark was undertaken. 
Some strategies used to develop a benchmark for recognition editors as a first step towards 
migrating them to a persistent storage environment were then described. The approach used 

was based on the work reported by Emmerich & Kampmann [Emmer92], The steps 

required to develop an abstract benchmark for the UQ1 editor developed at the University 
of Queensland were subsequently described in [Peder94a]:

1. Undertake a conceptual analysis of the UQ1 document-representation structure 
to highlight the significant objects.

2. Use quantitative analysis techniques to determine the average occurrence of the 
objects identified in 1. in a UQ1 document.

3. Use the figures from 2. to create an initial database of objects in the persistent 

storage environment.
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4. Undertake an analysis of the typical operations performed by the UQ1 editor 
such as the number of objects created, visited or destroyed.

From the initial results Pedersen obtained, he proposed that the approach described above 

could provide a useful technique to develop benchmarks for a wider range of ODBMS 

applications. This work should also be compared with that reported in [Emmer92; 

Emmer93],

B.2.14 The British Telecom (BT) Benchmark

Baker & Salman [Baker91] report on the results of some work to compare a relational 
database, a relational database with object extensions and a pure object database. The 

database schema was designed to represent a hypothetical network consisting of 
M ultiplexors, Repeaters and PB X s. Six operations were defined (one select, three 

traversals, two structural modifications) and the test databases were populated with 

approximately 100,000 objects.

The results showed that the pure object database provided superior performance than either 

of the other two database systems. In fact, the results from the hybrid system were so 
disappointing that the benchmark developers discounted them altogether and only discussed 
the results of the relational and object systems. Not surprisingly, the performance gap 
between relational and object became wider as queries became more complex, although the 
cost of retrieving a single tuple was discovered to be equivalent to retrieving a single object. 

The relational database was also two and a half times the size of the object database, partly 

due to index tables.

To conclude, Baker & Salman attributed the superior performance of the object database to 
two main reasons. Firstly, the application itself was object-oriented and was therefore 
easier to implement on the object database, whilst the relational database incurred a cost for 

trying to support a paradigm it wasn’t designed for. Secondly, since the object database 

was suited to navigational queries, the required objects could be retrieved directly rather 
than the expensive “search-and-match” approach used in the relational database.

B.2.15 The Air Force Institute of Technology (AFIT) Benchmark

There are few published benchmarks that attempt to model some type of simulation 

domain, although many benchmarks could be described as simulating the data manipulation 
requirements of particular applications. One ODBMS performance benchmark specifically 

targeted at stochastic discrete-event computer simulation is described by Halloran
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[Hallo93a]. This benchmark simulates a battlefield environment with aircraft searching and 

logging any trucks found. It is described by Halloran as a quantitative and qualitative 

benchmark and measures elapsed time and throughput.

The benchmark is unique in a number of ways with its design. For example, a Graphical 

User Interface (GUI) is included as part of the benchmark. This is a qualitative measure of 

an ODBMS to interface with a graphics library.

The benchmark consists of two database sizes:

1. Sm all - 1,000 trucks, 500 aircraft and a 50 x 50 hex board.
2. Large - 10,000 trucks, 5,000 aircraft and a 100 x 100 hex board.

It measures seven major operations (Model Creation, Scenario Creation, Simulation 
Execution, Simulation Throughput, Version Creation, Map Creation and Report Creation). 

Furthermore, three simulation events are modelled [Hallo93a]:

1. Aircraft Move - moves an aircraft into a randomly selected adjacent hex.

2. Search - aircraft searches hex it is located-in and logs any trucks found.

3 . Truck Move - moves a truck into a randomly selected adjacent hex.

The benchmark was implemented on both ObjectStore and C++. The latter, it was argued, 

was not a valid implementation since it was non-persistent, but was used for comparison 
purposes to determine the performance overhead due to the extra functionality provided by 

the ODBMS, such as database management services.

Local and remote results for the small ObjectStore database and small non-persistent C++ 
database showed that the ODBMS provided comparable performance to the non-persistent 

version. Interestingly, the w'ork reported in this thesis is one of the few published efforts 
that performs detailed statistical analyses of the results. From the results obtained, Halloran 
concluded that the ODBMS provided extra functionality without significant performance 

overheads and cited the following advantages of using ObjectStore for simulation systems:

• Similarity to the C++ Programming Language

A simulation system developed using C++ can easily be ported to ObjectStore, 

since the data models are so similar. For other OO or non-OO languages, 

however, this may be a drawback.
• M otif Interface

ObjectStore worked well with the Motif GUI.
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• M ulti-User Access to Model Data
ObjectStore provided good support for multi-user access, with no consistency 

problems encountered. For simulation systems implemented in a programming 
language, additional code to manage multiple users would be required.

• Browser Tool Use
A graphical database browser tool with ObjectStore enabled the database to be 

examined in an ad-hoc manner. Such tools may be useful for simulation 
systems.

The conclusions suggest that some ODBMSs may be suitable for simulation systems, since 

they provide the added functionality that may be required by such systems with only a 
small loss in performance, but that further work was necessary in some areas, such as 

version management (which was not evaluated as part of this work).

B.2.16 The LabFlow-1 Benchmark

The LabFlow-1 Benchmark [Bonne95a; Bonne95b; Bonne96a; Bonne96b] was designed 
to measure both the performance and functional characteristics of a DBMS to support 
workflow activity. According to the authors, this requires the database to manage audit 
trails and event histories, together with queries, indexing and dynamic schema evolution. 
The benchmark described in this work was based on observed data and workflow activity 
at the Human Genome Project at MIT, although the benchmark itself was synthetic, since a 

benchmark based on real data and workloads would be complex, hard to understand and 
difficult to scale [Bonne95b]. However, the essential components of observed workflow 
activity, such as cycles, success and failure states and multiple co-operating production 
lines were all simulated in this benchmark. Existing benchmarks were found to be 
unsuitable, since workflow deals with a small number of complex, correlated events 

[Bonne95b].

The benchmark was implemented on the commercial ODBMS product ObjectStore and the 
research prototype Texas (similar to ObjectStore in its virtual memory mapping 
architecture) and measured single-user performance, since it was useful to understand this 

before attempting to measure multi-user performance [Bonne95b]. Five variations of 
ObjectStore and Texas were used:

• OStore (full ObjectStore).

• Texas (ful 1 Texas).
• Texas+TC (full Texas with extra clustering capabilities implemented in client 

code).
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• OStore-mm (ObjectStore running in main memory only).

• Texas-mm (Texas running in main memory only).

The latter two obviously having no storage managers. Three database sizes were used and 

corresponded to half, full and twice physical memory. The benchmark operations were 

grouped into the following five categories:

1. Retrieve materials in a given state.

2. Query results of workflow activities.
3. Insert new material instances.

4. Insert new step instances.

5. Modify the state of materials.

As mentioned earlier, the workflow activity used as a basis for this work was drawn from 
the Human Genome. DNA sequencing was the specific activity being modelled.

The major results of the benchmarks showed that thrashing became a significant issue the 

larger the database size, from which the benchmark developers concluded that clustering 

frequently accessed objects was critical to obtaining good performance. Similar 
observations on the importance of locality of reference for ObjectStore have been reported 
by Halloran [Hallo93a], Furthermore, a functional comparison of the two products in terms 
of concurrency control, class libraries, tuning options and database administration tools 

revealed large differences in favour of ObjectStore. However, this is not really surprising, 
since Texas is a single-user research prototype and ObjectStore a full-featured commercial 
ODBMS.

B.2.17 The Quantum Objects Benchmark

Most performance benchmarks for object databases have been written in C++. Several of 
these benchmarks have also been implemented in Smalltalk. However, the increasing 

interest and commercial use of Java would be a natural candidate for new benchmarks, as 

many object database products now provide Java language bindings. One effort to measure 
the performance of Java data management is described in [STR97], This papier compared 
two alternatives to Java data management using ObjectStore and JDBC/Oracle. The 

comparison included both code sizes and performance for the two database technologies, 
based on a simplified version of an on-line arts and entertainment guide for the city of 

Chicago. This application was a web-based system that dynamically generated HTML 

pages from a collection of components stored in the database. These components included
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images, text and HTML pages. Components could themselves have further elements, 

resulting in a hierarchical structure.

A code comparison of the entire application favoured ObjectStore, which was three- 
quarters of the size of the Oracle implementation. Some code examples also demonstrated 
the virtually seamless approach possible with ObjectStore, whilst mapping objects to 

relational tables was more complex and required additional considerations, such as whether 
to represent each class as a table. The relational implementation was also very rigid, since it 

was difficult to add new object types without adding new tables and additional code to 

manage them. In contrast, new object types could be added very easily to the object 

database.

A performance comparison favoured ObjectStore over Oracle by a far bigger margin than 
the code comparison. This was attributed to a number of reasons. For example, there was 
no translation overhead with the object database, as programming language and database 
objects were the same, whilst the relational implementation required objects to be copied 

into memory and reconstructed. Additionally, the object database was able to use client 
caching to improve performance.

B.3 System Benchmarks

B.3.1 The Performance Evaluation System for Object Stores (PESOS)

Rabitti et al. [Rabit93] describe a software tool for estimating the cost of associative 
retrieval in very large and complex object stores. The tool, called PESOS, can model 

various object storage organisations with respect to specific characteristics of the secondary 
memory hardware and provides a simple language to specify queries on the object store 
structures and returns quantitative evaluations, using analytical methods, of the access 

performance. The advantage of this tool is that these evaluations can be undertaken without 
the need to actually implement any database (which can be a costly and time-consuming 
process).

PESOS can describe:

• Object storage structures.
• Value-based and navigational indexes.
• Hardware characteristics.
• Set-oriented and navigational queries.

255



The interface to the tool is kept simple to promote portability across hardware platforms.

No results are reported in this paper, although some detail is provided about its design and 
the types of parameters that can be specified. Furthermore, there is no evidence of any 
model verification. For example, how does PESOS compare in its evaluations with actual 

databases?

B.3.2 Performance Work Reported by Teeuw

Recent work using ACOB (discussed below) has been reported in [Teeuw93a; Teeuw93b], 

which described an analytical model to estimate disk I/Os. The model was validated by 

experiments using four storage models for complex objects.

B.3.3 The AltaVr Complex-Object Benchmark (ACOB)

The Altai'r Complex-Object Benchmark (ACOB) was developed to test the performance of 
alternative workstation-server (client-server) architectures for object database systems 

[DeWit90]. The three approaches explored were:

1. O bject-Server - individual objects are transferred between workstation and 
server using a Remote Procedure Call (RPC) mechanism.

2. Page-Server - individual disk pages are transferred using an RPC, with the 
server buffering these pages.

3. F ile -S e rv e r - disk pages are transferred and accessed by the workstation 

using a remote file service, such as NFS.

The object-server architecture is used in systems such as ORION and VERSANT. 
EXODUS and ObjectStore are examples of the page-server architecture. Finally, 

Objectivity/DB uses the file-server configuration.

According to [DeWit90], the design of the benchmark was influenced by the data model of 
the 0 2 system, which distinguishes between values and objects.

A complex object is composed of seven records (to represent values), with each record 
being 112 bytes long. The records are connected in a hierarchical manner, as illustrated in 

Figure B.6. The four leaf records contain references to eight other complex objects to 

simulate 1:N aggregation relationships (e.g. part/subpart) or M:N relationships (e.g. 

suppliers/parts). The attached objects are termed “components” [DeWit90j. A total of five 

sets of 1,500 objects were used to create the test database.
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Figure B.6 - ACOB Complex Object Organisation.

The benchmark consists of three queries:

1. Sequential Scan
This query reads all complex objects (but not their components) in their physical 

order. It simulates reading all instances of a class and is therefore similar to 

queries for relational systems that read all rows of a table.

2 . Random Read
This query7 randomly selects 300 complex objects and their components. A 

partial traversal is then undertaken and an average of 44 records are read. The 
selectivity factor chosen was based on observed access patterns for VLSI tools. 

The query simulates the user checking-out a complex design into a local 
workstation at the start of a transaction or session.

3 . Random Update
This is an update version of 2. In-place updates are performed on 17 records, 
thus preserving the structure of the database. This query was primarily used to 
observe the effects of transferring objects between workstation and server on 

the three architectures mentioned earlier.

In running the queries, a number of parameters were varied, including the degree of 
clustering, “smearing” (to simulate the dispersal of records over different data pages caused 
by updates) and workstation and buffer pool sizes.
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Briefly, the results showed that the object-server architecture was not really affected by 

clustering. Workstation buffer size was a factor to a point, beyond which the cost of RPCs 
was dominant. For sequential scan and update, the page-server architecture w'as very 

sensitive to the workstation buffer pool and clustering. The file-server was more sensitive 

to the workstation buffer pool than the page-server. Read operations performed well, but 

page writes were slow using NFS, since it uses non-buffered writes. Overall, there was no 

clear winner [DeWit90].

To summarise, ACOB has been successfully used to observe the effects of clustering, 
“smearing” and buffering on three different workstation-server architectures. Although it 

could be criticised for being a very simple benchmark, it showed that a small set of focused 
queries can be successfully used and that a very large and complex benchmark is not 

necessarily required.

B.3.4 The CluB-0 Benchmark

Harms et al. [Harru91] used a derivative of the HyperModel Benchmark to evaluate 
alternative clustering strategies. They proposed performance indices to measure the 
efficiency of clustering decisions and reported upon their implementation on an early 
version of CF, together with detailed performance results.

B.3.5 The Grid-Benchmark

The Grid-Benchmark [Gerlh92] was developed to test a new clustering strategy for 
ODBMSs based on: (i) workflow’ analysis techniques to determine access patterns, 
followed by (ii) heuristics for graph partitioning to determine which objects should be 
clustered together.

The w'orkflow analysis phase extracts access patterns from object behaviour. This 

technique is referred to as decapsulation and is a static approach in that schema and 
object instances are analysed (versus the dynamic approach where real applications are 

monitored). The dynamic approach is inferior to the static approach in several respects 
[Gerlh92]:

• There is a run-time penalty imposed on any running applications, since 

monitoring must involve some resource utilisation.

• There is a time penalty for the data collection used by the monitoring process to 

reach a “steady state”.
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• Only average system load is measured and rare (but critical) operations are 

ignored.

The static approach allows weighted measurements to be assigned to inter-object 
references. Those paths that are likely to be traversed more frequently are assigned 

correspondingly higher weights.

The OOl Benchmark was used together with a new Grid-Benchmark in the experiments, as 

example applications to test the new clustering strategy. The OOl Benchmark was criticised 
in the following areas, though:

• The simple schema did not reflect real-world applications, which contain more 
complex types and operations with diverging access patterns.

• The benchmark operations and results were difficult to interpret due to the 

random connections between objects.

The Grid-Benchmark was designed to address some of these deficiencies, specifically:

1. Use of recursion to truly stress clustering strategies.
2. Support for a complex schema with a variety of operations and access patterns.

3. Inclusion of both regular and random connections between objects.

The test results showed that the new clustering approach did provide superior performance 

than alternative object clustering approaches.

The conclusions suggest that determining static access patterns could provide a useful way 

forward for the development of other ODBMS benchmarks. The difficulty for database 
performance researchers, of course, is gaining access to the necessary schema and design 

documentation!

B.3.6 BEAST

BEAST is a derivative of the 0 0 7  Benchmark, for active database systems.

B.3.7 The BUCKY Object-Relational Benchmark

This benchmark is described by Asgarian et al. [Asgar97] and is a query-oriented 
benchmark that is designed to test features of object-relational databases, such as:
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• Row types with inheritance.

• Inter-object references.
• Set-valued attributes.

• Methods attached to row objects.
• User-defined ADTs and their methods.

The schema is illustrated in Figure B.7, with generalisation represented by a triangle and 

other lines illustrating other relationships (for brevity, the names of these relationships have 

been omitted in the diagram).

Figure B.7 - The BUCKY Database Schema.

The focus of the work was to test those features provided by ORDBMSs that were above 

and beyond those provided by just RDBMSs. Furthermore, the benchmark developers also 

implemented a purely relational schema on the system under test, to see what differences 
this might make with query optimisation, etc.

The results showed that the object-relational implementation did provide benefits in some 
cases, such as smaller code, but object-relational query processors were still weak in 

managing the object extensions they provided. Other observations they reported with the 

object-relational database when compared to the relational implementation of their 

benchmark were:
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• The object-relational database size was larger.
• Loading the object-relational data set was more complex and time consuming 

for both the benchmark developers and the system under test.

• Some queries for the object-relational database needed more care and attention.

• Inheritance, when using abstract base classes in the object-relational system, 

caused unnecessary work.
• Loading method code, written in a high-level language in the object-relational 

system, could be expensive.

The relational implementation performed faster than the object-relational implementation on 

most of the queries described in [Asgar97].

The benchmark developers also proposed two metrics: an efficiency index (for 
comparing object-relational and relational implementations) and a power rating (for 

comparing different object-relational database systems). The former is a ratio of the 
Geometric Means of all test times of object-relational to relational and a value of less than 
one indicates that the object-relational version of the benchmark is faster than the relational 
version. The latter is a measure of the absolute performance of an object-relational system 

and is the value 100 divided by the Geometric Mean of all an object-relational systems’ test 
times.

To conclude, the benchmark developers felt that current object-relational database systems 

provided both benefits and drawbacks. The benefits were realised by better expressiveness 
and more compact queries than relational equivalents, whilst the drawbacks were mainly 

due to the larger design space, more implementation choices available and generally poorer 
performance than relational equivalents.

B.3.8 The JUSTITIA Generic Object Database Benchmark

The JUSTITIA Benchmark [Schre94; Schre95] was designed to be a flexible and user- 
configurable ODBMS benchmark. It draws upon previous ODBMS benchmarks, such as 
OOl, HyperModel and 0 0 7 , for some of its schema design and operations. Figure B.8 
illustrates the schema components, which can be configured through parameters to 
represent the schemas of other ODBMS benchmarks. For example, JUSTITIA can be 
configured to represent the HyperModel benchmark structure.

