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A B S T R A C T   

Estimating wastewater treatment plants’ (WWTPs) influent parameters such as 5-day biological oxygen demand 
(BOD5) and chemical oxygen demand (COD) is vital for optimizing electricity and energy consumption. Against 
this backdrop, the existing body of knowledge is bereft of a study employing Artificial Intelligence-based tech
niques for the prediction of BOD5 and COD. Thus, in this study, Gene expression programming (GEP), multilayer 
perception neural networks, multi-linear regression, k-nearest neighbors, gradient boosting, and regression trees 
-based models were trained for predicting BOD5 and COD, using monthly data collected from the inflow of 7 
WWTPs over a three-year period in Hong Kong. Based on different statistical parameters, GEP provides more 
accurate estimations, with R2 values of 0.784 and 0.861 for BOD5 and COD respectively. Furthermore, results of 
sensitivity analysis undertaken by monte Carlo simulation revealed that both BOD5 and COD were mostly 
affected by concentrations of total suspended solids, and a 10% increase in the value of TSS resulted in a 7.94% 
and 7.92% increase in the values of BOD5 and COD, respectively. It is seen that the GEP modeling results 
complied with the fundamental chemistry of the wastewater quality parameters and can be further applied on 
other sewage sources such as industrial sewage and leachate. The promising results obtained pave the way for 
forecasting the operational parameters during sludge processing, leading to an extensive energy savings during 
the wastewater treatment processes.   

1. Introduction 

Wastewater treatment plants (WWTPs) are an essential part of the 
societies’ infrastructure, which play a significant role in improving the 
quality of life by treating the municipal and industrial sewage and dis
charging the treated effluent into the receiving water bodies. On the 
other hand, WWTPs are one of the major sources of energy consumption 
and the production of greenhouse gases (Wang et al., 2016). The per
formance of the WWTPs is affected by several parameters, such as the 
variations of the influent and shocking loads (Ansari et al., 2020). 
Acquiring the influent characteristics is essential for designing WWTPs 
and adjusting the operational parameters such as the amount of aera
tion, which consumes a huge amount of electricity in the WWTPs (Wang 
et al., 2022). The major influent parameters affecting the performance of 
the WWTP at different stages are 5-day biochemical oxygen demand 

(BOD5), chemical oxygen demand (COD), ammoniacal nitrogen (NH3), 
organic nitrogen content (OrgN), organic phosphorous (OrgP) and 
inorganic phosphorous (InorgP) content of the influent (Henze et al., 
2008). Due to the high fluctuations of the WWTPs’ influent and their 
impact on the performance of the treatment processes, predicting the 
influent characteristics or obtaining their real-time values play a sig
nificant role in optimizing the operation of WWTP (Abouzari et al., 
2021; Asami et al., 2021; Cheng et al., 2018; Kim et al., 2016; Li and 
Vanrolleghem, 2022; Wodecka et al., 2022). For example, BOD5 is 
representative of the biodegradable content of the wastewater and de
termines the amount of aeration, which is the most energy-consuming 
step in the WWTPs (Wang et al., 2019; Luo et al., 2019). Therefore, 
the overestimation of BOD5 leads to higher energy consumption and 
cost. On the other hand, COD is indicative of the chemical compounds 
which are non-biodegradable and detrimental to the micro-organisms in 
the wastewater. Moreover, the phosphorous and nitrogenous 
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compounds may interfere with the biological processes during the 
wastewater treatment processes, considering different treatment 
methods (Metcalf, 2003). 

Measuring all of the influent parameters is time-consuming and re
quires conducting complicated tests and consuming hazardous materials 
as fully explained in the standard methods for the examination of water 
and wastewater (Baird et al., 2017). To address this issue, some elec
trical sensors have recently been developed to provide the real-time 
values of the influent’s quality parameters (Haimi et al., 2015; Olsson, 
2012; Olsson et al., 2014; Vanrolleghem and Lee, 2003). However, some 
important parameters, such as BOD5 and COD is difficult and expensive 
to obtain by sensors (Jouanneau et al., 2014; Kim et al., 2020), which 
necessitates the development of mathematical predictive models of 
estimating their values using historical data (Ching et al., 2022; Foschi 
et al., 2021). The major advantage of using mathematical and statistical 
methods to predict wastewater characteristics and WWTPs’ perfor
mance is to fully understand the physicochemical and biological pro
cesses behind them. On the other hand, integrating the models with 
chemical reactions provides insights into the interpretations of the re
sults. Predicting the quality parameters of wastewater, especially BOD5 
and COD is of great importance due to: (1) high cost and time con
sumption of measuring them; (2) providing the opportunity for the 
decision-makers to adjust the operational parameters to optimize the 
energy consumption; and (3) spotting any abnormal variations in the 
WWTP’s influent due to intrusion of any discharge in the upstream. 

Table S1 presents some examples of AI methods employed in the 
literature to predict the parameters of WWTPs. As can be seen, artificial 
neural networks (ANNs), random forest (RF), multi-linear regression 
(MLR) and fuzzy models are the most common methods to predict 
wastewater quality parameters. However, these methods suffer from 
some drawbacks. For instance, the ANN models are opaque and difficult 
to interpret (Dürrenmatt and Gujer, 2012). 

Among AI methods, gene expression programming (GEP) has 
recently gained interest in the environmental engineering and waste
water treatment area due to its effectiveness and accuracy over other 
machine learning methods in predicting complex parameters. Noman 
et al. (2022) and Yaqub et al. (2022a) developed GEP-based models to 
respectively predict the inactivation of several types of bacteria in 
wastewater and the performance of micellar-enhanced ultrafiltration for 
removal of mercury and arsenic from water. Shishegaran et al. (2020) 
investigated process optimization of the surfactants’ removal by ultra
filtration using MLR, multiple Ln-equation regression (MLnER), and 
GEP, while Seckin et al. (2011) evaluated the prediction ability of GEP 
and Stover–Kincannon model in estimating methane yield and effluent 
substrate of upflow anaerobic filters. Shah et al. (2021a) applied GEP 
and ANN to predict the surface water quality. 

