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Abstract— Reasoning on the context of human beings is
crucial for many real-world applications especially for those
deploying autonomous systems (e.g. robots). In this paper,
we present a new approach for context reasoning to further
advance the field of human motion prediction. We therefore
propose a neuro-symbolic approach for human motion predic-
tion (NeuroSyM), which weights differently the interactions
in the neighbourhood by leveraging an intuitive technique for
spatial representation called Qualitative Trajectory Calculus
(QTC). The proposed approach is experimentally tested on
medium and long term time horizons using two architectures
from the state of art, one of which is a baseline for human
motion prediction and the other is a baseline for generic
multivariate time-series prediction. Six datasets of challenging
crowded scenarios, collected from both fixed and mobile
cameras, were used for testing. Experimental results show
that the NeuroSyM approach outperforms in most cases the
baseline architectures in terms of prediction accuracy.

I. INTRODUCTION

Human motion prediction has been the area of focus
of many researchers to date, ranging from single human
motion prediction (i.e. with no context) to the most de-
veloped frameworks in context-aware (dynamic and static
context) human motion prediction. The importance given to
this area of study traces back to the crucial impact it has
on many real-world applications including but limited to
video surveillance, anomaly detection, action and intention
recognition, autonomous driving, and robot navigation.
While many studies on human motion prediction have
been relying on datasets collected from a fixed camera
to enhance the accuracy and time complexity of their
frameworks, very few have studied the field from a mo-
bile camera perspective where the problem becomes more
challenging with restriction on the global observability of
the scene context and interactions. Hence, we focus in this
work on studying the field from both fixed and mobile
camera perspective targeting the autonomous systems (e.g.
robotic) application.

Reasoning on the context (e.g multi-agents interactions,
static key objects) of humans is crucial primarily for safe
autonomous systems navigation where human-robot co-
existence, for example, is increasingly taking part in do-
mestic, healthcare, warehouse, and transportation domains.
A robot tasked to deliver an order to a table in a restaurant,
bring a medicine to a patient in a hospital, or clean a
road side-walks, needs to update on-the-fly its internal
state representation of dynamic agents in the scene and,
therefore, update its target plan.
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Fig. 1: Conceptual illustration of the social cafe-bar sce-
nario used for reasoning on the context and interactions
of humans in dense environments. In the area of context-
aware human motion prediction, a research gap remains
for embedding all the neighbourhood interactions in the
learning process without reasoning on the ones that are
more or less stable (i.e. reliable) than others, and hence
can be more or less important in affecting the future states
of a single agent.

In addition to safety in navigation, reasoning on the
motion of multi-agents presents also the advantage of
implicit intent communication. For example, a social robot
detecting a conversational group in the environment and
predicting that the group will hold on its current interaction
for a while, makes sure to not unnecessarily interfere with
the group. On the other hand, if the robot predicts that a
person is coming towards itself, e.g to handle a box in
a warehouse, it can select an action that prioritizes the
responsiveness to the human’s intent.

Context reasoning is presented over the literature in
the form of human-human and human-objects interactions
reasoning. The authors in [1] have jointly modeled human-
robot and human-human interactions in a deep reinforce-
ment learning framework to drive robot navigation. In [2],
instead, the authors learn an optimal local trajectory from
a global plan by fusing human trajectories, Lidar features,
global path and odometry features in an attention layer.
Context-awareness methods have also been proposed to
deal with the challenges faced by the long-term prediction
of single human motion [3]–[8]. In the previous works,
interactions are processed either in a grid-based pooling
approach or in a global pooling mechanism to deal with
the problem of dynamic neighbourhood size.

Though context-awareness has proven better accuracy in
predicting human motion, one problem remains unnoticed.



Indeed, when interactions are defined spatially and hence
retrieved from the relative motion between pairs of agents,
not all neighbourhood interactions are of equal reliability
and hence of equal importance to the prediction of future
states of a single human being, as can be the case for
the spatial interactions interconnecting the queue line and
the table in Fig. 1. In this work, we address the problem
of context-aware human motion prediction by injecting a-
priori information on the interactions in a neuro-symbolic
approach. Among spatial interaction representations, the
qualitative approach presents an intuitive way for interac-
tion description. Qualitative spatial interactions are defined
as symbolic representations of interactions between a pair
of agents in the spatial domain, i.e. 2D navigation. One way
to model qualitative spatial interactions in multi-agent sce-
narios is by using the qualitative trajectory calculus (QTC)
[9], [10]. QTC-based models of moving agent pairs can
be described by different combinations of QTC symbols
that represent spatial relations between pairs of interacting
agents, like relative distance (i.e moving towards/away),
velocity (i.e moving faster/slower), and orientation (i.e.
moving to left/right).