Nodes representing Container Objects are configured to take the appearance shown in 

Figure B.9. Not illustrated is that Primitive Objects are also connected to other Primitive
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Objects within the ring. This is equivalent to the approach used by 0 0 7  with its 

AtomicParts.

Figure B.8 - The JUSTITIA Database Schema.

Figure B.9 - JUSTITIA Container Object with Primitive Objects.

As with OOl and 0 0 7 , the database operations appear suggestive of engineering 

applications and the example described in [Schre94] is based on CAD parameters from the 
ship building industry. The major distinguishing factors between JUSTITIA and other 

ODBMS benchmarks, however, are its support for multi-user tests and structure 
preservation in the face of dynamic changes to the physical database. For example, 
Schreiber [Schre95] described some results obtained using multi-user and structure
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preservation with simple read/write and extended read/write operations. These results 
would not have been observed using other benchmarks. One set of results, for example, 

showed how an ODBMS based on a virtual memory architecture provided superior 
performance to one based on NFS for simple multi-user read/write operations, but this 

situation was totally reversed for more complex read/write operations. Wade [Wade96] 
suggests two reasons for the poor performance of the virtual memory architecture ODBMS. 

Firstly, the product lacks object-level access (i.e. there is no object manager), so there is no 
co-ordination of access to objects by multiple users - once objects are swapped into virtual 
memory, they are gone from the DBMS and from other users. Secondly, the call-back 

mechanism results in exponentially growing number of messages, which are slow as users 

are added. However, results from multi-user benchmarks should be interpreted with 

caution [Bradl94J.

To summarise, JUSTITIA has been designed for comparisons between ODBMSs and 

provides a user-configurable database schema and some user-configurable operations. It 
can, therefore, be used to generate quite complex schemas. The “generic” label used in 
[Schre94], however, is misleading, since the author indicated that the benchmark is based 
on some work to identify the characteristics of engineering applications. Furthermore, there 
is no evidence of any model verification, to determine how representative the benchmark 
schema and operations are of actual engineering applications or sensitivity analysis, to 

determine what the impact of varying the sequence of benchmark operations to the number 

of concurrent users has.

B.3.9 Benchmarks Proposed by Kim & Garza

Kim & Garza [Kim94b] describe some requirements for what they deem to be a suitable 
benchmark for object-relational systems, but these are not based on any reported 
requirements analysis and are more likely to be based on their experiences with their own 
UniSQL product. Strictly speaking, the proposed benchmark is described as a unified 

benchmark for comparing object and relational database systems. However, many of the 
features are drawn from those that are directly supported by UniSQL. The proposed 
benchmark operations include:

• Fetching a single object from the database using its OID.
• Traversing a nested object in the database using embedded OIDs.
• Navigation of memory-resident objects.

• Traversing an inheritance hierarchy.
• Reverse navigation of objects in the database and in memory.

• Dynamic loading of methods.
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• Retrieval and update of large objects (BLOBs).
• Various queries (path, class-hierarchy, set-valued attributes, methods and 

regular expressions) and updates.
• Dynamic schema changes.
• Transaction commit and abort.

They also propose a set of guideline parameters for such a benchmark, including using a 1 

GB database and 20 concurrent users. However, as mentioned earlier, the set of parameters 

is rather arbitrary and no justification is provided.

Finally, they conclude with some observations about meaningful benchmarks. Firstly, it is 
suggested that the set of benchmark operations should be comprehensive and against a 
large database. However, this need not necessarily be the case, as the case studies show in 
Chapter 6. Secondly, that benchmarks should be multi-user. However, the Research 
Design in Chapter 4 argues against this and proposes that single-user benchmarks can 

provide useful insights into database performance. Finally, they suggest that comparisons 
of feature-rich and feature-poor systems should include some mechanism to penalise the 
feature-poor system by using “feature not supported” for a missing feature or recording 
“infinity” as the time to complete an operation. Among the benchmarks described in 

Chapter 3 and this appendix, only 0 0 7  is known for certain to use hand-coded queries on 

some object database systems, whilst using the query programmer of others, for the same 
tests.

B.3.10 The 0 0 7  Benchmark

This benchmark is discussed in section 3.2.5.

B.3.11 The Simple Benchmark

The Simple Benchmark [Kelte89; Dewal90; Dewal92] was so named because it focused on 

measuring simple operations (create, delete, read, write) on a simple data model, rather 

than complex operations on a complex data model, such as found in the HyperModel 
Benchmark. The benchmark developers suggested that, ideally, a benchmark should 

simulate complex operations on large, complex data structures, but this was difficult to do, 

because: (i) it was expensive to implement and (ii) the choice of data structures may not be 

obvious. They felt that it would be easier to model simple operations common to all 

systems as a first step in an evaluation process.
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The benchmark schema is illustrated in Figure B.10 and is derived from [Emmer93]. This 
shows three types - DIR, SMALL, BIG  and two relationships - DIRREL (cardinality 

1:N), MNREL (cardinality’ M:N). The string attributes have length 10, 80 and 160 bytes 

and the longfield can be either 10 or 128 KB. The initial database required by the 

benchmark is loaded with 3,000 SMALL and 400 BIG objects.

Figure B. 10 - The Simple Benchmark Database Schema.

The benchmark operations are grouped as follows [Dewal92]:

1. Open and Close database.
2. Create and Delete SMALL and BIG objects without initialising the attributes.
3. Write and Read an attribute of a SMALL object.
4. Write and Read all attributes of a SMALL object.

5. Write and Read attributes of a BIG object.
6. Create and Delete MNREL without initialising attributes.
7. Write and Read an attribute of an MNREL.

A full description of the benchmark and these operations can be found in [Kelte89], Results 

for a number of research prototypes (DAMOKLES, GRAS, OBJECT-BASE, PCTE, 
PROMOD) showed that these systems [Dewal90J:

“... differ substantially in their architectural and functional properties and 

that the time required to perform similar basic functions can differ by orders 

of magnitude.”
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This seems to confirm the assumptions made by the benchmark developers that testing 
elementary operations could provide insights into system performance without the need to 

implement complex benchmarks (at least not initially). Obviously, the next step would be to 

develop more comprehensive benchmarks (to test additional capabilities, such as complex 
object modelling, for example), but this task will now require less time (e.g. [Dewal90] 

stated that two to four months were required per system to implement a complex 
benchmark on a number of products, whilst [Larse92] suggested it would take between 

four to six months - both were referring to the HyperModel Benchmark), since the number 
of candidate systems for a particular application should have been reduced using the simple 

tests first.

B.3.12 The University of Southern California (USC) Benchmark

Ghandeharizadeh ct al. [Ghand93] described a synthetic benchmark consisting of queries 
that referenced inherited functions and traversed complex object sub-components. Queries 

were described using terminology found in the Functional Data Model [Shipm81], The 
tests were designed for systems supporting object-based constructs, such as unique object 

identifiers, complex objects, a type hierarchy and inheritance. The benchmark developers 
argued against using empirical databases because:

1. They were difficult to scale.
2. The type hierarchies and complex objects (with their associated attributes) were 

not flexibie enough to permit systematic benchmarking.
3. There were too many diverse applications to claim that just one was 

representative.

According to the developers, their benchmark consisted of 260 queries at one stage. 

However, after some initial experiences with using their benchmark on a research prototype 

system, they reduced this number by focusing on queries that appeared more interesting 
than others, such as selection queries and traversals. No benchmark results were reported, 
but the developers speculated on the behaviour of IRIS, ObServer/ENCORE, CF and 

GemStone using their benchmark, based on their understanding of the architectures of each 
of these products.

266



APPENDIX C - Application Requirements

C.l Introduction

This appendix presents in detail the analysis of application requirements that were 
summarised in Table 5.1. The reader is reminded that the categories were:

• Complex Information Modelling Capabilities.

• Semantic Schema Design.
• Dynamic Schema Evolution.

• Rigorous Constraint Management.
• Management of Large Volumes of Data.

• Meta-Data.
• Data Sharing.
• Data Versioning.

• Inter-Client Communication.

• Flexible Transaction Framework.
• Efficient Storage Mechanisms for Fast Data Access and Retrieval.
• Computationally Complete Database Programming Language.
• Compatibility, Extensibility and Integration.

• Graphical Development Environment.

These are used for the application domains: Computer Integrated Manufacturing (CIM), 
Engineering, Financial, Geographical Information Systems (GISs), Flealthcare, Scientific 

Data and Telecommunications.

C.2 Complex Information Modelling Capabilities

C.2.1 CIM

Manufacturing systems are complex and varied in nature [Adiga93a]. Discrete-event 

simulation is useful for CIM and, as reported in [Adiga93a], has been used by others to 

support all stages of the development of CIM systems, from specification to
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implementation. Narayanan et al. [Naray92b] add that simulation is the only viable 

approach to modelling the complex interactions between components in manufacturing 
systems, such as semiconductor fabrication.

C.2.2 Engineering

Engineering data are complex, since they have to model complex physical systems 
[Ahmed92]. Design elements are also interconnected by various links of the type described 
in section A.2.1. Simulation is also an important requirement, since it allows engineers to 

experiment with alternative designs [Ahmed92],

C.2.3 F inanc ia l

According to [Objec95a], trading systems:

“... demand real-time analysis of portfolios of securities, currency, 
mortgages, evaluation of complex investment units such as derivatives, and 
simulation of various future scenarios based on sets of assumptions ...”

ODI [ODI96a] comment that financial applications use simple data, but that the 
relationships among financial instruments are complex. Furthermore, ODI agree that 
performing simulations quickly is a major characteristic of this domain. Chandra & Segev 

[Chand93a] also support the view that financial products are complex and a database that 
efficiently supports financial applications would need to provide a range of features, such 
as ADTs, user-defined functions, inheritance, etc.

C .2.4 G IS

Geographical data management requires complex data structures to support geometrical and 
topological data [David93]. Some previous approaches to the use of objects in GIS have 

been briefly mentioned in [David93]. From this discussion, concepts such as inheritance 
and aggregation are described as being useful for geographical data.

C.2.5 H ealthcare

In his MSc work, Cheung [Cheun92] describes the many aspects to patient data that need 
to be modelled. This includes the capture of raw data which could be in the form of coded 

terms, text, numbers, drawings, graphs, tables, images, bio-signals (e.g. ECGs), sound 

and video. Furthermore, he concludes that only semantic models offer the capability to
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directly support these types. Other modelling constructs, such as inheritance and 

aggregation, were also found to be useful.

C.2.6 Scientific Data

DNA and proteins exhibit complex structures. For example, DNA is translated into 
nucleotides, cleavage sites, ligand-binding sites, etc. and these have further substructure 
[Ohkavv93]. Proteins are composed of liner chains of amino acids, which in turn are 

composed of helices, sheets and turns. These are further grouped into tertiary and 

quaternary structures [Lathr87]. Simulations are also important in scientific research.

C.2.7 Telecom m unications

Telecommunications applications are very' complex with sophisticated information models 
that incorporate many relationships among the defined object classes [Objec95b]. Telecoms 
resources (managed objects) are modelled using the Guidelines for the Definition of 

Managed Objects (GDMO) notation, which is inherently object-oriented [Perry96],

C.3 Semantic Schema Design

C.3.1 CIM

C.V. Deposition Photolitho Implant

/
/

Coat Expose Develop Etch

/
/

Bake Spin Apply Resist

Figure C .l - Aggregations in Representation of Steps in Wafer Processing [Adiga93aj.

Hierarchical data structures are required to represent factory objects, which could be 

physical entities (e.g. labourers, equipment, inventory storage locations) or logical entities 
(e.g. formulae, process instructions, quality assurance test plans) [Lozie93], Aggregation 
is a critical feature of good software design in manufacturing [Adiga93a]. For example, the
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top level in Figure C.l would be seen by production planning, the second level by a short 
interval scheduling application and the bottom level by a real-time material handling system.

Bodner et al. [Bodne94] describe a framework for the development of a modelling 

architecture for CIM in which they also describe the benefits of aggregation, such as being 

able to view modelling abstractions (e.g. shop, cell, device) at various levels of granularity.

C .3.2 Engineering

Complex interconnections and dependencies between objects need direct schema 

representation to aid maintenance and design extension [Ahmed92]. This is can be provided 

by mechanisms such as inheritance and composition hierarchies, for example.

C.3.3 Financial

Inheritance of attributes and functions is a desirable feature for financial databases 

[Chand93a],

C .3.4 GIS

OO data structures are useful for modelling arbitrarily deep hierarchical composition 
applications such as CAD and GIS [Arctu95], As mentioned above, inheritance is a 

mechanism that allows hierarchical composition.

C.3.5 Healthcare

Rich constructs, based on semantic and object-oriented models, have been used in the 
development of patient healthcare models, e.g. [Caim92b; Cheun92]. Semantic models 
provide more flexibility, economy of expression and higher-level modelling [Cheun92].

C.3.6 Scientific Data

Scientific models exhibit hierarchical decomposition and nested structures that require direct 

schema representation. Ohkawa [Ohkaw93] also comments that large flat-vectors of 

numbers and deeply nested tree structures are common in scientific applications.

270



C .3 .7  T e le c o m m u n ic a t io n s

As mentioned earlier, managed objects are modelled using GDMO. Furthermore, 

hierarchical and nested structures are commonly used in telecoms networks.

C.4 Dynamic Schema Evolution

C.4.1 CIM

CIM projects often require rapid deployment of a small, prototype implementation and 
rapid reconfiguration of software [Lozie93], which suggests the need for dynamic schema 

evolution.

C .4.2 Engineering

This is required since design is an incremental and evolutionary process - dynamic facilities 

are required to modify inheritance structures, class definitions, object attributes and 

methods [Ahmed92].

C .4.3 Financial

Financial markets are very dynamic and new products are constantly being introduced to 
cater for different investment needs [Chand93a], The result of this is that it is difficult to 
know in advance what types of financial products may make up a particular portfolio (a 
combination of financial products, such as stocks, bonds, etc.) [Chand93a], Dynamic 

Schema Evolution would, therefore, be very useful in this domain.

C .4.4 GIS

David et al. [David93] comment that at the conceptual level, there should be stability to 
keep investment in data capture, but internal data structures may change. The latter point is 
important, since a variety of standard data formats are available and conversion between 
one form and another cannot be performed automatically [David93].

C .4.5 Healthcare

One requisite of a computerised medical record is that it must be extensible and be able to 
cope with the evolution of the information requirements of its users and, furthermore, new 
types and new linkages must be definable, without affecting existing data [Cheun92].
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Although this would imply that schema evolution is useful, dynamic schema changes may 

not be essential.

C.4.6 Scientific Data

Type evolution and type extensibility are required to merge new discoveries with existing 
knowledge. It should also be possible to add an arbitrary type as a new model is formed in 

scientific research [Ohkaw93], For example, in High Energy Physics (HEP), dynamic 

schema evolution is important, since the data models will evolve with time [CERN96],

C.4.7 Telecom m unications

In applications such as Advanced Intelligent Networks (AINs), flexibility is required to 

configure new services and delete old services quickly in response to customer demands. 
However, according to [Objec96], modifiable structures are a low priority for Network 

Management systems.

C.5 Rigorous Constraint Management

C.5.1 CIM

Manufacturing equipment (e.g. lathes, wafer testing, etc.) needs to operate at high levels of 

accuracy and within certain prescribed limits. Although control may be enforced by 
machine-level Programmable Logic Controllers (PLCs) [Adiga93c], such mechanisms 

could also be directly supported by objects.

C .5.2 Engineering

According to [Ahmed92], consistency constraints apply to data types, valid ranges, design 

conditions, safety limits, etc. Such mechanisms, they go on to say, can be directly 
supported by objects.

C .5.3 Financial

Numerical stability and accuracy are very important in financial applications [Chand93a]. 

As well as the types of constraints that were described above for engineering applications, 
other types of constraints may include, for example, the requirement that not more than 
10% of a portfolio’s market value may be invested in any one security or that the market 

value of a portfolio must be US$500 Million [Chand93a].
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C.5.4 GIS

Constraints on spatial data types and spatial geometry may be implemented by ADTs. 

Furthermore, data types could be assigned particular interpretations, processing and 

referencing methods for different user groups. Such constraints could be implemented as 

object methods [Zingl95],

C.5.5 Healthcare

Providing legal values for patient data entry and validation of data could be directly 

supported by methods defined in the database. In fact, one such mechanism, termed view 

classes [Fowle94] has already been described which contains mapping mies for retrieving 

and updating objects in a generic model of health.

C.5.6 Scientific Data

Constraints are needed to ensure that data types, data ranges, etc. are valid, since accurate

experimental results are critical in scientific applications.

C.5.7 Telecom m unications

Telecoms equipment, for example, also need to operate at high degrees of accuracy and the 

conditions applicable to other domains also apply here, e.g. valid data ranges.

C.6 Management of Large Volumes of Data

C.6.1 CIM

Manufacturing systems need to keep historical data for analysis by Statistical Process 

Control (SPC) applications to discover undesirable trends in equipment performance, 
machine utilisation, yield analysis, etc. This historical data could be significant in large 

production environments.

C .6.2 Engineering

Engineering data applications are highly data-intensive and may involve very large 

quantities of data, e.g. consider the thousands of individual parts in a modern aircraft. 

Efficient management of this data will be essential to good performance.
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C .6 .3  F in an c ia l

Financial applications also need to manage very large quantities of data, since information 
about trades has to be kept for legal reasons. The diversity in the types of financial 
instruments and the volumes of trades possible would also support the importance of this 

requirement.