Besides estimating the target parameters, assessing its sensitivity to 
the variations of other parameters is of great importance because it 

provides the most influential parameters. The Monte Carlo Simulation 
(MCS) technique provides insights into the uncertainty of estimating a 
parameter by a developed model using other uncertain surrogate pa
rameters. Moreover, the MCS generates several data, which can be used 
to analyze the influence of the input parameters on the target parameter 
by sensitivity analysis. Quantifying the model output resulting from the 
lack of knowledge about input data provides essential information for 
the decision-makers to take appropriate actions in times of severe fluc
tuations in the input parameters. Using MC analysis to assess the 
sensitivity of the target parameters to the variations of input parameters 
embodies several advantages such as: (1) allocating the uncertainties of 
the unknown parameters to the uncertainties in the input parameters; 
(2) determining the most influential parameters on the variations of the 
target parameters; and (3) scrutinizing the interactions between 
wastewater quality parameters. 

Though some ML-based techniques have been used in the literature, 
there has been dearth of a study presenting a mathematical represen
tation for calculating BOD5 and COD in the existing body of knowledge. 
The lack of such an inclusive formula demands a lot of efforts, resources, 
and expenses to be incurred at undertaking the related experiments for 
measuring BOD5 and COD in laboratories. This knowledge gap along 
with the mentioned need has given impetus to the authors of this study 
for coming up with a lucid mathematical formula for estimating the said 
parameters. 

In light of the points mentioned above, there are three major 
knowledge gaps to be addressed as follows.  

• Lack of robust mathematical expressions to correlate the difficult-to- 
measure parameters such as BOD5 and COD to easy-to-measure pa
rameters such as TSS, ammonia, OrgN, OrgP and InorgP content of 
wastewater, which can be obtained by online sensors,  

• Sparse research in investigating the most influential parameters on 
predicting BOD5 and COD and  

• Lack of knowledge in evaluating the uncertainty of predicting BOD5 
and COD values. 

The integration of GEP modelling and MCS to study wastewater 
characteristics provides a strong tool for environmental engineers to 
monitor the biological and chemical properties of wastewater in real- 
time, which then enables them to optimize the operational parame
ters. Thus, the objectives of this study are to: (1) develop models by GEP, 
MLP-NN, kNN, GB, RT and RF to predict BOD5 and COD in the influent of 
the WWTPs according to the surrogate parameters of TSS, NH3, OrgN, 
InorgP and OrgP content of the wastewater influent samples, (2) 
compare different AI models regarding the accuracy of predicting BOD5 
and COD, (3) evaluate the sensitivity of BOD5 and COD to each of the 
input parameters through MC, and (4) interpret the modelling results 
according to the chemistry of the wastewater constituents. 

Abbreviations 

AI Artificial intelligence 
ARIMA Autoregressive Integrated Moving Average 
BOD5 5-day biochemical oxygen demand 
COD Chemical oxygen demand 
ELM Extreme learning machine 
GB Gradient boosting 
GEP Gene expression programming 
GHGs Greenhouse gases 
InorgP Inorganic phosphorous compounds 
kNN k-Nearest Neighbor 
MARS multi-variate adaptive regression spline 
MCS Monte Carlo simulation 

Multilayer perception neural networks MLP-NN 
NN Neural Network 
OP Orthophosphates 
ORELM Outlier robust extreme learning machine 
OrgN Organic nitrogenous compounds 
OrgP Organic phosphorous compounds 
PDF Probability density function 
RF Random forest 
RT Regression tree 
TKN Total Kjeldahl nitrogen 
TP Total phosphorous 
TDS Total dissolved solids 
TSS Total suspended solids 
WWTP Wastewater treatment plant  
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The findings of this study provide the environmental decision- 
makers and policymakers with solutions to deal with the pollution 
produced from wastewater associated with sewer pipelines, which in 
turn, culminates in improving public health and taking a giant leap to
wards realizing a smart and sustainable built environment. In addition, 
the obtained results can be used to adjust the chemical dosage as well as 
estimate the aeration demand of the consecutive wastewater treatment 
stages, with a view to minimizing the energy cost and production of 
greenhouse gases. 

2. Methodology 

The general framework of this research is presented in Fig. 1, which 
encompasses the following five major steps: (1) data collection; (2) 
normalization of data; (3) developing the different AI models with the 
pre-processed data to predict BOD5 and COD; (4) validation of the 
models; and (5) assessing the sensitivity of the target parameters toward 
the predictors. 

2.1. Phase one: Data collection and preparation 

Samples were collected from the influents of 7 WWTPs in Hong Kong, 
namely Sha Tin Sewage Treatment Works (ST-STW), Sai Kung Sewage 
Treatment Works (SK-STW), Sham Tseng Sewage Treatment Works 
(SmT-STW), Yuen Long Sewage Treatment Works (YL-STW), Tai Po 
Sewage Treatment Works (TP-STW), Shek Wu Hui Sewage Treatment 
Works (SWH-STW) and Stonecutters Island Sewage Treatment Works 
(SCISTW) (HKDSD, 2018). The locations of these WWTPs are shown in 
Fig. 2. Their design flow and main treatment processes are listed in 
Table 1 (HKDSD, 2018). During the study period (i.e. from Jan 2018 to 
Dec 2020), composite samples of the WWTPs’ influents were grabbed 
monthly from the manholes near the treatment plants. The quality pa
rameters of the samples, including BOD5, COD, TSS, NH3, OrgN, OrgP 
and InorgP were measured according to the standard methods 
mentioned in Table 2. Notably, they were characterized by the Hong 
Kong Drainage Service Department (DSD). To better understand the 
data, the statistical parameters of the data and their probability density 
function (PDF) are determined with Origin Pro 2021 software, and 
accordingly, the outliers were removed from the initial data. It is 

Fig. 1. The research framework.  
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Fig. 2. The locations of 7 WWTPs, from which the data was collected (Map source: www.map.gov.hk).  

Fig. 3. GEP expression tree for predicting COD from TSS, NH3, OrgN, OrgP and InorgP.(Note: d0: concentration of TSS, d1: concentration of NH3, d2: concentration of 
OrgN, d3: concentration of OrgP, d0: concentration of InorgP. The numbers of ci are constants generated by GeneXpro.). 
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noteworthy that all the wastewater treatment plants were municipal 
wastewater treatment plants, and the initial conditions and operational 
conditions were similar. On the other hand, since the data were collected 
from the influent of the treatment plants before the treatment processes, 
the “design conditions” of them did not affect the data analysis. More
over, since all treatment plants were in Hong Kong, the geographical 
conditions of all of them were similar and may not affect the analysis. 