The contribution of this paper is therefore three-fold:
(i) proposing a novel neuro-symbolic approach for enhanc-
ing human motion prediction (denoted NeuroSyM) using a-
priori information on the spatial interactions between cou-
ple of agents, (ii) experimentally evaluating the proposed
framework on two architectures from the state of art, one
of which is a baseline for human motion prediction and
the other is a baseline for generic multivariate time-series
prediction, and on different datasets collected from both
fixed and mobile camera perspective, (iii) releasing the
source code as a Github repository1 with some qualitative
results to help in the testing and integration of NeuroSyM
on other baselines for human motion prediction.

The remainder of the paper is as follows: Sec. II presents
an overview of the related works; Sec. III explains the
approach adopted to reason on the context of humans in
dense scenes; Sec. IV illustrates and discusses the results
from experiments conducted on open-source datasets for
human motion prediction and social navigation; finally,
Sec. V concludes by summarising the main outcomes and
suggesting future research work.

II. RELATED WORKS

Context-aware human motion prediction: The state
of the art shows extensive works in the area of context-
aware human motion prediction. Among those works,
some incorporate spatio-temporal dependencies [11]–[13]
of interactions and others are limited to only spatial [3]–
[8], [14], [15]. Another sub-category differentiates related
works into those dealing with both dynamic and static
context [4], [7], [11], [14], [15], those neglecting the dy-
namic context [8], while others focus more on the dynamic
context of interactions only [3], [5], [6], [12], [13].

1https://github.com/sariahmghames/NeuroSyM-prediction

The Dynamic and Static Context-aware Motion Predictor
(DSCMP) in [11] integrates dynamic interactions between
agents in a Social-aware Context Module (SCM), whereas
the static context is incorporated in a latent space with a
semantic scene mapping. The two most common baseline
architectures used over the literature for human motion
prediction are the Social-LSTM (S-LSTM) [3] and the
Social Generative Adversarial Networks (SGAN) [5]. They
use a spatially-aware pooling mechanism for incorporating
the hidden states of proximal dynamic agents as a way to
overcome the problem of variable and (potentially) large
number of people in a scene. The SGAN, however, has
outperformed S-LSTM in terms of both accuracy and time
complexity by avoiding the grid-based pooling mechanism
technique. In parallel, SGAN outperformed Stgat [13] with
time complexity and parameters consumption.

In this work, the fundamental SGAN architecture from
the literature is used to evaluate our NeuroSyM approach
for motion prediction, leaving room for potential integra-
tion of other architectures with static context awareness
(e.g. the image-driven static context of [11]). Here we
consider only raw trajectories (or metric coordinates) of
the context (dynamic and/or static) as possible input to the
deployed model architectures.

Human-human interactions modeling: The methods
for interactions modeling with nearby dynamic agents can
be classified into two types of problem: (a) one-to-one
modeling, and (b) crowd modeling [16]–[18]. A one-to-one
interaction modeling was presented in the literature in the
form of quantitative or qualitative representations. Quanti-
tative representation of interactions leverages a multi-layer
perceptron to embed relative pose (positions or velocities)
between pairs of agents as in [1], [3], [5]. While qualitative
representation of interactions was used in [19] and [20]
to model human-robot spatial interactions using QTC.
In [19] the use of qualitative rather than quantitative repre-
sentations for analysing human-robot spatial interactions
(HRSI) was motivated by the need of a more intuitive
understanding of the observed interactions. In [21] and [22]
similar models are used to implement human-aware robot
navigation strategies. The prediction of interactions in [21]
is based on a Bayesian temporal model limited to single
human-robot pairs, without considering nearby static or
dynamic objects, which limits the prediction performance.