C.6.4 GIS

An example GIS described by Zingler [Zingl95] discusses very large data volumes, which 
he concludes will only increase as satellite sensors used to collect data will continue to 
improve. There is no doubt that the increasing number of satellites and the large volumes of 
data collected will impose serious data management problems. Managing large spatial 

indexes, such as Quad-Trees and R-Trees, must also be considered.

C.6.5 Healthcare

As mentioned earlier, raw patient data can consist of a variety of data types, some of which 
demands large storage overheads (e.g. images, sound). Furthermore, entries in a medical 

record, once made, should not be altered or removed [Cheun92], for historical, legal or 
other reasons. This means that large quantities of computerised data will accumulate and 

grow, particularly for large populations.

C.6.6 Scientific Data

Advances in laboratory technology have resulted in large quantities of data being produced 
and good storage management techniques are required to manage this data. For example, 

the human Genome comprises some 3 Billion nucleotide bases and, similarly, the Magellan 
planetary probe will generate a Trillion bytes of data over its five year life [Frenc90a],

C.6.7 Telecom m unications

The models used in telecoms applications can be huge. Perryman [Perry96], for example, 

describes an application with 500,000 telephone lines, with each line comprising five to six 
objects and many associated objects representing equipment, customer information, etc.
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C.7 Meta-Data

C.7.1 CIM

In manufacturing systems, meta information such as device characteristics need to be 

maintained, since discrete-event simulation is a central activity to production management 

and would need access to such information.

C .7.2 Engineering

The DBMS needs to keep track of information such as design element ownership, time and 
purpose of creation, update histories, client dependencies, lock status, versioning, etc. 

[Ahmed92],

C.7.3 Financial

For this domain, important meta-data could include portfolio ownership, calendar 

information, change histories for instruments, etc.

C .7 .4 GIS

Zingler [Zingl95] describes meta-data as processed Earth Observation (EO) data. He goes 
on to say that this includes:

“... all information for the user to understand the properties of a particular 

satellite product and allows them to judge if data sets are suitable for their 

application.”

C .7.5 Healthcare

This is an important requirement as with other domains and perhaps scientific data in 
particular, such as units for values (e.g. blood pressure), who did what and when (e.g. 
which doctor prescribed which medication), etc.

C .7.6 Scientific Data

Meta-data is fundamental to the effective use of scientific data [Frenc90a]. The DBMS 
needs to manage meta-information that supplements actual scientific data such as units for
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values and relevant publications [Ohkaw93], as well as other properties, such as who did 

what and when, device characteristics, transform definitions, etc. [Frenc90a],

C.7.7 Telecom m unications

Information about the Open Systems Interconnection (OSI) X.722 definitions of managed 
objects include attributes, management operations and notifications [ODI96b]. An ODBMS 

can directly support these requirements [ODI96b].

C.8 Data Sharing

C.8.1 CIM

Traditionally, CIM applications (e.g. process control and production scheduling) have 

developed independently [Adiga93a]. A single database for all applications has generally 
not been used, since this would difficult to model and would seriously affect response 

time. Data sharing between applications would, therefore, appear to be a less important 

issue for this domain.

C .8.2 Engineering

Mechanisms to support collaborative and group-working are required.

C .8.3 Financial

Data sharing in the form of that required for engineering would, until recently, have been 
unlikely in this domain, since portfolio’s would have been managed on a per trader basis 
and the contents (i.e. which instruments were being held at any point in time) would be 

confidential. However, a recent development described in [Objec96], is that of team trailing 

whereby a group of traders has joint responsibility for a portfolio. In such cases, advanced 

data sharing mechanisms would be needed.

C .8.4 GIS

Insufficient information available to draw a conclusion.
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C .8 .5  H e a lth ca re

Sharing data is viewed as a requirement for a computerised medical record in [Cheun92], 
but it is also recognised that this could be difficult to achieve due to differing data formats 
used by institutions. Sharing in the sense of collaborative and group-working would 
probably not be applicable, as standard mechanisms would be sufficient.

C.8.6 Scientific Data

This varies between applications, since some data are never updated and read-only access 
may be sufficient (e.g. epidemiological data) whilst in other applications (e.g. drug 
design), concurrency control is essential [Ohkaw93].

C.8.7 Telecom m unications

Telecoms models can be huge and each management scenario may involve accessing a 
working set of a few objects for as brief a period as possible [Perry96j. This would imply 

that locking would be comparable to traditional mechanisms used in environments such as 
OLTP, for example.

C.9 Data Versioning

C.9.1 CIM

Versioning could be used as a mechanism to track the evolution of prototype CIM systems, 
as well as enabling customisable systems to be built for each organisation.

C .9.2 Engineering

Versions provide a mechanism to keep track of design changes and the ability to return to a 
previous design state. Such mechanisms are not well served by existing DBMS 
technology.

C .9.3 Financial

As mentioned earlier, new financial instruments are constantly being introduced. These 

could be derived by inheritance from existing instruments, but versioning could also be 

used to derive new instruments from previous ones.
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C.9.4 GIS

Insufficient information available to draw a conclusion.

C.9.5 Healthcare

Versioning could be used to keep track of patient histories, previous medications, etc.

C.9.6 Scientific Data

Insufficient information available to draw a conclusion.

C.9.7 Telecom m unications

Since modifiable structures are not a characteristic of this domain [Objec96], versioning 

would have less utility here.

C.10 Inter-Client Communication

C.IO.I CIM

Manufacturing systems are often composed of smaller sub-systems, which have their own 
controllers and computers. Communication between sub-systems, however, is important. 
For example, Process Control will feed information regarding the state(s) of equipment and 

materials to Tracking as described in an example in [Adiga93c].

C.10.2 Engineering

Collaborative and group-working requires better mechanisms for designers to communicate 

with each other. This includes communication about locks, change notification, conflict 
resolution, etc. [Ahmed92].

C.10.3 Financial

Team trading was mentioned earlier and would require advanced communication techniques 

between financial traders.
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C .1 0 .4  G IS

Insufficient information available to draw a conclusion.

C.10.5 Healthcare

Insufficient information available to draw a conclusion.

C.10.6 Scientific Data

French at al. [Frenc90a] comment that much scientific data are characterised by large 
volume, low update frequency and indefinite retention. This suggests that inter-client 

communication is less important for this domain.

C.10.7 Telecom m unications

For Network Management, the transaction profile described in [Objec96] is typically many 

readers and few writers, with no indication that inter-client communication is required.

C .ll Flexible Transaction Framework

C . l l . l  CIM

A general scheme illustrating the factory' organisational hierarchy and timing requirements 
in [Adiga93b] shows that time horizons vary from milli-seconds at the machine/device level 

to minutes and days at the workstation and work cell level, respectively. These require 

more flexible transaction mechanisms.

C . l l . 2 Engineering

Design transactions may span a long duration (when compared to traditional applications), 
requiring support for long locks and check-out/check-in mechanisms. Nested transactions 

are also required, according to [Ahmed92].

C . l l . 3 Financial

Chandra & Segev [Chand93a] propose a concurrency control paradigm where the unit of 

locking is a user-defined class, such as a portfolio. Other mechanisms to support querying 
of historical and time-series data would also be required.
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C.11.4 GIS

The major concerns for some GIS applications are to manage streams of continuous data, 
construct complex index structures and save everything to the database. This requires the 

need for more flexible transactions (e.g. ingesting data and concurrently supporting user 

queries), which is implied by the example in [Zingl95].

C.11.5 Healthcare

Experimental analysis of data would require more flexible transaction mechanisms, as with 

scientific data.

C.11.6 Scientific Data

Simulations or experimental analysis of data would require more flexible transaction 
mechanisms. For example, in HEP environments, transactions may be short where 

performance is a key factor or very long where an experimental run is being processed 
[CERN96]. Furthermore, nested transactions could also be useful for reconstructions of 

experimental runs.

C .I1.7  Telecom m unications

Short transaction mechanisms are adequate for many telecoms applications, as discussed 

earlier.

C.12 Efficient Storage Mechanisms for Fast Data Access and 
Retrieval

C.12.1 CIM

In manufacturing, not all applications have the same degree of urgency. The requirements 
for historical data were mentioned earlier. For some applications, such as the scheduling 

system, an operator expects an immediate answer [Adiga93b]. In such cases, keeping the 

current state of the physical system in RAM may be a solution [Adiga93b], ODBMSs were 

designed to better utilise workstation memory.
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C .1 2 .2  E n g in e e r in g

Clustering parts related to one-another through some relationship enable data to be retrieved 
more quickly i'rom secondary storage. This could be through a part/sub-part relationship, 
for example, which would allow sub-parts of a particular assembly to be retrieved together.

C.12.3 Financial

Applications may have differing storage and access requirements. For example, for 
computation of moving window aggregates, data need to be stored contiguously and sorted 

by real-time [Chand93a]. In portfolio management, on the other hand, prices of 
instruments are subject to very frequent change, requiring other storage and access 
techniques.

C.12.4 CIS

In some GIS research described in [David93], good performance is considered as a main 
objective, since geographical data may consist of vast quantities of point and line data that 
needs to be managed efficiently. Another example described in [Zingl95], called the Multi- 
Mission Inventory System (MMIS), also required good performance, consisting of Near- 
Real-Time (NRT) updates and transaction volumes reaching up to 10,000 queries a day.

C.12.5 Healthcare

Performance is an important requirement for medical data, but applications may have 
differing needs. A system built around the Cosmos Clinical Process Model [Cairn92b], for 
example, was designed to allow the integration of multiple systems [Thurs93], which 
means that deciding on accelerators, such as indexing and clustering, pose significant 

challenges.

C.12.6 Scientific Data

Scientific data also require good performance. According to [Frenc90a], a major activity in 

scientific data is discrete sampling of functions across several dimensions and often the 
results are sequences in which order is important. Some examples include [Frenc90a]:
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• Earth science data are analysed statistically; time sequenced, multidimensional 

tables are common.
• Biological Genome databases are characterised by elaborate pattern matching 

over liner, character data.
• Space sciences apply transformations to very large two- and three-dimensional 

arrays.

This implies that clustering is more difficult to determine due to the multiple dimensions 
but, according to fCERN96], is regarded as key technique to achieve performance in HEP 

environments.

C.12.7 Telecom m unications

Performance is a critical factor for telecoms applications and techniques such as physically 
clustering groups of objects together, to be accessed together, are well supported by 

ODBMSs.

C.13 Computationally Complete Database Programming
Language

C.13.1 CIM

SPC and time series analysis to determine undesirable trends in equipment performance, 
for example, are not well supported by existing database languages.

C.13.2 Engineering

Engineering applications involve complex mathematical computations which languages 
such as SQL do not provide [Ahmed92],

C.13.3 Financial

As mentioned earlier, time-series (sequence) data are common. Most languages, however, 
do not provide support to query sequences efficiently [Chand93a], There have been a 

number of research attempts to extend SQL with temporal capabilities, but it is difficult to 

express temporal conditions using these [Chand93a],
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C .1 3 .4  GIS

Object querying and navigational access are supported by most ODBMSs, which remove 
the limitations of complexity and the large processing overhead incurred by SQL for 

expressing spatial queries [Zingl95].

C.13.5 Healthcare

A healthcare system described in [Thurs93], uses a client front-end built with Smalltalk. 
The query builder is implemented directly in this environment and does not support SQL. 
Queries might also be difficult to express using SQL anyway, since the entire system is 

built using pure OO techniques.

C.13.6 Scientific Data

Generic analysis techniques such as statistical analysis, time series analysis and liner 

algebra are common to a range of scientific disciplines [Frenc90a], In contrast, SQL 
queries are limited to simple data access, arithmetic and aggregate operations [Ohkaw93],

C.13.7 Telecom m unications

Managed object queries are expressed in the form of predicate expressions - some of which 
cleanly maps to SQL notation, but a lot of it does not [Perrv96].

C.14 Compatibility, Extensibility and Integration

C.14.1 CIM

Manufacturing sub-systems and modules can be better integrated by common 
representations. Objects can provide such a common representation, as described in 
[Naray92a; Naray92bJ.

C.14.2 Engineering

Design tools may need to interface and communicate with other design tools. The use of 

common representations and languages provide a possible solution to this. The DBMS 
must also be flexible to accommodate changes and new requirements.
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C.14.3 Financial

Using common representations would allow new financial analysis applications and 

packages to be integrated more easily.

C. 14.4 GIS

The example system described in [Zingl95] proposes a modular and extensible system with 

new functionality and capabilities added when available. Object-orientation provides the 

common framework to enable this to be realised.

C.14.5 Healthcare

Medical practice is very diverse [Cheun92], Systems must be able to cope with new 
demands that are the consequence of changing information needs. Furthermore, integration 

of departmental systems through networks is possible by a generic model of healthcare 

based on OO, as proposed by Thursz et al. [Thurs93].

C.14.6 Scientific Data

Rather than embed domain-specific operators in a DBMS, it is more appropriate to create an 
integrated analysis environment with the DBMS and able to interact with a variety of tools 
[Frenc90a],

C.14.7 T elecom m unications

Network Management really consists of three types of complex data structures [Objec96]:

1. Managed Objects - hardware, software and virtual components of the 

network.
2. Network Connections - chains of nodes and links used to construct 

connections.
3. Performance and Billing.

These can use the standard notations (OO in nature) developed by the International 

Telecommunications Union (ITU) to support compatibility, integration and extensibility.
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C.15 Graphical Development Environment

C .lS .l CIM

Good graphical tools are required to manage the design of manufacturing processes and 
sub-systems as well as providing a standard way to interact, potentially easing the burden 

on users [Adiga93b].

C.15.2 Engineering

Engineering applications require good tools for database browsing, inspection and 
modifying data structures and dependencies.

C.15.3 Financial

Graphical tools would enable traders to actively monitor portfolio performance and add or 

delete new components based on price movements.

C.15.4 GIS

User tools to manage a variety of information systems components are required for many 

scientific disciplines that may need access to EO data.

C.15.5 Healthcare

The design of a good user interface is important in representing patient information in 
multiple forms, such as tables, graphs, charts, etc. Furthermore, the use of form fill-in 
tools allows some data to be verified at the time of entry, providing improved data quality.

C .15.6 Scientific Data

Good data browsing tools for scientific data are required for locating data sets and then 
scanning them for indications of probable interest [Frenc90a],

C.15.7 Telecom m unications

Graphical browsers and tools would enable users to traverse networks, identify 

bottlenecks, locate points of failure, etc.
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APPENDIX D - Case Studies

D .l Introduction

The discussion of the six case studies presented in Chapter 6 focused on performance 

issues. This appendix presents additional information about the organisations and the 

systems that they are developing.
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D.6 The Uncle Project at St. Mary’s Hospital

The Cosmos Clinical Process Model (CCPM) was developed as part of a larger initiative 
within the National Health Service (NHS) of the UK to develop a conceptual model of all 

healthcare, called the Common Basic Specification (CBS), which aims to cover all aspects 

of running a Health Service [Caim91]. Originally, three projects were the focus of the 
work [Fowle93]:

• PACE - Paediatrics at the Hospital for Sick Children, Great Ormond Street.

• C osm os - Renal medicine at St. Mary’s Hospital, Paddington.

• Diabptech - Diabetes at St. Thomas’s Hospital.

These three projects were brought together in 1990 to form the Cosmos Project, as 
commonalties were found between them and the basic clinical process remains constant
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[Fowle91]. Besides the above healthcare specialities, the model has also been shown to be 

applicable to general practice and epidemiology [Fowle95].

The focus of Cosmos is with the development of clinical systems for use by clinicians at 
the point of care to: (i) improve the quality of patient care delivered and (ii) to form a 

conceptual foundation to enable the integration of independent clinical systems [Fowle93], 

The latter being an important requirement, since clinical systems have tended to be 
developed independently in the past leading to costly translation and interface mechanisms 

[Fowle93], The relationship between Cosmos and CBS is that Cosmos forms the clinical 

view on the CBS core model through a well-defined mapping [Thurs93].

After early implementation and performance set-backs were encountered with a semantic 
database called Generis, GemStone and Smalltalk were selected. Smalltalk was chosen 

since it was found to be a better language for non-professional programmers to use and due 
to its prototyping nature which better suited the project requirements. The approach to 
developing a working prototype followed that illustrated in Figure D .ll. This enables 

portions of the conceptual model to be selected and tested according to predetermined 

criteria [Gold92],

Figure D . l l  - Systems Evolution [Gold92].
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Templates were developed to enable translation of the model to Smalltalk. The advantage of 
this is that it is possible to predict the structure of the code from the analysis specification 

[Fowle93],

(! john smith - A!)

Figure D.12 - Recording Blood Group Information [Fovvle93],

To fully understand the design of the CCPM (and its implementation into software), an 
example of OOIE notation may now be useful. Figure D.12 shows some of the major 
diagramming conventions used to represent the recording of blood group information. The 
structural view of a system in Ptech is called a Concept Diagram. The level of abstraction 
that this provides enables the representation of all disparate clinical specialities [Thurs93].

Fowler et al. [Fowle93] note the similarities between the OOIE notation and that of Entity- 
Relationship (ER) modelling, such as the crows feet, but also the differences, such as the 

use of subclasses and greater emphasis on identifying business objects rather than grouping 

data elements together.

Subclasses are represented by partitions. A partition would include all possible (disjoint) 
subclasses. In the example above, there are two incomplete partitions that show only the 

subclasses of interest, namely Biological Phenom enon and Rejected Observation, 
respectively. Biological Phenomenon is a subclass of Observation Concept and Rejected 

Observation is a subclass of Observation. Relationships between two classes are described 
by a function and its inverse. For example, a rejected observation would have the person
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that rejected that as its inverse. These diagrams are a formal notation with each element 

having an equivalent expression in predicate calculus [Fowle91], Fowler [Fowle91] 

provides a complete description of the notation.