Before developing the models for BOD5 and COD prediction, the 
input data were normalized to prevent overfitting and minimize the 
errors associated with the large differences between the covered ranges 
of the different parameters. To this purpose, all data are normalized 
within the range of [0, 1] according to Eq. (1) (Tijani and Zayed, 2022): 

a=
(x − xmin)

(xmax − xmin)
(1)  

Where a is the normalized value of the input parameter, x, xmax and xmin 
are the value of the respective variable, the maximum value of all the 
inputs for a particular variable, and the minimum value of all the inputs 
for a particular variable, respectively. 

With the above in mind, BOD5 is indicative of the oxygen require
ment by microorganisms to stabilize the organic matter in the waste
water. It is one of the major wastewater parameters due to its application 
in: (1) determining the required oxygen in the aeration tanks; (2) 
designing the wastewater treatment facilities; (3) evaluating the per
formance of the wastewater treatment processes; and (4) assessing the 
quality of the discharged wastewater (Eddy et al., 2014; Gerardi, 2015). 
However, measuring BOD5 is cumbersome, time-consuming and cannot 
be obtained in real-time. Therefore, developing a correlation between 
BOD5 and easy-to-find parameters simplifies decision making regarding 
operational works in the WWTPs. On the other hand, COD is the amount 
of oxygen for oxidizing organic compounds in the presence of dichro
mate in acidic environment. COD value is always higher than BOD5 due 
to: (1) presence of non-biodegradable compounds; (2) presence of 
inorganic compounds; which can be oxidized in the presence of di
chromate in the COD measurement test; and (3) presence of some 
compounds toxic to the microorganisms in the BOD5 measurement test. 
Therefore, predicting the amount of COD and COD/BOD5 ratio is 

advantageous for the decision makers in terms of adjusting the opera
tional parameters of a WWTP (Jouanneau et al., 2014). Moreover, 
COD/BOD5 ratio indicates the amount of non-biodegradable com
pounds in the wastewater inflow, and consequently the likelihood of 
industrial sewage intrusion into the municipal wastewater network 
(Eddy et al., 2014; Henze et al., 2008). Considering the mentioned 
reasonings, it can be inferred that there are potential relationships 
among BOD5, COD, TSS, NH3, OrgN, OrgP and InorgP. 

2.2. Phase two (I): Gene expression programming method 

GEP method, one of the newly developed supervised machine 
learning techniques, is a combination of genetic algorithm (GA) and 
genetic programming (GP). The basic principle of GEP, as proposed by 
Ferreira (2002), resembles that of human’s genetic system. In GEP 
modelling, the observed and modelled data are considered as chromo
somes, which comprise of several genes embodying the protein coding 
regions. The main purpose of GEP is to find a mathematical function, 
which correlates several independent variables to a target parameter 
according to the actual observed data. The relationship embodies 
several mathematical functions, including the four principal operations, 
trigonometric functions and their inverse and hyperbolic counterparts, 
logarithmic, power, inverse, root and so on (Noman et al., 2022). 
Developing a GEP model requires five basic elements including: (1) set 
of mathematical functions to be used in building a correlation between 
the independent variables and the target parameter; (2) a set of termi
nals including the independent variables and constants; (3) fitness 
function; (4) control parameters; and (5) conditions for stopping the 
program (Kayadelen et al., 2009). To grasp more understanding in GEP 
utilization, readers are referred to the following references: (Tijani and 
Zayed, 2022), (Noman et al., 2022), and (Islam et al., 2022). 

In the current study, the GEP algorithm was employed to predict the 
BOD5 and COD of the WWTPs’ influent as a function of concentrations of 
five independent variables of TSS (mg/L), NH3 (mg/L as N),OrgN (mg/L 
as N), InorgP (mg/L as P) and OrgP (mg/L as P). GeneXpro Tools 5.0 
software was employed to develop the GEP model. 70% of the total data 
was used for training the model and the remaining was used for model 
validation. 

A wide range of mathematical functions including +, − ,×,÷,Tanh,
Arctan, exp, power, logharithm, Ln were selected as the function set. 
However, the GEP may not use all of them. GEP uses Roulette wheel to 
select the data and simultaneously reproduce them by genetic operators 
to find the most appropriate function for predicting the target param
eter. The inappropriate data are eliminated, and the appropriate data are 
kept and eventually conveyed to the next generation, just as is the case 
with genetic mutation in the human genome. The goal of this mutation 
in GEP modelling is to randomly optimize the chromosomes (Shishe
garan et al., 2020). 

2.3. Model performance evaluation 

Five statistical metrics, Root Mean Square Error (RMSE), Mean 
Square Error (MSE), coefficient of determination (R2), RAE and MRRE as 
expressed in Eq. (2)− 6 respectively, were used to evaluate the perfor
mance of the developed model. RMSE implies the average error between 
the predicted and observed values as expressed in Eq. (2). MSE as pre
sented in Eq. (3), measures the average difference between the modelled 
values and the values acquired from the field. It should be noted that 
RMSE is the square root of MSE and both parameters are within the 
range of [0, 1] for the normalized data. The closer these values are to 0, 
the more accurate the model is (Shah et al., 2021b). On the other hand, 
the R2 given in Eq. (4), expresses the degree of fitness between the 
predicted and observed values. Higher values of R2 closer to 1, indicates 
higher accuracy of the model. Relative absolute error (RAE) and mean 
root relative error (MRRE) are given by Eqs. (5) and (6), respectively. 

Table 1 
The basic information regarding the WWTPs in Hong Kong.  

WWTP Designed flow rate 
(m3/d) 

Actual flow rate 
(m3/d) 

Sai Kung Sewage Treatment Works 
(SK-STW) 

22000 8000 

Sham Tseng (SmT-STW) 5600 – 
Yuen Long Sewage Treatment Works 

(YL-STW) 
70000 16,000 

Tai Po Sewage Treatment Works (TP- 
STW) 

120000 95,000 

Shek Wu Hui Sewage Treatment Works 
(SWH-STW) 

93000 81,000 

Sha Tin Sewage Treatment Works (ST- 
STW) 

340000 250,000 

Stonecutters Island Sewage Treatment 
Works (SCISTW) 

2,450,000 1,900,000  

Table 2 
The wastewater parameters and the analytical methods of them.  