In our study of single human motion, we rely on one-
to-one (i.e. pairwise) interactions modeling due to the
different nature of interactions that may occur in the neigh-
bourhood of a single agent. Hence, we build on previous
works from qualitative representation of interactions [19]
to weight the quantitative embedding of neighbourhood
interactions.

III. NEUROSYM PREDICTION APPROACH

A. Problem Definition

While most, if not all, works in the area of context-
aware human motion prediction embeds equally all kind
of interactions in the pre-defined neighbourhood size of



a single agent, in this work we formulate the problem
of context-aware human motion prediction in terms of
weighted interactions embedding between pairs of agents.
We show that a-priori information on the kind of inter-
actions helps the network to predict motion with a better
accuracy. In the following, we present the formulation of
spatial interactions which will be used later on to label (or
weight) the interactions as a symbolic reasoning called by
the neural model.

B. Spatial Interactions: a Qualitative Formulation

A qualitative spatial interaction is defined by a vector of
m QTC relations [9], which consist of qualitative symbols
(qi, i∈Z) in the domain U = {−,0,+}. We can distinguish
between four types of QTC: (a) QTCB basic, (b) QTCC
double-cross, (c) QTCN network, and (d) QTCS shape.
Here, we focus on the use of QTCC, since it better
represents the dynamics of the agents in our application
scenario. Two types of QTCC exist in the literature: QTCC1 ,
with four symbols {q1, q2, q3, q4}, and QTCC2 , with six
symbols {q1, q2, q3, q4, q5, q6}. The symbols q1 and q2
represent the towards/away (relative) motion between a
pair of agents; q3 and q4 represent the left/right relation;
q5 indicates the relative speed, faster or slower; finally,
q6 depends on the (absolute) angle with respect to the
reference line joining a pair of agents. The QTCC1 type
is illustrated in Fig. 2 for a case of interaction between
three body points. Given the time series of two moving
points, Pk and Pl , the qualitative interaction between them
is expressed by the symbols qi as follows:

(q1) − : d(Pk|t−,Pl |t)> d(Pk|t,Pl |t)
0 : d(Pk|t−,Pl |t) = d(Pk|t,Pl |t)
+ : d(Pk|t−,Pl |t)< d(Pk|t,Pl |t)

(q2) same as q1, but swapping Pk and Pl

(q3) − : ∥ ⃗Pt+
k Pt

k ∧ P⃗t
l Pt

k∥< 0

0 : ∥ ⃗Pt+
k Pt

k ∧ P⃗t
l Pt

k∥= 0
+ : all other cases

(q4) same as q3, but swapping Pk and Pl

(q5) − : ∥V⃗ t
k∥< ∥V⃗ t

l ∥

0 : ∥V⃗ t
k∥= ∥V⃗ t

l ∥
+ : all other cases

(q6) − : θ(V⃗ t
k , P⃗kPl

t)< θ(V⃗ t
l , P⃗lPk

t)

0 : θ(V⃗ t
k , P⃗kPl

t) = θ(V⃗ t
l , P⃗lPk

t)

+ : all other cases.

where d(.) is the euclidean distance between two positions,
V (.) the velocity vector of a body point, θ(.) is the
absolute angle between two vectors, and ∧ is the cross-
product notation between two vectors. In this paper, we
propose a neuro-symbolic approach for motion prediction
(NeuroSyM) that can be implemented to every related work
in the field to enhance the accuracy of the motion. In order
to narrow down the study, we take advantage of QTCC1 to

Fig. 2: A case of QTCC1 representation of interactions
between three body points Pk, Pl , and Pq.

label the interactions as described in the following section.
We leave therefore the investigation into the additional
information provided by QTCC2 to our future work.

C. Data Labeling

We leverage our labeling technique for pairwise spatial
interactions on the concept of Conceptual Neighbourhood
Diagram (CND) presented in [23] and in the original work
of qualitative spatial interactions in [9]. As per [9], the
construction of a CND (as in Fig. 3) for QTC is based
on the notion of conceptual distance (d), which is used to
define the closeness of two QTC states at time t and t’,
respectively, and can be calculated as follows:

dQTCt′

QTCt = ∑
qi

| qQTCt

i −qQTCt′

i |, (1)

where, for practical reasons, the symbols “+” and “-”
are associated to the numerical values “+1” and “-1”, as
in [9]. In Fig. 3 (left), for each link (i.e. edge) between
conceptual neighbours (the nodes) the conceptual distance
between the adjacent relations is indicated. In a CND, and
due to the laws of continuity, the conceptual neighbours
of each particular relation constitute only a subset of the
base relations. For example, QTCC1 has 81 basic states or
relations (each symbol qi has 3 different possible types of
transitions from domain U) but the conceptual neighbours
of {−,−,−,−} relation as illustrated in Fig. 3 (right)
reduce from 80 to 15 for the following reasons [23]:

