
THE UNIVERSITY OF SHEFFIELD

DOCTORAL THESIS

Improving diagnostic procedures for
epilepsy through automated recording and

analysis of patients’ history

Author:
Nathan Pevy

Supervisor:
Professor Markus REUBER

Professor Heidi CHRISTENSEN
Dr Traci WALKER

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Neuroscience

April 14, 2023

https://www.sheffield.ac.uk
https://www.sheffield.ac.uk/medicine/department-neuroscience




iii

Abstract
Doctor of Philosophy

Improving diagnostic procedures for epilepsy through automated recording and
analysis of patients’ history

by Nathan Pevy

Transient loss of consciousness (TLOC) is a time-limited state of profound cognitive
impairment characterised by amnesia, abnormal motor control, loss of responsive-
ness, a short duration and complete recovery. Most instances of TLOC are caused
by one of three health conditions: epilepsy, functional (dissociative) seizures (FDS),
or syncope. There is often a delay before the correct diagnosis is made and 10-20%
of individuals initially receive an incorrect diagnosis. Clinical decision tools based
on the endorsement of TLOC symptom lists have been limited to distinguishing be-
tween two causes of TLOC. The Initial Paroxysmal Event Profile (iPEP) has shown
promise but was demonstrated to have greater accuracy in distinguishing between
syncope and epilepsy or FDS than between epilepsy and FDS. The objective of this
thesis was to investigate whether interactional, linguistic, and communicative differ-
ences in how people with epilepsy and people with FDS describe their experiences
of TLOC can improve the predictive performance of the iPEP. An online web appli-
cation was designed that collected information about TLOC symptoms and medical
history from patients and witnesses using a binary questionnaire and verbal interac-
tion with a virtual agent. We explored potential methods of automatically detecting
these communicative differences, whether the differences were present during an
interaction with a VA, to what extent these automatically detectable communicative
differences improve the performance of the iPEP, and the acceptability of the ap-
plication from the perspective of patients and witnesses. The two feature sets that
were applied to previous doctor-patient interactions, features designed to measure
formulation effort or detect semantic differences between the two groups, were able
to predict the diagnosis with an accuracy of 71% and 81%, respectively. Individuals
with epilepsy or FDS provided descriptions of TLOC to the VA that were quali-
tatively like those observed in previous research. Both feature sets were effective
predictors of the diagnosis when applied to the web application recordings (85.7%
and 85.7%). Overall, the accuracy of machine learning models trained for the three-
way classification between epilepsy, FDS, and syncope using the iPEP responses
from patients that were collected through the web application was worse than the
performance observed in previous research (65.8% vs 78.3%), but the performance
was increased by the inclusion of features extracted from the spoken descriptions on
TLOC (85.5%). Finally, most participants who provided feedback reported that the
online application was acceptable. These findings suggest that it is feasible to dif-
ferentiate between people with epilepsy and people with FDS using an automated
analysis of spoken seizure descriptions. Furthermore, incorporating these features
into a clinical decision tool for TLOC can improve the predictive performance by
improving the differential diagnosis between these two health conditions. Future
research should use the feedback to improve the design of the application and in-
crease perceived acceptability of the approach.
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Chapter 1

Introduction

1.1 Transient Loss of Consciousness

Transient loss of consciousness (TLOC) is defined as a loss of awareness charac-
terised by amnesia, abnormal motor control, loss of responsiveness and a short du-
ration with a full recovery and no obvious cause (Brignole et al., 2018). Many in-
dividuals who experience TLOC are initially assessed in Primary and Emergency
Care services, but the symptoms of TLOC have typically subsided before they are
seen by a medical professional. Over 90% of presentations with TLOC are due to
one of three health conditions: epilepsy, functional (dissociative) seizures (FDS) and
syncope (Kotsopoulos et al., 2003). Although there are interictal tests that can indi-
cate a potential cause of TLOC, these tests have low sensitivity and are specific to a
single cause of TLOC. In most cases, these tests fail to provide a clear indication of
the cause of TLOC (Malmgren, Reuber, and Appleton, 2012). Unfortunately, many
people who visit Primary and Emergency Care Services do not receive a diagnosis
(Briggs et al., 2017), and approximately 20% of individuals receive the wrong di-
agnosis (Xu et al., 2016). Individuals who receive the wrong initial diagnosis may
be referred for tests that are irrelevant and delay the patient’s access to appropri-
ate medical treatment. Such delays and referrals to the incorrect specialist service is
not only unpleasant for the patient and expensive for the NHS, but they can also be
dangerous in cases where – if untreated - the cause of TLOC can endanger life.

1.1.1 Epilepsy

Epilepsy is a neurological health condition that causes individuals to experience un-
provoked seizures. It is estimated that around 7.6 per 1,000 people will experience
an epileptic seizure within their lifetime (Fiest et al., 2017). An epileptic seizure hap-
pens when pathological electrical activity in the brain increases beyond a “seizure
threshold” because there is an imbalance between the level of excitation and inhibi-
tion in neurons causing synchronised neuronal network oscillations across different
regions of the brain (Staley, 2015). There are a broad range of aetiological factors
that can cause epileptic seizures, such as structural abnormalities, genetic abnormal-
ities, infectious diseases, and metabolic or immune disorders (Scheffer et al., 2017).
This means that the diagnostic process needs to extend beyond the differentiation
of epilepsy from other attack disorders and encompass the identification of possible
contributing causes which may require treatment in their own right. What is more,
medical professions must consider the particular neuronal mechanisms in the brain
that are giving rise to epileptic activity because this can influence their choice of
optimal treatment (Shorvon, 2011).
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These causes and neuronal mechanisms can determine the physical and psycho-
logical manifestations of the seizure because they influence the specific neural net-
works involved in the seizure and how widespread the seizure activity is across
the brain. The International League Against Epilepsy published guidance on how
to define an epileptic seizure based upon certain characteristics (Fisher, 2017). The
classification of epileptic seizures is dependent on three important things. Firstly, the
description of the seizure is influenced by whether the electrical activity originated
in a single brain hemisphere (a focal seizure) or across both hemispheres (a gener-
alised seizure). Secondly, focal seizures can be further classified based upon whether
the patient retained awareness during the onset of the seizure or experienced an im-
mediate impairment in awareness. Finally, epileptic seizures can be characterised
based on the presence and description of motor or non-motor activity that occurred
during the onset of the seizure, which patients may or may not be aware of. Exam-
ples of non-motor activity include unusual thoughts, feelings, and sensations that
are caused by the spread of electrical activity during the seizure. These experiences
are commonly known as auras and can help to identify where the epileptic seizure
originated within the brain (Chowdhury et al., 2021; Bien et al., 2000). Identification
of the type of seizure is made using information collected from the patient’s history,
any witness to the seizure, concurrent video and EEG recordings during seizures
(video-EEG), and MRI scans (NICE, 2022). In addition to providing a consistent
language that medical professionals can use to describe epileptic seizures, these im-
portant distinctions highlight the variability in the presentations of epilepsy. The
diversity in the type of seizures people can experience overlaps with the clinical
presentation of other health conditions and demonstrates the diagnostic challenges
associated with TLOC.

1.1.2 Functional (Dissociative) Seizures

Functional (Dissociative) Seizures (FDS) are seizures that involve alterations in move-
ment, thoughts, sensation, and consciousness that superficially resemble the mani-
festations of epileptic seizures or syncope but that are not associated with the abnor-
mal electrical activity observed in epileptic seizures or other physiological changes
sufficient to cause TLOC (such as changes in blood pressure or heart rate) (LaFrance
Jr et al., 2013). The estimated prevalence of FDS is approximately 33 people per
100,000 (Benbadis and Hauser, 2000). The semiological presentations of FDS can
include motor activity (for example tonic-clonic, tremors, and body rigidity), non-
motor activity (e.g., unresponsiveness and lack of awareness), different emotional
and cognitive experiences, and a mixture of different presentations (Asadi-Pooya,
2019).

Although research suggests that FDS are usually a (mal-) adaptive psycholog-
ical response to distressing internal or external triggers, no concrete theory of the
origin has been accepted across the field. Brown and Reuber (2016a) conducted a
review of different explanatory models of FDS and the supporting evidence. Their
review identified multiple models that have been proposed as causal explanations
of FDS: FDS as a consequence of dissociation induced by recalling past memories,
FDS as an automated response to threat that is hardwired into the brain, and FDS
as a behaviour that has been learned from witnessing other people’s seizures in the
past. Although they identified research that could support each theory, the findings
in support of the different theories were not consistent across all studies and the
authors argued that the overall study quality of the research was low, leading the
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authors to conclude that there was insufficient evidence to make a concrete decision
regarding the validity of the theories.

The researchers put forward their own theory, building on the Integrative Cogni-
tive Model of medically unexplainable symptoms (Brown and Reuber, 2016b). This
theory posits that individuals with FDS have a mental representation of a seizure
that can be formed by a range of experiences, for example through experience of
witnessing seizures, learning about seizures, and misinterpreting their own bodily
sensations and mistaking them as a threat or the onset of a seizure. The mental rep-
resentation can be activated by internal or external stressors, which causes the FDS
process to start. The theory states that the cognitive system places undue weight on
the prediction that a seizure is about to happen which activates the mental repre-
sentation of a seizure and causes the seizure sequence to happen in a similar way as
an automatic, well-rehearsed behavioural response. The mental representation, also
known as a seizure scaffold, is suggested to be a fluid construct formed through a
network of neural connections that can be updated over time based on new experi-
ence. Updates to the network can include changes to the cognitive, emotional, and
behavioural representations of the seizure scaffold and the potential triggers.

1.1.3 Syncope

Reflex syncope occurs when there is a reduction in blood pressure because of marked
changes in heart rate or dilatation of blood vessels. It is caused by changes in the
activity of the sympathetic and parasympathetic nerves that regulate heart rate (Ad-
kisson and Benditt, 2017). Reflexive syncope can be further subdivided into three
different types: vasovagal syncope, carotid sinus syndrome, and situational syncope
(Brignole et al., 2018).

While maintaining an upright posture, individuals experience a reduction in the
amount of blood returned to the heart because of increased pooling of blood in the
lower parts of the body. Vasovagal syncope can occur when - while upright - an
individual is exposed to a stimulus causing a sudden increase in heart rate. The con-
current reduction of blood available to the heart and the sudden increase in heart
rate causes a response characterised by a sudden withdrawal of sympathetic activa-
tion and an increase in parasympathetic activation. This triggers a reduction in heart
rate which can result in loss of consciousness (Adkisson and Benditt, 2017).

Carotid sinus syndrome is caused by the physical manipulation of the carotid
sinus region located within the neck. The manipulation causes a malfunction of the
baroreceptor reflex that reduces blood pressure and results in a loss of consciousness
(Adkisson and Benditt, 2017).

Situational syncope is caused by a broad range of situational factors that can trig-
ger syncope. These factors include stimuli associated with the respiratory tract (e.g.,
coughing, sneezing, and laughing), the gastrointestinal tract (e.g., swallowing and
defecation), and the genitourinary tract (e.g., micturition) (Adkisson and Benditt,
2017).

Orthostatic hypotension can occur when an individual rises to the standing po-
sition and is unable to prevent excessive pooling of blood in the lower parts of the
body that is usually prevented by physiological, neurological, cardiac, vascular, and
muscular responses (Bradley and Davis, 2003). Orthostatic hypotension can occur
when there is an interference with these responses, for instance induced by drugs,
reductions in blood volume caused by excessive vomiting and diarrhoea, or changes
to the neurological systems responsible for this reflex (Brignole et al., 2018).
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Cardiac syncope is caused by a problem in the heart that impairs blood flow
and reduces the amount of oxygen and nutrients that are supplied to the brain. The
problems can be structural or caused by heart rhythm changes (Koene, Adkisson,
and Benditt, 2017; Mizrachi and Sitammagari, 2018). Cardiac syncope is the most
dangerous form of syncope. It is associated with an estimated annual mortality of
30% (Waytz, Cifu, and Stern, 2018) in part related to the cardiac problems that give
rise to syncope (Koene, Adkisson, and Benditt, 2017).

Syncope can be associated with a range of manifestations before loss of con-
sciousness occurs, during the period of impairment of awareness, and after the pa-
tient has regained consciousness. Wieling et al. (2009) conducted a review of the
manifestations of syncope that have been identified using experimental methods of
inducing syncope in volunteers. One example of these methods is the ‘fainting lark’:
a procedure where participants are asked to squat with their knees fully bent while
taking approximately 20 rapid, deep breaths and then asked to return to the stand-
ing position (Lempert, Bauer, and Schmidt, 1994). The review found that the pro-
dromal phase of syncope can involve light-headedness, a darkened or loss of vision,
pallor, blank staring, an inability to move, palpitations, hyperventilation, pupillary
dilation, feeling physically uncomfortable, and automatic behaviours, such as ap-
pearing drunk. During syncope, people may present as flaccid or rigid (if their EEG
recording becomes flat), stare blankly, bite the tip of their tongue, or exhibit a reduc-
tion or stop in heart rate, automatic movements, myoclonic jerks, movement of eyes
or head, and urinary incontinence. One of the characteristic features of syncope is
that it is typically of under 30 seconds duration and that individuals make a rapid
recovery (Brignole et al., 2018). However, the post-ictal phase may involve fatigue,
pallor, nausea, weakness, visual or auditory hallucinations, confusion, and emo-
tional responses. This review highlights the breadth of manifestations of syncope,
many of which may also occur in TLOC related to other causes, demonstrating the
challenges associated with differential diagnosis.

1.2 Differential Diagnosis

The differential diagnostic process for TLOC typically begins when a patient presents
to Primary or Emergency Care Services. General Practitioners and Emergency Physi-
cians often have limited expertise in the differential diagnosis of TLOC and they
have limited access to the physical tests. Their primary objective is typically to de-
termine whether the patient is currently at risk of death (Brignole et al., 2018) and
to refer patients to specialist neurologists or cardiologists for more thorough investi-
gations within two weeks of a first seizure or remission (NICE, 2022). Nevertheless,
patients will require an initial working diagnosis to determine the route of referral.
Approximately 20% of patients receive an incorrect diagnosis at this stage, resulting
in a patient being sent to the wrong specialist department (Xu et al., 2016). A neu-
rologist or cardiologist will usually conduct an expert assessment of the patient’s
medical history, the manifestations of their episode(s) of TLOC, and any witness ac-
counts or video recordings of the seizure, conduct a physical examination, and use
ECG to identify any cardiac related conditions (Plug and Reuber, 2009; NICE, 2022).
This assessment may be followed by a referral for further tests (Toerien, Jackson, and
Reuber, 2020) whose primary purpose is not the differentiation between the causes
of TLOC but the search for underlying causes of the further sub-differentiation of
the different types of epilepsy or syncope (NICE, 2022).
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1.2.1 Evaluating the medical history

A thorough analysis of the patient’s history and the clinical characteristics of their
TLOC experiences is one the most important methods for determining the cause
(Plug and Reuber, 2009; NICE, 2022). Professionals often segment the experience
of TLOC into multiple stages to determine relevant clinical characteristics that can
assist the differential diagnosis: what was happening before the attack, what hap-
pened during the attack, and what happened after the attack (Malmgren, Reuber,
and Appleton, 2012).

The situational characteristics of TLOC refers to potential triggers or particular
circumstances that increase the likelihood of an attack. Given the nature of syncope,
there are a range of triggers or circumstances that may indicate this particular di-
agnosis, for example prolonged standing, extreme coughing, urination, defecation,
physical exertion, drug use, blood loss, venepuncture or other invasive medical pro-
cedures, lack of sleep and fatigue, emotional circumstances, pain, and illness with
fever (Lempert, Bauer, and Schmidt, 1994; Colman et al., 2004). For many individ-
uals, epileptic seizures are considered to have no triggers; however, there are some
people whose epileptic seizures are considered “reflexive” because they are caused
by specific stimuli such as flashing light, decision making, reading, writing, being
startled, somatosensory stimulation, proprioception, auditory stimuli, eating, and
vestibular stimulation (Xue and Ritaccio, 2006). Furthermore, many individuals re-
port triggers for their seizures, of which stress, sleep deprivation, sleep, fever, and
fatigue are most frequently identified (Frucht et al., 2000). There is a similar level
of diversity regarding triggers for FDS, with many individuals with such seizures
reporting no trigger or emotional stress as a trigger for some or all of their attacks
(Reuber et al., 2011). Furthermore, FDS can be triggered through procedures such
as hyperventilation, photic stimulation, verbal suggestion, a template massage, and
placebo injections (Hingray et al., 2016), demonstrating that there are a broad range
of potential triggers for FDS.

Although there is a diverse range of potential manifestations of TLOC and large
amounts of overlap between TLOC due to different causes, research has identified
some manifestations which are more likely to be associated with one or other cause.
For instance, some individuals with epilepsy and FDS report subjective symptoms
that precede losing consciousness, for example déjà vu, auditory or gustatory hal-
lucinations, sensations in their abdomen, whereas individuals with syncope often
report a cluster of symptoms involving feeling hot, sweaty, lightheaded, and visual
and auditory changes (Malmgren, Reuber, and Appleton, 2012). Individuals with
epilepsy are more likely to experience oral lacerations as a result of having a seizure
than those who have experienced syncope (Benbadis et al., 1995) and FDS (Oliva et
al., 2008). Moreover, there are differences in the duration of the attack between dif-
ferent types of TLOC, with syncope typically being of the shortest duration (Brignole
et al., 2018) and FDS the longest (Cragar et al., 2002). With regards to the motor man-
ifestations which may be observed in TLOC, individuals with epilepsy, particularly
those with bilateral tonic-clonic seizures, exhibit synchronised motor activity that
gradually reduces in frequency towards the end of the seizure, whereas the motor
activity observed in individuals with FDS often has a sudden onset and offset with
little variations in frequency and individuals with syncope are more likely to exhibit
brief myoclonic jerks (Malmgren, Reuber, and Appleton, 2012). Finally, individuals
with FDS may be more likely to report panic symptoms compared to individuals
with epilepsy or syncope (Rawlings et al., 2017a).

The symptoms that individuals experience after the attack may also give insight
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into the likely cause. Individuals with epilepsy and FDS often exhibit postictal dis-
orientation and retrograde amnesia, which can be markedly longer in individuals
with epilepsy (Malmgren, Reuber, and Appleton, 2012). In contrast, individuals with
syncope often recover rapidly from postictal confusion and disorientation within a
matter of seconds or a small number of minutes (Lempert, 1996).

The clinical characteristics of the attacks outlined in this section do not provide
an exhaustive list of the possible manifestations of TLOC with differential diagnos-
tic value. However, it is important to note that, while these different characteristics
of TLOC can aid the differential diagnosis, there is no single characteristic that can
reliably determine the cause of TLOC. It is the particular combination of features
which allows experts to determine the most likely cause. There are also differences
in how people describe the seizure that can guide the diagnostic decisions of experts
(Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008; Plug, Sharrack, and Reu-
ber, 2009b; Plug, Sharrack, and Reuber, 2010; Robson et al., 2012; Robson, Drew, and
Reuber, 2016), and these differences will be described in greater detail in a subse-
quent section.

1.2.2 Interictal EEG

The most recent NICE guidelines state that interictal EEG does not have a reliable
role in determining whether a person has epilepsy (NICE, 2022). Therefore, it should
not be used to exclude a diagnosis of epilepsy because the interictal EEG is not ab-
normal for many people with epilepsy. Its primary purpose is to guide the process of
determining the type of epilepsy. There is a clinical profile for interictal EEG record-
ings that can be present in people with epilepsy, for example whether the activity is
paroxysmal, involves an abrupt change in polarity with a short duration (<200ms),
is morphological, negative in polarity, and followed by slow-wave cortical activity
(Pillai and Sperling, 2006). Although interictal EEG can lead to a change in the initial
diagnosis if very clear epileptiform discharges are found in a patient who was ini-
tially not thought to have epilepsy based on an analysis of the medical history, this
only caused a change in the diagnosis for 1/158 patients in a prospective analysis
(Angus-Leppan, 2008).

1.2.3 Structural brain abnormalities

Neuroimaging techniques such as Magnetic Resonance Imaging (MRI) can be used
to detect structural abnormalities in the brain that can be associated with epilepsy.
A broad range of structural abnormalities have been associated with epilepsy, for
example atrophy of the hippocampus, malformations of the cerebral cortex and vas-
cular system, brain tumours, and destructive brain lesions caused by a neurological
insult (Fitsiori et al., 2019). Although structural brain abnormalities may provide
insight into potential causes and treatments of an epileptic seizure, it is not possi-
ble to make differential diagnostic decisions based on neuroimaging alone because
a structural brain abnormality, although present, may not be causing seizures and
asymptomatic or incidental brain abnormalities may be found in patients with syn-
cope and dissociative seizures (Malmgren, Reuber, and Appleton, 2012).

1.2.4 Electrocardiogram

An electrocardiogram (ECG) is used to measure the electrical activity of the heart.
Electrodes are placed on the chest and surrounding body that record the electrical
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activity. It is recommended that a routine (12 lead) ECG is used for everyone who
presents with a seizure (NICE, 2022) because it can detect abnormalities that pre-
dispose people to arrhythmias and TLOC (Dovgalyuk et al., 2007). Furthermore,
prolonged ECG can be used to capture brief, asymptomatic cardiac arrhythmias or
episodes of TLOC in patients with unexplained recurrent syncope - especially if col-
lected using implantable loop recorders (Bisignani et al., 2019).

1.2.5 Video Telemetry

The diagnosis of epilepsy or FDS is documented most definitively using a method
called video telemetry (video-EEG) that involves monitoring a patient in a hospital
or home setting until they have a seizure and simultaneously recording video and
EEG during an event to capture typical seizure-related observable manifestations
and to explore whether behavioural changes are associated with ictal electrical brain
activity (Noachtar and Rémi, 2009; Kinney, Kovac, and Diehl, 2019). Video-EEG can
be used to document a diagnosis of FDS by showing behavioural patterns typically
associated with this cause of TLOC in the absence of the changes of electrical brain
activity which characterise epilepsy (Brown and Reuber, 2016a; Kinney, Kovac, and
Diehl, 2019). Although video telemetry is considered the most reliable test, it cannot
be used to diagnose all patients because most patients first presenting with TLOC
would not have a sufficiently high number of events to make video-EEG recordings
feasible (Mohan, Markand, and Salanov, 1996; Cascino, 2002).

1.2.6 Tilt-Table Testing

The Tilt-Table test is a method of detecting vasovagal or orthostatic syncope by
recording the patient’s blood pressure and heart rate during a superficial transition
from lying to standing (Kohno, Adkisson, and Benditt, 2018). At the start of the
procedure, the patient is strapped to a bed in the supine position. The bed is subse-
quently raised, typically to an angle of approximately 60-80 degrees, to investigate
whether the transition from laying to standing reduces the patient’s blood pressure
and causes them to faint. The method has been demonstrated as a useful method
for detecting susceptibility to vasovagal syncope, but the interpretation of the Tilt-
Table test requires expertise (Kohno, Adkisson, and Benditt, 2018). Furthermore, the
tilt-table test can help to differentiate between syncope and FDS resembling syncope
by demonstrating that, in patients with FDS, typical TLOC manifestations occur in
the absence of significant changes of heart rate or blood pressure (Tannemaat et al.,
2013).

1.2.7 Serological Biomarkers

Biomarkers are objective measurements that provide insight into the status of bio-
logical processes (Sueri et al., 2018). Many health conditions are caused by changes
in biological processes that can be detected by corresponding changes in known
biomarkers. Researchers have identified several serological biomarkers that may in-
dicate that a person has just recovered from an epileptic seizure, for example an in-
crease in the serum levels of prolactin, Interleukin-6, and creatine kinase, measured
minutes or hours after a seizure (Sueri et al., 2018). Furthermore, recent research
has suggested that elevated levels of Neurogranin may be indicative of a postictal
state after an epileptic seizure (Kalkan et al., 2022). Although prolactin and creatine
kinase have a high specificity, the utility for differential diagnosis can be restricted
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to tonic clonic seizures (Brigo et al., 2015; Wang et al., 2021) and a high specificity
does not assist the differential diagnosis of other causes of TLOC, for example FDS
and syncope.

1.2.8 Summary

This section has highlighted the challenges associated with the differential diagnosis
of TLOC. TLOC is associated with many different symptoms that may be more or
less indicative of a particular cause but cannot be used to make a differential diag-
nosis alone. Although there are tests that can detect the cause of TLOC, many of
these tests are only able to detect one of the three causes of TLOC and are of limited
diagnostic utility during interictal periods. This is problematic for individuals who
receive an incorrect diagnosis from Primary and Emergency Care Services because
the tests they are referred for may be unable to detect the true cause of TLOC, which
delays the time that it takes to receive a final diagnosis. Therefore, identifying meth-
ods that can consider a range of the symptoms that patients experience and predict
the cause of TLOC in Primary and Emergency Care Services could help improve the
treatment pathway.

1.3 Current research methods

1.3.1 Clinical Decision Tools

Individuals who experience TLOC will typically first present in non-expert settings,
i.e. Primary Care or Emergency Departments. Given that the testing and treatment
pathways are targeted to one specific diagnosis and that the differential diagnosis re-
quires a high level of expertise in the interpretation of TLOC descriptions and medi-
cal history, an important first step is to determine the most likely cause of the TLOC.
This will ensure individuals are referred to the most appropriate service. Unfor-
tunately, many individuals initially receive the wrong diagnosis. In a retrospective
analysis of 1506 adult patients referred to a neurologist from Primary Care with a di-
agnosis of epilepsy across a 16-year period, 194 (12%) were subsequently diagnosed
with syncope (Josephson, Rahey, and Sadler, 2007). Furthermore, a review of 27
studies investigating the rate of false positives among diagnoses of epilepsy found
that between 2-71% of individuals with a diagnosis of syncope or FDS were misdiag-
nosed in Primary and Emergency Care Services, with a median value of 20%. Many
of these people were exposed to negative consequences of an epilepsy diagnosis, for
example the unpleasant side effects of anti-epileptic medication and prolonged driv-
ing restrictions (Xu et al., 2016). Many individuals with a diagnosis of unexplained
syncope in cardiology departments may also have a functional neurological disor-
der diagnosis (Iglesias et al., 2009) and may need referral to other services (Raj et al.,
2014). Referrals to the wrong service can delay the time to receiving the correct medi-
cal diagnosis and treatment. Therefore, the identification of methods that can reduce
the rate of misdiagnosis and guide referral pathways may help to improve patient
care and reduce the unnecessary costs associated with delivering inappropriate tests
and treatments.

A thorough analysis of the patient’s history by a specialised neurologist often
leads to the correct diagnosis before any physical tests are undertaken (Angus-Leppan,
2008). Given that experts can make accurate diagnoses based on the patient’s history,
researchers have investigated whether it is possible to create a clinical decision tool
to accurately stratify TLOC patients in Primary Care Services (Wardrope, Newberry,
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and Reuber, 2018). A clinical decision tool can combine multiple variables about the
medical history into a single tool that can aid clinicians to make diagnostic decisions
(Stiell and Bennett, 2007). Given that there are many different clinical variables that
provide insight into the cause of TLOC, a clinical decision tool may make it easier to
process a large quantity of clinical data when considering the most likely cause and
the most appropriate referral pathway.

Another approach has been to create rapid access triage clinics where trained
clinicians stratify patients based upon risk scores using a web-based questionnaire
and electrocardiographic monitoring (Petkar et al., 2011). This approach effectively
identified high risk patients with cardiac abnormalities and provided a treatment
plan for these patients. Other approaches have involved devices with objective scor-
ing tools that can be completed by clinicians using information collected from the
patient’s medical record, medical history interviews, observations, and symptom
questionnaires (Baroni et al., 2021; Kerr et al., 2020; Wardrope, Newberry, and Reu-
ber, 2018).

Although many of these methods have shown effectiveness at predicting the un-
derlying diagnosis, many of the tools can only be applied once patients have been re-
ferred to specialist neurology or cardiology departments and most are limited to dif-
ferentiating between two of the three most prominent causes of TLOC (epilepsy and
FDS). Wardrope, Newberry, and Reuber (2018) conducted a review of the research
investigating potential clinical decision tools for patients presenting with TLOC and
found that only two studies included patients with syncope in their sample. In order
for a clinical decision tool for TLOC to be effective in a primary care setting, it should
be able to distinguish between all three common diagnoses. Of the two studies that
included syncope in their sample, one study aimed to stratify patients based on the
symptoms that they reported experiencing during the TLOC (Reuber et al., 2016)
and the second focused on the reported behavioural characteristics of the TLOC that
was observed by a witness (Chen et al., 2019).

Reuber et al. (2016) aimed to investigate whether patient reportable TLOC fea-
tures could help to differentiate between epilepsy, FDS and syncope using an 86
item questionnaire that was administered to 300 patients who had previously re-
ceived a diagnosis from a specialist neurology clinic (100 syncope, 100 FDS and 100
epilepsy). A paper copy of the questionnaires was sent to the participants by post
alongside an envelope to return the completed questionnaires. The items measured
the extent that the patient had experienced a symptom using a 5-point Likert scale
(1 = “always” - 5 = “never”) and 7 additional demographic and clinical features. The
responses significantly differed across all three groups for 57 of the items. Overall,
the data was able to successfully identify the correct diagnosis for 91% of patients
with syncope, 66% of patients with epilepsy and 78% of FDS patients. These find-
ings suggest that a symptom checklist can have some diagnostic utility for detecting
the cause of TLOC, particularly for cases of syncope, but that some symptoms may
exhibit more distinct group differences than others.

The extensive group differences across the symptoms could be explained by dif-
ferent latent variables. Reuber et al. (2016) conducted an exploratory factor analysis
on the 86 patient reported TLOC features to find out more about the nature of the
differences between TLOC experiences depending on the cause of the events. They
identified differences in factors they named “feeling overpowered”, “mind/body/world
disconnection” and “catastrophic experience” between the three health conditions.
Patients with FDS endorsed TLOC features contributing to these factors more strongly
than those with epilepsy or syncope. Theories about FDS suggest that seizures can
be related to threat processing or the activation of memories of previous traumatic
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experiences (Brown and Reuber, 2016a). This may explain why patients with FDS
report higher levels of “mind/body/world disconnection” and “catastrophic expe-
rience”. Responses from patients with syncope were significantly less related to the
factor “amnesia” compared to patients with epilepsy; and patients with epilepsy
were significantly less likely to score highly on the factor “sensory experience” than
those with syncope and FDS, suggesting that the sensory experience symptoms
within the checklist are more applicable to the experiences of people with FDS and
syncope. These findings provide more insight into how the symptom checklist can
be used to predict each diagnosis, but further research is required to improve the
predictive performance.

Many patients experience TLOC in the presence of others and research suggests
that there are diagnostically relevant behavioural characteristics which can help with
the differential diagnosis of TLOC (Kinney, Kovac, and Diehl, 2019). Chen et al.
(2019) investigated whether witness reports could improve the diagnostic perfor-
mance achievable by using patient-provided data alone. They collected responses of
249 witnesses from a separate 31 item witness questionnaire and found that 24 items
significantly differed between epilepsy, syncope and FDS. Combining the patient
questionnaire (Reuber et al., 2016) and witness questionnaire responses, the two
questionnaires were able to accurately identify the correct diagnosis using logistic
regression in 80% of patients with epilepsy, 79% with FDS and 92% with syncope.
Therefore, the inclusion of witness reports in a clinical decision tool may be impor-
tant for increasing accuracy of the diagnosis, especially for patients with epilepsy
who showed the largest increase in accuracy (of 14%).

Non-linear machine learning methods may improve the classification accuracy of
the questionnaires based on patient and witness provided data compared to linear
methods. Wardrope et al. (2020a) used dichotomised responses ("ever” or “never”)
from the PEP and PEO and a machine learning method “Random Forest" to classify
patients. The Random Forest algorithm has an inherent feature selection mechanism
that reduces the number of variables and improves the diagnostic prediction, which
was used on each individual dataset. They identified 34 items from the patient only
responses that were able to accurately classify 78.3% of patients (83.8% syncope,
81.5% epilepsy and 67.9% FDS) and 36 items from the patient and witness responses
that were able to accurately classify 86% of patients (100% syncope, 85.7% epilepsy
and 75% FDS). This new model was called the iPEP procedure. The classification ac-
curacy for the three-way differentiation using patient and witness data was higher
when the data were analysed using this method rather than using a regression ap-
proach.

However, the percentage of FDS patients that were correctly classified decreases
when the data were analysed using the Random Forest method compared to the
original logistic regression, from 79% (Chen et al., 2019) to 75% (Wardrope et al.,
2020a). One potential explanation is that the variables were dichotomised. In the
original patient responses, FDS patients reported a larger number of different ictal
symptoms overall but they reported that their seizure experiences were less stereo-
typed, indicated by a lower amount of extreme values (“always” or “never”) and a
greater number of intermediate responses (“rarely”, “sometimes”, “often”) (Reuber
et al., 2016). Dichotomising the data may have reduced this pattern in the dataset,
subsequently reducing the classification accuracy. Future research should investi-
gate how the FDS classification accuracy changes when patients are presenting with
binary symptom questionnaires.

A second potential critique of the validation work carried out on the iPEP is
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that the results may not be generalizable to all patients, especially newly present-
ing patients who have only experienced one episode or a small number of episodes
of TLOC. The patients on which the modelling of the iPEP performance reported by
Wardrope et al. (2020a) was based were aware of their diagnosis of epilepsy, syncope
or FDS when they provided the responses to the iPEP. Patients who already have a
diagnosis may be more familiar with the signs and symptoms of their condition and
in a position to describe their TLOC experiences in greater detail. This may have
influenced their responses. If the iPEP were to be implemented in an emergency
or Primary Care setting (or at the interface between these and specialist care set-
tings), patients will not have a secure diagnosis and would only be able to draw on
a smaller number of TLOC experiences. Consequently, to evaluate its usefulness as
a screening, stratification or diagnostic tool in an emergency room or Primary Care
setting, the iPEP will need to be validated in a new patient population of patients at
the point of initial referral for a specialist evaluation of TLOC.

In this section, we have introduced and discussed a symptom questionnaire that
can reliably differentiate between epilepsy, FDS, and syncope. The iPEP could be
used to guide referral pathways because it can be used in Primary and Emergency
Care Services, but future research should investigate the predictive performance of
the tool when used by patients first presenting to health services and administered
in a binary format before any firm conclusions can be made. Although the early
modelling research suggests the iPEP may identify the correct diagnosis more than
pre-existing methods used in Primary and Emergency Care Services, which have
a misdiagnosis rate of 20% (Xu et al., 2016), there is still scope for improvement,
particularly for the challenging differentiation between epilepsy and FDS. Therefore,
future research should explore additional features that can be incorporated into the
clinical decision tool that can reliably detect these two health conditions.

1.3.2 Conversation Analysis and TLOC

Speech in medical interactions can achieve more than sharing information. What a
patient says and where they say it in the conversation has interactional significance
(Stivers, 2002). Research aiming to understand communication in healthcare inter-
actions often uses conversation analysis (CA), which is a method of understanding
the dynamics of human conversation through the micro-analysis of recorded con-
versations (Jefferson et al., 1983). CA aims to understand the norms that govern
conversation through identifying patterns that occur across multiple conversations
and contexts (Sacks, 1974). The method relies on the assumption that what people
say is largely influenced by what was said prior to their turn at talk (Sacks, 1974)
and the social norms of conversation (Sacks, 1992).

Previous conversation analytic research shows that patients with epilepsy and
FDS describe their symptoms differently in medical interactions (Schwabe, Howell,
and Reuber, 2007; Schwabe et al., 2008). The original research followed interview
guidelines that were established during the pilot phase of the first study using CA
in this setting (Schwabe et al., 2008). The guidelines included a list of questions that
the neurologist was instructed to ask the patient and encouraged the neurologist to
allow the patient to speak freely and refrain from interrupting. Patients were asked
what they hoped to get from the consultation and to describe their first, worst, and
last seizure. Transcripts of the interaction were analysed to detect linguistic and
interactional differences.
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One of the differences found related to the amount of information that people
provided about the seizure experience. People with epilepsy provided more in-
formation about the subjective symptoms that they experienced and attempted to
provide a coherent narrative of the events that surrounded the unconscious period
by detailing their memories before and after the “gap” and attempting to recon-
struct what happened while they were unconscious (Schwabe, Howell, and Reuber,
2007; Schwabe et al., 2008). In contrast, people with FDS often equated the uncon-
scious period and the seizure and made generalised statements highlighting that
they do not know anything about what happened (Schwabe, Howell, and Reuber,
2007; Schwabe et al., 2008).

The two groups also differed in the extent to which they displayed effort to
describe and redescribe what they experience, also known as formulation effort
(Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008). People with epilepsy
displayed more formulation effort during descriptions of their subjective symptoms
and the unconscious period compared to people with FDS. These differences in-
cluded more hesitations, repetitions, restarts, and repairs.

There were also differences in how people conceptualised the seizure experience
during the interaction. People with FDS were more likely to use the diagnostic label
“blackout” compared to people with epilepsy (Plug, Sharrack, and Reuber, 2010).
The two groups were different in the consistency of the metaphorical conceptualisa-
tion they used to describe the seizure experience. People with epilepsy were more
likely to conceptualise the seizure experience as an external agent that they fought
or struggle against (“they just creep up on you and they get you”), whereas peo-
ple with FDS were less consistent in their use of metaphor and were more likely to
describe the seizure experience as a place or space that they went to (“that’s it, I’m
gone”) (Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008; Plug, Sharrack,
and Reuber, 2009b). Together, these features were found to amount to distinctively
different linguistic profiles for people with epilepsy and people with FDS.

The original research findings were extended by studies investigating the role
of accompanying others during routine clinical encounters at a seizure clinic (Rob-
son et al., 2012; Robson, Drew, and Reuber, 2016). This research was different to
the original studies because the neurologists did not follow the interview guide-
lines from Schwabe, Howell, and Reuber (2007) and Schwabe et al. (2008). People
with FDS were found to make more catastrophising third party references, in con-
trast to the normalising third party references more typically observed in the talk
of people with epilepsy (Robson et al., 2012). The extensive interactional resistance
demonstrated by people with FDS was also shown to increase the involvement of
accompanying others during routine clinical consultations (Robson, Drew, and Reu-
ber, 2016). These findings demonstrate that linguistic and interactional differences
between the talk of people with FDS and people with epilepsy are still present when
the interviews are conducted differently, and their patterns of talking influence the
contributions of other people partaking in the interaction.

These linguistic profiles can aid the differential diagnosis of seizures. Reuber
et al. (2009) used the qualitative research findings to create a Diagnostic Scoring
Aid (DSA) that could be used by linguists to detect linguistic differences between
people with epilepsy and people with FDS and to predict the diagnosis. The DSA
consists of 17 items that are rated with a score of 1, 0, or -1 (Table 1.1). Two linguists
who did not know the diagnosis of the twenty participants used in the study were
trained to use the DSA. Two cut-off values were selected, one for each linguist, that
produced the optimum diagnostic decisions for the whole sample (4.5 and 7.5) and
were able to predict the diagnosis with an accuracy between 75-80%. No single item
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was indicative of a particular diagnosis for all participants, but people with epilepsy
typically scored higher across the whole DSA. These findings indicate that there is
no single linguistic difference that can differentiate between people with epilepsy
and people with FDS, but the presence of multiple linguistic differences can help to
make the diagnosis.