Parameters Analytic methods units 

BOD5 5210 B. mg/L as O2 

COD 5220 B. mg/L as O2 

TSS 2540 D. mg/L 
NH3 4500-NH3 F. mg/L as N 
OrgN 4500-Norg C. mg/L as N 
OrgP 4500-P. mg/L as P 
InorgP 4500-P. mg/L as P  
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RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yp − ym

)2

√

(2)  

MSE=
1
n

∑n

i=1

(
yp − ym

)2 (3)  

R2 = 1 −

∑n
i=1

(
yp − ym

)2

∑n
i=1

(
yp − ym

)2 (4)  

RAE=

∑⃒
⃒
(
yp − ym

⃒
⃒

∑⃒
⃒
(
yp − 1

n

∑
ym
)⃒
⃒

(5)  

where n is the number of the inputs, ym is the measured or observed 
values, yp is the predicted or modelled values, and ym is the average of 
the measured values of an input parameter. 

2.4. Phase two (II): Comparative analysis 

Once the results of GEP have been obtained for the prediction of 
BOD5 and COD, an exhaustive comparative analysis against the other 
ML-based techniques, LR, NN, kNN, RT, GB and RF is undertaken. This is 
of paramount importance, since the accuracy and performance of 
various ML-based techniques need to be gauged with respect to each 
other. LR modelling assumes a linear relationship between the target 
parameter (BOD5 or COD) and the predictors, TSS, NH3, OrgN, InorgP 
and OrgP. On the other hand, MLP-NN includes five independent vari
ables neurons (TSS, NH3, OrgN, InorgP and OrgP), each linked to the 
output variables(BOD5 or COD). In the kNN method, “k” numbers of the 
input dataset such as TSSi, NH3(i), OrgNi, InorgPi, OrgPi from the training 
dataset were determined which are the closest ones to another input 
data in the validation dataset such as TSSv, NH3(v), OrgNv, InorgPv, and 
OrgPv. The predicted value of the target parameter corresponding to 
TSSv, NH3(v), OrgNv, InorgPv, and OrgPv is the average of the target 
parameters corresponding to TSSi, NH3(i), OrgNi, InorgPi, and OrgPi, in 
which “i” is in the range of [1, k] (R. Wang et al., 2022). It should be 
noted that although kNN and NN methods consider the nonlinearity of 
the correlations, they do not provide any specific equation. In the RT 
algorithm, for predicting the target parameter, the whole dataset is 
considered as root of a tree and split into subsets. Meanwhile, a multi
variate linear regression is used to predict the target in each subset 
(Breiman et al., 2017; Granata et al., 2017). In the RF, several trees 
(forest) were built in parallel to predict the target parameter and the 
mean value of the predictions is recognized as the predicted value 
(Bunce and Graham, 2019; Dürrenmatt and Gujer, 2012; Lakshmanap
rabu et al., 2019; Mateo Pérez et al., 2021; Sharafati et al., 2020). In the 
GB algorithm, trees were generated consecutively considering the error 
between the target value and the new value predicted by the new tree. 
The error of the estimation decreased with increasing number of trees. 

2.5. Phase three: Monte Carlo simulation (MCS) 

The MCS was used to conduct the sensitivity analysis of the best 
predictive model, which was found according to the statistical metrics of 
the models. Firstly, the probability density functions (PDFs) of the in
dependent variables, TSS, NH3, OrgN, InorgP and OrgP were defined 
according to the historical data collected by HK DSD. It should be noted 
that the normalized data were used for conducting MCS since the models 
were developed based on the normalized data. The goodness of each 
distribution function was evaluated by Kolmogorov-Smirnov test (KS 
test) including the p-value parameter. Higher than 0.05 of p-value in
dicates that the assumed distribution function can represent the distri
bution of the observed data. For MCS, 1000 random values of TSS, NH3, 
OrgN, InorgP and OrgP were generated based on the parameters of their 
distribution function. Then, the corresponding BOD5 and COD values for 

each set were found according to the model-generated equation. After
wards, the sensitivity of BOD5 and COD to ±10%, ±20% and ±50 
change in one of the parameters was found, while the other four pa
rameters were kept constant. 

3. Results and discussion 

3.1. Wastewater quality parameters and statistical metrics 

Based on the three years of historical data, which were collected 
monthly from the inlets of seven WWTPs all over Hong Kong, 11 indi
vidual variables were obtained. A statistical summary of these 11 
influent variables is presented in Table 3. In addition, the dataset of each 
parameter was fitted to a probability distribution function (PDF). It was 
observed that NH3, OrgP and InorgP followed log-normal distribution, 
but the other variables do not follow any of the known distribution 
functions. These results showed significant differences in the distribu
tions of the concentrations of the influent’s parameters, and this ne
cessitates normalization of the data before applying GEP. On the other 
hand, all dataets possessed high skewness, indicating that most data 
values are concentrated within a certain range. The presence of high 
values of contaminants in some cases may be due to the intrusion of 
industrial wastewater into the municipal sewage networks. Despite their 
rare occurrence, they were not removed from the dataset to account for 
their effect on the developed model. To remove the effect of the large 
range of some of the data on the PDFs, the distribution of the normalized 
data was obtained. Moreover, the distribution function of the normal
ized data will form the basis of the MCS-based sensitivity analysis. All 
parameters except OrgN fit the log-normal distribution. In another 
research, Oliveira et al. (2012) found the log-normal distribution to be 
the most appropriate for describing the distribution of the wastewater 
parameters. On the other hand, InorgP and NH3 values fitted to the 
Gamma distribution better. The best fits of the normalized input data 
and the parameters of the distribution functions are tabulated in Table 4. 

BOD5 and COD were selected as the target parameters, since they can 
be used as surrogate parameters to estimate the energy consumption, as 
well as sludge production of a WWTP (Benedict et al., 1979.). On the 
other hand, measuring BOD5 is tedious and prone to several errors, 
which is even made more challenging by the scarcity of real-time data 
(Basant et al., 2010). Moreover, COD measurement requires skillful 
laboratory workers and precautionary measurements (Baird et al., 
2017). Among the other parameters, TSS, OrgN, NH3, InorgP and OrgP 
were selected as the predictors of BOD5 and COD. The reasoning for 
selecting the said parameters lies in the fact that BOD5 and COD are 
representatives of the biodegradable and non-biodegradable compounds 
in wastewater. On the other hand, biodegradable and 
non-biodegradable compounds in wastewater consist of insoluble and 
soluble fractions, and the insoluble compounds are considered TSS. 
Therefore, BOD5 and COD may have correlations with the TSS value of 
the wastewater. Moreover, the biodegradable and non-biodegradable 
compounds consist of nitrogenous and phosphorous compounds, 
which are represented by OrgN and NH3 (for nitrogenous compounds) 
and InorgP and OrgP (for phosphorous compounds). Following this, the 
correlation of BOD5 and COD with each of the said variables was 
determined, as well as the sensitivity of BOD5 and COD to each of them. 