• Transition from “+” to “-” (and vice versa) is impossi-
ble without passing through 0, hence transition from
{−,−,+,+} to {−,+,+,+} is impossible without
passing through {−,0,+,+}.

• “0” Dominates “+” and “-”, hence a transition from
{+,−,−,0} to {+,−,0,+} is impossible without
passing through {+,−,−,+} or {+,−,0,0}.

• The combination of both former rules.
For the sake of labeling, we omit the need for infor-

mation on the conceptual distance between states, and we
focus on the possible transitional states for each QTC
relation given the state at time t. The CND for QTCC1 is not
completely shown in Fig. 3 (right) as it is too complex to
visualise on a two-dimensional medium. The label (αcnd)
for each of the 81 states of a QTCC1 type of qualitative
calculus is formulated as follows:

αcnd = Pr(QTCt ′ |QTCt) =
1

NTr
(2)



Fig. 3: (left) The complete CND for QTCB1 in n-
dimensional space. The QTCB1 has only q1 and q2 symbols.
Straight edges represent a conceptual distance of 1 while
dashed edges represent a conceptual distance of 2. (right)
one part of the QTCC1 illustrating the possible transitions
of the QTC relation {−,−,−,−}, resulting in 15 possible
transitions and therefore in αcnd of 0.067 weighting that
same QTC relation at the next time step.

where NTr represents the number of transitional states. αcnd
represents the level of stability or reliability of a transitional
state. The higher the number of possible transitional states,
the lower the likelihood to transition into a single state
and vice versa. In Fig. 3, the likelihood to transition
from {−,−,−,−} into {0,0,0,0} is 0.067, however the
likelihood increases to 0.2 if the 15 possible transitional
states reduces to 5, rendering the {0,0,0,0} state more
reliable in the learning process. Given an interaction at
time t, we associate its label to the interaction (observed
or predicted) at t+1. In most related works, an interaction
between agents A and B is calculated as an embedding of
the relative pose between them, as follows:

InterAB = Dense(XB −XA) (3)

where Dense() is the embedding layer. Given the pose X
of each agent at time t, a QTC state can be formulated
and the corresponding label “αcnd” will be loaded from
a dictionary. Hence, the symbolic reasoning transforms
Eq. 3 into the form of αcnd InterAB. From a practical point
of view, the symbolic knowledge of interactions between
two moving body-points can be readily exploited by any
neural architecture for context-aware motion prediction,
since the CND dictionary (associating QTC states with
their corresponding αcnd), generated for a specific QTC
configuration, remains the same regardless of the data
distribution domain.

IV. EXPERIMENTS

As anticipated in Sec. II, we evaluated our approach for
enhancing human motion prediction on two architectures
from the state of the art, using raw trajectories as input.
The first one is a well-known baseline architecture, the
socially-acceptable trajectories with generative adversarial
networks (SGAN [5]), used in the literature to enhance the
accuracy and speed of human motion prediction in crowds.
It relies on datasets collected from a fixed top-down camera

(a) Zara dataset (b) University dataset

(c) JackRabbot cafe bytes-cafe-2019-02-07 0 scene

Fig. 4: Examples from UCY and JackRabbot datasets.