When implementing the model in Smalltalk, two particular areas that had to be addressed 

were: (i) how to implement associations and (ii) dynamic and multiple classification. The 
solutions taken are summarised in Tables D.2 and D.3, respectively.

OOIE Smalltalk Solution

Supports bi-directional 

associations between object 
types, typical of many ER 

modelling techniques.

Supports only uni-

directional pointers, which 
make it difficult to represent 
bi-directional associations.

Model each association with 

two sets of pointers.

Table D.2 - Handling Associations [Fowle93],

OOIE Smalltalk Solution

Allows objects to belong to 

multiple classes (multiple 
classification) and 

classifications can change 

(dynamic classification).

Cannot directly implement 

multiple and dynamic 
classification using 

inheritance.

Combine CCPM object 

types into a single class and 
distinguish between types 

using flags.

Table D.3 - Handling Dynamic and Multiple Classification [Fowle93],

Figure D. 13 illustrates how bi-directional associations can be modelled with the parents 
side being the master and the children’s side being the slave. The master contains all the 

code for updating the association and any call on the slave simply calls the master operation 

with the relevant arguments. This enables the pointers to be kept up-to-date and maintains 
referential integrity [Fowle93].

These transformations show that moving from Object-Oriented Analysis and Design 
(OOAD) to implementation is not as straightforward as it may first appear, even without 
considering performance tuning [Fowle93J.

The CCPM was implemented in a three schema architecture (external, conceptual, storage) 
as shown in Figure D.14. Using this approach, more flexibility results, since the generic 

CCPM could be implemented in a number of different ways. For example, one
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implementation may wish to use one set of units for recording clinical observations about a 

patient, whilst another may wish to use a different set. The three schema architecture 

provides the flexibility to allow both (and many other) approaches. The external schema is 
described as an application view [Fowle93], which allows one user to see only the parts of 

the model that are of interest to them.

1 c h i l d r e n A d d :  a V a l u e
2
3 "Reverse call to parent"
4 aValue parentsAdd: self
5
6 c h i l d r e n R e m o v e : a V a l u e
7
8 "Reverse call to parent"
9 aValue parentsReraove: self 

10
11 p a r e n t s A d d :  a V a l u e
12
13 "Add a parent action"
14
15 "If there isn't a set there already, make one"
16 parents isNil ifTrue: [ parents := Set new ]
17
18 aValue friend_children add: self
19 parents add: aValue
20
21 p a r e n t s R e m o v e : a V a l u e
22
23 self remove: self fromSet: (aValue friend_children)
24 self remove: aValue fromSet: parents
25
26 f r i e n d c h i l d r e n
27
28 "Friend access to the children - should only be used
29 by parents modifiers"
30
31 "If children set not yet there, make it"
32 children = nil ifTrue: [ children := Set new ]
33
34 ''children

Figure D.13 - Modelling Bi-Directional Associations [Caim92a],

Separating the storage schema means that any kind of database model could be used, such 
as relational, object-oriented, etc. However, since Uncle uses an ODBMS, the storage 
schema is the same as the conceptual schema, subject to the transformations described 

earlier [Fowle93].
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A p p lic a tio n  V ie w

Figure D. 14 - CCPM Three Schema Architecture [Cairn92a].
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APPENDIX E - The OOl Benchmark

E .l Introduction

This appendix contains support material for Chapter 7. Raw results and a statistical analysis for the OOl Benchmark are presented.
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E.2 Small Local Database

E.2.1 DBMS-1 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 20.440 14.550 17.400 12.120 12.080 12.300 13.000 11.770 11.820 12.080

T raversal 26.300 9.920 4.300 3.730 3.480 3.250 2.970 3.480 3.150 2.700
Insert 23.880 24.380 28.520 23.550 24.840 33.030 27.310 25.400 22.350 22.000
R. Traversal 29.480 7.670 7.780 2.470 4.500 2.650 4.360 3.140 3.680 1.460

2 Lookup 18.350 11.950 12.330 11.950 11.970 12.630 11.970 12.170 11.880 12.850
T raversal 18.190 7.610 5.150 3.820 3.000 3.230 3.050 2.820 2.900 2.580
Insert 26.130 25.360 27.320 23.830 26.260 35.400 26.350 26.350 22.840 23.380
R. Traversal 28.480 5.530 4.870 2.000 3.470 2.750 3.600 2.260 3.740 1.400

3 Lookup 19.140 13.300 13.420 13.530 13.240 13.610 13.690 13.610 14.100 13.770
T raversal 18.500 7.170 5.160 3.590 3.230 4.100 3.500 2.850 2.870 2.700
Insert 24.710 26.180 31.160 23.470 25.650 37.240 36.620 27.050 23.609 23.299
R. Traversal 30.350 5.820 5.160 2.890 4.010 2.350 4.480 2.450 3.600 1.620

4 Lookup 18.900 12.800 11.620 11.430 11.920 12.220 1 1.730 12.600 11.660 12.270
Traversal 18.700 6.510 4.040 3.430 2.980 4.450 3.290 3.110 3.030 2.620
Insert 23.800 23.820 27.480 22.430 24.450 34.770 25.630 25.980 22.530 22.650
R. Traversal 28.450 6.980 5.140 2.000 3.560 2.440 3.980 2.620 3.710 1.340

5 Lookup 18.270 11.330 12.950 11.470 11.560 1 1.650 11.530 13.220 11.920 11.710
T ravcrsal 18.150 7.740 4.900 4.130 3.500 3.230 4.200 3.040 3.110 2.570
Insert 28.000 23.000 26.880 22.900 23.630 32.230 27.010 25.610 21.550 22.130
R. Traversal 27.170 5.580 5.770 2.330 3.350 2.980 3.850 2.140 3.180 1.270
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E .2 .2  D B M S -2  R a w  R esults

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 25.710 2.150 2.970 8.910 2.320 2.500 2.230 2.020 2.050 1.960

T ravcrsal 33.202 8.330 6.280 11.720 5.160 5.340 5.150 5.260 5.670 5.750
Insert 23.270 6.780 11.560 3.550 4.360 3.970 2.720 4.060 3.650 3.670
R. Traversal 36.340 24.080 10.680 9.510 5.540 4.620 0.650 1.610 2.600 1.960

2 Lookup 24.870 9.220 2.440 2.120 2.110 2.200 2.200 2.110 2.110 2.130
T ravcrsal 37.770 7.600 6.810 6.120 4.950 7.850 4.850 5.060 5.160 4.840
Insert 24.370 4.590 12.340 3.880 3.800 5.140 2.910 3.540 3.260 6.030
R. Traversal 32.909 22.610 6.490 9.720 5.030 5.610 0.730 1.780 2.800 2.270

3 Lookup 20.350 7.870 1.910 1.910 1.970 1.950 2.260 3.100 2.040 1.960
Traversal 38.921 10.470 6.710 5.760 5.230 8.760 4.880 5.200 4.970 4.840
Insert 18.500 6.660 3.670 8.440 4.590 4.090 4.070 3.420 3.260 2.850
R. Traversal 35.741 24.380 7.060 10.030 6.100 4.650 0.700 1.730 3.490 2.930

4 Lookup 24.710 2.300 2.110 2.030 2.190 8.290 2.010 2.030 2.070 2.210
T raversal 33.580 8.790 14.450 6.710 5.080 5.300 5.080 5.270 6.070 5.050
Insert 20.210 13.150 3.780 3.370 3.760 4.410 3.390 3.920 6.740 3.030
R. Travcrsal 40.330 19.670 6.330 10.200 5.240 4.270 0.720 2.000 3.430 1.950

5 Lookup 26.751 1.910 1.920 2.090 2.020 2.030 2.440 3.380 3.050 3.760
T raversal 33.600 8.730 6.800 6.480 9.700 5.520 5.290 5.680 5.330 5.960
Insert 20.231 4.150 4.380 4.400 7.290 4.040 2.770 3.300 3.800 2.980
R. Traversal 32.681 12.630 11.470 9.140 4.770 5.070 0.700 1.760 3.070 1.930
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E .2 .3  D B M S -3  R aw  R esu lts

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 59.240 64.001 83.240 101.481 117.771 134.580 147.260 159.581 172.710 183.731

T raversal 27.440 13.640 10.750 8.910 6.700 10.240 9.680 8.490 8.010 7.190
Insert 343.073 343.881 327.932 320.741 332.131 349.591 348.960 347.911 351.681 338.080
R. Traversal 32.720 12.150 13.880 5.810 10.540 7.700 9.940 6.660 10.470 3.410

2 Lookup 55.990 64.330 81.720 100.570 115.501 132.300 145.100 159.021 170.880 182.121
Traversal 25.860 13.390 9.310 9.030 7.000 9.900 9.390 9.080 8.150 6.010
Insert 312.431 335.777 314.954 344.492 330.411 352.350 343.920 374.913 349.922 339.399
R. Traversal 32.440 11.430 12.100 5.270 10.210 7.570 9.970 6.860 9.340 3.250

3 Lookup 58.710 64.341 82.670 101.050 116.831 131.301 146.050 158.271 170.950 180.461
T raversal 24.860 14.010 9.390 9.370 6.760 9.500 9.420 8.830 8.110 6.000
Insert 345.732 339.931 355.451 315.361 353.290 355.411 328.781 355.120 346.451 394.762
R. Traversal 32.230 10.980 12.220 4.890 10.620 7.800 9.700 6.100 9.430 3.490

4 Lookup 56.990 64.611 83.800 101.560 117.290 132.610 145.700 159.770 171.411 183.401
Traversal 26.040 14.620 9.350 8.900 7.310 9.570 9.490 8.680 8.420 6.490
Insert 358.350 357.220 345.011 329.871 354.422 365.921 322.360 350.711 345.299 338.451
R. Traversal 30.660 11.790 12.020 5.010 10.450 7.380 9.930 7.630 10.470 3.410

5 Lookup 57.690 65.370 84.280 102.071 116.760 134.811 148.771 159.860 172.341 184.339
T raversal 25.510 12.100 9.260 9.070 6.860 9.840 9.810 8.420 9.790 6.140
Insert 316.563 322.002 348.491 319.301 323.881 335.831 332.831 335.001 329.731 344.150
R. Traversal 30.610 11.650 12.420 5.130 10.990 7.830 10.340 7.400 10.100 3.400
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E .2 .4  D B M S -1  A verage and S am p le  S tandard  D eviation

Benchmark Q
.

M8 Lookup T ravcrsal Traversal Insert Insert L+T+I L+T+I R. Travcrsal R. T ravcrsal
Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

1 20.440 13.013 26.300 4.109 23.880 25.709 70.620 42.831 29.480 4.190
2 18.350 12.189 18.190 3.796 26.130 26.343 62.670 42.328 28.480 3.291
3 19.140 13.586 18.500 3.908 24.710 28.253 62.350 45.747 30.350 3.598
4 18.900 12.028 18.700 3.718 23.800 25.527 61.400 41.273 28.450 3.530
5 18.270 11.927 18.150 4.047 28.000 24.994 64.420 40.968 27.170 3.383

Average: 19.020 12.549 19.968 3.916 25.304 26.165 64.292 42.629 28.786 3.598
Sample SD: 0.874 0.721 3.547 0.164 1.774 1.263 3.702 1.901 1.199 0.352

E.2.5 DBMS-2 Average and Sample Standard Deviation

Benchmark Lookup Lookup Traversal Traversal Insert Insert L+T+I L+T+I R. Traversal R. Travcrsal
Cold Wann Cold Warm Cold Warm Cold Warm Cold Warm

1 25.710 3.012 33.202 6.518 23.270 4.924 82.182 14.454 36.340 6.806
2 24.870 2.960 37.770 5.916 24.370 5.054 87.010 13.930 32.909 6.338
3 20.350 2.774 38.921 6.313 18.500 4.561 77.771 13.648 35.741 6.786
4 24.710 2.804 33.580 6.867 20.210 5.061 78.500 14.732 40.330 5.979
5 26.751 2.511 33.600 6.610 20.231 4.123 80.582 13.244 32.681 5.616

Average: 24.478 2.812 35.415 6.445 21.316 4.745 81.209 14.002 35.600 6.305
Sample SD: 2.446 0.196 2.711 0.356 2.423 0.403 3.679 0.600 3.111 0.516

311



E.2.6 D B M S -3  A verage  and S am p le  S tan dard  D eviation

Benchmark Lookup Lookup T raversal T ravcrsal 1 nsert Insert L+T+l L+T+I R. Traversal R. Traversal
Cold Wann Cold Warm Cold Warm Cold Warm Cold Warm

1 59.24Ü 129.373 27.440 9.290 343.073 340.101 429.753 478.764 32.720 8.951
2 55.990 127.949 25.860 9.029 312.431 342.904 394.281 479.882 32.440 8.454
3 58.710 127.992 24.860 9.043 345.732 349.395 429.302 486.430 32.230 8.359
4 56.990 128.906 26.040 9.203 358.350 345.474 441.380 483.583 30.660 8.677
5 57.690 129.845 25.510 9.032 316.563 332.358 399.763 471.235 30.610 8.807

Average: 57.724 128.813 25.942 9.119 335.230 342.046 418.896 479.979 31.732 8.650
Sample SD: 1.305 0.838 0.951 0.120 19.841 6.406 20.638 5.756 1.017 0.244

E.2.7 DBMS-1 vs. DBMS-2 Small Sample Test

DBMS Lookup Lookup 
Cold Warm

Traversal Traversal 
Cold Warm

Insert Insert 
Cold Warm

L+T+I L+T+I 
Cold Warm

R. Traversal R. Traversal 
Cold Warm

DBMS-1 N
Average 

Sample SD

5.000 5.000 
19.020 12.549 
0.874 0.721

5.000 5.000 
19.968 3.916 
3.547 0.164

5.000 5.000 
25.304 26.165 

1.774 1.263

5.000 5.000 
64.292 42.629 

3.702 1.901

5.000 5.000 
28.786 3.598 

1.199 0.352
DBMS-2 N

Average 
Sample SD

5.000 5.000 
24.478 2.812 

2.446 0.196

5.000 5.000 
35.415 6.445 

2.711 0.356

5.000 5.000 
21.316 4.745 

2.423 0.403

5.000 5.000 
81.209 14.002 

3.679 0.600

5.000 5.000 
35.600 6.305 

3.111 0.516
t = -4.699 29.141 -7.737 -14.412 2.969 36.141 -7.247 32.114 -4.571 -9.691
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E.2.8 DBMS-1 vs. DBMS-3 Small Sample Test

DBMS Lookup
Cold

Lookup
Warm

Traversal Traversal 
Cold Warm

Insert
Cold

Insert
Warm

L+T+I
Cold

L+T+I
Warm

R. Travcrsal R. Travcrsal 
Cold Wann

DBMS-1 N 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Average 19.020 12.549 19.968 3.916 25.304 26.165 64.292 42.629 28.786 3.598

Sample SD 0.874 0.721 3.547 0.164 1.774 1.263 3.702 1.901 1.199 0.352
DBMS-3 N 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

Average 57.724 128.813 25.942 9.119 335.230 342.046 418.896 479.979 31.732 8.650
Sample SD 1.305 0.838 0.951 0.120 19.841 6.406 20.638 5.756 1.017 0.244

t = -55.085 -235.216 -3.638 -57.150 -34.790 -108.183 -37.817 -161.320 -4.192 -26.356

E.2.9 DBMS-2 vs. DBMS-3 Small Sample Test

DBMS Lookup Lookup T raversal Traversal Insert Insert L+T+I L+T+I R. Traversal R. Travcrsal
Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

DBMS-2 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Average: 24.478 2.812 35.415 6.445 21.316 4.745 81.209 14.002 35.600 6.305

Sample SD: 2.446 0.196 2.711 0.356 2.423 0.403 3.679 0.600 3.111 0.516
DBMS-3 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

Average: 57.724 128.813 25.942 9.119 335.230 342.046 418.896 479.979 31.732 8.650
Sample SD: 1.305 0.838 0.951 0.120 19.841 6.406 20.638 5.756 1.017 0.244

t = -26.812 -327.423 7.373 -15.904 -35.118 -117.510 -36.020 -180.030 2.643 -9.184
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E.3 Large Local Database

E.3.1 DBMS-1 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 51.690 27.850 21.800 19.000 19.050 18.750 18.120 18.250 18.330 18.269

T raversal 54.710 35.240 27.640 30.980 34.510 32.990 25.310 35.240 35.830 37.350
Insert 38.920 40.260 44.330 39.181 41.950 51.591 40.110 41.950 36.400 36.450
R. Traversal 64.980 20.700 53.461 83.340 46.310 74.980 25.140 38.680 35.300 58.001

2 Lookup 48.070 27.430 20.370 17.430 16.820 17.530 16.350 16.750 17.000 16.770
T raversal 52.270 35.930 34.721 34.070 35.060 29.780 22.500 34.500 36.833 34.807
Insert 37.880 37.180 41.230 35.010 36.960 45.360 35.400 37.110 33.260 32.540
R. Traversal 60.801 21.940 59.810 91.981 47.450 82.320 30.231 41.180 45.920 63.301

3 Lookup 46.390 25.090 19.360 16.770 16.630 15.890 16.000 15.710 16.150 15.570
Traversal 51.080 36.480 28.200 32.521 39.031 32.370 24.480 32.530 40.220 35.510
Insert 37.649 37.080 40.640 35.197 39.840 46.000 35.633 37.832 33.252 32.631
R. Traversal 64.401 18.800 56.580 86.420 47.580 82.750 30.370 43.830 37.110 61.891

4 Lookup 48.640 26.310 20.190 17.810 17.500 17.450 17.880 16.920 16.920 16.410
Traversal 53.590 38.430 29.950 35.210 36.951 31.900 24.740 33.010 36.730 35.740
Insert 40.231 41.401 48.471 41.350 42.351 48.030 36.891 38.670 34.340 35.370
R. Traversal 63.561 19.270 56.210 87.520 49.830 81.530 27.400 40.950 33.550 52.550

