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Abstract

In the last decade, a remarkable number of open Knowledge Graphs (KGs) were de-

veloped, such as DBpedia, NELL, and YAGO. While some of such KGs are curated

via crowdsourcing platforms, others are semi-automatically constructed. This has re-

sulted in a significant degree of semantic heterogeneity and overlapping facts. KGs are

highly complementary; thus, mapping them can benefit intelligent applications that

require integrating different KGs such as recommendation systems, query answering,

and semantic web navigation.

Although the problem of ontology matching has been investigated and a significant

number of systems have been developed, the challenges of mapping large-scale KGs

remain significant. KG matching has been a topic of interest in the Semantic Web

community since it has been introduced to the Ontology Alignment Evaluation Ini-

tiative (OAEI) in 2018. Nonetheless, a major limitation of the current benchmarks is

their lack of representation of real-world KGs. This work also highlights a number of

limitations with current matching methods, such as: (i) they are highly dependent on

string-based similarity measures, and (ii) they are primarily built to handle well-formed

ontologies. These features make them unsuitable for large, (semi/fully) automatically

constructed KGs with hundreds of classes and millions of instances. Another limitation

of current work is the lack of benchmark datasets that represent the challenging task

of matching real-world KGs.

This work addresses the limitation of the current datasets by first introducing two

gold standard datasets for matching the schema of large, automatically constructed,

less-well-structured KGs based on common KGs such as NELL, DBpedia, and Wiki-

data. We believe that the datasets which we make public in this work make the largest

domain-independent benchmarks for matching KG classes. As many state-of-the-art

methods are not suitable for matching large-scale and cross-domain KGs that often

suffer from highly imbalanced class distribution, recent studies have revisited instance-

based matching techniques in addressing this task. This is because such large KGs often
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lack a well-defined structure and descriptive metadata about their classes, but contain

numerous class instances. Therefore, inspired by the role of instances in KGs, we pro-

pose a hybrid matching approach. Our method composes an instance-based matcher

that casts the schema-matching process as a text classification task by exploiting in-

stances of KG classes, and a string-based matcher. Our method is domain-independent

and is able to handle KG classes with imbalanced populations. Further, we show that

incorporating an instance-based approach with the appropriate data balancing strategy

results in significant results in matching large and common KG classes.
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Jana; Yaman, Beyza; Zamazal, Ondrej; Zhou, Lu. Results of the Ontology Align-

ment Evaluation Initiative 2021. In: Proceedings of the 16th International Work-

shop on ontology matching, co-located with the 20th International Semantic Web

Conference (ISWC 2021).

• Pour, Mina Abd Nikooie; Algergawy, Alsayed; Buche, Patrice; Castro, Leyla

J.; Chen, Jiaoyan; Dong, Hang; Fallatah, Omaima; Faria, Daniel; Fundulaki,

Irini; Hertling, Sven; He, Yuan; Horrocks, Ian; Huschka, Martin; Ibanescu, Lil-
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CHAPTER 1. INTRODUCTION 2

1.1 Research Context

The amount of information shared throughout the web has been growing continuously.

This has led to a growing number of data mining studies that looked at building

Knowledge Graphs (KGs) by automatically extracting information from unstruc-

tured web pages. KG is a unique data structure for representing real-world entities

in a structured and connected fashion (Heist et al. 2020). KGs contain heterogeneous

yet a large amount of highly complementary facts. Therefore, they have potential

in a wide range of downstream applications such as reasoning, query answering, e-

commerce, and semantic web navigation (Pujara et al. 2013). KGs have gained more

attention in recent years due to the progress of the Web towards the Semantic Web

vision (Berners-Lee et al. 2001). The goal of the Semantic Web is to offer machine-

readable and well-formatted web data and to facilitate sharing and reusing knowledge

such as those annotated in ontologies and KGs (Clarkson et al. 2018).

Over the last decade, there has been significant growth in the creation and applica-

tion of KGs. For instance, they are utilized by large companies such as Google, Face-

book, and Microsoft. Besides such proprietary KGs, there are a number of large com-

mon KGs published based on the Semantic Web standards including DBpedia (Lehmann

et al. 2015), NELL (Carlson et al. 2010), and YAGO (Suchanek et al. 2007). These

KGs are domain-independent, i.e., carries data from multiple domains such as med-

ical, music, publications, and organizations (Suchanek et al. 2012). Moreover, due

to their automatically-constructed and independently-designed nature, such datasets

contain overlapping and complementary facts. For instance, Bone and Artery can be

classified under BodyPart in NELL while being classified as Anatomical Structure

in DBpedia. In Semantic Web, this problem is referred to as semantic heterogeneity.

Research in this area have investigated this problem and many matching systems have

been developed and surveyed (Euzenat et al. 2011, Otero-Cerdeira et al. 2015). KGs

are often compared to ontologies, as both are a form of data representation. However,

KGs are less well-structured in comparison to ontologies. The following section defines

ontologies in the context of this work, as well as the ontology matching task.
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1.2 Ontology and Ontology Matching

In the Semantic Web, an ontology is a formal means of representing, sharing, and

reusing knowledge across semantic-web applications (Ochieng & Kyanda 2018). It

defines concepts of a particular domain along with their relationships in the context

of that domain following a hierarchical taxonomy structure. Moreover, unlike KGs

ontologies are typically domain-dependent, i.e., it is unlikely to have an ontology that

combines multiple domains. For instance, a biomedical ontology can describe the use

of a specific medicine and deducts its compositions and how they are related. An

ontology consists of a schema layer and a data layer. The Schema layer defines the

classes that the ontology use, it is typically referred to as the Terminology Box

(T-Box). Classes are the domain concepts that the ontology describes, for instance,

Author and ConferenceMember in Figure 1.1 below. A class can have subclasses,

for instance, Author is a subclass of ConferenceMember. Instances are individuals

of classes that describe real-world entities, for instance, a specific author’s details.

Moreover, instances are the main component of the data layer, which is identified as

the Assertion Box (A-Box) (Zhu & Iglesias 2016). Further, classes and instances

are considered entities of an ontology. Entities may have a set of mutual properties,

e.g., email and has email are properties of classes person and Human. Each property

also has a data type, which specifies the format that a property can hold, e.g., email

can be defined as String. The value of a property can be restricted with a range such

as [2-8]. An entity can also have a name or label that annotates classes and instances,

and a comment, which is a longer description of an entity. Since ontology encapsulates

data to be processed or integrated into different applications, a standard language is

needed to describe the knowledge. There are two knowledge representation languages

that are broadly used to construct ontologies and KGs, which are the Web Ontology

Language (OWL) and The Resource Description Framework (RDF) (Euzenat et al.

2007).

Ontologies are highly heterogeneous, i.e., different words are used to describe simi-

lar entities. In addition to entities having similar names, there are different sources of

heterogeneity in ontologies. For instance, given two ontologies that describe the same

domain, a class can only be part of one ontology and missing in another. Two classes

can also be similar but not identical (e.g., Author and Regular Author in Figure 1.1).

Moreover, these facts are encapsulated in ontologies that have been designed indepen-
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Figure 1.1: Ontology example adapted from (Euzenat et al. 2011)

dently. While it can be easy for a human to distinguish semantically similar classes,

computer applications need to be trained in order to be able to understand such knowl-

edge. As a result, applications that map heterogeneous facts have been developed for

the purpose of merging the knowledge embedded in distinct ontologies. To resolve this

issue, Ontology Matching (OM) was introduced, which is the process of discovering

correspondences between two different ontologies (Euzenat et al. 2011). A Corre-

spondence can be obtained by mapping similar entities (e.g., classes, instances, and

properties). In Figure 1.1 above, correspondences are shown as double-ended arrows

that map entities from the two ontologies. Correspondences can be either equivalence

or subsumption. Equivalence (≡) infers that two classes are equivalent (e.g., Chairman

and Chair). Whereas subsumption (v,w) represents more/less general relationships.

For instance, Author is more general than the class RegularAuthor. Ontology match-

ing can be targeted at one of the two ontology layers. Some methods are focused on

matching the schema (T-Box), i.e., classes and properties, while others are targeted

towards matching the instances or A-Box. In addition, some matching methods are

capable of producing matching of both layers (Suchanek et al. 2012). The area of

developing OM solutions has been gaining more attention as the number of shared

ontologies and knowledge graphs are increasing (Anam et al. 2015). This problem of
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semantic heterogeneity has been well studied since 2004, with matching systems being

annually evaluated through the Ontology Alignment Evaluation Initiative (OAEI 1).

1.3 Research Motivation

As we mentioned earlier common KGs are highly complementary, therefore, they are

often integrated in several downstream applications such as reasoning and query an-

swering. Despite the growth in such KGs, one problem is dealing with the quality of

the data generated automatically. Due to their nature of being largely generated in

a semi-automated manner, KGs are less well-formed compared to manually created

and well-designed ontologies. This has resulted in continuous efforts to facilitate refin-

ing their entities by increasing their coverage (i.e., completion), and detecting errors

(i.e.,correctness) (Paulheim 2017). To achieve this, mapping and aligning KGs at both

data and schema level is crucial. By design, KGs are known for their large number

of instances (ABox). Therefore, the majority of current methods focus on matching

their instances. However, recent studies have shown that the problem of matching KGs

schema (TBox) remains a challenging task (Rahm & Peukert 2019, Hertling & Paul-

heim 2020b). Moreover, many KG matching methods use previously aligned schema

to generate and refine instance matching results (Hertling & Paulheim 2020a).

While the challenges of ontology matching have been well-studied in recent years,

the challenges of mapping large-scale KGs remain significant. The state-of-the-art

matching methods have many limitations. First, a common concern with such meth-

ods is their scalability to map larger datasets. KGs are larger in scale, with millions of

instances and hundreds of classes resulting from web mining efforts. Second, state-of-

the-art matching methods are highly dependent on terminological and structural-based

techniques. The reason is that ontologies in domains such as life sciences share a signif-

icant amount of terminological similarities, such as prefixes and suffixes. In contrast,

KGs are often domain-independent and their classes contain information about real-

world entities described with different vocabularies. Third, state-of-the-art systems

are explicitly designed to process well-formatted ontologies, unlike KGs which mostly

lack a detailed systematic structure. Due to their automatically generated nature,

classes in KGs are known to be inconstant, unbalanced, and incomplete. E.g., NELL’s

Country class is arguably complete due to the limited number of instances in reality,

1https://oaei.ontologymatching.org

https://oaei.ontologymatching.org
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while Athlete class is continuously growing. Fourth, the literature indicates a lack of

studies that address OM methods for KGs. This has resulted from the lack of datasets

that represent unbalanced, large-scale, domain-independent KGs.

1.4 Research Questions

The main question that this thesis aims to answer is How can we effectively map

the classes of large KGs? Due to such KGs having an abundant of instances, our

hypothesis is that utilizing their instances to match the schema can be beneficial. In

order to verify this, we further divide this question into three subordinate research

questions, each aims to focus on a specific aspect of the task. The research questions

are listed below.

• RQ1: What are the current KG matching benchmarks, and how can we construct

one that is more representative of the large KG matching problem?

• RQ2: Given the large yet unbalanced number of instances in KG classes, how

can we make use of them effectively in machine learning?

• RQ3 How can we effectively utilize instances to match KG classes while address-

ing the unbalanced population issue?

1.5 Research Aim and Objectives

The aim of this research is to develop a novel matching method specifically tailored

to large, semi-automatically constructed, inadequately structured, and multi-domain

KGs. The key objectives of our research are:

• To investigate the current literature on matching techniques in order to develop

a matching method that addresses the challenges introduced by such KGs.

• To construct large-scale golden standard benchmarks of aligned classes from real-

world KGs. Those golden standards are to be used in order to evaluate the

performance of our proposed methods and to be publicly available.

• To develop a novel matching approach that automatically maps the schema (T-

Box) of two large and automatically created KGs by utilizing their data level

(A-Box) for the matching task.



CHAPTER 1. INTRODUCTION 7

• To deliver a comparative evaluation of our method on the produced gold standard

dataset as well as against state-of-the-art and current matching methods.

1.6 Research Contributions

This thesis presents a novel data-driven approach for mapping classes in large and

common KGs. We contribute to the literature in a number of ways:

• An in-depth study of current ontology matching techniques, combining different

techniques and evaluation tools. This analysis also includes a synthesis of state-

of-the-art matching systems and their role in mapping large and common KGs.

• A benchmark consisting of two gold standard mappings constructed from four

large-scale and publicly available KGs. This benchmark makes the largest domain-

independent gold standard in the context of KGs schema matching. Both datasets

have been added to the OAEI’s annual matching evaluation campaign in 2021.

• An approach of constructing a machine learning model that is able to classify

instance names into KG classes. This method is also domain independent and is

able to cope with KGs with inconsistent and imbalanced class distribution. This

approach is not only relevant to KG matching but can also be adapted for other

tasks such as ontology population.

• A hybrid matching method that integrates multiple matching techniques where

one uses only instances data to generate matching class pairs by incorporating

the use of the KG instance classifier approach.

• A prototype, named KGMatcher+, that implements our matching approach. KG-

Matcher+ has participated in OAEI2021 and OAEI2022 and has been ranked as

the best-performing system in the task of matching large-scale and common KGs.

1.7 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 gives an overview of the ontology matching problem, with an in-depth

analysis of current similarity techniques used by existing methods. This chapter also
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covers different essential aspects of matching systems, including combining different

methods and evaluation processes. It ends with a study of current state-of-the-art

systems used for KGs matching and a discussion of some of their limitations.

Chapter 3 details the approach of creating benchmark datasets for matching the

schema of large-scale, automatically constructed, and multi-domain KGs. The first

dataset is generated from NELL and DBpedia, two KGs with high influence in many

semantic web applications, but their schema has not been interlinked before. In ad-

dition, we expand the current links between the schema of YAGO and Wikidata to

propose a second benchmark for this task.

Chapter 4 presents our approach to training KG instance classifiers. The classifiers

are trained using instance names as training data, and they are able to predict a KG

class to which an instance belongs. Further, we experiment with various approaches

to balance the training data, including two new approaches that we introduce. We

also perform multiple experiments on different large KGs datasets to evaluate the

performance of the proposed approach.

Chapter 5 features the implementation of a hybrid matching approach for match-

ing the schema of large-scale KGs. This includes an instance-based method that utilizes

the KG classifiers trained in the aforementioned chapter. Later, we evaluate the pro-

posed method against the state-of-the-art ontology and KGs matching systems based

on different OAEI benchmark datasets, including those proposed by this work. Fi-

nally, we perform a detailed evaluation of the proposed method, including the impact

of different components on its performance.

Chapter 6 summarizes the thesis with remarks of the presented work and concludes

with some outlooks and future work directions.
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2.1 Introduction

In this chapter, we provide an analysis of current techniques used for the ontology

matching task. An overview of the key aspects of the task is provided in Section 2.2,

including different ontology matching techniques introduced in the literature. In Sec-

tion 2.3, we discuss different ontology matching evaluation techniques and current

benchmarks. Further, we particularly highlight the importance of mapping and align-

ing KGs and the current state of this task in Section 2.4. Finally, Section 2.5 sum-

marises and classifies state-of-the-art and recent matching approaches.

2.2 Ontology Matching

Ontology matching (OM) is a pairwise comparison between two distinct ontologies,

e.g., O and O′. It aims to find an alignment set such that A′ ={a1, a2, a3, ax}, which

is a group of correspondences recognized as the output of the ontology matching pro-

cess (Megdiche et al. 2016). As depicted in Figure 2.1, the matching system generally

takes two main inputs, which are the two ontologies to be matched, and an optional

input alignment. The input alignment A consists of mappings that can be improved by

the matching process. Otherwise, it can be used to find additional alignments between

the two input ontologies. The input alignment can be produced either by a different

matching system or manually by a domain expert. An alignment has a cardinality,

which is the number of entities from both ontologies that can be matched (Euzenat

et al. 2011). According to Shvaiko & Euzenat (2011), given a pair of ontologies, “a

correspondence is a 4-tuple such that < id, e, e′, r, n >,” where:

1. id is the identifier for a specific correspondence;

2. e, e′ are entities of the first and second ontologies. These could be classes, prop-

erties, or instances;

3. r is the relation between e and e′, i.e., equivalence (≡), subsumption (v,w);

4. n is a number between [0,1] which represents the confidence value calculated by

the matching method that produced the correspondence.

The key task of an ontology matching system is to determine mappings or corre-

spondences between the entities of the source and target ontology. In order to identify
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Figure 2.1: The ontology matching process adapted from (Shvaiko &
Euzenat 2011)

such a result, similarity measures are utilized to give each pair of entities a number

that expresses the degree of similarity between them. The similarity value is usually

a number between [0.0,1.0]. In the example shown in Figure 1.1 above, a similarity

measure applied to the concepts SubjectArea and Topic can result in a similarity

score of 0.15. The matching system then needs to determine alignment based on that

score.

The majority of current systems apply different basic matchers (to be detailed in

Section 2.2.1), each based on a single similarity measure, to each pair of entities sepa-

rately (Laadhar et al. 2017). It is then necessary to aggregate these correspondences

at the end of the matching process, or at the end of each phase of the process. Basic

matchers use information from one particular aspect of the ontology, such as name or

structure, to calculate the similarity value. Therefore, combining a variety of basic

matchers is considered common practice in ontology matching. The process of aggre-

gating different basic matchers is an essential part of the matching process. Further

discussion of this process is presented in Section 2.2.2 below.

The output of the matching process is an alignment A′, a set of correspondences

identified between pairs of matched ontologies. Alignments can have different cardinali-

ties such as one-to-one, one-to-many, or many-to-many (Gulić et al. 2016). To illustrate,

an alignment that only holds equivalence correspondences is considered a one-to-one

alignment (i.e., one entity in an ontology O can only correspond to one and only one

entity in O′). Both one-to-many and many-to-many alignments are known as complex

alignments, as they can be very challenging to discover. Each correspondence holds a

confidence value, n which denotes the confidence degree of the mappings produced by

the algorithm (Ngo et al. 2011b). This value can be a similarity value either resulting

from one similarity measure or aggregated from various measures. For example, in Fig-



CHAPTER 2. LITERATURE REVIEW 12

ure 1.1, a matching system could produce 0.82 as a confidence value for the mapping

between the two classes Chairman in O and Chair in O′. The correspondence in the

example above could be represented as the following < id2, Chairman, Chair,≡, 0.82 >.

In addition, matching parameters are used to select and filter correspondences. The

goal of using a matching parameter is to manage the quality of the matching system

results. For instance, a threshold filter is utilized by the majority of state-of-the-art

systems. When a threshold value is identified, any correspondence with a confidence

value lower than the threshold is excluded from the final alignment(Gulić et al. 2016).

Another parameter is weight, which is a value that determines the importance of dif-

ferent matchers. Section 2.2.3 discusses different alignment selection methods used by

state-of-the-art ontology matching systems.

The use of background knowledge resources is another key aspect of the schema

and ontology matching process. Many knowledge resources are currently employed to

enhance the accuracy of OM systems by enriching the entities of an ontology with

additional information from such resources (Nguyen & Conrad 2013). WordNet1 and

OpenThesaurus2 are examples of knowledge resources that combine concepts from mul-

tiple domains organized hieratically with different semantic relations such as equal, is-a,

and part-of. Section 2.2.1 covers some current matching methods that use background

knowledge resources.

User involvement is an optional factor in ontology matching systems. Typically,

systems produce a set of candidate mappings before deciding the final set of mappings

that will contribute to the alignment. Different degrees of user involvement or automa-

tion can be adopted by ontology matching systems. A system can be interactive if the

actual mapping between entities has to be confirmed by a human. Other matching

systems list possible correspondences for the user to validate and manually add any

mappings that the algorithm has skipped. Moreover, matching systems can be entirely

automated where machine learning techniques are integrated to determine the final

alignments (Laadhar et al. 2017). Further details of such an approach are provided in

Section 2.2.2.

Although all the above-mentioned aspects play significant roles in the matching

process, the most important part is the combination of matching techniques adopted

by the ontology matching system. In the next section, we will discuss different ontology

matching techniques from the literature.

1https://wordnet.princeton.edu/
2https://www.openthesaurus.de/

https://wordnet.princeton.edu/
https://www.openthesaurus.de/
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Figure 2.2: Classification of ontology matching techniques adapted
from (Euzenat et al. 2007)

2.2.1 Ontology Matching Techniques

Although several basic ontology matching techniques have been introduced in the last

decade, these early techniques are still widely used as essential components in more

recent, complex matching systems. Such matching techniques measure the similarity

of a pair of entities from two ontologies. For example, some techniques only deal with

strings (i.e., textual information) while others are designed to measure the similarity

of the ontology structure. As stated earlier, the majority of matching systems com-

bine different basic matching techniques. The literature suggests different dimensions

for classifying current matching techniques. In the top-down approach shown in Fig-

ure 2.2, OM techniques are divided into: (i) Element-level techniques which isolate the

entities of an ontology from their structure, and relationship to other entities during

the matching process, and (ii) Structural level techniques which take into consideration

the relationship between ontology entities throughout the matching process (Euzenat

et al. 2007).

On the next level, each of these techniques is further divided based on input in-

terpretation into Syntactic and Semantic techniques. Syntactic methods strictly focus

on syntactic and lexical features of surface text forms in isolation from their mean-
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ings. While semantic methods interpret their inputs by using formal semantic models

that help capture the meaning of words and justify their results (Otero-Cerdeira et al.

2015). Examples of semantic relationships found in ontologies that could be measured

for optimal matching are synonyms (equal), hyponyms (is-a), part-of, and has-a. For

example, a matcher that only uses syntactic techniques such as string-based similarity

measures will not capture the relation between car and vehicle, as both are written

differently. Moreover, such techniques will possibly consider words like Cable, Maple,

and Table similar in syntax even though they have different meanings (Arnold & Rahm

2014). Hence, using a semantic-based measure, an OM system will be able to produce

mappings that include entities with different lexical or syntactic forms.

Matching techniques can also be classified based on their inputs to Content-based

and Context-based methods. Context-based methods take as an input two ontologies

to be matched and an external resource that contains information about these on-

tologies and the relationships between their entities. Context-based techniques can

be further divided into semantic techniques which extract information about ontology

entities from external resources, and syntactic, which does not focus on the seman-

tics of entities. On the other hand, content-based techniques are further categorized

based on the actual data that the similarity measure takes as input. Content-based

similarity measures are: (i) terminological techniques methods which deal with textual

content, (ii) Structural techniques that handle the focus on the structure of ontologies,

(iii) Semantics techniques which extract semantic using logic-based models, and finally

(iv) Extensional techniques which take instances as input for the process of matching

classes or properties.

Many studies have analysed and surveyed current OM systems characteristics (Eu-

zenat et al. 2011, Otero-Cerdeira et al. 2015, Anam et al. 2015, Mohammadi et al. 2018).

Table 2.1 summarises current matching systems, particularly those mentioned in this

chapter. The system column represents its name, the alignment level describes whether

the system maps only the schema (T-box) or the instances (A-Box) of the ontology, el-

ement, and structural level techniques lists the techniques used by each system on both

levels, and additional techniques’ column lists any machine learning, neural networks

or rule-based methods applied by the system. In the following sections, we will fol-

low the top-down classification approach proposed by Euzenat et al. (2007), to discuss

these techniques.
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Table 2.1: Summary of current ontology and KG matching systems

System Alignment-level Element-Level techniques
structure-level

techniques
Additional techniques

ASMOV

(Jean-Mary et al. 2009)
T-Box

string similarity

semantic similarity

(WordNet, UMLS)

graph similarity,

internal structure

similarity using

constraint similarity,

instance-based similarity

AgreenmentMaker

(Cruz et al. 2009)
T-Box and A-Box

string similarity

semantic similarity

(WordNet)

graph similarity

(descendant/sibling)

SAMBO

(Lambrix & Tan 2006)
T-Box

string similarity

semantic similarity

(WordNet, UMLS)

Taxonomy similarity
machine learning

(Naive Bayes)

AML

(Faria et al. 2013)
T-Box and A-Box

string similarity

semantic similarity

background

knowledge

graph similarity

(anchor-based)

cardinality filter

coherant filter

COMA/COMA++

(Do & Rahm 2002)

T-Box and

A-Box

string similarity

semantic similarity

(WordNet)

constraint similarity

graph similarity

instance-based similarity
rule-based

CroMatcher

(Gulić et al. 2016)
T-Box

string similarity

constraint similarity

graph similarity

(subclass/superclass)

internal structure similarity

based on constraint

instance-based similarity

(using TF/IDF)

Yam++

(Ngo & Bellahsene 2012)
T-Box and A-Box string similarity

graph similarity

similarity flooding

(similarity propagation)

machine learning

(decision trees, SVM

Naive Bayes)

Falcon-AO

(Hu & Qu 2008)
T-Box

string similarity

semantic similarity

(WordNet)

graph similarity

GLUE

(Doan et al. 2004)
T-Box constraint similarity

taxonomy similarity

instance-based

machine learning

(Naive Bayes)

LogMap

(Jiménez-Ruiz & Cuenca Grau 2011)
T-Box and A-Box

string similarity

semantic similarity

(WordNet, UMLS)

graph similarity

model/logic-based (DL)
rule-based

LSSOM

(Nguyen & Conrad 2015)
T-Box

string similarity

semantic similarity

(WordNet)

graph similarity

XMap/XMap++

(Djeddi & Khadir 2010)
T-Box

string similarity

semantic similarity

(WordNet)

graph similarity

internal structure

similarity using

constraint similarity

POMap/POMap++

(Laadhar et al. 2017)
T-Box

string similarity

semantic similarity

graph similarity

(sibiling-subclass)

self-supervised

machine learning

RiMOM

(Zhang et al. 2016)
T-Box and A-Box

string similarity

semantic similarity

(WordNet)

similarity flooding

(similarity propagation)

instance-based similarity

Malfom-SVM

(Ichise 2008)
T-Box and A-Box

string similarity

semantic similarity

(WordNet)

graph similarity
machine learning

(SVM)

PRIOR+

(Mao et al. 2010)
T-Box and A-Box

string similarity

semantic similarity

similarity flooding

(similarity propagation)
neural networks

Wiktionary

(Portisch et al. 2019)
T-Box and A-Box

string similarity

semantic similarity
-

ALOD2Vec

(Portisch & Paulheim 2018)
T-Box and A-Box

string similarity

semantic similarity
-

LSMatch

(Sharma et al. 2021)
T-Box

string similarity

semantic similarity
-

OTMapOnto

(An et al. 2021)
T-Box semantic similarity -

FCAMapKG

(Chang et al. 2019)
T-Box and A-Box string similarity Formal Concept Ancalysis

ATBox

(Hertling & Paulheim 2020a)
T-Box and A-Box

string similarity

semantic similarity

similar neighbors

instance-based similarity

cardinality filter

type filter

DOME

(Hertling & Paulheim 2019)
T-Box and A-Box

string similarity

semantic similarity
instance-based similarity doc2vec

TOM/Fine-TOM

(Kossack et al. 2022, Knorr & Portisch 2022)
T-Box and A-Box string similarity -

transformer models

(sentence-BERT)
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2.2.1.1 Element-Level Techniques

These techniques take textual information of ontology entities as input to measure

their similarity score. Typically, textual data can be found in entity names, labels,

and comments of a well-structured ontology. Moreover, element-level matchers do not

take instances data (in the case of schema matching) or entity relationships as input to

their similarity measures. Using element-level techniques is the most common approach

utilized by state-of-the-art ontology matching systems.