3.2. Predictive equations of BOD5 and COD 

To develop a GEP model, several parameters such as the number of 
the chromosomes, number of the genes, head size, functions linking the 
genes and other functions relevant to the equations should be adjusted to 
increase the R2 while reducing the values of MSE and RMSE. The pre
dicted results and the corresponding experimental values were 
compared to each other by linear regression. After several trial runs with 
different parameters, a GEP model was developed with a head size of 7 
and 3 genes linked by the addition function and consisting of constants 
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and independent variables of TSS, NH3, OrgN, OrgP and InorgP. The 
expression trees of the genes for predicting BOD5 and COD are illus
trated in Figs. 3 and 4, respectively. The predictive equations of COD and 
BOD5 including the functions and the parameters are also presented as 
Eq. (7) and Eq. (8), respectively. 

COD=
∑4

i=1
Sub − ET i (7) 

In which: 

Sub − ET 1=Tanh(Arctan(TSS))

Sub − ET 2 = 0.377 × NH3 − 6.825 × OrgP2  

Sub − ET 3=OrgN × (0.043+ 0.346×TSS× InorgP)

Sub − ET 4=Arctan(Arctan(OrgP×(OrgP − 0.615)))

BOD5 =
∑4

i=1
Sub − ET i (8) 

In which: 

Sub − ET 1=(− 0.164 − TSS) × (OrgP − OrgN) × (Arctan(OrgN) − OrgP)

Sub − ET 2 = 0.023  

Sub − ET 3=TSS× OrgN(− 0.799×OrgN2)

Sub − ET 4=Tanh(Arctan(TSS)) × Arctan(− 0.679× TSS)

As Eq. (8) shows, three parameters of TSS, OrgN, and OrgP are 
involved in the predictive equation of BOD5. However, the correlations 
between BOD5 and the above-mentioned parameters are nonlinear, 
which indicates the complicated nature of the relationships between 
these parameters. Due to the complexity of the equation and taking its 
derivative according to the independent parameters, the sensitivity of 
BOD5 is calculated by MCS, which will be discussed later. 

BOD5 is comprised of particulate and non-particulate fractions, 
including colloidal and soluble compounds such as ammoniacal and 
carbonaceous ones. Particulate matter constitutes approximately 75% of 
BOD5, therefore, it was expected that TSS would contribute more than 
other parameters in the developed BOD5 prediction model. Non- 
particulate fraction of BOD5 mostly consists of proteins or amino-acids 

which can be considered as organic nitrogenous compounds (Gerardi, 
2015). It is noteworthy that ammonia can be oxidized by the nitrifying 
bacteria to nitrite and consequently to nitrate according to Eq. (9): 

Table 3 
The statistical data of the parameters of the WWTPs’ influent.  

Variable Unit SD Mean Min Max Skewness Kurtosis 

BOD5 mg/L as O2 86.95 217.25 540.00 86.73 1.17 0.78 
COD mg/L as O2 223.39 523.54 1300.00 145.08 0.95 0.40 
TSS mg/L 168.99 327.83 880.00 91.43 1.10 0.49 
NH3 mg/L as N 6.19 23.75 50.00 11.00 0.68 0.89 
OrgN mg/L as N 9.08 16.93 59.00 2.00 1.58 2.80 
OrgP mg/L as P 0.77 2.54 6.30 0.96 1.16 2.37 
InrgP mg/L as P 2.14 3.07 14.41 0.27 1.61 3.31  

Table 4 
The distribution functions of the normalized data.  

Variable Distribution fit p-value Parameters of the distribution 

BOD5 Lognormal 0.146 μ = − 1.430 σ = 0.639 
COD Lognormal 0.149 μ = − 1.266 σ = 0.589 
TSS Lognormal 0.193 μ = − 1.425 σ = 0.707 
NH3 Gamma 0.699 α = 4.21 θ = 0.079 
OrgN Lognormal 0.080 μ = − 1.485 σ = 0.573 
OrgP Gamma 0.159 α = 4.571 θ = 0.063 
InorgP Lognormal 0.635 μ = − 1.864 σ = 0.746  

Fig. 4. GEP expression tree for predicting BOD5 from TSS, NH3, OrgN, OrgP 
and InorgP. (Note: d0: concentration of TSS, d1: concentration of NH3, d2: 
concentration of OrgN, d3: concentration of OrgP, d0: concentration of InorgP. 
The numbers of ci are constants generated by GeneXpro.). 
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NH3 + 2O2̅̅̅̅̅̅̅̅̅̅̅→
nitrifying bacteria HNO3 + H2O (9) 

The ammonia oxidation by the nitrifying bacteria consumes oxygen, 
however, it generally occurs after 6 days. Therefore, ammonia is ex
pected to have negligible effect on BOD5, unless a considerable amount 
of groundwater containing nitrifying bacteria infiltrates into the sewage 
conveyance network. The absence of NH3 variable in the GEP model for 
predicting BOD5 complies with the negligible role of NH3 hypothesis. On 
the other hand, inorganic phosphorous compounds, mostly comprised of 
phosphate salts, do not affect the BOD5 value. On the other hand, 
involvement of OrgP term in the equations indicates that the biode
gradable species in the wastewater can partially be comprised of organic 
phosphorous compounds. 

On the other hand, the proposed equation for measuring COD is 
depicted in Eq. (10): 

CnHaObNc + dCr2O2−
7 +(8d+ c)H+ → nCO2 +

a+ 8d − 3c
2

H2O+ cNH+
4

+ 2dCr3+

(10)  

where d = 2n
3 + a

6 −
b
3 −

c
2. 