TABLE 1.1: The Diagnostic Scoring Aid taken from
Reuber et al. (2009). P = Patient. I = Interviewer

Item Description Observation Score
General focus on seizure Introduced by the P 1

1 experience (rather than Introduced by the I, 0
seizure situations followed by P
or consequences) Introduced by I, lost by P -1
Description of subjective Volunteered 1

2 seizure symptoms Offered only when prompted 0
Prompting unanswered -1

Description of seizure Volunteered 1
3 suppression attempts Not described/ 0

only on prompting
Prompting unanswered -1

Description of ‘gaps’ Volunteered 1
4 (phases of reduced Offered when prompted 0

self-control or Prompting unanswered/ -1
recollection) ’holistic’ statements only
Response to challenge of Elaboration or reformulation 1
statements about ‘gaps’ of previous description

5 Not described/ 0
only on prompting
Prompting unanswered -1

Description of individual Volunteered 1
6 seizure episodes (possible Not offered / episodes 0

‘focusing resistance’: explicitly not distinguishable
interactional resistance to Not offered, no explicit denial -1
focus on particular seizures) of ability to distinguish episodes

distinguish episodes
Subjective seizure symptoms Described in great detail 1

7 Little or some detail 0
(Listed but) not -1
described in detail

Relative importance of Treated as central to description 1
8 subjective seizure symptoms More or equal attention to 0

circumstantial details
Not described beyond brief -1
statements

Relative importance of One of several elements 1
‘gaps’ (phases of of seizures

9 reduced self-control Prominent element of seizure 0
or recollection) episodes

Continued on next page
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Table 1.1 – continued from previous page
Item Description Observation Score

Defining element of seizures -1
Contouring of ‘gaps’ in Clear attempt to contour 1
seizure trajectory ‘gaps’

10 (eg. detailing Some attempt to contour 0
of last memory before ‘gaps’
/ first after seizure) No contouring of gaps / no -1

clear seizure trajectory
Reconstruction of ‘gaps’ Clear attempts to fill ‘gaps’ 1
(eg. filling own memory with own recollections

11 gaps with own recollections Some attempts to reconstruct 0
/ witness accounts) ‘gaps’ with own recollections

No attempts to reconstruct gaps -1
using own recollections

‘Formulation effort’ With marked formulation effort 1
12 associated with description With some or little 0

of subjective seizure formulation effort
symptoms (‘formulation No description beyond brief -1
effort’ includes restarts,
reformulations, neologisms)
Negations in descriptions of Contextualised negations only 1

13 seizure experience (absolute: With some absolute negations 0
‘I don’t remember anything, With pervasive absolute -1
contextualised: I remember negations
X but not Y’)
‘Formulation effort’ With marked formulation effort 1

14 associated with description With some/little 0
of ’gaps’ formulation effort

No description beyond -1
‘holistic’ statements

Metaphoric seizure Consistent across seizures 1
15 conceptualisation With variations across seizures 0

No coherent conceptualisation -1
External or internal Consistent seizure 1
conceptualisation of conceptualisation as external

16 seizures Seizures sometimes 0
conceptualised as external
Seizures not -1
conceptualised as external

Conceptualisation of Seizures repeatedly 1
seizures as a fight or conceptualised as a fight
or struggle struggle

17 Seizures sometimes 0
conceptualised as a fight or
struggle
Seizures not conceptualised -1
as a fight or struggle
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The accuracy of the DSA has been supported by further research studies apply-
ing the DSA to different samples. Using a sample of 10 Italian participants, 5 people
with epilepsy and 5 people with FDS, a trained linguist identified the video-EEG
diagnosis of 90% percent of participants (Cornaggia et al., 2012). Two psycholo-
gists applied the DSA to another Italian sample containing 49 patients with epilepsy
and 12 patients with FDS (Papagno et al., 2017). They correctly identified 80.3% of
patients with a sensitivity of 0.795 and a specificity of 0.83. Most, but not all, diag-
noses were made using video-EEG. A neurologist and linguist applied the DSA to
a sample of 12 Chinese patients and correctly identified 83% (Yao et al., 2017). In a
French sample containing 13 patients with FDS and 19 patients with epilepsy, two
neurologists correctly identified 84% and 88% of patients, respectively (Biberon et
al., 2020). These findings demonstrate that the DSA is able to retain an accuracy of
approximately 80-90% across different samples, suggesting that the scoring aid can
be applied outside of the original research context.

Although the DSA is the most widely applied scoring aid for detecting the lin-
guistic differences between people with epilepsy and people with FDS, researchers
have created more condensed and simplified scoring tables. Biberon et al. (2020)
aimed to detect the items from the DSA that were the most effective at predicting
the diagnosis in order to create a simplified scoring table. They selected the follow-
ing items from the DSA (Table 1.1): items 4, 5, 7, 12, and 15. These items focussed on
how people described the unconscious period and subjective symptoms, the amount
of formulation effort present during descriptions of subjective symptoms, and the
consistency of metaphoric conceptulations. Two raters were able to identify 88-91%
of cases using these items alone. In addition, Beghi et al. (2020) investigated a novel
5 item scoring table using a sample of 35 participants, which was able to identify the
diagnosis of 82.9% when the optimum cut-off was calculated. Furthermore, neurol-
ogists who had undertaken a training course to detect the linguistic profiles during
clinical interactions were able to score patients on a condensed scoring table imme-
diately after consultations and correctly predicted the diagnosis made on clinical
grounds in 81.8% of the 33 participants in the study (Jenkins et al., 2016). Therefore,
it is possible to make accurate predictions about whether someone has epilepsy or
FDS using fewer linguistic scoring items.

In this section, we have demonstrated that the talk of people with epilepsy or
FDS interacting with a neurologist can be described with distinct linguistic profiles.
The differences captured in these profiles can be detected by trained professionals
and can be used to predict the diagnosis with a high accuracy. It is of particular im-
portance for the objectives of this thesis that research has demonstrated a similarly
high level of accuracy when fewer elements of the linguistic profile were measured.
This demonstrates that it may not be necessary to measure all facets of the linguistic
profile. A full conversation analytic workup of every clinic interaction is unfeasible;
therefore, automating the collection and analysis of spoken descriptions of TLOC
may allow a reliable and efficient method of extracting features of these linguistic
profiles, especially considering that previous research has shown that accurate pre-
dictions can be made using fewer features (Biberon et al., 2020). Moreover, these
features could be combined with the iPEP to potentially improve the challenging
differentiation between people with epilepsy and people with FDS.

1.3.3 Thesis Overview

The introductory chapter has shown that the different diagnostic pathways for TLOC
are highly specific for a single health condition. A clinical decision tool capable of
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predicting the most likely cause of TLOC would speed up the time taken to receive
the correct diagnosis because people could be referred for the most appropriate spe-
cific tests more quickly. Furthermore, the tool could guide the interpretation of fu-
ture test results by providing a pre-test probability of a diagnosis which could inform
the post-test probability. Previous research suggests that there is scope to improve
currently proposed clinical decision tools, but more work is required to determine
what features differentiate more clearly and are capable of improving the perfor-
mance of current models. The initial research using CA in patients with seizures
suggests that identifying and incorporating linguistic differences between how peo-
ple with different diagnoses describe their experience of TLOC could help the dif-
ferential diagnostic process.

Therefore, the objective of this thesis is to explore the feasibility of improving a
currently proposed clinical decision tool by incorporating an automated analysis of
spoken descriptions of TLOC inspired by the previous CA research. We have cre-
ated an online application that people who have experienced TLOC (and witnesses
if available) can use to share information about what they experienced. The applica-
tion consists of a short binary questionnaire and an interaction with a virtual agent
that asks them questions about what they experienced during their most recent at-
tack. We evaluated feasibility based upon the capacity of the application to predict
the cause of TLOC and the acceptability of the approach from the perspective of the
patients and witnesses who have used it.

1.3.3.1 Research Questions

The thesis aimed to answer the following research questions:

Research Question 1

Given that there was only one clinical decision tool that reliably differentiated
between the three most common causes of TLOC when this PhD was designed
(Wardrope, Newberry, and Reuber, 2018), the PhD aims to further validate the ac-
curacy of the iPEP version of this tool (Wardrope et al., 2020a). The questionnaire
was originally implemented as a five-point Likert scale that was delivered to pa-
tients who already had a gold-standard diagnosis. The responses were then di-
chotomised by the research team to investigate whether this increased the predic-
tive performance of the questionnaire and might allow its use in patients presenting
after only one event. We would like further to explore the validity of this question-
naire by answering the following question - does the iPEP demonstrate a similar
level of predictive performance when the questionnaire is administered in a bi-
nary format through an online application and when the sample includes people
who have newly presented with TLOC?

Research Question 2

The linguistic and interactional differences between people with epilepsy and
people with FDS have always been measured by trained linguists. Humans can un-
derstand the context of a conversation and infer the meaning that transcends the
raw semantic content. In contrast, automatic natural language processing methods,
particularly methods that are appropriate for a small dataset, are reliant on the raw
semantic content. These approaches may not be able to detect the same linguistic ob-
servations as a human can. Therefore, what natural language processing features
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can capture some of the linguistic differences between people with epilepsy and
people with FDS and be used to predict the diagnosis?

Research Question 3

There are two major differences in the spoken descriptions of TLOC that will
be collected in this research compared to the previous CA research. First, to auto-
mate the collection and analysis of spoken descriptions of TLOC, patients are asked
to answer questions posed by a virtual agent, whereas previous research involved
dynamic interactions between the patient and a doctor. Secondly, the patients are
only asked to describe their most recent experience of losing consciousness because
patients first presenting to health services may only have one experience of TLOC,
whereas the previous research asked people about multiple seizures. These differ-
ences may influence the linguistic profiles for each health condition. Therefore, we
are interested in how people describe their experience of TLOC to a virtual agent?

Research Question 4

The performance of the iPEP was hindered by the particularly challenging differ-
entiation between people with epilepsy and people with FDS, but there are linguistic
differences between the spoken seizure descriptions of these two groups. Therefore,
is it possible to improve the predictive performance of the iPEP by incorporating
an automated analysis of patient descriptions of TLOC?

Research Question 5

Patients and witnesses must be willing to use the online application in order for
it to be effective. People’s willingness to use an intervention is influenced by how
acceptable the approach is perceived to be. For a new form of technology, this accept-
ability may also be influenced by the design. Therefore, do patients and witnesses
think the application is acceptable and what changes can be made to improve the
acceptability?

1.3.3.2 Organisation of the thesis

In the current chapter, we have introduced the different methods involved in the
differential diagnosis of TLOC and provided a justification for our investigation into
whether current clinical decision tools can be improved by incorporating an auto-
mated analysis of language. Chapter two will begin by providing an overview of
the fundamental principles of machine learning research. It will then provide an
overview of the important consideration and methods that are commonly used in
medical speech technology research. These two chapters combined will provide the
relevant background information for this research.

Having already provided an overview of some types of features that are used for
speech processing technology, chapter three will outline an analysis that involves
exploring potential features that can be used to differentiate between people with
epilepsy and people with FDS. Two groups of features will be assessed: features de-
signed to measure the degree of formulative effort displayed during a single seizure
description and features designed to measure semantic differences between people
with epilepsy and people with FDS. The objective of the chapter will be to answer
the second research question.
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Chapter four will provide an overview of the design of the overall research
project, the recruitment procedure, and the online web application. The online web
application was used to collect the research data that was used in chapters five, six,
seven, and eight. Therefore, there was a single recruitment procedure. The applica-
tion consists of two parts: the data collection front-end that the user interacts with
and the machine learning back-end used to make predictions.

Having provided an understanding of how the application works, chapter five
will provide an overview of how participants interacted with the virtual agent that
was used to collect spoken descriptions of TLOC. This analysis explores whether the
front-end of the application can facilitate the production of descriptions that are use-
ful for the differential diagnosis of epilepsy and FDS. Using conversation analysis,
we will explore whether the spoken descriptions are qualitatively similar to those
observed in previous doctor-patient interactions and consider how people may in-
teract differently with the virtual agent compared to a doctor. This chapter will
address research question three.

Chapter six and chapter seven will address how effectively the machine learning
back-end can predict the underlying cause of TLOC. Chapter six will explore the
effectiveness of predicting the cause of the TLOC using an automated analysis of
the TLOC descriptions when spoken descriptions are collected through the online
application. Chapter seven will extend the analysis by exploring whether the auto-
mated analysis of language can improve the predictive performance of the iPEP. The
accuracy of the iPEP will provide the baseline to be improved upon. These chapters
will address the research questions one and five.

In chapter eight, we will explore the acceptability of the application from the per-
spective of patients and witnesses. We will use a mixed methods approach to inves-
tigate to what extent people intend to use the application if it were available, what
factors influence their likelihood to use the application, and to gain an in-depth un-
derstanding of the attitudes of patients and witnesses towards the application. We
will record attitudes and intentions towards the application using a questionnaire
derived based upon the Technology Acceptance Model (Davis, 1989) and qualitative
interviews with people who have used the application. The questionnaire and inter-
views focus on the application, which encompasses the design of the front-end and
the concept behind using the back-end to make diagnostic predictions. Therefore,
chapter 8 will address research question 5.

Finally, chapter nine will provide an overview of the main objectives of the thesis
and explore the contributions of this thesis towards answering the research ques-
tions outlined in the introduction. We will suggest future research directions for the
topic.
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Chapter 2

Background and Related Work

The previous chapter outlined many of the methods used to make the differential
diagnosis of TLOC and the motivations for creating a clinical decision tool and ex-
ploring the incorporation of an automated analysis of spoken descriptions of TLOC.
The process of creating and evaluating modern clinical decision tools uses methods
from the discipline of machine learning. Within the discipline of machine learning,
there is a sub-field of research that focuses on applications that make predictions
using speech and language. Therefore, this first part of this chapter will provide
an introduction to machine learning and the methods that are often used to cre-
ate machine learning models. The second part of the chapter will provide a brief
introduction to how automatic speech processing and machine learning have been
combined to create and evaluate clinical decision tools for the healthcare industry.

2.1 Machine learning

The term machine learning refers to a discipline of research that aims to use com-
puters to solve predictive problems (Jordan and Mitchell, 2015). These methods are
considered to “learn” because they are trained on data to improve some measure
of performance, for example predicting a medical diagnosis. The most widely used
machine learning approaches used in the field of medicine are supervised machine
learning models that aim to generate a statistical mapping between a vector of inputs
(x) and a select number of target outputs (y) (Jordan and Mitchell, 2015).

2.1.1 Feature extraction

Before a machine learning algorithm can be trained, the target data must be trans-
formed into a numerical vector that the algorithm can understand, a method known
as feature extraction. The feature extraction methods that are used are largely de-
pendent on the type of target data and objectives of the researcher. For some types
of data, it is possible to use a one-to-one mapping between the target data and fea-
tures, for example each response option in a questionnaire can be allocated unique
numerical representations and the responses can then be input into a machine learn-
ing model in the form of a vector of responses for each participant (Wardrope et
al., 2020a). Other types of data are more complex, for example text and speech
data, and must be transformed into a vector of representational features before a
machine learning model can make effective predictions. This vector of representa-
tional features can be designed using knowledge of the target domain and automat-
ically extracted from the original speech signal, for example exacting features that
are designed to measure conversational and interactional properties of speech from
individuals with dementia during an interaction with an virtual agent (Mirheidari
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et al., 2017a). In contrast, there are also methods of automatically generating fea-
tures that represent the original data using machine learning algorithms trained on
a large amounts of data that are able to output vectors that represent the original
data and can be inputted into other machine learning algorithms to make predic-
tions, for example BERT can produce vectors that represent textual data (Devlin et
al., 2018) and Wav2Vec2 can produce vectors that represent speech data (Baevski et
al., 2020). Although the features extracted from these methods are often effective at
training highly accurate machine learning models, they are often considered “black
boxes” because it is difficult to determine why the algorithm has made a particular
prediction.

2.1.2 Partitioning the data

Supervised machine learning algorithms generate a statistical mapping between the
input (x) and output (y) using a training dataset with known labels. The objective is
to train an algorithm to make predictions on future, unseen data, also known as the
test set. The ability of an algorithm to successfully predict the output is dependent
on whether there is a sufficient relationship between the target features in the train-
ing data and the output, whether the statistical methods employed by the algorithm
are congruent with the type of data, and whether the training data is sufficiently
large to allow the algorithm to detect meaningful patterns within the data that can
generalise to unseen data. The performance of algorithms often increases alongside
increases in the amount of training data before performance plateaus (Figueroa et
al., 2012). Therefore, researchers must partition the dataset in order to maximise the
amount of data available for training while also retaining enough data to evaluate
whether the model can generalise to unseen data.

The simplest method for partitioning the data is to randomly remove a propor-
tion of the dataset ( 10-30%) for testing (Berrar, 2019). The remaining data is used
to train the algorithm. This method requires a large sample size to ensure there is
sufficient training data available, which can be problematic in the field of medicine
where data is frequently scarce (Latif et al., 2020).

Cross validation is a method that allows researchers to test the generalizability of
their machine learning models when they have a small sample size (Berrar, 2019). In
K-Fold cross validation, the dataset is segmented into K number of folds of approx-
imately equal size. An iterative analysis is then conducted where a single fold is re-
moved on each iteration to perform as the test dataset and the remaining data is used
as the training dataset (Figure 2.1). For each iteration of the cross validation proce-
dure, a machine learning algorithm is trained, and the predictive performance is
calculated using the test set. Once each segment of data has been used as the test set,
the overall predictive performance of the machine learning algorithm is calculated
by averaging the performance across all test sets. This method allows researchers
to maximise the size of the training set while still evaluating the generalizability of
their model for data external to the training set.

For instances where the amount of data is particularly small, another form of
cross validation called Leave-One-Out Cross Validation (LOOCV) can be used (Berrar,
2019). This method follows the same principles as K-Fold cross validation, but rather
than segmenting the data into multiple folds, a single datapoint is removed and used
as the test on each iteration. Therefore, the total number of iterations is equal to the
size of the dataset.
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FIGURE 2.1: An example of how the data is segmented during K-
Fold cross validation (K=4). The red rectangles represent the fold that

is used as the test set for each iteration.

One potential pitfall of cross validation is that a different machine learning model
is trained on each iteration. An important part of training a machine learning algo-
rithm is determining the optimum features, also known as feature selection, and
hyperparameters for the classification task. Every machine learning model has dif-
ferent hyperparameters, which are parameters that can take different values and
influence the performance of the algorithm for a given task (Claesen and De Moor,
2015). Conducting feature selection and hyperparameter tuning outside of the cross-
validation procedure can cause over-estimations of the predictive performance of a
model (Vabalas et al., 2019). Therefore, it is difficult to generate a single model that
can be applied to future data.

2.1.3 Training the model

Although there are many different types of supervised machine learning models,
some models are more well known than others across disciplines, for example Ran-
dom Forest, Support Vector Machines, Logistic Regression, K-Nearest Neighbour,
and Neural Networks (Ray, 2019). Using well-known models to investigate the per-
formance of new features for predicting the cause of TLOC, namely an automated
analysis of spoken descriptions of TLOC, will increase the accessibility of the re-
search between disciplines and provide a benchmark for performance that can be
potentially improved upon by using more complex algorithms in the future. Unfor-
tunately, it would not be feasible to evaluate the performance of neural networks for
this classification task because neural networks need a large amount of training data
(Alwosheel, Cranenburgh, and Chorus, 2018), but this is one approach that could be
evaluated in the future if larger dataset are available.

2.1.3.1 Random Forest

Random Forest (Breiman, 2001) is an algorithm that involves training many uncorre-
lated decision trees and subsequently making predictions based on the majority vote
of all decision trees within the forest. A decision tree consists of a hierarchy of nodes
where each node asks a question about a single feature and generates “child nodes”
that correspond to the possible answers to that question (Figure 2.2). A “child node”
can pose an additional question to further segment the responses or become a “leaf
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FIGURE 2.2: A basic example of a decision tree. The blue squares rep-
resent the features used to train the machine learning classifier. The
white squares represent the possible response options from the train-
ing data. A cut-off threshold is decided by the algorithm for continu-
ous values. The red (negative prediction) and green (positive predic-
tion) squares represent the outcome nodes where a prediction is made

using the portions of outcome values that are present in the node.

node” where the responses are allocated to a given prediction based on the most
prominent prediction present within the leaf node from the training data. Predic-
tions about the training set are made by passing each item through the decision tree
and making a prediction based upon the resultant leaf node. In Random Forest,
the correlation between each decision tree is reduced by using a random sample of
training data points to create each decision tree and selecting from a random sub-
sample of features at each node within the decision tree. Reducing the correlation
between trees improves the predictive performance of the Random Forest algorithm
(Breiman, 2001).

2.1.3.2 Support Vector Machine

Support Vector Machine (SVM) is a method that generates a hyperplane that is able
to separate independent classes and uses the hyperplane to predict the class of new
data based upon the location of the datapoint in multidimensional space (Noble,
2006). SVM choses the discriminative hyperplane that maximises the distance be-
tween the hyperplane and each class. Separating the data using a hyperplane re-
quires the dataset to be linearly separable, which is frequently not the case for com-
plex datasets. SVM can account for linearly inseparable data using a soft margin or
kernel function. A soft margin accounts for outliers by allowing some data points
to be on the wrong side of the hyperplane without affecting the final result. The
kernel function accounts for non-separable data by projecting the data into a higher
dimensional space (Kim, Kavuri, and Lee, 2013) and generating a hyperplane.
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2.1.3.3 Logistic Regression

Logistic Regression is a statistical method frequently used in binary classification
to model the probability of a given class (LaValley, 2008). The algorithm assigns
a weight for each feature in the dataset and the weights are updated according to
the training data. The input values and weights are combined linearly and passed
through a logistic, sigmoidal function that converts the summated value into a value
between 0 and 1. The values are assigned to a given class using a linear decision
boundary of 0.5. Logistic regression assumes that there is a linear relationship be-
tween the input variables and output class; therefore, it can benefit from transfor-
mations that highlight the linear relationship.

2.1.3.4 K-Nearest Neighbour

K-Nearest Neighbour (KNN) is a supervised machine learning algorithm that as-
signs a class based upon the similarity between the features in the test data and
those in the training data (Altman, 1992). During training, each data point from
the training set is mapped into a multidimensional space based upon the number of
features. To test the algorithm, a test data point is projected into the same multidi-
mensional space and the Euclidean distance between the test data point and all other
data points is calculated. The algorithm selects a set number of the closest training
data points to the test data, a value denoted K, and the most frequent class among
these training data points is selected as the predicted class. KNN is a non-linear
classification method because it does not use a linear hyperplane.

2.1.4 Evaluating the model

Machine learning models are evaluated based upon their ability to accurately pre-
dict the target classes when applied to data that was not used to train the algorithm
(Tharwat, 2020). In the context of diagnostic technology, these measures aim to pro-
vide an indication of how accurately a model can predict a diagnosis in clinical
practice. The fundamental underpinning of evaluating a machine learning model
involves determining how much the model produces True Positives (TP), True Neg-
atives (TN), False Positives (FP) and False Negatives (FN). These measures are used
to provide insight into how effectively the model is performing. The accuracy of a
model reflects the percentage of correct predictions made by the model. Sensitivity
or Recall reflects the capacity of the model to correctly identify individuals as be-
longing to a given class, whereas specificity reflects the ability to correctly identify
people that do not belong to a class. Precision refers to the percentage of positive
predictions for a class that are correct. Finally, given that a model may be better at
predicting the diagnosis of one class over another, the F1 measure provides an esti-
mation of accuracy that takes into consideration any imbalances between the preci-
sion and recall of the algorithm. In instances where the model is good at predicting
one class but worse at predicting another, the F1 score may be lower than accuracy
because this imbalance is considered.

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity or Recall =
TP

TP + FN
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Speci f icity =
TN

TN + FP

Precision =
TP

TP + FN

F1 Score =
2 x precision x sensitivity

precision + sensitivity

2.2 Speech processing and healthcare

Machine learning algorithms can be trained using different types of data. One type
of data of particular interest in the healthcare domain is speech data. There is an
abundance of research exploring the feasibility of predicting a diagnosis using an
automated analysis of speech for a broad range of health conditions, for example
cognitive decline (Mirheidari et al., 2016; Mirheidari et al., 2017a; Mirheidari et al.,
2017b; Mirheidari et al., 2018; Mirheidari et al., 2019a; Mirheidari et al., 2019b; Pan
et al., 2019; Pan et al., 2020; Pan et al., 2021; O’Malley et al., 2021; Petti, Baker, and
Korhonen, 2020), Depression (Mundt et al., 2007; Valstar et al., 2013; Gratch et al.,
2014; Low, Bentley, and Ghosh, 2020; Rana et al., 2019; Huang, Epps, and Joachim,
2019; Rutowski et al., 2019), Anxiety (Rutowski et al., 2020), Bipolar Disorder (Tondo,
H Vazquez, and J Baldessarini, 2017; Ringeval et al., 2018; Matton, McInnis, and
Provost, 2019; Pan et al., 2018; Wang et al., 2020), Parkinson’s Disease (Sveinbjorns-
dottir, 2016; Moro-Velazquez et al., 2021), and Amytrophic Lateral Sclerosis (Kühn-
lein et al., 2008; Bandini et al., 2018; Vashkevich, Petrovsky, and Rushkevich, 2019;
Wang et al., 2018; An et al., 2018). Recording speech data allows people to provide
a breadth of information. There are a numerous processing steps required to collect
speech data and convert a raw audio signal into a machine learning prediction. The
remaining sections of this chapter will introduce some of the common processing
steps and the common challenges associated with speech technology research us-
ing examples from research applying these techniques to the detection of a range of
health conditions.

2.2.1 Collecting speech data

In order to use a ‘healthcare application’ in clinical practice, the procedure of record-
ing speech data should be automated to allow the method to be used on a large
scale. Although it is possible to investigate the feasibility of predicting a diagnosis
by collecting speech recordings by recording human-human interactions (Salekin et
al., 2018; Pan et al., 2018; Wang et al., 2020), there may be differences in the speech
recordings that are collected through human-computer interactions, and these dif-
ferences may cause changes to the performance of a system if the method of recruit-
ment is changed as a research project advances. A review of ‘healthcare applications’
suggested that the success is dependent on three fundamental features of healthcare
applications that contributed to their success: interactivity, context-awareness, and
adaptiveness (Preum et al., 2021). However, there is a balance between designing the
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user interface to allow the collection of the necessary information while also man-
aging the users expectations about what the ‘healthcare application’ is capable of
(Mori, MacDorman, and Kageki, 2012).

The CognoSpeak project provides one example of a research project that auto-
matically collected speech data (Mirheidari et al., 2017a). CognoSpeak is an applica-
tion that is designed to identify the cause of a memory impairment by conducting
a cognitive assessment using an automated analysis of speech. The objective was
to create an application that could be used to guide referral pathways in Primary
Care. People with reported memory impairments completed an interaction with a
virtual agent through an online web application. There are other studies that used
applications which provided the participant instructions, either in written or ver-
bal format, and recorded spoken responses that were later analysed for the research
project (Gratch et al., 2014; Mundt et al., 2007; Vashkevich, Petrovsky, and Rushke-
vich, 2019; Huang, Epps, and Joachim, 2019; Rutowski et al., 2019; Rutowski et al.,
2020). Although some applications were context-aware because they monitored the
verbal cues of the participant before asking a subsequent question (Gratch et al.,
2014), many of the applications were not responsive to what the patient had said
because they did not utilise spoken human understanding. However, the speech
recordings collected through these applications were useful for predicting the cause
of multiple different health conditions. These findings demonstrate that an auto-
mated method of collecting speech recordings does not have to be responsive to the
patient to collect useful data.

2.2.2 Transcription

A transcript of the speech recording may be required for a machine learning algo-
rithm depending on the features that are used to train the algorithm, for example
if the features involve semantic content. Researchers can evaluate the performance
of an automated analysis of speech using manual or automatically generated tran-
scriptions. Although the use of manual transcripts provides insight into how effec-
tive the model performance on ‘clean’ research data, the performance metrics from
these research studies may not generalise to “real life” where such systems would be
reliant on automatic speech recognition (ASR). Although the word-error-rate associ-
ated with ASR can reduce the performance of a machine learning model (Mirheidari
et al., 2016), these models can still exhibit an acceptable level of performance and
the word-error-rate can be reduced when more research data is available to train the
ASR system (Mirheidari et al., 2018). Therefore, it is important that feasibility judge-
ments are not reliant on the performance of an ASR system because there is a lot of
scope for improvement in future research.

2.2.3 Extracting machine learning features from speech

Speech is a continuous signal that contains linguistic and paralinguistic properties
(Latif et al., 2020). The linguistic content describes the information or message that
the speaker is trying to communicate to the listener. The paralinguistic content tran-
scends beyond the semantic meaning embedded within the speech and contains a
breadth of additional information that can be used to make inferences about the
speaker or subtle forms of information contained within the semantic content, for
example age, gender, identity, and emotional state. In order to support machine
learning models to identify the relevant components of speech for a particular clas-
sification task, researchers extract sub-components of the speech signal, which are



26 Chapter 2. Background and Related Work

frequently described as features. Researchers can use domain expertise to determine
which linguistic and paralinguistic properties of speech may be useful for a partic-
ular classification task. Most features that are frequently used can be separated into
two categories: acoustic and linguistic features (Latif et al., 2020).

Acoustic features can be further classified into three categories: prosodic, spec-
tral and temporal, and voice quality (Latif et al., 2020). Many acoustic features can
be measured using open-source software, such as openSMILE (Eyben, Wöllmer,
and Schuller, 2010). Some examples of the features openSMILE can measure in-
clude fundamental frequency, formants, Linear Prediction Cepstrum Coefficients
(LPCC) (Gupta and Gupta, 2016), Mel-Frequency Cepstrum Coefficients (MFCC)
(Chakraborty, Talele, and Upadhya, 2014), and Gammatone Frequency Cepstrum
Coefficients (GFCC) (Shao and Wang, 2008). The target features are often calculated
for each window of a segmented audio file and descriptive statistics are generated
to represent each feature for the entire recording. These features have been effec-
tive for emotion recognition, and the detection of stress, suicidal behaviour, distress,
Anxiety, Depression, Bipolar Disorder, Parkinson’s Disease, and Amyotrophic lat-
eral sclerosis (ALS) and cognitive decline (Mundt et al., 2007; Morales and Levitan,
2016; Sveinbjornsdottir, 2016; Pan et al., 2018; An et al., 2018; Salekin et al., 2018;
Vashkevich, Petrovsky, and Rushkevich, 2019; Wang et al., 2018; Rutowski et al.,
2019; Latif et al., 2020; Pan et al., 2021).

Linguistic features are often applied to transcriptions of the speech recording.
Linguistic features often focus on the type of language used by people with a given
health condition, for example measuring the proportion of key words associated
with different semantic categories, speech rate, features designed to measure lin-
guistic complexity, and the frequency of particularly part-of-speech labels (Matton,
McInnis, and Provost, 2019; Mirheidari et al., 2019a; Wang et al., 2020). Furthermore,
many recent approaches have expanded beyond the linguistic content of speech and
started exploring the interactional properties of conversations using interactional or
dialogue features, for example the number of turns that people take, how much they
speak compared to other interactants, the length of turns in the interaction, and the
characteristic of pauses (Mirheidari et al., 2017a; Wang et al., 2020). These examples
are taken from studies that use speech to assist with the differential diagnosis of
Bipolar Disorder (Matton, McInnis, and Provost, 2019) or the differential diagnosis
of cognitive impairment (Mirheidari et al., 2017b; Mirheidari et al., 2017a), which
demonstrates that similar speech processing features can be used for different clas-
sification tasks. Moreover they showcase the breadth of linguistic and interactional
features that can be applied to speech processing research.

Many modern state of the art approaches do not rely on hand-craft features based
on domain knowledge because there are methods of automatically generated ma-
chine learning features based upon contextual knowledge of the data generated by
other machine learning models, also known as self-supervised machine learning.
One of the most prominent examples is the BERT model (Devlin et al., 2018). BERT
can be used to generate a numerical vector representation of individual words such
that words with similar meanings have similar numerical vectors. These represen-
tations are generated using a masking method where words within a document are
hidden from the model and all of the surrounding words are used to predict what
the word is. Consequently, the context of language is used to generate the numerical
representation of the word. BERT features have been shown to outperform hand-
crafted features in machine learning models designed to identify health conditions,
for example cognitive decline (Liu et al., 2021). Consequently, self-supervised ma-
chine learning features have become more prevalent in machine learning research
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over recent years.

2.2.4 Designing a system based on Conversation Analysis findings

CognoSpeak is an application that is designed to identify the cause of a memory
impairment by conducting a cognitive assessment using an automated analysis of
speech. The methods used to design and create the application are similar to the
objectives for this PhD thesis. For example, it is a tool that can be used to guide
neurology referral pathways in Primary Care, it involves the differential diagnosis
of a functional neurological disorder, and the research was built upon previous con-
versation analysis research. Therefore, the research outlines a suitable approach to
testing the feasibility of using an online application and automated analysis of lan-
guage for predicting the cause of TLOC.

The early research based on recorded interactions in a memory clinic identified
distinct conversational profiles between people with Alzheimer’s disease and peo-
ple with functional memory impairment (Elsey et al., 2015). People with Alzheimer’s
disease showed a greater reliance on accompanying others to answer questions dur-
ing the consultation, were less likely to recall recent instances of memory problems,
showed difficulty in responding to compound questions, more frequently displayed
an inability to answer questions, and were less likely to produce expanded or elabo-
rated responses (Elsey et al., 2015). These findings were translated into features that
could be automatically detected using computer software to explore the feasibility
of creating a cognitive screening tool (Mirheidari et al., 2016). A linear SVM classi-
fier trained using the same recordings that were used in the conversation analysis
research was able to correctly predict the diagnosis with an accuracy of 92% (Mirhei-
dari et al., 2016). The accuracy reduced to 79% when automatic speech recognition
was used instead of verbatim transcripts.

The next stage in the project involved creating an application where the questions
asked in Elsey et al. (2015) are posed by a digital avatar instead of a neurologist. Fur-
thermore, the number of features was extended to incorporate lexical features that
measured the proportions of different parts-of-speech and acoustic properties of the
speakers (Mirheidari et al., 2017b). Although the baseline automatic speech recog-
nition algorithm had a high word error rate, the system demonstrated a similarly
high level of accuracy when predicting the diagnosis for participants who used the
web application (Mirheidari et al., 2017b). Having demonstrated the feasibility of
the method, the researchers have been able to improve the performance and utility
of the system by using the DementiaBank research corpus to reduce the word-error
rate, increasing the number of health conditions related to memory impairment that
the application can detect, and exploring different types of data to collect, more com-
plex features to use in the models, and more complex but effective machine learning
algorithms (Mirheidari et al., 2018; Pan et al., 2019; Pan et al., 2020; O’Malley et
al., 2021). This demonstrates that an initial system does not need to be perfect at
conception because there is a large room for improvement once feasibility has been
established.

2.2.5 Challenges in speech technology and healthcare

The previous section outlines many of the requirements of speech processing and
machine learning research. Designing speech processing systems is a complex pro-
cedure with many different stages. Consequently, there are numerous challenges



28 Chapter 2. Background and Related Work

associated with this field of research that can impair the utility of the findings. The
remaining section of this chapter will discuss some of these challenges.

The performance of machine learning algorithms is largely dependent on the
data that is available to train and evaluate the model. Unfortunately, speech pro-
cessing research in the healthcare domain is often associated with small sample sizes
because of the challenges associated with approaching and recruiting participants
(Latif et al., 2020). Data scarcity can impair the quality of research because some of
the best methods are only feasible with large datasets, for example self-supervised
approaches like BERT (Devlin et al., 2018). Furthermore, researchers must rely on
cross validation to evaluate the performance of their models, but it is not possible to
conduct an exhaustive exploration of potential features using cross validation with-
out potentially introducing bias into the final evaluation metric (Vabalas et al., 2019).
Finally, machine learning models tested on a small sample size may not have suffi-
cient data to identify subtle patterns that are useful for making predictions, which
can result in an under-estimation of the model performance. This can be especially
problematic when conducting novel research because it may discourage future in-
vestment in potential solutions that have not been thoroughly tested. Fortunately, a
small dataset may be sufficient to demonstrate the feasibility of a research project.
For example, one early study exploring the feasibility of predicting depression using
speech had a small sample of 35 participants (Mundt et al., 2007), but the advance-
ment of this area of research has resulted in numerous open-source datasets (Rana
et al., 2019) that provide researchers with easy access to data and a standardised
dataset for comparing the performance of different features and machine learning
algorithms. Therefore, early feasibility studies can direct further data collection and
research in the future.

Speech processing research for healthcare is an interdisciplinary research field
that sits between the disciplines of engineering, linguistics, and medicine. The con-
tributions from all disciplines are vital for the success in this field. An in depth un-
derstanding of engineering and computer science is required to design and train ro-
bust models. Knowledge of the target health condition, clinical practice, and the pa-
tient population is required to design systems that can be integrated into the health-
care system. Research studies that are primarily conducted by one of the disciplines,
for example engineers who solely focus on creating the most optimal predicting al-
gorithm, may face barriers to clinical implementation. For example, clinicians re-
ported that they would be less likely to use an algorithm designed to detect suicide
risk if they were not able to identify which features were used to make the predic-
tion (Brown et al., 2020). Therefore, clinician involvement in the design of research
is important to ensure that it can translate into clinical practice.

There is overlap between the features that are used for different healthcare ap-
plications. One feature that is prominently used for the classification of a range of
healthcare conditions are MFCC, which have been used for the detection of Depres-
sion (Rejaibi et al., 2022), Anxiety (Salekin et al., 2018), Bipolar Disorder (Pan et al.,
2018), Parkinson’s Disease (Moro-Velazquez et al., 2021), ALS (Vashkevich, Petro-
vsky, and Rushkevich, 2019) and cognitive decline (Mirheidari et al., 2020). It is
not uncommon for individuals to have multiple comorbid health conditions. Al-
though how these features are used for a particular model will depend on the train-
ing dataset and the particular classification task, research rarely explores whether
the presence of comorbid health conditions is influencing the performance of the
model or the presentation of the linguistic or acoustic features.
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2.2.6 Conclusion

This short review of speech technology in healthcare demonstrates that there are
particular characteristics of speech that are indicative of a broad range of health
conditions. This is an important consideration when designing future speech ap-
plications because comorbidities are common between different health conditions.
Although the objective of most of the research studies is to generate more efficient
and effective methods of detecting a specific health condition, most of the research
projects focus on collecting speech samples rather than on the creation of a speech
technology application. Therefore, there is little emphasis on the design principles of
the application, for example the interactivity, context-awareness, and adaptiveness
(Preum et al., 2021). The Cognospeak project is one example of research that used
an application to collect speech data and demonstrates that conversation analysis re-
search can be translated into a system that conducts an automated analysis of spoken
responses to detect similar group differences (Mirheidari et al., 2017a; O’Malley et
al., 2021). These findings suggest that our objective of translating conversation anal-
ysis findings about the cause of TLOC could also be translated into an automated
system.

Overall, these findings demonstrate that methods of automatically analysing
speech to predict a health diagnosis are powerful and diverse. The breadth of meth-
ods and types of features that are available suggest that it may be feasible to apply
these methods to spoken descriptions of TLOC. Furthermore, the quality of applica-
tions designed to predict a given diagnosis often improve as more research is con-
ducted, suggesting that demonstrating the feasibility of the approach is only the
first step to creating an effective system for predicting the diagnosis. The remaining
elements of the PhD will explore the feasibility of predicting the cause of TLOC us-
ing an automated analysis of spoken descriptions based upon the methods outlined
within this section.





31

Chapter 3

Exploring the diagnostic utility of
an automated analysis of language

3.1 Introduction

The previous chapter provided an overview of the methods commonly used in ma-
chine learning and speech processing research and some of the common challenges.
Training machine learning models using a small dataset was one of the most promi-
nent challenges across different research projects. Unfortunately, the recruitment
procedure for this project was hindered by the coronavirus pandemic. Prior to the
pandemic, the recruitment design involved an opportunity to discuss the research
project with patients while they were attending a clinic appointment for TLOC at
the Royal Hallamshire Hospital. However, it was not possible to speak to patients
about the project face-to-face during the pandemic because the TLOC clinic appoint-
ments were conducted remotely. Patients could only be approached by letter. It
became apparent throughout the project that fewer participants would be recruited
than originally anticipated. Choosing automatically detectable features to approxi-
mate the qualitatively described profiles for people with epilepsy and FDS requires a
training dataset to evaluate the predictive performance of the features. The cross val-
idation method is often used to provide an estimation of model performance when
there is a limited amount of data available. However, it is difficult to explore di-
agnostically relevant features using cross validation without introducing bias into
the performance metrics (Vabalas et al., 2019). Therefore, an exploration of poten-
tial speech-derived features that could assist the differential diagnosis of epilepsy
and FDS was conducted using pre-existing data from previous conversation analy-
sis (CA) research.