5 Lookup 49.080 26.330 20.340 17.480 16.650 17.710 16.170 16.770 19.150 16.510
T ravcrsal 54.751 35.120 30.180 36.280 38.170 32.371 23.880 33.700 36.980 38.520
Insert 37.290 39.680 44.299 37.361 39.787 48.501 36.310 38.720 33.540 33.220
R. Traversal 63.350 18.350 55.550 89.360 48.900 87.261 27.770 47.380 34.200 56.620
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E.3.2 DBMS-2 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 199.830 118.330 128.610 118.040 126.560 1 13.980 122.671 98.291 106.600 96.632

T ravcrsal 286.909 268.772 242.277 226.389 444.933 357.573 235.730 214.980 208.101 215.109
Insert 54.23 1 63.472 52.291 58.960 53.921 56.081 54.890 49.100 63.730 93.380
R. T raversal 548.548 453.672 122.760 285.422 448.431 614.671 380.730 125.870 460.849 131.121

2 Lookup 155.119 264.359 266.951 175.830 139.189 104.149 120.851 131.390 149.291 123.470
Traversal 241.490 220.992 282.701 434.583 277.530 254.152 208.749 223.129 183.061 199.152
Insert 59.730 73.510 69.408 71.161 54.870 67.390 51.300 77.079 72.620 66.141
R. Traversal 559.081 483.432 126.050 288.189 604.736 485.708 372.861 128.140 475.942 135.351

3 Lookup 139.459 122.471 122.930 124.870 121.490 100.020 112.970 118.160 120.521 117.391
Traversal 297.310 208.729 235.289 224.830 408.652 375.713 210.452 233.273 182.081 212.733
Insert 55.150 47.740 42.950 39.190 62.680 44.000 44.970 65.820 51.161 54.281
R. Traversal 538.731 475.249 110.929 433.811 445.043 469.262 367.021 127.791 466.261 173.699

4 Lookup 200.332 111.921 125.039 158.692 158.121 113.141 115.871 114.210 128.390 186.250
T raversal 231.421 195.629 206.371 238.710 198.829 274.000 328.651 210.611 200.930 168.622
Insert 69.571 44.760 81.300 179.601 59.590 66.020 49.240 46.861 63.529 61.031
R. T raversal 538.265 646.662 100.891 286.671 443.041 473.871 376.791 123.481 482.922 128.440

5 Lookup 187.641 182.832 281.164 224.732 143.251 120.220 122.129 152.909 144.810 196.868
T raversal 229.881 203.080 173.599 173.451 168.431 187.021 202.211 215.140 331.372 163.773
Insert 62.010 54.740 53.010 57.040 49.750 70.490 38.310 40.710 39.570 40.562
R. Traversal 532.411 615.943 122.490 281.751 435.071 479.011 374.752 131.930 468.850 130.211
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E .3 .3  D B M S -3  R aw  R esu lts

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 96.001 105.311 131.552 159.892 172.470 206.971 236.901 286.421 285.891 303.741

T raversal 81.480 71.601 62.580 82.407 101.900 108.400 96.681 150.230 187.051 236.680
Insert 370.313 348.152 375.790 358.672 389.551 414.530 519.247 481.011 502.658 585.371
R. Traversal 64.721 16.860 71.620 121.990 81.921 150.761 62.480 120.180 110.830 179.381

2 Lookup 105.783 102.792 149.615 210.735 182.163 223.819 253.001 299.878 284.112 322.960
T raversal 72.500 75.940 55.980 83.861 100.310 103.500 102.070 154.631 172.720 174.900
Insert 468.919 459.098 474.115 441.395 452.941 470.072 488.583 457.770 486.762 496.007
R. Traversal 61.752 17.791 76.002 126.523 87.102 143.482 70.761 108.471 117.631 163.812

3 Lookup 100.249 101.981 120.982 154.381 176.622 194.691 221.671 275.719 334.119 324.011
Traversal 67.583 60.032 56.432 76.302 86.333 97.082 88.581 139.501 168.832 190.331
Insert 414.953 455.918 442.519 396.346 432.492 418.303 381.039 422.081 436.212 399.700
R. Traversal 64.620 17.200 69.740 126.520 86.410 161.290 75.540 107.900 122.499 186.111

4 Lookup 108.581 105.960 124.930 152.601 175.009 201.231 223.249 251.061 296.969 325.010
T raversal 68.430 61.560 61.560 77.880 90.731 90.530 92.520 134.100 155.481 190.210
Insert 399.069 434.352 372.822 387.582 394.812 381.830 374.581 387.170 394.390 406.940
R. Traversal 66.673 16.801 71.822 123.203 79.351 142.233 80.401 187.301 195.112 203.049

5 Lookup 94.23 1 98.620 122.310 155.600 171.642 203.831 222.163 244.732 262.941 292.578
T raversal 63.220 56.610 57.850 72.510 86.371 89.620 81.360 142.151 158.161 202.050
Insert 361.311 399.971 378.670 397.991 407.200 393.701 386.971 405.641 395.311 397.418
R. Traversal 66.601 16.950 71.220 131.442 83.921 154.231 68.310 112.311 110.850 179.000
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E.3.4 DBMS-1 Average and Sample Standard Deviation

Benchmark Lookup Lookup T ravcrsal T ravcrsal Insert Insert L+T+I L+T+I R. Travcrsal R. Traversal
Cold Wann Cold Warm Cold Wann Cold Warm Cold Wann

1 51.690 19.935 54.710 32.788 38.920 41.358 145.320 94.081 64.980 48.435
2 48.070 18.494 52.270 33.133 37.880 37.117 138.220 88.744 60.801 53.793
3 46.390 17.463 51.080 33.483 37.649 37.567 135.119 88.513 64.401 51.703
4 48.640 18.599 53.590 33.629 40.231 40.764 142.461 92.992 63.561 49.868
5 49.080 18.568 54.751 33.911 37.290 39.047 141.121 91.526 63.350 51.710

Average: 48.774 18.612 53.280 33.389 38.394 39.171 140.448 91.171 63.419 51.102
Sample SD: 1.923 0.878 1.594 0.438 1.193 1.879 3.924 2.493 1.603 2.038

E.3.5 DBMS-2 Average and Sample Standard Deviation

Benchmark Lookup Lookup Traversal Traversal Insert Insert L+T+I L+T+I R. Traversal R. Travcrsal
Cold Wann Cold Wann Cold Warm Cold Warm Cold Warm

1 199.830 114.413 286.909 268.207 54.231 60.647 540.970 443.267 548.548 335.947
2 155.119 163.942 241.490 253.783 59.730 67.053 456.339 484.778 559.081 344.490
3 139.459 117.869 297.310 254.639 55.150 50.310 491.919 422.818 538.731 341.007
4 200.332 134.626 231.421 224.706 69.571 72.437 501.324 431.769 538.265 340.308
5 187.641 174.324 229.881 202.009 62.010 49.354 479.532 425.687 532.411 337.779

Average: 176.476 141.035 257.402 240.669 60.138 59.960 494.017 441.664 543.407 339.906
Sample SD: 27.684 27.016 32.206 26.809 6.173 10.150 31.192 25.346 10.504 3.263
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E.3.6 DBMS-3 Average and Sample Standard Deviation

Benchmark Lookup Lookup T raversal T raversal Insert Insert L+T+I L+T+I R. Traversal R. Traversal
Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

1 96.001 209.906 81.480 121.948 370.313 441.665 547.794 773.519 64.721 101.780
2 105.783 225.453 72.500 113.768 468.919 469.638 647.202 808.859 61.752 101.286
3 100.249 211.575 67.583 107.047 414.953 420.512 582.785 739.134 64.620 105.912
4 108.581 206.224 68.430 106.064 399.069 392.720 576.080 705.008 66.673 122.141
5 94.231 197.157 63.220 105.187 361.311 395.875 518.762 698.219 66.601 103.137

Average: 100.969 210.063 70.643 110.803 402.913 424.082 574.525 744.948 64.873 106.851
Sample SD: 6.159 10.253 6.897 7.091 42.749 32.313 47.897 46.673 2.003 8.734

E.3.7 DBMS-1 vs. DBMS-2 Small Sample Test

DBMS Lookup
Cold

Lookup
Warm

T raversal 
Cold

Traversal
Warm

Insert
Cold

Insert
Warm

L+T+I
Cold

L+T+I
Warm

R. Traversal R. Traversal 
Cold Warm

DBMS-1 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Average: 48.774 18.612 53.280 33.389 38.394 39.171 140.448 91.171 63.419 51.102

Sample SD: 1.923 0.878 1.594 0.438 1.193 1.879 3.924 2.493 1.603 2.038
DBMS-2 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

Average: 176.476 141.035 257.402 240.669 60.138 59.960 494.017 441.664 543.407 339.906
Sample SD: 27.684 27.016 32.206 26.809 6.173 10.150 31.192 25.346 10.504 3.263

t = -10.290 -10.128 -14.155 -17.286 -7.734 -4.504 -25.148 -30.772 - 101.011 -167.875
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E.3.8 DBMS-1 vs. DBMS-3 Small Sample Test

DBMS Lookup Lookup T raversal T raversal Insert Insert L+T+I L+T+I R. Travcrsal R. Traversal
Cold Wann Cold Warm Cold Warm Cold Wann Cold Warm

DBMS-1 N 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Average 48.774 18.612 53.280 33.389 38.394 39.171 140.448 91.171 63.419 51.102

Sample SD 1.923 0.878 1.594 0.438 1.193 1.879 3.924 2.493 1.603 2.038
DBMS-3 N 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

Average 100.969 210.063 70.643 110.803 402.913 424.082 574.525 744.948 64.873 106.851
Sample SD 6.159 10.253 6.897 7.091 42.749 32.313 47.897 46.673 2.003 8.734

t = -18.089 -41.603 -5.485 -24.367 -19.059 -26.591 -20.197 -31.277 -1.268 -13.899

DBMS-2 vs. DBMS-3 Small Sample Test

DBMS Lookup Lookup T raversal Traversal Insert Insert L+T+I L+T+I R. Travcrsal R. Travcrsal
Cold Wann Cold Warm Cold Warm Cold Warm Cold Warm

DBMS-2 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Average: 176.476 141.035 257.402 240.669 60.138 59.960 494.017 441.664 543.407 339.906

Sample SD: 27.684 27.016 32.206 26.809 6.173 10.150 31.192 25.346 10.504 3.263
DBMS-3 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

Average: 100.969 210.063 70.643 110.803 402.913 424.082 574.525 744.948 64.873 106.851
Sample SD: 6.159 10.253 6.897 7.091 42.749 32.313 47.897 46.673 2.003 8.734

t = 5.953 -5.342 12.679 10.472 -17.745 -24.039 -3.149 -12.769 100.067 55.892
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E.4 Small Local Database (NLOR)

E.4.1 DBMS-1 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 18.140 11.500 11.460 11.750 11.370 1 1.630 1 1.580 11.560 11.740 11.470

Traversal 27.900 6.130 4.950 5.030 5.270 4.950 5.100 5.350 5.880 5.000
Insert 80.760 73.841 75.320 70.801 75.080 75.420 73.690 76.210 73.069 76.940
R. Traversal 28.380 2.670 5.020 5.050 11.900 5.180 2.470 17.280 5.830 7.140

2 Lookup 20.530 13.990 14.080 13.870 14.160 13.950 14.020 14.080 14.140 13.860
T raversal 26.070 5.660 4.890 5.230 5.800 5.770 5.130 4.980 4.750 4.910
Insert 85.080 71.300 74.930 70.510 71.851 74.280 72.631 72.450 71.410 76.034
R. Traversal 28.690 2.700 5.810 4.880 11.600 5.550 2.500 17.000 5.810 7.450

3 Lookup 16.949 13.450 13.270 13.270 13.150 13.350 13.110 13.300 13.100 13.200
Traversal 28.520 5.610 4.740 4.880 4.920 5.210 4.870 5.200 4.630 4.850
Insert 76.141 72.851 73.010 68.710 70.011 72.150 70.630 69.161 70.470 73.270
R. Traversal 26.950 2.640 5.010 4.800 12.100 5.350 2.450 17.340 6.230 7.250

4 Lookup 15.360 11.650 11.250 11.340 11.600 12.780 11.850 11.500 11.800 11.680
Traversal 25.601 6.420 4.770 4.860 5.390 4.880 4.920 4.960 4.680 4.800
Insert 82.190 76.520 78.440 74.150 74.431 76.500 74.950 74.511 75.580 77.481
R. Traversal 29.601 2.700 5.400 4.800 11.710 5.250 2.450 17.600 5.880 7.250

5 Lookup 16.600 12.060 12.350 12.100 12.350 12.120 11.930 12.380 12.150 12.290
T raversal 27.530 5.860 4.840 5.180 5.170 5.000 5.000 5.000 4.710 4.800
Insert 79.181 72.781 75.280 69.479 72.690 73.650 75.580 77.470 75.221 73.450
R. Traversal 32.420 2.700 4.910 5.300 11.860 5.130 2.420 17.150 5.730 7.420
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E.4.2 DBMS-2 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 23.940 1.890 2.100 2.550 2.420 1.960 8.830 1.910 1.890 1.920

Traversal 40.760 5.690 5.260 5.390 8.880 5.230 5.170 5.400 5.400 5.330
Insert 74.320 15.730 8.540 13.270 5.540 5.910 5.690 5.420 9.520 5.430
R. Traversal 35.651 13.930 6.830 6.000 7.170 4.480 3.630 4.790 6.200 4.160

2 Lookup 20.030 1.990 8.010 1.960 1.900 1.900 1.960 1.890 1.930 1.910
Traversal 36.850 5.700 5.350 5.770 5.280 7.350 5.300 5.350 5.500 5.320
Insert 39.810 7.460 6.570 6.130 5.630 6.170 11.700 5.490 5.530 5.310
R. Traversal 42.100 6.180 6.450 5.550 8.050 4.350 3.680 3.950 6.000 4.050

3 Lookup 54.790 3.540 2.430 2.100 2.100 2.150 2.320 4.770 2.230 2.170
Traversal 35.420 5.580 5.040 10.590 5.160 5.110 4.990 5.050 5.160 5.020
Insert 51.560 10.970 13.920 7.900 12.050 6.760 14.390 6.690 13.040 6.780
R. Travcrsal 40.770 6.200 6.630 5.950 9.900 4.380 3.740 4.000 6.100 4.130

4 Lookup 25.370 1.860 1.940 1.970 1.910 1.850 1.920 1.860 1.910 1.860
T raversal 40.211 5.790 5.160 5.670 5.130 7.090 5.110 5.220 5.360 5.140
Insert 47.641 8.330 7.380 5.950 9.760 5.480 6.010 6.420 4.840 11.660
R. Travcrsal 37.740 5.800 6.340 8.560 6.840 4.550 3.580 3.820 5.930 4.010

5 Lookup 19.370 1.920 1.980 1.970 1.960 2.040 8.240 2.070 2.100 1.970
Traversal 33.080 15.410 5.390 5.860 5.310 5.420 6.160 5.400 5.680 5.340
Insert 45.731 8.600 7.210 6.730 6.510 13.560 7.170 13.620 5.570 6.390
R. Traversal 40.101 5.820 6.430 5.500 6.780 4.660 4.340 4.090 5.960 4.050
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E.4.3 DBMS-3 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 56.570 63.790 82.721 101.570 117.200 132.811 149.460 160.831 173.740 185.191

T raversal 45.890 17.720 15.330 13.500 13.130 11.240 10.730 11.060 9.370 9.080
Insert 384.092 352.132 359.001 371.071 366.631 390.282 367.361 416.011 377.832 388.849
R. Traversal 45.281 7.700 13.750 13.070 28.520 11.870 5.580 31.330 10.640 11.800

2 Lookup 55.820 63.941 82.400 102.500 117.941 132.931 147.960 161.671 175.100 184.430
Traversal 43.440 18.790 15.960 14.470 13.430 11.600 10.810 11.040 10.070 9.310
Insert 366.961 378.030 390.052 373.971 382.510 393.531 384.300 451.072 481.956 511.745
R. Traversal 43.020 6.490 14.630 13.640 28.730 11.450 6.200 31.130 10.700 12.280

3 Lookup 56.031 63.510 82.070 99.960 117.771 133.020 146.290 160.811 173.300 184.531
Traversal 41.991 18.560 14.690 13.460 12.590 11.360 10.750 10.660 9.360 9.290
Insert 492.391 492.860 526.063 459.262 453.422 496.680 467.613 447.430 478.175 451.553
R. Traversal 41.850 7.180 13.560 12.370 29.320 12.680 5.610 33.661 10.330 11.660

4 Lookup 57.901 63.930 82.720 102.150 116.391 133.300 147.500 159.831 175.820 184.001
Traversal 41.700 18.360 15.350 14.240 13.360 11.470 10.870 10.830 9.460 9.060
Insert 469.742 424.751 414.472 421.863 431.892 414.732 406.812 424.361 419.978 425.980
R. T raversal 44.201 6.220 13.200 12.300 28.280 10.930 5.470 30.200 10.680 11.570

5 Lookup 56.930 64.071 84.040 100.680 117.751 133.861 147.300 160.23 1 174.160 185.851
Traversal 46.760 18.080 16.370 13.960 13.100 11.310 10.870 10.970 9.590 9.630
Insert 412.182 398.102 387.681 378.332 386.050 433.752 387.542 628.201 416.391 399.161
R. Traversal 40.670 6.660 13.310 12.130 28.260 11.900 5.900 30.430 10.570 12.730
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E.4.4 DBMS-1 Average and Sample Standard Deviation