According to Eq. (10), phosphorous compounds, theoretically, are 
not involved in the COD measurement, however, in reality, they may 
have negligible contributions to the process. As Eq (8) shows, ammo
niacal compounds are not involved in COD measurement either. How
ever, the presence of ammonia may interfere with COD measurement, 
since one of the final products of COD measurement is NH+

4 . It should be 
noted that the GEP modelling only considers the correlation between the 
parameters based on the training data but not the chemical reactions 
that occurs between them. Therefore, increasing ammonia concentra
tion may be indicative of increasing the contaminants and therefore 
increasing COD value. Hence, the results of GEP modelling and theo
retical chemical reactions should complement each other when inter
pretating the equations. 

4. Comparative analysis 

The accuracy and statistical metrics of the different models to predict 
BOD5 and COD in the WWTPs are tabulated in Tables 5 and 6, respec
tively. The R2 of the different models for predicting BOD5 are in the 
order of GEP > RF > kNN > LR > MLP-NN > GB > RT. On the other 
hand, the accuracies of the employed AI algorithms for predicting COD 
are in the order of GEP > LR > MLP-NN > GB > RF > RT. Therefore, 
according to the statistical parameters of the AI models, the GEP model 
predicts BOD5 and COD of the WWTPs’ influent more efficiently than the 
other models. Moreover, the GEP model residuals are lower than those 
of the other models. In addition, GEP provides the relationship between 
the input and output parameters with specific mathematical functions, 
thereby allowing for a better understanding of the interactions that 
exists between the parameters. However, the other AI models serve as 
black box models due to their lack of derived equations. 

As can be seen from Tables 5 and 6, the prediction of BOD5 and COD 
with RT is the least accurate with R2 values of 0.565 and 0.646, for BOD5 

and COD predictions, respectively. The low accuracy of RT can be 
attributed to the occurrence of overfitting during the development one 
tree. For prediction of BOD5, GB has higher accuracy than RT, with R2 

value of 0.639. This is due to employing more trees in prediction of the 
target parameter. On the other hand, for predicting COD, GB, RF and 
kNN showed comparable accuracies with respective R2 values of 0.807, 
0.790 and 0.773. It should be recalled that in RF, GB and kNN, the value 
of the target parameter corresponding to the input vector (TSSv, NH3(v), 
OrgNv, InorgPv, OrgPv) is the mean value of the target parameters cor
responding to some input vectors (TSSi, NH3(i), OrgNi, InorgPi, OrgPi), 
which are the closest values to the TSSv, NH3(v), OrgNv, InorgPv, OrgPv 
in the structure formed during the training step. The similar accuracies 
of RF, GB and kNN in predicting COD may be due to the similar structure 
of the trees in RF and GB, as well as the neighboring values in kNN. This 
can be attributed to the presence of a high portion of data in a limited 
range and similar shape of the PDF of the normalized data. In predicting 
COD, the performance of kNN was weaker than that of GB and RF. This 
implies that the more organized structure of the trees in GB and RF 
modelling performs better than the structure of locating neighbors in 
kNN for predicting COD. This may be due to lower errors and more 
accuracy of COD measurement, which makes RF and GB better predic
tive models than kNN. For predicting COD, MLP-NN and LR perform 
better than RF, GB and kNN, but their accuracies are very similar. Also, 
MLP-NN and LR depicted comparable accuracies, which are slightly 
higher than those observed for other models, except GEP. The compa
rable performances of LR and MLP-NN implies that the feed-forward and 
backward propagation mechanisms of the MLP-NN conclude a semi- 
linear relationship between the target parameters and the input inde
pendent variables. 

For predicting BOD5, GB performs weaker than RF, implying that the 
GB algorithm for generating trees is not suitable for BOD5 prediction. 
However, RF algorithm for BOD5 estimation showed a better perfor
mance level. For COD estimation, LR and MLP-NN similarly showed 
comparable accuracies in BOD5 estimation. However, LR has lower ac
curacy than RF, indicating that correlation of BOD5 with the indepen
dent variables tend to be more non-linear than that of COD. 

Since RT, RF, GB, kNN and MLP-NN do not provide specific rela
tionship function, the linear correlation provided by LR is further 
investigated. Eq. (11) and Eq. (12) show the linear correlation of COD 
and BOD5, respectively, with the input parameters. 

COD= 0.511 × TSS+ 0.332 × NH3 + 0.174 × OrgN − 0.076 × OrgP

+ 0.159 × InorgP
(11)  

BOD5 = 0.605 × TSS+ 0.046 × NH3 + 0.142 × OrgN + 0.095 × OrgP

+ 0.116 × InorgP
(12) 

As Eqs. (11) and (12), show, TSS contribute higher than 50% to 
predicting BOD5 and COD. This is due to the fact that suspended solids of 
wastewater contain a large amount of organic compounds, which are 
represented by BOD5 and COD (Veronez et al., 2018). However, NH3 
plays a negligible role in predicting BOD5 as earlier highlighted, owing 

Table 5 
Performance parameters of the BOD5 predictive models.  

Target variable model stage MSE RMSE MAE R2 

BOD5 GEP Training 0.009 0.095 0.067 0.727 
Validation 0.008 0.092 0.068 0.749 

RF Validation 0.008 0.088 0.068 0.708 
kNN Validation 0.009 0.093 0.07 0.675 
LR Validation 0.009 0.094 0.071 0.669 
MLP-NN Validation 0.009 0.096 0.072 0.655 
GB Validation 0.01 0.098 0.073 0.639 
RT Validation 0.012 0.108 0.082 0.565  

Table 6 
Performance parameters of the COD predictive models.  

Target variable model stage MSE RMSE MAE R2 

COD GEP Training 0.009 0.095 0.067 0.816 
Validation 0.008 0.092 0.068 0.862 

LR Validation 0.005 0.072 0.054 0.841 
MLP-NN Validation 0.005 0.073 0.056 0.836 
GB Validation 0.006 0.08 0.061 0.807 
RF Validation 0.007 0.083 0.063 0.790 
kNN Validation 0.007 0.086 0.062 0.773 
RT Validation 0.012 0.108 0.082 0.646  
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to the fact that biologically degradable content of wastewater mostly 
contain organic compounds and not ammoniacal compounds. On the 
other hand, NH3 has significant role (up to 33%) in predicting COD. This 
may be due to the hidden correlation between the concentrations of NH3 
and other toxic or non-biodegradable compounds in the wastewater 
samples, which lead to higher COD values. From the practical point of 
view, it can be inferred that higher ammonia concentrations in the 
WWTPs’ inflows may be indicative of the presence of toxic compounds, 
which may disturb the reactions in the biological treatment stages 
(Henze et al., 2008). 