This chapter begins by providing an overview of the data from previous research
that was used for this analysis (Section 3.2). The data was used to create different
datasets designed to explore the two research objectives of the chapter. Firstly, we
conducted an exploration of the feasibility of differentiating between epilepsy and
FDS using an automated analysis of formulation effort (Section 3.3). Secondly, we
explored the utility of multiple semantic categories that measured the proportion
of semantically related words (Section 3.4). The findings and limitations from both
analyses are then discussed in tandem (Section 3.5) because of the similarities be-
tween types of analysis and overlap between the datasets that were used.

3.1.1 Datasets

The analysis used data taken from previous conversation analysis research con-
ducted at the Royal Hallamshire Hospital in Sheffield between 2005 and 2013. All
of these recordings have been used in previous conversation analysis (CA) research
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(Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008; Plug, Sharrack, and Reu-
ber, 2009b; Plug, Sharrack, and Reuber, 2010; Robson et al., 2012; Robson, Drew, and
Reuber, 2016; Jenkins et al., 2016). Participants who were currently under exami-
nation to determine the cause of their seizures at the Royal Hallamshire Hospital
were eligible to participate in the previous CA studies. The final diagnoses for pa-
tients were determined using clinical assessment and/or a video-EEG recording of a
typical seizure. Participants had not received a final diagnosis at the time of partic-
ipation. Participants gave consent to be recorded and for the recordings to be used
in future studies of communication.

The first dataset was taken from the first CA study that explored the interactional
differences in conversations between a clinician and people with epilepsy or FDS in
the UK (Schwabe, Howell, and Reuber, 2007). The interactions took place while pa-
tients were undergoing monitoring on a video-electroencephalography (EEG) unit.
There were no accompanying people and the neurologist followed the conversa-
tional guidelines developed in the context of previous similar research in Germany
(the Epiling project). These guidelines involved minimising their own input in the
interaction, asking a standardised list of questions, and tolerating prolonged silences
(Schwabe et al., 2008). Consequently, there are instances of exceptionally long pauses
during the interactions and most of the talk is generated by the patient (Table 3.1).

The second dataset was taken from a CA study exploring interactional differ-
ences between people with epilepsy and FDS in routine clinical encounters (Robson
et al., 2012). Routine clinical encounters follow a different interactional structure to
the first dataset because some of the interactions include accompanying others and
the neurologist will carry out a broader exploration of the patient’s life and medi-
cal history, not only focussing on descriptions of their attacks (Cassell, 1985). The
neurologists participating in this study did not receive instructions regarding how
to communicate with the patients. Therefore, there are more instances of closed
questions, for example “Were you confused afterwards?” (Ekberg and Reuber, 2015)
(Table 3.1).

The final dataset was taken from a study exploring whether a one-day train-
ing course designed to train neurologists to detect the linguistic differences between
people with epilepsy and FDS can improve communication and diagnostic predic-
tions (Jenkins and Reuber, 2014). There were recordings from before the training
course and after. Therefore, the neurologists followed the interview guidelines sim-
ilar to those developed for the Epiling project in some recordings, whereas in others
they did not. Furthermore, these interactions were still routine clinical encounters,
so involved many of the characteristics of the second dataset. Finally, a medical
TLOC diagnosis was only available for half of the dataset (Table 3.1).

The studies involved interactions with different clinicians and were conducted
using different interview techniques and in slightly different context (for instance
routine clinic encounters or research interviews). These differences influence the pre-
sentation of the linguistic profile (Ekberg and Reuber, 2015) and the amount of words
that the patient spoke (Table 3.1). It was therefore important to consider carefully
different methods of combining the datasets so that discrepancies between datasets
would be minimised and the sample size maximised.
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TABLE 3.1: The CA datasets from previous research. These datasets
were used to form the datasets used in this chapter. The table contains

descriptive information for each dataset.

Schwabe, Howell Robson et al. Jenkins and

and Reuber (2007) (2012) Reuber (2014)

Average duration of 26.18 28.38 20.87

recording (minutes)

Average number of 2712 638 1556

words per patient

Number of patients

Epilepsy 7 20 17

FDS 13 12 9

3.2 Exploring the diagnostic utility of disfluency features in
single seizure descriptions

3.2.1 Introduction

One of the most important differentiating features between the speech of people
with epilepsy and people with FDS described in the qualitative studies mentioned
above is the amount of formulation effort typically expended by patients when they
describe their seizure experiences (Schwabe et al., 2008). In this context, formula-
tion effort refers to the number and extent of hesitations, reformulations, restarts,
repairs, and changes in grammatical construction (Schwabe, Howell, and Reuber,
2007). Whereas speech produced by people with epilepsy when describing their
seizure experiences is characterised by a high level of formulation effort as they
struggle to communicate how exactly they experience their seizures, formulation
effort is largely absent from the seizure accounts of people with FDS (Schwabe et al.,
2008). Hesitations are a prominent aspect of formulation effort and can be detected
using automated acoustic language analysis (Liu et al., 2006; Christodoulides and
Avanzi, 2015; Mirheidari et al., 2017a). For the first analysis within this chapter, we
hypothesised that it is possible to automate the detection of hesitations as a marker
of formulation effort in records of clinic conversations with seizures, and that our
findings would replicate those previously achieved using qualitative analyses.

Another potentially automatable method for measuring formulation effort in-
volves the identification and analysis of pauses within the interaction. Pauses could
be an indicator of formulation effort because they may reflect the difficulties the
patient is facing with the accurate description of their complex seizure experiences
(Plug, Sharrack, and Reuber, 2009a). The automatic detection of pauses in speech
has previously been used as an indicator of dementia (Mirheidari et al., 2017a; Sluis
et al., 2020; Yuan et al., 2021). We hypothesised that the inclusion of one or several
measures based on pauses would improve the classification performance.

In summary, the present analysis investigates whether features that can be au-
tomatically extracted from audio recordings and transcripts of speech as measures
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of formulation effort can be used to differentiate between epileptic and nonepilep-
tic seizures. We hypothesise that it will be possible to differentiate between seizure
accounts provided by people with epilepsy and people with FDS using automati-
cally measurable markers of formulation effort. We will explore the classification
performance of a combination of these features using the Random Forest algorithm.
Furthermore, we will explore to what extent particular features contribute indepen-
dently to the classification performance using independent comparisons between
groups and exploring the performance of the algorithm using different combina-
tions of features.

3.2.2 Method

3.2.2.1 Preprocessing

People with epilepsy display increased formulation effort during descriptions of
their subjective symptoms and the unconscious period of a seizure (Schwabe et al.,
2008). To investigate whether features designed to measure formulation effort can be
used to differentiate between people with epilepsy or FDS, we manually extracted
the subsection of each interview in which the neurologist asked the patient to de-
scribe their first seizure because this created a dataset where all participants were
asked the same question and the focus was on describing what happened during a
seizure, which is similar to the questions posed by the virtual agent in our web ap-
plication. Only extracts where the neurologist asked this question in an open-ended
format were included because previous research has observed that the questions that
neurologists ask in an outpatient setting can be more restrictive due to the time pres-
sures associated with these interactions, and that this can reduce the presence of CA
observations that are important for the differential diagnosis process (Ekberg and
Reuber, 2015). Focusing on this question allowed us to create the largest possible
corpus of interviews (total sample n=45 - FDS n=24, PWE n=21), while ensuring that
patients have been provided with an opportunity to describe this particular seizure
experience freely. We defined the end of the target subsection as the point when the
neurologist either changed the topic or accepted a change in topic agenda (Fehlen-
berg, 1986) away from the first seizure by asking questions unrelated to this topic.
Changes in topic agenda introduced by patients could be an example of resistance
to the question being asked, which is a feature identified by previous CA research as
indicative of an FDS description (Schwabe, Howell, and Reuber, 2007).

Audio-recordings were extracted from video recordings of the encounters, tran-
scribed manually and further processed into Extensible Markup Format (XML). XML
is a machine and human readable text format that is used to structure information.
The transcripts were manually demarcated into individual turns within the conver-
sation and each turn labelled with a speaker identifier, the start time and end time.
The start and end time of the target subsection were noted and a new audio file con-
sisting only of the target subsection was created using the AudioSegment function
from Pydub (Hu and Wang, 2007). The raw text was converted to lowercase, punc-
tuation and numerical digits were removed, contractions were expanded, and all
words were converted to the corresponding lemma through lemmatization using a
natural language toolkit (NLTK) in Python (Loper and Bird, 2002).

3.2.2.2 Feature Extraction

Seven features were designed as markers of formulation effort (Table 3.2). Three of
the features involved searching for a given word or word pair within the transcript.
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TABLE 3.2: the seven formulation effort features and the correspond-
ing description of each feature.

Features Definitions

Number of hesitations The frequency of hesitations within the

patient speech based on a pre-specified list

of possible hesitations (“hm”, “um”).

Number of Repetitions The frequency that a word (N) is a repeat of

the previous word (N-1) or the word before

(N-2).

Presence or absence of keywords A list of keywords associated with uncertainty

associated with uncertainty was generated. This feature marked

whether any of these words were present

in the seizure description or not.

Pause Frequency The frequency of patient pauses that were

greater than 30ms in length.

Average pause length The average length of all patient pauses that

were greater than 30ms

Total pause time The total time spent pausing when pauses

were defined as being longer than 30ms.

Average length of between The average length of all pauses (>30ms)

speaker pauses that occurred during a transition between

speakers (patient or doctor).

These features were the total number of hesitations (e.g. “hmm” or “erm”), the total
number of repetitions (e.g. “I I don’t know”) and the presence or absence of words
that suggest uncertainty (e.g. “sort of” or “might”). Four features involved measur-
ing pauses within the interaction. Pauses were detected using the WebRTC Voice Ac-
tivity Detector from Google which checked whether each 10ms window contained
speech or not. Only pauses greater than 30 milliseconds were included to minimise
the inclusion of plosive phonemes. Pauses in the speech of patients (patient pauses)
were identified using a manually created function that aligned each pause with the
turn labels on the XML transcript. Between speaker pauses were defined as pauses
that crossed the turn allocation boundary. The four pause features were the ‘fre-
quency of patient pauses’, ‘average length of patient pauses’, ‘total length of patient
pauses’, and ‘average length of between speaker pauses’.

3.2.2.3 Statistical Analysis

Group differences for each feature were compared using an independent t-test, Mann
Whitney U test, or chi squared test as appropriate. The alpha level was set at 0.05. A
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Bonferroni correction was performed to reduce the risk of a type 1 error and resulted
in an adjusted alpha level of 0.007 (0.05/7).

3.2.2.4 Classification

The Random Forest (Breiman, 2001) machine learning algorithm was used to inves-
tigate whether the features designed as markers of formulation effort were capable
of differentiating between descriptions of epileptic seizures or FDS. Random Forest
is an algorithm that involves training many uncorrelated decision trees and subse-
quently making predictions based on the majority vote of all decision trees within
the forest. The correlation between each decision tree is reduced by using a ran-
dom sample of training data points to create each decision tree and selecting from
a random subsample of features at each node within the decision tree. Reducing
the correlation between trees improves the performance of the Random Forest al-
gorithm (Breiman, 2001). The Random Forest algorithm was trained by applying
the nested “leave-one-out” cross validation method (Vabalas et al., 2019) and using
the Scikit-learn toolkit in Python (Pedregosa et al., 2011). A search for the optimum
hyperparameters for each cross validation fold was conducted using the "Random-
izedSearchCV" function that explores 10 hyperparameter configurations based on
the hyperparameters ranges outlined in Appendix A, Table A.1. The best configu-
ration was selected based on the accuracy of the model that was trained using the
training data for that specific fold. Only one machine learning classifier was evalu-
ated for simplicity, but the intention to further evaluate other models was planned
for future research.

3.2.3 Results

3.2.3.1 Participants and seizure descriptions

A chi squared test of independence was performed to examine the relationship be-
tween gender and diagnosis. The relationship between these variables was signifi-
cant, X2 (1, N = 45) = 13, p <0.01. The FDS group included a higher proportion of
women than the epilepsy group (women = 82.6% vs 23.8%). A Mann Whitney U
test showed that there was no significant difference between the epilepsy and FDS
groups in terms of vocabulary size (people with epilepsy median=101 vs. people
with FDS median = 100, U=212.5, p=0.187) and word count (people with epilepsy
median=257 vs. people with FDS median=210, U=187, p=0.071). A Chi squared test
showed that there was no significant difference in word length distribution, X2 (14,
N = 45) = 15.2, p = 0.365.

3.2.3.2 Feature Comparison

There were significantly more hesitations and repetitions in the speech of people
with epilepsy than that of people with FDS (Table 3.3). There was no significant
difference in terms of average pause length, pause frequency, total pause time, av-
erage length of between speaker pause and the presence or absence of key words
associated with uncertainty (Table 3.3).

3.2.3.3 Random Forest performance

We compared the performance of the Random Forest algorithm using different com-
binations of the features (Table 3.4). The best performance was achieved when all
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TABLE 3.3: The mean (parametric tests) or median (non-parametric
tests) for each variable.

Features FDS Epilepsy Test Statistic P Value

Hesitations † 2 (7) 9 (10) U = 117.5 0.001

Repetitions † 2 (2.25) 3 (7) U = 133.0 0.003

Pause frequency 45.4 (22.1) 46.4 (26.9) 0.135 0.893

Pause average † 0.996 (0.188) 0.786 (0.385) 159.000 0.018

Pause total 45.1 (24.5) 43.1 (31.6) -0.238 0.813

Between speaker 1.15 (0.544) 0.922 (0.543) 198.000 0.112

pause average †

Uncertainty keyword § 13/21 (61.9%) 10/24 (41.7%) X2 = 1.115 0.291

Note: results indicate mean (SDs) unless otherwise indicated. Adjusted alpha

set at p<0.007.

t value given unless otherwise specified

† Mann Whitney U, median, and Interquartile range are reported because the

variable is not normally distributed

§ Chi squared test, count and percentage because the variable is categorical

formulation effort features were used (accuracy = 71%) (Figure 3.1), followed by
hesitations and repetitions alone (accuracy = 68.9%), hesitations, repetitions, and the
presence of uncertainty related words (accuracy = 64.5%) and all pause features (ac-
curacy = 48.9%).

3.3 An exploration of the utility of semantic categories

Having established the performance of the formulation effort features, this section
will now explore the predictive performance of the second feature set. The results of
both analyses will be discussed in tandem in the final section.

3.3.1 Introduction

The previous conversation analysis research identified differences in the semantic
content of seizure descriptions between people with epilepsy and FDS. There were
many instances where individuals used different words to describe their experience,
for example people with FDS were more likely to use the term “blackout” to describe
their chief complaint (Plug, Sharrack, and Reuber, 2010), use more catastrophising
language when making third party references (Robson et al., 2012), describe their
seizure as a “space/place” that they went to (Plug, Sharrack, and Reuber, 2009b),
and produce more “complete negations” in their seizure accounts, for example “I do
not remember anything” (Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008).
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TABLE 3.4: The accuracy, sensitivity, and specificity of the Random
Forest algorithm trained using Leave-One-Out Cross Validation and

different combinations of features

Features Accuracy Sensitivity Specificity F1 Score

All features (7) 71% 61.9% 79.2% 67%

Hesitations & 68.9% 66.7% 70.8% 69%

Repetitions (2)

Hesitations, 64.5% 52.4% 75% 62%

Repetitions &

Uncertainty (3)

Pause features (4) 48.9% 42.9% 54.2% 49%

FIGURE 3.1: A confusion matrix for differentiating between people
with epilepsy and people with FDS using the Random Forest model

trained using all seven formulation effort features.

Furthermore, people with epilepsy were more likely to recall more detailed descrip-
tions of a single seizure experience, including the subjective symptoms that they ex-
perienced, whereas individuals with FDS were more likely to provide descriptions
of what their seizures are ‘generally’ like rather than focusing on particular seizure
events (Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008). These differences
suggest that there may be semantic differences between the seizure descriptions of
each group that can be automatically detected. However, these observations have
previously only been detected by trained linguists who can detect these semantic
differences in the appropriate context and ignore the semantic differences in other
contexts, for example a linguist would avoid coding a complete negation used in a
talk not focusing on a seizure description. Therefore, there are no guarantees that se-
mantic differences between the groups will be diagnostically useful when detected
using automated methods that do not consider the context.

An automatic analysis of language could include additional features beyond the
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scope of the original CA research. Previous research suggests that there may be
differences in the use of emotive language between people with epilepsy and FDS.
Firstly, dissociative seizures are automatic and uncontrolled responses to emotions,
thoughts, sensations, or situations perceived as threatening (Brown and Reuber,
2016a). Given that emotions can be an antecedent to FDS, emotion-related words
may be more prevalent during the seizure descriptions. Secondly, people with FDS
report higher levels of general psychopathology (Brown and Reuber, 2016a), are
more likely to experience panic symptoms during a seizure (Rawlings et al., 2017a)
and catastrophize life experiences (Whitfield et al., 2020) than people with epilepsy.
These findings suggest that emotional semantic content may be prevalent during
medical interactions. Therefore, we would like to explore whether differences in
the frequency of emotive language could contribute to the differential diagnosis of
people with epilepsy and FDS.

One way to explore whether semantic differences between the two groups can
assist the differential diagnosis is to measure the frequency of different semantic
content within medical interactions. Linguistic Inquiry and Word Count (LIWC) is
an application that processes text and measures the proportion of words that corre-
spond to different semantic categories (Pennebaker, Francis, and Booth, 2001). Prior
to the inception of the application, the researchers who created LIWC conducted
multiple studies that explored relationships between the semantic content of lan-
guage and different areas of psychology (Pennebaker, Mayne, and Francis, 1997;
Pennebaker and Francis, 1996; Pennebaker, 1997; Pennebaker and King, 1999). LIWC
was introduced as a tool that can be used by psychologists to conduct similar psy-
chological research by analysing texts to identify psychological dimensions and pre-
dict behaviour using the different semantic categories within the application (Chung
and Pennebaker, 2012). The words for each semantic category were generated based
upon semantic observations from previous research, and a panel of judges rated the
inclusion and exclusion of words iteratively until a final selection was achieved for
each category (Pennebaker, Francis, and Booth, 2001). The categories were applied
to a large corpus of data to identify and eliminate categories that were infrequently
activated by the text (Pennebaker, Francis, and Booth, 2001). Furthermore, the ex-
ternal validity of the categories was explored by comparing the ratings with human
raters for each category (Pennebaker and Francis, 1996; Alpers et al., 2005).

LIWC has been used to compare differences in language use by people with and
without various psychiatric conditions. Anderson et al. (2008) found that people
with social anxiety disorder more frequently use first person pronouns and words re-
lated to anxiety, sensory/perceptual processes, and physical touch, and make fewer
references to other people while writing about a previously distressing social situ-
ation. Rosenbach and Renneberg (2015) found that people with borderline person-
ality disorder used more first-person pronouns and words from the semantic cat-
egories anger, social, and family during the recollection of autobiographical mem-
ories. Multiple studies have reported an increase in first person singular pronoun
use by people with depression (Holtzman et al., 2017). Furthermore, Shibata et al.
(2016) compared word frequencies between nine people with Alzheimer’s disease
and nine healthy controls during medical interactions and found that people with
Alzheimer’s disease used fewer social references and employed the first person pro-
noun “I”, verbs, and words in the present tense more frequently. These findings
suggest that LIWC can be used to detect linguistic patterns associated with a spe-
cific health condition.

The portion of words for the semantic categories in the LIWC application could
be used as diagnostic features to help differentiate between epilepsy and FDS using
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an automated analysis of language. However, it can be difficult to identify predic-
tive machine learning features because the scarcity of medical speech data (Latif et
al., 2020) makes it difficult for research to create a sufficiently large training and test
dataset and often leads to an over-reliance on cross validation methods. Therefore,
research must identify predictive features using pre-existing datasets that can be
used in future research. Cardeña, Pick, and Litwin (2020) explored differences in the
LIWC categories between people with epilepsy and FDS during a semi-structured
interview and found that people with epilepsy used significantly more instances of
“she/he”, “we” and family references. Although they only found a small number
of group differences, these semantic categories could still make predictive contri-
butions to a machine learning algorithm, for example LIWC features were incorpo-
rated into a text classification algorithm for predicting comorbidities in people with
epilepsy (Glauser et al., 2020). It is important to explore the predictive performance
of features in addition to independent group comparisons because there is no single
variable that can reliably separate epileptic and nonepileptic seizures (Reuber et al.,
2016; Wardrope et al., 2020a; Avbersek and Sisodiya, 2010).

Therefore, the experimental work presented in this section is to explore the effec-
tiveness of semantic categories from the LIWC application at predicting a diagnosis
of epilepsy or FDS when applied to the history-taking phase of routine seizure clinic
encounters. The focus was on semantic categories that align with the linguistic dif-
ferences observed in previous differential diagnostic research.

3.3.2 Method

3.3.2.1 Preprocessing

In order to explore semantic differences between the two groups, we created a novel
dataset that maximised the amount of patient talk and the similarities between the
context of the interactions. The dataset was created using the recordings of doctor-
patient interactions in routine seizure clinic consultations (Robson et al., 2012; Jenk-
ins et al., 2016). The routine seizure clinic encounters were chosen because the in-
terviews were similar, although not exactly the same, across the two datasets and
allowed us to create the largest dataset. In contrast, the original CA studies were
not included because they followed a dramatically different interview style, had a
smaller number of participants, and solely focussed on the seizures (Schwabe et al.,
2008). Two stages of the medical encounters, establishing the reason for the visit and
the history taking (Robinson, 2003) were manually extracted from the whole inter-
action before the doctor started talking about the diagnosis. Although some of the
recordings that were used in section 3.2 were included in this dataset, the record-
ings used in section 3.2 consisted of the response to a single question, whereas the
recordings in this dataset consisted of longer interactions.

The dataset consisted of 58 manually transcribed recordings of encounters in-
volving patients and neurologists in a routine seizure clinic setting. The neurolo-
gists in one group of the interviews took part in a training program aiming to en-
hance their ability to pick up interactional and linguistic differential diagnostic fea-
tures during their clinic interactions with patients. During the training, they were
instructed to ask participants about their first, most recent, and worst seizure, and
encouraged not to interrupt patients during their narratives (Jenkins et al., 2016).
The neurologists in the second group had received no instructions (Robson et al.,
2012). Recordings were included in the analysis if a final medical diagnosis had
been confirmed by review of all clinical data by an epileptologist or the diagnosis
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had been confirmed by the video-EEG recording of a typical seizure. Patients were
only included if their final diagnosis was one of epilepsy (N=37) or nonepileptic
seizures (N=21).

3.3.2.2 Linguistic Inquiry and Word Count

The recordings of the doctor-patient interactions were manually transcribed. A man-
ually created algorithm was used to extract the text that corresponded to all patient
turns during the target subsection of the interaction. The most recent version of the
LIWC application has a dictionary of almost 6400 words dispersed across 93 differ-
ent semantic categories (Pennebaker et al., 2015). We used 21 semantic categories
to measure the differences observed in previous research and any potential relation-
ships between the independent categories.

The social environment influences the experience and recollection of a seizure
differently for people with FDS or epilepsy. Wardrope et al. (2020b) found that
the presence of other people at the onset of a seizure resulted in more attempts to
alert others about the upcoming seizure, greater intensity, and different post-ictal be-
haviour for people with FDS compared to people with epilepsy. Previous research
identified that people with epilepsy used more words related to the categories “We”,
“She/He” and “Family Reference” during semi-structured interviews about their
seizures compared to people with FDS (Cardeña, Pick, and Litwin, 2020). More-
over, people with FDS are more likely to make catastrophising third party references,
whereas people with epilepsy are more likely to make normalising third party ref-
erences (Robson et al., 2012). Therefore, the first group of semantic categories mea-
suring the frequency of social words were included (“We”, “She/He”, “Family”,
“Social”, and “Affiliation”). The category “risk” was included to detect differences
in the tendency to catastrophize (Whitfield et al., 2020), alongside “Cause” to detect
inferences about the consequence of seizures on everyday life and “Reward” as a
countermeasure.

There is evidence of differences in emotional experience and expression between
people with epilepsy or FDS. People with FDS have increased levels of general psy-
chopathology (Brown and Reuber, 2016a) and many theories suggest that emotional
experiences may contribute to the manifestation of FDS (Brown and Reuber, 2016a).
Furthermore, a thematic analysis of written accounts of epilepsy and FDS found
differences in the “emotional tone” of the accounts (Rawlings et al., 2017c; Rawl-
ings et al., 2017b). People with epilepsy often demonstrated relatively stable moods
whereas people with FDS reflected greater anxiety and low mood. Therefore, seven
categories were included to measure differences in emotive language (“Emotional
tone”, “Affect”, “Positive emotions”, “Negative emotions”, “Anxiety”, “Anger”,
and “Sad”)

Previous CA research found that people with FDS display an increased tendency
to talk about seizures in general rather than focussing on the description of a single
past seizure experience and often conflated the unconscious period and the seizure
experience by using complete negations to emphasise that they do not know any-
thing about what happened (Schwabe, Howell, and Reuber, 2007; Schwabe et al.,
2008). The categories “Focus Present” and “Quantifiers” were included to measure
whether people were describing a single experience that happened in the past or
multiple seizure experiences in the present tense, for example “I never remember
what happened in the seizures” or “I sometimes lose consciousness”, instead of “I
was walking down the street and began to feel strange”. Furthermore, the category



42 Chapter 3. Exploring the diagnostic utility of an automated analysis of language

“Certainty” was used to capture holistic statements and complete negations, for ex-
ample “I never remember anything”.

Section 3.2 outlined and demonstrated that people with epilepsy exhibit more
formulation effort during descriptions of the seizure experience (Schwabe, Howell,
and Reuber, 2007; Schwabe et al., 2008). The semantic category “Tentativeness” was
used to capture differences in tentative language associated with formulation effort,
for example increased tentativeness during the description of subjective symptoms.

Finally, there is evidence that people with epilepsy or FDS use different metaphoric
conceptualisations when describing what happened during a seizure. People with
epilepsy more frequently used metaphors that conceptualise the seizure as an agent
or force that can be combated, whereas people with FDS more frequently used metaphors
that conceptualised the seizure as a space or place that they went to (Plug and Reu-
ber, 2009). The two categories “Space” and “Power” were used to capture some of
these differences. A full list of the categories available within the application and
those selected for this analysis can be found in Appendix B.

We conducted group comparisons for each semantic category to gain insight into
which categories may be the most effective for future research. The Shapiro Wilk
test was used to test the normality of each variable, and the Levene test was used
to test for homogeneity of variance. Group differences for each semantic category
was calculated using an independent T-Test or Mann-Whitney U Test depending on
whether the variables were normally distributed and if the samples had equal vari-
ances. No correction was made for multiple comparisons because of the exploratory
aim of this study. Corrections for multiple comparisons would have increased the
risk of making a type 1 error, which could prevent future researchers exploring vari-
ables that may improve the predictive performance of machine learning models.

3.3.2.3 Demographic and general speech differences

A chi-squared test of independence was performed to investigate whether there was
a significant difference in gender between people with epilepsy and people with
FDS. There was no significant difference between these variables X2=(1,N=58) =
0.431, p=0.511.

A Mann-Whitney U test was used to evaluate whether there was a difference in
the word count and total number of unique words per transcript for people with
epilepsy and people with FDS. We found that people with FDS spoke more words in
general (median=1445) compared to people with epilepsy (median=1115), U=(1,N=58)
= 275, p<0.05. Moreover, people with FDS spoke more unique words (median=351)
compared to people with epilepsy (median=271), U=230.5, p<0.01.

3.3.2.4 Classification

We explored the classification performance of multiple machine learning classifiers
to identify the algorithms most suited to this classification task. The classification
performance of the semantic categories was evaluated using five different machine
learning models trained using the sci-kit learn toolkit in python (Pedregosa et al.,
2011): Random Forest (Breiman, 2001), Support Vector Machine with either a linear
or Radial Basis Function (rbf) kernel (Cristianini, Shawe-Taylor, et al., 2000), Logis-
tic Regression, and K-Nearest Neighbor (Altman, 1992). Each model was trained
using “leave-one-out” cross validation and a nested search for the optimum hyper-
parameters to prevent overfitting (Vabalas et al., 2019). A search for the optimum hy-
perparameters for each cross validation fold was conducted using the "GridSearchCV"
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FIGURE 3.2: A comparison of the performance (accuracy, sensitivity,
and specificity) of each of the machine learning algorithms using all

21 semantic categories.

function (Pedregosa et al., 2011) that explores all hyperparameter configurations
based on the hyperparameters ranges outlined in Appendix A, Tables A.2, A.3, A.4,
and A.5. The best configuration was selected based on the accuracy of the model
that was trained using the training data for that specific fold.

The importance of each feature for the best performing machine learning models
was determined using an ablation analysis where each feature was removed, and
the classification accuracy of the model was recalculated. Features that resulted in
the largest decrease in classification accuracy were considered the most important.

3.3.3 Results

3.3.3.1 Comparison of the semantic categories

There was a significant difference in 11 of the 21 LIWC variables (Table 3.5). The
semantic categories with a significant group difference were “Negative emotions”,
“Emotional tone”, “Quantifiers”, “Focus present”, “Sad”, “Reward”, “Anger”, “Fam-
ily”, “Power”, “Cause”, and “Affiliation”.

3.3.3.2 Classification Performance

The results of the classification analysis demonstrate a large degree of variation be-
tween the five classifiers (Figure 3.2). The best performance was demonstrated with
the three non-linear classifiers, which were the K-Nearest Neighbour classifier (ac-
curacy = 81%), the Support Vector Machine with a RFB kernel (accuracy = 77.6%)
and the Random Forest algorithm (accuracy = 69%). The two classifiers that use a
linear operation performed less effectively (Support Vector Machine with a linear
kernel, accuracy = 67.2%, and the Logistic Regression algorithm, accuracy = 62.1%).
All classifiers demonstrated a greater specificity (70.3-83.8%) than sensitivity (42.9-
76.2%).
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TABLE 3.5: The mean and standard deviation (parametric) or median
and interquartile range (non-parametric) of the percentage of words
per semantic category for people with epilepsy and people with FDS.
The test statistic and p-value are reported for each group comparison,

unless otherwise specified
† - Mann Whitney U, median, and Interquartile range are reported
because the variable is not normally distributed or the homogeneity

of variance assumption was violated.

Semantic People with People with Test Statistic P Value

category epilepsy FDS

Negative 1.04 (1.17) 1.73 (0.57) M=210 P < 0.01

emotions †

Emotional 28.8 (28.35) 21.95 (7.83) M =216 P<0.01

tone †

Quantifiers † 1.7 (0.91) 2.19 (0.4) M = 229 P < 0.01

Focus present † 10.5 (3.54) 12.94 (2.64) M = 230.5 P <0.01

Sad † 0.21 (0.32) 0.38 (0.27) M = 231.5 P <0.01

Reward 1.035 (0.61) 1.399 (0.44) T = -2.356 P <0.05

Anger † 0.05 (0.2) 0.18 (0.23) M = 271.5 P <0.05

Family † 0.26 (0.37) 0.35 (0.69) M = 272 P < 0.05

Power 1.189 (0.55) 1.489 (0.38) T = -2.181 P < 0.05

Cause 1.184 (0.66) 1.568 (0.59) T = -2.179 P < 0.05

Affiliation † 0.52 (0.52) 0.71 (0.33) M = 285.5 P <0.05

Space 5.517 (1.74) 6.254 (1.05) T = -1.736 P = 0.08

Social 5.638 (2.07) 6.7 (1.97) T = -1.879 P = 0.07

Risk † 0.39 (0.39) 0.48 (0.41) M = 286.5 P = 0.05

We † 0.06 (0.2) 0.14 (0.29) M = 291 P = 0.05

SheHe † 0.72 (1.1) 0.9 (1.09) M = 289 P = 0.05

Affect 2.76 (0.91) 3.09 (0.64) T = -1.431 P = 0.16

Positive Emotions † 1.54 (0.63) 1.4 (0.42) M = 313.5 P = 0.11

Anxiety † 0.29 (0.46) 0.31 (0.38) M = 318.5 P = 0.13

Certain 1.62 (0.77) 1.489 (0.59) T = 0.663 P = 0.51

Tentativeness † 2.78 (1.34) 2.65 (1.47) M = 388 P = 0.5
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3.3.3.3 Most Important Features

The most important features were calculated for the K-Nearest Neighbour model
and the SVM model with the RFB kernel. The top nine most important features de-
termined from the ablation analysis were: “Focus present tense”, “Emotional tone”,
“Tentativeness”, “Quantifiers”, “Reward”, “Social”, “Affect”, “We” and “He/She”.
The subsequent four features (“Positive emotion”, “Family”, “Cause”, and “Affilia-
tion”) had the same importance score. Furthermore, four out of the top nine features
were among the features within our analysis showing significant group difference
in the single item comparisons, excluding “Tentativeness”, “Social”, “Affect”, “We”,
and “He/She”. The Support Vector Machine with a RFB kernel appeared to be the
most stable machine learning algorithm because there was no change in the accuracy
of the model when 13 out of the 21 features were removed independently, suggesting
that this model is less reliant on individual features, whereas K-Nearest Neighbour
demonstrated the most and largest changes due to the removal of features (Figure
3.3).

3.4 Discussion

Our preliminary results support the hypothesis that it is possible to differentiate be-
tween individuals with epilepsy and FDS using an automated analysis of spoken
seizure descriptions. Although the features used in this analysis do not take into ac-
count the context of what is being said, for example whether the patient is currently
describing a subjective symptom (Schwabe et al., 2008), they are still able to predict
the diagnosis with a relatively high level of accuracy.

Our first objective was to explore whether features designed to measure formula-
tion effort can be used to differentiate between people with epilepsy and FDS when
directly applied to a description of a seizure. In accordance with previous research
(Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008), we found that people
with epilepsy demonstrated significantly more formulation effort as indicated by
more hesitations and repetitions while describing their first seizure compared to
people with FDS. Furthermore, although the frequency of hesitations and repeti-
tions made the greatest contribution to the overall classification performance, in-
cluding features that recorded how patient’s paused during the seizure description
and whether they used key-words that indicated uncertainty improved the overall
performance from 68.9% to 71% using the Random Forest algorithm. These findings
suggest that measures of formulation effort should be incorporated into an auto-
mated analysis of spoken seizure descriptions and can assist the differential diagno-
sis when applied to the entire seizure description.

Our second objective was to explore the feasibility of differentiating between
spoken accounts of epileptic seizures and FDS by comparing semantic differences
between the words patients use in routine medical encounters. Using 21 semantic
categories measured using the Linguistic Inquiry and Word Count (LIWC) applica-
tion (Pennebaker, Francis, and Booth, 2001), we were able to accurately predict the
diagnosis of epilepsy or FDS in up to 81% of cases. Our ablation analysis demon-
strated that some features were making larger contributions to the performance of
the algorithm than others, for example verbs in the present tense and words related
to the emotional content. These findings provide insight into the most useful seman-
tic differences between the two groups that could be included in our future research.

Our third objective was to explore the performance of different machine learn-
ing algorithms (Ray, 2019) to decipher those that appear to be the most effective for
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this classification task. We compared the performance of multiple machine learn-
ing algorithms using the semantic features because this analysis was larger in terms
of the number of participants and features. The outcome of this analysis can guide
our choice of machine learning algorithm for the automated analysis of language
in our application. The largest accuracy was achieved using the K-Nearest Neigh-
bour algorithm (Altman, 1992). However, the algorithm was better at predicting a
diagnosis of FDS compared to epilepsy and showed large decreases in performance
when individual features were removed using the ablation analysis, suggesting the
performance of the algorithm was largely dependent on the features. In contrast, the
Support Vector Machine algorithm with a non-linear kernel (Kim, Kavuri, and Lee,
2013) had the second highest accuracy but was equally good at predicting epilepsy
and FDS and was less influenced by individual features during the ablation analysis.
Therefore, these findings suggest that Support Vector Machine may be a more stable
model to use in future research.

Previous qualitative research reported no difference in pause frequency and pause
duration between people with epilepsy and people with FDS (Walker et al., 2020).
Our findings that there was no significant difference in ‘patient pause frequency’,
‘total pause time’, ‘average pause length’, and ‘average length of between speaker
pauses’ supports this finding. However, we observed an improvement in the per-
formance of the Random Forest algorithm (Breiman, 2001) when the patient pause
features were incorporated into the model. Similarly, although we observed a signifi-
cant group difference for 11 of the 21 semantic categories, only four of these variables
were in the top ten performing features for the two best performing models. This
demonstrates that features may be effective for predicting the diagnosis without dis-
tinct group differences, potentially due to complex relationships between different
linguistic and interactional features.

An interesting observation from this analysis is that people with FDS typically
said more during the routine clinical consultations than people with epilepsy. This
finding was unexpected because previous research has found that people with FDS
typically provide less detailed descriptions of their seizures and are more likely to
use complete negations instead of describing their seizure experiences more pre-
cisely (e.g. statements like “I don’t remember anything”) (Schwabe, Howell, and
Reuber, 2007; Schwabe et al., 2008). One potential explanation is that the wider his-
tory taking procedure also involves conversations about other areas of the patient’s
health, for example conversations about the consequences of seizures, the impact
they have on the patient’s life, potential causes of the seizure, and information about
previous medical interactions and other comorbid health conditions (Cassell, 1985).
This finding may be important for designing a fully automated system because it
demonstrates that people with FDS can have a lot to say during medical interactions
and that questions focusing on what happened during the seizure may not capture
all the variations in the responses that allow these semantic categories to perform
effectively in the machine learning models.

Our findings provide the basis of a more detailed exploration into possible con-
tributions a fully automated analysis of language could make to the differentiation
of epilepsy and FDS. We note that the discrimination we achieved by automated
analysis of manually produced transcripts and audio clips was less accurate than
the fully manual, qualitative approach based on the analysis of complete interac-
tions and taking account of a wider range of potentially diagnostic features (Reuber
et al., 2009; Cornaggia et al., 2012; Papagno et al., 2017; Yao et al., 2017; Biberon et al.,
2020). However, our study provides proof of principle that qualitatively described
features can be translated into observations which can be made by a computer.
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The findings of this study provide encouragement for efforts to develop equivalent
methods for other discriminating qualitative observations such as differences in the
metaphoric conceptualisations of seizure experiences preferentially used by people
with epilepsy and people with FDS (Plug, Sharrack, and Reuber, 2009b), or the ex-
tent to which subjective seizure experiences are volunteered, and how periods of
unconsciousness are described (Schwabe, Howell, and Reuber, 2007; Schwabe et al.,
2008).

In clinical practice, a TLOC stratification tool would be unlikely to be based on
the predictive performance of language features alone as in this chapter. In a clinical
system, these features could be used alongside symptom checklists to train a classi-
fier (which may also be more diagnostic if used with a Random Forest Classifier than
regression based approaches) (Wardrope et al., 2020a). Future research should there-
fore explore the performance of a classifier trained using these features in tandem.
Another reason for such a combined approach is that a clinical TLOC classification
tool should not only be capable of predicting likely diagnoses of epilepsy and FDS
but also of syncope (Wardrope, Newberry, and Reuber, 2018). While little is known
about the typical linguistic and interactional profile of patient descriptions of syn-
cope, as stated above, this cause of TLOC can be differentiated very well from the
two types of seizure based on symptom checklists.

The inclusion of language features into a fully automated clinical decision or
stratification tool will require the use of an automatic speech recognition module.
Although such systems will generate transcripts that are far less accurate than the
manually produced transcripts used in this study, experience with a fully automatic
“digital doctor” system, programmed to ask patients questions about memory prob-
lems and analyse their answers, suggests that remarkably high correct classification
levels can be achieved with erroneous transcripts (Mirheidari et al., 2019b; O’Malley
et al., 2021). While the switch from a conversation between clinician and patient to
one between a talking head on a computer screen and the patient is likely to have
significant consequences on how patients speak about their seizures, there are many
similarities between the speech of patients between these two contexts (Walker et al.,
2020), so this aspect of automation may actually improve the diagnostic accuracy of
a fully automatic classification system.

3.4.1 Limitations

Firstly, the features used to approximate formulation effort may not capture all in-
stances of formulation effort within the data. The features used in our analysis may
suggest that patients are having difficulty describing their seizures by hesitating
more, but another way that people can express formulation effort is by using meta-
talk (Schiffrin, 1980) to describe their difficulties explaining their seizures (Schwabe,
Howell, and Reuber, 2007).

