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Stability from graph symmetrisation arguments with applications
to inducibility

Hong Liu, Oleg Pikhurko, Maryam Sharifzadeh and Katherine Staden

Abstract

We present a sufficient condition for the stability property of extremal graph problems that can
be solved via Zykov’s symmetrisation. Our criterion is stated in terms of an analytic limit version
of the problem. We show that, for example, it applies to the inducibility problem for an arbitrary
complete bipartite graph B, which asks for the maximum number of induced copies of B in an
n-vertex graph, and to the inducibility problem for K2,1,1,1 and K3,1,1, the only complete partite
graphs on at most five vertices for which the problem was previously open.

1. Introduction and notation

The notion of symmetrisation in graphs was introduced by Zykov in [40]. In its most basic
form, symmetrisation is the process of considering two non-adjacent vertices x and y in a graph
G, and replacing x by a clone of y, i.e. a vertex y′ whose neighbourhood is the same as that of y.
Zykov used symmetrisation to reprove Turán’s theorem [38], as follows. Let G be an n-vertex
Kr-free graph with the maximum number of edges. Whenever there are non-adjacent vertices
x, y with dG(x) ≤ dG(y), we symmetrise by replacing x by a clone of y. The graph obtained in
this way is still Kr-free and has at least as many edges as G, and one can do this so that the
final graph is complete partite. Standard convexity arguments imply that there are r − 1 parts
of almost equal size, recovering Turán’s theorem. A variation of this approach was employed
by Motzkin and Straus [28] also to reprove Turán’s theorem.

Suppose one seeks to maximise (or minimise) a graph parameter λ such that there is always
a way to symmetrise any given non-adjacent pair in a graph without decreasing λ. Then it
suffices to only consider ‘totally symmetrised’ (that is, complete partite) graphs to determine
the maximum value of λ. Bollobás [3] used symmetrisation to show that the parameter which
counts any linear combination of cliques is symmetrisable, a special case of which provides a
lower bound for the minimal number of cliques in a graph of given order and size.

In this paper, we are interested in more general graph parameters λ which do not decrease
upon symmetrisation, in a specific sense we describe below. Like the example above, a
symmetrisable λ is maximised (not necessarily uniquely) by a complete partite graph. Our
main result gives a sufficient condition for stability for symmetrisable functions, namely that
any graph which almost maximises λ looks very much like a complete partite graph. In fact we
prove the quantitatively sharper property of perfect stability, a strong form of stability which
additionally implies an exact result.
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1.1. The statement of the main result

In order to define precisely what we mean by symmetrisable functions and perfect stability,
we need to introduce some notation. We write G = (V,E) for a graph with vertex set V and
edge set E, and let v(G) := |V | and e(G) := |E|. Given X ⊆ V , we write

G[X] := (X, {xy ∈ E : x, y ∈ X})

for the graph induced by G on X, and G−X := G[V (G) \X], and also G− x := G− {x}.
Write NG(x) := {y ∈ V : xy ∈ E}.

Fix a positive integer k ≥ 3. Let G be the family of all finite graphs up to isomorphism and
let Gn consist of graphs with n vertices. Let Pn ⊆ Gn be the family of complete partite graphs
on n vertices. Suppose we have a function γ : Gk → R. For a graph G = (V,E) with v(G) ≥ k,
define

λ(G) :=

(
n

k

)−1 ∑
X∈(V

k)

γ(G[X]) (1.1)

where
(
V
k

)
is the collection of k-element subsets of V . Thus λ(G) is the expected value of

γ(G[X]) where X is a random k-subset of V . We may also work with

Λ(G) :=
∑

X∈(V
k)

γ(G[X]) =

(
n

k

)
λ(G),

which may be more convenient in some calculations. For a vertex x ∈ V (G), define

Λ(G, x) := Λ(G)− Λ(G− x) =
∑

X⊆(V
k),X3x

γ(G[X]),

λ(G, x) :=

(
n− 1

k − 1

)−1
Λ(G, x).

Thus λ(G, x) is the conditional expectation of γ(G[X]) where X is a random k-subset of V
conditioned on containing x.

Let λ(n) be the maximum of λ(G) over all n-vertex graphs G and define

λmax := lim
n→∞

λ(n).

One can easily show that the limit exists. Note that the minimisation problem reduces to a
maximisation one just by negating γ, so we will always consider maximising λ here. We can
now define what it means for λ to be symmetrisable.

Definition 1 (Symmetrisability). A function λ given by (1.1) is symmetrisable if for every
ε > 0 there is n0 > 0 such that the following two properties hold for every graph G = (V,E)
of order n ≥ n0:

(Sym1) There is a sequence of graphs G0, G1, ... , Gm on V such that G0 = G; Gm is complete
partite and for every i ∈ [m] we have λ(Gi−1) ≤ λ(Gi) and |E(Gi−1)4 E(Gi)| < ε

(
n
2

)
.