in public spaces, capturing the entire scene dynamics (ETH
dataset [24] – sequences ETH and Hotel), and on datasets
collected from a mobile stereo rig mounted on a car (UCY
dataset [25] – sequences Zara01-02 and Univ). In order to
generalise our evaluation to robotics application, we chose
another well-known dataset, the JackRabbot (JRDB [26]),
which provides multi-sensor data of human behaviours
from a mobile robot perspective in populated indoor and
outdoor environments (Fig. 4c). JackRabbot was never
exploited in the literature for human motion prediction,
although it clearly benefits applications of social robot
navigation, where local interactions can be extracted from
the on-board 360◦ Lidar (Velodyne) and Fisheye camera
sensors. To this end, we chose to use JackRabbot on a
generic network architecture for time series prediction and
where the following features can be incorporated: (a) the
ability to integrate a dynamic context; (b) the ability to
integrate key static objects of potential interactions (e.g.
door, table, bar), differently from S-LSTM and SGAN;
(c) the ability to test our neuro-symbolic approach on
prediction architectures that, instead of using a pooling
mechanism to overcome the size problem of dynamic input
series (representing the neighbourhood in social scenarios),
weights every single input (i.e. neighbour) by giving spe-
cial attention to each one separately. One of the recent
architectures that satisfy the last features is the dual-stage
attention mechanism (DA-RNN) developed for time-series
forecasting in [27].

A. Neuro-Symbolic SGAN

NeuroSyM SGAN Architecture: The original SGAN
architecture (SGAN-20VP-20 in [5]) has proven good
performance in terms of accuracy, collision avoidance, and
time complexity with respect to its precedent baselines, as
the social LSTM [3]. The core of SGAN is a generator and
a discriminator trained adversarially. The generator model
G has the role of generating candidate trajectories, while
the discriminator model D estimates the probability that
a sample comes from the training data (i.e. real) rather
than from the generator output samples. The generator
consists of an encoder and a decoder, separated by a
pooling mechanism, while the discriminator is mainly an
encoder. In SGAN, a variety loss is introduced on top



of the adversarial (min-max) loss in order to encourage
the generator to output diverse samples, thanks to a noise
distribution injected to the pooling mechanism output. For
details on the SGAN architecture, the reader is advised to
refer to the original work [5]. The performance measures
used in SGAN for the evaluation process are the absolute
displacement error (ADE) and the final displacement error
(FDE) of the predicted trajectory (X̃). The measures are
calculated as follows:

ADE =
∑

N
i=1 ∑

Tpred
t=1 ∥X̃ i

t −X i
t ∥2

N ∗Tpred
(4)

FDE =
∑

N
i=1 ∥X̃ i

Tpred
−X i

Tpred
∥2

N
(5)

where N is the total number of training trajectories.
The neuro-symbolic version of SGAN proposed in this

paper is illustrated in Fig. 5, highlighting the difference to
the original pooling mechanism of SGAN [5]. NeuroSyM
acts mainly on the pooling mechanism of the predictive
models, where it represents human-human interactions by
(a) embedding first their relative pose in all the observed
states of each agent through a dense layer, then (b) weigh-
ing the embedded relative pose based on the CND-inspired
label (αcnd) associated to the interaction at a previous time
step, and finally (c) max-pooling the weighted embedding
across neighbours in the global scene. On the contrary,
the original SGAN considers relative poses at the final
observed state only, with no attention given to the relia-
bility or stability level the interactions might have to help
inferring future states of the agent under consideration.

Results: For a reliable comparison between SGAN and
NeuroSyM SGAN, we trained again the former on our
computing system (11th Gen Intel® Core™ i7-11800H
processor and NVIDIA GeForce RTX 3080 16GB GPU),
which was able to replicate almost the same hyper-
parameters of the original work on SGAN, except for the
batch size, in our case limited to 10 instead of 64. A com-
prehensive list of the hyper-parameters used to train and
validate all model architectures is reported in the appendix
Sec. V. The ADE and FDE results for both architectures
are reported together with their standard deviations (DE-
STD and FDE-STD) in Table I for Tpred = 8 steps (i.e.
3.2 seconds) and 12 steps (i.e. 4.8 seconds), and on the
five sequences from the publicly available datasets ETH
and UCY. The results show a better ADE, FDE, DE-STD,
and FDE-STD for the NeuroSyM approach compared to the
original SGAN. The relative gain in terms of error drop is
represented in Table I by a positive percentage for all the
four measures with NeuroSyM with respect to SGAN on
each dataset. The average relative gain for ADE, FDE, DE-
STD, and FDE-STD, over the 5 datasets, is 60.84%, 58.4%,
28%, and 33.68%, respectively, for Tpred = 8; and 78.58%,
76.97%, 43.5%, 46.3%, respectively, for Tpred = 12.