Secondly, the sample size was small and the contexts in which the spoken seizure
descriptions were recorded were heterogeneous. Although we used cross validation
to demonstrate the machine learning algorithm’s ability to generalise to unseen data
and to accommodate the analyses to the small dataset available for this analysis
(Berrar, 2019), it is difficult to evaluate the variance of a machine learning model
using the “leave-one-out” cross validation method. Therefore, a larger sample size
would be required before we can be confident that this level of performance will be
exhibited across other datasets. Finally, the analysis does not consider the type or
severity of the seizures (Fisher, 2017) and future research should explore whether
this influences the level of formulation effort that patients exhibit.
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Thirdly, the LIWC categories were designed to measure these semantic concepts
broadly and are not tailored to seizure consultations. They are not able to measure
important semantic categories associated with seizure descriptions, for example the
label used for the chief complaint (Plug, Sharrack, and Reuber, 2010) or descriptions
of subjective symptoms (Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008).
They contain many keywords unrelated to seizure consultations. It may be possible
to generate semantic categories that are customised for seizure consultations that
are better able to differentiate between people with epilepsy or people with FDS,
but future research would need a larger dataset to detect the broad range of words
used for these semantic categories.

Fourthly, the questions that the neurologist asked the patient were not standard-
ised. Although some of the neurologists had received instructions about what ques-
tions to ask patients as part of the original research project (Schwabe, Howell, and
Reuber, 2007; Jenkins et al., 2016), these instructions did not apply to the whole
history taking procedure and the neurologists whose consultations were studied in
the other project had received no instructions (Robson et al., 2012). Future research
should explore semantic differences in interactions where every participant is asked
the same question because this may change what words people use in the interac-
tion.

Fifthly, the semantic analysis focuses on independent words and does not con-
sider the wider context of keywords within the talk. The LIWC may not be as ef-
fective at identifying semantic constructs compared to human raters because people
are able to label a whole segment of text as corresponding to a construct (Schwabe,
Howell, and Reuber, 2007; Schwabe et al., 2008), whereas LIWC only detects the key-
words from that segment (Alpers et al., 2005). There are more complex, non-linear,
machine learning algorithms that can process a segment of text rather than a single
word, for example recurrent neural networks with long short-term memory (Sun-
dermeyer et al., 2013), that could be used to overcome these limitations. However,
these methods typically require larger datasets to be effectively used.

Finally, this analysis used manual transcripts instead of automatic speech recog-
nition. Although this allowed us to test the proof-of-principle of this method, au-
tomatic speech recognition would be required for an automatic stratification tool
and a small proportion of words will be misidentified due to the associated word-
error rate (Mirheidari et al., 2016), which may change the predictive accuracy of this
method.

3.4.2 Conclusion

The research outlined in this chapter has demonstrated that an automated analysis
of TLOC descriptions can be used to differentiate between people with epilepsy or
FDS reasonably effectively. The subsequent chapters will explore how effective these
features are at predicting the cause of TLOC when applied to spoken descriptions of
TLOC that are collected through an online web application, and evaluate whether
these features can improve the predictive performance of the iPEP. The application
of these features to a novel dataset will provide some insight into the reliability of
these findings, but it is important to consider how people communicate with a vir-
tual agent to ensure that their responses are qualitatively similar to those observed
during doctor-patient interactions. The subsequent chapter will begin this explo-
ration by introducing the online web application.
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FIGURE 3.3: The change in classification accuracy (x-axis) for each
classification model (hue) when each feature (y-axis) is removed from

the analysis independently.
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Chapter 4

The Web Application and
Recruitment

The data for this thesis was collected using an online web application created during
the first year of the PhD. The web application consists of a NodeJS web server hosted
on a virtual machine provided by The University of Sheffield. The application is a
prototype which allows the research team to collect the necessary data and receive
feedback from the users regarding the functionality of the application to guide fu-
ture web development projects. The purpose of this chapter is to outline the web
application, how it was used to collect the research data, the type of data that was
collected, and the participants who were recruited.

4.1 Ethics

This research project was approved by the East Midlands - Leicester South Research
Ethics Committee on 07/05/2020 and received approval by the Health Research Au-
thority and Health and Care Research Wales on 13/05/2020 (REC reference: 20/EM/0106).
There were three substantial amendments to the research project to improve recruit-
ment. Firstly, permission was granted (30/11/2021) to incorporate a monthly raf-
fle for a £10 Amazon voucher for participants and to extend our recruitment to
patients who had already received a diagnosis previously. Secondly, permission
was granted (17/03/2021) to send recruitment letters to patients who had received
a “gold-standard” diagnosis from the Royal Hallamshire Hospital between 2012-
2016. Thirdly, permission was granted (08/09/2021) to promote and recruit through
charities designed to support individuals with TLOC. These participants would be
required to self-disclose their diagnosis.

4.2 Recruitment

Patients receiving treatment at the Royal Hallamshire Hospital received a letter invit-
ing them to participate in the project, either when they were sent a reminder about a
clinic appointment or unrelated to an upcoming appointment for those with a “gold-
standard” diagnosis. The letter included a copy of the patient and witness infor-
mation sheets. Information about the study was also posted through various com-
munication channels by the following charities supporting individuals with TLOC:
STARS, Epilepsy Action, FNDHope, FNDAction, Epilepsy Sparks, and the shape
network by Epilepsy Research UK. A summary of the project and links to the infor-
mation sheets and “consent-to-contact” form were hosted on the charities’ websites
to allow potential participants to sign up. Individuals who were interested in the
project were asked to complete an electronic “consent-to-contact” form. They were
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then contacted to discuss the research project, assess eligibility, and enquire whether
there is a witness who would also like to participate in the study. Witnesses were
contacted separately to discuss the project. Participants were informed that the ob-
jective of the online application was to predict their diagnosis for the purpose of a
research study aiming to improve future referral pathways and that their participa-
tion would not have any effects on their current care. Those who agreed to partici-
pate were sent instructions on how to access the application and the patient (and/or
witness) login details via email.

4.3 Electronic Consent Form

The consent form for the project was the first web page on the application. Different
versions of the consent form were presented depending on the type of participant
- patient, witness, recruited through the Royal Hallamshire Hospital or externally.
Participants were required to fill in and sign the consent form before completing the
procedure. The prompts on the consent form required participants to type their ini-
tials, click the appropriate response, and sign using a typed signature. The consent
form asked participants if they wanted to provide feedback on the application in the
form of a feedback questionnaire, by interview, or both.

4.4 Questionnaires

All participants were asked to provide their age, gender, ethnicity, and highest level
of education using free typing text boxes. Patients were subsequently presented with
an “attack history” questionnaire (Table 4.1). The next stage required participants to
complete the iPEP (Wardrope et al., 2020a). The iPEP consists of sets of different bi-
nary (“Yes” or “No”) questions for patients and witnesses (Figure 4.1). Patients were
asked 42 questions about their medical history and symptoms (Table 4.2). Witnesses
(if available) were asked 10 questions about what they observed during the attack
(Table 4.3). The questions were the same as those used in previous research using
the iPEP (Wardrope et al., 2020a).

A different combination of the iPEP questions are used to train the patient only
iPEP model and the patient and witness iPEP model (Wardrope et al., 2020a). The
patient-only iPEP model uses a dataset of 34 patient directed questions. The patient
and witness iPEP model uses a dataset of 26 patient directed questions and 10 wit-
ness directed questions. The patient directed questions that are used in each model
are different (Table 4.2).

Up until this point, the term “iPEP” has been used to refer to the questionnaire
and associated machine learning models from previous research (Wardrope et al.,
2020a). This could become a source of confusion upon introduction of the online web
application. Therefore, throughout the remaining chapters, the iPEP dataset from
the original research will be referenced as “iPEP (original)” and the iPEP dataset
collected through the online web application will be referenced as “iPEP (applica-
tion)”. Machine learning models that are trained using the patient only responses or
patient and witness responses will be referenced as “patient-only” or “patient and
witness”, respectively (e.g. patient-only iPEP (application)). Furthermore, the iPEP
can be referenced in three ways: questionnaire, responses or dataset, and model.
The term “questionnaire” will refer to the questions that were asked, for example
the “patient-only iPEP questionnaire” references the 34/42 questions that are rele-
vant for the patient-only analysis. The terms “responses” or “dataset” will reference
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TABLE 4.1: The attack history questionnaire presenting to patients

Attack History Questionnaire

How old were you when you had your first seizure?

How many years have you been having a seizure for?

How many seizures have you had in the last year?

None

Up to 5

Up to 50

More than 50

How many times have you been to hospital due to a seizure?

Never

Once

Up to 5

More than 5

Have you been to intensive care due to a seizure?

No

Yes

Do you have a family history of seizures?

No

Yes

the questionnaire responses, for example the “patient and witness iPEP dataset” ref-
erences all of the responses to the 26 patient direct questions and 10 witness directed
questions. Finally, the term model references the machine learning model that was
trained on a particular dataset, for example the “patient-only iPEP model” references
a machine learning model trained on the patient-only iPEP dataset.

TABLE 4.2: The iPEP questionnaire presented to patients, taken from
Wardrope et al. (2020a). Different questions are used for the patient-
only and patient and witness iPEP models. Whether or not a question

is included in a given model is marked using an X.

Questions Patient Patient/
Witness

Did you have Febrile seizures in childhood? X
Do you suffer from chest pain or tightness? X X
Do you have a brain tumour? X
Have you had a head injury with loss of consciousness? X
Do you get palpitations (sudden fast heart beats)? X X

Continued on next page
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Table 4.2 – continued from previous page
Patient iPEP Patient Patient/

Witness
Do your arms and legs jerk briefly when X
drifting off to sleep?
Do your arms and legs jerk at other times? X X
Do you have spells in which you go light-headed? X
Do you suffer from poor coordination)? X X
Do you get breathless unrelated to exercise? X
My attack came on when I was asleep X X
The site of blood or needles triggered my attack X
My attack was associated with sitting or standing X X
for a long time
My attack was associated with emotional stress X X
In my attack I seemed to be controlled by someone X X
outside of me
In my attack I had a sense of feeling as if I X X
have seen something before when I knew I had not
I felt hot or cold in my attack X X
During my attack I smelled things that were not X X
really there
During my attack I could see or hear the people X
near me
In my attack I was conscious but could not react X X
to things
I was aware of shaking uncontrollably during X X
the attack
My attack made time go in slow motion X
During my attack I had memories of a X
past bad experience which I could not stop
During my attack I was frightened that I was X X
going to die
My attack was like a burst of electricity X X
in my brain
My attack was painful like a hammer blow X X
My attack felt like a knife through the head X X
I wanted to know what had happened when X
I had blacked out
After my attack I felt relieved X
My attack built up gradually X
In my attack I had a sense of feeling as X
if I’d never seen something before when
I knew I had
In my attack I felt sick X
In my attack I experienced tingling or numbness X
in my skin
During my attack I heard things which were X
not really there

Continued on next page
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Table 4.2 – continued from previous page
Patient iPEP Patient Patient/

Witness
In my attack my mouth went very dry X X
In my attack I drifted in and out of X
consciousness
During my attack I felt as if I was X
outside my body
In my attack I felt like I was choking X
or very short of breath
I woke from my attack with a cut tongue X
After my attack my muscles ache X
After my attack I felt very confused X
Afterwards I did not know I had had an attack X

4.5 The virtual agent

The virtual agent (VA) is a method for participants to provide a spoken description
of what happened during the most recent attack. The questions asked by the VA
were designed to mirror the questions typically asked during routine epilepsy clinic
consultations. Upon loading the page, the application asks for permission to access
the microphone and camera. Participants are presented with a video containing a
VA (Figure 4.2). Participants are instructed to play the video. Upon completion, the
application begins recording the participant and they are instructed to speak their
response to the question. Participants are required to press a “next” button when
they are finished answering and another question is loaded. There are eight ques-
tions for patients (Table 4.4) and four questions for witnesses (Table 4.5). Participant
recordings were securely sent to and stored on the web server hosted by the Univer-
sity of Sheffield before they were securely transferred to a shared research storage
area.

4.6 Feedback questionnaire

A feedback questionnaire for the application was presented after the VA if they se-
lected this option on the consent form (Table 4.6). Participants responded to each
question by selecting the appropriate answer and pressing “next”. The question-
naire is based upon the Technology Acceptance Model (TAM) (Davis, 1989), which
postulates that a range of factors influence a user’s decision to use a new form of
technology, for example usefulness, ease of use, and attitude. The model has been
validated for many different forms of health technology (Holden and Karsh, 2009).
The questions were modified from previous research that aimed to evaluate partici-
pants’ acceptance of hypothetical diagnostic technology (Lanseng and Andreassen,
2007). However, the additional construct “trust towards provider” that was intro-
duced in the original paper was not incorporated because the application is purely
theoretical and trust would depend upon who the service provider was in the future.
Further information about TAM will be discussed in chapter seven.



56 Chapter 4. The Web Application and Recruitment

TABLE 4.3: The iPEP questionnaire presented to witnesses, taken
from Wardrope et al., 2020a

Witness iPEP

The attack involved chewing, smacking or licking movements of

the mouth and lips

The attack involved scratching or bicycling movements

of the legs

The attack involved fiddling, picking, or fumbling

movements of the hands

In the attack the head moved rapidly from side to side

The attack involved violent movements of arms and legs

During the attack the arms and legs were limp

During the attack the arms and legs were rigid

Shaking of the arms and legs went on for over 1 minute

The attack involved movements into unusual positions

The skin or lips looked pale during the attack

TABLE 4.4: The virtual agent questions presented to patients.

Virtual agent questions for patients

Please tell me in as much detail as you can remember what happened during

the most recent attack that caused you to lose consciousness?

What were you doing when the attack started and how were you feeling?

Do you think there was any trigger for the attack?

What was the first sign of the attack?

How did you feel during the attack?

How did the attack end?

How did you feel after the attack?

Did you injure yourself during the attack?
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TABLE 4.5: The virtual agent questions presented to witnesses.

Virtual agent questions for witnesses

Please tell me in as much detail as you can remember what happened

during the attack that you witnessed

What was happening before the attack?

How responsive were they during the attack?

What were they like when the attack had finished?

TABLE 4.6: The Technology Acceptance Model feedback question-
naire taken from Lanseng and Andreassen (2007). All questions were
asked on a 7-point Likert scale ranging between “strongly agree” to
“strongly disagree”. The questionnaire consists of 4 subscales that
measure the usefulness (1-6), ease of use (7-12), attitude (13-16), and

intention to use (17).

Feedback questionnaire

The digital doctor is useful because it would save me time

The digital doctor is useful because it would save me effort

Using the digital doctor is more convenient than booking and attending

a medical appointment

Using the digital doctor is easier than booking and attending

a medical appointment

The digital doctor will help me to be referred to the

right service

The digital doctor will help me to receive the

correct diagnosis

I found the ‘digital doctor’ confusing to use

I found the ‘digital doctor’ time consuming

I found that the ‘digital doctor’ takes a lot of effort to use

I found the ‘digital doctor’ complicated to use

I found that the procedure required little work to use

I found the ‘digital doctor’ easy to talk to

I think the ‘digital doctor’ is good

I think the ‘digital doctor’ is pleasant

I think the ‘digital doctor’ is beneficial

I think the digital doctor is favourable

If this technology was available in the future, I would use it
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FIGURE 4.1: A screenshot of the iPEP questionnaire from the online
web application. Participants responded to each question by clicking

on the appropriate response option.

4.7 Feedback Interview

Participants who expressed an interest in providing feedback on the application by
interview were presented with another consent form. A member of the research
team contacted them to arrange a telephone interview. Interviews were conducted
on average 11 days after completing the application (SD = 7.4). The telephone inter-
views were recorded and stored in the shared research storage area.

4.8 Transcription

The audio files were encrypted and shared with an external transcription service.
The transcripts were verbatim and included timed pauses that were greater than 1
second. More detailed timed pauses were manually calculated using Praat (version
6.1.34, 1992-2020, produced by Paul Boersma and David Weenink) and added to the
transcripts for the qualitative research.

4.9 Confirming the diagnosis

Most of the participants who were recruited through the Royal Hallamshire Hospital
did not have a diagnosis at the time of recruitment. Participants received a diagnosis
through the seizure or syncope clinic and the Royal Hallamshire Hospital. The exact
methods used for the diagnosis were not recorded. The diagnosis was confirmed by
Professor Markus Reuber through an examination of the hospital medical records
six months after participation.

4.10 Conclusion

This chapter provides an outline of the online web application that was used to col-
lect the research data that will be analysed in the subsequent chapters of this thesis.
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FIGURE 4.2: A screenshot of the virtual agent from the web applica-
tion.

The application collected symptom and medical history information from patients
and witnesses using a questionnaire and by recording an interaction with a VA. Par-
ticipants were given the option to provide feedback on the application using a feed-
back questionnaire or telephone interview, which will be used to assess the accept-
ability of the approach from the perspective of patients and witnesses and guide the
future development of the application. Henceforth, the thesis will explore the data
that was collected using this method throughout the remaining chapters.
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FIGURE 4.3: A screenshot of the feedback questionnaire presented to
all participants.

TABLE 4.7: The questions that were used for the semi-structured feed-
back interview.

Interview questions

What do you think about the application?

How did your experience using the application compare

with your prior expectations?

What do you think are the advantages of using the application?

What do you think are the disadvantages of using the application?

What would you change about the application?

Were you able to share all the information that you wanted

to share when speaking with the ‘digital doctor’?
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Chapter 5

Conversation analysis of
interactions with a digital avatar

The objective of this chapter is to address the third research question of this thesis
- how do people describe their experience of TLOC to a VA. The aim is to explore
whether the conversational profiles for people with epilepsy or FDS from previous
doctor-patient interactions are present during interactions with a VA using conver-
sation analysis (CA). The presence of these profiles would support the feasibility of
detecting these differences using an automated analysis of language.

5.1 Introduction

CA is a rigorous and empirically-based exploration of the structure of human inter-
action. The approach originated in the field of sociology and was first outlined by
Harvey Sacks, Emanuel Schegloff and Gail Jefferson. In a seminal lecture in the early
phase of the conception of this methodological approach, Harvey Sacks described
interaction using the metaphor of machinery (Sacks, 1992). What people say during
an interaction is caused by underlying machinery that responds to the content of
the interaction and produces an appropriate output based upon certain principles
of interaction that people adhere to. Adherents of CA posit that an interaction is
not best understood based upon guesses at an individual’s internal cognitive repre-
sentation, but rather that the elements of the interaction both cause and are caused
by what is happening in the interaction (Sidnell, 2011, p. 2). The objective of CA is
to understand the machinery that governs interaction by conducting an analysis of
interactions on a turn-by-turn basis to understand the relationships between a given
input (what was previously said in the interaction) and the corresponding output
(what is being said now) based solely upon the information that is available to those
in the interaction.

Although interactions are predominantly organised on a micro level based on
the content of the interaction, the macro aspects of the social world can influence the
structure of interactions. These macro influences are often labelled as the context of
the interaction and can include broader societal structures, such as social institutions
(law and medicine) and social stratification (class and race) (Schegloff, 1992). There
are an enormous amount of contextual factors that could influence a conversation
at any given moment, so it is important that context is only considered in instances
where participants in an interaction have made a given context relevant (Schegloff,
1992). Context can be made relevant by something a speaker has said or by perform-
ing particular sequences that are restricted to or repeated in a particular setting that
demonstrates that all participants in the interaction are orienting to the normality of
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the behaviour for this particular context. Robinson (2003) demonstrated that, hav-
ing established that the patient is visiting the doctor with a new medical concern,
doctors and patients mutually orient to an “interactional project” that involves ad-
vancing through four stages of the medical interaction: establishing the reason for
the visit, gathering information through verbal and/or physical examination, deliv-
ering a diagnosis, and recommending treatment. These stages have been extended
for secondary care interactions where requesting further tests can be an additional
stage (Toerien, Jackson, and Reuber, 2020). The doctor and patient have different
roles and responsibilities throughout the medical interaction that can influence the
trajectory of the interaction and may be made relevant by one or both parties. The
patient is responsible for presenting the information about their health concern and
answering the doctors questions, whereas the doctor is responsible for asking the rel-
evant questions, making a diagnosis, and providing treatment suggestions (Heritage
and Maynard, 2006). These expectations are shaped by the context of this particular
encounter. Therefore, context can have an impact on interactions, particularly those
occurring in an institutional setting.

Understanding how the context of an interaction can affect the talk that takes
place within it is relevant for the research conducted in this thesis because we are
investigating whether we can detect linguistic and communicative differences be-
tween the way that people with epilepsy and FDS describe their seizure experi-
ence, which have been outlined in previous doctor-patient interactions, during an
interaction with a VA. The utilisation of machine learning features designed to mea-
sure particular interactional differences would presume the presence of such inter-
actional differences during the conversation with the VA. The performance would
be hindered if these features were not present. Exploring how patients interact with
the VA and whether these interactions resemble the doctor-patient interactions from
previous studies would confirm the theoretical feasibility of this analysis and aid the
interpretation of the performance of the model.

Previous research has compared how patients presenting clinically with memory
impairment speak to a VA or to a doctor (Walker et al., 2020). During doctor-patient
interactions, the doctor will often change the format of a question in response to the
information the patient has provided to preceding questions. This behaviour can be
problematic in medical interactions where the doctor has been instructed to ask par-
ticular questions in a particular format in order to evaluate the communicative be-
haviour of the patient. Relatively minor changes to the way they ask a question can
have clear effects on the patient’s answer, potentially diminishing its differential di-
agnostic value. Walker et al. (2020) found that patients may use the question changes
to avoid answering a question, particularly if the question can be interpreted as a po-
lar question instead of a request to share more detailed information. These findings
suggested that a standardised method of asking questions, like a VA programmed
to ask a set of preformulated questions, could result in greater consistency in the
responses that are collected. In the analysis of VA or doctor interactions with pa-
tients with memory concerns, this effect was indeed observed while the differential
diagnostic features previously described in doctor-patient interactions could still be
recognised (Walker et al., 2020).

While the questions asked by the VA and doctors in the memory project were
quite similar, there were important differences between the questions asked by the
VA in our research project involving patients with seizures and those from the pre-
vious CA research (Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008) based
on doctor-patient interactions. The original interview guide started with an open
question not mentioning the patient’s complaint (i.e. “What were you expecting to
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get out of this admission?” or “What can I do for you?”). The interview guide then
went on to propose questions about three specific, memorable seizure events (the
first, most recent and worst seizure) (Schwabe, Howell, and Reuber, 2007; Schwabe
et al., 2008). The topical agenda of the questions used in this study was restricted
to the most recent attack because patients who are first presenting to the seizure
clinic may have only had one episode of TLOC (Tables 4.4 and 4.5). Furthermore,
the question “what can I do for you” may not have been appropriate for interactions
that were part of a research study rather than clinical care because people may not
have the expectation that the VA would do anything for their medical care. The dif-
ferences in the questions may have had an effect on observable interactional, topical
or linguistic features of potential differential diagnostic value.

Importantly, the linguistic representation of seizures could also be different dur-
ing interactions with the VA because the avatar is not interactive. The original
CA research was conducted in the context of a research study in which the doc-
tor was expected to follow an interview guide (Schwabe, Howell, and Reuber, 2007;
Schwabe et al., 2008). These instructions involved giving participants time to talk by
avoiding interruptions or asking subsequent questions too quickly. Furthermore, the
prompts about the first, last, and worst seizures were conceived as challenges that
allowed patients to provide more detailed accounts (Schwabe, Howell, and Reu-
ber, 2007; Schwabe et al., 2008). Although the interviewers were instructed to be
unusually passive in these interactions, they frequently responded to patients with
back-channelling responses (e.g. “hm”). They are also likely to have affected pa-
tients’ contributions by tolerating long pauses in the interaction. Refusing to take a
turn at a Transition Relevance Place (Sacks, 1974) may indicate to the patient that the
neurologist cannot respond until they receive more information, which may prompt
the patient to continue talking in instances where the turn was designed to be com-
plete at an earlier point. In contrast, in our VA application, the patient has full control
over when they are finished providing their response, potentially leading to patients
producing concise responses. Shorter contributions from patients (such as those typ-
ically elicited in routine face-to-face encounters involving frequent interruptions by
the doctor and long series of closed questions), could limit the diagnostic potential
of speech analysis (Ekberg and Reuber, 2015).

5.1.1 Objective

The objective of this section was to examine the spoken seizure descriptions of peo-
ple with epilepsy and people with FDS during an interaction with an VA. Using
conversation analytic techniques, we focussed on whether the linguistic and inter-
actional features previously shown to differentiate between accounts of people with
epilepsy and people with FDS can also be identified in patient interactions with a
VA. The communicative profiles for people with FDS or epilepsy are extensive and
multi-faceted (Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008). However,
recent research has shown that it is possible to make accurate predictions about the
diagnosis using a scoring tool consisting of fewer items (Biberon et al., 2020). The
most prominent items on this condensed scoring tool related to description of the
unconscious period and subjective symptoms and the associated formulation effort
(Biberon et al., 2020). Therefore, we focussed on whether and how people describe
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the symptoms that they experience during their seizure and how much detail peo-
ple provide about the situation and their experiences before and after they lose con-
sciousness. Restricting our analysis to a smaller portion of the communicative pro-
files that are highly prevalent across the Diagnostic Scoring Aid used to make pre-
dictions about the diagnosis (Reuber et al., 2009), we were able to produce a more
detailed analysis of the interactional behaviour of the participants for these items.

5.2 Method

5.2.1 Participants

A subset of the overall sample consisting of 20 patient recordings was used for this
qualitative analysis (Table 5.1). Further information about the recruitment proce-
dure was outlined in chapter 4. The average age was 39 years old (people with FDS
= 33.75, people with epilepsy = 42.58) and 60% of participants were female (people
with FDS = 75%, people with epilepsy = 50%). Responses from people with syncope
were not incorporated in this analysis because there is no previous CA research ex-
ploring how they describe their experience of TLOC. Some participants had already
received a diagnosis of either epilepsy or FDS, whereas others were attending their
first appointment.

Although the responses are contrasted with the previous CA research through-
out this chapter, extracts from the original research are not included in the analysis.
An overview of the recordings used in the original CA research can be found in
section 3.1.

5.2.2 Analytic Approach

This analysis uses the micro-analytic approach of CA to explore how people with
epilepsy or FDS describe their most recent seizure experience when interacting with
a VA. The interactions with the VA are different to the human-human interactions
that are analysed using CA because we cannot interpret the contributions of the VA
to demonstrate what sense the VA has made of what was previously said. Unlike
human-human interactions, the VA cannot understand what the participants have
said and does not tailor the responses based upon what has previously been said.
Consequently, we cannot apply the full methodology of CA to our analysis of this
data. However, previous research has demonstrated that CA can provide meaning-
ful insights into how people interact with a VA in this context (Walker et al., 2020).
Therefore, this analysis uses CA to analyse the responses to the questions posed by
the VA. The majority of the analysis focused on the responses to the first question,
which asked participants to provide as much information as they could remember
from their most recent attack (Table 4.4). This question allowed patients to shape
their own account of what happened without any additional direction from the VA,
in contrast to the more direct follow-up questions. The sequential analytic approach
used in CA was applied to the analysis of the interaction in two ways: how the
participants’ response was influenced by the question asked by the VA, and how
participant responses were shaped by their responses to the preceding questions.

Another non-conventional component of this analysis is that we contrasted the
communicative behaviour of the participants who were speaking with the VA to the
communication profile for seizures identified in previous research. An overview of
these communicative profiles was provided in section 1.3.2. The analysts in the pre-
vious research were blinded to the diagnosis of the patients. However, this was not
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TABLE 5.1: The demographic, seizure history information, and
diagnosis for the participants. All participants were assigned a

pseudonym.

Pseudonym Sex Age Duration of Seizure Diagnosis Final

seizure frequency status at diagnosis

(years) per time of

year participation

Margaret Female 40 17 0-50 Epilepsy Epilepsy

Julia Female 40 10 0-50 Epilepsy Epilepsy

Rachael Female 25 1 0-50 N/A FDS

Jonathan Male 33 0 0-5 N/A Epilepsy

Eleanor Female 30 7 0-50 Epilepsy FDS

Richard Male 64 1 0-5 N/A Epilepsy

Phillip Male 16 5 50+ FDS FDS

Sophie Female 33 2 50+ FDS FDS

George Male 80 0 0-5 FDS FDS

Fred Male 19 1 50+ Epilepsy Epilepsy

Anthony Male 43 0 0-5 N/A Epilepsy

Luke Male 77 1 0-5 N/A Epilepsy

Edward Male 44 25 0-5 Epilepsy Epilepsy

Lucy Female 21 2 0-50 FDS FDS

Mary Female 23 7 0-50 Epilepsy Epilepsy

Cindy Female 59 3 0-50 Epilepsy Epilepsy

Victoria Female 33 20 50+ Epilepsy Epilepsy

Michelle Female 32 16 50+ FDS FDS

Angela Female 36 22 50+ Epilepsy Epilepsy

Olivia Female 33 18 50+ FDS FDS
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possible for this analysis because the analyst was also involved in recruitment where
discussions of diagnosis happened. Although this could introduce bias to the anal-
ysis, the presentation of each extract should support the arguments that are made
by displaying the communicative behaviours that are discussed. This component
of the analysis highlights the interdisciplinary nature of the research and illustrates
the usefulness of applied CA for the purpose of differential diagnosis. This analytic
approach allows us to evaluate the feasibility of automating the detection of the two
conversational profiles for interactions with the VA.

5.3 Results

The results for this analysis are structured into two separate sections. The two sec-
tions will illustrate the conversational, interactional, and linguistic presentations of
people with epilepsy and people with FDS during interactions with the VA. Multiple
extracts containing responses to the VA from participants will be examined. Extracts
from the verbatim English transcripts will be presented that highlight the relevant
features from the Diagnostic Scoring Aid (Table 1.1) for people with each diagno-
sis. Each section will finish with a summary of the relevant linguistic presentations
that were identified in previous CA research for the diagnostic group that is being
examined within the section.

5.3.1 Responses from people with epilepsy

The first extract that will be examined comes from a participant with the pseudonym
Richard. It contains Richard’s response to the first question asked by the VA.

Extract 1 - Richard (person with epilepsy)

VA: Please tell me in as much detail as you can remember what happened1
during the most recent attack that caused you to lose consciousness?2

Pat: (0.5) .hhh I wa::s having dinner with my partner (0.4) sitting at the3
(1.1) table (.) .h (.) a::nd (0.5) I began to fee:l stra:nge (0.9) and4
(1.1) um (1.8) was apparently staring (1.8) at (.) her (1.1) I got up5
(0.5) because I felt slightly s:ick (0.6) and went over to the sink6
but I’m not exactly sure I couldn’t exactly remember (0.9) that (0.8)7
a:nd it lasted for about (0.4) lasted for (.) .hh (.0) you know, five8
or ten seconds I think but it ff I thought I’d been out for half an9
hour (1) um (0.5) and there was a strange sense of (0.3) sort of10
hallucinations or something like that like (.) .h almost like dream11
images but I couldn’t describe them (6.2)12

VA: What were you doing when the attack started and how were you feeling?13

After a short description of the situation, Richard begins to describe an unusual
and difficult to understand experience through his choice of adjective “I began to
feel strange”. Richard then begins a description of what happened. He got up, felt
slightly sick, and went over to the sink. However, his ability to recall the series of
events is marked as uncertain using the juxtaposition of “apparently staring” and
“but I’m not exactly sure I couldn’t exactly remember”. Richard states that some-
thing lasted for five to ten seconds, which is again contrasted with his own personal
experience by stating “but it I thought I’d been out for half an hour”. The term “I’d
been out” is an example of a conceptualised metaphor that describes an unconscious
period as a space/place that someone goes to (Plug, Sharrack, and Reuber, 2009b).
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The use of the coordinating conjunction ‘but’ and the sequential organisation of the
duration estimation and conceptualised metaphor suggests that the duration is re-
ferring to a period of reduced awareness. After pausing for one second, Richard re-
turns to describing what he experienced during the seizure “there was a sense of sort
of hallucinations” where Richard exhibits examples of formulation effort (Schwabe,
Howell, and Reuber, 2007; Schwabe et al., 2008) because he reformulates the descrip-
tion “almost like dream images”, uses multiple hedges, for example “sort of” and “I
think”, and emphases the challenges associated with producing the description “but
I couldn’t describe them”. Richard’s description of the symptoms that he personally
experienced during his seizure and his attempts to accurately convey his experience
of these symptoms by reformulating the descriptions aligns with multiple compo-
nents of the linguistic profile for people with epilepsy (Reuber et al., 2009).

In the next examples, Margaret provides a description of the most recent attack
in response to question one. The responses from Margaret were extensive: there-
fore, shorter extracts have been removed from the wider response. Margaret be-
gins by providing details about the situation, namely that it was stressful, upset-
ting and worrying. She then states that she experienced signs of frontal temporal
epilepsy, which is portrayed as a known experience through the use of the adjective
‘usual’ and by stating that it has already been diagnosed. However, this experience
of frontal temporal lobe epilepsy is marked as different to the previous experiences.
Margaret formulates and reformulates descriptions about how the experience was
different from her previous experiences, for example ‘more symptoms’, ‘less aware-
ness’, and ‘I felt, I don’t know, different, more (sick)’. After an extended sequence
that highlights that these novel experiences are different to the previous experiences
of frontal temporal lobe epilepsy, Margaret continues to describe the events that pre-
ceded the loss of consciousness - she was sitting on the floor after completing a Skype
call with her boyfriend. Margarets description of the sequence of events that pre-
ceded the loss of consciousness is finished by reiterating the final action that she can
recall “I just remember sitting there”. The loss of consciousness is then represented
as a transition to the first available memory afterwards “next thing I remember I was
sort of waking up on the floor” and her mental state is described as being confused.
Therefore, Margaret has contoured the unconscious period with her memories of
what happened immediately before and after (Schwabe, Howell, and Reuber, 2007;
Schwabe et al., 2008). Similarly to the example in extract 1, Margaret’s description
focuses on her personal experience of the seizure because she describes and refor-
mulates descriptions of her symptoms and details her memories of the events that
surrounded the seizure. Furthermore, Margaret displays a willingness to provide
information about the seizure that continues throughout her interaction with the
VA.

Extract 2 - Margaret (person with epilepsy)

VA: Please tell me in as much detail as you can remember what happened1
during the most recent attack that caused you to lose consciousness?2

Pat: Pat: (24 seconds) Oh I remember being in a very stressful and3
upsetting and worrying situation and building up a lot of anxiety and4
thoughts to do with that situation, um, and then (2 seconds) I5
remember (1 second) having my usual signs of frontal temporal lobe6
epilepsy that I’ve had since 2003, er diagnosed since 2010, um (37
seconds) but it felt different, it felt like there was more symptoms,8
there was more er, there was less awareness, um, and I felt, I don’t9
know, different, more sick and I was aware of some sort of gibberish10
that sort of came out of my mouth, and er one of my best friends er11
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said the last three that she’d witnessed over previous months (212
seconds) had been like that, and I’d almost lost some consciousness,13
like I wasn’t in the room properly, er which I wasn’t aware of14
afterwards. I had not experienced these symptoms with temporal lobe15
before; I’d always remained fully conscious and even been able to16
maintain a conversation. Um (1 second) so then er this, the loss of17
consciousness one I, so I was having this exaggerated version of the18
frontal temporal lobe one, um, and then that seemed to pass; I was sat19
on the floor actually, luckily, um cos we’d just been doing a Skype, a20
Skype call, me and my boyfriend, um, and then I (1 second) um (121
second) remember, I just remember being sat there and then the next22
thing I remember (1 second) was sort of waking up on the floor23
confused and, and (Boyfriend name) was on, I think (Boyfriend name)24
was on the phone to an ambulance25

After further talk in response to the same question, Margaret returns to describ-
ing what happened when she lost consciousness by drawing upon a third person
account of the event (Extract 3). The account includes descriptions of the signs of the
seizure, for example “went down on the floor”, “shaking”, “twitching”, and “a sort
of gargling noise”. As evidenced in extract two, Margaret has no recollection of what
happened while she was unconscious, but has attempted to produce a description
of the events by drawing upon the information that is available (Schwabe, Howell,
and Reuber, 2007; Schwabe et al., 2008). Attempts to reconstruct what happened
during the unconscious period using their own memories or information they have
received from a witness are components of the linguistic profile for epilepsy and
further demonstrate attempts to provide detailed descriptions of what happened
during a single seizure experience.

Extract 3 - Margaret (person with epilepsy)

Pat: Um, my boyfriend said that I was, oh, and I’ve got a video of it, he1
said I was er (1 second) went down on the floor and was shaking and2
twitching arms and legs, head was moving about, um, and I was making a3
sort of gargling noise er, which I think might have been the sort of4
production of sputum and blood that you get.5

The subsequent questions that are asked by the VA are designed to encourage
people to elaborate on the descriptions they provided in response to question one.
How people respond to prompts or challenges posed by the interview are consid-
ered in the Diagnostic Scoring Aid (Table 1.1) because people with FDS may only
provide information when prompted or not provide the information requested by a
prompt. However, these follow-up questions were challenging for individuals with
epilepsy who had already provided a detailed description of their seizure. The sec-
ond question asks participants to describe what happened before the attack and how
they were feeling. Margaret begins her response by stating that she had already an-
swered this question “Oh sorry I’ve like covered most of that in the last answer” and
providing some additional contextual information about what happened before the
seizure (example not shown). After addressing the topic agenda set by the question,
Margaret transitions to a description of her experience of epileptic seizures in gen-
eral (Extract 4). The first symptom that Margaret reports is racing thoughts, which
is expressed in two different formats. Thoughts are described as happening too fast,
and Margaret refers to her brain becoming too hectic and malfunctioning “it’s like it
trips over itself”. Margaret then reports her experience of auras where she suddenly
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recalls vivid memories from past experiences. Similarly to the example in extract
one, these descriptions are marked as difficult to express through the use of words
like “strange” and “weird” and statements that highlight the challenges associated
with the description “I don’t know how else to describe it”. Given that Margaret
stated in Extract 2 that her experiences of losing consciousness are preceded by her
symptoms of frontal temporal lobe epilepsy, providing a more elaborate description
of how she feels during these seizures provides relevant information about how she
feels before losing consciousness.

Extract 4 - Margaret (person with epilepsy)

Pat: I, I, I feel like when I do have epilepsy seizures my (1 second)1
thoughts have got almost so fast or I’m thinking about too many2
different things; er I doesn’t always have to be negative, it could be3
some project I’m excited about or positive, or some idea I’ve got, or4
I’m trying to um, I don’t know, do the washing up and a workout and5
take some phone calls and send some emails and get out to the shop and6
er, er I get, it’s almost like my brain gets too hectic and then (17
second) it’s like it trips over itself and becomes too much and that’s8
when I feel like it’s misfiring and it goes into this strange thing.9
But one of the things I experienced prior to epilepsy is auras, um,10
and sometimes I get auras without the epilepsy developing as well, but11
that can, that usually consists of a sudden slight absence of mind um12
where I’ll suddenly remember er a whole scene from any point in my13
life, childhood, adulthood, um and also it happens with memories from14
dreams as well um (1 second) where I can (1 second) remember, I’m not15
actually physically smelling anything but I can remember the smell and16
ambience and atmosphere of every detail of that moment, whether it’s17
positive, negative, completely insignificant, you know, in a18
supermarket when I was, I don’t know, eighteen, or on a beach when I19
was seven, it could be absolutely anything, um (2 seconds) it’s so20
weird, I don’t know (laughs) how else to describe it.21

Extract 5 contains the final extract from Margaret’s response to question 2 where
she is describing her personal experience of seizures. Margaret is describing her ex-
perience and response upon recognising that a seizure is about to happen. There are
two statements in her response that portray the seizure as a moving object: “part of
me wants to let go and go with it” and “sometimes it catches me unawares and does
creep up”. This type of description aligns with the metaphoric conceptualisation
that a seizure is an external agent (Plug, Sharrack, and Reuber, 2009b). Further-
more, the use of the statement “mind over matter” implies an attempt to prevent
the seizure from happening, which portrays the seizure as something that can be
combated (Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008). Therefore,
transitioning into a description of the general seizure experience allows Margaret
to adhere to the question posed by the VA while avoiding solely repeating infor-
mation that she has already provided. Not only does this type of response allow
Margaret to provide more information that is relevant for the linguistic profile for
epilepsy, for example further describing the symptoms that she experiences, but this
contrasts with how people with FDS respond to the follow-up questions, which will
be demonstrated in the subsequent section.