String-based Techniques. Matching systems that use these techniques work with

textual information, particularly strings found in the descriptions of an ontology. Such

methods treat the string as a sequence of letters in order to measure the similarity

of entity names, labels, and comments. Thus, the more syntactically similar these

descriptions are, the higher the chance that two entities are similar and can be aligned.

String-based techniques use syntactic features such as edit-based, suffix, prefix, or n-

gram to determine the similarity of two strings.

An edit-based similarity technique relies on counting the minimum number of op-

erations needed to be applied to one string to be transformed into another. This

includes the number of characters to be added, removed, replaced, or swapped. There

are different types of edit distance measures used in this field, such as edit distance

family and Jaro distance family (Xiao et al. 2008). In the edit distance family, different

methods have different rules to assign operation costs. For instance, the Levenshtein

method (Levenshtein et al. 1966) gives each operation a cost of 1 while the Hamming

method (Tan et al. 2006) only gives the replacement operation a cost of 1. Other

edit distance methods, such as Smith-Waterman, allocate different costs to each oper-

ation (Ngo 2012). On the other hand, the Jaro distance family computes the similarity

score based on the number of the common characters between two strings which also

are shorter than half of the longer string. An extension of this method is Jaro-Winkler,

which focus on the importance of the common initials (or prefix) between two strings

to calculate the similarity score. To illustrate, taking two terms Chair and Chairman

from the ontology example in Figure 1.1, the result of applying different string distance

methods are shown in Table 2.2.

Automatic Semantic Matching of Ontology with Verification or ASMOV is an on-

tology matching system that combines different string-based similarity measures, in-

cluding the Levenshtein method. This method was particularly utilized to calculate
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Table 2.2: the similarity value of Chair and Chairman using different edit
distance methods

Method
Edit

Distance

Similarity

Value

Levenshtein 3 5

Hamming 3 5

Smith-Waterman 3 2

Jaro winkler 0.075 0.925

Jaro 0.125 0.875

the similarity score of entity comments. However, since comments usually consist of

sentences, ASMOV applies edit distance algorithms to tokens extracted from the ac-

tual comments. First, a list of tokens from each comment is returned. Then, the

number of token operations to transfer one comment into another is calculated by

using the Levenshtein method (Jean-Mary et al. 2009). To demonstrate, assuming

that the concepts Author and RegularAuthor, have the following comments respec-

tively {a person who contributes to a conference} and {a person who often

contributes to a specific conference}. After the tokenization process, Author

will result in seven tokens and RegularAuthor will result in nine tokens. The to-

tal number of token operations required to transform a comment into another is two

insertion operations. The lexical similarity is calculated as:

Lsm = 1− 2 ∗ edit distance

9 ∗max tokens
= 0.78

This result is later weighted to be considered as a part of the system’s process to

find the final alignment. The same method is also applied in LSSOM, by Nguyen &

Conrad (2015), a semantic-based ontology matching system that also uses string-based

similarity measures.

Suffix-based measures calculate the similarity value of two strings by examining

if both strings share a suffix, for example, CommitteeMember and ConferenceMember

share the suffix Member. It can also check if one of them ends with the other one,

for example, Phone and MobilePhone. Similarly, a prefix-based method determines

the similarity value based on whether the two strings share the same prefix (e.g.,

real and reality). It can also check if one string starts with the other (e.g., chair

and chairman). Suffix and Prefix measures are considered useful techniques to match
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compound words that happen to appear often in ontology labels. For example, S-Match

by Giunchiglia et al. (2012), is a schema-based ontology matching system that matches

graph-based ontologies. S-Match combines different string-based similarity measures

including suffixes and prefixes on its element-level matcher.

Concerning the n-gram measure, it computes the similarity between two strings

by calculating their mutual n-grams (i.e., a subsequence of n characters). For exam-

ple, a 3-gram (trigram) of the word chairman are cha –hai – air- irm- rma – man,

while for the term chair the trigrams are cha – hai – air. These two terms share

three trigrams and depending on the algorithm that implements this measurement,

they will be considered similar. Many matching systems utilize n-gram as a similarity

measure, such as SAMBO by Lambrix & Tan (2006), a state-of-the-art system that

matches biomedical ontologies. In a comparison study of different matching systems

on biomedical ontologies conducted by Mohammadi et al. (2018), n-gram measure has

outperformed other string-based measures in terms of recall.

In summary, string-based techniques are ideal when high-quality textual informa-

tion is available in the ontologies to be matched. Nonetheless, they can produce false

mappings by matching similar strings that refer to different objects. For example, a

string similarity measure will match the term Date in two different ontologies, even

though the first one is referring to a time of an event while the other one is referring

to the fruit date. Another issue typically associated with these techniques is matching

synonyms. Such methods are incapable of detecting the similarity between synonyms,

e.g., Topic and Subject. In this case, semantic-based or semantic similarity measures

can be more useful.

Language-based Techniques. These methods are often grounded on techniques

adopted from the field of Natural Language Processing (NLP). Language-based tech-

niques can be divided into two types. The first group focuses on the internal word

structure, while the other one relies on external background knowledge resources such

as dictionaries to calculate the similarity score between two entities.

The first category of language-based techniques makes use of the linguistic features

of words (Shvaiko & Euzenat 2005). Typically, they are used prior to applying string-

based methods to enhance their results. Methods such as lemmatization can be applied

to entity labels in order to return the original word in a singular form (Cheatham &

Hitzler 2013). For example, for the word athletes, the original word athlete will be
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returned. Words can also be stemmed to their original roots by removing suffixes and

prefixes. Sentences, on the other hand, can be tokenized by removing stop words and

common words like a, the, is. Furthermore, words can be checked for spelling mistakes

that may affect the matching results. Such techniques can enhance the matching results

by extracting meaningful terms from text. In the case of irregular words where the

general linguistics rules do not apply, a thesaurus is needed to return the original form

of that word.

The second category of language-based techniques utilizes external linguistic re-

sources to discover semantic relations between words. Examples of linguistic resources

include common thesauri and lexicons, which are useful to find synonyms and hy-

ponyms of words (Euzenat et al. 2007). A common linguistic resource that is widely

used among OM systems is WordNet (Miller 1995). It organises words into well-

defined synsets (concepts) and nouns (instances) and it currently has over 117,000

synsets linked to other concepts to form meaningful pairs. It pairs words to their

synonyms, where words that carry different meanings are paired with all possible syn-

onyms. Therefore, all WordNet meaning pairs are unique. Beside synonyms, the

other type of relationship that WordNet and other similar lexical databases have is

hyponyms, also known as IS-A relationship (Jurafsky & Martin 2018). This relation

is formed between a general synset such as kitchen tools and a more specific noun,

e.g., oven or blender. WordNet also carries information about other named entities

like countries, companies, and public figures like athletes (Nguyen & Conrad 2015).

LSSOM is an ontology matching system that combines three different similarity

measures in a parallel form. The semantic similarity is calculated by the method pro-

posed in (Nguyen & Conrad 2013) which explores entity relationships, semantics, and

structure in the WordNet hierarchy. Considering two concepts C1 and C2, the method

will examine: (i) the direct path between C1 and C2, (ii) the connection between each

concept and the other concept’s children (i.e., descendants concepts), (iii) the connec-

tion between the two concepts parents and children concepts, and (iv) the connection

between one concept’s parents and the other classes children and vice versa. WordNet

is used to find out the semantic similarity between two entities by first tokenizing class

names, labels, and comments. Then, each token is placed in a group of its source type,

e.g., tokens from an ontology comment are grouped into one set. Then, the items of

each group are compared to all tokens in the corresponding group. Their similarity is

measured based on the method explained above. Next, tokens are ranked to choose
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the best similarity. For instance, given two comments in two ontologies entities e1

and e2 respectively, where Comment(Topic)= “The title of a journal article.” and

Comment(SubjectArea)= “A topic of an article in a journal”, after the tokenization

process and removing stop words. Two sets of comments will be created, Comment1=

{title, journal, article}, and Comment2= {topic, journal, article}. Com-

paring the first token title to tokens in Comment2 will result in a higher similarity

score with topic. Finally, the semantic similarity of two entities, i.e., Topic and

SubjectArea, is the average of the best similarities from both comment sets (Nguyen

& Conrad 2015).

In terms of using a domain-specific thesaurus, many systems have implemented

this technique, especially those aimed to match medical and biomedical ontologies

such as ASMOV (Jean-Mary et al. 2009). It uses UMLS3, a domain-specific thesaurus

for medical terminologies. The system combines string, structural and instance-based

matchers and was adapted to perform semantic verification by using a specialized the-

saurus to increase the mapping accuracy. This approach of matching two ontologies to

a domain-based thesaurus has proved an improvement of the overall result of the final

alignment of many biomedical OM systems such as SAMBO (Lambrix & Tan 2006)

and ServOMap (Diallo 2014). Both UMLS and WordNet are part of a system tar-

geted to enhance the semantic similarity of current ontology matching systems called

STROMA. Arnold & Rahm (2014) proposed STROMA as an attempt to encourage

ontology matching systems to expand their mapping beyond equivalence (equal) and

subsumption (is-a) relationships. It involves using different linguistic strategies includ-

ing compound words and background knowledge to measure the semantic similarity

of ontologies in different domains and different languages. STROMA was integrated

with some state-of-the-art matching systems like COMA (Aumueller et al. 2005). In

the latter, it was used to enrich the final results with more complex alignments of type

“is-a” and “part-of” with a semantic-based technique.

Constraint-based Techniques. As mentioned earlier, ontologies are generally dis-

tinct in terms of their nature and structure because they have been independently

designed and engineered. While previously mentioned similarity techniques can be

generally applied to most ontologies, constraint-based techniques are more specific to

the scheme of an ontology. This type of method can only be applied to a specific type of

3https://www.nlm.nih.gov/research/umls/index.html

https://www.nlm.nih.gov/research/umls/index.html
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ontologies where information about data constraint is specified (e.g., datatype, number

of attributes, and ranges of values). To illustrate, if an entity is defined with a specific

datatype such as Float and Double (i.e., decimal point numbers), a datatype-based

similarity measure can be applied to calculate the similarity score. Thus, Float and

Double will have a higher similarity score than having one of the properties of the type

String or Integer.

Constraint-Based techniques can also be applied where range values can occur, as

well as for cardinality of lists and arrays (Laadhar et al. 2017). A system can combine

different types of constraints to find mappings. A valid example is Schema Matcher

Boosting or (SMB) (Marie & Gal 2008), a schema matcher that uses the domain and

name constraints to map the schema of two ontologies. For example, when the system

measures the similarity of two attributes Dropoff Date and Return Date, their string

similarity is low because the two names are different. However, adding a constraint-

based measure will evaluate their domains too, e.g., in this case, they are both a drop

list of days/months. Thus, their constraint similarity score can improve their overall

similarity value. Another useful example of using data type to measure similarity is in

the Cupid approach (Madhavan et al. 2001). It is a structure-based ontology matching

system that considers the datatype and domain compatibility between ontology entities

by asserting them a similarity score between 0 and 0.5. This value is later combined

with other matching technique results.

Formal Resource-based Techniques. These techniques utilize formal resources

during the matching process. Formal resources can be an upper-level ontology, a

domain-specific ontology, or an alignment of previously mapped ontologies. Differ-

ent from language-based techniques, these methods support the reuse of ontologies

and other datasets. This includes using their alignments as input to the matching

process. This practice is referred to as alignment reuse (Otero-Cerdeira et al. 2015).

Upper-level formal ontologies typically cover knowledge from general domains. Ex-

amples of upper-level ontologies are the Suggested Upper Merged Ontology (SUMO4),

and The Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE5).

These ontologies are logic-based, therefore, they can be used by OM systems to in-

fer knowledge. For example, the DOLCE ontologies are implemented with first-order

logic and cover multi-domain knowledge bases including WordNet. Using upper-level

4https://www.ontologyportal.org/
5http://www.loa.istc.cnr.it/dolce/overview.html

https://www.ontologyportal.org/
http://www.loa.istc.cnr.it/dolce/overview.html
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ontologies allows an OM system to discover semantically similar entities across two

different ontologies. For instance, two entity names apple can be mapped only if they

belong to the same class, i.e, either Fruit or ElectronicCompany.

In the work done by Mascardi et al. (2009), three algorithms were built to prove

that the matching process can benefit from using upper-level ontologies. Both SUMO

and DOLCE ontologies were used to improve the performance of a matching algorithm

named OMViaUO. One of the implemented methods aims to match two ontologies in

a parallel form. The first parallel process matches the two input ontologies to an upper

ontology separately. Then, it aggregates the alignments from the two sub-matching

processes. The second parallel process applies a series of element-level matchers such

as Levenshtein and Jaro-Winkler, and WordNet to measure both string and semantic-

based similarities. In the aggregation phase, the final alignments are generated by

keeping pairs with confidence values higher than an assigned threshold and excluding

other pairs.

Incorporating LOD data is another practice of using formal resources for ontology

matching. The LOD is a collection of datasets shared among the web as a result

of the linked data practice (Gruetze et al. 2012). Generally, the information in such

datasets is used as an external resource of knowledge during the matching process.

Extracting semantics can lead to more accurate matching results, especially with multi-

domain ontologies. Linked data in the form of KG can also be used to extract the

meaning of ontology entities. Examples include using DBpedia (Lehmann et al. 2015),

a domain-independent KG which will be further introduced in Section 3.2, to find

semantic relationships between ontology entities are BLOOMS (Jain et al. 2010) and

LDOA (Kachroudi et al. 2011). The latter measures three types of similarities which

are terminological (i.e., string-based), structural, and semantic, and then aggregates

them in the final results. Semantic similarity is measured by aligning ontologies entities

such as labels to DBpedia’s entities. To illustrate, if two different entities from the two

input ontologies map to the same DBpedia entity, then they are aligned.

Informal Resource-based Techniques. Similar to formal resource-based meth-

ods, these techniques map ontologies by utilizing external resources. Different from

previous techniques, these methods exploit informal resources (Otero-Cerdeira et al.

2015). Examples of informal resources can be large corpora such as reference books

and encyclopedias, or a collection of pictures that a certain ontology annotates. For
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example, matching two classes if they are annotating the same picture (Euzenat et al.

2007). However, to the best of our knowledge, examples of ontology matching systems

that implement such a technique are yet to be implemented.

2.2.1.2 Structure-Level Techniques

Different from element-level matchers that only focus on entities as separate objects,

structure-based matchers consider the context of ontology entities during the matching

process. These techniques are divided into graph, taxonomy, model and instance-based

techniques.

Graph-based Techniques. These are built to handle ontologies as a tree of nodes.

In this context, nodes are entities of the ontology, while edges are the properties con-

necting the entities. Graph-based techniques compute the similarity of a pair of entities

by examining their position in a graph structure. This section will discuss some current

structure-based similarity measures used by existing ontology matching systems.

In an early work, Madhavan et al. (2001) represented a method that matches hier-

archical schemas, known as the Cupid approach, where the matching process is divided

into two phases. The first one is named linguistic similarity (lsim) which measures the

similarity of entities based on their names, as well as their datatype and domain con-

straints (i.e., using element-level techniques). The second phase targets the structure

of the ontologies, and it is called structural similarity (ssim). Structural similarity for

a pair of entities is calculated based on the context of both entities in the two schemas.

The following example illustrates the Cupid method using the sample of two ontologies

PO and PurchaseOrder, shown in Figure 2.3 below. In the structural phase, the algo-

rithm will be able to match classes POShipTo and DeliverTo based on the similarity

of their entities: City and Street. Furthermore, it will be able to match City and

Street under POShipTo to City and Street under DeliverTo rather than entities

under InvoiceTo. A semantic-based matcher will confirm that the words Deliver

and Ship in the classes’ names are synonyms. Then both similarity results (i.e., lsim

and ssim) are aggregated into a single score weighted similarity (wsim). Finally, two

entities are declared similar if their wsim is higher than a predefined threshold.

The intuitions behind the Cupid approach are: (i) Two leaves (atomic entities) are

similar if they are linguistically matched by an element-level matcher, and if their an-

cestors and siblings are highly similar; (ii) Two non-leaf entities are considered similar
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Figure 2.3: The schema of two sample ontologies adapted from (Madha-
van et al. 2001)

if they are matched by an element-level matcher, and when their immediate children

are also similar; (iii) For non-leaf schemas, they are aligned if they share similar roots

(ancestors) even when their immediate children are not similar (Madhavan et al. 2001).

Since then, this algorithm has been adopted by some state-of-the-art systems, such as

COMA++ (Aumueller et al. 2005).

Similarity Flooding (SF) is a graph-based algorithm that finds correspondences

between two schema graphs and produces a set of mapping between their entities. It

works with different representations of schemas, catalogs and data structures, referred

to as a model in the context of this method. The idea is that the similarity of two

nodes highly depends on the similarity of their neighbours. Thus, if the neighbours

of the two compared nodes are matched, then they are mapped. Many OM systems

have adapted the SF algorithm to match the hierarchical structure of graph-based

ontologies. For example, the structure-based matcher in YAM++ (Ngo & Bellahsene

2012) was built based on this algorithm with some changes that calculate the similarity

propagation of each node in a graph. Similarity propagation means that a similar

pair of nodes propagate their similarity to their neighbouring pairs of nodes (Ngo

2012). For example, in Figure 2.4 below, assuming that the entities (Organization,

Company) and (Manager, Executive) have been mapped by a structure-based matcher.

Similarity propagation means that these two mappings can influence the similarity of

other mappings. Thus, the matching system can also produce the candidate mapping

between (Company, Organization) and (Executive, Manager).

Another algorithm for measuring a similar structure in ontologies is GMO (Graph

Matching for Ontologies). It takes two pairs of already matched ontology and uses the

external matching result to discover further similar pairs by measuring their structural

similarities. The input alignments come from another matcher, typically element-level
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Figure 2.4: Similarity propagation example.

matchers (Hu et al. 2005). GMO is implemented in Falcon-AO along with an element-

level matcher named LMO (Linguistics Matching for Ontologies). Alignments resulted

from both matchers are integrated into the final alignments of Falcon-AO. However,

since GMO needs the result of a linguistic matcher to extract more mappings, the

alignments from LMO are used as the input alignments for GMO to run. Then, the

alignments from both algorithms are evaluated at the last phase of the system according

to specific rules. For instance, if the linguistic similarity of a pair of entities is lower

than a predefined low threshold such as 0.01, and their structural similarity is very low

too, the alignment will not be included in the final alignments (Hu & Qu 2008).

Cruz & Sunna (2008) developed an ontology matching system that combines two

structural matchers: the Descendant’s Similarity Inheritance (DSI), and the Sibling’s

Similarity Contribution (SSC). Both methods were primarily used to improve the map-

ping resulted from the element-level matcher. The first method (DSI) is used to target

the relationships between parent nodes (concepts). This method was implemented as

a component of AgreementMaker (Cruz et al. 2009), a state-of-the-art matching sys-

tem. AgreementMaker starts by using basic similarity measures (i.e., element-level) to

measure the similarity of two concepts. However, due to the heterogeneous aspect of

ontologies, the similarity value can be lower than the identified threshold even though

the entities are similar. In this case, another similarity measure (i.e., structure-based)

can be used to verify a match or not a match. Moreover, element-level matchers can

produce false mappings with higher similarity values, which often need to be verified.

In order to resolve this issue, Sunna & Cruz (2007) proposed two methods named

DSI and SSC. DSI considers two concepts similar if their parents are also similar.

According to Sunna & Cruz (2007), the DSI method allows parent concepts to impact

their similarity on their descendant concepts. The second method SSC is similar to DSI,

but mostly focuses on sibling concepts (i.e., similar siblings affect the similarity of their
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ancestor concepts). Both methods have their own limitations in terms of scalability.

For example, SSC performs inefficiently when the number of a sibling in the graph is

large, while DSI causes the runtime to be significantly higher when processing deeper

ontology graphs (Cruz & Sunna 2008).

Another graph-based similarity measure is an anchor-based method applied in

Anchor-flood (Seddiqui & Aono 2009). It is a system that considers adjacent con-

cepts and relations during the matching process. It starts from an anchor which is a

pair of similar concepts (i.e., similarity produced by a lexical matcher) from the two

ontologies to be matched. Then, the algorithm incrementally collects blocks of related

entities by considering subclasses, super classes, and siblings closer to that anchor un-

til the algorithm cannot discover any further entities to be matched. The matching

process is based on using different lexical matchers as well as another open-source

semantic matching algorithm, e.g., S-Match (Giunchiglia et al. 2012). The resulting

matched pair is considered as an anchor for the next iteration. Finally, fragments of

both matched ontologies are produced as mapping results.

Taxonomy-based Techniques. Taxonomy-based (or structural analysis) techniques

are often associated with matching the schemas of ontologies. These methods assert

the similarity between the two concepts by analysing their attributes and their relation-

ships with other concepts. The intuition behind such an algorithm is that two concepts

in two ontologies are similar if they share similar attributes and if the two concepts

have identical neighbour classes. The similarity of attributes is determined by using an

element-level similarity measure. This technique is highly similar to the graph-based

technique, except that graph-based algorithms focus on the graphical representation of

an ontology structure by considering paths and leaves of the graph classes (Martinez-

Gil et al. 2012). While taxonomy-based methods focus on one type of relationship,

which is the specialization relation (is-a) that identifies if a class is a specific part of

another class (Otero-Cerdeira et al. 2015). The literature shows a lack of examples of

applying this method in state-of-the-art OM systems. The most relative example can

be in SAMBO (Lambrix & Tan 2006) where the structural matcher does not follow

a graph-based structure to match concepts. Rather, it focuses on two types of rela-

tions between classes to determine their similarity: (is-a) and (part-of) relationships.

Further, as stated by Otero-Cerdeira et al. (2015), these techniques are considered a

special case of graph-based ones that only focuses on specialization relationship, thus
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only a few OM systems incorporate them.

Instance-based Techniques These techniques are also known as extensional meth-

ods. They aim to measure the similarity of two classes or properties based on the

similarity of their annotated instances, i.e., extensions.

A number of OM studies have incorporated different instance-based techniques.

The first approach is by analysing the common instances between two classes. The

idea is that if two classes share a distinguished number of shared instances, then they

are semantically similar and therefore can be mapped. For example, if the same papers

are published in different publication ontologies, or if the same products are found in

different ontologies with different category names. In this case, it is easier for an ontol-

ogy matching system to detect classes with overlapping instances in order to determine

their similarity score. This is often done by utilizing methods that measure the degree

of overlapping data in two sets, such as Dice, Jaccard, and Cosine measures (Thada

& Jaglan 2013). Two useful examples of this application are in the studies carried

out by Kirsten et al. (2007) and Thor et al. (2007), where this technique was used

to map the schema of large life science ontologies and product catalogues. A recent

example of using such a method is called DOME (Hertling & Paulheim 2019), which

is an ontology matching system that incorporates an instance-based matcher. After

aligning instances with an element-level matcher, classes are then mapped based on

their instances overlap using the dice method.

SILAS (Ossewaarde 2007) is another ontology matching system based on measuring

the overlapping instances of two library thesauruses. The system gives each pair of

similar sets a confidence value based on: (i) two concepts are highly similar if they

share a significant number of overlapping instances, (ii) in case of a size difference,

where one concept holds more instances than the other, they are considered similar if

the average of their overlapped instances is higher than the non-joint instances, (iii) if

two concepts are identified with the same name by an element-level matcher they are

also matched.

Nonetheless, measuring the overlap between class instances may not be as sufficient

in large-scale tasks as well as when classes are not as well-balanced in terms of the

number of instances. Later studies have experimented with more scalable approaches,

such as using virtual documents that combine class instances, as proposed in (Rahm

2011). A virtual document containing weighted terms in a vector representation is
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generated, where terms are its dimensions. Then, document similarity is measured

by weighting the words in documents using the Term Frequency – Inverse Document

Frequency or TF-IDF (Joachims 1996). Finally, the cosine similarity of the documents

in a common vector space is calculated as the similarity value of each class pair. A valid

example of applying this approach is in RiMOM (Zhang et al. 2016) a state-of-the-art

OM system.