(Sym2) If G− z is complete partite with partite sets V1, ... , Vt, then there is a sequence of
graphs G0, G1, ... , Gm on V (G) such that G0 = G; Gi − z = G− z; λ(Gi−1) ≤ λ(Gi);
|E(Gi−1)4 E(Gi)| ≤ ε(n− 1) for all i ∈ [m]; and for each j ∈ [t], either NGm

(z) ⊇ Vj
or NGm

(z) ∩ Vj = ∅.

Here is an example of a symmetrisable parameter. For graphs F,G with v(F ) ≤ v(G), let
P (F,G) be the number of v(F )-subsets of V (G) that induce a subgraph isomorphic to F . Let
p(F,G) = P (F,G)/

(
v(G)
v(F )

)
be the induced density of F in G. Let λ(G) :=

∑
1≤i≤k aip(Ki, G)
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for a1, ... , ak ∈ R. If we let γ(F ) =
∑

1≤i≤k aip(Ki, F ) for F ∈ Gk, then (1.1) holds. (Indeed,
for v(G) ≥ k ≥ i, we have p(Ki, G) =

∑
F∈Gk p(Ki, F )p(F,G) which implies the statement.) As

mentioned above, Bollobas [3] showed that λ(n) is attained on a complete partite graph and
his proof shows that every such λ is in fact symmetrisable (for more details and examples, see
Section 6). In Section 1.2 we will see a generalisation of this parameter.

Secondly, we define perfect stability. The edit and normalised edit distances between graphs
G and H of the same order n are given by

∆̂1(G,H) := min
σ∈S(G,H)

|E(H)4 E(σ(G))|, δ̂1(G,H) :=
2

n2
∆̂1(G,H),

where S(G,H) is the set of bijections from V (G) to V (H). (We also write S(X) := S(X,X).)
We further define ∆̂1(G,H) := minH∈H ∆̂1(G,H) for a family H of graphs of order n, and
define δ̂1(G,H) analogously.

Definition 2 (Perfect stability). A graph parameter λ is perfectly stable if there exists
C > 0 such that for every graph G of order n ≥ C there is a complete partite graph H of order
n such that

δ̂1(G,H) ≤ C(λ(n)− λ(G)).

We say that a sequence x = (x1, x2, ... ) with x1 ≥ x2 ≥ ... ≥ 0 and
∑
i≥1 xi ≤ 1 is a

maximiser if there exists a sequence (Hn)n of complete partite graphs such that, as n→∞, we
have v(Hn)→∞, λ(Hn)→ λmax and for every i ≥ 1 the number of vertices in the i-th largest
part of Hn is (xi + o(1))v(Hn). Let OPT = OPT(λ) be the set of maximisers.

In Section 4 we will show that if OPT is a finite set, then there is β > 0 such that, for every
x ∈ OPT and every i ≥ 0 the entry xi is either 0 or at least β.

Observe that, if λ is perfectly stable, then the only graphs on which λ is maximised are
complete partite. Perfect stability has already been proved in several contexts, most notably
in Turán-type problems; for example by Füredi [13], Norin and Yepremyan [30, 31], Pikhurko,
Sliačan and Tyros [32], and Roberts and Scott [35].

Definition 3 (Realisation Gn,x). Given n ∈ N and x = (x1, x2, ... ) with x1 ≥ x2 ≥ ... ≥ 0
and x0 := 1−

∑
i≥1 xi ≥ 0, define a complete partite graph Gn,x with vertex set [n], parts

V1, ... , Vm and a set V0 of universal vertices, i.e., |V0| singleton parts, as follows. If x0 = 0, take
a partition [n] = V1 ∪ ... ∪ Vm with ||Vi| − xin| < 1 and let V0 = ∅. Otherwise, for all i ≥ 1
with xin ≥ 2, let |Vi| = bxinc and let V0 consist of the remaining vertices in [n].

We say that Gn,x is the (n-vertex) realisation of x and has P-structure V0, ... , Vm.

If H is a graph obtained by adding a new vertex z to G = Gn,x, we say that z is a clone of
u ∈ V (G) if u ∈ V0 and NH(z) = V (G), or if u /∈ V0 and NH(z) = NG(u). The following is one
version of our main result, which is also stated as Theorem 3.3, in terms of limits. Roughly
speaking, it states that a symmetrisable function λ is perfectly stable if it is ‘strict’, meaning
that it is sensitive to small alterations in a graph.

Theorem 1.1. Let λ be a symmetrisable function defined as above. Suppose |OPT| <∞.
Suppose also that there exists c > 0 such that the following hold for all large n and maximisers
x = (x1, x2, ... ) ∈ OPT, where G = Gn,x:

(i) For all distinct x, y ∈ V (G) we have λ(G)− λ(G⊕ xy) ≥ cn−2, where G⊕ xy has vertex
set V (G) and edge set E(G)4 {{x, y}}.

(ii) If Gv is obtained from G by adding a new vertex v which is complete or empty to each part
of G (where each Vi, i ∈ [m] is a part and we have |V0| singleton parts) then the minimum
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number of edits at v needed to make v a clone of some existing vertex of G is at most
n(λ(G)− λ(Gv, v))/c.