Extract 5 - Margaret (person with epilepsy)

Pat: part of me wants to let go and go with it, and part, sometimes I feel1
like I can almost mind over matter it but sometimes I haven’t and er,2
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but sometimes it catches me more unawares and does creep up, but most3
of the time I have these sort of strange feelings that are an4
indication, um yeah.5

The linguistic profiles for epilepsy and FDS have multiple features of seizure de-
scriptions that may be indicative of a particular diagnosis, but individuals do not
have to exhibit all of the features of a given profile for a prediction to be made (Reu-
ber et al., 2009). The remaining examples outline responses from people that contain
some features of the linguistic profile for FDS, but the analysis will highlight the rele-
vant components of the linguistic profile for epilepsy that are similar to the examples
outlined previously.

In extract 6, Fred provides a description of the symptoms that he experiences
during his attacks in general instead of providing a description of the most recent
attack, which is evident by the use of the present and future tense (“I get” and “I
will”). In doing so, Fred is exhibiting interactional resistance by not focusing on a
single seizure experience, which was the topical agenda introduced by the question.
This type of response is characteristic of the linguistic profile for FDS (Reuber et al.,
2009). However, Fred’s response is focusing on his personal experience of symptoms
across his seizures. The symptoms include a feeling in his chest, a pounding in the
head, déjà vu, recognising smells that aren’t there, and feeling tired. Fred displays
uncertainty about what he is describing on numerous occasions through repetitions
“che che che chest”, hedging “kinda a pounding”, and reformulations “I smell I
recognise smells that aren’t there”. Fred ends by describing his personal experience
of impaired consciousness whereby he feels removed from the situation but is able
to respond if required. Fred’s description of his symptoms and his display of the
challenges associated with producing the description are similar to those observed
in the previous responses.

Extract 6 - Fred (person with epilepsy)

VA: Please tell me in as much detail as you can remember what happened1
during the most recent attack that caused you to lose consciousness?2

Pat: erm so I get a build up of (1.5) a feeling in my che che che chest and3
that will then (lipsmack) (1) develop in my head to kinda a pounding4
(.) I feel very ill (1) er a sense of déjà vu erm (0.8) smells I smell5
I recognise smells (0.8) that aren’t there erm (3.4) right afterwards6
I’ll feel very tired erm I’m (0.8) aware of what’s going on around me7
and I (1) c:an respond if I need to like (3) but I: (1) am very (0.8)8
removed from the situation (1.5)9

VA: What were you doing when the attack started and how were you feeling?10

The examples provided so far all include descriptions of the subjective symptoms
associated with a seizure. However, not all individuals with epilepsy experience
these symptoms, and patients who do not experience symptoms prior to losing con-
sciousness cannot provide descriptions of the symptoms, which impacts on the score
that they would receive on the Diagnostic Scoring Aid because subjective symptoms
are considered in multiple items on the scale (Reuber et al., 2009). The next extract
will examine the responses from Jonthan who has a diagnosis of epilepsy but does
not report experiencing an aura prior to losing consciousness.

Extract 7 - Jonathan (person with epilepsy)
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VA: Please tell me in as much detail as you can remember what happened1
during the most recent attack that caused you to lose consciousness?2

Pat: (1.9) .hh er (.) most recent seizu:re was (0.7) one Thursday afternoon3
if (.) but I believe (0.3) about just after three o’clock I was sat at4
my desk working cos I work from home .hhh I’d just eaten (0.3) just5
eaten some crackers (0.3) um (0.) next thing I know (.) I’m laid on6
the floor (.) my office chair (0.2) sort of broken next to me (0.4) er7
I woke up very (0.3) disorientated (0.6) um stood up and all I wanted8
to do was get somewhere safe↑ (0.6) um (.) but I knew I was at home so9
my safe place was my bedroom (.) so I managed to get to my bedroom and10
fell asleep (0.6) um (1) the initial seizure I remember looking at my11
(0.6) clock (.) computer clock just beforehand (0.4) and it was about12
three-thirty in the afternoon (0.3) and then when I got (0.2) sort of13
came round from it I recall seeing the time (0.2) about ten past four14
.hh ish (0.5) and then (0.7) sort of slept for another like15
forty/fifty minutes (0.5) um before seeking advice=and then when I16
came too I felt (0.8) fine as thought i’d just woken up from a nap↑ in17
essence .hh (.) erm (0.6) then sought advice from (0.3) erm (.) 11118
(.) online (0.3) and then subsequently rang and they adviced me to go19
to (0.4) A and E (0.2) erm n went to ((hospital name)) (0.5) er went20
for=had the CT scan (0.3) ECG (0.5) stayed over night (0.6) erm (0.2)21
discharged Friday morning when I went for an MRI (.) at ((hospital22
name)) (2.6)23

VA: What were you doing when the attack started and how were you feeling?24

From line 3 to 5 Jonathan starts his response by describing what happened prior
to the seizure onset: “I was sat at my desk working. . . I’d just eaten just eaten some
crackers”. This is then cast as the last thing to have happened before the seizure.
The phrase ”next thing I know ” is used to represent a shift in time that is followed
by a description of the first memory that follows this period ”I’m laid on the floor,
my office chair sort of broken next to me”. Jonathan therefore provides a contour
of the events that surrounded the unconscious period (Schwabe, Howell, and Reu-
ber, 2007; Schwabe et al., 2008) and orients to the question by claiming to provide as
much detail as he can remember from his own perspective. Jonathan provides an ex-
tensive description of what happened after the seizure that includes how he felt and
the actions that he took “I woke up very disoriented, um stood up and all I wanted
to do was get somewhere safe”. Furthermore, Jonathan tries to fill in the missing
time in lines 8-10 by estimating the duration of the seizure using his memory of the
time prior to the seizure onset, which he states at the beginning of his description
on line 4 and reiterates in line 11. Although Jonathan does not report the experience
of subjective symptoms, Jonathan’s description focuses on what he can recall about
the events that surrounded the seizure rather than what he does not know. There-
fore, there are parallels between this description, earlier descriptions (for example
Margaret’s description of her most recent seizure), and the linguistic profile for peo-
ple with epilepsy because Jonathan contours his memories before and after he lost
consciousness and attempts to reconstruct what happened using his own memories.

Given that Jonathan is unable to recall what happened during the attack, his re-
sponse to the fifth question about how he felt during the attack (Table 4.4) posed by
the VA will now be explored (Extract 8). Jonathan begins with a complete negation
that states that he cannot remember any details of the seizure and that this applied
to both of the seizures which he has had. The response is followed by a one sec-
ond pause in line 3 at a potential Transition Relevance Place (Sacks, Schegloff, and
Jefferson, 1978). Although Jonathan’s response covers his epistemic access to the
topic of the question, a transition to the next question at this point would result in



72 Chapter 5. Conversation analysis of interactions with a digital avatar

an “I don’t know” response that could be evaluated as insufficient by the recipi-
ent (Sacks, 1992) and be considered a dispreferred response (Stivers and Robinson,
2006). Jonathan appears to overcome this bind by introducing a third party account
of what happened during his first seizure “I re regained consciousness and pan-
icked”. Considering that Jonathan was alone during his most recent seizure and is
claiming no memories of what happened, the witness report that he panicked allows
him to provide information about how he was feeling during the attack. The intro-
duction of information about other seizures demonstrates a willingness to provide as
much detail as possible in response to the questions asked by the VA. Furthermore,
the introduction of information about other seizures in order to introduce relevant
information is similar to the responses from Margaret.

Extract 8 - Jonathan (people with epilepsy)

VA: How did you feel during the attack?1
Pat: (2.1) During the seizure I don’t remember (0.2) it at all (.) um2

neither seizure (.) I don’t remember any details (1) er the first3
seizure that I came (.) apparently the witness (0.5) that found me4
(0.2) first time .h (.) said I (.) re regained consciousness and5
panicked↑ (.) at the sight of them being there .h (.) second seizure6
(0.4) no recollection or anything other than waking up (0.5) sort of7
coming round in my spare room and with the urge to (0.3) get somewhere8
safe (1.5)9

VA: How did the attack end?10

The final two extracts display responses from Julia who reports that she is un-
able to describe what happened during the last seizure where she lost consciousness
because she was asleep. Given that many individuals with FDS are unable to recall
what happened during a seizure (Schwabe, Howell, and Reuber, 2007; Schwabe et
al., 2008), exploring the responses from Julia will showcase how individuals with
epilepsy or FDS may exhibit different linguistic profiles even though they both can-
not recall a seizure.

Julia starts by reporting that she does not usually lose consciousness with her
seizures (Extract 9). In response to question one, Julia states that the last time she
lost consciousness was eight year ago. She states that the seizure happened when
she was asleep, that it was quite a big seizure, and that her husband was unable
to wake her up afterwards. Given that Julia was asleep when the seizure began, it
is unsurprising that she makes a complete negation about her ability to remember
what happened “I can’t remember anything about it”, which is a feature typically
observed in the responses of individuals with FDS (Schwabe, Howell, and Reuber,
2007; Schwabe et al., 2008; Reuber et al., 2009). Although every question focuses
on the most recent attack, Julia’s responses to the follow up questions are similar
to those observed in the previous extracts because she transitions to describing her
seizures more generally to overcome the challenges associated with describing a
seizure that she cannot recall (Extract 10). In response to question 4 about the first
sign of the seizure (Table 4.4), Julia provides an elaborate description of the sub-
jective symptoms that she typically experiences during her seizures. Many of the
symptom descriptions are repeated and reformulated “ I get erm (.) like I’m trying to
remember something like I’ve got a memory in my head and I’m trying really hard to
try and remember” and are marked by hesitations and hedging statements “kind of
(.) erm”. Therefore, although Julia is unable to provide a detailed description based
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upon the confines of the topic that was set by the questions, she displays other fea-
tures of the linguistic profile for people with epilepsy in response to the follow-up
questions by introducing information that is beyond the scope of the questions, for
example describing the subjective symptoms that she experiences during a typical
seizure and displaying formulation effort.

Extract 9 - Julia (people with epilepsy)

VA: Please tell me in as much detail as you can remember what happened1
during the most recent attack that caused you to lose consciousness?2

Pat: erm I don’t usually lose consciousness with my seizures er the last3
time that I did was erm (.) eight years ago when I was pregnant with4
my son (.) erm I was in bed asleep and I had er quite a big seizure5
and then er my husband couldn’t wake me up afterwards so (.) I can’t6
really remember anything about it7

VA: How did the attack end?8

Extract 10 - Julia (people with epilepsy)

VA: What was the first sign of the attack?1
Pat: .hh erm I get: er a feeling it’s either like a déjà vu (.) feeling2

like a really strong feeling that all of this has happened before3
(0.5) or I get erm (.) like I’m trying to remember something like I’ve4
got a memory in my head and I’m trying really hard to try and remember5
(.) what happened (0.7) or I get confused like there’s something wrong6
(0.7) and then once I’ve had that feeling everything kind of (.) erm7
(.) I know it’s going to happen I always go “oh no” and everything8
kind of closes in (.) erm I get this feeling in my chest like9
everything’s sort of been sucked into my chest (0.5) and er then10
everything goes dark for a while (2.8) erm I can hear people talking11
at the time but erm I can’t respond for (.) just a few minutes (1)12

VA: How did you feel during the attack?13

5.3.1.1 Summary

The responses from people with epilepsy demonstrated many of the characteristics
of the linguistic profile from previous research. There was extensive evidence that
people with epilepsy produced descriptions that focused on their subjective expe-
rience, including descriptions of their subjective symptoms, because people typi-
cally volunteered descriptions of subjective symptoms, provided more detailed de-
scriptions of the symptoms, and treated them as a central component of the seizure
(Reuber et al., 2009). There were numerous examples of people displaying exten-
sive discursive work as they attempt to adequately communicate their experience
to another individual (Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008)
in the form of an increase in hesitations, repetitions, hedging, and statements that
highlight the challenges associated with the description. The format that people
presented descriptions of the unconscious period where characteristic of the linguis-
tic profile for epilepsy because people with epilepsy often treated the unconscious
period as one of several elements of the seizure, contoured the unconscious period
by detailing their memories immediately before and after, and attempted to recon-
struct what happened while they were unconscious using the information available
to them (Reuber et al., 2009). Furthermore, we outlined an example of someone with
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epilepsy who volunteered information about a seizure suppression attempt and con-
ceptualised the seizure as an external agent and a conflict.

Overall, our analysis of the responses from people with epilepsy demonstrated
a tendency to provide detailed responses to the questions. Although there were in-
stances when patients were unable to provide much detail while also adhering to the
topic agenda set by the question, for example Julia’s inability to recall the last seizure
where she lost consciousness, a sequential analysis across the responses to different
questions demonstrated that people with epilepsy often overcome the constraints
of the questions by introducing information about different seizure experiences or
transitioning to talking about seizures more generally, which is interestingly a char-
acteristic of the linguistic profile for people with FDS (Reuber et al., 2009), in order
to provide relevant responses to the questions. The next section will transition to a
comparative analysis of the responses from people with FDS.

5.3.2 Responses from people with FDS

The first extract (Extract 11) contains the response that follows the first question
asked by the VA from a patient with FDS.

Extract 11 - Sophie (person with FDS)

VA: What was the first sign of the attack?1
Pat: .hh erm I get: er a feeling it’s either like a déjà vu (.) feeling2

like a really strong feeling that all of this has happened before3
(0.5) or I get erm (.) like I’m trying to remember something like I’ve4
got a memory in my head and I’m trying really hard to try and remember5
(.) what happened (0.7) or I get confused like there’s something wrong6
(0.7) and then once I’ve had that feeling everything kind of (.) erm7
(.) I know it’s going to happen I always go “oh no” and everything8
kind of closes in (.) erm I get this feeling in my chest like9
everything’s sort of been sucked into my chest (0.5) and er then10
everything goes dark for a while (2.8) erm I can hear people talking11
at the time but erm I can’t respond for (.) just a few minutes (1)12

VA: How did you feel during the attack?13

After a short period of hesitancy that is indicated by the elongation of “erm”
and “was” and long gaps of silence between the turn constructional units, the only
contextual information that Sophie provides is that the most recent attack was yes-
terday. Although the start of Sophie’s response appears to focus on a single seizure
“it”, Sophie transitions into describing multiple attacks by saying “I had several
(.) yesterday”. These attacks are described as solely consisting of a loss of con-
sciousness “I just (2.1) blanked out”, and Sophie provides no information about the
events that surround this period of unconsciousness. The additional details that are
provided about the attack are attributed to what was observed by others “and erm
stopped (0.7) breathing so I’ve been told”. These details make it difficult to differen-
tiate which of the multiple seizures that Sophie experienced on that day is being ref-
erenced in the response. Furthermore, other than demonstrating the recognition of
losing consciousness, the description provides very little information about Sophie’s
personal experience or any subjective symptoms that were experienced during the
attack. Therefore, this example displays many characteristics of the linguistic profile
for people with FDS, for example treating the unconscious period as the defining
features of the seizure, no contouring of the gap, and the use of complete negations
(Reuber et al., 2009).
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In extract 12, Sophie is responding to one of the follow-up questions that is de-
scribed to prompt the patient to describe the events that preceded the period of un-
consciousness and any potential symptoms that they experience. Sophie’s states that
the first sign of an attack is something observable by the third party “my partner no-
tices it tends to be my eyes rolling back in my head”. When Sophie later elaborates
on this description by introducing an additional early sign of an attack, the sign is
still reported as something observable by another “I will go really quiet and then
somebody will look at me”. This response contrasts with the responses from people
with epilepsy who typically detail their own memories and recollections before los-
ing consciousness rather than the recollections of others, for example the description
of symptoms that was provided by Julia in response to the same question (Extract
10) where Julia reports experiencing “like a déjà vu (.) feeling”, “ I’ve got a memory
in my head and I’m trying really hard to try and remember”, and “I get this feeling in
my chest”. In contrast, it is not clear whether Sophie experiences similar symptoms
from the description provided.

Extract 12 - Sophie (person with FDS)

VA: What was the first sign of the attack?1
Pat: (1) the first sign tends erm well my partner notices it tends to be my2

eyes rolling back in my head (.) erm and my head sloping off to one3
side (.) erm it can then be a combination of things after that (.) but4
the first sign is I will go really quiet and then somebody will look5
at me .h and my eyes will be rolling back in my head and I will be6
slumped usually to one side (0.7)7

VA: How did you feel during the attack?8

In the next extract from a patient with FDS (Extract 13), upon hearing the ques-
tion by the VA, Michelle begins with an exclamation “WHA:T” and repeats the ques-
tion. This exclamation displays a problem associated with the question that has
been asked, which prompts the involvement of an accompanying person (speech not
transcribed). Upon completion of the accompanying person’s turn, Michelle subse-
quently seeks advice on how to answer the question. On receiving a response from
the accompanying person, Michelle makes a complete negation (Schwabe, Howell,
and Reuber, 2007; Schwabe et al., 2008) by stating that she has no recollection of the
attack, which is subsequently downgraded somewhat by the inclusion of some ad-
ditional information “except for waking up with a slight memory loss”. In doing so,
Michelle’s response equates the attack and the unconscious period (Schwabe, How-
ell, and Reuber, 2007; Schwabe et al., 2008). Not only does the use of a complete
negation align with the linguistic profile for people with FDS (Reuber et al., 2009),
it suggests that the problem with the question was caused by the inability to recall
what happened during a period of unconsciousness. Michelle provides some con-
textual information about the seizure in response to the first follow-up question, but
it is important to note that this information was provided upon being prompted.

Extract 13 - Michelle (person with FDS)

VA: Please tell me in as much detail as you can remember what happened1
during the most recent attack that caused you to lose consciousness2

Pat: WHA:T (3.7) PLEASE TELL ME WHAT HAPPENED THAT YOU CAN REMEMBER WHEN3
YOU LAST LOST CONSCIOUSNESS (2.8) with this4

Oth: (not transcribed)5
Pat: (0.8) ah (1.0) what do I say to that?6
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Oth: (not transcribed)7
Pat: (1.5) right (10) .h (3.6) I can’t remember anything except for (0.8)8

waking (0.4) up and having a slight memory loss9
VA: What were you doing when the seizure started and how were you feeling?10
Pat: (6) I was having a nap (0.5) and (1) felt (.) tired (0.6)11
VA: What were you doing when the attack started and how were you feeling?12

The next example comes from Lucy (Extract 14). Lucy’s response starts with
“most of the time”, referencing what usually happens when she has an attack. Rather
than reporting what happens before the attacks, Lucy uses a complete negation
(Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008) and reports “feeling
nothing before I collapse (0.4) until I come round”. Upon being asked a follow-up
question about the circumstances of the attack, an accompanying person joins the
interaction and produces a response instead of Lucy. Lucy does not answer ques-
tions two, three, and four. In doing so, Lucy has not provided an elaboration about
what she knows and what she does not know about her seizures. Lucy continues to
respond to the questions again at question 5. Upon being asked how she felt during
the attack, Lucy states that she is unable to provide a description of how she felt
because she was unconscious during the attack. Therefore, Lucy’s responses appear
to conflate the unconscious period and the attack, thereby rendering the seizure as
indescribable.

Extract 14 - Lucy (person with FDS)

VA: Please tell me in as much detail as you can remember what happened1
during the most recent attack that caused you to lose consciousness2

Pat: (2.1) Most of the time I feel nothing before I collapse (0.4) until I3
come round (0.6)4

VA: What were you doing when the attack started and how were you feeling?5
Oth: (not transcribed)6
VA: Do you think there was a trigger for the attack?7
Pat:8
VA: What was the first sign of the seizure?9
Pat:10
VA: How did you feel during the seizure?11
Pat: (1.2) .h I was unconscious so I can’t say (0.2)12

Extract 15 consists of an interaction with George and an accompanying other in
response to the first question asked by the VA. In contrast to the previous examples,
the speech of the accompanying other is transcribed and forms part of the analysis
because they were also a participant in the study.
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Extract 15 - George (people with FDS)

VA: Please tell me in as much detail as you can remember what happened1
during the most recent attack that caused you to lose consciousness2

Oth: You have to speak now3
Pat: I can’t remember can I4
Oth: well you don’t (1.5) always lose consciousness do you5
Pat: no no6
Oth: (3) er what do you want to say (2) you have to answer it *name* (4)7
Pat: what was the question8
Oth: You’re being recorded so9
Pat: yeah please speak your response well what was the question10
Oth: The question was about losing consciousness during your attack11
Pat: (incomprehensible)12
Oth: You can’t recall it can you13
Pat: No14
Oth: Can’t recall so you have to say can’t recall15
Pat: CAN’T RECALL16

Upon completion of the question asked by the VA, there is a three second pause
that allows the absence of a response from George to be noticeable, which prompts
the accompanying person to join the interaction and instruct George to answer the
question “you have to speak now”. Rather than adhering to the instruction and
speaking with the VA, George challenges the assertion based on the grounds that he
has no knowledge of the attack and makes relevant a further response from the ac-
companying person using a tag question. The accompanying person challenges the
assertion using a negative statement (Heritage, 2002) and a well-prefaced response
(Heritage, 2015) by asserting that he does not always lose consciousness, which im-
plicitly asserts that there are seizures where he is conscious and therefore should be
able to talk about. Moreover, by making an assertion about George’s seizures, the ac-
companying person makes a claim of epistemic access with regards to the seizures.
This is followed by another instruction on line 7 that reiterates the obligation of
George to answer the question and a reminder about the recording “you are being
recorded”. Upon completion of an insert sequence (Schegloff, 1972) between lines 8-
12, the accompanying person accepts that the response to the question is that George
cannot recall what happened and therefore instructs him to produce a response to
the initial question that was asked by the VA “you have to say can’t recall”, which is
repeated by George with an increase in loudness on line 16.

Although producing a response that does not answer the question is dispre-
ferred (Stivers and Robinson, 2006), the accompanying person does not volunteer
any information about what happened in the presence of a complete negation from
George, even though they have already indicated they have some knowledge about
what happened. This pattern of involvement has been similarly observed during
family interactions with Amazon Alexa where family members use a range of dis-
course scaffolding methods to support others during the interaction, for example di-
rect instructions, modelling, redirection, and expansion (Beneteau et al., 2019). Fur-
thermore, the increased involvement of an accompanying other mirrors the finding
from doctor-patient interactions where individuals with FDS were more likely to in-
vite an accompanying other to engage in the interaction or an accompanying other
self-initiated their involvement (Robson, Drew, and Reuber, 2016). It is of particular
interest that the accompanying other in extract 15 implies that George should talk
about the seizures that he does remember "you don’t always lose consciousness"
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because they are suggesting that George should provide information beyond the
topical agenda of the question, similarly to the response pattern observed by people
with epilepsy, but George does not provide the information.

Extract 16 provides the final example from Phillip who has a diagnosis of FDS.
Phillip outlines the context of the attack “I was out for a walk” before inviting the
involvement of an accompanying other using a tag question “weren’t I”. After the
accompanying other has taken a turn (not transcribed), Phillip expands on his pre-
vious turn by stating that he was with the dog. Although Phillip does not make
an explicit reference to a seizure, he implies the presence of a seizure by stating
that the postman had to pick him up. The juxtaposition of walking and needing
to be picked up suggests that something has happened between these two actions.
Phillip expresses uncertainty about what happened and whether it was the postman
who picked him up or someone else by saying “or summat” and “someone had to”.
Phillips response to question one provides details about the events that preceded
and followed the attack, but is different to the examples by people with epilepsy
that were previously outlined because Phillips description doesn’t contain informa-
tion about the proximity of the events to the attack, whereas the memories detailed
in extracts 2 and 7 mark the memory as being close to the unconscious period using
the word “just”. In this example, it is not clear whether Phillip is detailing his own
memory or whether it is a recollection of information shared by another person.

Upon receipt of the second question about the events that preceded the attack,
Phillip produces a well-prefaced turn, which have been shown to link the current
turn with a previous turn and can act as an alert that a response is going to be re-
jected, dispreferred, or not straightforward (Heritage, 2015). Phillip states that he
was having a seizure and signifies that his turn is finished by a long pause. The turn
is hearable as complete by the accompanying other who subsequently takes a turn.
Therefore, Phillip’s dispreferred response suggests that he cannot answer the ques-
tion and the term “seizure” is used as a justification - thereby implying that seizures
cannot be recalled and conflating the seizure and the unconscious period. After
further talk by the accompanying other, Phillip produces an oh-prefaced turn that
suggests that the prior turn has caused a shift in attention and induced a “change
of state” (Heritage, 1998). Phillip’s subsequent description that he was sitting down
implies that the change either relates to the recall of what was happening before
his seizure or the realisation about the topical agenda that was set by the question.
However, Phillip finishes his turn by stating that he cannot really remember. It ap-
pears that Phillip is stating that he cannot remember the seizure as a whole because
Phillip does not specify what he can and cannot recall. The accompanying other
appears to accept that Phillip cannot remember anything about the seizure because
they provide the response to question three.

Extract 16 - Phillip (people with FDS)

VA: Please tell me in as much detail as you can remember what happened1
during the most recent attack that caused you to lose consciousness2

Pat: (2.3) Right I was I was out for a walk (0.7) weren’t I3
Oth: (Not transcribed)4
Pat: With the dog (.) and the (0.5) like postman had to pick me up or5

summat (2.0) (laughing) Someone had to (0.6)6
Oth: (Not transcribed)7
VA: What were you doing when the attack started and how were you feeling?8
Pat: (1.14) Well I was having a seizure (2.16)9
Oth: (Not transcribed)10
Pat: Oh yeah because I was sat down when I when I (0.8) I can’t really11

remember12
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Oth: (Not transcribed)13
Pat: I don’t like the face14
VA: Do you think there was a trigger for the attack?15
Oth: (Not transcribed)16
Int: What was the first sign of the attack?17

5.3.2.1 Summary

The responses from people with FDS demonstrated many of the interactional fea-
tures that were reported in previous research (Schwabe, Howell, and Reuber, 2007;
Schwabe et al., 2008; Reuber et al., 2009). People often displayed challenges associ-
ated with describing what happened during the most recent attack and reported
that they were unable to recall what happened. This inability to recall and fre-
quent use of complete negations was a prominent feature of the linguistic profile
for people with FDS (Reuber et al., 2009). Compared to people with epilepsy, the
responses by people with FDS had fewer instances of descriptions of the individ-
uals personal experience of the attack, subjective symptoms, or details about the
events that immediately preceded and followed the unconscious period. Further-
more, there was an increase in the involvement of accompanying others during the
interaction. Although in most instances the speech of the accompanying others was
not transcribed, there was evidence that accompanying others joined the interaction
to support the patient to answer the questions. Accompanying others often joined
the interaction because the patient spoke to them or because the patient was exhibit-
ing difficulties answering the questions posed by the VA. This pattern of involve-
ment has previously been associated with a diagnosis of FDS during doctor-patient
interactions (Robson, Drew, and Reuber, 2016). Overall, the responses demonstrate
many of the patterns observed in previous CA research and contrast dramatically
with the responses from people with epilepsy.

5.4 Discussion

The objective of this chapter was to explore whether the linguistic, conversational,
and interactional profile for people with epilepsy or FDS that were first identified
during doctor-patient interactions (Schwabe, Howell, and Reuber, 2007; Schwabe et
al., 2008) are observable during interactions with a VA. The results showed that peo-
ple with epilepsy provided more detailed descriptions that focused on their personal
experience and subjective symptoms of the seizure. These descriptions included
more instances of formulation effort, and people with epilepsy were more likely to
incorporate references to other seizure experiences in their answers to the questions
posed by the VA. In contrast, people with FDS provided limited or no descriptions
of the seizures, were more likely to conflate the seizure and unconscious period,
and displayed an increased reliance on accompanying others when answering the
questions posed by the VA. These findings demonstrate that there are differences in
how people with epilepsy and people with FDS talk about their most recent seizure
to a VA and that these differences align with the findings from previous research
(Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008; Robinson, 2003).

A VA provides a more standardised method of asking questions in contrast to
human interviewers because previous research has shown that doctors vary how
they ask a question based upon the previous responses by a patient (Walker et al.,
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2020). By removing the variability in how the questions are asked, we are able to
demonstrate that the communicational differences between the two groups are not
co-produced by changes in the communication style of the doctor during interac-
tions between doctors and patients. The patient responses to the VA can be com-
pared more readily (Walker et al., 2020). By demonstrating that the communication
differences are still evident during interactions with the VA, future research can ex-
plore how effectively the spoken descriptions can be automatically transcribed and
analysed to make predictions about the cause of TLOC, which may help to guide re-
ferral pathways and reduce the waiting time for a diagnosis (Wardrope, Newberry,
and Reuber, 2018).

A single feature from the linguistic profile can be described in two ways based on
the principles of CA: the action that someone is performing during the conversation
(e.g. displaying an inability to answer the question) and the linguistic method that
has been used to perform the action Sidnell, 2011) (e.g. directing questions towards
an accompanying other, long pauses after the virtual agent has asked a question,
skipping questions, and making complete negations). An automated analysis of
language must have sufficient training data to detect a statistical mapping between
the different linguistic methods and the associated action. Unlike humans who have
an abundance of linguistic and interactional knowledge based on a lifetime of con-
versing (Sidnell, 2011), machine learning models can only develop knowledge based
upon the features that are inputted into the model Jordan and Mitchell, 2015). Ma-
chine learning models may require many instances of the different linguistic meth-
ods to reliably detect each action that is relevant for the linguistic profiles. Therefore,
it is important that a large training dataset is acquired to increase the frequency of
different linguistic presentations of a given feature. Otherwise, the model may fail
to detect meaningful differences that are observable by humans.

The web application used in this research project is designed to be a stratification
tool for patients newly presenting with a TLOC experience (Wardrope, Newberry,
and Reuber, 2018). Therefore, the questions were different from previous research
because they focused on a single seizure experience to account for individuals who
have only had one seizure. Although the interviews from previous research also
asked questions about the most recent seizure, the questions were situated in a wider
interview context that involved asking other questions and allowing the participants
to speak freely (Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008). It may
be possible to encourage people to speak more to the VA by incorporating questions
about clinically relevant information relating to other topics (Cassell, 1985) because
we found that people with FDS typically said more during the routine clinical con-
sultations analysed in chapter 3. Furthermore, allowing people to adjust to speaking
with a VA before they produce their seizure descriptions might help them feel more
comfortable with the interaction, which could increase how much they say. This may
support participants who have only had one seizure that they are unable to recall,
for example if the seizure occurred during sleep (Extract 9), because it provides them
with questions that they are able to answer. However, the inclusion of additional
questions might require further qualitatively analysis to determine useful linguistic
differences that can be incorporated into an automated analysis of language.

5.4.1 Limitations

One limitation of this analysis is that it uses a small sample. Although the sample
size is the same as one of the original research studies that identified the linguistic
differences between people with epilepsy or FDS (Schwabe, Howell, and Reuber,
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2007) and may be sufficiently large to demonstrate that the relevant linguistic fea-
tures are present during the interactions with the VA, using a small sample size may
not capture many of the variations in spoken descriptions that may be important
for an automated analysis of language. Exploring the linguistic features present in a
larger sample size may help to guide the development of features that can automat-
ically detect the relevant linguistic presentations.

One considerable difference between this study and the previous research is that
the patients in this study did not all receive a “gold-standard” diagnosis using video-
EEG (Noachtar and Rémi, 2009; Kinney, Kovac, and Diehl, 2019). Patients were
recruited when they were referred to the seizure or syncope clinic at the Royal Hal-
lamshire Hospital and the diagnosis was confirmed after six months by reviewing
their medical record. Many patients will have received a diagnosis solely based
on clinical interviews and their medical history (Plug and Reuber, 2009; Malmgren,
Reuber, and Appleton, 2012). Therefore, the diagnoses may not be as reliable as the
gold-standard diagnosis used in previous research.

Although the analysis demonstrates that these linguistic profiles are evident dur-
ing interactions with a VA, there is no indication how effective these linguistic dif-
ferences are for predicting the diagnosis. The utility of the linguistic profiles for
predicting the diagnosis during doctor-patient interactions has been shown by ask-
ing linguists who are unaware of the diagnosis to apply the Diagnostic Scoring Aid
to recordings of the interaction and generate a score (Reuber et al., 2009; Cornaggia
et al., 2012; Papagno et al., 2017; Yao et al., 2017; Biberon et al., 2020). Applying
the Diagnostic Scoring Aid to interactions with the VA would allow an estimation
of the predictive capabilities of the linguistic profiles for these interactions, which
would later be compared to the predictive performance of the automated analysis of
language. However, the validity of this approach is reliant on the linguistic scorers
being blinded to the diagnosis of the patients (Reuber et al., 2009). Unfortunately, it
was not possible for the main researcher to be blinded to the diagnosis because they
were responsible for recruitment and consenting, which included a discussion about
pre-existing diagnoses.

Another important consideration is that the interactions with the VA were sepa-
rate to the care that patients were receiving for TLOC. This may influence who par-
ticipates and how people interact with the VA. Participants with an unfavourable
attitude towards a clinical decision tool for TLOC may not choose to participate in
the study, but how they interact with the VA may be influenced by their attitude.
Furthermore, people may interact differently with the VA if the responses they pro-
vide will be used to guide their referral pathway. Some participants in the study did
not provide answers to some of the questions asked by the VA, but this pattern of
responding may be different if the application was integrated into the care pathway.

The questions that were asked by the VA are different to those used in previous
research because they solely focused on the most recent attack, whereas previous
studies asked participants about their expectations from the consultation and asked
them to describe their first, worst, and most recent attack (Schwabe, Howell, and
Reuber, 2007; Schwabe et al., 2008). Although focusing on a single attack allows
individuals who have only experienced one episode of TLOC to answer all of the
questions, this can influence the presentation of the linguistic profile for individuals
who have different types of seizures because their ability to recall information can
vary depending on the seizure in question, which was demonstrated by the analy-
sis conducted for extract 9. Future research should consider asking questions about
other seizure experiences for individuals who have had multiple seizures to ensure
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that the topical agenda of the questions (Heritage and Maynard, 2006) does not con-
strain the responses that individuals provide, thus allowing individuals who want
to volunteer additional information to do so within the constraints of the interaction.

5.4.2 Conclusion

This chapter demonstrates that there are differences in the spoken seizure responses
between people with epilepsy and people with FDS during interactions with a VA.
The VA provides a standardised method of collecting spoken descriptions of TLOC
where the differences in patient responses are not influenced by changes in the way
that the question is asked. This standardisation may make the differences in the re-
sponses more readily apparent and support the automatic transcription and analysis
of spoken descriptions, which could be used to make diagnostic predictions for an
automatic patient stratification tool. Although these differences may be useful for
making diagnostic predictions, future research should explore how changes to the
VA and the questions that are asked can improve the amount of detail in the spoken
responses.
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Chapter 6

Predicting the cause of transient
loss of consciousness using web
recorded descriptions

6.1 Introduction

The qualitative analysis detailed in the previous chapter has demonstrated that in-
dividuals with a diagnosis of epilepsy or FDS display many of the interactional,
linguistic, and conversational differences outlined in previous research (Schwabe,
Howell, and Reuber, 2007; Schwabe et al., 2008; Robson et al., 2012; Robson, Drew,
and Reuber, 2016) during an interaction with a VA. Given that the spoken descrip-
tions of TLOC contained features that have previously been shown to be useful for
predicting the diagnosis, these findings suggest that an automated analysis of the
recordings collected through the online application could be useful for predicting
the diagnosis.

The analysis outlined in chapter three demonstrated that it may be feasible to
differentiate between individuals with a diagnosis of epilepsy or FDS by conducting
an automated analysis of seizure descriptions. More specifically, features designed
to measure formulation effort and features designed to measure the proportion of
words corresponding to relevant semantic categories were able to predict the diag-
nosis with an accuracy of 71% and 81%, respectively. However, it is unclear how well
these features will generalise to recordings from a novel patient group that were col-
lected under a different research paradigm, with a different interviewer, and using
different interview questions.

Two of the most prominent differences between the spoken descriptions of TLOC
for individuals with a diagnosis of epilepsy or FDS outlined in the previous chapter
was the extent to which individuals produced descriptions of their subjective symp-
toms and how much information people provided about the events that surrounded
the unconscious period. People with epilepsy were more likely to provide descrip-
tions of subjective symptoms and details about their memories immediately before
and after they lost consciousness, which aligned with the findings from the original
conversation analysis research (Schwabe, Howell, and Reuber, 2007; Schwabe et al.,
2008). These two interactional differences are important for predicting the diagnosis
using the Diagnostic Scoring Aid (Reuber et al., 2009) and are a prominent com-
ponent of a condensed version of the DSA from previous research (Biberon et al.,
2020), but they are not effectively measured using the features outlined in chapter
three. Semantic features that are restricted to particular word types, for example
verbs, adjectives, and adverbs, might be able to detect these important communica-
tive differences by capturing differences in the actions and appraisals that people
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incorporate, or do not incorporate, in their description. Exploring these additional
features may help to improve the predictive performance.

The analyses of language that have been conducted so far in this thesis have fo-
cused on the differentiation between epilepsy and FDS, but a clinical decision tool
for TLOC should also correctly identify individuals with syncope (Wardrope, New-
berry, and Reuber, 2018). Therefore, it is important to consider how useful these
features are for detecting individuals with syncope given that there is no research
exploring the linguistic and communicative profile for syncope.

The features that were outlined in chapter three mostly measure the semantic
content of the description of TLOC. However, it is important to consider potential
confounding variables that could influence the predictions of the machine learning
model Mukherjee et al., 2022 because the semantic content of the description may
be influenced by factors other than the diagnosis. For example, vocabulary can be
influenced by age, education, and multilingualism (Keuleers et al., 2015). People
who are more educated may produce more verbose descriptions of what they ex-
perienced. Therefore, it is necessary to consider the relationship between education
and the amount of detail that individuals provide.

The online web application must include automated speech recognition in order
for the system to be fully automatic. Although modern ASR systems are not without
error, an automated analysis of language that uses ASR can still demonstrate good
predictive capabilities in the presence of ASR errors (Mirheidari et al., 2016; Mirhei-
dari et al., 2017a; Mirheidari et al., 2018). It is necessary to explore the impact of ASR
on the predictive performance of this automated analysis of language because the
identification of challenges associated with ASR can drive future research.

6.1.1 Aims

The objective of this chapter is to explore the predictive performance of an auto-
mated analysis of descriptions of TLOC. The first aim was to further evaluate the
formulation effort and semantic features outlined and evaluated in chapter three by
applying these features to the descriptions of TLOC collected through the online
web application. The second aim was to evaluate a different feature set that com-
pared the usage of verbs, adjectives, and adverbs between each diagnostic group.
The objective was to evaluate these features for the binary classification between
epilepsy and FDS and the threeway classification that incorporated individuals with
a diagnosis of syncope. The third aim was to further explore the utility of these fea-
tures by evaluating their predictive performance after the incorporation of ASR. The
final aim was to explore whether the amount of detail that individuals provide is
influenced by their educational background.

6.2 Method

6.2.1 Data

The analysis used the audio recordings collected through the online web application.
An overview of the recruitment procedure and the interaction with the VA can be
found in chapter four. The responses to all of the questions asked by the VA were
combined and utilised.



6.2. Method 85

6.2.2 Automatic Speech Recognition (ASR)

An ASR system is required to make the system fully-automatic because the feature
extraction module of the application requires a transcript. An open-source software
application called Kaldi (Povey et al., 2011) was used to train the ASR system. The
Kaldi documentation contains programming scripts, also known as recipes, that
are designed to train an ASR system from scratch using a pre-specified dataset.
This ASR system was trained using the Librispeech recipe that uses the Librispeech
corpus consisting of approximately 1000 hours of read English speech sampled at
16kHz (Panayotov et al., 2015). Given that the Librispeech recipe is a standardised
pipeline that provides a blueprint for training an ASR system using Kaldi and the
Librispeech corpus, a brief overview will be provided of the major steps of the anal-
ysis instead of detailing every component. The data is segmented into a training and
testing dataset. The audio files are separated into independent 25ms frames with a
sliding window of 10ms and MFCC’s and i-vectors (Dehak et al., 2011) are extracted
from each frame. The features that are extracted from the waveforms of each frame
are used to predict phonemes. For this recipe, the predictions are made using a
Time Delay Neural Network (Povey et al., 2011). A separate language model, which
can be considered an out-of-domain language model because it was trained using
the Librispeech corpus and applied to the dataset used in this research project, was
trained using a 3- and 4-gram pruned lattice Recurrent Neural Network Language
Model (Xu et al., 2016). The language model is used to predict words and word
sequences based upon the predicted phonemes.