To overcome the problem of using an instance-based approach when ontologies lack

mutually annotated instances, Wang et al. (2008) proposed a machine learning ap-

proach. Their method does not require shared instances across the two ontologies, as

machine learning models can be used to infer semantic similarity by training a clas-

sification model. Each class is represented as a feature vector using the metadata of

its annotated instances. Then cosine similarity is measured between source and target

ontology class vectors in order to determine their similarity scores. The classifiers are

trained using previously labelled classes annotated by ontology experts. However, a

common concern with this approach is that it requires high-quality and well-balanced

training data in order to produce good matching results (Castano et al. 2011). This

process can be very expensive and time-consuming, particularly for large-scale match-

ing tasks (Wang et al. 2008). Other state-of-the-art systems that follow a similar

approach are SAMBO and GLUE.

Model-based Techniques These techniques utilize the semantic interpretation of

the ontologies to be matched. The aim of these methods is to infer new mappings

between two ontologies by using an initial set of alignments and reasoning techniques.

The initial mapping is identified as a set of semantic relations between concepts of the

two ontologies to be matched (Castano et al. 2011).

Utilizing Description Logic (DL) for matching is an example of applying this tech-

nique. DL belongs to the field of knowledge representation, which offers a differ-

ent formalization of data to ensure knowledge reusability. Therefore, DL is ideal for

intelligent information retrieval systems which are based on reasoning and inferring

knowledge. Matching systems that apply this technique are often based on OWL-DL.

OWL-DL is similar to OWL, with some characteristics that allow ontologies described

with it to benefit from DL techniques. For instance, the T-Box of OWL-DL ontologies

has an added component, called role, which describes the relations between ontology

concepts (Sánchez-Ruiz et al. 2011).
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Figure 2.5: Examples of mapping inconsistency patterns used in ASMOV
matcher adapted from (Jean-Mary et al. 2009)

Examples of using such a model for matching ontologies are limited to mapping

verifications. A number of OM systems use DL reasoning to improve the matching

results by discovering and repairing inconstant mappings. For instance, ASMOV is a

method that matches ontologies with a semantic verification phase. ASMOV uses DL

to ensure that the final alignments do not carry any semantic inconsistency by using

different inconsistency patterns. Examples of such patterns are depicted in Figure 2.5

above. In this example, an entity is matched to two different entities in the other

ontology with (1:1) cardinality. However, a one-to-one cardinality type specifies that

only one entity from the first ontology can be matched to one entity in the second

ontology. Therefore, the matching system will eliminate the alignment with the lower

confidence value (e.g., Product and Writer) and keep the other one. In the case of

equal confidence values, both alignments will be kept. Other OM systems that apply

similar approaches to validate alignments are LogMap (Jiménez-Ruiz & Cuenca Grau

2011), YAM++ (Ngo & Bellahsene 2012), and KOSIMap (Reul & Pan 2010).

2.2.2 Combining Matcher Results

As stated earlier, an OM system is typically a combination of different matching tech-

niques or basic matchers, where each focuses on a specific aspect of the ontology. On-

tologies are unique, and therefore, the use of diverse techniques is important to cover

all the important aspects of the ontology for better matching results. As illustrated in

Figure 2.6, three common workflow approaches are used in the literature: sequential,

parallel (or independent) and hybrid.

In the sequential workflow, the alignments from one matcher are used as input for

the subsequent matcher. Consequently, the final alignment is an enhanced result of
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Figure 2.6: Different variations of OM task workflow

a sequence of matchers. A relevant example is to use the output of an element-level

matcher as an input to a structure-level matcher, such as in the Cupid approach, and

POMap (Laadhar et al. 2017). However, Ochieng & Kyanda (2018) states that this

workflow is insufficient due to the long execution time that makes it unsuitable for

large-scale tasks. Hence, the sequential workflow is not a common practice among

ontology matching systems.

The second matcher workflow is a parallel approach where basic matchers are ap-

plied independently to the ontologies. Then, results from all matchers are aggregated

in the next phase of the matching process. This is a common practice in the majority

of matching systems, in particular, those targeted toward large-scale ontologies. This

workflow gives the flexibility of applying different matcher while reducing the execution

time since matchers can be applied separately (Ochieng & Kyanda 2018). Examples of

applying such a workflow are found in CroMatcher (Gulić et al. 2016), ServOMap (Di-

allo 2014). In a typical parallel workflow, after the basic matcher’s finish execution,

the similarity values resulting from all basic matchers need to be combined. It is often

done by an aggregation function such as average, weighted average or sum, harmony

weighted average, minimum, maximum, and machine learning. These methods will be

discussed in the following subsections.

Finally, a hybrid workflow combines both approaches discussed above. An example

of a hybrid workflow is Falcon-AO, which uses a sequential and a parallel approach to

combine basic matchers.

2.2.2.1 Weighted Average and Weighted Sum

This method relies on the weight given to each similarity measure, i.e., it does not

consider all basic matchers results as equally important. The weight of a matcher can

be considered a measure of the quality of its results. However, defining the weight of

each matcher is a challenge when using this method. In some systems, the weighting
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factor is defined manually based on the expertise of the developers, or based on the

previous testing of the system, such as in YAM++. Other matching systems apply an

automatic weighing method to assign a weight for each basic matcher. For instance,

in CroMatcher, the aggregated similarity is produced by multiplying the similarity

values from each matcher with the weight factor produced by their method named

AutoWeight++, which can either calculate a weighted average or sum. In the case of

a weighted average, such as in CroMatcher, each similarity value will be multiplied by

the weight of its specific matcher and divided by the number of basic matchers. In the

case of weighted sum, the weighted similarity scores are simply added up, such as in

LSSOM (Nguyen & Conrad 2015) and XMap (Djeddi & Khadir 2010).

2.2.2.2 Average

This method can be viewed as a special case of the previous method, except that it

assumes that all basic matcher results are equally important (i.e., the weight factor

for all matchers is 1). The aggregated similarity is calculated by summing up all the

similarity values and then dividing the sum by the total number of matchers. An

example of using this method is in COMA (Do & Rahm 2002).

2.2.2.3 Harmony weight

The term harmony is a measure of the reliability and importance of different similar-

ities. Thus, in order to declare that a pair of entities (a, b) is truly matched, their

similarity value should be higher than the similarity value of other pairs that contain

either a or b, assuming that the alignment cardinality is (1:1). This means that a and b

are a perfect match. Prior to calculating the harmony value, the system will aggregate

the similarity values of each pair of entities into a similarity matrix. According to Reul

& Pan (2010), a similarity matrix has a dimension of |N ×M|, where N and M are

the numbers of the entities in the ontology O1 and O2 respectively. Generated by a

certain matcher K, a similarity matrix represents the similarity values between entities

of O1 and O2.

The harmony value is the highest similarity value in its corresponding row and

column divided by the number of entities in both ontologies. In the example shown in

Figure 2.7 above, only the values in red circles are the higher similarity value in both

row and column. For instance, no similarity value is selected in the first row of the

metric because the higher value in that row is 0.22, but this value is not the highest
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Figure 2.7: Example of calculating the harmony weight adapted from Mao
et al. (2010)

among those in the same column. Hence, the pair with this value will be omitted.

Consequently, the harmony value is 4 divided by the number of entities, which is 5.

This harmony number is then used as a weight for the aggregated similarity calculation

similar to the previous method but with higher accuracy. This method is also known

as Adaptive Similarity Aggregation and was developed as part of a matching system

named PRIOR+ (Mao et al. 2010).

2.2.2.4 Maximum/Minimum

The maximum method returns the maximum similarity value returned by two basic

matchers. Therefore, in the case of conflicting similarity values, it is considered an op-

timistic way to combine matchers. Alternatively, the minimum method is pessimistic,

as it returns the minimum similarity value between two matchers. Both approaches do

not require any measuring parameters compared to the previous methods. Moreover,

they assume that one of the basic matchers is more important and reliable because

of the elimination of other matchers’ results. However, a higher similarity value re-

turn by a matcher does not necessarily mean that it is reliable. For instance, the two

words, cable and table will have a higher string similarity score compared to their

semantic similarity score. Therefore, this method can lead to a false mapping since the

description provided in a comment can hold some semantic relations which indicate

that they are not supposed to be mapped. Thus, these methods are only useful when

the matchers are highly certain and strong (Ngo 2012). Both methods are part of the

COMA++ system.

2.2.2.5 Machine Learning

Another form of combining multiple basic matchers is by utilizing machine learning

techniques. This method was introduced as a component of the state-of-the-art system
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Figure 2.8: Using a decision tree to combine results in YAM++ adapted
from (Ngo et al. 2011a)

YAM++. Decision trees were used along with SVM in YAM++ to combine different

element-level matchers. The system was implemented with a GUI where the user can

choose one of the models. In the decision tree, a non-leaf entity is a similarity metric

produced by an element-level matcher such as Levenshtein distance while a leaf entity

represents the similarity value between [0.0 – 1.0]. As Figure 2.8 depicts, the system

takes a pair of entities from the source and target ontology and starts from the root of

the tree. At the non-leaf node, the system will calculate the similarity value of each

pair and compare the value with the conditions on the ongoing edges to decide the

path of the process. The same process continues until a leaf node (i.e., decision) is

reached (Ngo et al. 2011a).

2.2.3 Final Alignments Selection

After combining results from basic matchers, the next phase of the matching process

is to produce the final alignment. This part of the process is a key aspect of OM

process, as it determines the final results of the matching system. Alignment selection

methods can be applied in order to filter incorrect and inconstant alignments after the

matching phase. It is also worth mentioning that these methods can be used during

the matching process by basic matchers to eliminate any incorrect mappings to be sent

as input to the subsequent matcher. For instance, in POMap, a threshold is used to

filter element-level matchers’ alignments before processing the structure-level matcher.

However, these methods are often introduced after the matching phase to select the final

mapping candidate for the user. This section will discuss current selection methods
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introduced in the literature such as threshold, Max-N, machine learning MaxDelta,

Rules, and an Iterative approach.

2.2.3.1 Threshold Filter

A threshold is a value used by OM systems to filter invalid mappings from being

included in the final alignments. It is a value between 0.0 and 1.0 often identified by

the system developer and can be modified in the testing phase in order to obtain better

mapping results. To illustrate, any pair of entities aligned with a similarity measure

lower than the predefined threshold will be eliminated. The quality of the matching

systems depends on the threshold value. Thus, the lower the value of the threshold (e.g.,

0.1) the higher is the chance of including incorrect pairs, and the higher the threshold

(e.g., 0.9) the less is the quality of the produced mappings (Gulić et al. 2016). It is also

worth mentioning that the majority of state-of-the-art systems use a threshold filter.

For instance, XMap (Djeddi & Khadir 2010) uses a predefined threshold and produces

two sets of alignments, the first one represents the final alignment and the second is

for the user to evaluate. The mappings selected by the user are then added to the final

alignment set. Other examples of using a threshold filter are LSSOM, AgreementMaker

and Falcon-AO.

2.2.3.2 Max-N

This selection method allows only n of the greatest correspondences of each entity to

be included in the final alignments. When n is equal to 1, this method is referred

to as Max-1 which means that only the correspondence with the highest confidence

value of a specific entity is selected for the final alignment. For example, assum-

ing that a matching system has resulted with the following correspondences for the

pairs of entities that include the concept Chair: < id1, Chairman,Chair,≡, 0.88 >

,< id2, Chair, Author,≡, 0.33 >,< id3, Reviewer, Chair,≡, 0.12 >. Only the align-

ment with the highest confidence value (i.e., 0.88) will be included in the final align-

ments, while others will be excluded. The Max-1 method was first used in COMA and

COMA++. This method is ideal for granting 1:1 alignments cardinality if required

by the user. However, if n is greater than 1, the final alignments can carry up to an

n alignment of one entity which can also lead to false-positive mappings, i.e., when

correct mappings are eliminated by the system.
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2.2.3.3 Max Delta

This method selects the correspondence with the greatest confidence value, and the

one with a confidence value that differs by less than delta from the greatest value

correspondence, where delta is a pre-defined tolerance value (Do & Rahm 2002). Hence,

this method carries issues similar to the threshold filter method in terms of including

more than one alignment of one entity in the final results. Therefore, for tasks with

only equivalent mappings, this method can result in a high number of false-positive

mappings. This method was introduced earlier in COMA and was not included in any

later systems to the best of our knowledge.

2.2.3.4 Machine Learning

The idea of using a machine learning approach in this context is based on building

a gold standard dataset. The latter consists of pairs of previously aligned ontologies,

often built by domain experts, and then using this dataset to build a classifier. The

classifier then can be used to identify whether a pair of entities are a match or not based

on their similarity score. Different machine learning techniques are used in this domain,

for example, Decision Trees, Support Vector Machine (SVM), and Neural Networks.

Ichise (2008) proposed Malfom-SVM, where an SVM approach was introduced to

map two ontologies by predicting the similarity of entity pairs based on a machine

learning approach. Pairs are classified into two classes: positive and negative. Positive

indicates a match, while negative means the entities do not match. The training data

when applying such a model in ontology matching is a set of entity pairs classified as

correctly or not correctly mapped, based on a specific similarity measure. In general,

an SVM model represents data in a two-dimensional field in two categories separated

with a wide gap (Nezhadi et al. 2011). Then, a new pair of mapped entities can

be tested by the SVM model to predict their category (i.e., correct match, incorrect

match) based on their similarity score. POMap++ also adopts a similar strategy to

classify candidate pairs without using any reference alignments, i.e., training data are

generated automatically by the matcher.

2.2.3.5 Rule-Based

Some OM systems introduce additional rules along with other filters in order to restrict

the alignment selection. For example, Falcon-AO, is a system that combines two basic
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matchers, an element-level and a structural one. The system uses rules along with

a threshold filter to determine final alignments. One of the rules states that if both

element-level and structure-level matcher result in high similarity scores, the element-

level correspondences will be directly included in the final alignments. However, the

structure-level correspondence will only be included if it is higher than a threshold.

The second rule emphasizes that if the element-level correspondences are low and the

structure-level correspondence is high, then only the structural correspondences are

included in the final alignments. Moreover, if the element-level similarity score for a

pair is below a very low threshold and their structural similarity is also very low, the

pair will be immediately eliminated from the final alignment. Falcon-AO assumes that

the element-level matcher is more reliable than the structural matcher. However, no

further justification for the determination of high and low measures was provided by

the authors.

2.2.3.6 Iterative alignment selection

This automated alignment selection approach was proposed by Gulić et al. (2016). It

requires alignments to be organized in a similarity matrix, as depicted in Figure 2.9.

The first iteration of this approach is similar to the Max1 method. While the Max1

approach only considers correspondences with the maximum scores, this iterative ap-

proach also considers the second to the highest values as long as two conditions are

satisfied. On each iteration, the method will add correspondences to the final align-

ments if they have (i) a similarity score higher than the identified threshold and (ii) an

entity that has not been added to the final alignments yet. To illustrate, the first iter-

ation in Figure 2.9 adds all correspondences highlighted in red as they hold the highest

similarity values in their columns and rows. Their similarity values are also higher

than the allocated threshold, i.e., 0.22. For example, although the pair < C5, C
′
5 >

has the highest similarity value (0.19), it is eliminated from the final alignment as it is

lower than the threshold. The following iteration in the process starts by eliminating

all entities that have already been represented in the final alignments from the matrix.

For example, after the first iteration, the classes C1, C
′
1, C2, C

′
2, C4, and C ′4 will be re-

moved from the matrix, while the remaining classes can be further considered. Then,

the method continues until the two conditions cannot be satisfied anymore.
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Figure 2.9: Example of the iterative final alignment selection approach

2.3 Ontology Matching Evaluation

The Ontology Alignment Evaluation Initiative 6 (OAEI) is an international effort de-

voted to assessing ontology matching systems by organizing an annual campaign for

evaluating matching systems. The initiative provides over ten benchmark datasets in

different tracks for different matching systems to be evaluated. Examples of main tracks

are Anatomy, Conference, Complex matching, large biomedical, and knowledge graphs.

Here, we introduce evaluation techniques and benchmarks generally used within OAEI

and the semantic web community for ontology matching tasks. It is also worth men-

tioning that since 2004, OAEI has been the leading evaluation platform for all matching

tasks related to the semantic web. Further, all the state-of-the-art matching systems

have either participated in OAEI campaigns or have been tested on their benchmark

datasets.

2.3.1 Alignment Evaluation

Typical ontology matching systems output an alignment, i.e., a set of correspondences.

To evaluate the performance of the system, this alignment is compared to a reference

alignment. Correspondences can be classified as follows: (i) True Positives : which

are the correct correspondences discovered by the system, (ii) False Positives : the

6http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/
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incorrect correspondences discovered by the system, and (iii) False Negatives : these

are the correct alignment that the matching system has missed, or was unable to

discover (Djeddi & Khadir 2010). Thus, the quality of an alignment set is calculated by

measuring its completeness (recall), and correctness (precision) according to a reference

alignment set (Euzenat et al. 2007). The reference alignment is a set of benchmark

mappings between two ontologies.

Precision, recall, and f-measure are also used in OAEI to measure the performance of

participating systems. Precision measures the number of the correct correspondences,

particularly true positives, over the total number of all the produced correspondences,

see Equation 2.1. If a system has low precision, it indicates that the alignment contains

a high number of false positives. Therefore, precision is used to assess the correctness

of the system alignments.

precision =
correct corespondences

total number of corespondences
(2.1)

On the other hand, as shown in Equation 2.2, recall is the fraction of the correctly

discovered correspondences over the total number of correct correspondences in the

reference alignment. The higher the number of false-negative mappings (i.e., undiscov-

ered mappings), the lower the recall of the system. Thus, recall is used to evaluate the

completeness of the system (Xue & Pan 2018).

recall =
correct corespondences

total number of expected corespondences
(2.2)

Finally, f-measure is another measure that is often used in order to combine precision

and recall by calculating their harmonic mean (Ochieng & Kyanda 2018), as shown

in Equation 2.3. It is a common practice to calculate the f-measure by assuming that

both measures are equally important. Nonetheless, in other systems, a weight value

w can be added to justify the importance of precision and recall depending on the

expert view or the matching task. Examples of systems that apply this method are

CroMatcher, and an Evolutionary Algorithm (EA) proposed by Xue & Pan (2018).

f −measure =
2 ∗ (precision ∗ recall)

(precision + recall)
(2.3)
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2.3.2 Benchmark Datasets

The OAEI campaigns usually consist of different tasks, and each task may have one

or more tracks. In recent campaigns, main matching tasks were divided into three

categories as follows: schema matching tasks which evaluate systems on the task of

matching classes and/or properties, instance matching or link discovery tasks which

focus on mapping the individuals of two ontologies, and the third task combines map-

ping both schema and instance levels. Each category has several specific tracks, each

evaluating matching systems on a specific dataset, aiming to solve a particular prob-

lem. Moreover, most tracks have different test cases, where each test case has its own

datasets with different specifications.

Benchmark datasets are based on OWL or RDF/XML ontology format. The schema

matching task has over ten tracks, each has different characteristics to test matching

systems. Moreover, the majority of tracks are domain-specific, e.g., Anatomy, Large

biomedical ontology, and Biodiversity and Ecology. Another popular track is the ‘Con-

ference’ track, which combines different ontology defining knowledge from the confer-

ence organization domain. Each test case has a different reference alignment produced

either by domain experts or via crowdsourcing applications (Pour et al. 2021). Thus,

participating systems are evaluated for each track using these versions of benchmarks

based on precision, recall, and f-measure.

2.4 Knowledge Graphs Matching

2.4.1 Knowledge Graphs on the Web

In recent years, KGs have been gaining increasing attention in the semantic web com-

munity. The term Knowledge Graph was invented in 2012 when Google referred to

the connected facts used to support their search engine as a knowledge graph (Heist

et al. 2020). A KG is a set of interlinked facts extracted to form a large network that

can be utilized for various tasks that require knowledge inference (Ehrlinger & Wöß

2016). KGs are often compared to ontologies since both are representing knowledge

with semantic relations between different concepts, i.e., classes. Because of their sim-

ilarities, various definitions of KGs have been proposed in the literature (Ehrlinger &

Wöß 2016). According to Paulheim (2017), “A knowledge graph (i) mainly describes

real-world entities and their interrelations, organized in a graph, (ii) defines possible
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classes and relations of entities in a schema, (iii) allows for potentially interrelating

arbitrary entities with each other and (iv) covers various topical domains”. This def-

inition provides a list of characteristics that distinguishes KGs from other types of

knowledge representations. Different from conventional ontologies, KGs are known for

their rich instance level, i.e., A-Box, in comparison to their schema level, i.e., T-Box.

Moreover, the schema level in KGs is not as well-annotated as the instance level. Mean-

ing that most of the classes lack long textual descriptions such as comments found in

formal ontologies (Paulheim 2017).

Besides proprietary KGs that are often utilized by large companies such as Mi-

crosoft, Facebook, and Google, Many common KGs have been created over the last

decade. Common KGs such as YAGO (Suchanek et al. 2007), DBpedia (Lehmann

et al. 2015), Never-Ending Language Learner or NELL (Carlson et al. 2010) and Wiki-

data (Erxleben et al. 2014) are multi-domain publicly available KGs that, despite

being heterogeneous, can be highly complementary too. Such KGs are used in a wide

range of downstream applications such as query answering, search engines, as well as

recommendation and reasoning systems (Lecue 2020, Heist et al. 2020). These KGs

have resulted from different information extraction practices such as crowdsourcing,

and fully or semi-automated approaches. For example, DBpedia is semi-automatically

constructed from the structured knowledge embedded in Wikipedia’s articles, with a

crowdsourcing effort to map its entities. On the other hand, NELL is an automatically

constructed KG built by extracting facts from semi-structured/unstructured content

on web pages (Carlson et al. 2010).

2.4.2 Current Knowledge Graphs Matchers

In the last decade, the problem of OM has been a well-studied domain in the seman-

tic web community. However, matching KGs have only been a topic of interest since

2018 as a new track for matching KGs was added to the annual OAEI event. Given

the nature of KGs having denser data at the instance level, the majority of methods

focus on mapping their instances. Nonetheless, recent studies have highlighted that

matching the schema of large KGs remains a challenging task that needs further re-

search (Hertling & Paulheim 2020b, Rahm & Peukert 2019). In this section, we review

matching systems and methods that focus on KGs. Furthermore, we particularly focus

on those that have participated in the OAEI KG tracks. This because OAEI leads

research in different matching tasks and methods participating in the KG tracks are



CHAPTER 2. LITERATURE REVIEW 41

the most relevant to our work.

The first category of systems relies on using element-level matchers, such as utilizing

string-based techniques. However, it is important to note that, given the nature of the

matching task for KG entities, all matching systems employ different variations of

string similarity techniques such as exact string matching, n-gram, and edit distance.

For example, AgreementMakerLight or (AML) is an OM system proposed by Faria et al.

(2013) as an improved and more flexible version of the state-of-the-art AgreementMaker

matcher. AML uses a total of nine matching techniques, including different string-

based methods. It has been a consistent participant in many matching tasks, including

matching KGs. A recent participant in OAEI is LSmatch (Sharma et al. 2021) which

utilizes Levenshtein string similarity as one of its main matching components.

As mentioned earlier, element-level techniques are often combined with structure-

level techniques in conventional OM systems. The latter exploit structural data present

in typical well-formed ontologies such as disjoint axioms to refine the results of element-

level techniques. For example, ATBox (Hertling & Paulheim 2020a) is a system that

applies a similar technique in order to fine-tune mappings initially discovered by an

element-level matcher. However, while such detailed structural specifications are avail-

able in a typical ontology, most large-scale and common KGs lack this level of schematic

richness. This is due to them being automatically generated from unstructured data,

and the lack of capacity in text mining methods to extract fine-grained relationships.

Using background knowledge resources is another common strategy of many sys-

tems to find semantically similar KG entities. For example, AML and LogMap are

two leading OM systems that, despite being originally designed to handle biomedical

ontologies, can participate in KG matching tracks. Both systems utilize background re-

sources such as WordNet and UMLS lexicons. LSmatch also exploits thesaurus.com as a

background knowledge resource for its synonym matching component. Besides general

thesaurus and domain-specific background resources, the Wiktionary system (Portisch

et al. 2019) and ALOD2Vec (Portisch & Paulheim 2018) utilize different types of back-

ground knowledge compared to state-of-the-art methods. Wiktionary for instance is

named after an online collaboratively made lexical resource known as Wiktionary 7

which the system uses for its synonym matching component. Wiktionary is known to

have a larger coverage of terms compared to WordNet in addition to having monolin-

gual capacity (Portisch et al. 2019). During the matching process, the system starts

7https://www.wiktionary.org/

https://www.wiktionary.org/
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by mapping entity labels to a concept or synonym in Wiktionary first, and then align

entities whose labels share a link with the same Wiktionary concept. ALOD2Vec is

another example of using background knowledge for KGs matching. It uses WebisA-

LOD, an automatically constructed RDF dataset of hypernym relations (Hertling &

Paulheim 2017). The system trains a neural network to represent each concept in the

background dataset as a vector using the word2vec approach. Next, given two entities,

the system starts by finding if their labels exist in the WebisALOD dataset. Then,

the embedding vectors of the two linked WebisALOD concepts are retrieved, and their

cosine similarity is calculated and will be considered as the similarity value of their

equivalent classes in the source and target KGs.