Benchmark Lookup Lookup T ravcrsal T raversal Insert Insert L+T+I L+T+I R. Traversal R. Travcrsal
Cold Warm Cold Warm Cold Warm Cold Wann Cold Wann

1 18.140 11.562 27.900 5.295 80.760 74.486 126.800 91.343 28.380 6.949
2 20.530 14.017 26.070 5.236 85.080 72.822 131.680 92.075 28.690 7.033
3 16.949 13.245 28.520 4.990 76.141 71.140 121.610 89.375 26.950 7.019
4 15.360 11.717 25.601 5.075 82.190 75.840 123.151 92.632 29.601 7.004
5 16.600 12.192 27.530 5.062 79.181 73.956 123.311 91.210 32.420 6.958

Average: 17.516 12.547 27.124 5.132 80.670 73.649 125.310 91.327 29.208 6.993
Sample SD: 1.955 1.053 1.240 0.128 3.335 1.773 4.036 1.234 2.032 0.037

E.4.5 DBMS-2 Average and Sample Standard Deviation

Benchmark Lookup Lookup T raversal T raversal Insert Insert L+T+I L+T+I R. Traversal R. Traversal
Cold Warm Cold Warm Cold Warm Cold Warm Cold Wann

1 23.940 2.830 40.760 5.750 74.320 8.339 139.020 16.919 35.651 6.354
2 20.030 2.606 36.850 5.658 39.810 6.666 96.690 14.930 42.100 5.362
3 54.790 2.646 35.420 5.744 51.560 10.278 141.770 18.668 40.770 5.670
4 25.370 1.898 40.211 5.519 47.641 7.314 113.222 14.731 37.740 5.492
5 19.370 2.694 33.080 6.663 45.731 8.373 98.181 17.730 40.101 5.292

Average: 28.700 2.535 37.264 5.867 51.812 8.194 1 17.777 16.596 39.272 5.634
Sample SD: 14.804 0.366 3.240 0.455 13.277 1.370 21.658 1.728 2.568 0.427
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E .4.6  D B M S -3  A verage and  S am p le S tan d ard  D ev ia tion

Benchmark Lookup
Cold

Lookup
Warm

Traversal Traversal 
Cold Warm

Insert
Cold

Insert
Warm

L+T+l
Cold

L+T+l
Warm

R. Traversal R. Traversal 
Cold Warm

1 56.570 129.702 45.890 12.351 384.092 376.574 486.552 518.627 45.281 14.918
2 55.820 129.875 43.440 12.831 366.961 416.352 466.221 559.058 43.020 15.028
3 56.031 129.029 41.991 12.302 492.391 474.784 590.413 616.115 41.850 15.152
4 57.901 129.516 41.700 12.556 469.742 420.538 569.343 562.610 44.201 14.317
5 56.930 129.772 46.760 12.653 412.182 423.912 515.872 566.337 40.670 14.654

Average: 56.650 129.579 43.956 12.539 425.074 422.432 525.680 564.549 43.004 14.814
Sample SD: 0.825 0.334 2.281 0.218 54.198 34.952 53.055 34.659 1.830 0.333

E.4.7 DBMS-1 vs. DBMS-2 Small Sample Test

DBMS Lookup Lookup 
Cold Warm

Traversal Traversal 
Cold Warm

Insert Insert 
Cold Warm

L+T+I L+T+l 
Cold Warm

R. Traversal R. Traversal 
Cold Warm

DBMS-1 N
Average 

Sample SD

5.000 5.000 
17.516 12.547 

1.955 1.053

5.000 5.000 
27.124 5.132 

1.240 0.128

5.000 5.000 
80.670 73.649 
3.335 1.773

5.000 5.000 
125.310 91.327 

4.036 1.234

5.000 5.000 
29.208 6.993 

2.032 0.037
DBMS-2 N

Average 
Sample SD

5.000 5.000 
28.700 2.535 
14.804 0.366

5.000 5.000 
37.264 5.867 

3.240 0.455

5.000 5.000 
51.812 8.194 
13.277 1.370

5.000 5.000 
117.777 16.596 
21.658 1.728

5.000 5.000 
39.272 5.634 

2.568 0.427
t = -1.675 20.087 -6.536 -3.479 4.714 65.325 0.765 78.721 -6.871 7.080
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E .4 .8  D B M S-1 vs. D B M S-3 S m all S am p le T est

DBMS Ltxrkup Lookup T raversal T ravcrsal Insert Insert L+T+I L+T+I R. T ravcrsal R. Travcrsal
Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

DBMS-1 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Average: 17.516 12.547 27.124 5.132 80.670 73.649 125.310 91.327 29.208 6.993

Sample SD: 1.955 1.053 1.240 0.128 3.335 1.773 4.036 1.234 2.032 0.037
DBMS-3 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

Average: 56.650 129.579 43.956 12.539 425.074 422.432 525.680 564.549 43.004 14.814
Sample SD: 0.825 0.334 2.281 0.218 54.198 34.952 53.055 34.659 1.830 0.333

t = -41.247 -236.932 -14.496 -65.500 -14.182 -22.285 -16.825 -30.511 -11.279 -52.198

DBMS-2 vs. DBMS-3 Small Sample Test

DBMS Lookup Lookup Traversal Traversal Insert Insert L+T+I L+T+I R. Traversal R. Traversal
Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

DBMS-2 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Average: 28.700 2.535 37.264 5.867 51.812 8.194 117.777 16.596 39.272 5.634

Sample SD: 14.804 0.366 3.240 0.455 13.277 1.370 21.658 1.728 2.568 0.427
DBMS-3 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

Average: 56.650 129.579 43.956 12.539 425.074 422.432 525.680 564.549 43.004 14.814
Sample SD: 0.825 0.334 2.281 0.218 54.198 34.952 53.055 34.659 1.830 0.333

t = -4.215 -573.371 -3.776 -29.583 -14.958 -26.481 -15.916 -35.308 -2.646 -37.885
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E.5 Small Local Database (LOR vs. NLOR)

E.5.1 DBMS-1 vs. DBMS-1 (NLOR) Small Sample Test

DBMS Lookup Lookup 
Cold Warm

Traversal Traversal 
Cold Warm

Insert Insert 
Cold Warm

L+T+I L+T+I 
Cold Warm

R. Traversal R. Travcrsal 
Cold Warm

DBMS-1 N
Average 

Sample SD

5.000 5.000 
19.020 12.549 
0.874 0.721

5.000 5.000 
19.968 3.916 
3.547 0.164

5.000 5.000 
25.304 26.165 

1.774 1.263

5.000 5.000 
64.292 42.629 

3.702 1.901

5.000 5.000 
28.786 3.598 

1.199 0.352
DBMS-1
(NLOR)

N
Average 

Sample SD

5.000 5.000 
17.516 12.547 

1.955 1.053

5.000 5.000 
27.124 5.132 

1.240 0.128

5.000 5.000 
80.670 73.649 

3.335 1.773

5.000 5.000 
125.310 91.327 

4.036 1.234

5.000 5.000 
29.208 6.993 

2.032 0.037
t = 1.571 0.004 -4.259 -13.045 -32.771 -48.779 -24.914 -48.056 -0.400 -21.443

E.5.2 DBMS-2 vs. DBMS-2 (NLOR) Small Sample Test

DBMS Lookup Lookup 
Cold Warm

Traversal Traversal 
Cold Warm

Insert
Cold

Insert
Warm

L+T+I
Cold

L+T+I
Warm

R. Traversal R. Traversal 
Cold Warm

DBMS-2 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Average: 24.478 2.812 35.415 6.445 21.316 4.745 81.209 14.002 35.600 6.305

Sample SD: 2.446 0.196 2.711 0.356 2.423 0.403 3.679 0.600 3.111 0.516
DBMS-2 N: 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
(NLOR) Average: 28.700 2.535 37.264 5.867 51.812 8.194 117.777 16.596 39.272 5.634

Sample SD: 14.804 0.366 3.240 0.455 13.277 1.370 21.658 1.728 2.568 0.427
t = -0.629 1.494 -0.979 2.237 -5.053 -5.402 -3.722 -3.172 -2.036 2.240
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E .5.3 D B M S -3  vs. D B M S-3 (N L O R ) Sm all S am p le  T est

DBMS Lookup Lookup T ravcrsal T ravcrsal Insert Insert L+T+I L+T+l R. Travcrsal R. Travcrsal
Cold Wann Cold Warm Cold Warm Cold Warm Cold Wann

DBMS-3 N 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Average 57.724 128.813 25.942 9.119 335.230 342.046 418.896 479.979 31.732 8.650

Sample SD 1.305 0.838 0.951 0.120 19.841 6.406 20.638 5.756 1.017 0.244
DBMS-3 N 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
(NLOR) Average 56.650 129.579 43.956 12.539 425.074 422.432 525.680 564.549 43.004 14.814

Sample SD 0.825 0.334 2.281 0.218 54.198 34.952 53.055 34.659 1.830 0.333
t = 1.555 -1.898 -16.297 -30.718 -3.481 -5.059 -4.194 -5.382 -12.040 -33.368
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APPENDIX F - The AFIT Wargame Simulation Benchmark

F.l Introduction

This appendix contains support material for Chapter 7. Raw results and a statistical analysis for the AFIT Benchmark are presented.
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F.2 Small Local Database

F.2.1 DBMS-1 Average and Sample Standard Deviation

Benchmark Model
Creation

Scenario
Creation

TS=60 TS=600 TS=1800 TS=3600 Version
Creation

Map
Creation

Report
Creation

1 0.500 79.850 8517.116 8489.064 8781.745 8714.206 172.060 9.890 2.030
2 0.470 72.480 7767.054 7586.754 7918.035 7381.211 172.760 9.600 2.040
3 0.420 69.771 7247.652 7709.894 8930.609 7348.673 173.830 10.040 1.990
4 0.540 70.110 7343.732 7907.623 7447.964 7431.251 189.180 9.900 2.390
5 0.480 66.201 7036.223 8015.213 8049.384 7550.290 184.031 10.250 2.020

Average: 0.482 71.682 7582.355 7941.710 8225.547 7685.126 178.372 9.936 2.094
Sample SD: 0.044 5.087 586.327 348.530 619.819 580.346 7.759 0.238 0.167

Throughput
Samples

Value

1 1.875
2 1.998
3 2.101
4 1.887
5 1.946
6 1.983
7 1.900
8 1.973
9 2.031
10 2.127

Geometric K lean 1.980
90th Percentile 2.104
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F .2 .2  D B M S -2  A verage and S am p le S ta n d a rd  D ev ia tion

Benchmark Model
Creation

Scenario
Creation

TS=60 TS=600 TS=1800 TS=3600 Version
Creation

Map
Creation

Report
Creation

1 0.150 4.110 632.093 546.080 531.932 525.581 20.310 11.090 1.580
2 0.130 4.290 636.960 544.581 534.700 530.522 23.810 10.730 1.270
3 0.140 3.070 593.628 527.111 517.571 516.470 22.860 8.910 1.180
4 0.160 3.030 599.938 524.943 518.181 514.771 22.240 24.110 1.190
5 0.120 2.980 642.590 545.141 559.635 543.344 22.700 9.220 1.340

Average: 0.140 3.496 621.042 537.571 532.404 526.138 22.384 12.812 1.312
Sample SD: 0.016 0.647 22.565 10.580 17.098 11.600 1.292 6.385 0.163

Throughput
Samples

Value

1 0.198
2 0.181
3 0.190
4 0.199
5 0.186
6 0.193
7 0.196
8 0.197
9 0.195
10 0.190

Geometric Mean 0.192
90th Percentile 0.198

331



F .2 .3  D B M S-1 vs. D B M S -2  S m all S am p le  T est

DBMS Model
Creation

Scenario
Creation

TS=60 TS=600 TS=1800 TS=3600 Version
Creation

Map
Creation

Report
Creation

DBMS-1 N 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Average 0.482 71.682 7582.355 7941.710 8225.547 7685.126 178.372 9.936 2.094

Sample SD 0.044 5.087 586.327 348.530 619.819 580.346 7.759 0.238 0.167
DBMS-2 N 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

Average 0.140 3.496 621.042 537.571 532.404 526.138 22.384 12.812 1.312
Sample SD 0.016 0.647 22.565 10.580 17.098 11.600 1.292 6.385 0.163

t = 16.417 29.732 26.529 47.481 27.743 27.578 44.344 -1.006 7.497
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APPENDIX G - The CITY Benchmark

G. 1 Introduction

This appendix contains support material for Chapter 7. Raw results and a statistical analysis for the CITY Benchmark are presented.
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G.2 10 Database

G .2.1 D B M S-1 A verage and S am p le  S tan d ard  D ev ia tion

10 Benchmark Loop Time Total Trans T rans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 2554 0.709 1.410 13186 986 6709248
2 3600 2578 0.716 1.396 13035 994 6709248
3 3600 2476 0.688 1.454 12330 1003 6709248
4 3600 2464 0.684 1.461 12872 1012 6676480
5 3600 2510 0.697 1.434 12660 1001 6684672

Average: 3600 2516.400 0.699 1.431 12816.600 999.200 6697779.200
Sample SD: 0 49.059 0.014 0.028 334.861 9.783 15969.148

G.2.2 DBMS-2 Average and Sample Standard Deviation

10 Benchmark Loop Time Total Time Trans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 95 0.026 37.895 218714 702 15597568
2 3600 96 0.027 37.500 221036 702 15630336
3 3600 95 0.026 37.895 218972 708 15630336
4 3600 97 0.027 37.113 223561 784 15654912
5 3600 98 0.027 36.735 225607 714 15638528

Average: 3600 96.200 0.027 37.428 221578.000 722.000 15630336.000
Sample SD: 0 1.304 0.000 0.505 2977.105 35.014 20885.584
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G .2.3  D B M S-3 (C ++) A verage and S am p le  S tan d ard  D eviation

10 Benchmark Loop Time Total Trans T rans/Scc Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 623 0.173 5.778 12091 5384 16203776
2 3600 598 0.166 6.020 12812 2200 16039936
3 3600 716 0.199 5.028 15247 2223 17416192
4 3600 712 0.198 5.056 15156 2139 17637376
5 3600 721 0.200 4.993 15400 2120 17620992

Average: 3600 674.000 0.187 5.375 14141.200 2813.200 16983654.400
Sample SD: 0 58.724 0.016 0.487 1565.829 1437.744 793639.506

G.2.4 DBMS-3 (ESQL) Average and Sample Standard Deviation

10 Benchmark Loop Time Total Trans Trans/Scc Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 “ 354 0.098 10.169 307183 58023 9527296
2 3600 428 0.119 8.411 384822 42277 9887744
3 3600 458 0.127 7.860 413562 41299 9887744
4 3600 428 0.119 8.411 389627 35758 9879552
5 3600 466 0.129 7.725 432549 24675 9838592

Average: 3600 426.800 0.119 8.516 385548.600 40406.400 9804185.600
Sample SD: 0 44.195 0.012 0.976 47833.348 12080.201 156121.553
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G.3 20 Database

G .3.1 D B M S-1 A verage and S am p le  S tan d ard  D ev ia tion

20 Benchmark Loop Time Total Trans Trans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 2323 0.645 1.550 25389 2043 6692864
2 3600 2318 0.644 1.553 25077 2235 6651904
3 3600 2412 0.670 1.493 24838 1785 6684672
4 3600 2484 0.690 1.449 25405 1799 6709248
5 3600 2281 0.634 1.578 24249 1810 6676480

Average: 3600 2363.600 0.657 1.525 24991.600 1934.400 6683033.600
Sample SD: 0 82.748 0.023 0.052 477.275 198.924 21204.466

G.3.2 DBMS-2 Average and Sample Standard Deviation

20 Benchmark Loop Time Total Trans Trans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 32 0.009 112.500 145028 1940 15646720
2 3600 37 0.010 97.297 167475 1373 15581184
3 3600 42 0.012 85.714 189995 1034 15654912
4 3600 46 0.013 78.261 208290 839 15654912
5 3600 45 0.013 80.000 203623 841 15679488

Average: 3600 40.400 0.011 90.754 182882.200 1205.400 15643443.200
Sample SD: 0 5.857 0.002 14.255 26441.687 464.796 36909.483
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G .3 .3  D B M S-3 (C++) A verage and Sam p le S tan d ard  D eviation

20 Benchmark Loop Time Total Trans Trans/Scc Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 404 0.112 8.911 277747 23839 14163968
2 3600 464 0.129 7.759 320104 25182 15384576
3 3600 475 0.132 7.579 330549 19739 15589376
4 3600 399 0.111 9.023 277776 16013 14155776
5 3600 531 0.148 6.780 373588 14775 16048128

Average: 3600 454.600 0.126 8.010 315952.800 19909.600 15068364.800
Sample SD: 0 54.757 0.015 0.949 40215.821 4604.756 863442.241

G.3.4 DBMS-3 (ESQL) Average and Sample Standard Deviation

20 Benchmark Loop Time Total Trans Trans/Scc Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 749 0.208 4.806 537150 10492 9977856
2 3600 668 0.186 5.389 479020 10298 9977856
3 3600 762 0.212 4.724 547497 8765 9977856
4 3600 789 0.219 4.563 566810 11400 9977856
5 3600 765 0.213 4.706 550013 8986 9977856

Average: 3600 746.600 0.207 4.838 536098.000 9988.200 9977856.000
Sample SD: 0 46.253 0.013 0.321 33637.019 1100.408 0.000
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G.4 30 Database

G .4.1 D B M S-1 A verage and  Sam p le S tan d ard  D ev ia tion

30 Benchmark Loop Time Total Trans Trans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 2050 0.569 1.756 24104 2541 6676480
2 3600 2361 0.656 1.525 27472 2591 6701056
3 3600 2372 0.659 1.518 27722 2595 6725632
4 3600 2401 0.667 1.499 27949 2562 6701056
5 3600 2366 0.657 1.522 27610 2588 6701056