B. Neuro-Symbolic DA-RNN
NeuroSyM DA-RNN Architecture: The original DA-

RNN architecture [27] implements a dual-stage attention

mechanism for time-series forecasting. The dual-stage net-
work consists of an encoder with an input attention module
weighing the n∗ time-series data spatially, each of length
Th, where Th is the observed time history. The encoder is
then followed by a decoder with a temporal attention layer,
capturing the temporal dependencies in the input series.
The encoder and decoder are based on an LSTM recurrent
neural network. The network outputs the prediction of one
time-series data of length Tf , where Tf is the predictive
time horizon. The reader can refer to [27] for a detailed
explanation of the network components, where Tf was
limited to 1.

The NeuroSyM version of DA-RNN we propose in this
paper takes advantage of the symbolic knowledge of the
spatial interactions between pairs of agents. In DA-RNN,
the encoder attention weights (“α” in Fig. 6) highlights
the importance of each input series at time t on the output
prediction at t+1. The input attention weights in DA-RNN
are calculated as follows:

α
k
t =

exp(ek
t )

∑
n
i=1 exp(ei

t)
(6)

where ek
t is the embedding of the kth input series at time t.

It is implemented as:

ek
t = dense[tanh(dense(ht−1;st−1)+dense(xk

1..Th
))] (7)

where ht−1 and st−1 are the hidden and cell state of the
encoder LSTM at a previous time step. The NeuroSyM
DA-RNN acts on the input series embedding ek

t before
the softmax function (Eq. 6) is applied on it. Hence, the
NeuroRoSyM approach transforms Eq. 7 into αk

cnd,t ek
t ,

updating the encoder attention weights with an a-priori
knowledge of the reliability or stability of each input series.
For applications of human motion prediction in crowds (i.e.
with context), αk

cnd,t is generated from Eq. 2. Each input
series represents the motion history of a neighbour agent,
whereas the first time series is the motion history of the
considered person and the output is the predicted motion
of that specific agent. Fig. 6 illustrates schematically where
the NeuroSyM module intervenes on the original DA-
RNN architecture with the injection of a CND layer at the
interface between the embedding and the softmax layers.

Data Processing: Social dense scenarios as the ones
presented in the JackRabbot dataset often have an un-
predictable number of people entering (Pe) and leaving
(Pl) the environment, possibly leading to a combinatorial
explosion in the input size of the predictive model and
in its number of training parameters (i.e. when Pe ≫ Pl
and Pe is very large). Indeed, n individuals in a scene
results in n(n − 1)/2 pairwise data points. That is in
addition to the difficulty of deploying an online model with
variable input size. As a consequence, we implement a
crowd clustering approach on JRDB for local interactions
embedding (as shown in Figs. 1 and 6). For each agent
i in a given scene, we generate a cluster with a fixed
interaction radius R = 3.7m. The latter is selected based
on the proxemics’ literature [28], where the social distance



Fig. 5: The neuro-symbolic SGAN pooling mechanism. The difference with the original SGAN pooling mechanism
can be seen from the mixed arrows colour added within and outside the red grid to represent different types of spatial
relations or interactions with the central agent standing on the red spot, which can be inferred from the NeuroSyM
SGAN architecture.

Measure Model Zara1 Zara2 Hotel Univ ETH Mean Gain

ADE

Baseline (SGAN) 0.7 / 2.29 0.44 / 0.95 1.76 / 2.45 1.25 / 2.96 0.88 / 3.8 —

NeuroSyM (SGAN) 0.21 / 0.34 0.2 / 0.3 0.35 / 0.5 0.36 / 0.62 0.63 / 0.73 —

Relative Gain (%) +70 / +85.15 +54.5 / +68.4 +80.10 / +79.6 +71.2 / +79 +28.4 / +80.78 +60.84/+78.58

FDE

Baseline (SGAN) 1.31 / 4.33 0.84 / 1.85 3.33 / 4.55 2.31 / 5.79 1.63 / 6.71 —

NeuroSyM (SGAN) 0.41 / 0.7 0.4 / 0.61 0.67 / 0.99 0.74 / 1.31 1.25 / 1.44 —

Relative Gain (%) +68.7 / +83.8 +52.38 / +67 +79.88 / +78.2 +67.9 / +77.37 +23.3 / +78.5 +58.4/+76.97