The trained Librispeech model was used to generate transcripts for the VA dataset.
The online web application saved the responses to each question as a separate au-
dio file. Manual speaker diarisation was performed on audio files with more than
one speaker. Although a fully automated system would require a separate module
within the ASR system to perform speaker diarisation, this processing step was not
performed for the analysis due to the low number of audio recordings with multiple
speakers. The audio recordings were converted to 16kz PCM files and passed into
the ASR system for transcription. The word-error rate was calculated by comparing
the ASR transcripts with high quality manual transcripts produced by a professional
transcription service. The manual transcripts and ASR transcripts were both eval-
uated separately in the automated analysis of language to explore the effect of the
ASR system on the overall predictive performance of the model.

6.2.3 Data Augmentation

The overall number of participants who interacted with the VA was small and the
number of participants with each diagnosis was imbalanced. Machine learning al-
gorithms that are trained on imbalanced datasets can learn to accurately identify the
majority class but fail to reliably identify instances from the minority classes (Guo
et al., 2008). We used a data augmentation method called Adaptive Synthetic sam-
pling (ADASYN) (He et al., 2008) to upsample the number of samples in the epilepsy
and syncope groups to mitigate this to some extent. ADASYN was applied to the
training data for each fold of the cross validation progress to increase the number of
samples available for training without influencing the test dataset.

ADASYN starts by calculating the ratio of minority examples, d, where Ms and
Ml represent the minority and majority samples, respectively.

d =
Ms

Ml
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The total number of synthetic minority data to generate is calculated, G, where
β represents the ratio of minority and majority data that is desired. β was set at one
for this analysis to balance the classes.

G = (Ml − Ms)β

The algorithm identifies the data points that are closest to each minority data
point using K-Nearest Neighbour. K was set to seven for every model to ensure that
neighbourhoods were large enough to contain a minimum of two data points for
each minority class. ri is then calculated for each neighbourhood, where #majority
is the number of majority data points within the neighbourhood.

ri =
#majority

K

All values of ri are normalised to generate r̂i.

r̂i =
ri

∑ ri

The number of synthetic examples to calculate per neighbour, Gi is calculated.
More synthetic samples are generated for neighbourhoods that are considered harder
to learn because the neighbourhood contains more data points from the majority
class (higher ri values).

Gi = G ∗ r̂i

Finally, the samples, Si , are generated for each neighbourhood. Two minority
samples are selected, Xi and Xzi , and the difference between the two samples is
multiplied by a random number ranging between 0 and 1, λ.

Si = Xi + (Xzi − Xi)λ

6.2.4 Features Extraction

The machine learning features were extracted from the raw audio recording and the
transcripts. The first set of features were designed to measure formulation effort
(Table 3.2). Using all seven features resulted in the best performance for differentiat-
ing between people with epilepsy and people with FDS in chapter three. However,
we did not include the average length of between speaker pauses for this analysis
because it is likely to reflect people’s understanding of how the recording element
of the application works rather than any communicative difference between the two
groups in this context. Furthermore, the keywords measured for the feature “key-
words associated with uncertainty” in the analysis in chapter 3 were defined by the
research team. The LIWC application contains a semantic category that contains the
keywords associated with uncertainty but is more extensive (Pennebaker, Francis,
and Booth, 2001). Therefore, this LIWC category was used instead of the list of key-
words that were used in chapter three to capture more instances of uncertainty and
to reduce the complexity of the analysis, given that the LIWC is already being used.
The final six features that were used to measure formulation effort were number
of hesitations, the number of repetitions, keywords associated with uncertainty, fre-
quency of patient pauses, average length of patient pauses, and total time the patient
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spent pausing. Pauses were measured using the Google Web RTC Voice Activity De-
tector (VAD). The presence or absence of speech in each 10ms window was identified
and used to calculate the duration of each pause or speech segment. Pauses less than
300ms were removed because short pauses may happen within independent words.

The second feature set contained semantic categories measured using the Lin-
guistic Inquiry and Word Count (LIWC) application (Pennebaker, Francis, and Booth,
2001). The application estimates the proportion of words that correspond to a given
semantic category within a document. The categories that had the largest impact on
accuracy from the analysis in chapter three were selected for this stage of the analy-
sis (Table 3.3). The objective was to select the top 10 features, but the 10th, 11th, 12th,
and 13th best forming features all had the same impact on accuracy. Therefore, the
top 9 best performing LIWC categories were selected. These categories measured
how people referred to others and their social life (‘We’, ‘He/She’, and ‘Social’), the
emotional content of the description (‘Emotional Tone’ and ‘Affect’), the extent to
which people displayed tentativeness regarding what they were describing (‘Tenta-
tiveness’), the amount of present tense verbs that people used (‘Focus Present’), how
much the description referenced quantities or the description of their experience was
quantified (‘Quantifiers’), and the use of words associated with reward (‘Reward’).
A full list of the categories available within the application and those selected for
this analysis can be found in Appendix B.

Finally, we created a feature set designed to capture differences in the descrip-
tion of symptoms and actions that surrounded the period of unconsciousness. These
features measured the frequency of specific adjectives, adverbs, and verbs that were
found to be effective predictors of the diagnosis. The text was lemmatised and the
corresponding part-of-speech (POS) label was identified using Spacy (Honnibal and
Montani, 2017). The POS labels were used to extract all verbs, adjectives, and ad-
verbs. It is difficult to define a comprehensive and generalisable list of words that
are diagnostically relevant without a large sample size because there are a broad
range of words that can be used to describe similar actions and experiences. There-
fore, we used the Term Frequency Inverse Document Frequency (TFIDF) vectoriser
from Scikit Learn library in python (Pedregosa et al., 2011) to convert the words into
vector representations of the verbs, adjectives, and adverbs. TFIDF is a simple and
efficient method of representing a document as a set of terms that can be easily in-
terpreted (Alsmadi and Gan, 2019). Term Frequency describes the number of times
a word is in a document divided by the total number of words in the document.
Inverse Document Frequency describes the logarithm of the number of documents
divided by number of documents that contain the word.

Wx, y = t fx, yxlog(
N

d fx

t fx, y = Frequency o f x in y

d fx = number o f documentscontainingx

N = total number o f documents

There are multiple parameters that are specified in the TFIDF vectorizer that can
facilitate the selection of the most discriminative words and improve the predictive
performance of the selected features. This analysis only focused on single words
that were included in a minimum of three documents and no more than seven. One
of the parameters, max features, restricts the number of words included in the final
vector by selecting N number of words with the highest term frequency across the
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whole dataset. The algorithm was applied to the training data for each fold of the
leave-one-out cross validation procedure. The maximum number of features (N)
was determined by evaluating the predictive performance of different values (10, 20,
50, 100) using a "nested" five fold cross validation that was restricted to the training
data. The TFIDF vectorizer then identified all verbs, adjectives, and adverbs within
the test data that were selected by the algorithm and generated a vector that was
equal to the value of N and contained the TFIDF values for each word. Therefore,
the number of words and selected words was different for each fold.

6.2.5 Classification

The classification performance of each feature set was evaluated separately using a
Support Vector Machine with a RFB kernel (Cristianini, Shawe-Taylor, et al., 2000).
Each model was first evaluated for the binary classification between people with
epilepsy or FDS before the analysis was repeated with the inclusion of people with
syncope. This model was chosen because it had the second highest classification ac-
curacy in chapter three but was the least influenced by changes in the features that
were used to train the model when evaluated using the LIWC categories. The mod-
els were trained using the nested leave-one-out cross validation method (Vabalas
et al., 2019). A search for the optimum hyperparameters for each cross validation
fold was conducted using the "GridSearchCV" function (Pedregosa et al., 2011) that
explores all hyperparameter configurations based on the hyperparameters ranges
outlined in Appendix A, Table A.6. The best configuration was selected based on
the accuracy of the model that was trained using the training data for that specific
fold.

The predictive performance of each feature set was subsequently evaluated again
using the ASR generated transcripts. This analysis was restricted to the binary clas-
sification between epilepsy and FDS because exploring the changes for one analysis
was considered sufficient to explore the impact of the inclusion of ASR.

6.2.6 Correlation Analysis

We conducted an analysis to explore whether there is a significant relationship be-
tween the level of education and how much information people provide while speak-
ing with the VA. The highest level of education was converted into an ordinal scale
ranging between 0 (no education) and 6 (people with a PhD). This analysis only fo-
cused on patients because witnesses were asked fewer, different questions by the VA.
Spearman’s Rho was chosen because educational attainment was an ordinal variable
(Spearman, 1904).

6.3 Results

6.3.1 Automated Analysis of Language

A total of 76 patients participated in the study. Twenty-six (34%) were recruited
through the Royal Hallamshire Hospital and 50 (66%) patients were recruited through
independent charities. Most patients already had a diagnosis at the time of participa-
tion (71%). A breakdown of the demographic and seizure history information can be
found in the subsequent chapter (Table 7.1). Out of all the patients that completed
the iPEP (application), 61 (78%) also completed the interaction with the VA. This
group included 20 people with epilepsy, 29 people with FDS, and 12 people with
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FIGURE 6.1: A bar chart showing the overall accuracy and percent-
age of people with epilepsy and FDS that were correctly identified by
the formulation effort features, LIWC semantic categories, and TFIDF

features using a Support Vector Machine with an RFB kernel.

syncope. Some individuals were unable to complete the interaction with the VA due
to technological difficulties and time constraints. There were three participants who
had an inconclusive diagnosis, of which none completed the VA interaction. Ad-
ditionally, 26 witnesses completed the interaction with the VA, but these responses
were not incorporated into this analysis due to the insufficient sample size.

6.3.2 Differentiation between epilepsy and FDS

The performance of the three language feature sets were evaluated for the binary
classification between the clinical diagnoses of epilepsy or FDS. All feature sets were
good at differentiating between epilepsy and FDS. The formulation effort features
and semantic categories extracted from the LIWC application achieved an accuracy
of 85.7%, and the TFIDF features had an accuracy of 75.5% (Figure 6.1). All feature
sets were better at identifying individuals with FDS compared to epilepsy, and the
formulation effort features successfully identified all cases of FDS.

6.3.3 Differentiating between epilepsy, FDS, and syncope

The accuracy of each feature set was dramatically reduced by the inclusion of people
with syncope. The accuracy of the formulation effort features, LIWC semantic cate-
gories, and TFIDF features was 59%, 32.8%, and 52.5%, respectively (Figure 6.2). The
inclusion of people with syncope reduced the ability of the model trained using the
formulation effort features to identify people with epilepsy by 45%, but the number
of people with FDS that were correctly identified remained at 100%. In contrast, the
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FIGURE 6.2: A bar chart showing the overall accuracy and percentage
of people with epilepsy, FDS, and syncope that were correctly iden-
tified by the formulation effort features, LIWC semantic categories,
and TFIDF features using a support vector machine with an RFB ker-

nel.

model trained with the LIWC semantic categories changed from being more effec-
tive at identifying FDS to correctly identifying all people with epilepsy and nobody
with FDS. All models performed poorly at identifying people with syncope, but the
best performance was exhibited by the TFIDF model, which identified 42% of people
with syncope.

6.3.4 Evaluating the performance using automatic speech recognition

The ASR algorithm had a word error rate of 39.28%. As expected, the performance
of the language analysis was impaired by the inclusion of ASR (Figure 6.3). The
accuracy of the binary classification between epilepsy and FDS decreased by 24.5%
for the formulation effort features and LIWC semantic categories and by 12.2% for
the TFIDF features.

6.3.5 Exploring the relationship between education and speech

The number of spoken words for 60 participants who spoke with the VA were in-
cluded in this analysis. One participant could not be included because they did not
provide information about their education level. Spearman’s Rho correlation coeffi-
cient was computed to calculate the correlation between word count and education
level. There was a significant weak correlation between the two variables (rs=0.33,
p< 0.05, n=60) (Figure 6.4).
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FIGURE 6.3: A bar chart showing the overall accuracy and percentage
of people with epilepsy, FDS, and syncope that were correctly iden-
tified by the formulation effort features, LIWC semantic categories,
and TFIDF features using a Support Vector Machine with an RFB ker-

nel when the model was trained using the ASR output transcripts.

6.4 Discussion

The objective of this chapter was to explore whether an automated analysis of spo-
ken descriptions of TLOC collected through the online web application can be used
to predict the diagnosis. We explored the effectiveness of two sets of features that
were previously tested on doctor-patient interactions, features designed to measure
formulation effort and semantic categories. Furthermore, we tested a novel type
of feature designed to capture differences in the descriptions of subjective symp-
toms and the reported actions that surrounded the unconscious period, changes in
the predictive performance after the inclusion of ASR, and the relationship between
how much people say and their educational background.

The automated analysis of language features were effective at differentiating be-
tween individuals with epilepsy or FDS. The performance of the formulation effort
features and semantic categories extracted by the LIWC application exceeded the
performance observed in chapter three by 14.7% and 8.1%, respectively, suggest-
ing that these features may be reliable predictors for epilepsy or FDS. Although the
TFIDF features (Alsmadi and Gan, 2019) were also effective predictors with an ac-
curacy of 75.5%, they were less effective than the remaining two sets of features
because the accuracy of these features was lower by 10.2%. Given that we observed
in chapter three that features with a limited discriminative capacity can still improve
the performance of a predictive model, these features may still make a valuable con-
tribution to future models.

The predictive performance of each independent feature set was reduced by
including individuals with syncope into the model. The accuracy of the models
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FIGURE 6.4: A stripplot displaying the total number of words spo-
ken by each patient and the corresponding level of education. The
levels of education represent the UK equivalent of GCSE (Level 1-
2), A-Level (Level 3-5), Bachelor’s degree (Level 6), Master’s degree

(Level 7), and PhD (Level 8).

trained using formulation effort features, LIWC semantic categories (Pennebaker,
Francis, and Booth, 2001), and TFIDF features (Alsmadi and Gan, 2019) was reduced
by 26.7%, 52.9%, 23%, respectively. The reduction in accuracy may be because in-
dividuals with syncope produce spoken descriptions that are similar to the descrip-
tions from individuals with epilepsy or FDS, which makes it difficult for the model
to identify patterns in the features that are a reliable indicator of a single diagnosis.
Interestingly, it appears that the degree of overlap may be dependent on which fea-
tures are used. The model trained with formulation effort features became worse at
identify epilepsy and the model trained using LIWC lost the ability to identify FDS
and became excellent at identifying epilepsy. This may be because people with syn-
cope displayed formulation effort similarly to people with epilepsy and used simi-
lar words to people with FDS. It is unsurprising that the performance of these two
models was reduced given that these features were selected to discriminate between
epilepsy and FDS and did not change for this analysis.

The capacity of an automated analysis of language to reliably identify syncope
may increase with the inclusion of features tailored to the communication profile of
people with syncope. Unfortunately, there is no previous CA research detailing how
individuals with syncope describe their experience of TLOC and contrasting this
communication style with epilepsy or FDS. In this analysis, the model trained using
TFIDF features was the most effective at identifying syncope. The procedure used to
train the TFIDF model contained nested feature selection because the number of fea-
tures (and therefore number of words to include in the model) was selected using the
training data for each fold of the cross validation process (Vabalas et al., 2019). This
may have increased the models ability to identify syncope because the model could
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increase the number of features used until there were words in the training data set
that were indicative of syncope. Although the percentage of people with syncope
who were reliably identified is still low, the number of individuals with syncope in-
cluded in the dataset was also low (20%). Increasing the size of the dataset and the
number of individuals with syncope may improve the models capacity to identify
patterns indicative of syncope and improve the overall predictive performance.

ASR is a fundamental component of an application that conducts an automated
analysis of language because manual transcription is a labour and time intensive
process. The ASR module that was used in this research had a word error rate of
39.28%. The accuracy is typical of ASR in the medical domain (Kodish-Wachs et
al., 2018). Unfortunately, the introduction of ASR negated the predictive perfor-
mance of the automated analysis of language. There are two fundamental com-
ponents to a traditional ASR system: the acoustic model and the language model
(O’Shaughnessy, 2008). The acoustic model is a statistical model representing and
detecting the sounds that make up words. The language model is a probability dis-
tribution of words and word sequences. Although the LibriSpeech corpus can be
used to train an effective acoustic model of the English language, the language in the
model was generated from read English speech (Panayotov et al., 2015) and there-
fore the language model may not be tailored to detect words frequently observed in
medical consultations about TLOC. Furthermore, there was a large reduction in the
number of people with epilepsy who were correctly classified by the formulation
effort features when ASR was used, which may be because the ASR system was not
effective at detecting hesitations and repetitions because the language model was
not trained on spontaneous speech. Fortunately, there are many methods that can
be employed to create an ASR system that is specialised at detecting the language
used in interactions about TLOC, for example, designing ASR systems that are spe-
cialised in the detection of disfluencies (Liu et al., 2006), training a model using data
that has been identified as being more information for an ASR system designed for
a particular task (Wu and Wu, 2007), using additional text data to improve the lan-
guage model and therefore the automatic speech recognition model (Toshniwal et
al., 2018), and fine-tuning a pretrained model using domain specific speech data
(Yu, Deng, and Dahl, 2010). Future research should explore these methods for im-
proving the ASR system for TLOC interactions, and methods of tailoring accessible
pretrained models to speech technology that is applied to other health conditions in
order to reduce the redundancy involved with training novel ASR models for each
medical domain.

It is important to consider potential confounding variables that can influence
the predictions from an automated analysis of language. One potential confound
is the education level of participants. Vocabulary size has been shown to increase
as people gain higher level qualifications (Keuleers et al., 2015). A larger vocabu-
lary may support people to produce more verbose descriptions of what happened
during their experience of TLOC. We found a significant, weak correlation between
education level and the number of words spoken to the VA. Although these find-
ings suggest that education has a minimal impact on how much the patient says to
the VA, the strength of the correlation could be attenuated by the small sample size
used in the study. Therefore, future research should explore this relationship further
using a larger sample size.
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6.4.1 Limitations

Training an ASR system is a complex research endeavor that involves exploring a
range of methods to improve the system (Latif et al., 2020). This analysis acts as a
starting point by setting the benchmark for how well these features perform with a
pretrained system, but this area of research needs exploring further to create an ASR
system that is specialised for TLOC descriptions.

The machine learning features used in the automated analysis of language were
not current state of the art methods. These features were chosen because they are
easily interpretable by clinicians who may be interested in understanding how the
application makes diagnostic predictions, an important consideration that can influ-
ence the likelihood that a clinician will use an application (Brown et al., 2020), but the
predictive performance of these features may be lower than what can be achieved
using more advanced methods. For example, the performance of the semantic cat-
egories and TFIDF features has demonstrated that semantic differences are useful
for predicting the diagnosis, and there is a natural language processing technique
called BERT that frequently outperforms the TFIDF method (González-Carvajal and
Garrido-Merchán, 2020). Although predictive performance is very important, the
ability for clinicians to interpret a model is also vital (Brown et al., 2020). Therefore,
future research should explore the predictive performance of more advanced natu-
ral language processing methods for this classification task, but also collect feedback
from clinicians that specialise in TLOC about the acceptability of different classifica-
tion approaches for this type of clinical decision tool.

The features used in this analysis are not designed to identify individuals with
syncope. The three-way classification may be improved by incorporating additional
features that focus on the speech of people with syncope. Unfortunately, a larger
sample of patients with syncope would be required to allow a machine learning
model to adequately detect these patterns.

The CA analysis conducted in chapter five identified interactional differences
between individuals with epilepsy or FDS. Individuals with FDS were more likely
to rely on the contributions of accompanying others. These features were not in-
corporated because the research paradigm did not encourage the involvement of
accompanying others during the interaction with the VA. However, this pattern of
involvement has also been observed in routine clinical encounters (Robson, Drew,
and Reuber, 2016). Therefore, future research should consider instructing partici-
pants that they can engage with the VA alongside an accompanying other to allow
and explore the predictive capability of interactional features using novel research
data. Furthermore, detecting these features in new data would demonstrate that this
interactional behaviour is not limited to the sample collected in this PhD.

It is important that a diagnostic pathway is not bias towards particular individ-
uals. There is always a risk that machine learning models may make predictions
based upon confounding variables, which could influence the accuracy of the mod-
els predictions across different groups of individuals (AlHasan, 2021). Although we
explored the relationship between educational background and how much people
said, there are a broad range of additional confounding variables that could influ-
ence the model, for example ethnicity and language (Latif et al., 2020). As this area of
research develops, future research should explore additional potential confounding
variables using larger sample sizes to ensure that the effects are accurately estimated.
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6.5 Conclusion

The research outlined in this chapter demonstrates that an automated analysis of
spoken descriptions of TLOC collected through an online web application can help
to differentiate between individuals with epilepsy or FDS. These findings support
the reliability of the findings from chapter three by demonstrating that the previ-
ously tested features generalise to a novel sample. Future research is required to
extend the findings from this analysis using a larger sample size. For example, ex-
ploring language features that can improve the identification of individuals with
syncope, testing the performance of more advanced machine learning methods, cre-
ating a more effective ASR model, and exploring the predictive performance for
individuals from a broad range of demographic backgrounds. In the next chapter,
we will investigate whether these models can improve the accuracy of the iPEP.
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Chapter 7

Integrating the iPEP and automated
analysis of TLOC descriptions

7.1 Introduction

A clinical decision tool that is capable of stratifying people who have experienced
TLOC could speed up appropriate investigations and decrease the number of peo-
ple who are initially misdiagnosed in Primary and Emergency Care Services. Xu
et al. (2016) conducted a review of 26 studies to identify the number of people re-
ferred for clinical care in a tertiary setting with a diagnosis of epilepsy who were
misdiagnosed. The misdiagnosis rate was between 2-71% with a median of 20%.
These findings suggest that a tool capable of predicting the diagnosis with an accu-
racy above 80% could improve clinical practice, particularly in areas with a higher
misdiagnosis rate.

As described in the introduction and section 4.4, the iPEP (original) has been
developed as a clinical decision tool intended to stratify people who have expe-
rienced Transient Loss of Consciousness (TLOC) into the three most likely diag-
noses to cause TLOC (Wardrope et al., 2020a). The iPEP (original) combines two
sets of questions: a patient symptom/medical history questionnaire and a witness
observation questionnaire. A Random Forest algorithm trained using the patient-
only iPEP (original) responses or the patient and witness iPEP (original) responses
from the dichotomised questionnaire was capable of correctly identifying a diagno-
sis of epilepsy, FDS, or syncope with an accuracy of 78.3% and 86%, respectively
(Wardrope et al., 2020a). In both instances, the questionnaire was most effective at
identifying cases of syncope: in fact, modelling of the diagnostic performance of the
proposed stratification tool suggested that all patients with syncope would be cor-
rectly identified using the patient and witness responses (Wardrope et al., 2020a). In
the modelling, it proved more challenging to differentiate between the diagnoses of
epilepsy and FDS. Although modelling of the symptom and medical history ques-
tionnaire demonstrated considerable promise in terms of its ability to differentiate
between people with epilepsy, FDS, or syncope (Reuber et al., 2016; Chen et al., 2019;
Wardrope et al., 2020a), there is no research exploring the performance when the
questions are administered as a binary questionnaire and when the sample includes
individuals who have only experience one of few experiences of TLOC, which will
be relevant for individuals first presenting to Primary and Emergency Care Services
due to TLOC.

The previous chapters have demonstrated that an automated analysis of spoken
descriptions of TLOC can differentiate between people with epilepsy or FDS. There-
fore, incorporating these features into a machine learning model trained using the
iPEP may improve the model’s discriminative capacity. However, it is important to
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consider how the iPEP (application) and language features are integrated into a ma-
chine learning model because this may influence performance. The most common
method of integrating features is to train a single machine learning model using all
features. The language features investigated throughout this thesis are designed to
distinguish between talk of people with epilepsy and that of people with FDS. We
do not know the linguistic profile of individuals with syncope. Furthermore, incor-
porating people with syncope reduced the performance of the automated analysis
of language in chapter six. Therefore, training a single model with all participants
and all features may result in a machine learning model that performs poorly.

A second method of integrating the machine learning features is stacking. Stack-
ing is an ensemble machine learning method where multiple machine learning mod-
els are trained and the predictions are used to train a meta-learning algorithm that
makes the final diagnostic prediction (Pavlyshenko, 2018). The iPEP (original) was
an effective predictor of syncope in the previous research because it had a sensitiv-
ity and specificity of 83.8% and 94.6% for the patient only analysis and 100% and
91.7% for the patient and witness (Wardrope et al., 2020a). These findings suggest
that the iPEP (original) has the capacity to detect most people with syncope. Using
the model stacking approach, the predictions from the iPEP (application) could be
used to filter out individuals who may have a diagnosis of syncope and retain indi-
viduals for whom the iPEP (application) suggests a diagnosis of epilepsy or FDS for
the automated analysis of language in order to improve the overall differentiation
between these two conditions. Although the iPEP (application) may incorrectly clas-
sify some individuals (e.g. predicting syncope when the diagnosis is epilepsy/FDS
or predicting epilepsy/FDS when the diagnosis is syncope), restricting the auto-
mated analysis of language to the predictions of epilepsy and FDS may still improve
the overall classification performance of the iPEP (application).

7.1.1 Aims

The overarching aim of this chapter is to evaluate the predictive performance of the
automated analysis of the data collected by the online web application outlined in
chapter 4. The first objective was to evaluate the predictive performance of the iPEP
(application) alone. Firstly, we were interested in whether the iPEP (original) could
be used to predict the diagnosis from the iPEP (application), which contains of in-
dividuals in an earlier stage of their diagnostic journey. This analysis provides us
with insight into the similarity between the two different datasets. Given that there
may be differences between the two datasets, we also explored the performance of
machine learning models trained and evaluated using the iPEP (application). The
second objective was to explore whether we can improve the predictive performance
of the iPEP (application) by incorporating an automated analysis of recordings and
transcripts of the spoken descriptions of what happened. We explored two differ-
ent methods of integrating the iPEP (application) and language analysis: training a
single model using all features and all participants or the model stacking approach
outlined above.
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7.2 Method

7.2.1 Data

Three datasets were used for this analysis: iPEP (original), iPEP (application), and
recordings of patient interactions with the VA (patient VA). Although we also col-
lected recordings from witnesses, there were too few recordings to use this data for
our analysis. An overview of the iPEP (original) and the recruitment procedure for
this dataset can be found in section 1.3.1 and in the previous research papers (Reuber
et al., 2016; Chen et al., 2019; Wardrope et al., 2020a). An overview of the recruitment
procedure and methods for the iPEP (application) and VA datasets can be found in
chapter 4.

7.2.2 Machine learning models

7.2.2.1 Evaluating the iPEP (application) using the iPEP (original)

The first analysis evaluated how effectively the iPEP (original) dataset can predict
the diagnosis of the iPEP (application) dataset. The iPEP (original) is based on gold-
standard diagnoses and contains a larger number of participants. If a machine learn-
ing model trained using the iPEP (original) dataset is effective at predicting the diag-
nosis for the iPEP (application) dataset, the results suggest that there are similarities
between the two datasets and that the model will generalise to individuals who are
first presenting. Furthermore, the iPEP (original) model can be used to make predic-
tions for this analysis to overcome the small sample size for this research.

The iPEP (original) models in the previous research studies were trained in Mat-
lab (Wardrope et al., 2020a). Given that this project was conducted in Python, two
baseline Random Forest algorithms were trained for this analysis using the patient-
only and patient and witness iPEP (original) datasets but following the same train-
ing pipeline. The hyperparameters for the Random Forest algorithm were selected
to match those used in the original study (Wardrope et al., 2020a). The data was seg-
mented into training ( 2

3 ) and a validation ( 1
3 ) datasets. The validation data provided

a comparison of how well the algorithm performed on data that had been collected
in the same format as the training data.

The patient-only iPEP (application) and patient and witness iPEP (application)
were used to form two test datasets. The performance on the test datasets provides
insight into whether there are differences in the response profiles between the iPEP
(original) and iPEP (application) datasets. All missing values were imputed using
K-Nearest Neighbour and a nested gridsearch (Vabalas et al., 2019) for the optimum
hyperparameter value for K for each variable.

7.2.2.2 Training and evaluating the iPEP (application) using cross validation

Given that the iPEP (application) was administered in binary format and to a dif-
ferent sample of participants, the performance of a model trained and evaluated
using this dataset alone allows us to compare the performance of this approach
with that based on a model trained using the iPEP (original) dataset. Two models
were trained using the iPEP (application) dataset and leave-one-out cross valida-
tion. The first model used the patient-only iPEP (application) dataset. The second
model used the patient and witness iPEP (application) dataset. We investigated the
performance of two machine learning models: Random Forest and Support Vector
Machine (SVM) with an RFB kernel. The hyperparameters for SVM were selected
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using a nested gridsearch of different options (Vabalas et al., 2019). A search for the
optimum hyperparameters for each cross validation fold was conducted using the
"GridSearchCV" function (Pedregosa et al., 2011) that explores all hyperparameter
configurations based on the hyperparameters ranges outlined in Appendix A, Table
A.6. The best configuration was selected based on the accuracy of the model that was
trained using the training data for that specific fold. SVM was chosen because it was
the second highest performing model in chapter three but was the least perturbed
by changes in the features.

7.2.2.3 Integrating the iPEP and language features

The iPEP (application) and language analysis features were integrated using two dif-
ferent methods: training a single machine learning algorithm using all features and
all diagnostic groups and the model stacking approach outlined in the introduction.
In the model stacking approach (Figure 7.1), the diagnostic prediction process was
started with the patient-only iPEP (application) model, trained using leave-one-out
cross validation. If the prediction was syncope or the participant had only completed
the iPEP (application) but not interacted with the VA, the participants were removed
from the model and the predictions from the iPEP (application) model were used
for the final evaluation. The second stage used the three machine learning models
trained using each independent feature set from the language analysis outlined in
chapter 6. These models used leave-one-out cross validation to make the binary clas-
sification between epilepsy and FDS. The predictions from all four machine learning
models were used to train a meta-model (SVM with RFB kernel) using leave-one-out
cross validation to generate the final predictions of either epilepsy or FDS. All diag-
nostic predictions (iPEP only or iPEP and language analysis) were combined for the
final evaluation.

7.3 Results

7.3.1 iPEP

The iPEP (application) consists of responses from 76 patients and 26 witnesses. Out
of these participants, 26 (34%) patients were recruited through the Royal Hallamshire
Hospital in Sheffield and 50 (66%) were recruited online through independent char-
ities. Most patients already had a diagnosis at the time of participation (71%). There
were three participants whose diagnosis was inconclusive and who were therefore
excluded from the analysis. All relevant demographic and medical information can
be found in table 7.1. A thorough overview of the research paradigm and recruit-
ment strategy has been provided in chapter four.

TABLE 7.1: A breakdown of the seizure history and demographic for
participants who completed the iPEP (application).

Epilepsy FDS Syncope
N

Patient 24 36 16
Witness 12 9 5

Recruitment Arm
Sheffield Teaching 10 8 8

Continued on next page
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Table 7.1 – continued from previous page
Epilepsy FDS Syncope

Hospital
Charities and online 14 28 8

Diagnosis status upon
participation

Diagnosed 18 32 3
Undiagnosed 6 4 13

Age (years) 43 (15.5) 36 (27.1) 55 (23.2)
Age at onset 32.4 (20.7) 31 (15.6) 49.8 (25)

Duration 10.6 (11.5) 6.5 (6.1) 5.4 (6.8)
TLOC in the last year

None 5 0 4
Up to 5 7 9 20

Up to 50 6 12 2
50+ 6 15 0

Hospitalisation
Never 6 7 7
Once 2 9 8

Up to 5 11 15 1
More than 5 4 5 0

Intensive care
No 1 4 0
Yes 23 32 16

Family History
No 4 3 3
Yes 20 33 13

Gender
Male 8 5 6

Female 16 31 10
Ethnicity

White British 17 21 13
Black British Caribbean 0 1 0

White 3 6 2
Australian and Italian 0 1 0

English/German 0 1 0
German 0 1 0

British 3 2 1
Indonesia 1 0 0

Any other asian 0 1 0
Mixed 0 2 0

Education
No education 1 1 0

Secondary education
(GCSE or equivalent) 0 7 3

Further education
(A-Level or equivalent) 8 11 4

Higher education
(Undergraduate or equivalent) 8 10 5

Continued on next page
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Table 7.1 – continued from previous page
Epilepsy FDS Syncope

Higher Education
(MSc or equivalent) 5 5 3

Higher Education
(PhD or equivalent) 2 1 0

A Random Forest algorithm was trained using the patient only responses from
the original research. It demonstrated a similar level of accuracy for the valida-
tion dataset (78.8%) as the performance observed in the original research (78.3%)
(Wardrope et al., 2020a). However, the model did not perform as effectively at pre-
dicting the cause of TLOC when it was tested using the iPEP test data collected
through the online web application (63.2%) (Table 7.2). In addition, the diagnostic ca-
pability of the model differed for the three conditions in the training compared to the
testing datasets (Table 7.2), for example the model correctly identified 35/37 (95%)
cases of syncope on the validation dataset, but only 22/29 (76%) cases of epilepsy
and 21/33 (64%) cases of functional seizures. On the test dataset, the model still
performed best at identifying syncope because it identified 12/16 (75%) cases, but
identified more cases of FDS (67%) compared to epilepsy (50%).

A Random Forest model trained using the patient and witness responses from
the original research demonstrated a similar, yet slightly lower, level of accuracy for
the validation dataset (83.1%) as the performance observed in the original research
(86%) (Wardrope et al., 2020a). However, the accuracy on the testing dataset was
dramatically reduced (to 46.2%). The validation dataset identified all cases of syn-
cope (100%), most cases of epilepsy (87%) and fewer cases of FDS (62%). In the test
dataset, most cases of syncope were accurately identified (80%), almost half of all
cases of FDS (56%), and very few cases of epilepsy (25%). The inclusion of witness
responses improved the performance of the patient-only model for the validation
data by 4.8%, but reduced the performance for the test data by 19.9%.

Leave-one-out cross validation was used to evaluate the predictive performance
of the patient iPEP data when it was trained solely using the responses collected
through the online web application. The overall accuracy was 63.2% for the Ran-
dom Forest algorithm and 65.8% for the Support Vector Machine. Compared to the
performance of the model trained on the dataset from previous research, the leave-
one-out cross validation model correctly identified more individuals with FDS and
fewer individuals with syncope (Table 7.3).

The performance of the leave-one-out cross validation models using the patient
and witness iPEP data had an accuracy of 38.5% for the Random Forest algorithm
and 50% for the Support Vector Machine (Table 7.3). In contrast to the patient iPEP
results, more individuals with epilepsy and fewer individuals with FDS and syncope
were correctly identified.

7.3.2 Combining the iPEP and language analysis

Out of all the patients that completed the iPEP (application), 61 (78%) also com-
pleted the interaction with the VA. This group included 20 people with epilepsy, 29
people with FDS, and 12 people with syncope. Some individuals were unable to
complete the interaction with the VA due to technological difficulties and time con-
straints. The three participants with an inconclusive diagnosis did not complete the
VA interaction. Additionally, 26 witnesses completed the interaction with the VA,
but these responses were not incorporated into this analysis due to the insufficient
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TABLE 7.2: The performance of a Random Forest algorithm trained
on the iPEP data used in previous research (Wardrope et al., 2020).
A sample from the original research was used to create patient-only
(N=99) and patient and witness (N=83) validation datasets. This
model was evaluated on a patient only (N = 76) and patient and wit-
ness (N = 26) test dataset from the online web application. The table
includes the overall accuracy and a breakdown of the accuracy per
condition (sensitivity). The witness questionnaire is described as the

"Paroxysmal Event Observer" (PEO).

Dataset Accuracy (%) Epilepsy (%) FDS(%) Syncope(%)

Original iPEP 78.8 75.9 63.6 94.6

(Validation)

iPEP (Test) 63.2 50 66.7 75

Original iPEP & PEO 86.7 61.5 100 81.1

(Validation)

iPEP & PEO 46.2 25 55.6 80

(Test)

TABLE 7.3: The performance of a Random Forest algorithm and SVM
with an RFB kernel trained using the responses recorded through the
online web application and leave-one-out cross validation. The ta-
ble includes the overall accuracy and number of participants in each
dataset alongside the percentage of people who were correctly classi-

fied for each health condition.

Features Accuracy (%) Epilepsy (%) FDS(%) Syncope(%)

iPEP 63.2 50 75 56.3

(Random Forest)

iPEP 65.8 54.2 72.2 68.8

(SVM

iPEP & PEO 38.5 66.6 22.2 0

(Random Forest)

iPEP & PEO 50 83.3 33.3 0

(SVM)
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FIGURE 7.1: A representation of the model stacking algorithm. The
grey boxes represent the different machine learning models. The blue
boxes represent diagnostic predictions. All predictions were used to

evaluate.

sample size. A Support Vector Machine with RFB kernel trained using the combi-
nation of the iPEP responses and the three language-based feature sets for the 61
participants, who completed the interaction with the VA, achieved an accuracy of
59% (Figure 7.2). The model correctly predicted 20% of cases with epilepsy, 100% of
cases with FDS, and 25% of cases with syncope. The accuracy of the model was 6.8%
less than the patient-only iPEP model trained using all 78 iPEP responses.

Integrating the features using a model stacking approach outperformed the model
trained using all features (Table 7.2). During the first stage of the model stacking
algorithm, the iPEP predicted that 14/76 (18%) people had syncope (the actual diag-
nosis of these predictions were: syncope = 11; epilepsy = 3). The accuracy of this sub-
sample was 78.6%. Of the participants with iPEP predictions of epilepsy and FDS, a
further 16 had not completed the interaction with the VA (epilepsy = 4; FDS = 7; syn-
cope = 5). The accuracy of those without a VA interaction was 62.5%. The baseline
accuracy of the iPEP predictions for the remaining 46 people who had completed the
interaction with the VA and who had an iPEP prediction of either epilepsy or FDS
was 63%. The meta-model trained using the predictions from the iPEP, formulation
effort, LIWC, and TFIDF models for these 46 participants was used to predict the
diagnosis with an accuracy of 95.7%. Combining the predictions from each stage of
the stacking approach resulted in an overall accuracy of 85.5%. The model correctly
identified 83% of people with epilepsy, 94% of people with FDS, and 69% of people
with syncope.
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FIGURE 7.2: A bar chart showing the overall accuracy and percent-
age of people with epilepsy and FDS that were correctly identified by
the formulation effort features, LIWC semantic categories, and TFIDF

features using a support vector machine with an RFB kernel.

7.4 Discussion

The first objective of this chapter was to explore whether the predictive performance
of the iPEP demonstrated in previous research (Wardrope, Newberry, and Reuber,
2018) is maintained when the questionnaire is administered in a binary format using
an online web application. We found that the iPEP was not as effective at predict-
ing the diagnosis for the responses collected using the online web application. The
accuracy of a Random Forest algorithm trained using the iPEP responses from previ-
ous research showed a reduction in accuracy of 15.6% for the patient only question-
naire and of 36.9% for the patient and witness questionnaire when applied to the
responses collected through the online web application compared to a validation
dataset extracted from the questionnaire responses provided in the original iPEP
study (Wardrope et al., 2020a). These findings suggest that the response profiles
collected through the online web application are different to the responses collected
using the 5-point Likert scale in previous research. One potential explanation is that
the sample collected in this study is coincidentally different from the previous re-
search. A second potential explanation is that administering the questionnaire in
binary format changes the response profile of participants and therefore reduces the
concordance with the original iPEP questionnaire.