Another method to match KG entities is by using word embeddings. This method

represents each word in a unique fixed-length vector, where semantically similar words

are represented closer in a Vector Space Model (VSM) (Raghavan & Wong 1986). A

well-established word embedding technique is word2vec (Mikolov et al. 2013), a neural-

network-based model that is able to learn generic, numerical representations of words

based on their occurrences and usage in a large corpus of text. Hertling & Paulheim

(2019) introduced DOME, a matching system that exploits larger text descriptions

in ontology and KGs. For the class matching task, the matcher generates a vector

representation for each class. Then, the cosine similarity between vectors represent-

ing all classes is measured in the embedding space. OTMapOnto (An et al. 2021) is

another embedding-based system that transfers both source and target ontology into

a vector space with the use of a pre-trained word embedding model known as Fast-

Text (Bojanowski et al. 2017). The system then proceeds to measure the optimal way

to transfer entities from source to target ontologies. Entities are coupled by measuring

their Wassertein distance, a metric for measuring the optimal distance to transport one

vector representation into another (Kolouri et al. 2017). With their increasing popular-

ity in different natural language processing tasks, transform models have been recently

introduced to ontology and KG matching tasks. For instance, Transformers for Ontol-

ogy Matching (TOM) (Kossack et al. 2022) uses a pre-trained sentence-BERT model to

map entity pairs along with basic string-based matching methods. Fine-TOM (Knorr

& Portisch 2022) is the version of TOM that fine-tune the model according to the

datasets being matched.

While all previously discussed systems are either OM systems that are able to

match large-scale KGs, some systems were particularly designed to align KGs. One
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example is FCAMap-KG (Chang et al. 2019) which is a specific variant of a former OM

system FCAMap. The latter was mainly designed to map large and complex biomed-

ical ontologies (Zhao & Zhang 2016). FCAMap-KG uses Formal Concept Analysis,

a mathematical model for clustering instances and structuring classes, to compare

the hierarchical structure of the source and target KGs. After initially aligning en-

tities with an element-level matcher, FCA is mainly used to map KG instances by

examining their structural connection with classes and properties across the two KGs.

LogMapKG (Jiménez-Ruiz 2020) is another example of a system that targets KGs

matching. It is based on the state-of-the-art LogMap with the ability to map instances

and properties. However, in later versions of LogMap (Jiménez-Ruiz 2021) the two

matcher’s functionalities are combined as LogMap is currently able to map all KGs

entities.

2.5 Synthesis of literature

Although many matching systems have been introduced to the field, there are some

gaps in the literature with regard to mapping large-scale, semi-automatically con-

structed, and domain-independent KGs.

First, the majority of the state-of-the-art systems are not scalable enough to handle

larger datasets such as KGs. This issue has been raised in many studies (Otero-Cerdeira

et al. 2015, Rahm & Peukert 2019). In another survey that investigates large-scale on-

tology matching systems, Ochieng & Kyanda (2018) argue that even though matching

systems have lately shown some progress in terms of scalability, many aspects of map-

ping large-scale ontologies remain to be investigated. While improvements have been

shown in the area of biomedical ontologies with more specialized systems and datasets

being developed, research on matching large-scale and cross-domain KGs remains less

explored. KGs, particularly publicly available ones, are significantly large-scale due to

orders of magnitude larger number of instances. Many downstream tasks are impacted

by general-purpose KGs, including query answering, recommendation systems, and se-

mantic search (Obraczka et al. 2021). However, despite the growth of such large-scale

KGs, a common concern is the quality and integrity of the data produced by semi/fully

automated processes. Thus, considerable efforts have been dedicated to improve KG

entity resolution (Papadakis et al. 2020) and completeness, i.e., increasing their cover-

age (Paulheim 2017). Note that both tasks require mapping and aligning the schema



CHAPTER 2. LITERATURE REVIEW 44

of different KGs. For these reasons, we argue that matching approaches that target

large KGs are imperative to further investigations.

Second, current matching systems largely depend on utilizing string-based and

structure-based similarity measures. These techniques usually require well-structured

datasets similar to OWL-based ontologies used by state-of-the-art systems. Further-

more, many of those systems are designed to work with formal ontologies as well as

XML and relational schemas (Ardjani et al. 2015). According to Zhang et al. (2017),

state-of-the-art methods can produce high-quality results for well-structured and well-

defined ontology. However, these techniques will not perform as well when applied

to less well-structured datasets, such as large-scale, automatically curated, and cross-

domain KGs. A major issue with such datasets is that they lack the longer textual

descriptions and structural organization found in formal ontologies.

Third, studies in this area are mainly focused on mapping domain-specific ontolo-

gies. Although the goal of ontology matching is to solve the semantic heterogeneity

problem across ontologies from one domain, current downstream applications, such as

reasoning and query answering, require integrating data from different cross-domain

KGs. Heist et al. (2020) state that the majority of established links between current

public KG entities are made where linking is trivial. These KGs are often built semi-

automatically from various resources across the web using different knowledge extrac-

tion methods such as data mining and machine learning tools, or collaboratively built

through crowdsourcing tools. As a result, they have different characteristics, such as

the lack of long and descriptive metadata and structural consistency. Therefore, they

bring different challenges and need further studying (Hertling & Paulheim 2020b).

In summary, although the research in the field of ontology matching has proposed

a significant number of matching methodologies, the literature shows a lack of stud-

ies that target mapping large general-purpose KGs. Such KGs are imperative for a

variety of tasks, but carry different characteristics and challenges that are yet to be

studied in KG matching. This research will fill this gap by further investigate mapping

techniques that aimed to map large, automatically constructed, incomplete, and less

well-structured KGs.
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2.6 Conclusion

Mapping the schema of large-scale, cross-domain, and automatically constructed KGs

is far from a trivial task. With their high level of heterogeneity and large-scale search

spaces, it is important for KGs matching systems to balance efficiency and effective-

ness. Briefly, in Section 2.2.1 of this chapter, we reviewed current ontology matching

techniques utilized by the state-of-the-art systems. Further, Section 2.2.2 and Sec-

tion 2.2.3 discussed other components used together with basic matching techniques to

form complex, end-to-end ontology matching systems. In Section 2.3, we reviewed the

process of evaluating ontology matching systems as well as different benchmarks used in

the semantic web community. In Section 2.4, we highlighted the difference in matching

KGs compared to ontologies. Our aim is to give an overview of current matching sys-

tems, particularly those designed to map KGs entities. Finally, Section 2.5 synthesized

state-of-the-art and current ontology matching systems. We conclude that current sys-

tems (1) still suffer from scalability issues, (2) they are highly reliant on string-based

techniques, and (3) they are primarily constructed to map well-formed domain-specific

ontologies. While the latter often comes with rich lexical and structure data, the ma-

jority of common KGs lack such characteristics. To address these issues, the following

chapters will introduce our data-driven approach that targets mapping the schema of

KGs with hundreds of classes and millions of instances, capable of handling KGs with

unbalanced class populations.
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3.1 Introduction

The problem of semantic heterogeneity has been thoroughly studied in the Semantic

Web community, with a good deal of ontology matching systems being developed and

surveyed. Furthermore, matching systems are annually evaluated through the Ontology

Alignment Evaluation Initiative (OAEI). However, as we discussed earlier in Chapter 2,

majority of OAEI datasets are domain-dependent and mainly focused on ontology

matching tasks. For instance, while a new track for KG matching has been introduced

to OAEI’s annual campaign since 2018, the challenges of aligning large-scale KGs

remain significant (Hertling & Paulheim 2020b). In terms of the KGs nature and the

size of alignment, the current gold standard datasets are not well representative of real-

world KGs. Such KGs are known for sharing complementary facts about real-world

entities such as people and places, while current OAEI datasets are predominantly

domain-dependent. Further, the size of the existing gold standard does not accurately

represent the complexity of matching large-scale KGs that imply a significantly larger

search space due to orders of magnitude larger number of classes.

In this chapter, we aim to answer our first research question, RQ1: What are the

current KG matching benchmarks, and how can we build one that is more representative

of the large KG matching problem? As a result, we propose two gold standard datasets

for matching the classes of large, automatically constructed, inadequately structured,

and domain-independent KGs. The first introduced benchmark is based on DBpedia

and NELL. Both KGs are widely used in semantic web research and can be considered

highly influential, but they are yet to be consolidated. Despite that, the majority of

LOD cross-domain datasets, including KGs, are interlinked to DBpedia which serves as

a central link to many LOD datasets. According to Ringler & Paulheim (2017), NELL

is considered as the most complementary KG to other larger KGs such as DBpedia

with an average of 10% gain of instances, while merging other large KGs can only lead

to a 5% gain. Therefore, we believe they are the best candidates for a gold standard

dataset for aligning large cross-domain KGs. The second dataset aligns classes from

YAGO and Wikidata. Both are well-known KGs that are integrated into different

downstream tasks.

This chapter is organized as follows: Section 3.2 reviews the related work and the

current KGs matching benchmarks. Then, we describe the process of building the

new proposed dataset of NELL and DBpedia in Section 3.3, while section 3.4, details
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the process of expanding the current links between YAGO and Wikidata classes to

be adapted for the matching task. In Section 3.5, we analyze the differences between

current KG matching benchmarks and those we introduce in this chapter. Finally,

Section 3.6 concludes this chapter.

3.2 Related work

Ontology Matching has been a well-studied topic that centers around discovering se-

mantically similar entities across two distinct ontologies (Euzenat et al. 2011). In the

last decade, many matching systems have been developed and evaluated annually at the

annual OAEI’s events. The initiative provides a variety of matching tracks for match-

ing systems to be evaluated on different tasks. Examples of main tasks are Anatomy,

Conference, Complex Matching, and Large Biomedical ontologies. KGs are often com-

pared to ontologies, as both are used for data representation purposes. Different from

conventional ontologies, general-purpose KGs are large-scale, multi-domain, and less

well-formatted compared to ontologies. However, similar to ontologies, KG entities also

suffer from semantic heterogeneity, where the same real-world entities can be described

using different terminologies.

While there have been many well-established matching methods for OAEI’s dif-

ferent matching tasks, the need for KG matching techniques remains an open area of

research (Hertling & Paulheim 2020b). Research in this domain has only been estab-

lished since 2018 when OAEI introduced a new track for this particular task. Therefore,

participating OM systems have been evaluated on the provided benchmark, and a few

dedicated KG systems have participated in the later campaigns. Although matching

KGs has been a promising area of research recently, the need for gold-standard datasets

that represent diverse KGs remains remarkable.

In 2020, the only benchmark used to evaluate OM systems on the task of matching

KGs entities is constructed from the DBkWik project (Hertling & Paulheim 2018). It

integrates multiple KGs each created from a wiki-hosting platform. The individual KGs

from the DBkWik project were used to create the gold standard datasets for the OAEI

KG track. The track consists of five test cases and each test case is aimed at matching

classes, properties, and instances of two KGs. While the schema correspondences

were built by ontology experts, the instance correspondences were crowdsourced. To

the best of our knowledge, this gold standard is the only benchmark available for
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the KGs matching task. Nonetheless, the number of mapped classes in this dataset is

considerably small, i.e., less than 50 across the five test cases (Pour et al. 2021). Indeed,

this number does not give an accurate representation of the complexity of matching

real-world KGs where hundreds of classes can be matched.

Multiple domain-independent KGs have been published according to the semantic

web standards. Those are either based on Wikipedia, such as YAGO and DBpedia,

or semi/fully-automatically constructed, such as WebISALOD and NELL. For exam-

ple, DBpedia is a knowledge graph constructed from structured data embedded in

Wikipedia’s articles (Lehmann et al. 2015). DBpedia also involves crowdsourcing com-

munities to maintain the quality of the mapping between Wikipedia’s articles and the

structured knowledge in the KG. In contrast, NELL is an automatically constructed

and learned KG under the Never-Ending Language Learner project. The latter uses

machine learning tools to infer and extract knowledge from web text to continuously

evolve its seed KG (Carlson et al. 2010). Since its launch in 2010, NELL has grown

to a KG containing around 50 million facts. While the schemas of the majority of

Wikipedia-based KGs cover multiple classes and properties, NELL graph schema is

very basic. It does not contain as many relations between instances, i.e., proper-

ties (Ringler & Paulheim 2017). WebIsALOD (Hertling & Paulheim 2017) is another

KG with a taxonomy structure. It is an LOD dataset version that contains around 400

million hypernym relations extracted from the WebIsA 1 dataset. This KG is linked

to DBpedia and YAGO schemas, however, since it only covers hypernym relations, it

does not distinguish classes from instances.

3.3 The New NELL-DBpedia Dataset

3.3.1 Overview

The proposed gold standard is based on DBpedia 2016-10 version 2 and NELL 1115th

iteration 3. The DBpedia dataset is extracted from its english version as NELL does

not support other languages. In terms of DBpedia, we use its SPARQL query endpoint

to return all schema and instance information. As for NELL, since a query endpoint

is not available, we obtain all its metadata by parsing its most recent dump file, which

1http://webdatacommons.org/isadb/
2http://downloads.dbpedia.org/wiki-archive/, visited on 14-2-2020
3http://rtw.ml.cmu.edu/rtw/resources, iteration number 1115, visited on 22-2-2020

http://webdatacommons.org/isadb/
http://downloads.dbpedia.org/wiki-archive/
http://rtw.ml.cmu.edu/rtw/resources
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contains every fact learned by the project so far. As a result, DBpedia has over 750

classes, while NELL has around 290 classes. Assuming that P is the set of pair-wise

classes across the two KGs, then the number of all possible pairs is 218,660. Since

the aim is to have pairs manually annotated later, a greedy approach will lead to an

excessive number of pairs that is expensive to annotate and likely to be overwhelmed

with negative pairs. Therefore, we first apply a Blocking Strategy to manually

generate a set of candidate pairs C which is a subset of P with a significantly reduced

number of negative class pairs. Next, we perform a Candidate Filtering Strategy

by applying two similarity measures to each pair in C to further reduce the search

space for human annotators. After the filtering stage, we perform another screening to

ensure that none of the discarded classes had a potential match in the corresponding

graph. Finally, for Dataset Annotation, we ask human annotators to determine the

alignment of the resulting class pairs to construct the gold standard dataset.

3.3.2 Generating Candidate Pairs

Given P , which is a set of all possible class pairs from the two KGs, we apply a

Blocking Strategy which includes manually screening the class structure of the two

KGs. As a result, we obtain C, which is a set that is supposed to eliminate as many

true negatives as possible while maintaining as many (if not all) true positives. To

explain the complexity of this task, the two classes named School in both KGs refer

to different types of schools. For instance, in the DBpedia class structure, School is a

subclass of EducationalInstitutions, while being a super class of HighSchool and

University in NELL. Given this structural inconsistency issue, a preliminary study

aimed at aligning the higher level of concepts across the two KGs was necessary.

We manually created two subsets named A and B, where the first is a set of classes

in NELL that have a possible corresponding class in DBpedia. Similarly, the second

set contains classes from DBpedia in which they have a possible corresponding class in

NELL. The process of creating these two sets was done in two phases. First, we start

by comparing the common root classes across the two KGs, e.g., Person or Place.

Then, all of their non-root (descendant) classes are added to A, and B respectively.

For instance, all the descendant classes of Personnell and Persondbp are added to each

of A and B respectively. Second, we examine other possible classes in which their

root classes do not share an overlap of words, i.e., they are not selected in the first

step. A valid example is the pair of the two classes AcdemicSubjectdbp and its possible
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equivalent class AcademicF ieldnell. While the former is a subclass of TopicalConcept,

the second is a subclass of everypromotedthing. Note that the latter is the root

class of the KG taxonomic structure, i.e., the equivalent of OWL:Thing in DBpedia.

Therefore, our second screening phase is aimed at all descendant classes in both KGs

whose name values share overlapping words while their super classes do not necessarily

share overlapping words.

As a result of this blocking strategy, a total of 18,492 candidate pairs were generated

in C as the product of A and B. We believe this blocking strategy will not incorrectly

discard any true positives because we have examined all discarded classes to identify any

possible match in the opposite KG. The number of distinct classes from DBpedia and

NELL is 138 and 134 respectively. Nonetheless, over 18,000 candidate pairs remain

expensive for an annotation task. Therefore, we proceed by applying a candidate

filtering strategy to further reduce the number of pairs that need to be annotated

while maintaining the gold standard completeness.

3.3.3 Candidate Filtering

Here, we apply two similarity measures to class pairs generated in the previous phase.

We utilize a string-based and an instance-based similarity measure combined with a

very low threshold to maximize the chance of retaining all true positives. The String-

based Similarity measure is applied to class names only, as NELL does not offer other

metadata descriptions of classes. However, since the two KGs use different vocabulary,

depending on a name similarity only will not assure retaining all true-positive pairs.

Therefore, we apply an Instance-based Similarity measure to capture any possible

true positive pairs, where string similarity could have failed to discover them. To the

best of our knowledge, a matching approach that is able to handle a substantial number

of instances, such as in the case of KGs, is yet to be established. Thus, in this section,

we discuss the implementation of our preliminary instance-based approach used in this

process. We believe that combining both measures can ensure a high (if not full) recall

of true positive pairs. It is worth mentioning that due to the structural irregularity in

both KGs, and the lack of structural data, structural-based similarity measures were

excluded.
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3.3.3.1 String-based Similarity Measure

We apply the Levenshtein (Levenshtein et al. 1966) edit distance approach. This

method has shown improvements over alternative string-based measures, particularly

for matching classes (Cheatham & Hitzler 2013). Here, the edit distance between

class names in each candidate pair is measured. This value is then normalized by

dividing the value by the length of the longer string, i.e., class name, to produce a

value between [0.0, 1.0]. For this task, we only retain a pair if the similarity score of

the two class names exceeds 0.4. State-of-the-art matching systems that utilize an edit

distance approach often apply a higher threshold, which can be up to 0.8, to eliminate

the number of false positive alignments (Anam et al. 2015). Nonetheless, in order to

capture as many true positive pairs as possible, we use a threshold that is twice lower

than the state-of-the-art methods.

3.3.3.2 Instance-based Similarity Measure

This method casts the matching process based on the principle of free-text index and

search, which scales to large-scale datasets. In a typical index/search scenario, a col-

lection of resources (i.e., documents) is indexed in a vector space where documents are

represented with weighted vectors of their text content. A weighting approach, such

as TF-IDF, is then used to weight term occurrences in documents. A query given to

a search engine will also be converted into a vector representation and then matched

against all the vectors stored in the generated index. The matching is then done by

calculating the cosine similarity value, where a ranked list of top K documents related

to the query is retrieved.

Similarly, we propose to treat both KGs as a collection of documents, where each

document corresponds to a class in a KG and each term corresponds to the name

of an instance. To map similar classes, a query is built by sampling instance names

from a source KG’s class, and matching them against the index of the target KG.

The equivalent class is determined based on the search result, which is a ranked list

of classes whose instance names overlap with those in the query. We exploit Apache

Solr 4, a state-of-the-art tool for free-text indexing and search. The pseudocode for the

entire similarity measure is illustrated in Algorithm 1.

4https://lucene.apache.org/solr/

https://lucene.apache.org/solr/
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Algorithm 1 Computing the instance-based similarity using Solr search

Require: source← a list of classes in Source KG

target← a list of classes in Target KG

1: for Class an in source do

2: count = 1

3: candidate = [ ]

4: while count ≤ 30 do

5: query← a concatenation of 20 instance names of class an

6: results← search(query,target) in the target index

7: for bn in results do

8: candidate.append(bn)

9: end for

10: count++

11: end while

12: candidate pairs← Top three frequent classes in candidate paired with an

13: end for

During the indexing process, an index is created for the source and target KG

separately. Classes are represented in documents that contain the concatenation of

their instance names. Document contents are indexed using the standard Solr in-

dexing process, including tokenization, stemming, lemmatization, lower casing, and

term-weighing. For the task at hand, an index is needed for NELL and DBpedia to

perform the instance-based matching. Thus, we run the following query to obtain all

instance names for each DBpedia class:

SELECT ?name

WHERE{ ?entity a <http://dbpedia.org/ontology/%ClassName>.

?entity rdfs:label ?name.

Filter (lang(?name)="en")}

After each query, a new document representing that class from DBpedia is created and

indexed in the designated DBpedia index collection. Similarly, an index is created for

NELL, which contains indexed documents of instance names parsed from the NELL

dump file mentioned earlier.
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In terms of the actual matching process, NELL and DBpedia were treated as source

and target, respectively. Consequently, queries are generated by sampling instance

names from NELL’s classes. This process can be performed in the opposite direction;

however, some of DBpedia’s classes have missing instances. This implies that a query

cannot be created from such empty classes. For example, classes such as State, Zoo,

Profession are all leaf classes and are supposed to be populated with individuals but

the links between the class name and its instances are missing in the KG. A case in

point is California5 and Florida6: both are defined in the KG with classes (i.e.,

rdf:type) other than State. This problem was encountered in 20 classes from the 138

classes selected from DBpedia. With DBpedia being the center of the LOD datasets in

mind, many options can be explored in order to fulfill this gap. Other options include

using instances from SKOS concepts or another KG that already has an established

mapping with DBpedia, such as Wikidata or WebIsALOD (Hertling & Paulheim 2017).

Nonetheless, we believe that performing a one-way search is sufficient for capturing all

positive pairs for the annotation task.

In terms of the Search process, we aim to discover class pairs that share a signif-

icant number of overlapping instance names across two KGs. Our empirical test on

a smaller sample of the dataset showed that two key factors can highly impact the

search (matching) result. The first one is the number of instance names to be used in

the query string. Using either a too-large or too-small number of instance names to

generate a query can result in zero similar documents (classes) being retrieved or false

positive results. This is due to these KG instances being automatically extracted, and

to a large number of instances per class in typical KGs. The second factor impact-

ing the search result is the number of searches (iterations) performed on each class to

determine its equivalent class. Because of the restriction of the query length, concate-

nating the names of all class instances is not feasible. Moreover, by using a sample

of instance names, different results can be retrieved depending on the sample. Our

experiment has shown that we can obtain the maximum number of true positive pairs

when concatenating 20 instances per query and performing 30 iterations per class.

To demonstrate, for a class an in NELL, 20 random instances are obtained and

concatenated to form a query string. That query is then matched against all docu-

ments (classes) in the target index, i.e., DBpedia. Consequently, a list of classes whose

instances overlap with those in the query is retrieved. For example, if the following

5http://dbpedia.org/page/California
6http://dbpedia.org/page/Florida

http://dbpedia.org/page/California
http://dbpedia.org/page/Florida
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results were retrieved when sampling instances from class Airportnell in the source KG:

Iteration1 → {Airportdbp , Citydbp , Portdbp}
Iteration2 → {Citydbp , Portdbp , Airportdbp}
Iteration3 →{Airportdbp , Portdbp}
Iterationn−1 → {Airportdbp , Citydbp}
Iterationn → {Airportdbp , Citydbp , Streetdbp}

By the end of the 30th iteration, we added three pairs of candidate alignments for

class Airportnell. Only the three most frequently retrieved classes among all iterations

are added as positive pairs, with a non-zero similarity score. For the above example,

the following pairs will be added: (Airportnell,Airportdbp), (Airportnell,Citydbp), and

(Airportnell, Portdbp). Notice that Airportnell is not matched to, Streetdbp as the latter

only appeared once during the search process.

3.3.3.3 Combining Similarity Measures

Our goal for this particular task is to discover all potentially true positives to be

annotated by humans later. Thus, we aim to ensure a high (if not full) recall, which can

be achieved by combining the two similarity measures. We applied the above-mentioned

similarity measures to the 18,492 class pairs obtained in the prior phase. Only pairs

that obtained a similarity score higher than 0.4 by the string-based measure, or a non-

zero value by the instance-based measure, were considered for the annotation task.

Following the automated approach explained above, we performed another manual

screening to discover the remaining equivalent classes from NELL and DBpedia that

were not included in the potential pairs. By inspecting all pairs discarded by the

filtering process, we were able to identify and recover 8 pairs. As a result, a total of

596 pairs were created for the human annotation task.

3.3.4 Dataset Annotation

In order to create a gold-standard dataset for matching KG classes, we ask human

annotators to determine the alignment for the previously discovered pairs. We then

aggregate their interpretations by the majority votes, as human annotators can have
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different interpretations of correspondence classes. We also perform a study of the inter-

annotator agreement (IAA). The participants were provided with guiding instructions

to complete the task. Several labels were allowed to annotate pairs which are a match,

not a match, more general, and more specific. The latter two options are often

used in the ontology domain to label subsumption or complex relation between entities.

The reason we gave the annotators this option is that it can be possible in a few

cases. For example, while DBpedia has two separate classes for State and Province,

NELL has one class named StateOrProvince which combines both. For each pair,

participants were given class names, URIs, and a sample of instance names. While

in the majority of cases annotators can make their decision based on the class names,

in some occasions more context is necessary. Therefore, participants were advised

to use the provided URIs to read more about each class context when a name does

not give a clear indication of its context. For example, NELL has classes named

MusicArtist7 and Musician8 which can be ambiguous to some extent. In similar cases,

the description provided in NELL’s knowledge browser or DBpedia can be useful. The

dataset was annotated by twenty research students and validated by two computer

scientists. Each participant annotated around 50 pairs on average. In order to observe

(IAA), 400 random pairs are duplicated among 12 annotators, such that each pair is

annotated by three different annotators. The average IAA for this task was measured

using Cohen’s kappa (Banerjee et al. 1999) based on a sample of the dataset, and it

was 0.83.