Then λ is perfectly stable.

As mentioned, see Theorem 3.3 for the ‘limit version’ of this statement, which concerns

λ(x) := lim
n→∞

λ(Gn,x).

One can easily show that this limit exists and that it does not depend on the choice of the
part sizes |Vi| in Definition 3 (only on the ratios xi). The conditions in Theorem 1.1 become
a series of inequalities that must be verified for maximisers x, which are a finite collection of
polynomial inequalities if the number of maximisers is finite and x0 = 0, since, for example,
given i, j, the quantity λ(G)− λ(G⊕ xy) is identical for all x ∈ Vi and y ∈ Vj . The value of
the theorem is that, given the set of maximisers, the conditions are usually very easy to check,
so in some sense the ‘combinatorial part’ of the problem is solved. It remains to determine the
set of maximisers, amounting to a polynomial optimisation, which is unfortunately difficult in
general.

1.2. Applications to inducibility

A large class of problems where symmetrisation was sucessfully applied is the inducibility
problem for complete partite graphs. The inducibility problem for a graph F is to determine
i(F, n) := max{P (F,G) : v(G) = n}, the maximum number of induced copies of F that an
order-n graph G can have. Note that p(F ,G) = p(F,G), where G denotes the complement of
G, so i(F , n) = i(F, n). Also, consider

i(F ) := lim
n→∞

i(F, n)(
n

v(F )

) ;

the limit is known to exist and is in fact equivalent to the maximum density of induced
copies of F in a graphon W . Brown and Sidorenko [7, Proposition 1] used symmetrisation
to prove that if F is complete partite, then for every n ∈ N at least one i(F, n)-extremal
graph is complete partite. Schelp and Thomason [36], also via symmetrisation, extended both
the result of Brown and Sidorenko and a result of Bollobás [3] by showing that the same
conclusion holds (at least one graph attaining λ(n) is complete partite) if the objective function
is λ(G) =

∑
F cF · p(F,G), where each F is complete partite, including Kt and Kt, and cF

is non-negative if F is not a clique. Their proof (which is essentially the same as that of
Bollobás [3]) implies that this parameter is symmetrisable (see Section 6 for a proof).

Lemma 1.2 [36]. The function λ(G) :=
∑
F cF · p(F,G) is symmetrisable, where each F is

complete partite and cF ≥ 0 if F is not a clique.

In particular, Theorem 1.1 applies to the inducibility problem for complete partite graphs.
To the best of our knowledge, for every instance of this problem where the set of maximisers
is known, we can prove perfect stability.

Pippenger and Golumbic [34] determined i(Ks,t, n) for all s, t with |s− t| ≤ 1, observing
that the complete balanced bipartite graph is an extremal graph. Some of these results were
independently reproved in [5]. Brown and Sidorenko [7] showed that i(Ks,t, n) with st ≥ 2 is
attained by a complete bipartite graph, and that if

(
t−s
2

)
≤ s ≤ t then the unique maximiser is

( 1
2 ,

1
2 , 0, ... ). Perhaps surprisingly this does not mean that Kbn/2c,dn/2e is optimal for i(Ks,t, n),

and they show that if 3n = 4a2 + 4 for a large integer a, then Kn/2−a,n/2+a is optimal for K3,1.
We prove a corresponding stability result for complete bipartite graphs.
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Theorem 1.3. Let s, t ∈ N with st ≥ 2. Then p(Ks,t, ·) is perfectly stable, i(Ks,t) =(
s+t
s

)
Ms,t and there is a unique maximiser (α, 1− α, 0, 0, 0, ... ), where α ∈ [ 12 , 1] maximises

fs,t(α) := αs(1− α)t + αt(1− α)s

and Ms,t := maxx∈[ 12 ,1] fs,t(x) for s 6= t, and Ms,s := 1
2 maxx∈[ 12 ,1] fs,s(x).

Bollobás, Egawa, Harris and Jin [4] studied the inducibility problem for complete equipartite
graphs. They showed that if the size t of each part is not too small compared to the number
r of parts, then the complete balanced r-partite graph Tr(n) is the unique extremal graph
for each large n. This strengthened an earlier work of Brown and Sidorenko [7] which showed
that Tr(n) is an asymptotically extremal construction (without proving any uniqueness) – that
is, ( 1

r , ... ,
1
r , 0, ... ) with 1

r repeated r times is an element of OPT. We prove a corresponding
stability result.

Theorem 1.4. Let r, t ≥ 2 be integers and let Kr(t) denote the complete r-partite graph
with parts of size t. Suppose that t > 1 + log r (denoting the natural logarithm by log). Then

p(Kr(t), ·) is perfectly stable, i(Kr(t)) = (tr)!
r!t!rrtr , and the unique maximiser is ( 1

r , ... ,
1
r︸ ︷︷ ︸

r

, 0, ... ).