Average: 36001 2310.000 0.642 1.564 26971.400 2575.400 6701056.000
Sample SD: ~~0 146.169 0.041 0.108 1612.412 23.180 17377.856

G.4.2 DBMS-2 Average and Sample Standard Deviation

30 Benchmark Loop Time Total Trans Trans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 23 0.006 156.522 153817 3885 15654912
2 3600 23 0.006 156.522 153886 4010 15638528
3 3600 25 0.007 144.000 167005 2398 15638528
4 3600 23 0.006 156.522 154109 2749 15704064
5 3600 24 0.007 150.000 160591 3281 15638528

Average: 3600 23.600 0.007 152.713 157881.600 3264.600 15654912.000
Sample SD: 0 0.894 0.000 5.630 5858.660 699.576 28377.920
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G .4.3  D B M S-3 (C ++) A verage and Sam p le S tan d ard  D ev ia tion

30 Benchmark Loop Time Total Trans Trans/Scc Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 455 0.126 7.912 472888 16198 15671296
2 3600 452 0.126 7.965 470488 14832 15917056
3 3600 470 0.131 7.660 491209 12867 15785984
4 3600 471 0.131 7.643 491629 13512 15556608
5 3600 468 0.130 7.692 487863 13869 16162816

Average: 3600 463.200 0.129 7.774 482815.400 14255.600 15818752.000
Sample SD: 0 8.983 0.002 0.152 10297.189 1297.668 234296.929

G.4.4 DBMS-3 (ESQL) Average and Sample Standard Deviation

30 Benchmark Loop Time Total Trans Trans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 560 0.156 6.429 580771 31680 9977856
2 3600 485 0.135 7.423 493195 47070 9977856
3 3600 484 0.134 7.438 491236 47146 9977856
4 3600 477 0.133 7.547 485597 53438 9977856
5 3600 478 0.133 7.531 487023 51653 9977856

Average: 3600 496.800 0.138 7.274 507564.400 46197.400 9977856.000
Sample SD: 0 35.506 0.010 0.476 41039.062 8582.046 0.000
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G.5 40 Database

G .5.1 D B M S-1 A verage and S am p le  S tan d ard  D ev ia tion

40 Benchmark Loop Time Total Trans Trans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 2128 0.591 1.692 31817 3536 6692864
2 3600 1642 0.456 2.192 22758 4440 6692864
3 3600 1664 0.462 2.163 20741 13645 6651904
4 3600 1881 0.523 1.914 27336 8975 6660096
5 3600 1972 0.548 1.826 28111 8599 6701056

Average: 3600 1857.400 0.516 1.957 26152.600 7839.000 6679756.800
Sample SD: 0 206.588 0.057 0.217 4419.556 4051.134 22133.565

G.5.2 DBMS-2 Average and Sample Standard Deviation

40 Benchmark Loop Time Total Trans Trans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 17 0.005 211.765 153294 3871 15728640
2 3600 17 0.005 211.765 153408 4032 15712256
3 3600 17 0.005 211.765 153281 3986 15728640
4 3600 18 0.005 200.000 162302 4196 15753216
5 3600 17 0.005 211.765 153463 3825 15720448

Average: 3600 17.200 0.005 209.412 155149.600 3982.000 15728640.000
Sample SD: 0 0.447' 0.000 5.261 3999.048 146.015 15325.829
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G .5 .3 D B M S -3  (C++) A verage and Sam p le S ta n d a rd  D ev ia tion

40 Benchmark Loop Time Total Trans Trans/Scc Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 291 0.081 12.371 391937 31462 13058048
2 3600 313 0.087 11.502 418213 37261 13008896
3 3600 333 0.093 10.811 447465 40658 14073856
4 3600 337 0.094 10.682 455148 27484 14049280
5 3600 360 0.100 10.000 486519 33235 14303232

Average: 3600 326.800 0.091 1 1.073 439856.400 34020.000 13698662.400
Sample SD: 0 26.061 0.007 0.900 36172.599 5109.942 615502.201

G.5.4 DBMS-3 (ESQL) Average and Sample Standard Deviation

40 Benchmark Loop Time Total Trans Trans/Scc Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 436 0.121 8.257 593787 33705 9994240
2 3600 418 0.116 8.612 571566 26610 9977856
3 3600 371 0.103 9.704 509132 20103 9994240
4 3600 397 0.110 9.068 543238 23905 9986048
5 3600 376 0.104 9.574 515802 19771 9986048

Average: 3600 399.600 0.111 9.043 546705.000 24818.800 9987686.400
Sample SD: 0 27.592 0.008 0.617 36102.389 5716.796 6853.919
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G.6 50 Database

G .6.1 D B M S-1 A verage and S am p le  S tan d ard  D ev ia tion

50 Benchmark Loop Time Total Trans T rans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 2061 0.573 1.747 33559 5269 6709248
2 3600 2163 0.601 1.664 35362 4871 6709248
3 3600 2130 0.592 1.690 33747 5172 6709248
4 3600 2105 0.585 1.710 33380 5502 6709248
5 3600 2083 0.579 1.728 33219 5702 6701056

Average: 3600 2108.400 0.586 1.708 33853.400 5303.200 6707609.600
Sample SD: 0 39.847 0.011 0.032 866.089 317.704 3663.574

G.6.2 DBMS-2 Average and Sample Standard Deviation

50 Benchmark Loop Time Total Trans T rans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 14 0.004 257.143 156423 3882 15802368
2 3600 14 0.004 257.143 156447 3960 15810560
3 3600 13 0.004 276.923 145301 3716 15810560
4 3600 13 0.004 276.923 145392 3797 15826944
5 3600 14 0.004 257.143 156450 3918 15785984

Average: 3600 13.600 0.004 265.055 152002.600 3854.600 15807283.200
Sample SD: 0 0.548 0.000 10.834 6076.254 97.989 14881.507
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G .6 .3  D B M S -3  (C ++) A verage and S am p le S tan d ard  D eviation

50 Benchmark Loop Time Total Trans Trans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 350 0.097 10.286 595338 20300 14090240
2 3600 340 0.094 10.588 576703 23766 14090240
3 3600 362 0.101 9.945 617631 17795 14188544
4 3600 355 0.099 10.141 605105 18446 14278656
5 3600 350 0.097 10.286 596338 18212 14196736

Average: 3600 351.400 0.098 10.249 598223.000 19703.800 14168883.200
Sample SD: 0 8.050 0.002 0.236 14991.825 2465.156 79971.712

G.6.4 DBMS-3 (ESQL) Average and Sample Standard Deviation

50 Benchmark Loop Time Total Trans Trans/Sec Response
Time

Page Faults 
(no physical 

I/O)

Page Faults 
(physical I/O)

Working Set

1 3600 407 0.113 8.845 694700 23862 9986048
2 3600 411 0.114 8.759 699536 26372 9961472
3 3600 387 0.108 9.302 658992 27907 9994240
4 3600 369 0.103 9.756 628065 25321 9994240
5 3600 378 0.105 9.524 642941 25020 9994240

Average: 3600 390.400 0.108 9.237 664846.800 25696.400 9986048.000
Sample SD: 0 18.188 0.005 0.429 31470.612 1525.340 14188.960
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G.7 All Databases

G .7.1  D B M S-1 vs. D B M S -2  S m all S am p le  T est

DBMS 10 Trans 20 T rans 30 Trans 40 Trans 50 T rans
DBMS-1 N

Average 
Sample SD

5.000
2516.400

49.059

5.000
2363.600

82.748

5.000
2310.000

146.169

5.000
1857.400
206.588

5.000
2108.400

39.847
DBMS-2 N

Average 
Sample SD

5.000
96.200

1.304

5.000
40.400

5.857

5.000
23.600

0.894

5.000
17.200
0.447

5.000
13.600
0.548

t = 110.271 62.622 34.976 19.918 117.541

G.7.2 DBMS-1 vs. DBMS-3 (C++) Small Sample Test

DBMS 10 Trans 20 T rans 30 T rans 40 T rans 50 T rans
DBMS-1 N

Average 
Sample SD

5.000
2516.400

49.059

5.000
2363.600

82.748

5.000
2310.000

146.169

5.000
1857.400
206.588

5.000
2108.400

39.847
DBMS-3

(C++)
N

Average 
Sample SD

5.000
674.000

58.724

5.000
454.600

54.757

5.000
463.200

8.983

5.000
326.800

26.061

5.000
351.400

8.050
t = 53.839 43.020 28.199 16.437 96.644
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G .7.3  D B M S-1 vs. D B M S -3  (E SQ L ) S m all S am p le T est

DBMS 10 Trans 20 T rans 30 T rans 40 T rans 50 T rans
DBMS-1 N:

Average: 
Sample SD:

5.000
2516.400

49.059

5.000
2363.600

82.748

5.000
2310.000

146.169

5.000
1857.400
206.588

5.000
2108.400

39.847
DBMS-3
(ESQL)

N:
Average: 

Sample SD:

5.000
426.800

44.195

5.000
746.600

46.253

5.000
496.800

35.506

5.000
399.600

27.592

5.000
390.400

18.188
t = 70.763 38.141 26.954 15.640 87.703

G.7.4 DBMS-2 vs. DBMS-3 (C++) Small Sample Test

DBMS 10 Trans 20 Trans 30 Trans 40 T rans 50 T rans
DBMS-2 N

Average 
Sample SD

5.000 
96.200 

1.304

5.000
40.400

5.857

5.000
23.600

0.894

5.000
17.200
0.447

5.000
13.600
0.548

DBMS-3
(C++)

N
Average 

Sample SD

5.000
674.000

58.724

5.000
454.600

54.757

5.000
463.200

8.983

5.000
326.800

26.061

5.000
351.400

8.050
t = -21.996 -16.819 -108.884 -26.560 -93.617
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G .7 .5  D B M S -2  vs. D B M S -3  (E SQ L ) Sm all S am p le  T est

DBMS 10 T rans 20 Trans 30 Trans 40 T rans 50 T rans
DBMS-2 N:

Average: 
Sample SD:

5.000
96.200

1.304

5.000
40.400

5.857

5.000
23.600

0.894

5.000
17.200
0.447

5.000
13.600
0.548

DBMS-3
(ESQL)

N:
Average: 

Sample SD:

5.000
426.800

44.195

5.000
746.600

46.253

5.000
496.800

35.506

5.000
399.600

27.592

5.000
390.400

18.188
t = -16.720 -33.871 -29.791 -30.986 -46.304

G.7.6 DBMS-3 (C++) vs. DBMS-3 (ESQL) Small S am p l; Test

DBMS 10 T rans 20 T rans 30 Trans 40 T rans 50 T rans
DBMS-3

(C++)
N

Average 
Sample SD

5.000
674.000

58.724

5.000
454.600

54.757

5.000
463.200

8.983

5.000
326.800

26.061

5.000
351.400

8.050
DBMS-3
(ESQL)

N
Average 

Sample SD

5.000
426.800

44.195

5.000
746.600

46.253

5.000
496.800

35.506

5.000
399.600

27.592

5.000
390.400

18.188
t = 7.521 -9.109 -2.051 -4.289 -4.385
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APPENDIX H - The X.500 Benchmark

H.l Introduction

This appendix contains support material for Chapter 7. Raw results and a statistical analysis for the X.500 Benchmark arc presented.
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H.2 4 MB Data File from NEXOR Ltd

H .2.1 DBMS-1 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Exact

Wildcard
0.440

10.530
0.100

10.350
0.060
9.550

0.170 
10.750

0.080
9.800

0.050
9.740

0.120
9.830

0.150
8.430

0.050
10.000

0.050
10.320

2 Exact
Wildcard

0.470
10.620

0.100
10.230

0.060
9.630

0.250
10.300

0.090
8.970

0.050
9.010

0.080
10.040

0.120
7.280

0.060
9.280

0.050
10.800

3 Exact
Wildcard

0.610
10.450

0.170
10.140

0.100
9.030

0.170
11.080

0.200
9.620

0.050
11.300

0.110 
9.700

0.100
7.530

0.050
10.820

0.050
10.610

4 Exact
Wildcard

0.580
11.180

0.100
9.870

0.080
9.800

0.170
11.650

0.080
10.160

0.050
10.400

0.090
9.820

0.100
7.680

0.060
8.920

0.130
9.430

5 Exact
Wildcard

0.450
9.950

0.100
9.300

0.080
9.600

0.280
11.450

0.090
9.430

0.050
9.140

0.130
11.330

0.100
7.170

0.050
9.080

0.050
10.200

H .2.2 DBMS-2 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Exact

Wildcard
2.890

36.490
0.040
3.690

0.120
3.010

0.590
3.530

0.160
19.710

0.040
4.020

0.190
4.450

0.090
2.680

0.030
3.240

0.050
3.380

2 Exact
Wildcard

3.550
27.891

0.040
21.390

0.120
3.340

0.560
3.810

0.130
3.150

0.050
3.320

0.250
3.220

0.110
2.560

0.050
3.130

0.100
3.530

3 Exact
Wildcard

2.190
25.550

0.030
3.050

0.100
21.939

0.360
3.500

0.110
3.060

0.030
4.520

0.140
3.270

0.070
2.870

0.030
3.790

0.050
3.450

4 Exact
Wildcard

2.760
35.230

0.040
3.260

0.100
3.360

0.470
3.460

0.100
3.290

0.030
3.620

0.170
3.220

0.090
22.410

0.030
3.200

0.050
3.380

5 Exact
Wildcard

2.670
44.418

0.040
4.780

0.110
5.180

0.460
4.360

0.100
2.900

0.040
2.970

0.220
3.140

0.090
2.760

0.030
3.180

0.050
4.630
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H.2.3 DBMS-3 RaM' Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Exact

Wildcard
1.380

56.430
0.160

83.049
0.400

84.161
0.280

172.480
0.360

625.721
0.120

321.630
0.110

565.643
0.100

230.020
0.860

248.820
0.160 

31 1.810
2 Exact

Wildcard
1.700

57.400
0.160

74.129
0.390

33.460
0.300

147.350
0.340

153.380
0.110

182.471
0.110

258.130
0.100 

234.431
0.190

255.271
0.160

281.220
3 Exact

Wildcard
1.450

57.010
0.170

81.680
0.370

32.360
0.320

143.940
0.380

157.891
0.160

204.039
0.150

204.872
0.140

169.300
0.110

220.271
0.160

281.069
4 Exact

Wildcard
1.280

56.890
0.160

76.150
0.360

29.990
1.530

131.951
0.350

147.510
0.130

191.531
0.120

203.581
0.120

144.510
0.110

212.381
0.110

304.350
5 Exact

Wildcard
1.780

N/A
0.170

N/A
0.350

N/A
0.250

N/A
0.340

N/A
0.110

N/A
1.410

N/A
0.130

N/A
0.080

N/A
0.130

N/A

DBMS-3 failed benchmark run 5 of the W ildcard test.

H.2.4 DBMS-1 Average and Sample Standard Deviation

Benchmark Exact
Cold

Exact
Warm

Wildcard Wildcard 
Cold Wann

1 0.440 0.092 10.530 9.863
2 0.470 0.096 10.620 9.504
3 0.610 0.111 10.450 9.981
4 0.580 0.096 11.180 9.748
5 0.450 0.103 9.950 9.633

Average: 0.510 0.100 10.546 9.746
Sample SD: 0.079 0.008 0.439 0.187
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H .2.5  D B M S -2  A verage and S am p le  S tan dard  D ev ia tion

Benchmark Exact Exact Wildcard Wildcard
Cold Warm Cold Warm

1 2.890 0.146 36.490 5.301
2 3.550 0.157 27.891 5.272
3 2.190 0.102 25.550 5.494
4 2.760 0.120 35.230 5.467
5 2.670 0.127 44.418 3.766

Average: 2.812 0.130 33.916 5.060
Sample SD: 0.490 0.022 7.499 0.730

H.2.6 DBMS-3 Average and Sample Standard Deviation

Benchmark Exact Exact Wildcard Wildcard
Cold Warm Cold Warm

1 1.380 0.283 56.430 293.704
2 1.700 0.207 57.400 179.982
3 1.450 0.218 57.010 166.158
4 1.280 0.332 56.890 160.217
5 1.780 0.330 N/A N/A

Average: 1.518 0.274 56.933 200.015
Sample SD: 0.213 0.060 0.400 63.006

DBMS-3 failed benchmark run 5 of Ihe Wildcard test.
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H .2.7 D B M S-1 vs. D B M S-2 Sm all S am p le  T est

DBMS Exact Exact 
Cold Warm

Wildcard Wildcard 
Cold Warm

DBMS-1 N
Average 

Sample SD

5.000 5.000 
0.510 0.100 
0.079 0.008

5.000 5.000 
10.546 9.746 
0.439 0.187

DBMS-2 N
Average 

Sample SD

5.000 5.000 
2.812 0.130 
0.490 0.022

5.000 5.000 
33.916 5.060 

7.499 0.730
t = -10.370 -3.004 -6.957 13.903

H.2.8 DBMS-1 vs. DBMS-3 Small Sample Test

DBMS Exact Exact 
Cold Warm

Wildcard Wildcard 
Cold Warm

DBMS-1 N
Average 

Sample SD

5.000 5.000 
0.510 0.100 
0.079 0.008

5.000 5.000 
10.546 9.746 
0.439 0.187

DBMS-3 N
Average 

Sample SD

5.000 5.000 
1.518 0.274 
0.213 0.060

4.000 4.000 
56.933 200.015 

0.400 63.006
t = -9.906 -6.492 -163.571 -6.877

The number of degrees of freedom for Wildcard is 7, so for a =0 .05  the critical value of t is ± 2.37.
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H .2.9  D B M S -2  vs. D B M S -3  Sm all S am p le  T est