Two experts then validated the dataset to ensure that the subsumption relations

were used properly. Therefore, a subsumption relation was only added to the dataset if

there was an agreement by the experts. The gold standard mapping resulting from this

annotation task is publicly available as two test cases9. The small test case includes a

few instances per class, while the full test case contains the full A-box information for

the included classes. The latter can be used to benchmark instance-based matching

systems. The size of the gold standard is 129 equivalent class pairs with 24 non-trivial

matches, i.e., not an exact matching string of class labels. Currently, the larger dataset

in OAEI’s KG track carries only 15 class matches, while the maximum number of non-

trivial matches is 10. This makes the proposed dataset the largest domain-independent

gold standard for matching KG classes. Finally, this gold standard is considered as a

7http://rtw.ml.cmu.edu/rtw/kbbrowser/pred:musicartist
8http://rtw.ml.cmu.edu/rtw/kbbrowser/pred:musician
9https://github.com/OmaimaFallatah/KG_GoldeStandard

http://rtw.ml.cmu.edu/rtw/kbbrowser/pred:musicartist
http://rtw.ml.cmu.edu/rtw/kbbrowser/pred:musician
https://github.com/OmaimaFallatah/KG_GoldeStandard
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partial gold standard since some classes in both KGs have no equivalent class in the

corresponding KG.

3.4 The Expanded Yago-Wikidata Dataset

Contrary to the NELL-DBpedia dataset which we constructed, this dataset is built to

expand on pre-existing links between schema.org and Wikidata schema, which were

originally created by Krauss (2017). Different from the original dataset, which only

includes the schema alignments, we refer to this dataset as YAGO-Wikidata because

we retrieved the instances of Schema.org classes from YAGO 10. YAGO is another

open-source KG that is automatically generated from facts shared on Wikipedia. It

is considered as one of the largest KGs as its recent version YAGO4 (Pellissier Tanon

et al. 2020) contains around 2 billion facts and 64 million entities. Wikidata on the

other hand is a KG that is generated via collaborative editing that currently has around

1 billion facts 11.

The original gold standard mappings include over 500 links, however, not all of

them represent equivalence relations. Further, it includes links that map the schema

level of both KGs by including class and property alignments. For the purpose of

our task, we filter the links to keep only those that align classes. So as a first step,

we only include mappings annotated with the relationship equivClass. However, we

observed that it does not guarantee an equivalence relation between the two classes.

For example, The class named BarOrPub in YAGO has two equivClass links with two

classes in Wikidata which are Bar and Pub, and this indicates a one-to-many alignment.

Those alignments were also removed, given that the majority of studies on mapping

KGs only consider one-to-one mapping. As a result, the new dataset contains 304

equivalent class pairs.

Since the original dataset does not include any instances, we needed to retrieve

instances data for all the mapped classes. In terms of Wikidata, since its entities are

represented by their Q indices, e.g., Q1234, we use the Wikidata python API to query

their URIs in order to retrieve their labels. The following SPARQL query was used in

order to retrieve Wikidata labels:

SELECT *

WHERE {

10YAGO 4 https://yago-knowledge.org/downloads/yago-4
11https://www.wikidata.org/wiki/Wikidata:Main_Page

https://yago-knowledge.org/downloads/yago-4
https://www.wikidata.org/wiki/Wikidata:Main_Page
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%Qindex rdfs:label ?label .

FILTER (langMatches( lang(?label), "EN" ) )

}

The same API is then used to retrieve instances of each class using the following

query, where P31 is the Q index of the property that represents instanceOf relation in

Wikidata.
SELECT ?label

WHERE {

?name wdt:P31 wd:%ClassName .

?name rdfs:label ?label .

FILTER (langMatches( lang(?label), "EN" ) )

}

However, some classes resulted in an error indicating that the Q index was no longer

available. This is due to the original dataset being old and the fact that Wikidata

is constantly edited with collaborative efforts. In that case, we used the class label

to retrieve its current URI, which often contains the Q index. Then, we use the re-

trieved data to generate a subgraph of Wikidata that includes all 304 classes and their

annotated instances. Similarly, we use YAGO’s SPARQL query endpoint to retrieve

all schema and instances metadata related to the 304 classes included in the original

mapping dataset.
SELECT ?name

WHERE {

?entity a <http://schema.org/%s> .

?entity rdfs:label ?name.

Filter (lang(?name)="en")

}

The new expanded dataset is made publicly available at 12. This includes the two

subgraphs in RDF/XML format and the alignments file according to OAEI’s standards.

With 304 class alignments, including 92 non-trivial links.

3.5 Discussion

Here, we discuss the importance of creating benchmarks for matching the schema of

large KGs that resemble real-world KG characteristics. Current benchmarks do not

12https://github.com/OmaimaFallatah/YagoWikidata

https://github.com/OmaimaFallatah/YagoWikidata
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Table 3.1: The number of classes and instances in the two proposed
datasets

Dataset #Classes #Instances Avg # instance

DBpedia 138 631,461 4,576

NELL 134 1,184,377 8,905

YAGO 304 5,149,594 33,691

Wikidata 304 2,158,547 12,576

Table 3.2: Statistics of the number of classes and instances in the eight
KGs from the OAEI Knowledge graph track

Knowledge graph #classes #instances Avg #instance

Star Wars 269 145,033 539

The Old Republic 101 4,180 41

Star Wars Galaxies 67 9,634 144

Marvel Database 186 210,996 1,134

Marvel Cinematic Universe 55 17,187 312

Memory Alpha 181 45,828 253

Star Trek Expanded Universe 283 13,426 47

Memory Beta 240 51,323 214

resemble the challenging task of mapping cross-domain KGs in terms of size, imbalance

class distribution, topics, and matching focus.

Regarding the dataset size , common KGs often have hundreds of classes and mil-

lions of instances. Table 3.2 details the number of classes, instances, and the average

number of instances in the current OAEI KGs. This dataset consolidates 8 KGs from

the DBkWik project (Hertling & Paulheim 2018), forming 5 benchmarks used to eval-

uate matching systems on mapping classes, properties, and instances. The two largest

KGs in terms of the number of classes are the Star Wars and Star Trek Expanded

Universe, which have 269 and 283 classes, respectively. However, both KGs have

a relatively small number of instances compared to their class counts. Furthermore,

DBkwik KGs do not represent common KGs in terms of the size of instances data. For

example, the Marvel Database is the largest out of the eight OAEI KGs in terms of

the number of instances, with a little over 200,000 instances. This number is far from

the reality of large-scale and domain-independent KGs shared on the web as depicted

in Table 3.1.
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Another aspect that distinguishes common KGs from the OAEI KGs is the dis-

tribution of instances across classes. Figure 3.1 illustrates the differences between

the MemoryAlpha-MemoryBeta class distribution compared to two common KGs (i.e.,

NELL and Wikidata). We can notice that while having an imbalanced class distribu-

tion is common in both datasets, the smaller number of instances in OAEI KGs has also

impacted the distribution. In both KGs in Figure 4.1b, more classes have relatively

small and comparable numbers of instances with one outlier class, while common KGs

have far more outliers in Figure 4.1a. Further, common KGs have a high variance in

terms of the number of instances. Also, the classes that fall into the middle 50% are

significantly larger than those in the OAEI KGs. This also shows that with common

KGs, in addition to the imbalanced classes issue, they also carry enormous instances

with possible data redundancy which may impact some matching methods.

The range of topics covered by OAEI KGs is also very different from real-world

matching tasks. Common KGs are often cross-domain and cover data about real-world

entities such as places, organizations, and events. However, this is not the case with

the current OAEI KGs that are based on the entertainment domain. The latter was

generated from wiki platforms where the top five topics covered are in the domains of

games, lifestyle, comic books, and movies (Hertling & Paulheim 2018).

Another limitation of the current benchmarks is that they are more focused on

mapping KG instances. To be more specific, the KG track has 15,129 instance-

level alignments across the five benchmarks, compared to less than 50 for class-level

alignments. Despite that the majority of these KGs include a significantly large number

of classes, the total number of class alignments across the 5 benchmarks is 49. In fact,

the largest benchmark in the current dataset only includes 15 class alignments (Hertling

& Paulheim 2020b), which indeed does not well represent the problem of matching large

cross-domain KGs with hundreds of complimentary classes.

The two benchmarks we propose earlier accurately represent the challenge of match-

ing large-scale KGs as both of them contain mappings between hundreds of classes.

Moreover, they are generated from common and domain-independent KGs with high

impact on the field. Both benchmarks have classes with imbalanced distribution as the

case in many common KGs. This issue is typical due to the (semi)automated nature

of the way such large KGs are created, resulting in inconsistent class/property com-

pleteness and coverage (Ramadhana et al. 2020). For instance, while some KGs are

generated by crowd editing efforts such as Wikidata, NELL is extracted by continu-
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(a) Common Knowledge Graphs

(b) OAEI Knowledge Graphs

Figure 3.1: The class distribution of two KGs from the two proposed
datasets (NELL and Wikidata), compared to the distribution of instances
in two of the largest OAEI KGs (MemoryAlpha and MemoryBeta)



CHAPTER 3. CREATING GOLD-STANDARD MAPPINGS 62

ous ‘machine reading’ of web-based free texts (Heist et al. 2020). Previous work has

discussed its affect on different tasks relying on large KGs, such as biased results on

recommendation systems (Fu et al. 2020), and KG completion (Ji et al. 2016). In the

following chapters we discuss how this issue can impact the results of instance-based

matching methods as well.

3.6 Conclusion

In this chapter, we proposed two gold standard benchmarks for matching the classes of

large KGs. The datasets are based on four highly influential KGs, and one of them is yet

to be linked to the LOD, i.e., NELL. In Section 3.2, we highlighted the lack of datasets

that represent real-world KGs which are often large-scale, domain-independent, and less

well-structured compared to current KG datasets. Section 3.3 details our approach to

building a gold standard mapping between NELL and DBpedia which are two well-

acknowledged common KGs that are yet to be linked. In Section 3.4, we expanded

the current links between YAGO and Wikidata classes to generate a second dataset

for common KGs matching. The two datasets proposed in this chapter are considered

the largest domain-independent benchmarks for the KG schema matching task. Both

datasets are currently used as evaluation benchmarks for OAEI’s new KG matching

track named the Common Knowledge Graphs track 13. The track has been introduced

as of the 2021 campaign, where 9 out of 17 systems were able to participate. Finally,

as discussed in Section 3.5, with proposing the two datasets, we argue that matching

large, domain-independent and automatically constructed KGs has significant utility

and therefore, future work should be devoted further to this area.

Related Publication

• Fallatah, Omaima., Zhang, Ziqi., & Hopfgartner, Frank. A gold standard dataset

for large knowledge graphs matching. In Ontology Matching 2020: Proceedings of

the 15th International Workshop on Ontology Matching co-located with the 19th

International Semantic Web Conference (ISWC 2020) (Vol. 2788, pp. 24-35).

CEUR Workshop Proceedings.

13https://oaei.ontologymatching.org/2022/commonKG/index.html

https://oaei.ontologymatching.org/2022/commonKG/index.html
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4.1 Introduction

In the previous chapter, we have introduced two benchmarks for mapping common

KGs that brings more challenges to the matching task. Combining different match-

ing techniques for ontology and KG matching is a common approach. Hence, the

majority of state-of-the-art matching systems depend on a set of pre-selected tech-

niques. For example, Element-level matchers discover similar entities by utilizing the

textual annotations defined in the ontology’s entities, e.g., URIs, labels, and comments.

Structural-level matchers are also utilized, to exploit structural information like dis-

joint axioms to refine element-level alignments. Nonetheless, while current tools are

able to produce high-quality results for well-formed ontologies, such techniques are not

as well-performing when applied to KGs that lack longer textual descriptions. Fur-

ther, while some ontology matching systems utilize structural knowledge available in

well-structured ontologies, they can be difficult to apply in the case of automatically

constructed KGs lacking thorough schematic information.

There have been a smaller number of instance-based or Extensional methods com-

pared to terminological and structural matching methods. This is due to conventional

ontologies sharing a significant amount of terminological similarities, such as prefixes

and suffixes. In contrast, KGs, particularly those shared on the web, are unique and

annotate numerous instances at the instance level compared to their schema level.

Further, they are often domain-independent and cover data about real-world entities

described with different terminologies. This makes the instance-based matcher more

suitable for matching KG classes. The conventional way of utilizing such a method

implies measuring the overlap of instances across classes. However, it is more challeng-

ing to measure the extension of such an overlap given the large number of instances in

cross-domain and highly imbalanced KGs as shown in Chapter 3.

This chapter aims to answer our second research question, RQ2: Given the large

yet unbalanced number of instances in KG classes, how can we make use of them

effectively in learning? Here, we propose a novel method of using a KG instances to

train a model that classifies instances into classes in a KG, and we refer to this as KG

instance classifier. The trained classifiers are used as a key component of our proposed

instance-based approach that we will discuss in the following chapter. Here in this

chapter, we focus on introducing our method of self-training this KG classifier using

instances and classes from a given KG. Moreover, we present an in-depth analysis of
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the class imbalance problem found common in large KGs, and describe our approach

to handling this problem in the context of KG matching. Nevertheless, our method is

highly generic, and we expect it to be useful in scenarios of KG population that are

key for other KG tasks such as KGs completion and KGs entity refinement.

Section 4.2 discusses some current and related studies. Then, in Section 4.3, we

detail our approach of training KG classifies. Finally, we examine the ability of the

trained classifiers to classify instances from distinct datasets in Section 4.4.

4.2 Related Work

We discuss related work in two areas: those that utilize entity classification for ontol-

ogy population and those that study methods for handling imbalanced data in text

classification.

4.2.1 Entity Classification for Ontology Population

Ontology Population (OP) is defined as the task of introducing new entities to an on-

tology, this includes adding instances, properties, or classes (Faria et al. 2014). New

entities can be identified manually either by domain experts or human annotators,

which can be both a time-consuming and complex task. Instead, new ontology entities

can be also discovered automatically from a text corpus. For example, adding new in-

stances to the ontology by utilizing fine-grained entity typing tools that extract entities

from a large corpus of text. Several approaches are used in the literature for ontology

population: rule-based, statistical approaches, and machine learning methods (Lubani

et al. 2019). In this section, we focus on state-of-the-art and recent entity classification

approaches used in OP, as they are the most relevant to our work.

Some earlier machine learning-based methods for this task extract new entities

from unstructured or semi-structured text. This is done by using methods from the

domain of Named Entity Recognition (NER) (Mohit 2014) in order to determine in-

stances relevant to each class in the target ontology. However, evaluating such methods

requires a huge amount of labelled data, and often requires human validation. For in-

stance, FIGER (Ling & Weld 2012) trains a multi-label classifier for entity labeling.

The dataset used in this work consists of sentences from Wikipedia labeled based on

112 types (i.e., classes) extracted from Freebase (Bollacker et al. 2008). Classifiers

are trained using lexical features such as tokens, part-of-speech tags, and word depen-
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dency and patterns. Similarly, HYENA (Yosef et al. 2012) also trains a multi-label

hierarchical classifier, however, entities here can be classified into multi-level classes,

i.e., a superclass and a subclass. This approach also classifies entities based on types

extracted from YAGO utilizing lexical features like sentence surrounding mentions, the

index of the paragraph with a mention, and part-of-speech tags.

With the increasing popularity of word and KG embeddings (Dai et al. 2020), more

work has been done using such resources for OP tasks. Yogatama et al. (2015) and

Ren et al. (2016) introduce embeddings-based approaches that represent entity types,

text features, and entity mentions in a low-dimensional space where semantically sim-

ilar features and types have similar representations. Similar to earlier work in (Ling &

Weld 2012), both methods generate training data using types from Freebase. However,

incorporating embeddings allows for less noisy results as compared to lexical features,

word embeddings are more efficient at capturing the meanings of words considering

their context. In addition to utilizing fine-grained entity recognition models to pop-

ulate an ontology with additional instances, embedding methods are also utilized to

populate ontology schemas. For instance, Zafar et al. (2016) introduced an approach

that induces the taxonomy of an ontology using word embeddings. Given a bench-

mark consisting of a corpus from a specific domain, and a gold-standard taxonomy,

the goal of this method is to generate a taxonomy that is close to the gold standard

using the input corpus only. The method utilizes the word2vec model (Mikolov et al.

2013) to represent words in a low-dimensional model in order to expand the taxon-

omy using hypernym relations. Similarly, Ristoski et al. (2017) proposed TIEmb a

word-embeddings-based approach to expand the class subsumption (is-a) taxonomy

(e.g., a Basketball Player is-a Athlete). This method also utilizes vector space

embeddings to represent classes of such a relation. In such a model, instances of the

more specific class (Basketball Player), will be positioned inside the large cluster

that represents the more general class (Athlete). Therefore, given a knowledge base

such as DBpedia and WebIsADB (Hertling & Paulheim 2017), the method represents

instances using word embeddings where each class will naturally generate a cluster.

Then, the class subsumption relations are extracted from the formed clusters to be

added to the taxonomy of the knowledge base.

Some recent work have explored using deep learning models for ontology population.

Clarkson et al. (2018) introduced an approach that aligns instances that are manually

defined by a user to an ontology schema. It trains a hierarchical classification model
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using instances from the target ontology, i.e., the ontology to be populated. Classi-

fiers are trained using word embeddings trained using a domain-specific text corpus

of patient reports related to drug reactions. The trained classifier is then applied to

instances that were previously annotated by users, and the classifier then determines

the classes an instance can be mapped to. The user’s validation is required to populate

the class based on the computed probabilities. The approach we introduce here is dif-

ferent from (Clarkson et al. 2018) first in terms of the size of the dataset – their target

ontology contains less than 100,000 instances. Second, their work does not discuss any

issues related to class imbalance, as their dataset was manually created. Further, due

to the nature of their task being based on the medical domain, their approach requires

consistent user involvement, i.e., to label the data and verify the classification out-

comes. More recently, Seo et al. (2021) proposed a KG schema expansion that trains

a deep learning model using a large text corpus, without any user annotation. The

model is trained using entity mentions and word position as features, and it aims to

generate new classes and properties. Their model also incorporates active learning, as

the user’s feedback is required to decide whether a certain class should be added to the

target KG schema. The dataset used to evaluate this method is also based on Freebase

types, similar to other state-of-the-art OP tools.

4.2.2 Imbalance in Text Classification

Imbalanced distribution in datasets can contribute to many problems in supervised

machine learning. Typically, machine learning models tend to be biased towards ma-

jority classes, i.e., highly represented classes. This is due to algorithms being built

to improve the learning accuracy by minimizing errors where possible (Laadhar et al.

2019). Learning from highly imbalanced datasets has been a thoroughly studied topic,

where many solutions have been developed (Padurariu & Breaban 2019, Sahare &

Gupta 2012). Solutions can be divided into two different categories. The first cate-

gory operates on the dataset itself by aiming to re-sample the data prior to training

the models. Without altering the training data, the second category of solutions aims

to introduce changes in classification algorithms themselves (Liu et al. 2020). In the

following, we provide an overview of the state-of-the-art and common data-balancing

methods used for classification-like tasks.

In terms of re-sampling methods, they are used to balance the class distribution by

either using undersampling or oversampling techniques. Undersampling is performed
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mainly on the majority class(es). A common way to perform such a task is by ran-

domly eliminating samples from such classes to reduce their size to match the minority

class(es). On the other hand, oversampling operates on the minority classes by gener-

ating more positive samples to match the size of the majority class. This can either be

done by randomly duplicating samples in the minority class(es) or by using algorithms

that generate syntactic data (Mascardi et al. 2009). A random approach would likely

lead to a loss of important data in undersampling or generate noisy data samples in

oversampling. For this reason, more complicated approaches have been introduced in

the literature.

The Edited Nearest Neighbor (ENN) (Fayed & Atiya 2009) uses the k-means

method to remove instances with more neighbors from a different class. The One-

Sided Selection (Kubat et al. 1997) removes instances close to the decision border.

Tomek Links targets the majority classes by removing all overlapping instances to en-

sure that instances from different classes are fairly distanced (Tomek 1976). Similarly,

the Synthetic Minority Over-sampling Technique or SMOTE (Chawla et al. 2002) is

the most common oversampling method applied in the literature to handle imbalanced

data. It randomly oversamples the minority classes by generating syntactic data for

each minority class. The algorithm uses the K -nearest neighbors to current samples in

a minority class to introduce new synthetic samples from neighboring samples. Differ-

ent variations of SMOTE have also emerged later, such as Borderline-SMOTE (Han

et al. 2005), Safe-Level SMOTE (Bunkhumpornpat et al. 2009) and Adaptive Syn-

thetic Sampling Approach (ADASYN) (He et al. 2008). However, all of these methods

are based on the K-Nearest Neighboring (KNN) algorithm (Altman 1992), which has

some limitations. Liu et al. (2020) state that this algorithm can be easily affected by

large and noisy data. Further, the cost of running this algorithm significantly grows

on large-scale datasets.

Lu et al. (2017) study different sampling techniques on 18 datasets, where un-

dersampling methods generated better results compared to oversampling in a task

involving imbalanced binary classification data. In a more recent study, Padurariu &

Breaban (2019) compared different data balancing strategies on the task of classify-

ing short phrases of text from 17 classes in the financial sector. Their work included

studying different forms of representing data, e.g., TF/IDF, Bag of words, and word

embeddings, along with various sampling algorithms. They have concluded that over-

sampling techniques including random oversampling have shown an improvement in
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the results of most classifiers. Similarly, Glazkova (2020) studied the impact of differ-

ent SMOTE variations on the task of topic classification of biographical data extracted

from the Russian version of Wikipedia. The results have shown an improvement using

oversampling techniques with KNN and SVM classifiers compared to neural networks.

A notable limitation in these studies is that they either focused on binary classifica-

tion or on rather small datasets. Khurana & Verma (2022) introduced a method that

overcomes the limitations of current oversampling techniques that generate syntactic

data, however, the dataset size and the distribution of classes are far from the KG

datasets’ size. Moreover, the largest class in the dataset used in (Padurariu & Brea-

ban 2019), has 1329 instances while the smallest has 22. It can be intuitive to apply

sampling techniques on binary classification tasks, as it can be easy to determine the

majority and minority classes. However, the larger the dataset, e.g., KGs, the more

complicated the balancing process can be. This is because when multiple classes are

largely imbalanced, improving the performance of a certain class can potentially worsen

the performance of another (Krawczyk 2016).

The other category of data balancing strategies works on the machine learning

algorithm instead of the data (Elkan 2001, Liu & Zhou 2006). This is often done by

adjusting the weights of classes to better distinguish samples from minority classes.

Such methods assign higher weights to the minority classes and lower weights to the

majority classes in order to improve the classifier bias toward large classes. In addition

to these methods requiring inputs from domain experts to study the dataset and assign

specific class weights, they are known to have little to no impact on batch-training

models such as neural networks (Liu et al. 2020). This is because the weights are only

applied to the validation data, while the issue with imbalanced training data remains.

Although many solutions for dataset imbalance have been introduced in the liter-

ature, we identify that there is no research on addressing the class imbalance issue in

KG matching or even ontology matching in general. Previous research in the context

of classification tasks has shown that there is often no one-size-fits-all method, and

thus previous findings may not generalize to this task. Combined with the increasing

research in KG matching and the popularity of instance-based techniques, we argue

that it is imperative to further investigate, and develop methods to address the issue

of imbalanced distribution in the KG matching task.
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4.3 KG Instances Classification

Given the nature of the KG hierarchy which organizes instances based on classes,

we propose to follow a self-supervised machine learning approach, which is a form of

supervised learning that automatically generates training samples from the dataset

itself (Hu et al. 2014). Here, classifiers can be trained using instances as data points

(samples) and classes as their classification labels. Thus, given a KG (e.g., KG) with

a set of classes KG = {C0, C1, C2, C3..., Cn}, our aim is to train a multi-class classifier,

e.g., CLKG. Particularly, it is a KG instance classifier trained using KG instance data

where each class has a set of instances, Cn = {i0, i1, i2..., in}. Thus, given a new, unseen

instance name, CLKG will be able to classify it into one of KG classes, e.g., Cn.

In a supervised text classification task, a classifier is trained with labelled data

such as positive and negative emotions in a simple sentiment analysis task. Then, the

model can be tested with new unseen data and predict its appropriate class. As for

any machine learning task, we divide the KG dataset into two parts. First, a training

dataset is to be used during the process of building and training the classifiers. Second,

a testing dataset is used to evaluate the performance of the classification and feature

extraction processes. Here, we divide instances data into 85% for training and 15% for

the purpose of testing the classifiers.

4.3.1 KG Instances Resampling

As we have discussed so far, large KG classes are highly imbalanced. This implies that

our KG classifier training needs to handle the class imbalance problem. To illustrate,

Figure 4.1 depicts the distribution of instances in the four KGs related to our datasets

presented earlier in Chapter 3. In the following, we introduce six different sampling

strategies that we implement in order to re sample KG instances. Since we are dealing

with imbalanced data, we can resort to popular methods used for dealing with imbal-

anced training data in classification. As the goal of the data balancing technique is to

decrease the bias of classifiers towards majority classes at the expense of the minority

classes, we need to define both in the context of KGs. However, as discussed earlier

in Section 4.2, that there is a lack of consensus on how majority/minority classes are

defined in multi-classification settings particularly with this large number of classes.

Here, we adopt an approach where we first calculate the average number of instances

per class within a KG, and then classes with fewer instances than this number are
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(a) NELL (b) DBpedia

(c) Yago (d) Wikidata

Figure 4.1: The class distribution of the four KGs in the two used datasets
after applying the exact name filter.

treated as minority classes and those above it as majority classes. While we acknowl-

edge that this threshold can be automatically decided in the future, we believe that

this threshold is considered satisfactory for the task in hand. Later in this chapter, we

will demonstrate that the identified threshold strikes a balance by not overly excluding

or including an excessive number of samples from the minority or majority classes.