Interestingly, if the above lower bound on t in terms of r does not hold, then ( 1
r , ... ,

1
r , 0, ... ) /∈

OPT (see [7]).
Finally, we obtain perfect stability for every previously unknown complete partite graph

F on k ≤ 5 vertices. For this, note that trivially Kk and Kk have unique maximisers
(0, 0, ... ), (1, 0, ... ) respectively. If F = Ks,t is bipartite, then Theorem 1.3 implies that the
unique maximiser (α, 1− α, 0, ... ) maximises αs(1− α)t + αt(1− α)s. Solving this, we see that
p(Ks,t, ·) has unique maximiser ( 1

2 ,
1
2 , 0, ... ) for all s+ t ≤ 5 apart from {s, t} = {4, 1}, and

here p(K4,1, ·) has unique maximiser ( 4
5 ,

1
5 , 0 ... ). Pikhurko, Sliačan and Tyros [32] showed that

K2,1,1 is perfectly stable with unique maximiser ( 1
5 , ... ,

1
5 , 0, ... ), and that K2,2,1 is perfectly

stable with unique maximiser ( 1
3 ,

1
3 ,

1
3 , 0, ... ) (we can also recover these results but do not

provide proofs here). The remaining F are K3,1,1 and K2,1,1,1. Flag algebra calculations of
Even-Zohar and Linial [10] give numerical upper bounds for these i(F ). Also, they provided
lower bound constructions; these appear to match for both K3,1,1 and K2,1,1,1. They speculated
that their lower bound constructions are tight in both cases. We confirm this and prove perfect
stability for these F . (After this paper was submitted, Liu, Mubayi and Reiher [29, Theorem
1.13] determined the value of i(K−t ) for every t, where K−t = K2,1,...,1 is the complete graph
of order t minus one edge.)

Theorem 1.5. p(K2,1,1,1, ·) is perfectly stable, i(K2,1,1,1) = 525
1024 , and the unique maximiser

is ( 1
8 , ... ,

1
8 , 0, ... ).

Theorem 1.6. p(K3,1,1, ·) is perfectly stable, i(K3,1,1) = 216
625 , and the unique maximiser is

( 3
5 , 0, ... ).

The latter is particularly interesting since the extremal graph contains a clique part: it is a
clique with a clique of proportion 3/5 removed. This demonstrates that allowing maximisers x
with x0 = 1−

∑
i≥1 xi > 0 in our theory – which complicates matters somewhat – is essential

in giving a full picture.
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We remark that the case λ(·) = −p(K3, ·)− p(K3, ·) (which is not a function as in Lemma 1.2)
is given by a classical theorem of Goodman, who determined this value exactly. Here,
asymptotically extremal graphs are those for which all but o(n) vertices have degree n

2 + o(n)
(including many graphs which are not complete partite). (Note that p(K3, ·) + p(K3, ·) is
trivially maximised by the complete and empty graphs.) It remains a major open problem
to determine λmax for λ(·) = −p(K4, ·)− p(K4, ·).

Pikhurko, Sliačan and Tyros [32] were able to prove perfect stability for i(F, n) for several
small graphs F via flag algebra calculations. The graphs they considered were C4 = K2,2,K2,1,1,
K3,2, K2,2,1, as well as the non-complete partite graphs P3 ∪K2, the “Y ” graph and the paw
graph which we do not define. Their results extend inducibility results obtained in [7], [34],
and by Hirst in [18]. Our Theorem 1.3 in particular reproves the cases K2,2 and K3,2 from [32].

Before stating the limit version of our main theorem in Section 3, we give here an illustration
of it in the case F = C4. (Perfect stability was already proved here in [32].) It is easy to see that
OPT consists only of the unique vector ( 1

2 ,
1
2 , 0, ... ) with λmax = 3

8 . Thus in order to apply our
criterion we have to check that, starting with Kbn/2c,dn/2e the following two properties hold: (i)
if we add an edge into a part or remove an edge across then we decrease the number of induced
copies of C4 by Ω(n2); (ii) if we add a new vertex v which is either isolated or connected to
every other vertex, the number of induced copies of C4 containing v is at most (1−Ω(1)) 3

8

(
n
3

)
.

Both properties trivially hold so the inducibility problem for C4 is indeed perfectly stable by
Theorem 1.1.

The following conjecture seems plausible.

Conjecture 1. The inducibility problem for F is perfectly stable for every complete
partite F .

However it is not the case that every problem with λ =
∑
F cF · p(F, ·) is perfectly stable,

where each F is complete partite, and cF ≥ 0 if F is not a clique. Indeed, if k ≥ 3 and the
sum is over all complete partite F on k vertices, and each cF = 1, then every k-vertex subset
of every complete partite graph contributes (the maximum value of) 1 to Λ, so OPT is the set
of all x with x1 ≥ x2 ≥ ... ≥ 0 and

∑
i≥1 xi ≤ 1. Let us show that λ is not perfectly stable.