DE-STD

Baseline (SGAN) 0.35 / 0.9 0.26 / 0.52 0.44 / 0.9 0.51 / 0.84 0.37 / 1.02 —

NeuroSyM (SGAN) 0.22 / 0.4 0.2 / 0.35 0.32 / 0.56 0.24 / 0.38 0.37 / 0.64 —

Relative Gain (%) +37.14 / +55.5 +23 / +32.7 +27.27 / +37.7 +52.9 / +54.7 +0 / +37.2 +28/+43.5

FDE-STD

Baseline (SGAN) 1.1 / 2.86 0.8 / 1.61 1.51 / 2.88 1.6 / 2.63 1.15 / 3.29 —

NeuroSyM (SGAN) 0.64 / 1.2 0.58 / 1.05 0.96 / 1.72 0.68 / 1.14 1.09 / 1.91 —

Relative Gain (%) +41.8 / +58 +27.5 / +34.78 +36.4 / +40.27 +57.5 / +56.6 +5.2 / +41.9 +33.68/+46.3

TABLE I: Performance comparison between the baseline architecture SGAN and its neuro-symbolic approach across all
datasets. We report results in the format of 8/12 prediction time steps. ADE, FDE, DE-STD, and FDE-STD measures
are in meters and in bold is highlighted the better measure among the two approaches. The lower error the better. The
mean gain represents the mean of the relative gains over the 5 datasets, hence it only applies to the relative gain rows.

for interactions among acquaintances is indeed between
2.1m and 3.7m. Each cluster includes n input series, with n
being the maximum number of agents entering the cluster
of agent i in a time interval T . The maximum number of
input series among all clusters, n∗, is fixed for practical
(training) purposes. Each cluster is then post-processed to
include (n∗ − n) input series with complementary “fake”
values. We make use of the open-source annotated 3D
point clouds from JRDB, provided as metric coordinates
of human (dynamic context) bounding boxes centroid, and
extracted from the upper Velodyne sensor, as raw data and
ground truth to our network architecture. The raw data are
further processed to extract QTC representations of spatial
interactions between pairs of agents in a cluster. We then
make use of the CND dictionary to associate each local
QTC representation to its corresponding weight αk

cnd,t ,
which is then called by the NeuroSyM architecture as an
a-priori information on the reliability of each input series
and hence their importance on the predicted output. The a-
priori information is then used to weight the embedding of

the inputs. The environments considered in JRDB are fairly
crowded. Among them, we selected a cafe shop (bytes-
cafe-2019-02-07 0). DA-RNN embeds input series using
dense layers, facilitating the possibility to integrate static
context as series of constant metric coordinates. In the cafe
scenario, the static context includes objects such as bar
order and check-out points, exit door, and drinking water
station, as illustrated in Fig. 1. These objects were manu-
ally selected based on a previous investigation to identify
the most common ones used by people in the scenario,
although in the future we plan to learn them automatically
in order to adapt to different environments. The spatial
coordinates of the selected key objects are incorporated
in the network architecture as any other dynamic agent.
Results: We evaluated the DA-RNN and the NeuroSyM
DA-RNN for the cafe scenario over to medium (i.e. 48 time
steps, or 3.2 seconds) and long (i.e. 80 time steps, or 5.33
seconds) term horizons. The parameters for medium and
long term horizon prediction were chosen based on relevant
literature of human motion prediction [5], [11]. The results



Fig. 6: A neuro-symbolic approach for attention-based time-series prediction models. Differently from SGAN-like
architectures, attention-based mechanisms have no pooling modules. The diagram is extended from [27] and modified
for multi-steps attention-based context-aware human motion prediction in crowded environments. The input are n∗ time
series of agents, within a cluster centered at the first time series, while the output is the prediction of the cluster center’s
agent. The vector e denotes the input embeddings normalised to α after passing through the CND layer, which adds
a-priori knowledge to them in the form of αk

cnd,t . The CND layer weights differently the spatial relations (represented by
mixed arrows colour) of the neighbour agents with the central one. The vector l denotes the temporal attention weights
of the encoder’s hidden states output, normalised to β , while c represents the context. X = {x,y} is the input driving
vector; Y = {x′,y′} is the label vector; h and d are the encoder and decoder hidden states, respectively. The input and
temporal attention layers are constructed from dense layers.