4.3.1.1 Random Undersampling

In binary classification, random undersampling randomly excludes data samples from

the majority class to match the size of the minority class. This is a common strategy

seen in the literature (Liu et al. 2008). Similarly, in multi-class classification tasks, this

method is independently applied to each class by randomly sampling an equal sample

size of all classes. The sample size matches the size of the class with the least data

samples (Lemâıtre et al. 2017).
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4.3.1.2 TF-IDF Undersampling

As opposed to random undersampling, which randomly discards instances from the

majority classes and can result in losing potentially useful samples, this method uses

TF-IDF (Ramos et al. 2003) to measure the ‘importance’ of samples and select them

based on this score. As a result of being fully/semi-automatically created, common

KGs often suffer from noisy and redundant information in their instances (Hertling

& Paulheim 2018). Thus, by introducing data resampling, we aim to balance KGs

instance population by undersampling the majority classes. Our goal is to obtain a

smaller yet indicative instance sample in order to limit the effect of the imbalanced

class distribution on the training/learning process. We chose to apply TF-IDF as it is a

commonly used measure to evaluate the relevance of words to a collection of documents

by weighting their occurrences. Similar to applying TF-IDF for information retrieval

tasks, we treat each KG class as a ‘document’ while the concatenation of the labels of

its instances is treated as its content. Hence, the TF/IDF value of a token represents

its relevance to a particular class in a KG compared to other classes. The TF/IDF

scores of all the tokens extracted from each majority class are calculated and ranked.

The highest ranked k words per class are then used to undersample instances in the

majority classes by discarding instance names that do not contain any of these words.

To illustrate, assuming that Cn is a majority class in KG, and W = {w0, w1, w2..wk−1},
is a list of tokens with the top k TF-IDF score in Cn. Then, we discard instance names

that do not contain one of the words in W . As a result, we have a more balanced

dataset which can be used to train a KG instance classifier.

4.3.1.3 SMOTE

Here, we apply SMOTE (Chawla et al. 2002), a state-of-the-art algorithm that oversam-

ples the minority classes by automatically generating syntactic data using neighbouring

instances. This technique is considered an alternative to random oversampling, which

is a non-heuristic approach that balances classes by duplicating the samples in the

minority classes to match the size of the largest majority class (Lemâıtre et al. 2017).

However, random oversampling can often lead to model overfitting (Krawczyk 2016).

Another reason for excluding random oversampling from being applied to the original

KG dataset is the severity of the class imbalance problem. For instance, some small

classes in YAGO have less than 10 instances while other classes have over 100,000 in-

stances as depicted in Figure 4.1. Random oversampling will produce overwhelmingly
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redundant instances for small classes, making the overfitting problem much worse.

4.3.1.4 TF-IDF + Oversampling

Combining undersampling and oversampling strategies is another approach for han-

dling imbalanced datasets. Following such a hybrid strategy has been shown to improve

the results of several classification tasks (Krawczyk 2016, Feng et al. 2021). While ear-

lier work already experimented with other variations of this idea, here we propose a

new method that combines TF-IDF undersampling with random oversampling. We

aim to maintain a trade-off between handling the imbalance issue in both majority and

minority classes. After applying the TF-IDF undersampling to the majority classes,

we apply oversampling to make each class equal-size in terms of their instances. This

includes creating repeated samples from minority classes.

4.3.1.5 TF-IDF + SMOTE

This strategy is similar to the previous one. However, instead of random oversampling,

here, SMOTE is applied as an oversampling technique to handle the minority classes.

4.3.1.6 Cost-based Learning

All previous strategies belong to the category of data-level methods, often applied

to the datasets prior to training a model. Another type of strategy (i.e., ‘algorithm

level’) aims to modify existing machine learning models in an effort to reduce their bias

towards the majority classes (Liu et al. 2020). A common algorithm-level approach

is cost-sensitive learning (Elkan 2001) which modifies the class weights by assigning

larger weights to minority class(es) and smaller weights for majority class(es) to be

used during the model learning process. In this work, we evaluate a state-of-the-art

approach (King & Zeng 2001), which gives each class a weight that is equal to its

total number of instances divided by the distribution of instances across all classes

as depicted in Equation 4.1, where dict is a dictionary of classes and their assigned

weights, bincount(C) is the number of instances in the class C.

Class Weightdict = nsamples/(nclasses ∗ bincount(C)) (4.1)
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4.3.2 Building the KG Instance Classifier

After applying a specific sampling strategy from the previous section, the goal here is

to build a machine-learning model using the resampled training data.

4.3.2.1 KG Instances Feature Representation

For any text classification task, the dataset needs to be represented in a numerical

format in order for the machine learning algorithm to process it. For example, in

the context of document classification, each document needs to be represented using

its containing text. In this task, instance names need to be represented in a numer-

ical format to learn such models. Further, in order to obtain a cleaner version of

the datasets, standard text preprocessing techniques are applied. All instance labels

are transferred into lowercase, and all stopwords and non-alphanumeric characters are

removed. Different feature extraction techniques are proposed in the literature.

• Bag of Words (BoW) is a technique widely employed in different natural language

processing and information retrieval tasks. A major limitation of this technique is

that it only considers words, disregarding their sequence or position in a sentence

or phrase (Altınel & Ganiz 2018). This makes it unsuitable for the task at hand,

as the majority of real-world entities are described using long phrases, where the

order of words is important to its context.

• TF-IDF is another common technique used to examine the importance of words

in a document. It combines two parts: (i) Term Frequency (tf) which is the

frequency of each term in the document and (ii) Inverse Document Frequency

(idf) is the number of times this term appears in all documents in the document

collection (i.e., other classes in the same KG). Hence, the weight value of a term

here represents the importance of a token in a particular class in comparison to

other classes in the KG.

• Word Embeddings technique has become a common way of numerically repre-

senting text data. It uses neural-network-based models that are able to learn

generic, numerical representations of words based on their occurrences and usage

in a large corpus. As a result, they are capable of catching the meaning of words

that are often found in similar contexts. For example, apple and orange will

be closely represented in the embeddings space. GloVe (Global Vector for Word
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Representation) (Pennington et al. 2014) and word2vec (Mikolov et al. 2013) are

two examples of state-of-the-art word embeddings models.

• Language models such as the Bidirectional Encoder Representation from Trans-

formers or BERT consists of a multi-layers encoder based on attention mecha-

nism (Vaswani et al. 2017). This deep architecture of stacked layers allows the

model to capture both semantic and syntactic aspects of words (Peeters et al.

2020). Unlike directional models such as word2vec and GloVe, where each word

can only have one vector representation, BERT generates context-specific vector

representation of words which allows better capturing the meaning of a word in

different contexts. Therefore, using a language model such as BERT, the vector

representing the word apple the fruit will be further away from the one repre-

senting Apple the technology company.

Recent studies report that transformer models and pre-trained language models

has significantly improved the state-of-the-art results in many natural language pro-

cessing tasks, including text classification (Altınel & Ganiz 2018, Minaee et al. 2021).

While training a language model using KGs is an option, this process can be time

and resource-consuming. Thus, we opt to use pre-trained language models as they

have great capability of preserving and capturing words meaning compared to other

approaches.

4.3.2.2 Training the KG Classifiers

Our classification task is considered a multi-class classification task. Here, we explore

the task at hand using three different state-of-the-art classifiers.

• A Logistic Regression (LR) classifier. Although this algorithm is commonly used

for binary classification tasks, it can be used as a multi-class classifier with the

One-vs-Rest or One-vs-All technique (Ma & Zhang 2015). This technique implies

training multiple binary classifiers, where each represents a single class in a KG

using instances from that class as positive samples and instances from other

classes as negative samples.

• A Deep Neural Network (DNN). This is a deep learning model that trains a

multi-layer sequential network. For this task, we built a DNN model with: an
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input layer of a pre-trained language model trained on Google News 1, followed

by four fully connected hidden layers with 128, 128, 64, 32 rectified linear units.

A dropout layer of 0.2 is added between each pair of dense layers for regulation.

Finally, a softmax layer for multi-class classification, taking the total number of

classes in the KG we are training a classifier for. The architecture of this model

is inspired by previous high-performing models in different NLP tasks, such as

in (Minaee et al. 2021) and (Collobert et al. 2011).

• A pre-trained BERT-based model (Maiya 2020). As we stated earlier, BERT is

a language model that obtains state-of-the-art results in different classification

tasks, particularly on large-scale tasks. The pre-trained model takes as input KG

classes as classification labels with a list of their annotated instances. Instance

names are then transferred into vector representations using the BERT prepro-

cessor. Note that BERT requires the training and testing data to be encoded in

a specific way, therefore, previously mentioned feature representation methods

may not be suitable for this model.

4.4 Experiments

4.4.1 Experiment Settings

Our choices of machine learning models include using deep learning models, which

often require more resources. Therefore, our experiments of training the KG instance

classifiers were conducted on ShARC (Sheffield Advanced Research Computer), the

University of Sheffield’s high-performance computing system. ShARC is open for the

University of Sheffield staff and research students, and it is constructed of 12160 GiB

of memory, a cluster of 2024 CPU cores, and 40 GPUs. This platform has facilitated

running multiple experiments simultaneously for such a large task. For the following

experiments, we use the two OAEI datasets proposed earlier in Chapter 3 as well as

the OAEI KG track benchmark. In addition to the KG datasets, we evaluate our

classifiers on the Web Data Commons (WDC) datasets, specifically the WDC web

table dataset 2. It consists of millions of relational tables describing real-world entities,

annotated using the Schema.org vocabulary.

1https://tfhub.dev/google/tf2-preview/nnlm-en-dim128/1
2http://webdatacommons.org/structureddata/schemaorgtables/

https://tfhub.dev/google/tf2-preview/nnlm-en-dim128/1
http://webdatacommons.org/structureddata/schemaorgtables/
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4.4.2 Evaluation Metrics

Earlier in Chapter 2, we only discussed the way in which precision, recall, and f-measure

are calculated in the context of matching tasks. Here, we provide a brief overview of

how they are used for evaluating classification-like tasks.

These measures are based on the total number of true positives, false positives, and

false negatives. Thus, given a set of instance names predicted to belong to a particular

class by a KG classifier, (i) true positives are instance names with a correctly predicted

class label, (ii) false positives are instance names with incorrectly predicted class la-

bels, and (iii) false negatives are the instances that the matching system has missed.

Precision is used to assess the ability of the KG classifier to correctly predict samples

(Equation 4.2), while recall is about measuring the completeness of the predictions

(Equation 4.3).

precision =
true positives

true positives + false positives
(4.2)

recall =
true positives

true positives + false negatives
(4.3)

F-measure is another measure that is often used in order to measure the trade-off

between precision and recall by calculating their harmonic mean(Equation 4.4.

recall =
2 ∗ (precision ∗ recall)

(precision + recall)
(4.4)

Other important measures for multi-class classification tasks are macro average

and micro averag f-measures. Both are used to evaluate the overall performance of

multi-class classifiers such as those in our case. Micro average or otherwise known as

accuracy is calculated by combining all predicted instances, then measuring precision,

recall, and f-measure. The macro average is the mean of the f-measure of all the classes

learned by the classifier. Micro average is the most used measure, however, it can be

influenced by classes with majority samples (Liu et al. 2009). Therefore, in the case of

imbalanced class distribution, the macro average gives more insight into the classifier’s

ability to predict the minority classes too.



CHAPTER 4. TRAINING KNOWLEDGE GRAPH CLASSIFIERS 78

Table 4.1: The macro average results of the three trained machine learning
models on the common KG dataset.

Dataset
LR DNN BERT

P R F1 P R F1 P R F1

NELL 0.21 0.18 0.16 0.78 0.75 0.76 0.86 0.84 0.85

DBpedia 0.16 0.14 0.11 0.47 0.45 0.45 0.61 0.57 0.58

YAGO 0.18 0.13 0.12 0.40 0.33 0.34 0.55 0.45 0.47

Wikidata 0.10 0.09 0.09 0.32 0.24 0.25 0.46 0.34 0.36

4.4.3 Results on Common KG Datasets

First, we evaluate our KG classifiers using common KG datasets including YAGO,

NELL, DBpedia, and Wikidata. These are the four KGs from the two datasets pro-

posed earlier in Chapter 3 and used for the common KGs track at OAEI. Table 4.1

shows the macro average results of the three classification models detailed earlier in Sec-

tion 4.3.2: the Logistic Regression, the Deep Neural Network, and the BERT classifier

on the testing datasets. One can clearly notice that the BERT classifier significantly

outperforms the two other models. Therefore, in the following experiments, we show

only the results of the BERT classifier.

We explained earlier in Section 4.4.2 that the macro average can be a better indi-

cator of the ability of classifiers to correctly predict instances from the minority classes

instead of biasing towards the majority classes. Table 4.2 illustrates the macro preci-

sion, recall and f-measure of the BERT classifier using each of the six different data

balancing strategies discussed in Section 4.3.1 above. The table highlights in bold that

the best classification results are obtained by the classifier trained using the TF/IDF

undersampling with oversampling on all 4 datasets. When this strategy is applied, a

notable increase in the macro average precision, recall, and f-measure was observed.

For example, in terms of f-measure, the NELL dataset obtains a minimum increase of

10% (from 85% to 95%), while the Wikidata dataset yields the maximum increase of

f-measure with 23% (from 36% to 0.59%). Figure 4.2 illustrates the macro f-measure

when using our best-performing strategy, i.e., TF/IDF with oversampling, compared

to the original datasets. The increase in macro average scores is largely attributed to

improvements in the performance of the minority classes prediction.

In terms of undersampling, we apply two different strategies, random undersam-

pling and using words with high TF/IDF scores for undersampling. We can conclude
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Table 4.2: The macro average results for the KG classifier using different
data balancing strategies on the four common knowledge graph dataset

Knowledge Graph Sampling Strategy Precision Recall F-measure

NELL

w/o resampling 0.86 0.84 0.85

SMOTE 0.86 0.84 0.85

Random Undersampling 0.13 0.17 0.13

TF/IDF Undersampling 0.91 0.90 0.90

TF/IDF with oversampling 0.95 0.95 0.95

Cost-based learning 0.79 0.75 0.74

TF/IDF + SMOTE 0.91 0.91 0.91

DBpedia

w/o resampling 0.61 0.57 0.58

SMOTE 0.59 0.56 0.57

Random Undersampling 0.13 0.18 0.11

TF/IDF Undersampling 0.70 0.67 0.68

TF/IDF with oversampling 0.74 0.74 0.73

Cost-based learning 0.41 0.39 0.32

TF/IDF + SMOTE 0.67 0.64 0.65

YAGO

w/o resampling 0.55 0.45 0.47

SMOTE 0.57 0.59 0.58

Random Undersampling 0.08 0.14 0.09

TF/IDF Undersampling 0.64 0.50 0.52

TF/IDF with oversampling 0.64 0.62 0.62

Cost-based learning 0.20 0.24 0.16

TF/IDF + SMOTE 0.67 0.54 0.56

Wikidata

w/o resampling 0.46 0.34 0.36

SMOTE 0.49 0.38 0.37

Random Undersampling 0.04 0.13 0.06

TF/IDF Undersampling 0.60 0.51 0.53

TF/IDF with oversampling 0.60 0.59 0.59

Cost-based learning 0.32 0.29 0.23

TF/IDF + SMOTE 0.45 0.38 0.40



CHAPTER 4. TRAINING KNOWLEDGE GRAPH CLASSIFIERS 80

Figure 4.2: The macro f-measure of the BERT classifiers using the
TF/IDF with oversampling compared to no sampling strategy on the com-
mon KG datasets

that while random undersampling notably reduces the instances per class, it has a

detrimental impact on results due to its aggressive elimination process. Therefore, it

seems to lower the accuracy of all classifiers compared to using no data balancing strat-

egy. On the other hand, using our proposed TF/IDF undersampling method yields a

notable performance improvement across the 4 KGs. For instance, training the BERT

classifier on the Wikidata dataset without any sampling obtains 36% macro f-measure,

while using TF/IDF undersampling increases that up to 53%. However, since this

method only targets the majority classes, the classifier performance on the minority

classes remains the same.

In regard to oversampling, utilizing the state-of-the-art SMOTE algorithm on KG

instances also improves the macro f-measure of the classifiers compared to using no

sampling. However, the improvement is not as significant as other strategies. More-

over, given the severity of the data imbalance issue in common KGs, combining un-

dersampling of the majority classes with oversampling of the minority classes can be

a more well-balanced approach. For example, the table shows that combining the

TF/IDF undersampling with SMOTE results in a macro f-measure score closest to the

best-performing strategy, i.e., TF/IDF and oversampling. In particular, on the NELL

dataset, TF/IDF combined with SMOTE scored 4 percentage points lower (0.91 macro
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Table 4.3: The macro average for the KG classifiers using the best-
performing sampling strategy on the eight KGs from the DBkWik project

Knowledge Graph Precision Recall F-measure

Star Wars 0.49 0.48 0.42

Star Wars Galaxies 0.03 0.06 0.03

Memory Alpha 0.36 0.39 0.33

Memory Beta 0.21 0.30 0.20

Star Trek Expanded Universe 0.42 0.44 0.36

Marvel Cinematic Universe 0.52 0.53 0.52

Marvel Database 0.24 0.32 0.24

The Old Republic 0.30 0.39 0.28

f-measure) than the best-performing configuration, i.e., TF/IDF with oversampling

(0.95 macro f-measure). Further, generating syntactic samples with SMOTE does not

seem to have the same effect on other KGs such as YAGO and Wikidata. This is due

to the size of both KG datasets being twice the size of the NELL and DBpedia datasets

in terms of both schema and instances data.

Finally, we implement cost-based learning, which applies different class weights

to handle the biased classification results. While this method aims to maintain the

training data, it results in a decrease in the macro f-measure across all 4 KGs. For

instance, compared to not using class weights on DBpedia, the f-measure decreases

from 58% down to 32%. As we mentioned earlier in Section 4.2, this can be due to

this approach only being applied to the testing data and tends to over-penalize the

classifier for biasing towards the majority classes.

4.4.4 Results on the DBkWik dataset

Table 4.3, illustrates the macro precision, recall, and f-measure of the KG classifiers

trained on the 8 KGs in the DBkWik dataset. The results are based on using the

BERT classifier along with the best-performing sampling strategy, which combines

TF/IDF undersampling with oversampling. We can observe that in terms of macro f-

measure, the results are not as high as what we have seen on the common KGs dataset.

The highest results are observed with this dataset were on the Marvel Cinematic

Universe with 52% precision, 53% recall, and an f-measure of 52%.

We discussed earlier in Section 3.5 how the current KG dataset, i.e., DBkWik,
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has very different characteristics compared to real-world KGs. The differences are in

terms of the number of instances, instance distribution, and the nature of the dataset

being based on the entertainment domain. Here, we further discuss how these char-

acteristics can also impact the performance of KG classifiers. First, machine learning

algorithms, particularly neural-network-based techniques such as BERT, need large

and well-balanced datasets for better results (Padurariu & Breaban 2019). However,

as shown in Table 3.2 the number of instances in DBkWik is significantly smaller

compared to its large schema. Second, this relatively small number of instances is not

well-distributed across the KG classes. For example, Star Wars is one of the largest KGs

in DBkWik in terms of its A-Box data size, it has over 145,000 instances. Nonetheless,

over 100,000 of its instances belong to one class, while the rest are distributed across

the other 241 classes.

The other factor that could impact the performance of KG classifiers is the range of

topics covered by a KG. Figure 4.3 depicts the classification reports of twenty classes

from YAGO and NELL compared to the DBkWik Marvel Cinematic Universe and

Memory Alpha KGs. We can observe the difference between the classification results

based on the topic of the classes. In YAGO and the marvel datasets, for instance, we

can observe that classes such as actor, song, episode, comicStory, have a lower

f-measure score in both KGs. As we mentioned earlier, the OAEI KGs are from the

domain of TV, comics, and Gaming. Moreover, without a certain level of background

knowledge, instances of these classes can be highly ambiguous and difficult to differ-

entiate even for human annotators. Recent research has also studied the problem of

classifying entities from such domains, particularly in the field of Named Entity Recog-

nition (NER). For example, Sikdar et al. (2018) conducted an annotation task using

Twitter data for NER task, and they report that annotating movies, TV shows, and

songs were among the most challenging tasks for participants. Malmasi et al. (2022)

also introduced a dataset for classifying ‘complex’ real-world entities and evaluated

some state-of-the-art pre-trained language models on the task. These models have

shown low performance when classifying entities of Creative Work without any ex-

ternal knowledge source compared to classifying other classes like Organization and

Product.
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(a) Marvel Cinematic (b) YAGO

(c) Memory Alpha (d) NELL

Figure 4.3: The classification reports of a 20 randomly sampled classes
from the OAEI KG Marvel Cinematic Universe and Memory Alpha com-
pared to two common KGs: YAGO and NELL.
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4.4.5 Results on the Web Data Commons dataset

Over the last decade, many websites have started to embed structured data within their

web pages using markup standards such as Microdata, JSON-LD, RDFa, and Micro-

formats (Bizer et al. 2019). Among these adopted standard vocabularies, schema.org 3

is one of the largest vocabularies describing real-world entities such as Organization,

Person, Product, Place, and Event. Embedding structured data in webpages through

adopting the schema.org vocabulary has been widely supported by world-leading search

engine companies such as Google, Yahoo, and Microsoft Bing (Meusel et al. 2015). In

addition to the embedded data being used by search engines for search result opti-

mization, they are also recognized as valuable sources of data for a wide range of

language-related tasks such as entity linking (Primpeli et al. 2019, Suhara et al. 2022)

and KG construction (Ritze et al. 2016, Bizer et al. 2019). Moreover, this data has

become publicly available as a result of the Common Crawl Foundation efforts. The

Common Crawl 4 is an open repository of regularly published web crawled corpora that

can be accessed and analyzed by anyone. The October 2022 version 5 of the Common

Crawl contains 3.15 billion webpages. Further, the Web Data Commons (WDC) is an-

other initiative that extracts and publishes structured data from the Common Crawl

corpora, and so far, it has published 11 releases (Meusel et al. 2014).

These releases of structured data are potentially valuable resources for evaluating

our KG classifier. This is because the dataset annotates real-world entities using their

schema.org classes along with annotation of their properties. For instance, entities

of the class Hotel can be described with properties like name, address, description,

and price range, while Product entities can have other properties, such as image and

brand. In particular, here we use the WDC schema.org table corpus 6, which contains

4.2 million relational tables generated by obtaining schema.org data from the Common

Crawl and grouping the data into separate tables by class/host combinations. Among

the 43 schema.org classes available from this dataset, there is a table for each web host

from which entities were extracted for each class. Each table details a list of columns,

which represent the properties of entities used in a certain host. To illustrate, Figure 4.4

shows a sample of the table extracted from Netflix website for the class Movie which

has the following columns: name, description, director, date created, actor and genre.

3https://schema.org/
4https://commoncrawl.org/
5https://commoncrawl.org/2022/10/sep-oct-2022-crawl-archive-now-available/
6http://webdatacommons.org/structureddata/schemaorgtables/

https://schema.org/
https://commoncrawl.org/
https://commoncrawl.org/2022/10/sep-oct-2022-crawl-archive-now-available/
http://webdatacommons.org/structureddata/schemaorgtables/
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Figure 4.4: Example table describing movies extracted from Netflix.com

Table 4.4: The distribution of instances across classes in the WDC
datasets

Place LocalBusiness CreativeWork

Class #Instances Class #Instances Class #Instances

Airport 510 Hospital 3,456 Book 254,127

CollegeOrUniversity 10,705 Hotel 142,453 Dataset 151,193

LakeBodyOfWater 373 Library 1,775 Movie 125,973

LandmarksOr

HistoricalBuildings
2,929 RadioStation 22,481 MusicAlbum 51,881

Mountain 4,893 Restaurant 30,008 MusicRecording 71,723

Museum 3,819 ShoppingCenter 5,441 Painting 9,734

Park 2,797 SkiResort 697 Recipe 226,973

RiverBodyOfWater 954 StadiumOrArena 152 TVEpisode 69,407

School 39,429 TelevisionStation 10

Total 66,409 Total 206,473 Total 961,011

Average 7,378 Average 22,941 Average 120,126

While entities of the same class will intuitively share similar properties as explained

earlier, movies extracted from another host, such as IMDB could have slightly different

properties. Moreover, different data publishers can have different guidelines and rules

which can impact the data quality.

Here, we propose to use this corpus to create a benchmark for evaluating our KG

classifier. Specifically, we propose to select only the classes that are considered as leaf

nodes in the schema.org class hierarchy (i.e., those with specific annotated entities).

Taking the 43 schema.org classes, we first create a hierarchical tree by mapping them

to the current schema.org full hierarchy 7. Then, within each branch of the tree, we

select the leaf classes and ignore intermediary classes. For instance, for the high-level

class Place, we ignore intermediate nodes such as BodyOfWater and CiviStructure,

but we include their leaf classes such as RiverBodyOfWater and Airport respectively.

We also exclude subclasses that can be easily populated by using a controlled list such

as Country, Continent, City, and Language. By applying this process, we obtain 26

leaf classes for three major schema.org classes, shown in Table 4.4.