Indeed, if it is, there is C such that for every graph G of order n ≥ C, there is a complete
partite H such that δ̂1(G,H) ≤ C(λ(n)− λ(G)). Choose 1/n� c� 1/C. Starting with Kn,
remove every edge with both endpoints inside a set A of size 5cn and add into A a blow-up of
C5 with each part A1, ... , A5 of size cn, to obtain an n-vertex graph G. Then δ̂1(G,H) = Ω(c2)
for every complete partite H, but λ(n)− λ(G) = 1− λ(G) = O(c3). Indeed, a subset of G is
not complete partite only if it contains at least three vertices in A. So the fraction of subsets
inducing a non-complete partite graph is O(c3). This is a contradiction.

Finally, it would be remiss not to remark on the inducibility problem for non-complete
partite graphs, for which the present paper does not apply, and which is in general wide open
(see [10] for a list of known results of order up to 5). The outstanding open problem in the
area is determining i(P4), the smallest unsolved case, for which there is not even a conjectured
value. Hatami, Hirst and Norin proved that extremal graphs of large blow-ups are essentially
blow-ups themselves [16]. Graphs with more interesting structure appear as extremal graphs
for other F . An important longstanding conjecture of Pippenger and Golumbic [34] is that
i(Ck) = k!/(kk − k) for k ≥ 5, attained by the iterated blow-up of Ck. Balogh, Hu, Lidický and
Pfender [1] proved this conjecture for k = 5: they obtained an exact result for λ(·) = p(C5, ·)
and showed that if n is a power of 5 then the unique graph attaining i(C5, n) is an iterated
blow-up of a 5-cycle. There has recently been progress on the general conjecture [17, 22]. In
fact, Yuster [39] and independently Fox, Huang and Lee [11] proved that for almost all graphs
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F , the extremal graph is the iterated blow-up of F . Fox, Sauermann and Wei [12] considered
graphs H obtained by removing a small number of vertices from a random Cayley graph H̃ of
an abelian group, showing that here the extremal graph is the iterated blow-up of H̃ (not of H).
Liu, Mubayi and Reiher [29] began a systematic study of the feasible region of induced graphs;
that is, the set of points (x, y) in the unit square for which there is a graph of edge density
approaching x with F -density approaching y. The inducibility problem seeks the maximum
y-value of such a point.

The directed analogue of the inducibility problem is also actively studied, e.g. for stars [21,
20], paths [9] and 4-vertex graphs [6, 8, 19].

1.3. Structure of the paper

The rest of the paper is organised as follows. In Section 2 we introduce the partite limit space
corresponding to the collection of limits of complete partite graphs which we will need to prove
our main result. In Section 3 we define the notion of strictness in terms of elements of this
space and give a limit version of our main result, Theorem 3.3. The main result of Section 4 is
that when OPT is finite, all part ratios of extremal graphs are bounded away from 0. We prove
Theorem 3.3 in Section 5. We present some applications of Theorem 3.3 to the inducibility
problem (Theorems 1.3–1.6) in Section 6. Section 7 contains some concluding remarks.

We denote by N := {1, 2, . . . } and N0 := {0, 1, . . . } the sets of respectively positive and non-
negative integers.

2. The partite limit space

We will work in a space P, the partite limit space, which is in some sense the completion of
the set of complete partite graphs. The aim of this section is to define P and a metric δedit on
this set, which will essentially generalise edit distance in graphs. We prove that this yields a
compact metric space upon which λ can be extended continuously (Lemma 2.5). Thus the set
OPT of maximisers of λ in P is non-empty. We define

P :=

x = (x1, x2, ... ) : x1 ≥ x2 ≥ ... ≥ 0 and
∑
i≥1

xi ≤ 1

 .

As usual, supp(x) := {i ≥ 1 : xi > 0}, and we also define supp∗(x) := supp(x) ∪ {0} if∑
i≥1 xi < 1, and supp∗(x) := supp(x) otherwise. For β > 0 we write

Pβ := {x ∈ P : xi ≥ β ∀ i ∈ supp∗(x)}.

Write 0 := (0, 0, ... ). Given x,xn ∈ P, we will always write x = (x1, x2, ... ) and xn =
(xn,1, xn,2, ... ) and correspondingly x0 := 1−

∑
i≥1 xi and xn,0 := 1−

∑
i≥1 xn,i. A complete

partite graph G = K(V1, ... , Vm) on vertex set [n] with |V1| ≥ ... ≥ |Vm| corresponds to the
vector

xG := (|V1|/n, ... , |Vm|/n, 0, ... ).

We write P for the set of those elements x of P with finitely many non-zero entries all of which
are rational, thus corresponding to the set of complete partite graphs. Somewhat conversely, we
have the construction Gn,x from Definition 3. For example, we have Gn,0 ∼= Kn, Gn,(1,0, ... ) ∼=
Kn and (assuming n = 2` is even) Gn,( 1

2 ,
1
2 ,0, ... )

∼= K`,`, but we cannot take, say, any Ka,b,1 for
Gn,(x,1−x,0, ... ).
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2.1. The measure-theoretic and graphon perspectives

For each x ∈ P, one can define a probability measure µx on N0 by setting µx({i}) = xi and
then let

M :=
{
µx : x ∈ P

}
.