It is noteworthy that the coefficients of NH3 in the predictive models 
of BOD5 and COD significantly differ from each other. Meanwhile, the 
coefficients of the other independent variables such as TSS, OrgN, OrgP 
and InorgP in the predictive models of BOD5 and COD are comparable. 
Since the performance of the GEP model was superior to the other ones 
in estimation of BOD5 and COD, its performance will be investigated in 
more detail and the sensitivity analysis will be conducted based on the 
GEP model in the following sections. 

5. Performance of the GEP model 

The performance of the GEP model for predicting BOD5 and COD for 
the training and validation was evaluated according to the statistical 
indicators of R2, MSE, RMSE, MAE, RSE, and RRSE as shown in Tables 5 
and 6 The results show that the developed predictive model has satis
factory performance for both training and validation of the dataset. The 
plots of the predicted versus observed BOD5 and COD values for both 
training and validation dataset are presented in Figs. 5 and 6, respec
tively. The R2 of the training and validation datasets are 0.749 and 
0.727, respectively, for predicting BOD5 and 0.816 and 0.861 for COD, 
indicating sufficiency of the GEP model for predicting BOD5 and COD in 
the influent of the WWTPs, based on the values of TSS, NH3, OrgN, OrgP 
and InorgP. It is noteworthy that the accuracy of the model for pre
dicting COD is higher than that of BOD5, since measuring BOD5 is prone 
to higher errors. Measuring BOD5 requires several steps and each of the 
steps has its own intrinsic errors. On the other hand, the data were ac
quired over three years from different areas of HK, which may be 
affected by intrusion of the industrial wastewater. Therefore, the water 
quality input parameters were non-homogenous, which may have 
affected the accuracy of the correlations between the parameters (Yaqub 
et al., 2022b). Notably, the normalization was done for developing the 
models as expressed in the methodology, based on which the correlation 
between the parameters were found. However, for plotting Figs. 5 and 6, 
the “predicted” values, which are normalized values, were converted to 
the original values to obtain more realistic comparison with the 
observed values. 

Although GEP model exhibits strong fitness with the actual data, 
digging deeper into the errors and investigating the data with higher 
errors provided insights on minimizing their influence on predictions. 
To this purpose, the differences between the predicted and actual values 
as well as the error percentage are obtained. Based on the results, for 
46% of the cases, the predicted BOD5 was lower than the actual BOD5. 
These cases may lead to underestimating the BOD5 and consequently 
underestimating the aeration amount. However, a more accurate look at 
the results reveal that these errors can be avoided. For example, 84% of 
the underestimation cases showed that the actual BOD5 is 20% higher 
than the predicted ones. Therefore, by applying 20% safety factor, the 
underestimation error can be avoided. On the other hand, 16% of the 
underestimation cases showed that the actual BOD5 is 20% higher than 
the predicted ones, which may be indicative of erroneous measurements 
of parameters. Therefore, frequent inspection and calibration of the 
sensors installed in the WWTP’s inflow could be pertinent to minimizing 
the errors associated with the measured parameters. On the other hand, 
the errors in the overestimation of BOD5 follows similar trend as the 
underestimation one. 

6. Sensitivity analysis using MCS 

In order to investigate the most influential parameters, their effects 
and the interactions between them, sensitivity analysis was conducted 
by employing MCS. The MCS can provide insights on the uncertainty of 
the parameters and the major parameters affecting the change in the 
target variables (Golzar et al., 2020). This requires random generation of 
a dataset of the input variables and determining the corresponding BOD5 
for each set of inputs by applying the GEP derived equation to them. In 
order to generate the random input variables, the PDF of normalized 
values for each parameter was initially defined based on the actual data. 
The PDF of the normalized values of all variables with the p-value of the 
fitted distribution function on the actual data are tabulated in Table 4. 

After obtaining 1000 data points for the predictors and the target 
parameter, the sensitivity of BOD5 to each independent variable is found 
by changing that variable by ±10%, while keeping the other variables 
constant, as depicted in Table 7. As per Table 7, TSS is the most influ
ential parameter for BOD5 and COD estimation. 10% increase in the 
average TSS value of 309.11nullmg/L at the average values of the other 
independent variables, leads to a 7.94% increase in the BOD5 value from 
212 to 222nullmg/L as O2. Likewise, 10% decrease in the average TSS 
value leads to 7.88% decrease in the average value of BOD5, which 
corresponds to 14nullmg/L as O2 decrease in BOD5 concentration. On 
the other hand, 10% increase or decrease in the value of average TSS 
results in 7.918% increase and 8.269% decrease in the mean value of 
COD, respectively. The strong effect of TSS on the BOD5 may be due to 
the similar sources of TSS and BOD5. According to Henze et al. (2008), 
BOD5 is representative of the biodegradable compounds by the micro
organisms, and these compounds can be in either soluble or particulate 

Fig. 5. The scatter plots of the observed BOD5 values versus predicted ones for 
(a) training and (b) validation by the GEP model. 
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forms; thus, an increase in the amount of the particulate compounds 
(which are represented by TSS) implies an increase in the value of BOD5. 

Having said that, the BOD5 value is not affected by NH3 and InorgP, 
due to the fact that the biodegradable compounds in the wastewater are 
not comprised of ammonical and inorganic phosphorous compounds. 
The main reason for this is that the ammonical compounds and phos
phate salts have non-biodegradability characteristics (Hou et al., 2022). 
It is noteworthy that according to Eq. (12), NH3 and InorgP slightly 
contribute to the value of BOD5 in the LR model. However, this does not 
seem reasonable. Therefore, the GEP model represents more accurate 
predictive model in terms of the interactions of various wastewater 

parameters. Moreover, 10% increase or decrease in the values of organic 
nitrogenous or organic phosphorous compounds resulted in less than 1% 
of change in BOD5 value. The low contribution of OrgN and OrgP to the 
estimation of BOD5 lies in the following reasons: the GEP algorithm 
considers OrgN and OrgP as part of TSS, or negligible contribution of 
organic nitrogenous and phosphorous compounds to the compounds 
which require oxygen in the aeration process. Either of this indicates 
that intrusion of industrial sewages containing large amounts of organic 
nitrogenous and phosphorous to the municipal wastewater may not 
increase BOD5 (Chen et al., 2023). On the other hand, if they contain 
toxic and non-biodegradable compounds (that are represented by 
COD/BOD5 ratio), they negatively impact the BOD5 value. 