of DA-RNN architecture on the JRDB dataset, and the
NeuroSyM DA-RNN, are illustrated in Table II, showing
root mean square error (RMSE) and mean absolute error
(MAE) between the predicted (x′,y′) coordinates and their
true labels (x,y). We can clearly see that the NeuroSyM
version of the architecture succeeds in decreasing the
RMSE metric by 22% on the 48 steps prediction horizon,
while influencing the performance negatively by 4% on
the longer 80 steps horizon. At the same time, the neuro-
symbolic approach decreased the MAE by 21% on the 80
steps horizon, while influencing negatively by 3% the 48
time steps prediction. Although the improvement percent-
age of NeuroSyM DA-RNN is superior, by a large extent,
to its counterpart on one of the two horizon windows,
the unequal performance suggests that the prediction is
affected by some outliers on the long term. This issue will
be addressed in our future work by exploiting the influence
of cluster radius selection on the prediction, a factor that we
foresee to affect the hidden states embedding of the relative
context. For a complete performance evaluation, another
fundamental point that we will address in the future is the
difference in computational cost between neuro-symbolic
architectures and their neural counterparts.

V. CONCLUSION

In this work, we presented a neuro-symbolic approach
for context-aware human motion prediction (NeuroSyM)
in dense scenarios, leveraging a qualitative representation
of interactions between dynamic agents to assess the type
of neighbourhood interactions and weight them accord-
ingly. We formulate the spatial interactions in terms of
a qualitative trajectory calculus (QTC) and we use the
conceptual neighbourhood diagram (CND) to anticipate
possible interactions that might influence the future state
of an individual agent. The likelihood of the next-step
interaction state is used for labeling it given the current

Architecture RMSE MAE

DA-RNN (Baseline) 3.61 / 3.572 2.097 / 2.753

NeuroSyM DA-RNN 2.815 / 3.728 2.162 / 2.166

Relative Gain (%) +22 / -4.37 -3.1 / +21.32

TABLE II: Performance comparison between the baseline
architecture DA-RNN and the NeuroSyM approach on
the JackRabbot dataset. The results’ format refers to the
48/80 prediction time steps. RMSE and MAE values are
in meters, and the best results are highlighted in bold (i.e.
the lower error, the better).

state of each agent (position and interaction). We tested
the NeuroSyM approach on a fundamental baseline ar-
chitecture for context-aware human motion prediction, i.e.
SGAN, and on another baseline architecture for multivari-
ate time-series prediction, i.e. DA-RNN. Differently from
SGAN, where interactions are pooled altogether, DA-RNN
includes an attention mechanism on the input time series.
We show that, in most of the cases, our neuro-symbolic
approach outperforms the baseline architectures in terms
of prediction accuracy on the medium- and long-term
horizons. We plan in our future work to test the NeuroSyM
approach for motion prediction on other architectures, as
S-LSTM and those incorporating static context in addition
to the dynamic one. Also, we will exploit the proposed
neuro-symbolic approach for human motion prediction in
social robot navigation environments, incorporating causal
(symbolic) models from literature as [29], [30].

APPENDIX: HYPER-PARAMETERS

The hyper-parameters used to train and validate each
of the network architectures deployed in this work are
specified in Tab III. For a complete list of SGAN hyper-



HPSGAN ValSGAN HPDA−RNN ValDA−RNN

Batch size 10 Batch size 5

num iterations 8512 observed timesteps 5

num epochs 200 num epochs 80

noise dim 8 learning rate 0.001

noise type Gaussian train ratio 0.8

pool every timestep 0 decay frequency 1000

observed timesteps 8 decay rate 0.99

embedding dim 16 num labels 1

encoder h dim g 32 encoder h dim 256

bottleneck dim 8 decoder h dim 256

decoder h dim g 32 validation ratio 0.1

encoder h dim d 48 test ratio 0.1

g learning rate 0.0001

d learning rate 0.001

mlp dim 64

noise mix type global

TABLE III: (Left) SGAN and NeuRoSyM SGAN hyper-
parameter values. (Right) DA-RNN and NeuRoSyM DA-
RNN hyper-parameter values.

parameters and a better understanding of their roles, the
reader should refer to the original open-source repository
at https://github.com/agrimgupta92/sgan.
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