If administering the iPEP as a binary questionnaire influences the responses that
participants provide, training a separate machine learning algorithm using the re-
sponses collected through the iPEP (application) may improve the predictive perfor-
mance because the model will be trained to detect the patterns that are present in
the new dataset (Jordan and Mitchell, 2015). However, we did not observe a large
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increase in performance when the iPEP was trained using leave-one-out cross val-
idation. The accuracy of a Random Forest model trained using the binary patient-
only iPEP and leave-one-out cross validation was equal to the accuracy of the model
trained using answers provided by patients in the previous research study on a five
point Likert scale (Wardrope et al., 2020a). Furthermore, there was a decrease in the
performance when the stratification was based on the combination of patient and
witness responses provided on the iPEP (application). One potential explanation for
this finding is that there was an insufficient number of participants in the training
data of the online dataset to allow the model to accurately and reliably detect the
group differences needed to achieve a better distinction. This may explain why the
patient-only iPEP trained using leave-one-out cross validation had the greatest ac-
curacy for people with FDS because this was the largest cohort within the sample.
Future research could investigate this further by exploring the performance of the
iPEP using a larger sample size.

Improving the predictive performance of the iPEP is dependent upon how the
features are integrated into the model. Training a single machine learning classifier
using the iPEP and language analysis features caused an overall decrease in perfor-
mance of the iPEP by 6.8%. The language features were designed to differentiate
between epilepsy and FDS and therefore did not perform effectively when applied
to individuals with syncope. These findings do not suggest that an automated anal-
ysis of spoken descriptions of TLOC is not effective for detecting syncope, but it
does suggest that additional features that are designed to detect syncope should be
considered in the future. For example, features could be designed to detect the sit-
uational triggers (Lempert, Bauer, and Schmidt, 1994; Colman et al., 2004) and fre-
quently observed symptoms of syncope (Malmgren, Reuber, and Appleton, 2012).
Furthermore, the potential of our model was restricted because there were very few
cases of syncope within the dataset, which would make it difficult to detect patterns
in the responses for people with syncope. Therefore, future research should explore
whether there are additional features that can improve the differential diagnosis of
syncope using a larger dataset.

The model stacking approach could be a flexible and appropriate method to use
within a clinical decision tool in the future because it does not require the same
information from all participants. Although witness observations have previously
been shown to improve the performance of clinical decision tools (Chen et al., 2019;
Wardrope et al., 2020a), not all patients will have witnesses who are able to complete
these questionnaires. Furthermore, not all patients within our study completed the
interaction with the VA, and a similar trend may be observed if the application were
to be used in clinical practice. Model stacking would allow predictions to be made
on the data that is available, but also allow the generation of more accurate predic-
tions using any additional information. Based upon this flexibility, future research
could investigate additional methods of improving the accuracy of the approach.
For example, our patient and witness iPEP model was not effective at predicting
the diagnosis, but the model was able to identify 100% cases of syncope in previous
research (Wardrope et al., 2020a). The predictive performance of the witness ques-
tionnaire may increase if there was more data available to train the leave-one-out
cross validation model, and this model could be used to further stratify the predic-
tions of syncope to reduce the number of people with epilepsy or FDS who are in-
correctly predicted as having syncope using the patient-only iPEP. The model could
incorporate an analysis stage where iPEP predictions for syncope are analysed to
further stratify individuals with syncope and transfer the predictions of epilepsy or
FDS that were not identify by the iPEP back into the automated analysis of language
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for epilepsy and FDS. Moreover, we have not explored the feasibility of predict-
ing the cause of TLOC using an automated analysis of witness descriptions of what
happened. Future research using CA could use the data that we have collected to
identify potential patterns in witness descriptions that could be detected using au-
tomated methods to improve the detection of syncope, epilepsy, and/or FDS. Model
stacking could allow these methods to be incorporated into the model while still
maintaining a baseline prediction using the patient-only iPEP.

7.4.1 Limitations

Many of the limitations discussed in chapter six also apply to this analysis given that
the analysis uses the same data. However, there are two additional points that are
more relevant to highlight in this chapter rather than chapter six.

The sample size in this study is very small for a machine learning research project.
The recruitment for the project was hindered due to the coronavirus pandemic be-
cause most people who were referred to the seizure and syncope clinics at the Royal
Hallamshire Hospital attended their appointments remotely, which made it more
difficult to approach potential participants and engage them in the research project.
We attempted to overcome the reduced sample size using nested leave-one-out cross
validation to evaluate the effectiveness of the model at predicting the diagnosis of
unseen data, but the consequence of this approach is that we were unable to create
a single machine learning model, which reduces the utility of the research because
the model cannot be applied to future samples. Fortunately, the objective of the re-
search was to explore the feasibility of the approach, which provides a justification
for continuing this research in the future. Therefore, future research should further
validate the method using a larger sample size.

The sample used in this study is not ethnically diverse because most participants
were white and British. The data used to train an ASR system often uses speech
from individuals who are native speakers of the target language, but these mod-
els can perform less effectively for individuals who are non-native speakers of the
target language (Cumbal et al., 2021). Therefore, ethnicity can have an impact on
the performance of an automated analysis of language (Latif et al., 2020), and these
confound variables, alongside additional confounds, should be explored more ex-
tensively in future research.

7.4.2 Conclusion

This chapter has explored the feasibility of predicting the cause of TLOC using an
online patient symptoms and witness observation questionnaire (iPEP) and an au-
tomated analysis of spoken descriptions of TLOC. We found that the predictive per-
formance of the iPEP was reduced when applied to responses collected through an
online web application. Furthermore, we demonstrated that it is possible to improve
the challenging differentiation between people with epilepsy or FDS using an auto-
mated analysis of seizure descriptions. However, increases in performance were
only achieved when the iPEP was used as a first stage stratification tool and the au-
tomated analysis of language was restricted to people with epilepsy and FDS. These
findings demonstrate the feasibility of using this method to improve the differential
diagnosis, but future research can improve upon this research by exploring whether
the predictive performance of the version of the iPEP that was administered through
the online web application can be improved by training a machine learning model
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using a larger sample size, identifying linguistic features that are useful for identi-
fying individuals with syncope, creating an ASR system that is tailored towards de-
scriptions of TLOC, and identifying and mitigating confounding variables. Finally,
it is important to evaluate the acceptability of the approach from the perspective of
users to ensure this is a clinical decision tool that patients and witnesses would be
prepared to use.
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Chapter 8

Evaluating the acceptability of the
online application

8.1 Introduction

8.2 Acceptability

The 2021 framework for developing and evaluating complex interventions recom-
mends that a feasibility study should evaluate the acceptability of a complex inter-
vention (Skivington et al., 2021). It is important that patients with TLOC accept the
application because people must be willing to use the application and motivated to
thoroughly answer all of the questions for the implementation of the application to
be successful. Acceptability is a construct that has been defined and measured for
healthcare interventions in many different ways with little standardisation (Sekhon,
Cartwright, and Francis, 2017). For instance, it has been defined as “a multi-faceted
construct that reflects the extent to which people delivering or receiving a health-
care intervention consider it to be appropriate, based on anticipated or experienced
cognitive and emotional responses to the intervention” (Sekhon, Cartwright, and
Francis, 2017). This definition is made up of seven different constructs, and the au-
thors of the definition recommend measuring the different constructs at different
time points for an intervention (Figure 8.1).

An important first step towards measuring the acceptability of a healthcare in-
tervention is to decide the most appropriate method. Many previous studies have
opted to assess acceptability using objective measures, such as withdrawal rates and
self-report measures that focus on satisfaction, attitudes, perceptions and experi-
ences (Sekhon, Cartwright, and Francis, 2017). Although these measures do provide
insight into the acceptability of an intervention, a large range of measures are re-
quired to capture all the component constructs for acceptability, and objective mea-
sures may not provide insight into what improvements to the complex intervention
can increase the acceptability. Therefore, we have chosen to take a multi-modal ap-
proach to evaluating acceptability using quantitative and qualitative methodologies.
Given that there is no clear decision boundary about what constitutes an acceptable
intervention, we will qualitatively evaluate the findings of our analysis in accor-
dance with each of the component constructs of acceptability to gain insight into
what the users consider important determinants of acceptability for the application
and potential areas of improvement that will improve the overall acceptability.

8.2.1 Technology Acceptance Model

The Technology Acceptance Model (TAM) is a theory that attempts to explain the
process and factors that influence a person’s acceptance of a new technology (Davis,
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FIGURE 8.1: The seven different constructs that define acceptability.
The image is taken from Sekhon, Cartwright, and Francis (2017)·

FIGURE 8.2: A schematic of the related constructs in the Technology
Acceptance Model.

1989; Davis, Bagozzi, and Warshaw, 1989). The theory is an extension of the theory
of reasoned actions (Ajzen and Fishbein, 1969). According to TAM, the adoption
of new technology is mediated by the behavioural intention to use the technology,
which is in turn influenced by the users attitude (Figure 8.2). There are two notable
mediators of attitude within the mode, the perceived usefulness and perceived ease
of use of the technology. The model theorises that having positive perceptions of
these factors will result in increased usage of the technology. However, these factors
can be influenced by external social factors that must be considered. The relevant
external factors may vary depending on the type and purpose of a technology, but
prominent examples may include demographic information such as age.

TAM has been extensively applied to technology inside and outside of the health-
care domain. A review of the validity of TAM across studies exploring medical
professional adoption of health technology found that many of the relationships in
the model are frequently validated across studies with a large effect size, although
the relationship between ease of use and acceptance was less frequently demon-
strated (Holden and Karsh, 2009). Similar findings have been reported for studies
applying TAM to patient acceptance of medical technology. Razmak and Bélanger
(2018) found that TAM was able to predict patient intention to access and use med-
ical records, although they also did not report a significant relationship between
perceived ease of use and attitude. El-Wajeeh, Galal-Edeen, and Mokhtar (2014)
validated the relationship between the fundamental constructs in the model when
predicting the intention to use mobile health technology. Finally, Lanseng and An-
dreassen (2007) validated the model for predicting the intention to use self-service
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diagnostic technology, but were unable to detect a direct relationship between ex-
pected usefulness and behavioural intention. Furthermore, their model was ex-
tended to explore the relationship between the construct ’trust’ and two of the orig-
inal constructs from the model: expected usefulness and expected ease of use. Trust
was found to influence the two constructs. These findings demonstrate that TAM
can be an effective model for understanding the factors that influence an individ-
ual’s acceptance of medical technology and can provide insight into the factors that
may influence the future intention to use the technology, which can help shape the
future design and implementation of the technology.

8.2.2 Thematic Analysis

A qualitative analysis may be effective at capturing the independent perspective of
users of the healthcare intervention by measuring the meanings, experiences, and
views of the participants to establish what people think about the intervention and
why they think it (Pope and Mays, 1995). The depth associated with a qualitative
analysis can help to determine how acceptable people think the application is and
what changes can be made in the future to improve the acceptability as the develop-
ment of the application advances.

Thematic analysis is a method that may be useful for evaluating the acceptability
of a healthcare intervention. Thematic analysis is a qualitative method that involves
identifying, analysing, and reporting patterns within data (Braun and Clarke, 2006).
The patterns are organised into different themes that are used to produce a detailed
description of the data. Previous research has used thematic analysis to understand
the attitudes towards healthcare interventions that can account for intervention ad-
herence. Jørgensen et al. (2019) demonstrated that various themes extracted from
interviews with mental health nurses can explain attitudes and adherence towards
the “Guided Self Determination” intervention, such as whether people view them-
selves as a novice with regards to the intervention and understand the theoretical un-
derpinnings of the intervention. Furthermore, Valley and Stallones (2018) explored
how perceived benefits, perceived barriers, and self-efficacy can describe adherence
to a mindfulness intervention for health care workers, which could be used to in-
fluence the adoption of mindfulness practices in healthcare workers. These studies
demonstrate that thematic analysis can provide insights into attitudes and usage of
healthcare interventions that could be used to make evaluations and improvements.

Evaluating the acceptability of a healthcare intervention from the patients per-
spective requires consideration of the individual experiences of having a specific
diagnosis and the corresponding healthcare that is associated with the condition.
Thematic analysis has been used to understand the lived experiences of people with
epilepsy and FDS. People with epilepsy have reported that the onset of seizures
marks a significant moment in their life that has an impact on their family and
friends, finances, employment, independence, and self-esteem because of the stigma
and consequences of having a seizure and taking anti-epileptic medication (Rawl-
ings et al., 2017b). Many individuals with epilepsy report having positive expe-
riences with health professionals and view medication as a means of controlling
seizures, although there were forms of trial and error associated with identifying op-
timum treatments (Rawlings et al., 2017c). People with FDS have reported a lack of
understanding about their health condition by themselves, others, and health profes-
sionals, negative attitudes by health professionals, and limited access to treatment,
even though individuals report increased psychiatric comorbidities, isolation, and a
reduction in the ability to cope (Rawlings et al., 2017c). The process of receiving a
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diagnosis is often long and many of the tests for identifying FDS often produce “nor-
mal” results, which may explain why many individuals are resistant to the diagnosis
(Rawlings et al., 2017c). Using a qualitative approach will allow us to understand
how people draw upon knowledge and experience while evaluating the acceptabil-
ity of an automated method of predicting the cause of TLOC.

It is equally important to consider the experiences of individuals supporting peo-
ple with a diagnosis of TLOC. Witness accounts of what happened during an episode
of TLOC can be vital for making the correct diagnosis (Chen et al., 2019; Wardrope
et al., 2020a). Therefore, it is important that an automated method for predicting
the cause of TLOC is acceptable to witnesses as well as patients. Many witnesses,
for example family members, are consistently involved in the patient care pathway
and experience their own trials and tribulations throughout the transition between
recognising a problem, receiving treatment, and recovery (Pieters et al., 2016). These
experiences may be influential in the evaluation of acceptability.

8.2.3 Aim

This analysis will use a mixed-methods approach to evaluate the acceptability of the
online application from the perspective of the patients and witnesses that have used
it. Firstly, we will explore the general attitudes towards the application using the re-
sponses to a closed questionnaire. The questionnaire is based upon the Technology
Acceptance Model, a theory that provides insight into people’s intention to use new
technology. Secondly, we will use the methodology of thematic analysis to explore
the attitudes of patients and witnesses towards the application. This analysis will
use an inductive approach to increase understanding of how the application is per-
ceived by the users based upon their lived experience. We hope that the thematic
analysis will provide a more in depth understanding that can guide the interpreta-
tion of user attitudes that were measured using the Technology Acceptance Model.
Thirdly, we will evaluate how people have used the application, for example drop-
out rates, because these findings may provide further insight into the perceived ac-
ceptability of the application. Finally, we will evaluate each of the component con-
structs of acceptability in accordance with the outcome of each stage of this analysis
to formulate conclusions about the perceived acceptability of the application and
potential areas of improvement.

8.3 Method

8.3.1 Mixed Methods Approach

The mixed methods research approach involved combining quantitative and qual-
itative research methods to increase the breadth and depth of understanding and
corroboration, thereby strengthening the conclusions that stem from the research
project (Johnson, Onwuegbuzie, and Turner, 2007). There are many different ap-
proaches that can be used in mixed methods research and the most appropriate
research design for a given research question should be constructed based upon
a series of decisions (Schoonenboom and Johnson, 2017). One of the first impor-
tant decisions is determining the objective of the mixed methods research (Greene,
Caracelli, and Graham, 1989; Bryman, 2006). Our objective is to use the qualitative
method to provide contextual information about the broader feedback questionnaire
(Bryman, 2006). The questionnaire could be more generalisable because more people
will provide feedback through this method. Furthermore, given previous research
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has demonstrated that the underlying factors measured by the questionnaire are pre-
dictive of intention to use the application, the feedback can help determine potential
changes to improve intention to use. The qualitative feedback on the application
can provide context about the quantitative feedback and help guide future improve-
ments or changes to improve acceptability. The second important design decision
regards whether the different components of the project are conducted sequentially
or concurrently (Guest, 2013). Although all participants completed the feedback
questionnaire before the interviews were conducted, the interviewer did not look
at the feedback questionnaire responses before interviewing participants. The ob-
jective was to collect feedback that was guided by what the participants wanted
to share, rather than the objective of the researchers. The third important design
decision involves determining the “point of integration” where each of the inde-
pendent research components are mixed or connected in some way (Schoonenboom
and Johnson, 2017). Our findings were integrated during the inferential stage of the
research project (Tashakkori, 2009) where we explore the insights into acceptability
that each component of the project can provide. Therefore, the final inferential stage
that evaluates the acceptability of the application will utilise a deductive approach
by applying the construct of acceptability to the findings from each of the compo-
nents of the mixed-methods approach.

8.3.2 Sample

Participants who took part in the wider research project chose whether they wanted
to provide feedback in the form of a questionnaire, telephone interview, or both.
Therefore, there are different participants for each component of this project. Table
8.1 provides a breakdown of the demographic information for each component of
the analysis.

A total of 54 participants completed the feedback questionnaire (59.3% of whom
were patients). The respondents were aged 16-82 x̄=44.5, std=25). More of the re-
spondents were female than male (66.7%) and most were white and British. The
most frequent level of education was a university undergraduate degree or above
(57.4%).

The feedback interviews were conducted with 24 participants, from which 66.7%
were patients. Interviewees were aged 19-80 (x̄=52.3, std=19.5). More of the inter-
viewees were female (58.3%) and were predominantly white and British. The most
frequent level of education was a university undergraduate degree or above (66.7%).

TABLE 8.1: A breakdown of the demographic information for the par-
ticipants who provided feedback on the online application by com-
pleting the feedback questionnaire or participating in the feedback

interview.

Questionnaire Interview
N 81 24
Participant Type

Patient 58 16
Witness 23 8

Age
16-25 14 3
26-40 21 5
41-65 31 10

Continued on next page
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Table 8.1 – continued from previous page
Questionnaire Interview

66+ 15 6
Gender

Male 27 10
Female 54 14

Ethnicity
White British 57 16

White European 1 1
Black British Caribbean 0 1

White 12 3
German 1 0

White mixed 1 0
White other 1 0

British 5 2
Indonesia 1 0

Any other asian 1 0
Mixed 1 0

Education
No education 3 0

Secondary education (GCSE or equivalent) 11 2
Further education (A-Level or equivalent) 27 6

Higher education (Undergraduate or equivalent) 24 7
Higher education (postgraduate degree or equivalent) 11 6

Higher Education (PhD) 4 2
Information not available 1 1

8.3.3 Thematic Analysis Analytic Approach

Semi-structured qualitative research interviews were conducted on average 11 days
(std = 7.4) after participants completed the procedure. The interviews were con-
ducted over the phone, recorded, transcribed verbatim, and subsequently checked
for any errors. Participants were informed that although the interviewer had a short
list of questions (Table 4.7), the purpose of the interview was to hear all of their
thoughts regarding the application and they were free to talk about anything that
came to mind. To prevent the feedback becoming too constrained by the questions,
the interviewer encouraged participants to openly share thoughts during the ini-
tial stage of the interview and then subsequently asked more specific questions that
could prompt further thoughts once participants indicated they were ready to move
on. On average the interviews lasted 22.8 minutes (SD = 13.5).

The interviews were analysed using the methodology of thematic analysis out-
lined by Braun and Clarke (2006). Firstly, the main author read through the inter-
views repeatedly and made notes to become familiar with the data and review the
quality of the transcripts. Secondly, the first author used an inductive approach to
coding the data based on the features present within the data. Thirdly, the codes
were organised into four initial themes with sub-themes. The early themes followed
the format of “bucket” themes (Braun and Clarke, 2022). All authors met to discuss
the codes and themes. Subsequently, NP & TW reviewed the data in greater detail
and explored how the themes could be developed to transition from a “bucket” to
a story, leading to the generation of the three themes that transitioned from purely
describing the data to including some interpretation. Fourthly, the first author began
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reviewing the themes by revisiting the original data and codes to explore whether
the themes align with the data and to ensure the themes have internal and external
homogeneity (Patton, 1990). During stages three and four, it became apparent that
the codes were predominantly semantic and much of the latent content was nested
under semantic codes. Therefore, some of the codes were split into multiple smaller
codes to allow the latent content to be assessed independently. The themes were
then written into a research report to provide an extensive account alongside the
supporting evidence.

8.3.4 Questionnaire Preprocessing

The questions were grouped based upon the latent construct they were designed
to measure by the Technology Acceptance Model. The scoring was reversed on the
negatively framed questions to ensure the scores were consistent for each question.
We calculated descriptive statistics for each latent construct for the ease of reporting
the findings, but independent questions were explored where appropriate for pro-
viding further information regarding the acceptability of the application. Missing
values were removed from the analysis using a pairwise deletion.

8.4 Results

8.4.1 Responses to the closed questionnaire

The internal consistency of each of the component constructs from the Technology
Acceptance Model were measured using Cronbach’s alpha. The internal consis-
tency was considered “acceptable” based on the recommended guidelines (Nun-
nally, 1978) for usefulness (0.74), attitude (0.77), and ease of use (0.74).

When the average score across all participants for each construct is rounded to
one significant figure, people reported that they somewhat agree that the applica-
tion is useful (x̄=4.99, std=0.95), easy to use (x̄=4.48, std=1.06), and for the attitudi-
nal measures regarding the application (x̄ = 4.84, std=0.98). For the single question
about whether people would use the application if it were available in the future, on
average people selected somewhat agree (x̄=5.13, std=1.57).

8.4.2 Themes from the thematic analysis

There were three themes identified by the thematic analysis. The first theme cen-
tered around the importance of providing the right information in order to receive
an accurate diagnosis, and the influence of the web application on the information
that people can provide. In the second theme, people often described the medical
pathway as a journey and discussed the impact the application might have on the
progression through this journey. The final theme centered around the importance
of control and the ability to make choices about the application. Control over the
application design was thought to influence the information that people provided,
which related back to the first theme.

8.4.2.1 Providing information is crucial for making the diagnosis
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TABLE 8.2: A breakdown of the percentage of responses for each
of the component constructs of the Technology Acceptance Model.
Missing responses were removed using a pairwise deletion. There-

fore, the percentages on each row do not always sum to 100%.
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TABLE 8.3: A breakdown of the responses for each of the questions
on the 17 item questionnaire. The 7pt Likert scale was converted into
binary format for ease of interpreting the findings. The percentages
were calculated before the pairwise deletion of missing values. There-

fore, the percentages on each row do not always sum to 100%.

Question Disagree Unsure Agree

Save time 7.4% 17.3% 75.3%

Save effort 14.8% 17.3% 64.2%

More convenient 19.8% 16.1% 61.7%

than booking and

attending a medical

appointment

Easier than booking 11.1% 13.6% 71.6%

and attending a

medical appointment

Help me to be 4.9% 24.7% 66.7%

referred to the

right service

Help me to receive 11.1% 34.6% 50.6%

the correct diagnosis

Confusing to use 66.7% 9.9% 22.2%

Time consuming 81.5% 8.6% 7.4%

Takes a lot of 77.8% 8.6% 11.1%

effort to use

Complicated to use 81.5% 6.2% 8.6%

Required little 11.1% 9.9% 75.3%

work to use

Easy to talk to 17.3% 8.6% 72.8%

Good 9.9% 16.1% 71.6%

Pleasant 9.9% 18.5% 70.4%

Beneficial 8.7% 17.3% 71.6%

Favourable 21% 28.4% 49.4%

I would use it 13.6% 9.9% 74.1%

in the future
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TABLE 8.4: Quotes from the feedback interviews that relate to the
theme “providing information is crucial for making the diagnosis”.

label Quote
T1A it has to rely on collecting information that I give it, and

if I don’t give it then it potentially misses out on information
that would be relevant in making a diagnosis

T1B I answered all the questions to the best of my ability and I
think I gave, and I gave everything that I thought was right for
that question. But I don’t know if it was because it can’t tell
me whether I’ve given it enough information, so I don’t know
whether that’s, and I don’t know how you would ever know.

T1C If I didn’t feel that I’d given enough information or the
system didn’t allow, I would probably follow it up and say, I
don’t think I was able to say everything and I need to speak to
somebody about it.

T1D if you’re not getting any prompts and you’re not getting
anything, even any kind of eye contact, any sorta smiles or
raised eyes or ooh really, that’s interesting from the clinician,
you might not say as much as would be useful to help your
diagnosis.

T1E A lot of the symptoms were kind of really odd things to
explain. Like some of the (1 second) just the things I felt,
and so (1 second) just having the, you know, doctor just being
able to just nod and, OK, yeah, I get it, almost. (1 second)
Just helps.

T1F Um, even when you go to the doctor you like forget stuff
until, because they’re very well trained (laughter) until
somebody prompts you (1 second) and says, well tell me more
about that, or what do you mean when you say fainting and, you
know, that kinda thing. So I felt like I’d only really touched
the surface.

T1G Cos it’s kind of, it’s kind of linear and so you don’t get
the chance to say, oh well when I said that at the beginning what
I meant was (1 second) do you, do you see what I mean?

T1H I felt it was just a bit restricted in terms of just having a
yes/no option; I wanted kind of a maybe option to then be able to
say, well my, my case was, was this, if that makes sense?

T1I And the other one was that there were some questions asked and
then they were almost yes/no answers but I’d got background
coming off, like I’ve got a pacemaker. And it didn’t give me the
opportunity to, to input that

T1J Yeah, I think for me it enables you to articulate, I think I
might have touched on this earlier to be fair, but I think it, it
enables you to articulate what happened more freely than you
would be being asked questions on a, on a form or something as well.

T1K It’s cos you’re able to go into a bit more detail as well.
And I think, sorry, if you can go into more detail then I think
that’ll (1 second) help diagnose it a bit quicker as well.

T1L I found that more reassuring and gave me more confidence
Continued on next page
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Table 8.4 – continued from previous page
Label Quote

in the application because it made my, made me think oh it must
be quite sophisticated if it can take information from tha

T1M perhaps more open ques, asking more open questions like,
you know, do you (1 second) do you have a range um; what is it?
Do you have a range of experiences relating to blackouts? Um,
something whi, which opens up the ability for you to, for you to
give infor, more information

T1N I was taking blood pressure medication, which, you know, a
common side effect of that is you can feel, um you can feel dizzy
or light-head, headed and, and both the medication, in fact there
were three medications I had all had that as a potential side
effect. So my GP and in fact other consultants I’ve seen thought
it was probably to do with um (1 second) with, with medication,
um but I stopped taking the medication altogether about three
months ago and the, and the problem, er while that general
dizziness that I, well in fact it’s not dizziness but something
light-headed um has (1 second) um has got less

T1O I mean um (1 second) I think specifically in, in, in the um
case of, of my daughter, of (Daughter name) um that I, I, I
thought that I hadn’t had enough time to um go through the, the
sort of the, the social psychological er or emotional context er
(1 second) you know, of her situation at the moment um, and um, you
know, what she’d experienced in the, in the last days, weeks, er
months before she had the seizure. Er, I, I didn’t find that there,
there was an opportunity to do this in sufficient detail er during
the exchange with, with the er, with the um AI.

T1P I would feel more content personally that, ooh, I’ve done a good
job, giving the yes/no answers seems a bit er (1 second) when you
think there’s context to go with it, if you’ve not put the context
in you feel what, not fulfilled.

T1Q that’s sort of guiding me in one direction a bit and I’m, I’m
not sure that’s gonna guide, guide this process in the right
direction for me. But that was more to do with the questions
themselves again, as I said, cos they didn’t cover the scope of
what I was experiencing.

T1R But you really do think, need to think about, about the
questions almost from a patient’s perspective rather than just
a doctor’s perspective.

T1S Yeah, exactly, yeah. And I think even if, even if there was
sort of an opportunity to say, is there anything you want to
add, I think for both of us (Pat name) could have, could, could
have kinda contextualised why he, he said no to some of the
questions.

This theme centres around the ability of users to provide the necessary informa-
tion to the application to make a diagnosis. Providing information, particularly the
relevant information, is considered a vital preceding step towards making a diag-
nosis and any hindrance to this task is understood to hinder the diagnostic process
[T1A]. Although there were some participants who felt they were able to give all
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the information that they wanted, many people reported that they could not and
outlined a range of factors that caused this restriction when compared to routine
doctor-patient interactions.

People expressed uncertainty about whether the information they had provided
was sufficient to make the diagnosis [T1B]. During routine consultations, the doctor,
not the patient, has the knowledge of what information is required to make the diag-
nosis. In the absence of a doctor, the patient is responsible for making this judgement
but must do so without the knowledge and expertise to make a diagnosis. Users ex-
pressed concern that they may not share diagnostically relevant information, which
may influence their trust in the application and prompt them to seek out further sup-
port from medical professionals [T1C]. Some participants requested prompts along-
side the questions to aid them in answering the questions. Prompts would remove
some of the responsibility from the patient because they are less responsible for de-
ciding what information is relevant and can tailor their responses based upon what
the professionals have decided is important.

In addition to knowing which information is relevant for making a diagnosis,
the verbal and non-verbal feedback that doctors provide was considered important
for facilitating and encouraging patients and witnesses to share information. Users
orientated towards a continuous interaction between the patient and doctor where
non-verbal cues prompt patients to continue talking [T1D], which was absent from
interactions with the VA and consequently resulted in shorter and less detailed re-
sponses. This was considered particularly troublesome during descriptions of symp-
toms that were considered difficult to explain, for example subjective symptoms that
are experienced during a seizure [T1E]. The absence of interactivity during the appli-
cation did not encourage users to elaborate their responses based on the recipient’s
interest [T1F] and caused users to perceive the interaction in a linear fashion where
they were unable to draw upon and elaborate their previous responses [T1G], which
often resulted in superficial responses.

The questions were another element of the application that influenced the in-
formation that people were able to provide because they made relevant certain re-
sponses. People reported feeling restricted by the binary questionnaire because they
were unable to give the response that they wanted, for example some people did
not have any memory of the seizure so would have preferred to provide a neutral
“maybe” response [T1H] and others felt there was important contextual information
that should have been provided alongside their response, for example that palpita-
tions were associated with a pacemaker [T1I]. In contrast, many people reported a
preference for providing spoken descriptions of their attacks because they were able
to provide more information [T1J] and that this detail would help make a diagno-
sis [T1K]. Providing spoken descriptions gave the impression that the application
was more sophisticated and increased user confidence [T1L]. However, many users
still felt that these questions restricted the amount of information that they could
provide because there was information that they believed was important for the di-
agnosis that was beyond the scope of the topical agenda of the questions (Heritage
and Maynard, 2006), for example providing more detail about the different type of
attacks that they experience [T1M] and contextual information that may be related
to symptoms and the cause of the attacks, for example the side effects of medication
[T1N] and social, psychological, and emotional factors [T1O]. The questions appear
to presuppose that users can answer the questions and that the response they give
is sufficient to make a diagnosis, but instances where this presupposition does not
align with the users expectations or experience can leave users feeling unfulfilled
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[T1P] and concerned about how effective the application will understand their ex-
perience [T1Q]. Changing the design of the questions, for example generating ques-
tions that allow patients to share all the information that they feel is important [T1R]
and providing people with the opportunity to add relevant information at the end
of the procedure [T1S], may increase the trust and satisfaction for users of the appli-
cation.

8.4.2.2 Progression through the medical pathway

TABLE 8.5: Quotes from the feedback interview that correspond to
the theme “progression through the medical pathway”

label Quote
T2A speed up process of people getting diagnosed a lot quicker
T2B er the doctor’s gonna call you back (1 second) on Thursday

(laughs) and it’s now Monday (laughs) you know, um you can speak
to a doctor as such straight away and know then that your
situation has immediately gone into the, into the system

T2C Cos it took ‘em about four/five years before they finally
diagnosed me. (laughs)

T2D I wouldn’t want is, is it to be used by the NHS as, as a
sort of a, a delaying tactic

T2E there was like a huge waiting list to even be seen, and I
think it could massively reduce people’s anxiety if, if they
kinda like had this intermediate step of like a digital
consultation

T2F follow-up must be good and quick.
T2G I don’t know. When things disappear into cyber space I’m,

I’m always thinking well does, does, does it go somewhere or
has it got, has it got lost in cyber space, do you know what
I mean? So, you know, you kind of need to know that it’s gone
somewhere for a start

T2H I want to see um something come up (1 second) which tells
me, thank you, um (1 second) thank you, um we will be back in
touch with you, somebody will call you or what have you in
(1 second) X amount of (2 seconds) time

T2I I wouldn’t want it to be the only tool, I would still want
somebody to sit in front of me and to probe.

T2J I’d hate to think that the computer diagnosed me and the
neurologist went along with the computer and didn’t explore

T2K I think I believe that er I myself, it’s a personal
opinion, um, you know, I, I believe that the, the doctor’s
er empathy and understanding is very important

T2L I found that quite (1 second) comforting cos it were just
like speaking to a normal doctor

T2M it feels a lot nicer than you, you know, if, if you, you
might be kind of do a, on triage or you might be given a
questionnaire, so it’s a lot nicer than doing sort of some big
kind of yes/no tick box questionnaire because you’ve got that

Continued on next page
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Table 8.5 – continued from previous page
Label Quote

opportunity to, to, to kinda speak
T2N I didn’t feel connected to it, let’s put it that way. I,

I kind of felt like it was an exercise I was doing, I didn’t,
didn’t feel like it was er anything I was connected to on a
personal or medical level.

T2O it’s fine as long as it’s presented to you as, as the very
early stages, this is what we do in the very beginning because
it will help us direct you in the right direction. You know,
it’s just, as I say, I wouldn’t mind if I knew that there was
more to come after it

T2P It would just be really useful (laughs) if you could tell
one person or like one computer application and then everybody
got the information; I think that’s a frustration for people

This theme describes how the medical care pathway is often conceptualised like
a journey because users often describe the importance of making progress along
the pathway and the defining milestones along the way. Many areas of feedback
about the application focus on the impact that the application will have on progress
along the pathway. Many users thought that the application would lead to faster
progression along the pathway [T2A] and referenced the importance of the informa-
tion being in the ‘system’ [T2B]. Having information available in the ‘system’ may
represent a milestone along the medical care pathway where information about the
health problem is visible to medical professionals and the professionals can begin
to make progress in their responsibilities, for example making referrals. Many in-
dividuals reported long diagnostic delays [T2C], an unpleasant experience where
progress along the medical pathway is delayed, and it was important that the ap-
plication improved progress rather than delaying it [T2D]. Furthermore, one user
suggested that completing the application may give rise to the perception that they
are making progress along the medical pathway while they are waiting for upcom-
ing appointments, which would reduce some negative emotions associated with the
delay [T2E]. In order for this to be effective though, there should be a quick follow-
up [T2F] and progress should be observable to the user in the form of knowing who
the information has been sent to [T2G] and when the follow-up will be [T2H].

A second facet to the theme was about whether the application would change
the current medical pathway. It was important to users that the application did not
replace consultations with doctors [T2I] and that doctors did not solely rely on the
output of the application to make a diagnosis [T2J]. One reason for this is that the
doctor’s empathy and understanding were an important part of the medical path-
way [T2K] and although some people thought speaking with the VA was pleasant
[T2L], particularly more pleasant than completing a questionnaire [T2M], the VA
lacked the human connection that is present in human interaction [T2N]. Therefore,
the application should be used to complement rather than change the pre-existing
medical pathway [T2O], although one user did speculate whether the spoken de-
scriptions of what happened during an attack could be shared with multiple medi-
cal professionals to reduce the requirement to repeat the story on several occasions
[T2P].

8.4.2.3 Making choices while completing the application
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TABLE 8.6: Quotes from the feedback interviews that correspond to
the theme “making choices while completing the application”.

label Quote
T3A just give the user more control over what’s actually

happening on screen.
T3B So it is like do you wanna see a male or female. (1 second)

Person? So then you click and you get the, either the female or
the (2 seconds) male one, yeah, all stuff like that, and if you
wanna see some (1 second) you, um related to your ethnicity or
something like that, so that you kinda feel; er, er what do you
call it now? Comfortable

T3C Because of those inbuilt um (1 second) experiences that you
have and you relate to, um someone in the medical profession. I
still have the prejudice of, I’m just being honest here,
inbuilt, this is not what I agree with logically and rationally,
this is my feelings, um I saw an inbuilt thing of um (1 second)
(1) men being dismissive and all that

T3D Because for me I was concentrating on telling you what was
happening with me and how it happened; and I’m having a
conversation literally in the same way I’m having a conversation
with you now. So I’m not watching the technology

T3E Other than that I found it really, it was pretty much (?)
(laughs) but literally you gave your questions and gave, you
gave the question, you gave the answer, you went to your next
question, bish, bash, bosh, job’s a good ‘un; it weren’t, it
didn’t take an exorbitant amount of time, it were like
relatively quick and easy

T3F Um, I thought, I thought it worked really well; it was
easy to use.

T3G actually thought about it, it was actually pretty good
and it was actually nice to talk to a face rather than just
having a voice recorded.

T3H Personally I would, I would just scrap the whole animation
thing. Just ha, have a voice instead (1 second) to make, that
would have made it far easier to concentrate on the question

T3I I was kind of expecting to see a doctor in a doctors’
surgery looking, looking like a doctor

T3J So I don’t know if it might be worth giving an option
to give people chance to think of their answer first, start
the recording to give their answer.

T3K And you were able to re-answer if you thought you hadn’t
re-answered something

T3L It’d be easier if you could cos you’d actually look over
what you said and see if you’d missed anything yerself

T3M I have to stop. So if that happened halfway through
(2 seconds) um is there a button you could have that says
(1 second) er (1 second) I don’t know, er exit, save, come
back to

The freedom to make choices was a prominent area of feedback. Many people
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expressed a preference for more freedom to make choices about the design of the
application [T3A], for example choosing the type of avatar [T3B]. Having choice
can allow individuals to tailor their experience to their own needs and preferences
to make the experience more pleasant, for example one individual reported that
they had experienced discrimination by male medical professionals in the past and
explained that they would feel more comfortable if the avatar was female [T3C].

Choosing the design of the application may allow users to self-manage their ex-
pectations about the application because making these choices at the start will fore-
warn people of what is going to happen further into the application. One user re-
ported that some design elements of the application acted as a distraction because
they drew their attention to the application itself and away from the activity that they
were trying to focus on, which was providing information about what happened
during their experience of TLOC [T3D]. Given that previous research has demon-
strated that people orient to the normative rules in medical interactions (Heritage
and Maynard, 2006), it is clear that people know what to expect during these inter-
actions, which is absent when interacting with the application because this is a novel
activity. Therefore, choice may allow people to overcome unexpected and unusual
experiences.

Having more choice about the design of the application may change how easy
the application is to use. Although many individuals reported that the application
was easy to use [T3E-F], individuals have different preferences and having greater
control of the design of the application would allow people to choose designs that
they personally feel are easier to use. For example, people expressed different opin-
ions about the design of the avatar [T3G-I] and the design of the avatar was consid-
ered important for concentrating on the task.

Users also expressed an interest to have greater control over how they provide
their responses, for example choosing when they start the recording so that they
have time to plan their response and the opportunity to review and edit the re-
sponses that they have already given [T3J-L]. This would allow people to provide
information that they may have forgotten and to revisit the questions if they felt
they were not providing the best responses under the current circumstances [T3M].
Although people do not have time to rewrite their responses during interactions
with doctors, the interaction is fluid because the patient can ask the doctor to refor-
mulate questions, the doctor can prompt the patient for more relevant information if
it was not provided, and the patient can add in more information at a later stage dur-
ing the interaction. However, this is not possible with the application - the absence
of the doctor leaves all the responsibility to the patient. Therefore, users may want
more control over how responses are given to allow them to provide responses that
they feel are most effective for the task in the absence of the fluid nature of human-
human interactions, thus responding to the responsibility to provide the necessary
information that the application instils.

8.4.2.4 Field notes on the use of the application

Out of all participants who took part in the experiment, only 78.2% (61/78) com-
pleted the interaction with the VA section of the application, indicating a drop-out
rate of 22% for participants throughout the procedure. Although there is little feed-
back about why these participants dropped out of the experiment, some participants
indicated that the procedure was taking them longer than they had anticipated and
had hoped to return to complete the remaining section at a later date.



8.4. Results 125

There were a range of technological issues associated with completing the ap-
plication. One patient logged into the application using the witness login details
rather than the patient login details. One participant skipped the first question and
only started answering the second. One participant reported that they thought the
application was recording and spoke their response, but they subsequently had to
repeat their response because the application was not recording. The recordings
produced by one participant have a high level of distortion, potentially indicating
that the recording device was covered during the interaction with the VA. There was
background noise in many of the recordings, for example the TV. The final audio file
was not received by the server for one participant, which may have been caused by a
connectivity issue on the participants device. Finally, given that the application was
initially designed to be used on a single device at the Royal Hallamshire Hospital,
the application was not vigorously tested for cross platform devices. There was a
device compatibility issue associated with the recording element of the application
that interfered with performance on apple mobile devices. Consequently, a couple
of participants who only had access to these devices encountered issues providing
spoken descriptions through the application.