It is very natural to define the corresponding collection of “complete partite” graphons
(which will be used in Section 4). A graphon is a quadruple Q = (Ω,B, µ,W ), where (Ω,B, µ)
is a standard probability space and W : Ω ×Ω → [0, 1] is a symmetric measurable function.
For every graph G, we define the corresponding graphon QG = (V, 2V , µ,AG) where µ is the
uniform measure on the finite set V and AG : V × V → {0, 1} is the adjacency function of G.
For a graph F on [k] we write

p(F,Q) :=
k!

|aut(F)|

∫
Ωk

∏
ij∈E(F )

W (xi, xj)
∏

ij∈E(F )

(1−W (xi, xj))dµ(x1) ... dµ(xk)

where aut(F ) is the group of automorphisms of F . In the literature one usually encounters
tind(F,Q) which is the above without the normalisation factor. Two graphons Q,Q′ are
equivalent or weakly isomorphic if p(F,Q) = p(F,Q′) for every graph F . A sequence of graphons
(Qn : n ∈ N) is said to converge to a graphon Q if limn→∞ p(F,Qn) = p(F,Q) for every graph
F . A Q-random graph of order k is obtained by sampling k random points v1, ... , vk ∈ (Ω,µ)
uniformly and independently, and adding each edge xixj with probability W (xi, xj).

Now let Qx := (N0, 2
N0 , µx,K) where K(i, j) := 0 if i = j ≥ 1 and K(i, j) := 1 otherwise,

i.e. if i 6= j or i = j = 0. Then define

Q :=
{
Qx : x ∈ P

}
.

There are various characterisations of weak isomorphism (see [26, Theorem 13.10]). All we
will need is the easy fact that for distinct x,y ∈ P, their graphons Qx, Qy are not weakly
isomorphic. Indeed, if i ≥ 1 is the minimum integer with xi 6= yi, say xi > yi, then it is not
hard to see directly that the edgeless graph of sufficiently large order n has strictly larger
density in x than in y.

The spaces P, M and Q are equivalent and one can take any of these perspectives, but in
this paper we mainly work with P (and briefly use Q in Section 4). The space Q was used in [2]
by Bennett, Dudek, Lidićky and Pikhurko who determined the minimum C5-density in graphs
of edge density k−1

k for integers k. They used Q to prove a corresponding stability result.
Therefore we hope that the theory concerning P (and, by extension, M and Q) developed in
this section may be useful for other extremal problems where the extremal graphs are complete
partite.

2.2. The edit metric

We would like to define a metric on P which will correspond to the edit distance between
graphs. First we define edit distance between two graphs of possibly different orders, often
called the fractional edit distance. Given a graph G, let G(n) be an n-vertex almost uniform
blow-up of G, that is, we replace each vertex x ∈ V (G) by an independent set Ix, where
each ||Ix| − |Iy|| ≤ 1, and

∑
x∈V (G) |Ix| = n, and add every edge between Ix and Iy whenever

xy ∈ E(G). Then let

δedit(G,H) := lim
n→∞

δ̂1(G(n), H(n)).

It is easy to see that the limit exists; in fact, its value can be computed via a linear program
with v(G)× v(H) variables that considers all fractional overlays between the vertex sets of
G and H, c.f. e.g. [33, Equation (3)]. We also define for a family H of graphs δedit(G,H) :=
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limn→∞ δ̂1(G(n), {H(n) : H ∈ H}). We define the distance between x,y ∈ P to be

δedit(x,y) := lim
n→∞

δ̂1(Gn,x, Gn,y).

For a graph G, define also δedit(x, G) := limn→∞ δ̂1(Gn,x, G
(n)) and, for a family H of graphs,

δedit(x,H)) in the obvious way. Again, the existence of the limit in these definitions is easy to
establish. Note that the normalisation factor 2

n2 in the ‘usual’ edit distance δ̂1 is motivated by

vertices of G corresponding to independent sets of relative size 1
n . The distances δ̂1 and δedit

are not the same even for graphs of the same order, due to rounding; see examples of Matsliah
(see Appendix B in [15]) and Pikhurko [33]. The following lemma implies that we are free to
interchange δedit and δ̂1 in matters of convergence, and that with respect to δedit we are free
to interchange H and xH when H is complete partite.

Lemma 2.1. We have the following.
(i) δedit(G,H) ≤ δ̂1(G,H) ≤ 3δedit(G,H) for graphs G,H with the same order.

(ii) δedit(H,xH) = 0 and δedit(x, H) = δedit(x,xH) and δedit(G,H) = δedit(xG,xH) for all
x ∈ P and complete partite graphs G,H.

(iii) δedit satisfies the triangle inequality on P.

Proof. The non-trivial inequality of part (i) was proved in [33, Lemma 14]. For (ii), let H
have h vertices. Then xH(nh) = xH and Gnh,xH

= (Gh,xH
)(n) = H(nh) for any integer n. Since

any subsequence of
(
δ̂1(H(m), Gm,xH

)
)
m

converges to δedit(H,xH), we have

δedit(H,xH) = lim
n→∞

δ̂1(H(nh), Gnh,xH
) = lim

n→∞
δ̂1(H(nh), H(nh)) = 0.