7https://schema.org/docs/full.html

https://schema.org/docs/full.html
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After determining the classes we will evaluate on, we then collect their instances

from the WDC schema.org table corpus. As mentioned before, each table describes

entities of one schema.org class from an entire web domain, e.g., imdb.com, and depend-

ing on the web domain, the table may have different columns. Here, to be consistent

with the KG datasets we have used for evaluation before, we propose to only use the

’name’ column, and we merge entities of the same class from multiple web domains

into a single table. Thus, the column named name t is used to represent the KG in-

stances used as training data. Then, the column named schemaorg class is the name

of the classes for which we are aiming to classify. Table 4.4 depicts the distribution

of instances across the classes in the three datasets. We can notice that for Place

and Local Business, their subclasses are very imbalanced in terms of their number of

instances. For instance, Hotel is the largest class with over 140,000 instances, while

TelevisionStation is the smallest class which has only 10 instances. On the other

hand, subclasses of Creative Work are more well distributed.

Table 4.5 depicts the precision, recall, and f-measure results for all the classes in

the three WDC datasets as well as the macro average for the three higher level classes.

The presented results are based on the KG classifier using the best sampling strat-

egy, i.e., TF-IDF with oversampling. From that table, we can notice that classifying

entities of Place yields the highest results, with 0.92 f-measure. In this category, we

can notice that the classifier is performing well in all classes, where the class Museum

has the lowest f-measure (0.79). On the LocalBusiness dataset, which has an overall

macro f-measure of 0.83, the classifier was not able to predict any correct instances from

TelevisionStation. In addition to this class being the smallest class with only 10 in-

stances, those instances are also very noisy. For instance, while some of those instances

contain random numbers, others are describing arbitrary entities, e.g., Country Roads

Magazine and Sunshine Pages. In terms of classifying CreativeWork entities, it seems

to be more challenging than the two previous categories, with a macro f-measure of

0.68. This is largely due to low performance on the classes Book, Recipe, Dataset,

and Movie. This is also consistent with our earlier findings in the KG datasets, that is

classifying real-world entities can be very challenging as many can be very ambiguous.
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Table 4.5: Results of the KG classifiers on the WDC datasets

Class Name Precision Recall F-measure

Place

Airport 0.85 0.87 0.86

CollegeOrUniversity 0.95 0.98 0.97

LakeBodyOfWater 0.94 0.96 0.95

LandmarksOr

HistoricalBuildings
0.99 0.96 0.98

Mountain 0.91 0.98 0.94

Museum 0.74 0.84 0.79

Park 0.93 0.95 0.94

RiverBodyOfWater 0.96 0.99 0.97

School 0.92 0.96 0.98

Macro Avg 0.91 0.93 0.92

Local Business

Hospital 1.00 1.00 1.00

Hotel 0.99 0.98 0.99

Library 0.98 0.99 0.98

RadioStation 0.91 0.99 0.95

Restaurant 0.97 0.97 0.97

ShoppingCenter 0.97 0.95 0.96

SkiResort 0.71 0.77 0.74

StadiumOrArena 0.77 0.99 0.87

TelevisionStation 0.00 0.00 0.00

Macro Avg 0.81 0.85 0.83

Creative Work

Book 0.34 0.63 0.44

Dataset 0.62 0.58 0.60

Movie 0.65 0.58 0.61

MusicAlbum 0.67 0.55 0.60

MusicRecording 0.99 1.00 1.00

Painting 0.82 0.93 0.87

Recipe 0.24 0.52 0.33

TVEpisode 0.98 0.99 0.99

Macro Avg 0.66 0.72 0.68
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4.5 Conclusion

In this chapter, we introduced our KG instance classifiers, multi-class classifiers that

can predict the classes of a given KG instance name. We utilized BERT, a leading

language model that has been showing remarkable results in different classification

tasks. In order to cope with the KG class imbalance issue, our approach incorpo-

rated six different data-balancing strategies. Among these, two strategies were newly

introduced in this work: an undersampling strategy that utilizes the TF/IDF weight

to resample the majority classes in a KG, and another approach that combines the

TF/IDF undersampling with random oversampling the minority classes. We evaluated

our classification method on various KG evaluation datasets. The results with regard

to the sampling have shown an improved classification result when combining TF/IDF

with oversampling. We showed that our KG classifier can be also used for ontology

population tasks by evaluating them on the WDC dataset. The latter is a large-scale

and automatically constructed dataset largely used for different tasks in the semantic

web, such as KG construction. The results have shown that the entity classification

task can be more challenging in some domains such as entertainment compared to other

real-world entities typically shared in common KGs. Finally, the approach introduced

in this chapter has demonstrated promising results in training KG instance classifiers.

However, there is still ample room for further research and exploration in this area.

Related Publication

• Fallatah, Omaima., Zhang, Ziqi., & Hopfgartner, Frank. The Impact of Imbal-

anced Class Distribution on Knowledge Graphs Matching. In Proceedings of the

17th International Workshop on Ontology Matching (OM 2022) co-located with

the 21st International Semantic Web Conference (ISWC 2022). CEUR-WS.
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5.1 Introduction

The previous chapter introduced a method for training KG instance classifiers that can

be utilized to match their classes. While the problem of ontology matching has been

well studied in the last decade, mapping large-scale KGs remains a challenging task.

Similar to ontologies, KG entities are highly heterogeneous, since many real-world

entities can be described using different vocabulary. Nevertheless, while ontologies

primarily focus on modeling the schema of a specific domain, cross-domain KGs are

known for describing numerous instances. Due to their nature of being largely gen-

erated in a semi-automated manner, KGs are less well-formed compared to manually

created and well-designed ontologies. Current matching methods are mainly focused

on well-formed ontologies, while the problem of matching automatically curated and

large KGs remains unsolved. As highlighted in Chapter 2, the majority of the state-

of-the-art methods are highly dependent on string and structural-based techniques,

common KGs often lack the longer textual descriptions, e.g., comments, required by

such methods. In terms of structural-based similarity measures, despite that some KGs

lack the schematic information required by such methods, they are often used to verify

or support element-level matchers.

This chapter proposes a matching system named KGMatcher+, a novel domain-

independent method for mapping classes in large KGs. This approach combines two

matching techniques: a string-based method with an instance-based approach. The

latter only uses annotated instance names to generate similar class pairs, building on

the KG classifiers detailed in Chapter 4. Our method utilizes the large number of

instances typically annotated in large and common KGs and is able to cope with the

imbalanced population of KG classes. This is to answer our third research question,

RQ3: How can we effectively use instances to match KG classes while addressing the

unbalanced population issue?

This chapter is organized as follows: Section 5.2 discusses some current KG match-

ing methods and summarizes their limitations. In Section 5.3, we introduce our hybrid

matching approach, while Section 5.4 evaluates the proposed method. Finally, Sec-

tion 5.5 concludes this chapter.
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5.2 Related Work

In Chapter 2, we detailed the state-of-the-art matching techniques, as well as the

current ontology matching methods. Here, we give a brief overview of the most recent

approaches utilized for KGs matching in particular (Section 5.2.1), then we highlight

the limitation of these methods, particularly on the task of matching large-scale and

less-well-formed KGs in Section 5.2.2.

5.2.1 Knowledge Graphs Matching Overview

As mentioned earlier, that in order to achieve better matching results, most systems

combine several existing matching techniques. While Section 2.2 provided a compre-

hensive review of various ontology matching techniques, this section aims to provide a

high-level overview of the most recent matching systems. The purpose of this overview

is to establish a context for comparing our own matching approach later in this chap-

ter. By providing this overview, we aim to demonstrate the relevance and significance

of our research by contextualizing it within the existing literature and showcasing its

potential contributions to the field of ontology and KG matching.

Given the nature of the task, the most common matching technique across all tools

is to determine equivalent class pairs based on terminological similarity. This is one of

the element-level techniques discussed in Section 2.2.1.1, which discovers similar enti-

ties by utilizing the textual annotations defined in the KG entities, e.g., URIs, labels,

and comments. It is often done by applying a variety of string-similarity metrics such

as string equality, edit distance, and n-gram. To name a few, terminological techniques

are the base of Matcha (Faria et al. 2022) formally known as AML, and LogMapLite,

a lighte wight version of LogMap that only applies essential (efficient) string matching

techniques (Jiménez-Ruiz 2020). Another common element-level technique used for

KGs schema matching is language or semantic-based, which depends on utilizing back-

ground knowledge (Portisch et al. 2021). For example, Wiktionary system (Portisch

& Paulheim 2022b) uses Wiktionary while LSMatch (Sharma et al. 2021) utilizes

WordNet . Another form of incorporating background knowledge is by using another

knowledge base or a KG, e.g., WebisALOD a KG with hypernym relations that is used in

the ALOD2Vec system (Portisch & Paulheim 2022a). Such matching techniques align

candidate class pairs in the source and target KGs by mapping them to terms or entities

in the background knowledge resource first. Recent systems, such as TOM (Kossack
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et al. 2022), Fine-TOM (Knorr & Portisch 2022), and OTMapOnto (An et al. 2021),

have also explored using transformer models as background knowledge given their re-

markable role on different NLP tasks.

Determining equivalent schema entities by studying the structure of the two in-

put KGs is another strand of matching techniques (Section 2.2.1.2). They exploit

structural information available in well-formed ontologies like disjoint axioms, such

as in AML (Faria et al. 2019) and LogMap (Jiménez-Ruiz 2020), or by using math-

ematical models to analyze KG structures, such as in FCAMap-KG (Chang et al.

2019). Structural-based techniques can be error-prone therefore, they are mainly used

to refine element-level alignments. A useful example is ATBox/ATMatcher (Hertling

& Paulheim 2020a), a matching system that uses neighboring entity information to

filter mappings initially discovered by its string-based matcher. However, as we dis-

cussed in Chapter 3, unlike many well-curated domain-specific ontologies, public and

cross-domain KGs often lack such structural information due to their automatically

generated nature.

Instance-based techniques align schema entities (i.e., classes or properties) based on

the overlap of their instances. Earlier in Section 2.2.1.2, we recognized that due to the

lack of instance data in formal ontologies, there have been fewer studies of instance-

based methods compared to terminological methods. Similarly, instance-based is the

least incorporated technique among KG matching methods, even though typical KGs

have an abundance of instances. For example, as discussed before in Chapter 3, DB-

pedia 2016-04 has over 5 million instances and 754 classes; YAGO consists of a similar

number of instances as DBpedia, but has over 500,000 classes; NELL, on the other

hand, has around 300 classes and over 3 million instances (Heist et al. 2020, Ringler &

Paulheim 2017). This is orders of magnitude larger than domain-specific KGs like the

one in the OAEI’s KG track, which have less than 300,000 instances on average (Pour

et al. 2021). This number of instances can make measuring the overlap of instances a

very challenging task. Nonetheless, we believe that instance-based techniques can be

potentially more helpful, and indeed, there has been an increasing number of methods

for matching large KGs schema entities, particularly properties, using instance-based

techniques (Zhang et al. 2017, Ayala et al. 2021). DOME (Hertling & Paulheim 2019)

is one of the recent approaches that incorporate an instance-based matcher for KG

class matching. The system aligns KG instances first and then measures the overlap

of shared instances to align classes using dice, readers can refer to Section 2.2.1.2 for
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details on current instance-based methods.

5.2.2 Limitations of Current Methods

From the above analysis of the current KG matching method, the following three pat-

terns were observed. First, the majority of current systems are built for well-formed

and well-structured ontologies with fewer instances. As a result, they mainly depend

on terminological and structural techniques while instance-based ones are less well-

studied. While current tools are able to produce high-quality results for well-formed

and manually curated datasets, such techniques are not as suitable for real-world large-

scale KGs that lack detailed textual and structural descriptions. Second, many of the

current matching systems are still suffering in terms of scalability to handle large match-

ing tasks. In recent OAEI campaigns, Pour et al. (2021) report that many matching

systems face challenges managing the balance between efficiency and effectiveness, par-

ticularly for large tasks such as large-scale biomedical ontologies, and KGs matching.

Third, some matching strategies, particularly state-of-the-art methods, were origi-

nally built to handle domain-specific ontologies, such as in the biomedical domain.

This is due to many reasons, one being that research in that area has established a

need for linking such domain-specific resources. The other reason is that most avail-

able datasets were also domain-dependent, e.g., OAEI anatomy, conference, and the

current KG track. However, methods used in this single-domain setting may not be

applicable for domain-independent and real-world settings, where classes may contain

information about real-world entities described with different vocabulary.

5.3 Approach

5.3.1 Overview

Preliminaries. While some notations have been mentioned before, here we repeat

some of them to place everything in the context of KGs matching. Given two input

knowledge graphs KG and KG ′, we define the correspondence between two classes

C ∈ KG and C ′ ∈ KG ′ as the tuple < C, C ′, v > where v ∈ [0, 1] is the similarity value of C
and C ′. Each class in the two KGs has a set of instances, Cn = {i0, i1, i2..., in} and C ′m =

{i0, i1, i2..., im}. The following sections describe different modules of KGMatcher+, as

illustrated in Figure 5.1.
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Figure 5.1: The architecture of the proposed system (KGMatcher+)

The system starts with parsing the two input KGs and applying general text prepro-

cessing methods. The second component of the system is the instance-based matcher.

It adopts a data-driven approach where a two-way classification technique is followed

to map classes from two KGs. Further, it is based on the extent to which the instances

of a class in one KG are classified as instances of classes in another KG. First, after

removing classes with exact names in order to reduce the search space, the matcher

uses the processes of resampling and building KG instance classifiers as described in

the previous chapter (Section 4.3.1 and Section 4.3.2). Next, the trained classifiers are

then applied to the other KG to classify its instances. Mapping pairs of classes are

then derived based on the classification results of the two classifiers. The two stages

will result in two directional alignment sets, denoted as AKG→KG′ which is a set of

correspondences between classes from KG and KG ′ respectively, and AKG′→KG which

is a set of correspondences in the opposite direction. The two directional alignments

are then aggregated in order to obtain one alignment set for this matcher Ainstance.

The second matcher is based on string and semantic similarities, which belongs to

the element-level matcher category. This matcher uses class labels to generate equiv-

alent class pairs, denoted as Aname. Finally, the method ends by generating the final

alignments A.

5.3.2 Pre-processing

The first component of the matcher consists of three steps. It starts by parsing the

two input KGs in order to extract and then separately index their lexical annotations.

Given a KG, an index of its classes is generated by following the standard free text
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indexing approach for search engines. The details of this part of the method, i.e., pre-

processing KG instances, have been previously explained in Section 4.3.2.1. Nonethe-

less, KGs class names are also preprocessed by KGMatcher+. Similarly, KG classes

can also be described with multiple words that are often separated with an underscore

or concatenated with or without camel case style. For example, placeofworship and

ReligiousBuilding. In terms of the underscore character, it is replaced with a space

character. For concatenated labels, a word segmentation process that utilizes a dictio-

nary is applied to infer the spaces between words, while the camel case is also replaced

with a white space.

5.3.3 Instance-based Matcher

This matcher maps KG classes based on their shared instances using the KG instance

classifiers trained in Chapter 4. The results of that chapter have shown that KGs

are similar in principle to other datasets in terms of how unique the imbalanced data

issue can be in different KGs. Therefore, in order to capture as many ‘true-positive’

alignments as possible, we perform the matching process in a two-way classification

fashion. Each process trains a self-supervised KG classifier using one of the two input

KG data. Then, a classifier trained on KG for instance can be used to predict the class

C to which a given ‘instance’ name may belong. The two KG classifiers are later used

to elicit candidate class alignments. In the following sections, we detail each step of

this matcher as they are depicted in Figure 5.1.

5.3.3.1 Exact name filter

The first component starts by filtering classes with exact names. This works by ex-

cluding class pairs that share exactly the same labels from KG and KG ′. Our goal here

is to use the instance-based matcher to leverage the final alignments with class pairs

that are likely to not be discovered by simple string matchers. Moreover, typical large

KGs can have hundreds of classes to be matched, which can affect the performance

of any matching method. Therefore, this step also serves as a blocking strategy that

reduces the search space for the matcher. Furthermore, classes with only one instance

are eliminated from this process, as the BERT-based classifier is unable to learn from

such classes.



CHAPTER 5. MATCHING KNOWLEDGE GRAPH CLASSES 96

5.3.3.2 KG Classifiers

At this part of the matching approach, two KG classifiers are trained for KG and

KG ′ using the approach detailed in Chapter 4. KG instances are sampled using the

best-performing sampling strategy, i.e., TF-IDF undersampling and oversampling (Sec-

tion 4.3.1). Then, the two trained classifiers, as detailed in Section 4.3.2, CLKG and

CLKG′ will be utilized in the following two steps of the matching system.

5.3.3.3 Alignment Elicitation

The alignment elicitation phase is split into a first and a second process in order to

perform the two-way matching as shown in Figure 5.1. Here, we derive class mapping

candidates based on the classification results of CLKG and CLKG′ . The first alignment

elicitation is performed in the direction KG → KG ′ to generate mapping candidates,

denoted as AKG→KG′ . Thus, KG will be treated as the source KG and KG ′ as the

target. Subsequently, CLKG, is applied to all instance names in KG ′ and will return

a list of classes in which each instance name may belong to in KG. By taking the

class with the highest probability value, each instance in KG ′ will have a predicted

class in KG. Then, to generate AKG→KG′ , we pair each class C ′ with the class C that

receive the majority votes, based on applying CLKG to instances of C ′. To illustrate, a

correspondence between C4 and C ′2 is added to the candidate alignments if the majority

of C4 instances were classified as instances of C ′2. Then, in order to generate a similarity

value between [0,1], we use the percentage of instances that voted for the majority

class. As an example, the candidate pair < C4, C ′2, 0.57 > indicates that 57% of C ′2
instances were predicted to be C4 when applied to CLKG. The second elicitation process

is done in the opposite direction by reversing the roles of the two input KGs to create

AKG′→KG. Further, Candidate alignments are generated based on the output of the

classifier CLKG′ .

5.3.3.4 Alignment Selection

The next phase of the instance-based matcher aimed at unifying the two directional

alignments AKG→KG′ and AKG′→KG generated during the elicitation process. In order to

select the final alignments for the instance-based matcher, we follow the state-of-the-art

iterative approach. This approach was first introduced as part of CroMatcher (Gulić

et al. 2016), and it significantly outperforms other alignment selection methods, as we
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Figure 5.2: An example of calculating the final alignment using the
method in (Gulić et al. 2016)

reviewed in Section 2.2.3.6. In order to combine both alignments sets, each directional

alignment will be first stored into an alignment matrix of a dimension ofN ×M, where

N is the number of classes in KG andM the number of classes in KG ′. Then, the tables

are populated based on the two-directional alignment sets created earlier. To aggregate

the two matrices, we take the average similarity value of each pair. For example, if

(C4,C ′5,0.68) in AKG→KG′ and (C ′5,C4, 0.73) in AKG′→KG) the pair aggregated similarity

value will be 0.71. Subsequently, we follow the iterative algorithm in (Gulić et al. 2018)

to select final alignment Ainstance. Given an alignment matrix and a threshold t , this

method goes through each row at a time and selects the highest correspondence in

each row, if the similarity value for that correspondence is beyond t (e.g., bold text in

5.2). When a class is involved in two correspondences (e.g., C3 in rows 1 and 7), only

the one with the higher similarity is retained (e.g., (C6, C ′3, 0.92)), and the previously

selected correspondence is deleted. This process takes place iteratively until all classes

are selected within a correspondence and no changes are to be made. In terms of the

threshold value for this method, we assign it to 0.22 following the settings in (Gulić

et al. 2018, 2016). Section 2.2.3.6 provides some further details on this method and

other final alignment selection methods.
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5.3.4 Name Matcher

The second matching component in KGMatcher+ belongs to the element-level matcher

category. It calculates the similarity of KG classes based on the string and the semantic

similarity of their names. Given a set of all possible correspondences between classes in

KG and KG ′, generated with an exclusive pairwise comparison, we measure the word

embedding similarity and the edit distance similarity of the two class names. We only

apply the two similarity measures to KGs class labels, as not all KGs provide other

longer descriptions such as comments. For the edit distance similarity, we calculate the

normalized levenshtein distance for each class pair. This method normalizes the edit

distance value by the length of the longer string to get a value between [0.0, 1.0]. In

terms of the word embedding similarity, a Google pre-trained word2vec model is used

to represent class names and measure their cosine similarities in the Vector Space Model

where semantically similar words are represented closer to each other. Following the

same approach in Section 5.3.2, concatenated strings such as awardtrophytournament

are segmented into multiple words. Thus, in the case of a multi-word class name, the

matcher aggregates the vector representation of each word composing the class name by

taking the element-wise average of the vectors of each composing word. We then choose

the maximum of the two similarity measures, if the similarity scores are higher than a

threshold tn. We set tn to 0.8 which is in line with previous element-level methods that

combine multiple similarity measures such as (Hertling & Paulheim 2020a, Nkisi-Orji

et al. 2018). To illustrate, assuming that a pair of the two classes RailwayStation and

TrainStation where their word embedding similarity is 0.83 and their edit distance

is 0.56, we select the maximum similarity value, i.e., the word embedding similarity

which is also higher than the tn. However, if the two similarity scores of a pair are

lower than the tn, then that pair will not be added to the candidate alignment set.

The output of this matcher is a candidate alignment set Aname to be combined with

the instance matcher alignments (Ainstance).

5.3.5 Final Alignment Selection

To generate the final alignments of the matching system, the instance-based alignments

are combined with the name matcher alignments. This is done by following the same

alignment selection method used earlier to combine the two directional instance-based

alignments, as detailed in Section 5.3.3.4. The same state-of-the-art method is followed
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by treatingAname andAinstance as directional alignments to generate the final alignment

of KGMatcher+ (i.e., A).

5.4 Evaluation

In this section we aim to evaluate our hybrid matching approach (KGMacther+) on

the task of matching large KGs. We also compare KGMatcher+ results against sev-

eral matching methods including state-of-the-art OM systems. Since the proposed

method incorporates an instance-based method, our evaluation hypothesis is that it

will improve the state-of-the-art results on matching common KGs.

5.4.1 Experimental Settings

The proposed matching system has been implemented in python. Then, the Matching

Evaluation Toolkit (MELT) (Hertling et al. 2019) was used to wrap KGMatcher+ to

make it available as an OAEI system and for easier results reproducibility. MELT1

evaluation allows to test any matcher with different datasets as long as they are in

the appropriate KG or ontology format2. In terms of evaluation experiments, they

have been implemented in Java on a VM with 128GB of RAM, 16 vCPUs (2.4 GHz),

which is similar to the OAEI evaluation configurations. All the evaluation experiments

were produced using the MELT evaluation platform, which is the official evaluation

tool used for the majority of OAEI tasks, including the two KG tracks. MELT cal-

culates precision, recall, and f-measure for the produced alignment compared to the

reference alignments provided with each task. Some experiments were also conducted

on ShARC (Sheffield Advanced Research Computer), the University of Sheffield’s high-

performance computing clusters, detailed in Chapter 4.

5.4.2 Datasets

To evaluate the ability of the proposed method to match the schema of KGs, we use

the OAEI benchmarks. As mentioned before, OAEI is an annual evaluation event with

the aim to evaluate the performance of matching tools on a variety of matching tasks.

We use the KGs from each track as inputs to KGMatcher+, then we compare the

1https://github.com/dwslab/melt
2https://dwslab.github.io/melt/matcher-evaluation

https://github.com/dwslab/melt
https://dwslab.github.io/melt/matcher-evaluation
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alignment produced by KGMatcher+ to those in the reference alignment of each task.

Similar to the OAEI standards, we calculate precision, recall, and f-measure using the

MELT evaluation tool. We based our evaluation on OAEI datasets, as they are widely

recognized and used by current work to evaluate matching systems on mapping KGs.

The Common Knowledge Graphs track evaluates the ability of matching systems to

map the schema of large-scale, cross-domain, and automatically constructed KGs. This

track was introduced to OAEI in 2021, and it consists of two matching benchmarks

we proposed earlier in Chapter 3. It has two tasks, where the first one aligns classes

from NELL and DBpedia, and the second one maps classes from YAGO and Wikidata.

For this task, the total number of class alignments is 129 for the NELL-DBpedia

benchmark, and 304 for the YAGO-Wikidata benchmark.

The Knowledge Graph track, which consists of five different matching tasks that

target matching the schema (classes and properties), and instances of 8 KGs from

the DBkWik project. In terms of class alignments, the aggregated number of class

alignments for the 5 benchmarks is 49.

5.4.3 KGMatcher+ Results and Discussion

Here, we present the results of our proposed method KGMatcher+ which participated

in OAEI 2021 and OAEI 2022 campaigns. We compare KGMatcher+ results with all

public OAEI systems from both campaigns. The results are based on the two datasets

in the common KG track and the KG track. Note that the latter includes five test cases

for matching classes, properties, and instances. Here, we include the aggregated results

of matching classes across the five test cases. The following tables illustrate the results

obtained by all systems on the three tasks. KGMatcher+ was able to outperform all

systems on the task of matching common KGs in 2021 (Pour et al. 2021) and 2022 (Pour

et al. 2022). Furthermore, it was the second to the best-performing system in the latest

OAEI 2022 campaign on the KG track.

In terms of the common KGs track, we can observe from Table 5.1 and Table 5.2 that

KGMatcher+ outperforms all baselines on both datasets, recording the highest recall

and f-measure. In terms of the NELL-DBpedia dataset, KGMatcher+ outperforms all

systems by a minimum of 6% in the f-measure score and by 11% in terms of recall.