8.4.3 A deductive analysis of acceptability

TABLE 8.7: Quotes that directly relate to the evaluation of acceptabil-
ity but were not used in the description of themes in the previous

sections

label Quote
T3A just give the user more control over what’s actually

happening on screen.
T3B So it is like do you wanna see a male or female. (1 second)

Person? So then you click and you get the, either the female or
the (2 seconds) male one, yeah, all stuff like that, and if you
wanna see some (1 second) you, um related to your ethnicity or
something like that, so that you kinda feel; er, er what do you
call it now? Comfortable

A1 But um like, as I say, I love the concept but I just don’t
(1 second) think it would, unless you’ve got like dead specific
questions for people with different symptoms. So you could like
separate them and categorise them, I don’t think it would work.

A2 I, I think if my scepticism, shall I call it, er is wrong
then it may be helpful because I know these days most people,
either rightly or wrongly, do look into, in er YouTube and
ask about, shall we say, medication or illnesses, er what’s
the treatment, what are they for, things like that. So
providing the answers are accurate, or the choices given
(1 second) are accurate (1 second) no, I don’t think I’ve
any other problem, it is this just (1 second) can we feed in
the information to get the accurate output, as it were.

A3 I just rushed through it because I felt like I had, I
almost felt like there was a deadline, as if there was gonna
be a line going across and I had to give the answer within a

Continued on next page
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Table 8.7 – continued from previous page
Label Quote

timeframe.
A4 I did sort of, the first (1 second) er screen I sort of sat

there and looked at it before I realised I had to press play;
I don’t know why, I just thought it would automatically start
playing at me

A5 I was kind of expecting to see a doctor in a doctors’
surgery looking, looking like a doctor (1 second) but not
(1 second) a real person, but looking very much like the
one

A6 I’ve got very used to using Zoom it, it did my head in
that there wasn’t any um sort of like (1 second) er visual
feedback

8.4.3.1 Affective attitude

Affective attitude refers to how someone feels about taking part in an intervention.
The findings from the affective component of the Technology Acceptance Model
suggest that users are largely undecided about their attitude towards the applica-
tion. Although 67.9% of users agreed that the application had positive characteris-
tics, most of the respondents indicated that they somewhat agree with this (46.91%),
in accordance with the average rating of somewhat agree. Furthermore, 22.2% re-
ported that they were undecided about the application. This suggests there is room
for improvement for the application.

Individuals may be undecided about their attitude towards the application be-
cause there is a conflict between their attitude towards the concept and the design of
the actual application. One participant reported that they like the concept of the ap-
plication but suggested that the application may not work in the current design [A1].
Given that the Technology Acceptance Model has shown that perceived usefulness
and ease of use both influence affective attitude, it’s unsurprising that people may
be uncertain about how they feel about the application given that they are uncer-
tain about whether the information that they have provided is sufficient to receive
the correct diagnosis, which would be exacerbated if people encountered issues with
the application that influence the ease of use. One user displayed this understanding
because they explained that they have a scepticism about whether the information
that the application collected could be used to predict the right diagnosis, but if this
scepticism was demonstrated to be unfounded, they would not have a problem with
the application because it aligns with people’s current behaviour of accessing med-
ical information through the internet, although they expressed uncertainty about
whether this behaviour is the right or wrong approach to medical care [A2]. There-
fore, improving the design of the application or improving trust in the design of
the application by demonstrating that the design of the application is sufficient to
accurately predict the diagnosis may be required to improve the users’ attitudes.

8.4.3.2 Burden

Burden describes the perceived amount of effort required to participate in an in-
tervention, for example time, expense, and cognitive effort. The subscale “useful-
ness” should provide insight into the perceived burden of the application because
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the application is designed to guide referral pathways and reduce burden, so a use-
ful application should reduce burden. 72.8% of users reported that the application
was useful and 23.5% were unsure. An exploration of the responses to independent
questions on the subscale can provide insight into where effort is required. Most
people agreed that the application would save them time (75.3%), but fewer people
thought that the application would save them effort (64.2%). Many people thought
that the application was easier than booking a medical appointment (71.6%), but
fewer reported that it was more convenient (61.7%). People may perceive the ap-
plication as requiring more effort because the interaction with the VA requires them
to determine what information is relevant and important for making the diagnosis,
whereas the doctor would typically have this responsibility during medical interac-
tions. Therefore, patients have more responsibility while completing the application,
which could be construed as increased cognitive effort required for the application
compared to routine clinical interactions.

The subscale “ease of use” also provides insight into the burden of the appli-
cation. Only 49.4% of people reported that the application was easy to use across
all questions on the subscale and 34.6% were unsure. The score for ease of use ap-
pears to be influenced by particular elements of the application, for example only
7.4% of users reported that the application was time consuming, 8.6% reported that
it was complicated to use, and only 11.1% agreed that it required a lot of effort, but
22.2% agreed that the application was confusing and 17.3% disagreed that the ap-
plication was easy to talk to. These findings suggest that the ease of use is largely
influenced by how much people understand the intervention and how easily people
can provide spoken descriptions of what happened to the VA. These findings were
corroborated by the thematic analysis because many people reported difficulty pro-
viding all the information that they felt was relevant because the lack of interactivity
by the VA reduced the amount that people elaborated their descriptions, and the
topic agenda set by the questions reduced the scope of what people thought they
could talk about and made it difficult to describe different types of information that
they thought were relevant. These findings suggest that increasing the scope of top-
ics that people can talk about and including cues to guide the topic could reduce the
burden for users.

8.4.3.3 Opportunity Costs

Opportunity costs refers to the extent to which benefits, profits, or values must be
given up to engage in the intervention. The most relevant cost that was discussed
during the feedback interviews was the potential loss of future interactions with
medical professionals. Doctors were regarded for their knowledge, empathy, and
understanding, and many users expressed a concern that future interactions with
doctors would be reduced or the quality of these interactions hindered because of
the reliance on an online application. Although the application is not designed to
replace medical professionals, a future provider would have to be cautious that such
an application did not influence interactions with medical professionals and ensure
that users understood this to reduce the impact on the perceived acceptability of the
application.

8.4.3.4 Ethicality

Ethicality describes the extent to which an intervention aligns with an individual’s
moral system. Unfortunately, ethicality is not covered by the Technology Acceptance
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Model questionnaire and was not a prominent part of the thematic analysis. There-
fore, this area of acceptability would need to be assessed further in future research.

8.4.3.5 Self-Efficacy

Self-Efficacy refers to people’s confidence that they can perform the behaviours re-
quired for the intervention. Although some participants encountered technological
barriers to completing the application and some design elements of the application
sometimes reduced how easy the application was to use, these factors are not related
to the individuals confidence in their own abilities to complete the activity. The most
prominent area of feedback that related to self-efficacy was whether people felt they
had the knowledge required to determine the appropriate information required by
the questions in order to make the correct diagnosis. Many people reported uncer-
tainty about whether they could do this. Therefore, future implementations of the
application should provide guidance about what information is required to increase
people’s confidence that they can complete the task.

8.4.3.6 Perceived Effectiveness

The extent to which the intervention is perceived as likely to achieve its purpose.
An effective online application would successfully predict the underlying cause of
TLOC and refer them to the appropriate service. Most people thought that the ap-
plication might help them be referred to the right service (66.7%), but a large pro-
portion were uncertain (24.7%). Fewer people thought the application would assist
them to receive the right diagnosis (50.6%) and more people were uncertain about
this (34.6%). These findings suggest that many people are uncertain about the poten-
tial effectiveness of the application, which is unsurprising given that the application
is currently only being tested. The most probable reason that people are uncertain
about the effectiveness of the application is that they do not believe the informa-
tion collected by the application is sufficient to predict the diagnosis, both because
the closed questionnaire and spoken descriptions does not take into consideration
important contextual information, particularly when compared to the breadth of in-
formation that is considered during routine medical consultations.

8.4.3.7 Intervention Coherence

Intervention coherence refers to how well people understand the intervention and
how it works. The intervention that we are researching is not currently being used
and we do not know how it would be used in clinical practice. However, we can
evaluate intervention coherence based upon our theoretical definition of how the
application would be used and the misconceptions that were present during the
feedback interviews. The feedback interviews revealed that people often develop a
preconceived idea of what the application was going to consist of and how it would
be used in clinical practice. These preconceptions can influence how they engage
with the application. Examples of the misconceptions include perceiving that the
recording elements of the application have a time limit [A3], expecting the video
to play automatically [A4], expecting the avatar to resemble a doctor in a doctor’s
surgery [A5], and expecting to see a video of themselves on the screen too to resem-
ble video conferencing [A6]. People reported being disappointed when the applica-
tion did not align with their prior expectations, which demonstrates the importance
of managing expectations on perceived acceptability. We found that people wanted
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to make decisions about the presentation of the application themselves, which may
allow people to self-manage their expectations about the application and increase
the acceptability.

Users frequently displayed a misunderstanding about how the application would
be used in clinical practice. The theoretical idea of the application is that it would be
a standalone application that patients (and witnesses) would be instructed to com-
plete by a medical professional in Primary Care. The application would provide
a predicted diagnosis and, the medical professional would use their own expertise
and the prediction from the application to guide the referral. In contrast, the users
displayed a different understanding of how the application might be used in practice
under the theme “progression through the medical pathway”. People thought that
the information collected through the application would be shared with multiple
medical professionals, stored in a central system that all medical professionals can
access, and that medical professionals involved in their future care will look at the
spoken descriptions collected by the application before future appointments, which
would influence the information they need to share during the appointment. These
observations are important for understanding the acceptability of the application be-
cause it demonstrates that users will formulate an understanding of an intervention
that may be different from what the intervention was designed for or how it is used
in clinical practice, which could reduce the perceived acceptability of an intervention
if a discrepancy becomes apparent.

8.5 Discussion

The objective of this analysis was to explore the acceptability of the online web ap-
plication from the perspective of the users. The analysis used a mixed-methods
approach combining the responses from a questionnaire inspired by the Technology
Acceptance Model (Lanseng and Andreassen, 2007) and a thematic analysis of the
feedback that users provided during telephone interviews. Users reported that they
somewhat agree that the application is positive and useful, but there was uncertainty
regarding whether the application was easy to use. The thematic analysis resulted
in the identification of three prominent themes surrounding the application. Firstly,
the application was described as a method of collecting information. The design of
the application influenced the users ability to provide the necessary information that
was perceived as required for making an accurate diagnosis, which consequently in-
fluenced the users trust about the usefulness of the application. Secondly, medical
care was frequently represented as a journey for which progression and satisfaction
were intertwined. The appraisal of the application can be dependent upon whether
it is perceived to improve or hinder progress, or whether it interferes with other
preferred elements of the medical journey, such as interactions with medical profes-
sionals. Finally, users frequently expressed a desire for more choice about the design
elements of the application, and control over the application was related to comfort
and improvements in the ease of use. These findings demonstrate the multi-faceted
nature of acceptability (Sekhon, Cartwright, and Francis, 2017) and the challenge
associated with trying to determine whether an intervention is considered accept-
able because it is difficult to integrate the findings from each of the independent
constructs identified in the analysis.

We attempted to understand how our findings relate to the concept of acceptabil-
ity (Sekhon, Cartwright, and Francis, 2017) by contrasting our findings with each of
the component constructs in the theoretical framework. The analysis revealed that
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users consistently regarded the application as “somewhat” or “potentially” accept-
able but the acceptability was dependent on the effectiveness of the application. Re-
gardless of the actual effectiveness, the most prominent influence on perceived effec-
tiveness was people’s perception of what information was required to make an accu-
rate diagnosis and whether they were able to provide all the necessary information
using the application. People frequently reported barriers to providing the infor-
mation, for example being restricted to binary responses during the questionnaire,
only being asked about a single attack, and uncertainty about what information is
required. We noted that this area of feedback was related to many of the component
constructs of acceptability, for example affective attitude, burden, self-efficacy, and
perceived effectiveness. This relationship between the ability to provide informa-
tion, perceived effectiveness, and acceptability is in line with the findings from the
Technology Acceptance Model (Davis, 1989; Davis, Bagozzi, and Warshaw, 1989).
Providing information is a primary objective of the application and therefore relates
to the “ease of use” construct. This construct subsequently influences all elements
of the model, for example perceived usefulness, attitude, intention to use, and be-
haviour (Figure 8.2). Therefore, it makes sense that this would have a large impact on
acceptability, and the technology acceptance model would suggest making changes
to this construct would subsequently improve the users perception on many of the
other constructs.

The acceptability of the application is also dependent on how the application
is integrated into the pre-existing medical pathway. The perceived acceptability of
the application is likely to decrease if the application reduces the amount of time or
quality of interactions with medical professionals. This area of feedback appeared
to depend on whether users trusted that the provider would use the application for
its designed purposes or whether it would be used for other purposes, for example
delaying referrals due to long waiting lists. Given that individuals with FDS often
experience long diagnostic delays, a lack of understanding about their condition,
prejudice, and limited access to treatment (Rawlings et al., 2017c), trust in the service
provider may be more important. Furthermore, previous research has demonstrated
that trust influences the perceived ease of use and usefulness of theoretical diagnos-
tic technology (Lanseng and Andreassen, 2007), so future research should consider
evaluating the trust of a provider of this technology before it is implemented. Fur-
thermore, users displayed some misunderstandings about how the application may
be used in practice, which suggests that the intervention coherence would need to
be monitored to ensure that misunderstandings about the application do not reduce
acceptability.

8.5.1 Improvements to the application that may improve acceptability

The application could be improved by broadening the scope of the questions that
are asked by the VA. Currently, the application focuses on the most recent attack.
We originally chose to focus on a single attack because we hypothesised that this
would result in the greatest difference in the responses from people with epilepsy
and FDS. Many users felt that these questions were too restrictive because it did not
allow them to talk about the different types of attacks that they experience or pro-
vide other contextual information, for example other potentially related symptoms,
the influence of their medication, and psychosocial factors that may be related to
the attacks. Users could specify the number of different types of attacks that they
have or the number of attacks that they wish to describe and be asked to produce
a description of each attack independently. This approach would allow users to
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record and report multiple attacks across the time period between referral to a spe-
cialist service and the initial appointment. Furthermore, users could be given the
option to answer nonessential questions that cover many of the topics addressed
in routine medical interactions, for example medication, other medical symptoms,
and psychosocial factors that may influence their health (Cassell, 1985), but are not
required for all users to complete because it may exceed the amount of time that
people are prepared to give to the application. This approach would satisfy some
users’ desire to provide more information and make more information available for
the automated analysis of language.

Broadening the scope of the questions to represent the different topics discussed
in routine medical encounters may encourage users to speak more. During the pre-
liminary analysis that we conducted in chapter three using the routine medical inter-
actions, people with FDS spoke more than people with epilepsy. This is the opposite
of what would be expected based on the previous CA research (Schwabe, Howell,
and Reuber, 2007; Schwabe et al., 2008) and is contradictory to the response patterns
we observed during interactions with the VA in chapter five. Therefore, broadening
the questions may increase how much people say, and it could lead to the identifica-
tion of additional group differences that could improve the predictive performance
of the automated analysis of language based upon the semantic measures.

The application could be updated to provide users with more choice and greater
control. One change could be to provide users with a choice about how the ques-
tions are presented, for example choosing the type of avatar or opting to have the
questions in a written format. This may allow some users to feel more comfortable
and would alert users about what to expect as they advance through the application.

The application could change how the questions are asked too. The application
could become nonlinear so that participants do not have to complete all questions
in a single sitting. Users could be presented with a dashboard that contains sepa-
rate sections for all of the questions. Moreover, the follow-up questions could be
removed from the application to prevent repetition and reduce the time taken to
answer the questions. However, once users have produced a single description of
the attack, they could be given a list of prompts and asked to provide any further
information that is then subsequently recorded separately. This would allow the ap-
plication to differentiate between the freely shared information and prompted infor-
mation without asking participants to provide the same information multiple times.
This method could allow people to add more information to their response at a later
date.

Finally, users could be given the option to start the recording once the question
has been asked, rather than the recording starting automatically. We originally de-
signed the application like this because individuals are not given time to plan their
answers during human-human interactions and this may influence the presentation
of formulation effort.

8.5.2 Future Research

Future research could expand on these findings by exploring the acceptability of the
application from the perspective of clinicians. Clinicians could provide greater in-
sight into how an intervention like this could be integrated into the pre-existing care
pathway and how clinicians would use the application. Furthermore, the analysis
could provide greater insight into what information clinicians would like the ap-
plication to collect, which could guide future improvements of the application, for
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example the incorporation of additional questions. Given that users frequently spec-
ulated about how clinicians could use the application, the feedback from clinicians
would provide greater clarity about how it would be used in practice, which could
be used to improve the intervention coherence.

8.5.3 Limitations

It is important to consider whether the information reported in this analysis has been
influenced by socially desirable answers because the analysis is mostly reliant on
self-report measures. The socially desirability bias refers to the tendency for people
to provide responses that are perceived as appropriate or socially acceptable to oth-
ers (Grimm, 2010). All areas of this research project were developed and conducted
by a single researcher, for example the online web application, signing participants
up to the study, and the feedback interviews. It was possible for participants to
recognise that the application was designed by the researcher who was conducting
the interviews because the participant information sheet informed the participants
that the research project was part of a PhD program and the main researcher’s voice
was used to record the questions that the avatar asked. This may have increased
the likelihood that participants produced socially desirable responses because they
did not want to critique someone’s work. One participant explicitly said this dur-
ing one of the feedback interviews. One way that people may have overcome the
bind between wanting to critique the application without being rude to the creator
is to provide constructive criticism towards the design of the application, which was
frequently observed throughout the feedback interviews. This emphasises that the
absence of direct negative feedback is not evidence that individuals do not have a
negative attitude towards the application and that constructive criticism should pro-
vide insight into the acceptability of the application to the users - a lot of constructive
criticism is indicative of lower acceptability.

The study is also subject to a recruitment bias because we only sought feedback
from participants who signed up to complete the online web application. There may
be many people who have a negative attitude towards health technology and per-
ceive the general approach as unacceptable. These individuals may have chosen not
to participate in the research project. Moreover, people who perceive themselves as
lacking the necessary technological skills to complete the online application may not
sign up to the study. It is important to collect feedback from the wider population to
thoroughly understand the acceptability of the approach. Therefore, future research
should explore the acceptability independent of using the application.

Another important consideration is that people may be providing feedback about
different things while completing the questionnaire. For example, people could be
evaluating the iPEP questionnaire or the VA, or they may be evaluating the appli-
cation as a theoretical construct rather than the current design of the application
because they recognise that it is currently only a prototype design. Participants of-
ten made this distinction during the feedback interviews because they explained
that they were positive about the concept but had uncertainties about the particular
design. This makes it difficult to decipher what the questionnaire responses are re-
ferring to, and future research should consider collecting feedback on these different
elements independently to better understand what a broader range of people think
about each component of the application and concept.

Ethicality is an important sub-component of acceptability. Unfortunately, ethi-
cality as a construct is not part of TAM and was not a prominent area of discussion
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throughout the feedback interviews. People’s perception of the ethnical ramifica-
tion of the application are likely to extend beyond this particular research project
and encapsulate attitudes towards the use of machine learning in medical care in
general (Latif et al., 2020). Considering the ethical ramifications of artificial intelli-
gence research is incredibly important (Vollmer et al., 2020; Zhang et al., 2021) and
researchers in the field have recommended that research regarding the ethical im-
plementation of artificial intelligence should be domain-specific (Starke et al., 2022).
Therefore, future research should explore attitudes towards the ethicality of this area
of research using a multidisciplinary approach.

8.5.4 Conclusion

This analysis aimed to explore the acceptability of the online web application from
the perspective of the patients and witnesses who have used it. Based upon the
responses to the feedback questionnaire and a thematic analysis of feedback inter-
views, it appeared that the application is currently considered somewhat acceptable,
but many users expressed dissatisfaction towards different components of the appli-
cation through the constructive criticism that they provided. The application should
be updated in future to improve these design elements and hopefully the overall
acceptability of the application. The suggested improvements included broadening
the scope of information that people can provide to the application so that it in-
cludes many of the elements frequently discussed in doctor-patient interactions and
allowing people to have more control over the design of the application and the in-
teraction with the virtual agent. Future research should expand on the findings from
this analysis by seeking the views of medical professionals and a more diverse range
of patients without the requirement that patients complete the online web applica-
tion, for example seeking feedback on the concept rather than the specific application
and the ethical ramifications of this type of technology. These studies would help to
further our understanding of the acceptability of this concept and guide the future
design of the application.
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Chapter 9

Summary and scope for future
research

This thesis has investigated the feasibility of predicting the cause of TLOC using an
online web application. Approximately 20% of individuals who experience TLOC
are initially misdiagnosed in Primary and Emergency Care Services (Xu et al., 2016).
Although there are a range of potential clinical decision tools that could assist in the
differential diagnosis, many of these tools are not designed for the three-way differ-
entiation between epilepsy, FDS, and syncope or they under-perform in the differ-
entiation of two of the most common causes of TLOC: epilepsy and FDS (Wardrope,
Newberry, and Reuber, 2018). Therefore, this thesis investigated alternative meth-
ods to improve the differential diagnosis of a pre-existing, high performing clinical
decision tool (Wardrope et al., 2020a).

Analysing the spoken descriptions of TLOC is one of the most important meth-
ods in the diagnostic process (Plug and Reuber, 2009). Not only do spoken descrip-
tions include information about the symptoms associated with the experience of
TLOC (Malmgren, Reuber, and Appleton, 2012), there are also a broad range of com-
municative behaviours associated with the descriptions of epilepsy or FDS that can
assist in the differential diagnosis (Reuber et al., 2009). The use of speech technology
for the identification of various health conditions is vastly developing field (Latif et
al., 2020). However, to date, there has been no research utilising these methodolo-
gies for the identification of the cause of TLOC. Therefore, the major contribution of
this thesis is the exploration and evaluation of this area of research. This chapter will
provide an overview of the key research findings and outline what future research
can do to improve and extend this research.

9.1 Research Questions

9.1.1 Research question 1

Machine learning research using a small dataset is reliant on cross validation to es-
timate the capacity of a model to make predictions for unseen data (Berrar, 2019).
Research paradigms that perform feature selection and cross validation on the same
dataset often produce overly optimistic performance estimates (Vabalas et al., 2019).
This research project was reliant on cross validation because the number of people
recruited to this research project was hindered by the Coronavirus pandemic. Given
that there is no previous research automating the analysis of TLOC descriptions, the
first objective was to identify useful acoustic and semantic features for differentiat-
ing between people with epilepsy and FDS using seizure descriptions collected from
previous CA research.
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Chapter three investigated the performance of two feature sets: features de-
signed to measure formulation effort and features measuring the proportion of words
corresponding to 21 semantic categories. The two feature sets were effective at dif-
ferentiating between people with epilepsy and people with FDS with an accuracy
of 71-81%. Although this was not an exhaustive exploration of potential features,
the performance suggested that these features could contribute to machine learn-
ing models trained using other effective features. Furthermore, we identified that a
SVM model with an RFB kernel outperformed Random Forest - the model used to
evaluate the iPEP in previous studies, which guided our choice of machine learning
model in the research conducted in subsequent chapters.

9.1.2 Research question 2

A questionnaire designed to predict the cause of TLOC using patient endorsed symp-
toms and witness observations called the iPEP has been previously tested on indi-
viduals with gold-standard diagnoses (Wardrope et al., 2020a). The questionnaire
was previously administered as a 5-point likert scale, but the responses were dich-
tomised before the final model was trained. It was not clear whether these results
would generalise to novel research samples when the questionnaire was adminis-
tered in binary format or to individuals first presenting with TLOC.

The research outlined in chapter six demonstrates that the iPEP was not as effec-
tive at predicting the cause of TLOC for the respondents who completed the online
web application. A Random Forest algorithm was trained using the dichotomised
responses from the original research project (Wardrope et al., 2020a) and subse-
quently tested on two additional data-sets: a sub-sample of the dichotomised re-
sponses collected from the original research study and the responses that were col-
lected through the online web application. The model displayed a similar level of
performance to that observed in the original research project when evaluated on
the sub-sample that was collected in the original study, but the overall accuracy
reduced by 15.6% for the patient-only responses and 36.9% for the patient and wit-
ness responses when the model was evaluated using the data collected through the
online web application. Furthermore, there was little improvement in the overall
accuracy of the iPEP when a model was trained and evaluated using the responses
collected through the online web application using leave-one-out cross validation
and a SVM, for which there was an accuracy of 65.8%. These findings suggest that
the iPEP model from previous research does not demonstrate a similar level of per-
formance when administered as a binary questionnaire to a novel research sample,
but the performance of the leave-one-out cross validation model trained using the
sample collected through the online web application may improve with increases in
the sample size. These improvements may be particularly evident for individuals
with syncope who only made up 21% of the total sample.

9.1.3 Research question 3

Although there is extensive research demonstrating conversational, interactional,
and linguistic differences between how people with epilepsy or FDS communicate
their seizure experience to a doctor (Schwabe, Howell, and Reuber, 2007; Schwabe et
al., 2008; Plug, Sharrack, and Reuber, 2009b; Robson et al., 2012; Robson, Drew, and
Reuber, 2016), there are no guarantees that people will display this communicative
behaviour while conversing with a VA. Given that the automated analysis of lan-
guage will presume the presence of these linguistic profiles, we explored whether
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these communicative behaviours are still evident during interactions with the VA
using a sub-sample from the overall study. Confirming the presence of these be-
haviours supports the validity and feasibility of an automated analysis of language.

The analysis outlined in chapter five used conversational analytic techniques to
contrast the responses between people with epilepsy or FDS during interactions with
the VA. We found that people with epilepsy provided descriptions that predomi-
nantly focused on their personal and subjective experience of TLOC, which resulted
in more detailed descriptions overall. These descriptions contained extensive formu-
lation effort, for example hesitations, repetitions, meta-discursive comments about
the challenges associated with the description, and hedging statements. Further-
more, although the questions restricted the scope of responses by only focusing on
the most recent experience of TLOC, individuals with epilepsy were more likely to
display a willingness to provide information by describing additional TLOC experi-
ences that allowed them to outline symptoms that were relevant for the question but
were not evident in the most recent attack. In contrast, people with FDS provided
very limited descriptions of their most recent TLOC experience. They were more
likely to make complete negations that conflate the unconscious period and overall
seizure, for example "I cannot remember anything". Moreover, they exhibited an
increased reliance on third parties to answer the questions posed by the VA. These
findings demonstrate differences in how people with epilepsy or FDS describe their
TLOC experience to a VA. Many of these communicative behaviours are similar to
those observed during doctor-patient interactions (Schwabe, Howell, and Reuber,
2007; Schwabe et al., 2008; Robson, Drew, and Reuber, 2016). Therefore, we con-
cluded that an automated analysis based upon the linguistic profiles outlined in
previous research may be able to differentiate between these two patient groups us-
ing interactions with a VA.

9.1.4 Research question 4

The analysis in chapter three demonstrated that the formulation effort and LIWC
features were effective at differentiating between people with epilepsy or FDS us-
ing doctor-patient interactions. The analysis in chapter six explored whether these
features were equally effective when applied to VA-patient interactions. Both fea-
ture sets exhibited a high classification accuracy of 86% for the binary classification.
The consistency between the two analyses suggests that these features are useful for
differentiating between epilepsy and FDS.

One limitation of these two feature sets is that they do not capture any differ-
ences in people’s descriptions of subjective symptoms or the events that preceded
and followed the unconscious period. We explored the predictive performance of
additional semantic features based on the verbs, adjectives, and adverbs used by the
patient. These features were also effective at differentiating between people with
epilepsy or FDS with an accuracy of 75.5%.

Up until chapter six, the automated analysis of language had not included in-
dividuals with syncope. We explored how the performance of these feature sets
changed when individuals with syncope were included. Unfortunately, there was a
large decrease in the accuracy of each feature set when people with syncope were in-
cluded. These findings suggest that the selected features are not effective predictors
of syncope.

The final analysis outlined in chapter seven explored whether the automated
analysis of spoken TLOC descriptions can improve the baseline performance of the
iPEP. Training a SVM using the patient only iPEP responses, the three feature sets
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from the automated analysis of language, and all three diagnoses reduced the over-
all accuracy of the iPEP from 65.8% to 59%. However, the use of a model stacking
approach that allowed us to restrict the automated analysis of language to individ-
uals for whom the iPEP predicted a diagnosis of either epilepsy or FDS increased
the overall performance of the iPEP to 85.5%. The results suggest that it is possible
to improve the predictive performance of the iPEP using an automated analysis of
TLOC, but the automated analysis of TLOC may be better suited for the challenging
differentiation between individuals with epilepsy or FDS.

9.1.5 Research question five

Chapter eight collated and analysed the application feedback from the patients and
witnesses who used the application based on the construct of acceptability (Sekhon,
Cartwright, and Francis, 2017). The application was often appraised as "somewhat
acceptable" across a range of areas of feedback. One particular noteworthy piece of
feedback was that individuals preferred speaking than completing the binary ques-
tionnaire because they were able to provide important contextual information. The
feedback seemed to suggest that people positively appraised the concept because
it could potentially improve the current care pathway and speed up the time that it
takes to receive the correct diagnosis, but there were some challenges associated with
the design of the current application that reduced the overall acceptability. Most ar-
eas of feedback centred around the usability and capacity of the application to collect
a sufficient amount of high quality and diagnostically relevant information in order
to make an accurate clinical judgement. This was often contrasted with people’s
previous clinical encounters, which were considered extensive. Providing all the
relevant information was considered vital for receiving the right diagnosis, so as-
pects of the application that reduced the information that people could provide also
reduced their perception of trust. Users provided extensive feedback about how
the application design could be improved, which should be utilised to improve the
application for future research.

9.2 Future Research

The limitations of the research conducted in this thesis have been discussed through-
out. Rather than repeating these limitations, this section will provide an overview of
the potential avenues of future research that have been discussed because the sug-
gested areas of future research incorporates and extends the limitations from this
thesis.

9.2.1 More data

The coronavirus pandemic hindered the data collection for this thesis. The lim-
ited sample size has likely caused an under-estimation of performance for the iPEP
because an insufficient amount of data makes it difficult for the machine learning
model to detect relationships between the input features and diagnoses. This may
explain why the model was less effective at detecting syncope compared to previous
research (Wardrope, Newberry, and Reuber, 2018). The effectiveness of the model
stacking algorithm that we outlined in chapter seven is dependent on the capacity
to detect individuals with syncope. Therefore, future research should collect more
data to investigate whether increasing the sample size, particularly participants with
a diagnosis of syncope, can increase the baseline performance of the iPEP.



9.2. Future Research 139

9.2.2 Feature engineering

The review in chapter two demonstrated the breadth of features that can be used
in an automated analysis of language or speech. Given the limited amount of data
available during this research, it has been difficult to conduct a vigorous exploration
of potential features that can improve the predictive performance of the automated
analysis of language because feature selection should be conducted using a sepa-
rate train, validation, and test dataset (Vabalas et al., 2019). Future research should
explore additional features that can be incorporated into the analysis, particular fea-
tures that may better measure the linguistic differences identified in previous CA
research. Furthermore, self-supervised machine learning methods that can convert
textual data into a feature vector, for example BERT (Devlin et al., 2018), may au-
tomatically generate useful machine learning features, especially considering that
semantic differences were effective predictors of the diagnosis. However, more data
will be required before these methods can be implemented.

9.2.3 Linguistic profile for syncope

Previous CA research has focused on the differential diagnosis of epilepsy or FDS
(Schwabe, Howell, and Reuber, 2007; Schwabe et al., 2008), but there are no CA stud-
ies exploring how individuals with syncope describe their experience of TLOC and
how this potential linguistic profile contrasts with the profiles from the other two
diagnostic groups. Future CA research could help to increase our understanding
about how people with syncope describe their experience of TLOC. An outcome of
this analysis may help to design features that can reliably separate individuals with
syncope from individuals with epilepsy or FDS. These features could be incorpo-
rated into the model stacking algorithm to provide a "second stage" analysis that
precedes the automated analysis of language for predictions of epilepsy or FDS to
improve the identification of syncope and potentially increase the number of people
with epilepsy or FDS that are incorporated in the appropriate language analysis. The
stacking analysis would be more effective if the sensitivity for syncope was higher.

9.2.4 Incorporating witness contributions

One of the benefits of the model stacking approach is that the analysis can be seg-
mented into stages and the earlier stages can be used to make a prediction (albeit
perhaps less accurately) when the information is not available for the later stage
analysis (e.g. the individuals without a VA interaction). Previous research has
demonstrated that witness contributions can dramatically improve the predictive
performance of the iPEP, especially for the identification of syncope (Wardrope et al.,
2020a). Therefore, future research should recruit more witnesses and explore meth-
ods of incorporating the witness responses into the model stacking algorithm. Aside
from research exploring the interactional contributions of accompanying others dur-
ing routine clinical encounters (Robinson, 2003) or description of seizure manifesta-
tions (Malmgren, Reuber, and Appleton, 2012), there is no researching exploring
how the communicative behaviour of witnesses can assist the differential diagnosis,
which would help guide an automated analysis of witness interactions with the VA.
Therefore, future research should identify and collate the interactional and commu-
nication profiles of witnesses for the differential diagnosis of TLOC and explore how
these behaviours can be automatically analysed using machine learning methodol-
ogy. This analysis could explore the contributions of accompanying others during
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the patient’s interaction with the VA and the witnesses independent interaction with
the VA.

9.2.5 Broadening the topical agenda of the questions asked by the VA

The thematic analysis outlined in chapter eight identified that people thought pro-
viding information was vital for receiving the correct diagnosis. However, people
reported that some design elements of the application reduced their capacity to
provide all the information they thought was relevant. One component was that
the questions solely focused on the most recent attack, whereas people wanted the
opportunity to provide information about other attacks and other contextual infor-
mation about their life that may be relevant for the diagnosis. The history taking
procedure during doctor-patient interactions often involves discussions beyond the
immediate medical concern (Cassell, 1985). Including questions about the patients
health, lifestyle, and other medical concerns may encourage patients to talk more.
We observed in chapter three that people with FDS typically said more during the
routine history taking procedure. However, previous research has shown that they
say less when describing a seizure (Schwabe, Howell, and Reuber, 2007; Schwabe
et al., 2008), a finding that was corroborated in our CA analysis of interactions with
the VA. Including additional questions may prompt further talk from this patient
group, and these contributions may be diagnostically relevant because people with
FDS have increased general psychopathology which may relate to their manifesta-
tion of FDS (Brown and Reuber, 2016a).

It would be important to consider how these questions are integrated into the au-
tomated analysis to ensure that the contribution to these additional questions does
not interfere with the features that are designed specifically for talk about the at-
tack; for example, some of the additional questions could be analysed independently
and incorporated into the model stacking algorithm as a separate machine learning
model. Therefore, broadening the scope of the questions may provide additional
information that can improve the predictions made by the automated analysis of
language and improve the perceived acceptability of the application because peo-
ple feel that they have been able to provide all the information that they consider
relevant.

9.2.6 Broadening the analysis of acceptability

The analysis of acceptability conducted in chapter eight was restricted to people
who participated in the research project. Therefore, the findings may be affected by
a sampling bias because the attitudes of individuals who chose not to participate
because they negatively appraised this type of technology or who felt that they did
not have the necessary technical skills to participate were not measured. Given that
the introduction of a tool like this would be a dramatic change to the clinical care
pathway, future research should explore the acceptability of this approach using a
more diverse population. This research should also explore the attitudes of clinicians
involved in the care pathway for TLOC and the potential ethical considerations of
this approach, which is a fundamental component of the acceptability construct but
was not considered in sufficient detail during this research.
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9.2.7 Automatic Speech Recognition

Successful ASR is vital for an application that conducts an automated analysis of lan-
guage. Unfortunately, the research conducted in this PhD did not focus on creating
a fine-tuned ASR system for the particular task because there were multiple addi-
tional commitments within the PhD that reduced the time available for this task, for
example developing the online web application, recruiting participants, and con-
ducting the qualitative analyses. The review in chapter two demonstrated that there
are many methods that can be used to improve an ASR system once there is more
research data available for training and testing. Therefore, future research should
explore methods of fine-tuning the language and acoustic models of the ASR sys-
tem.

9.2.8 Confounding variables

Clinical decision tools and machine learning algorithms can be influenced by con-
founding variables (AlHasan, 2021). The analysis in chapter seven found a weak
correlation between educational level and how much people talked during the in-
teraction with the VA. However, there are many more confounding variables that
can influence the performance of the iPEP and the automated analysis of language
(Mukherjee et al., 2022; Keuleers et al., 2015). Identifying these confounds is vital
for understanding how the clinical decision tool works and ensuring that it does not
inadvertently discriminate towards particular minority groups if it is used in clinical
practice. For example, the sample used in this research is not ethically diverse, so
it is not possible to conclude that these findings would generalise to the wider pop-
ulations. Therefore, future research should aim to identify and mitigate potential
confounds.
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Appendix A

Model Configurations

TABLE A.1: The hyperparameters that were used for the "Ran-
domisedSearchCV" in conjunction with the Random Forest Classifier

in Chapter 3 section 3.2.

Hyperparameter Value Range

n estimators 100,200,300,400,500

max features auto, sqrt

min samples split 2,5,10

criterion Gini, Entropy

bootstrap True, False

min samples leaf 1,2,4

TABLE A.2: The hyperparameters that were used for the "Grid-
SearchCV" in conjunction with the Logistic Regression Classifier in

Chapter 3 section 3.3.

Hyperparameter Value Range

Penalty l1, l2

C 0.001,.009,0.01,.09,1,5,10,25

TABLE A.3: The hyperparameters that were used for the "Grid-
SearchCV" in conjunction with the K-Nearest Neighbours Classifier

in Chapter 3 section 3.3.

Hyperparameter Value Range

n neighbors 3,5,11,19

weights uniform,distance

metric euclidean,manhattan
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TABLE A.4: The hyperparameters that were used for the "Grid-
SearchCV" in conjunction with the K-Nearest Neighbours Classifier
in Chapter 3 section 3.3. Two separate models were implemented,

one using a linear kernal and one using the RBF kerbel

Hyperparameter Value Range

C 0.1,1, 10, 100

gamma 1,0.1,0.01,0.001

TABLE A.5: The hyperparameters that were used for the "Grid-
SearchCV" in conjunction with the Random Forest Classifier in Chap-

ter 3 section 3.3.

Hyperparameter Value Range

Bootstrap True, False

max depth 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None

max features auto, sqrt

min samples leaf 1, 2, 4

min samples split 2, 5, 10

n estimators 200, 400, 600, 800, 1000,

1200, 1400, 1600, 1800, 2000

TABLE A.6: The hyperparameters that were used for the "Grid-
SearchCV" in conjunction with the Support Vector Machine with an

RBF kernel in Chapters 6 and 7.

Hyperparameter Value Range

C 1, 10, 100, 1000

gamma 0.001, 0.0001
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Appendix B

LIWC Categories

TABLE B.1: A full list of the LIWC categories. The categories incor-
porated in the analyses in chapters, 3, 6 and 7 are marked with an

X

LIWC Category Chapter 3 Chapters 6 and 7
Function
Pronoun
Ppron
I
We X X
You
She/He X X
They
Ipron
Article
Prep
Auxverb
Adverb
Conj
Negate
Verb
Adjective
Compare
Interogative
Number
Quantifiers X X
Emotional Tone X X
Affect X X
Positive Emotions X
Negative Emotions X
Anxiety X
Anger X
Sadness X
Social X X
Family X
Friend
Female

Continued on next page
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Table B.1 – continued from previous page
LIWC Category Chapter 3 Chapters 6 and 7

Male
Cognitive Processes
Insight
Cause X
Discrepancy
Tentativeness X X
Certain X
Differ
Percept
See
Hear
Feel
Biological
Body
Health
Sexual
Ingest
Drives
Affilitation X
Achieve
Power X
Reward X X
Risk X
Focus Past
Focus Present X X
Focus Future
Relative
Motion
Space X
Time
Work
Leisure
Home
Money
Religion
Death
Informal
Swear
Netspeak
Assent
NonFlu X
Filler
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