The remaining parts of (ii) now follow from (iii) which is immediate since δ̂1 satisfies the
triangle inequality on the set of graphs of the same given order.

This notion of edit distance is very natural, yet rather unwieldly to work with. The following
easy facts concerning it will be useful. Recall first that x0 is not an entry in x = (x1, x2, ... ),
so e.g. ‖x‖1 =

∑
i≥1 |xi| = 1− x0.

Proposition 2.2. For all x,y ∈ P, we have that
(i) δedit(x,y) ≤ 2‖x− y‖1.

(ii) δedit(x,0) = ‖x‖22.
(iii) δedit(x, (x1, ... , xM , 0, ... )) ≤

∑
i>M x2i for all M ≥ 1.

Proof. For (i), consider large n ∈ N and Gn,x, Gn,y with P-structures V0, V1, ... , Vm and
U0, U1, ... , U` respectively, where without loss of generality ` ≤ m. For convenience let U`+1 =
... = Um = ∅. Let σ ∈ S([n]) be a permutation (and recall that V (Gn,x) = V (Gn,y) = [n]). For
all 0 ≤ i, j ≤ m, let Xij = σ(Vi) ∩ Uj . A pair of vertices is included in the symmetric difference
E(Gn,x)4 E(σ(Gn,y)) if and only if either it lies in Vi for some i ≥ 1 but not in Xij for any
j ∈ [m], or lies in Uj for some j ≥ 1 but not in Xij for any i ∈ [m]. Thus

E(Gn,x)4 E(σ(Gn,y)) =
∑
i∈[m]

(|Vi|
2

)
−
∑
j∈[m]

(
|Xij |

2

)+
∑
j∈[m]

(|Uj |
2

)
−
∑
i∈[m]

(
|Xij |

2

) .

(2.1)
Take σ ∈ S([n]) so that for all i ≥ 0, σ(Vi) ⊆ Ui whenever |Vi| ≤ |Ui|, and σ(Vj) ⊇ Uj whenever
|Uj | ≤ |Vj | (and σ is otherwise arbitrary). If |Uk| < |Vk| then |Xkk| = |Uk| and |Xik| = 0 for all
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i 6= k and thus(
|Vk|

2

)
−
∑
j∈[m]

(
|Xkj |

2

)
+

(
|Uk|

2

)
−
∑
j∈[m]

(
|Xjk|

2

)
=

(
|Vk|

2

)
−
∑
j∈[m]

(
|Xjk|

2

)

≤
(
|Vk|

2

)
−
(
|Xkk|

2

)
≤ 1

2
(|Vk|2 − |Uk|2) + |Uk|.

Then

∆̂1(Gn,x, Gn,y) ≤
∑
k∈[m]

(
1

2

∣∣ |Vk|2 − |Uk|2 ∣∣+ min{|Uk|, |Vk|}
)
≤ n

∑
k∈[m]

(| |Vk| − |Uk| |+ yk + o(1))

≤ n2‖x− y‖1 +O(n).

So δedit(x,y) ≤ 2‖x− y‖1, as required.
Parts (ii) and (iii) are clear.

Note however that convergence in `1 does not give the same topology as pointwise
convergence, by considering for each n ∈ N the sequence xn given by xn,i = 1/n for all i ∈ [n]
and xn,i = 0 otherwise. We have that ‖xn‖1 = 1 for all n, while xn clearly converges pointwise
to 0 and by Proposition 2.2(ii), we see that δedit(xn,0) = 1

n → 0 as n→∞. On the other hand,
convergence in δedit is equivalent to pointwise convergence, as we show in the next lemma.

Proposition 2.3. In the space P, convergence in edit distance is equivalent to point-
wise convergence. That is, whenever (xn)n is a sequence in P and x ∈ P, we have that
limn→∞ δedit(xn,x) = 0 if and only if for all i ∈ N we have that limn→∞ |xn,i − xi| = 0.

Proof. Let (xn)n be a sequence in P and let x ∈ P. Fix an arbitrary ε > 0.
Suppose first that xn → x pointwise. We need to show that δedit(xn,x) < ε for sufficiently

large n. Since
∑
i≥1 xi ≤ 1 and x1 ≥ x2 ≥ ... ≥ 0, there exists an integer M > 0 such that∑

i≥M xi < ε/8, in particular, xM < ε/8. As xn → x pointwise, there exists n0 such that, for
all i ≤M and for all integers n ≥ n0, we have that |xn,i − xi| < ε/(8M). In particular, since
xn,j is non-increasing with j, we have for all integers n ≥ n0 and j ≥M that xn,j < ε/4. Let
y := (x1, ... , xM , 0, ... ) and, for each n ∈ N, define yn := (xn,1, ... , xn,M , 0, ... ). Let n ≥ n0 be
an integer. Then by Proposition 2.2(i), δedit(x,y) ≤ 2‖x− y‖1 = 2

∑
i>M xi <

ε
4 . Similarly by

Proposition 2.2(ii) and (iii),

δedit(xn,yn) ≤ δedit((xn,M+1, xn,M+2, ... ),0) =
∑
i>M

x2n,i ≤ sup
i>M

xn,i ·
∑
i>M

xn,i ≤ xn,M+1 ≤
ε

4
.