Furthermore, the proposed method outperforms AML and LogMap, two state-of-the-

art ontology matching systems and leading OAEI participants. For instance, on the

task of matching NELL and DBpedia, KGMatcher+ achieves 0.95 f-measure, which is
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0.06 higher than AML which achieves 0.89. Although the newest version of AML which

has been introduced as Matcha in OAEI 2022 has slightly improved AML results in

terms of f-measure (0.90), it is still far from the KGMatchers+ results. On the YAGO-

Wikidata dataset, KGMatcher+ surpasses all systems by 4% in terms of recall and

2% in terms of f-measure. One can also notice that all systems score lower on YAGO-

Wikidata. This is likely due to the size of YAGO-Wikidata, which is twice the size of

NELL-DBpedia. Readers should also note that while all systems were able to generate

class alignments when applied to the full-size version of YAGO-Wikidata, some systems

were not able to scale to this task. This includes Matcha, AML, and LogMap, which

were only able to process the smaller version of the dataset. The smaller dataset has

all the schema data, but with a smaller subset of instances per class. However, those

systems do not utilize any instances during the matching process. Thus, applying

them to a smaller dataset will not affect their class alignment results. It is also worth

mentioning that OTMapOnto participated only in OAEI 2021 campaign, and it is not

a public OAEI system. In addition, due to its architectural complexity, we are not able

to reproduce its environment to test it on the new YAGO-Wikidata dataset, even with

the author’s appreciated help.

Table 5.3 depicts the results on the OAEI KG track, where we can infer that KG-

Matcher+ is still among the top-performing systems. AML and ATMatcher are the

best-performing systems with an f-measure of 0.89 and 0.87 respectively, and KG-

Matcher+ achieves an f-measure of 0.80. However, while KGMatcher+ only uses the

labels of entities to produce class alignments, other systems that outperform it on this

task implement a larger variety of matcher combinations. In addition, they target

not only the labels of KG entities, but also consider other entities’ metadata. AML,

for instance, incorporates nine different basic matchers including structural matchers,

and other filters to further improve the quality of the matching results. Moreover,

the majority of OAEI systems incorporate multiple string-based techniques such as

n-gram, prefixes, and suffixes, while the name matcher component of KGMatcher+ is

a fairly basic element-level matcher. For example, ATMatcher implements a variety

of element-level matchers, including one that aims to find specific stopwords common

in a certain KG or ontology. These could be a set of words that repeatedly appear

in entity labels. ATMatcher then considers such words as stopwords to be removed

prior to applying any further string-based matching techniques. This allows the sys-

tem to discover the similarity between pairs like 〈sidebar starship, starship〉 and



CHAPTER 5. MATCHING KNOWLEDGE GRAPH CLASSES 102

Table 5.1: Evaluation results on the OAEI Common Knowledge Graphs
track - NELL-DBpedia task

Matching System Precision Recall F-measure

AML 1.00 0.80 0.89

LogMap 0.99 0.80 0.88

KGMatcher+ 1.00 0.91 0.95

ATMatcher 1.00 0.80 0.89

LSmatch 0.96 0.75 0.84

ALOD2Vec 1.00 0.80 0.89

Wiktionary 1.00 0.80 0.89

LogMapLite 1.00 0.60 0.75

DOME 0.99 0.63 0.77

OTMapOnto 0.90 0.84 0.87

Matcha 1.00 0.81 0.90

FCAMap-KG 1.00 0.78 0.87

Fine-TOM 1.00 0.78 0.87

TOM 1.00 0.68 0.81

Table 5.2: Evaluation results on the OAEI Common Knowledge Graphs
track - YAGO-Wikidata task

Matching System Precision Recall F-measure

AML 1.00 0.80 0.89

LogMap 1.00 0.76 0.86

KGMatcher+ 0.99 0.84 0.91

ATMatcher 1.00 0.77 0.87

LSmatch 0.96 0.63 0.76

ALOD2Vec 0.99 0.77 0.86

Wiktionary 1.00 0.74 0.85

LogMapLite 1.00 0.70 0.81

DOME 1.00 0.72 0.83

Matcha 1.00 0.80 0.89

FCAMap-KG 1.00 0.40 0.56

Fine-TOM 1.00 0.71 0.83

TOM 0.99 0.72 0.83
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Table 5.3: Evaluation results on the OAEI Knowledge Graphs track

Matching System Precision Recall F-measure

AML 0.98 0.77 0.86

LogMap 0.93 0.71 0.81

KGMatcher+ 1.00 0.66 0.80

ATMatcher 0.97 0.79 0.87

LSmatch 0.97 0.64 0.78

ALOD2Vec 1.00 0.67 0.80

Wiktionary 1.00 0.67 0.80

LogMapLite 1.00 0.54 0.70

DOME 0.92 0.66 0.77

OTMapOnto 0.73 0.80 0.77

Matcha 0.00 0.00 0.00

FCAMap-KG 1.00 0.70 0.82

Fine-TOM 1.00 0.66 0.80

TOM 1.00 0.71 0.83

〈sidebar novel, novel〉, if sidebar was a corpus specific stopword. Nonetheless,

given the topics of this dataset, such pairs will not be mapped by word embedding

models or by an edit-distance similarity. Moreover, depending on the coverage of the

entertainment domain in a background knowledge resource, such as WordNet and Wik-

tionary, it can be also challenging to discover such pairs using semantic methods like

in ALOD2Vec, Wiktionary system, and LSMatch.

Further, we analyzed the extent to which different methods are able to recover

matching pairs that contain an imbalanced number of instances (to be called ‘imbal-

anced pairs’). Based on the common KG track, we define a pair (C, C ′) as an imbalanced

class pair, if one of the classes is a majority class and the other is a minority class, or

if both classes are considered as minority classes. As a result, We observed 40 pairs of

imbalanced classes in YAGO-Wikidata and 22 in NELL-DBpedia. Figure 5.3 illustrates

the percentages of pairs discovered by the OAEI systems evaluated earlier compared

to the proposed method. On both datasets, we can observe that KGMatcher+ was

able to discover over 60% of such imbalanced pairs (64% in NELL-DBpedia and 63%

in YAGO-Wikidata). On YAGO-Wikidata, for instance, KGMatchers+ discovered 25

out of the 40 imbalanced pairs, while the next best systems (AML and LogMap) dis-
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covered only 11 and 9 pairs respectively. On the NELL-DBpedia, KGMatcher+ found

14 pairs while the closest system is OTMapOnto which discovered 10 pairs. The results

also show that some matching systems only discovered trivial matches, e.g., LSmatch,

FCAMap-KG, TOM, and Fine-TOM. The latest two found only two to one imbalanced

class pair in the YAGO-Wikidata dataset.

5.4.4 The Impact of Different Matching Component

In this section, we study the impact of different matching components of KGMatcher+:

the resampling component, the matcher combination, and the number of words used

in TF-IDF undersampling (i.e., k). We perform these experiments on the Common

KG track of OAEI as the OAEI KGs do not provide a large enough benchmark for an

instance-based method.

5.4.4.1 The Impact of Resampling KG Instances

As part of training KG classifiers, we incorporated different data balancing strategies

in order to cope with the imbalanced class distribution issue (in Section 4.3.1). In

the following, we discuss the impact of these strategies on the accuracy of matching

large-scale KGs classes. We implement the 6 strategies as part of the architecture of

KGMatcher+ as depicted in Figure 5.1. When each strategy is used instead of others,

we denote that version of KGMatcher+ as KGMatcher+{SS}, where SS indicates the

corresponding Sampling Strategy.

Table 5.4 shows the precision, recall, and f-measure of KGMatcher+ when using dif-

ferent sampling strategies. As the table shows, in terms of f-measure, KGMatcher+{TF-

IDF + oversampling} outperforms all other variations with (f-measure=0.91) on the

YAGO-Wikidata dataset and (f-measure=0.95) on the NELL-DBpedia dataset. In

terms of undersampling strategies, KGMatchrer+ {Random Undersampling} fails to

improve the overall results on both datasets compared to the results obtained when

no sampling was applied. On the other hand, while KGMatcher+{TF-IDF undersam-

pling} does leave the matching results on both datasets unchanged, compared to no

sampling, it maintains the same performance while significantly decreasing the matcher

processing time. E.g., from 55 minutes to 29 minutes on the NELL-DBpedia dataset

and from 3 hours to 1.5 on the YAGO-Wikidata.

Two different undersampling strategies were implemented, random undersampling

and using TF/IDF. The results show a significant gap in the impact of the both strate-
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(a) YAGO-Wikidata

(b) NELL-DBpedia

Figure 5.3: The percentage of imbalanced class pairs discovered by dif-
ferent methods compared to KGMatcher+
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Table 5.4: Evaluation results of different variations of KGMatcher+ each
utilizing a different data balancing strategy (the best results are in bold).

Strategy
YAGO-Wikidata NELL-DBpedia

Precision Recall F-Measure Precision Recall F-Measure

No Sampling 0.97 0.79 0.87 0.97 0.91 0.94

Random Undersampling 0.98 0.75 0.85 0.98 0.81 0.89

TF-IDF Undersampling 0.96 0.80 0.87 0.97 0.91 0.94

TF-IDF + Oversampling 0.99 0.84 0.91 0.98 0.91 0.95

SMOTE 0.97 0.78 0.86 0.98 0.89 0.93

TF-IDF + SMOTE 0.99 0.80 0.88 0.97 0.91 0.94

Cost-based learning 0.96 0.77 0.85 0.96 0.85 0.90

gies on KGMatcher+ performance. The first method, i.e., random undersampling,

includes a random elimination of KG instances. Further, with this strategy, instance

samples are reduced to match the size of the class with the least samples, which can

be less than 10 instances in some common KGs. This rather aggressive reduction

in training data could have a detrimental impact on classifier training. As a result,

KGMatcher+{random undersampling} shows the lowest accuracy results. In contrast,

using TF-IDF to down sample classes in KGMatcher+{TF-IDF undersampling} does

not negatively impact the results, as the elimination process maintains instances with

indicative words.

In terms of oversampling, we implemented the state-of-the-art approach known as

SMOTE, which includes generating syntactic samples in the minority classes. The re-

sults reveal that KGMatcher+{SMOTE} decreases the recall on both datasets, which

subsequently affects the f-measure score as well. Then, in terms of combining under-

sampling with oversampling, we combined the TF/IDF approach with two oversam-

pling methods. Although KGMatcher+ {TF-IDF + SMOTE} shows results similar to

the best-performing strategy on the NELL-DBpedia dataset, i.e., KGMatcher+{TF-

IDF + Oversampling}, it does not perform as well on the YAGO-Wikidata dataset.

This is due to the latter dataset being twice the size of NELL-DBpedia which also

impacts the severity of the imbalance population problem. Even though class distribu-

tion in the KGs used in the experiments was severe, undersampling the majority classes

with TF-IDF helps mitigate this issue. However, generating synthetic data from KG
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instances seems to introduce noisy samples to the dataset, as indicated by the result of

KGMatcher+{SMOTE}. This seems to be consistent with previously reported findings

in text classification tasks (Padurariu & Breaban 2019).

The final data balancing strategy is KGMatcher+ {Cost-based learning}, which

adapts the BERT model to handle class imbalance by using class weights. Although

the main advantage of this method is to maintain the integrity of the datasets, this did

not work well as it achieved the worst precision, recall, and f-measure, which are even

lower than the model using no data balancing strategies at all. This is due to over-

penalizing the classifier for incorrectly classifying instances from the minority classes.

5.4.4.2 The Impact of Matcher Combination

KGMatcher+ is a hybrid matching approach that combines the ability of an element

level matcher to discover KG classes with terminological/semantic similarity with an

instance-based method. The latter is able to align KG classes with overlapping real-

world entities, even when their classes have different names. Our experiments included

performing only the name matcher component of KGMatcher+ compared to the hybrid

approach that is KGMatcher+. Figure 5.4 shows the precision, recall, and f-measure

for each experiment. Overall, the hybrid approach achieves better results than only

using the name matcher. On the YAGO-Wikidata dataset, combining instance-based

and name matcher archives an f-measure of 0.91 which is higher than using the name

matcher (0.85 f-measure). Similarly, on the NELL-DBpedia dataset, the hybrid ap-

proach archives 0.95 f-measure compared to the name matcher f-measure (0.89). We can

deduce that adopting a hybrid approach that incorporates an instance-based method

is beneficial, particularly for matching common KGs classes. Due to the dataset size,

and given that the instance-based matcher uses an exact name filter to reduce the

search space, we are not able to compare the results to the instance-based matcher

only. However, combining both matchers significantly improve the overall results, as

the instance-matcher was able to discover additional alignments. Comparing the name

matcher component to the full KGMatcher+ method, the latter notably improves the

recall on both datasets. The recall on the YAGO-Wikidata has improved by 10%

(from 0.74 to 0.84), while the recall on the NELL-DBpedia dataset was improved by

11% (from 0.80 to 0.91). While combining the two matchers increased the results, it

managed to maintain a high precision between 0.99 on YAGO-Wikidata and 0.98 on

NELL-DBpedia.
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Figure 5.4: Comparing the results of the name matcher component of
KGMatcher+ against the full KGMatcher+ method.
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Table 5.5: The impact of K value on KGMatcher+

Dataset K Precision Recall F-Measure Time

NELL-DBpedia

K = 10 1.00 0.91 0.95 02:09:26

K = 15 0.98 0.91 0.94 02:12:04

K = 20 0.98 0.92 0.95 02:20:45

YAGO-Wikidata

K = 10 0.99 0.84 0.91 03:45:22

K = 15 0.99 0.82 0.90 04:03:47

K = 20 0.99 0.83 0.90 04:32:03

5.4.4.3 The Impact of the TF/IDF Threshold

Whenever the TF/IDF undersampling technique is applied within KGMatcher+, it

requires a value we named as K, discussed earlier in Chapter 4 (Section 4.3.1.2). This

method generates a ranked list of words according to their TF/IDF score within a

certain KG class, i.e., a majority class. Then, the K value is used to re-sample that

class’ instances by discarding instances names that do not compose any of the top

K words. Table 5.5 compares different values, e.g., 10, 15, and 20 in terms of their

impact on the overall matching results and on the run time. The results show that

increasing K to higher than 10 leads to decreasing the overall performance on both

datasets. This is also accompanied by an increase in the KGMatcher+ running time

that varies between the two datasets due to the YAGO-Wikidata being double the

size of the NELL-DBpedia. It is also worth mentioning that while this value slightly

impacts the matcher results, our method still outperforms all OAEI systems, despite

what K value is used, as the previous section presented.

5.5 Conclusion

In this chapter, we proposed KGMatcher+ which has a component that only uses KG

instances to generate class alignments. Our method is domain-independent and, to

the best of our knowledge, includes the first instance-based matcher for matching KG

classes with the ability to handle unbalanced class populations. We presented the eval-

uation of our method compared to the state-of-the-art methods using the two most

representative OAEI matching tracks, i.e., the Common KG track and the KG track.

KGMatcher+, outperformed existing systems on the task of matching common KGs

and ranked as one of the top methods for the KG track. From the results presented
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above, we can conclude that mapping the schema of large and common KGs is far from

a trivial task and needs to be handled differently from conventional ontology matching.

We have also shown that utilizing an instance-based approach has a significant impact

on matching large KGs with an abundance of annotated instances. Furthermore, we

have presented an analysis that compares the impact of different sampling strategies

incorporated in KGMatcher+. The results have also confirmed that combining under-

sampling and oversampling is the best strategy for handling the problem with both

majority and minority classes. Besides the impact of resampling, we have also studied

the effect of other components of KGMatcher+ such as the name matcher, showing

that a ‘hybrid’ approach yields a better matching performance.
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Chapter 6

Conclusion and Future Work

In this chapter, we summarize the research presented in the thesis and give some

concluding remarks. First, we start by presenting the summary of the contributions

delivered by our research in Section 6.1. Then, in Section 6.2, we provide a discussion

of the remaining and open issues to be further investigated and considered in future

work.

6.1 Summary of the Thesis Contributions

KGs, particularly general-purpose and cross-domain ones, have been increasingly used

in different downstream applications. The last decade of research in the ontology

matching task has resulted in various matching methods and techniques being devel-

oped. While KGs are also means of data representation, they can be very different from

conventional well-formed ontologies. Typical cross-domain KGs shared on the web are

often large-scale, with hundreds of classes and millions of instances. Therefore, our re-

search was primarily focused on studying the problem of matching the classes in KGs

with such characteristics.

We started by studying different matching techniques used to discover semantically

similar entities in heterogeneous ontologies in Chapter 2. Then, we further investi-

gated the current state of matching KGs and the techniques and tools that have been

introduced for a relatively new task. The literature review has concluded with three

main findings: (1) current systems still suffer from scalability issues, (2) they typically

make use of the characteristics that are only found in well-formed ontologies, and (3)

prior research is mainly domain-specific as the pre-existing gold standard datasets are

111
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predominantly domain-dependent such as those in the OAEI biomedical tasks. This

analysis is the first contribution of this thesis, and it assisted us to address our three

research questions stated in Section 1.4 as follows.

RQ1: What are the current KG matching benchmarks, and how can we construct

one that is more representative of the large KG matching problem?

Concerning the lack of diverse and real-world-based datasets, we proposed two gold-

standard datasets in Chapter 3, which counts as the second contribution of this thesis.

The two benchmarks are based on four KGs with high influence in the semantic web

domain, namely, DBpedia, NELL, Wikidata, and YAGO. Further, they are the largest

existing benchmarks for the task of matching classes in large-scale KGs. Both datasets

have been added to the annual OAEI evaluation events as a new matching track known

as the Common Knowledge Graphs track, which aims at evaluating matching systems

on this particular task. This track has been running since 2021 and both datasets are

now largely used as part of research in this area.

RQ2: Given the large yet unbalanced number of instances in KG classes, how can

we make use of them effectively in learning?

Combining different matching techniques is a common strategy in the majority of

state-of-the-art matching systems. However, most of the existing approaches depend

on terminological and structural methods compared to instance-based ones due to the

nature of typical ontologies – they lack the large number of instances needed for such

methods. Nonetheless, large and public KGs are known for having an abundance of

instances, which make them ideal for an instance-based method. Given the number

of instances shared in typical KGs, measuring the overlap of instances can be a chal-

lenging task. In order to overcome this limitation, we proposed a method of training

KG instance classifiers in Chapter 4. Those classifiers were built using state-of-the-art

language modeling techniques that have shown exceptional results in many text clas-

sification tasks. Furthermore, we carried out a study of the imbalanced population

issue in common KGs and its impact on the instance classification task. Our solutions

for such a problem revealed a significant improvement in the classifier results. The

approach of training KG instance classifiers is the third contribution in this thesis.

RQ3 How can we effectively use instances to match KG classes while addressing

the unbalanced population issue?

We integrated the KG instance classifier as part of our KG matching method.

We have proved that a hybrid matching approach with an instance-based matcher
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outperforms existing state-of-the-art matching methods. Furthermore, we evaluated

our prototype called KGMatcher+ on seven matching benchmarks from two different

KG tracks from OAEI 2022 and showcased that using an instance-based method can

discover more correct alignments. Additionally, we analyzed the impact of six different

data balancing techniques, including two methods that we introduce in this work, on

matching large-scale and imbalanced KG classes. Then, we studied the impact of

the matcher components of our hybrid method. We showed that using an instance-

based method improves recall and f-measure compared to only using an element-level

approach. Finally, we studied the impact of the threshold value used by our sampling

method. We concluded that increasing the number of words used for undersampling

has very little influence on the result, but can impact the matcher’s processing time.

This is promising since it shows that KGMatcher+ is capable of generating satisfactory

results without further parameter tuning, which has practical benefits. The hybrid KG

matching method is our fourth contribution.

6.2 Open Issues and Future Work

Despite the fact that we have delivered a solution for the challenging task of match-

ing large-scale and common KGs, some open issues remain to be considered. In the

following, we present some current limitations and areas of opportunity to expand the

work in this thesis.

Matcher Combination.

The current matcher combination in KGMatcher+ utilizes both an element-level

matcher and an instance-based matcher. While this approach has its advantages, it

can potentially limit the system’s performance when dealing with tasks that specifi-

cally target domain-specific KGs. This limitation arises from the fact that such tasks

often require domain-specific knowledge that may not be adequately covered by general

pre-trained word embeddings and language models. Therefore, expanding the current

matcher combination could be done by exploring background knowledge resources in

order to discover additional matching. Further, another future challenge can be to au-

tomatically decide the matchers’ pipeline of our method. The current matching pipeline

is built with the assumption that the two input KGs share semantically similar class

names and instances, which is typical in common KGs. However, in other cases where

the input KGs are from a certain domain where such an assumption does not apply, the
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pipeline can be changed accordingly. For example, we can study the distributions of

instances across the source and target KG classes and then use the statistical analysis

to inform the hybrid matcher whether the instance-based or the background knowledge

matcher should be included or not. Another way to decide the matcher combination is

to explore supervised machine learning approaches for this task (Hertling et al. 2020,

Laadhar et al. 2017). However, this method can bring more challenges as it requires

training data to decide the appropriate matcher combination.

Instance Matching. One of the limitations of KGMatcher+ is that it currently

includes only a basic instance-level matcher. For the OAEI participation, we have

adapted KGMatcher+ to also match the instances of KGs. The current instance match-

ing component generates candidate instance pairs based on the existence of the label

in the opposite KG. However, it is important to note that this approach relies solely

on terminological matching and may not capture the full semantics and context of

the instances. Labels alone may not provide sufficient information for accurate in-

stance matching, especially in cases where instances have similar labels but represent

different real-world entities. This component can be further improved in future work

by exploring additional techniques. For example, given that KGMatcher+ produces

competitive results in terms of class matching, and with common KGs sharing a large

number of complementary instances, class correspondences can be used to verify or

discover further instance-level alignments. This can be done by matching the schema

first and using the same string-based method to match instances. Then, using the

results produced by the class matching component to increase the similarity value of

instance pairs with ‘matched’ classes (Portisch & Paulheim 2022a, Hertling & Paulheim

2020a). Another approach to explore is to reciprocally match both levels, where class

matching results are utilized by the instance matching component. Then, the latter

can also be used to revise the class matching results until convergence (Suchanek et al.

2012). However, to the best of our knowledge, a benchmark for matching common KG

instances is yet to be built. Thus, the two proposed datasets can be expanded to cover

the task of matching common KGs instances in addition to their schemas.

User Interaction. While fully automating the matching process is an important

aspect of such a task, in some real-world applications the user’s input and validation of

the matching results can be necessary. This is particularly critical in matching tasks in

the medical and business domains, which are witnessing a growth of KG applications.

As a result, explainability has been an ongoing challenge in ontology matching sys-
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tems (Hertling et al. 2019, Portisch et al. 2019). Therefore, a graphical user interface

combined with proper visualization techniques can be adapted to allow users to further

understand the process of deriving the matches. Further, beyond the confidence value

of each correspondence, users can be given explanations of the matching results, such

as the specific matching component that has generated a particular alignment.

Multi-source Matching. Current matching approaches and datasets are pre-

dominantly focused on pairwise matching. However, recent studies have highlighted

the need to move towards multi-source matching, including KGs (Ayala et al. 2021,

Primpeli & Bizer 2022). Multi-source matching is when the matching is performed

across more than two KGs simultaneously. With the growth of KGs and their applica-

tions, some scenarios may require such an approach. For instance, constructing a large

KG from distinct KGs by matching them prior to the integration process (Hertling &

Paulheim 2022). Thus, a long-term research direction is to develop an approach that

performs multi-source KG matching.
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ogy matching: A literature review’, Expert Systems with Applications 42(2), 949–

971.

Padurariu, C. & Breaban, M. E. (2019), ‘Dealing with data imbalance in text classifi-

cation’, Procedia Computer Science 159, 736–745.

Papadakis, G., Skoutas, D., Thanos, E. & Palpanas, T. (2020), ‘Blocking and filter-

ing techniques for entity resolution: A survey’, ACM Computing Surveys (CSUR)

53(2), 1–42.



BIBLIOGRAPHY 128

Paulheim, H. (2017), ‘Knowledge graph refinement: A survey of approaches and eval-

uation methods’, Semantic web 8(3), 489–508.
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Appendix A

Annotation Task Instructions

Thank you for participating in our survey. This task is about finding corresponding

(i, e., similar) classes in two different yet complementary knowledge graphs. A class in

this context can be considered as a category of real-world entities. For instance, Hotel,

Airport, Magazine, Movie, and Artist are all examples of a knowledge graph class.

Classes can have different names in different knowledge graph, for example: class Movie

could be referred to as Film in another knowledge graph, and ReligiousBuilding

could be named as PlaceforWorship.

The goal of here is to annotate pairs of classes in the dataset. The Excel sheet

sent to you has seven columns where the first three columns (Class Name 1, URI 1,

Instances Names 1) describing a class in the first knowledge graph. While the following

three columns describe a class in the second knowledge graph. Please see table A.1

below for an example. The final column is the Relation column where you will be

adding one of the following values for annotation:

• Write (1) if you believe that Class 1 and Class 2 are equivalent (referring to the

same thing)

• Write (0) if you believe that Class 1 and Class 2 are not equivalent (referring to

completely different category)

• Write (*) if you believe that Class 1 is more general than Class 2: e.g., Building

is more general than Hotel, Person is more general than Artist, and Place is

more general than Beach

• Write (#) if you believe that Class 2 is more general than Class 1.
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Class Name 1 URI 1 Instances Names 1 Class Name 2 URI 2 Instances Names 2 Relation

academicfield http://rtw.ml.cmu.edu/rtw/kbbrowser/pred:academicfield

science management
neurotrauma

bioclimatology
biometeorology

AcademicConference http://dbpedia.org/ontology/AcademicConference
European Conference on OOP

Vision (festival)
European Symposium on Programming

Table A.1: Annotation Example

In order to decide what relation to add, you can: (1) use the link in the URI

columns to read more the description of each class, and (2) use the information in

the Instances Name columns. These are examples of real-world entities that belong

to each class. Note: The data in this column can be random/incorrect or missing in

some cases, because they are extracted automatically from different resources without

human involvement. In this case, you can decide the relation based on the class name,

URIs and your background knowledge.
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