DBMS Exact Exact Wildcard Wildcard
Cold Warm Cold Warm

DBMS-2 N: 5.000 5.000 5.000 5.000
Average: 2.812 0.130 33.916 5.060

Sample SD: 0.490 0.022 7.499 0.730
DBMS-3 N: 5.000 5.000 4.000 4.000

Average: 1.518 0.274 56.933 200.015
Sample SD: 0.213 0.060 0.400 63.006

t = 5.414 -5.064 -6.046 -7.045

The number of degrees of freedom for W ildcard is 7, so for a = 0.05 the critical value of / is ± 2.37.
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APPENDIX I - The GIS Benchmark

I.l Introduction

This appendix contains support material for Chapter 7. Raw results and a statistical analysis for the GIS Benchmark are presented.
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1.2 11 MB Data File

1.2.1 DBMS-1 Average and Sample Standard Deviation

Benchmark Spatial Keyword Keyword and 
Spatial

Total

1 100.723 1.670 1.080 103.473
2 117.527 1.540 1.080 120.147
3 101.979 1.600 1.060 104.639
4 126.669 2.960 2.000 131.629
5 107.031 1.590 1.080 109.701

Average: 110.786 1.872 1.260 113.918
Sample SD: 11.075 0.610 0.414 11.890

1.2.2 DBMS-2 Average and Sample Standard Deviation

Benchmark Spatial Keyword Keyword and 
Spatial

Total

1 13.270 11.500 10.830 35.600
2 20.590 7.620 2.160 30.370
3 22.060 23.730 3.530 49.320
4 15.740 17.420 2.620 35.780
5 14.300 14.580 1.740 30.620

Average: 17.192 14.970 4.176 36.338
Sample SD: 3.908 6.102 3.779 7.709
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1.2.3 D B M S-3 A verage and S am p le S tan d ard  D eviation

Benchmark Spatial Keyword Keyword and 
Spatial

Total

1 408.370 15.410 11.650 435.430
2 420.020 16.830 11.780 448.630
3 396.354 15.250 11.680 423.284
4 381.140 15.700 11.630 408.470
5 409.492 16.750 12.130 438.372

Average: 403.075 15.988 11.774 430.837
Sample SD: 14.855 0.750 0.207 15.426

1.2.4 DBMS-1 vs. DBMS-2 Small Sample Test

DBMS Spatial Keyword Keyword and 
Spatial

Total

DBMS-1 N: 5.000 5.000 5.000 5.000
Average: 110.786 1.872 1.260 113.918

Sample SD: 11.075 0.610 0.414 11.890
DBMS-2 N: 5.000 5.000 5.000 5.000

Average: 17.192 14.970 4.176 36.338
Sample SD: 3.908 6.102 3.779 7.709

t = 17.820 -4.776 -1.715 12.242
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1.2.5 D B M S-1 vs. D B M S -3  S m all S am p le  T est

DBMS Spatial Keyword Keyword and 
Spatial

Total

DBMS-1 N 5.000 5.000 5.000 5.000
Average 110.786 1.872 1.260 113.918

Sample SD 11.075 0.610 0.414 11.890
DBMS-3 N 5.000 5.000 5.000 5.000

Average 403.075 15.988 11.774 430.837
Sample SD 14.855 0.750 0.207 15.426

t = -35.273 -32.645 -50.806 -36.386

1.2.6 DBMS-2 vs. DBMS-3 Small Sample Test

DBMS Spatial Keyword Keyword and 
Spatial

Total

DBMS-2 N: 5.000 5.000 5.000 5.000
Average: 17.192 14.970 4.176 36.338

Sample SD: 3.908 6.102 3.779 7.709
DBMS-3 N: 5.000 5.000 5.000 5.000

Average: 403.075 15.988 11.774 430.837
Sample SD: 14.855 0.750 0.207 15.426

t = -56.175 -0.370 -4.489 -51.154
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APPENDIX J - The OO-Fin Benchmark

J .l Introduction

This appendix contains support material for Chapter 7. Raw results and a statistical analysis for the OO-Fin Benchmark are presented.
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J.2 Small Database

J.2.1 DBMS-1 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup

Traversal
1.300 
9.010

1.100
10.620

0.760
14.400

2.050
7.070

1.400
9.660

1.550
4.720

2.390
5.920

1.660
5.010

0.470
3.700

0.450
2.790

2 Lookup 
T raversal

1.390
13.950

1.050
10.040

0.430
5.250

1.350
3.860

1.180
4.720

0.920
2.870

1.880
3.050

2.040
2.410

0.730
2.640

0.600
2.480

3 Lookup 
T raversal

1.520
8.310

1.250
5.540

0.560
4.580

2.000
3.270

1.240
2.180

1.230
2.200

1.980
2.730

1.950
2.270

1.270
2.170

0.620
2.180

4 Lookup 
T raversal

2.150
8.300

1.770 
6.070

0.480
7.030

2.200
4.820

0.950
4.430

1.200
5.970

2.900
4.400

1.280
4.550

0.490
10.950

0.450
14.420

5 Lookup 
T raversal

2.800
8.610

1.600
5.940

0.520
7.810

3.080
6.820

1.420
5.150

1.530
4.230

4.030
2.600

3.090
2.370

1.330
2.080

1.170
2.100

J.2.2 DBMS-2 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup

Traversal
9.310

12.330
1.130
1.350

0.180
1.340

0.980
1.350

1.070
2.610

0.970
1.370

1.240
1.370

1.240
1.370

0.210
1.380

0.200
1.370

2 Lookup 
T raversal

6.760
14.170

1.090
1.530

0.210
1.440

1.120
1.510

0.900
1.540

1.020
1.480

0.930
1.680

0.630
1.640

0.170
1.660

0.180
1.600

3 Lookup 
T raversal

10.520
17.850

1.340
1.340

0.190
1.380

1.160
1.330

1.030
1.350

0.930
1.320

1.190
1.310

1.030
1.320

0.240
1.380

0.190
1.340

4 Lookup 
T raversal

6.830
18.000

1.170
1.440

0.180
1.380

1.160
1.350

1.450
1.320

1.190
1.310

1.330
1.310

0.950
1.330

0.220
1.350

0.300
1.430

5 Lookup 
T raversal

6.120
15.920

1.380
1.370

0.250
1.400

1.360
1.410

0.980
1.380

0.830
1.370

0.940
1.370

1.000
1.370

0.170
1.370

0.170
1.410
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J .2 .3  D B M S -3  R aw  R esu lts

Benchmark Measure Run l Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 

T ravcrsal
5.920

37.640
2.910
1.970

0.300
1.940

3.110
1.950

2.780
1.960

3.130
1.950

3.740
2.030

3.370
1.960

0.630
1.980

0.630
1.930

2 Lookup 
T ravcrsal

6.390
31.570

3.550
2.030

0.320
2.020

4.770
1.970

3.180
2.030

3.180
1.990

4.210
1.990

3.980
2.020

0.700
1.960

0.630
1.990

3 Lookup 
T raversal

5.700
35.600

3.170
2.180

0.270
2.000

3.640
1.920

3.150
2.150

3.040
2.280

3.010
2.110

3.150
1.920

0.710
1.950

0.650
2.020

4 Lookup 
T ravcrsal

4.900
33.860

3.520
2.240

0.300
2.350

3.680
2.090

4.160
1.980

4.180
1.910

3.080
1.930

3.130
1.950

0.660
1.930

0.650
1.940

5 Lookup 
T raversal

5.870
48.220

2.820
2.290

0.270
2.190

3.840
2.030

4.110
2.600

4.120
2.190

3.850
2.540

4.080
2.360

0.780
1.940

0.660
1.940

J.2.4 DBMS-1 Average and Sample Standard Deviation

Benchmark Lookup Lookup 
Cold Warm

Traversal Traversal 
Cold Wann

1 1.300 1.314 9.010 7.099
2 1.390 1.131 13.950 4.147
3 1.520 1.344 8.310 3.013
4 2.150 1.302 8.300 6.960
5 2.800 1.974 8.610 4.344

Average: 1.832 1.413 9.636 5.113
Sample SD: 0.635 0.324 2.429 1.823
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J .2 .5  D B M S -2  A verage and  Sam p le S tan d ard  D eviation

Benchmark Lookup Lookup 
Cold Warm

T raversal 
Cold

T ravcrsal 
Warm

1 9.310 0.802 12.330 1.501
2 6.760 0.694 14.170 1.564
3 10.520 0.811 17.850 1.341
4 6.830 0.883 18.000 1.358
5 6.120 0.787 15.920 1.383

Average: 7.908 0.795 15.654 1.429
Sample SD: 1.902 0.068 2.431 0.098

J.2.6 DBMS-3 Average and Sample Standard Deviation

Benchmark Lookup Lookup 
Cold Wann

Traversal Traversal 
Cold Warm

1 5.920 2.289 37.640 1.963
2 6.390 2.724 31.570 2.000
3 5.700 2.310 35.600 2.059
4 4.900 2.596 33.860 2.036
5 5.870 2.726 48.220 2.231

Average: 5.756 2.529 37.378 2.058
Sample SD: 0.543 0.216 6.459 0.103
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J .2 .7  D B M S-1 vs. D B M S -2  Sm all S am p le  T est

DBMS Lookup Lookup 
Cold Warm

Traversal
Cold

T raversal 
Warm

DBMS-1 N: 5.000 5.000 5.000 5.000
Average: 1.832 1.413 9.636 5.113

Sample SD: 0.635 0.324 2.429 1.823
DBMS-2 N: 5.000 5.000 5.000 5.000

Average: 7.908 0.795 15.654 1.429
Sample SD: 1.902 0.068 2.431 0.098

t = -6.776 4.167 -3.915 4.512

J .2.8 DBMS-1 vs. DBMS-3 Small Sample Test

DBMS Lookup Lookup 
Cold Warm

Traversal
Cold

T raversal 
Wann

DBMS-1 N: 5.000 5.000 5.000 5.000
Average: 1.832 1.413 9.636 5.113

Sample SD: 0.635 0.324 2.429 1.823
DBMS-3 N: 5.000 5.000 5.000 5.000

Average: 5.756 2.529 37.378 2.058
Sample SD: 0.543 0.216 6.459 0.103

t = -10.503 -6.401 -8.989 3.741
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J .2.9  D B M S -2  vs. D B M S -3  Sm all S am p le  T est

DBMS Lookup Lookup 
Cold Warm

T ravei sal 
Cold

T raversal 
Warm

DBMS-2 N: 5.000 5.000 5.000 5.000
Average: 7.908 0.795 15.654 1.429

Sample SD: 1.902 0.068 2.431 0.098
DBMS-3 N: 5.000 5.000 5.000 5.000

Average: 5.756 2.529 37.378 2.058
Sample SD: 0.543 0.216 6.459 0.103

t = 2.433 -17.115 -7.038 -9.868

J.3 Large Database

J.3.1 DBMS-1 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run8 Run 9 Run 10
1 Lookup 

T raversal
1.230

50.740
2.090

65.011
2.110

56.620
1.450

46.781
1.270

58.510
1.370

61.900
2.450

56.140
2.080

61.580
1.580

56.310
1.300

56.419
2 Lookup 

T raversal
2.080

52.109
1.530

46.800
1.370

45.880
1.480

47.741
1.250

45.250
1.540

45.050
1.560

45.530
1.190

48.650
1.130

44.360
1.050

45.620
3 Lookup 

T raversal
1.410

53.800
1.440

64.060
1.280 

54.031
1.800

51.040
1.230

51.260
1.520

49.750
1.430

48.730
1.370

54.200
1.050

51.000
1.020

54.420
4 Lookup 

T raversal
1.990

53.951
1.610

64.520
1.770

55.911
1.900

64.150
1.600

65.700
2.170

70.479
2.400

78.651
2.000

75.850
1.660

56.830
1.450

49.350
5 Lookup

Traversal
1.480

48.920
1.100

67.120
1.290

70.461
1.430

58.100
1.180

64.760
1.420

53.760
1.600

49.070
1.350

48.180
1.750

44.620
1.330

58.340
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J .3 .2  D B M S -2  R aw  R esu lts

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup

Traversal
9.170

197.710
2.140

108.910
1.840 

139.479
2.510

146.091
7.180

131.030
2.240

113.290
2.530

124.941
2.520

149.910
1.260

114.229
1.390

141.131
2 Lookup

Traversal
6.290

209.826
1.660

143.441
1.580

103.642
1.470

130.701
1.500

92.900
1.450

116.111
1.670

126.710
1.510

107.359
1.110

142.530
1.220

174.341
3 Lookup 

T raversal
6.320

198.679
2.090

134.613
1.610

147.014
1.410 

113.492
1.950 

114.110
6.400

133.244
1.390

111.161
1.500

107.572
1.060

113.129
1.070

115.680
4 Lookup 

T ravcrsal
8.270

247.071
1.900

145.850
1.700

205.719
1.680

222.060
1.640

249.211
1.570

144.510
1.860

106.450
1.600

99.290
1.160

134.232
1.190

188.347
5 Lookup 

T raversal
6.770

208.982
1.930

130.809
1.910

136.939
1.540 

114.999
1.520

139.202
1.350 

140.111
1.990

139.701
8.590

99.651
1.670

107.979
1.090

149.032

J.3.3 DBMS-3 Raw Results

Benchmark Measure Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 Lookup 

T ravcrsal
4.710

16305.694
2.240

N/A
2.450

N/A
2.550

N/A
2.510

N/A
2.750

N/A
3.330

N/A
3.810

N/A
3.150

N/A
3.270

N/A
2 Lookup 

T raversal
5.680

N/A
2.530

N/A
2.580

N/A
2.440

N/A
2.530

N/A
2.830

N/A
3.020

N/A
3.000

N/A
3.120

N/A
3.030

N/A
3 Lookup

Traversal
5.130

N/A
2.490

N/A
2.590

N/A
2.460

N/A
2.550

N/A
2.770

N/A
3.070

N/A
3.040

N/A
3.020

N/A
3.140

N/A
4 Lookup 

T ravcrsal
4.470

N/A
2.210

N/A
2.380

N/A
2.600

N/A
2.510

N/A
3.170

N/A
3.040

N/A
2.860

N/A
3.070

N/A
2.910

N/A
5 Lookup 

T ravcrsal
6.940

N/A
6.450

N/A
6.530

N/A
4.190

N/A
7.650

N/A
3.350

N/A
3.710

N/A
3.600

N/A
3.730

N/A
3.320

N/A

DBMS-3 failed most of the Traversal tests.
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J .3 .4  D B M S-1 A verage and  S am p le  S tan d ard  D eviation

Benchmark Lookup Lookup 
Cold Warm

Traversal
Cold

T raversal 
Warm

1 1.230 1.744 50.740 57.697
2 2.080 1.344 52.109 46.098
3 1.410 1.349 53.800 53.166
4 1.990 1.840 53.951 64.605
5 1.480 1.383 48.920 57.157

Average: 1.638 1.532 51.904 55.745
Sample SD: 0.375 0.240 2.126 6.783

J.3.5 DBMS-2 Average and Sample Standard Deviation

Benchmark Lookup Lookup 
Cold Warm

T raversal 
Cold

T raversal 
Warm

1 9.170 2.623 197.710 129.890
2 6.290 1.463 209.826 126.415
3 6.320 2.053 198.679 121.113
4 8.270 1.589 247.071 166.185
5 6.770 2.399 208.982 128.714

Average: 7.364 2.025 212.454 134.463
Sample SD: 1.292 0.501 20.152 18.050
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J .3 .6  D B M S -3  A verage and S am p le  S tan d ard  D ev ia tion

Benchmark Lookup Lookup 
Cold Wann

T ravcrsal 
Cold

T ravcrsal 
Wann

1 4.710 2.895 16305.694 N/A
2 5.680 2.787 N/A N/A
3 5.130 2.792 N/A N/A
4 4.470 2.750 N/A N/A
5 6.940 4.726 N/A N/A

Average: 5.386 3.190 16305.694 N/A
Sample SD: 0.983 0.860 N/A N/A

DBMS-3 failed most of the Traversal tests.

J.3.7 DBMS-1 vs. DBMS-2 Small Sample Test

DBMS Lookup Lookup 
Cold Warm

Traversal Traversal 
Cold Wann

DBMS-1 N
Average 

Sample SD

5.000 5.000 
1.638 1.532 
0.375 0.240

5.000 5.000 
51.904 55.745 

2.126 6.783
DBMS-2 N

Average 
Sample SD

5.000 5.000 
7.364 2.025 
1.292 0.501

5.000 5.000 
212.454 134.463 

20.152 18.050
1 = -9.516 -1.986 -17.716 -9.129
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J .3 .8  D B M S-1 vs. D B M S -3  S m all S am p le  T est

DBMS Lookup Lookup 
Cold Warm

Traversal Traversal 
Cold Warm

DBMS-1 N
Average 

Sample SD

5.000 5.000 
1.638 1.532 
0.375 0.240

5.000 5.000 
51.904 55.745 

2.126 6.783
DBMS-3 N

Average 
Sample SD

5.000 5.000 
5.386 3.190 
0.983 0.860

1.000 N/A 
16305.694 N/A 

N/A N/A
t = -7.968 -4.150 N/A N/A

DBMS-3 failed most of the Traversal tests, so the value of t cannot be calculated.

J.3.9 DBMS-2 vs. DBMS-3 Small Sample Test

DBMS Lookup Lookup 
Cold Warm

Traversal
Cold

Traversal
Warm

DBMS-2 N: 5.000 5.000 5.000 5.000
Average: 7.364 2.025 212.454 134.463

Sample SD: 1.292 0.501 20.152 18.050
DBMS-3 N: 5.000 5.000 1.000 N/A

Average: 5.386 3.190 16305.694 N/A
Sample SD: 0.983 0.860 N/A N/A

t = 2.725 -2.616 N/A N/A

DBMS-3 failed most of the Traversal tests, so the value of t cannot be calculated.
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