On the other hand, NH3 is the second most influential factor 
contributing to COD estimation after TSS, while OrgN, OrgP and InorgP 
has negligible effect on COD estimated value. High contribution of NH3 
to the predicted value of COD is compatible with the LR model of COD 
estimation and indicates similar sources of ammoniacal and non- 
biodegradable compounds. This is of great importance from a prac
tical point of view in the sense that detecting high values of NH3 in the 
WWTPs’ inflow may lead to disturbances in the biological treatment 
stages and pre-cautionary actions are required to be taken. 

7. Environmental and engineering implications 

In the first glance, all wastewater parameters may have a positive 
correlation with each other because the parameters are representative of 
the wastewater pollution levels, whereby an increase in one of them 
implies an increase in the other parameters. However, the statistical 
analysis opposes this. 

It was determined that the most influential parameter for predicting 
BOD5 and COD is TSS. To explain the correlation between BOD5 and 
TSS, it should be noted that BOD consists of soluble BOD5 and particu
late BOD5. On the other hand, TSS consists of biodegradable and non- 
biodegradable portions. The strong correlation between BOD5 and TSS 
implies that major proportions of the biodegradable materials are in the 
particulate form. On the other hand, the major proportion of the TSS is 
biodegradable. On the other hand, BOD5 has no correlation with N–NH3, 
indicating that ammoniacal nitrogen comprises of a negligible propor
tion of BOD5, and increasing BOD5 may not lead to an increase in 
N–NH3. On the other hand, BOD5 has good correlation with OrgN. This 
implies that the organic nitrogenous compounds significantly contribute 
to the oxygen demand of a wastewater sample. Surprisingly, conduc
tivity of the wastewater, which is representative of the concentrations of 
the ions in the wastewater, has no correlation with BOD5. This lack of 
correlation indicates that the variations in the concentrations of ions in 
the wastewater may not affect the oxygen demand and the activity of the 
aerobic bacteria. 

GEP provides a mathematical relationship between the inputs and 
outputs, thereby facilitating the analyses of the interactions between the 
input parameters as well as the effects of their variations on the output 
results under certain conditions. The availability of a function that can 
capture the complex relationships that exists between the parameters is 
crucial for developing insights that will facilitate accurate estimations of 
the target parameters. Such include BOD5 and COD in the case of fluc
tuations in a WWTP’s influent. On the other hand, the target parameters 
for this study, namely BOD5 and COD can be associated with the energy 
consumption and aeration amount during the biological treatment. In 
addition, given the target BOD5 and TSS removal value, the sludge 
production can be estimated, which could pave way for forecasting the 
operational parameters during sludge processing. This leads to extensive 
energy saving during the wastewater treatment processes. 

8. Conclusions 

This paper examines the utilization of several AI-based algorithms 
for predicting BOD5 and COD of the influents of WWTPs. The data were 

Fig. 6. The scatter plots of the observed COD values versus predicted ones for 
(a) training and (b) validation by the GEP model. 

Table 7 
Variations in the BOD5 and COD values by changing the values of the inde
pendent variables by ±10%.  

Parameter Average 
value 

Variation in 
the average 
value 

BOD5 (mg/L as 
O2) change (%) 
compared with 
the average value 

COD (mg/L as O2) 
change (%) 
compared with 
the average value 

TSS 309.11 
mg/L 

+10% 7.94 7.918 
− 10% − 7.88 − 8.269 

NH3 23.42 
mg/L as 
N 

+10% 0 5.176 
− 10% 0 − 5.176 

OrgN 16.28 
mg/L as 
N 

+10% − 0.448 0.415 
− 10% 0.585 − 0.415 

OrgP 2.49 mg/ 
L as P 

+10% 0.358 − 0.723 
− 10% 0.077 1.580 

InorgP 2.92 mg/ 
L as P 

+10% 0 0.142 
− 10% 0 − 0.142  
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collected from the inflow of 7 municipal wastewater treatment plants in 
Hong Kong over a period of three years. Based on the various statistical 
tests undertaken, it was seen that the GEP-based model provides more 
accurate results as compared to the other AI-based techniques. More
over, the sensitivity of the target parameters to the variations of the 
input parameters was assessed through Monte Carlo simulation. This 
study has led to three major contributions as follows. Firstly, a 
comprehensive mathematical expression for predicting BOD5 and COD 
from TSS, NH3, OrgN, OrgP and InorgP was developed and validated; the 
specific mathematical equation given by the GEP model provides in
sights on the contribution of each independent variable on estimation of 
BOD5 and COD. Secondly, the most influential parameters on estimating 
BOD5 and COD were revealed using the mathematical expressions 
developed by the GEP model; it was seen that TSS was the most influ
ential parameter for the estimation of BOD5 and COD. Thirdly, the un
certainty of the BOD5 and COD values were assessed using MCS; it was 
observed that TSS had the highest level of sensitivity to the BOD5 and 
COD, while InorgP was the most insensitive parameter in the developed 
model to predict both BOD5 and COD. 

The results of this work can be used to adjust the chemical dosage as 
well as estimate the aeration demand of the consecutive wastewater 
treatment stages in order to minimize the energy cost and production of 
greenhouse gases. Aside from the above-mentioned contributions, this 
study has some limitations which necessitate the corresponding future 
works as follows. Firstly, this study was unable to generate a compre
hensive investigation of the correlations between the influent parame
ters and the energy and cost-related parameters in a wastewater 
treatment plants, due to the lack of data related to the energy and cost of 
the WWTPs’ operation; thus, future endeavors need to develop a specific 
mathematical model for predicting energy saving of WWTPs’ operation. 
Secondly, the lack of data on industrial wastewater in Hong Kong also 
impeded the ability of this study to compare the performances of pre
dictive AI-based models for municipal and industrial wastewater treat
ment plants and water treatment plants. The third limitation of this 
study is associated with the WWTPs’ prediction under different pro
cesses; thus, future research need to develop an AI-based predictive 
model by taking into account the activated sludge and other nitrogen 
and phosphorous removal processes. Finally, the quantitative evaluation 
of the impact of predicting wastewater parameters on reducing the en
ergy consumption in the wastewater treatment plants is another limi
tation of this work, which needs to be considered in future research. 
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