But also δedit(y,yn) ≤ 2‖y − yn‖1 = 2
∑
i≤M |xn,i − xi| <

ε
4 . By Lemma 2.1(iii), δedit defined

on P satisfies the triangle inequality. Thus we have δedit(xn,x) ≤ ε whenever n ≥ n0. Thus
xn → x in edit distance, as required.

Conversely, suppose now that (xn)n converges to x in edit distance δedit. Let i ≥ 1. We need
to show that there exists n0 > 0 such that for all n > n0 we have |xn,i − xi| ≤ ε. Now, there
exists n0 > 0 such that for all n > n0, there is a permutation σ : [n]→ [n] such that

∆̂1(Gn,xn , Gn,x) = |E(Gn,xn)4 E(σ(Gn,x))| ≤ (εn/12)2.

Let n > n0. For A ⊆ [n], denote by σ(A) and σ−1(A) the image and pre-image of A respectively.
By definition Gn,xn

has a vertex partition Vn,0 ∪ Vn,1 ∪ ... ∪ Vn,m, where Vn,0 is a clique, Vn,i
is an independent set for all i ∈ [m], and Gn,xn is complete between every distinct Vn,i and
Vn,j . Define V0 ∪ V1 ∪ ... ∪ V` analogously for Gn,x. So

|Vn,i| = xn,in+O(1) and |Vi| = xin+O(1) for all i ≥ 0. (2.2)
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Choose an ordering of the vertices of Gn,xn
so that a vertex u ∈ Vn,i comes before a vertex

v ∈ Vn,j if 1 ≤ i < j; or if i 6= 0 and j = 0. Choose an analogous ordering for V (Gn,x). Note
the following trivial equality:

|σ(Vj)4 Vn,i| = |Vj 4 σ−1(Vn,i)| for all i, j ∈ N0. (2.3)

We first show that for each vertex part Vn,i which is not too small, there is a unique part Vji
such that σ maps most of Vn,i to Vji . Given i ∈ {0, 1, ... ,m} and j ∈ {0, 1, ... , `}, we say that
i is j-good if |σ(Vj)4 Vn,i| < εn/4.

Claim 2.4. Let A := {i ∈ [m] : |Vn,i| ≥ εn/2}. Then there exists B ⊆ [`] with |A| = |B| and
a bijection µ : A→ B such that, for every i ∈ A, we have that i is j-good if and only if j = µ(i).

Proof. Let i ∈ A. Note first that i is not 0-good. Indeed, this follows from

(εn/12)2 ≥ ∆̂1(Gn,xn
, Gn,x) ≥

(
|σ(V0) ∩ Vn,i|

2

)
.

So
∑
j∈N |σ(Vj) ∩ Vn,i| = |Vn,i| − |σ(V0) ∩ Vn,i| > εn/4. Suppose now that i is not j-good for

any j ∈ [`]. Then since Gn,x[Vj ] and Gn,xn
[Vn,i] are empty graphs, and both Gn,x and Gn,xn

are complete partite graphs,

|E(Gn,xn)4 E(σ(Gn,x))| ≥
∑
j∈N
|σ(Vj)4 Vn,i| · |σ(Vj) ∩ Vn,i| ≥ εn/4 ·

∑
j∈N
|σ(Vj) ∩ Vn,i| > (εn/4)2,

a contradiction. Thus there is some ji ∈ N for which i is ji-good. We claim that we can set
µ(i) := ji and B := {µ(i) : i ∈ A}. We first show that this is well-defined, i.e. ji is unique. Fix
an arbitrary j′ ∈ [`] \ {ji}. Since σ is a permutation, σ(Vj′) ∩ σ(Vji) = ∅, and therefore

|σ(Vj′)4 Vn,i| ≥ |σ(Vji) ∩ Vn,i| ≥ |Vn,i| − |σ(Vji)4 Vn,i| > εn/4,

i.e. i is not j′-good. It remains to show that µ is injective, i.e. that if i′ ∈ A \ {i}, we
have that i′ is not ji-good. By (2.3), it suffices to show that |Vji 4 σ−1(Vn,i′)| ≥ εn/4.
Since σ−1 is a permutation, σ−1(Vn,i′) ∩ σ−1(Vn,i) = ∅, and therefore |Vji 4 σ−1(Vn,i′)| ≥
|Vji ∩ σ−1(Vn,i)| > εn/4 as desired, where the last inequality follows from i being ji-good
and (2.3). This completes the proof of the claim. �

We are now ready to prove the desired conclusion that for all i ∈ N, |xn,i − xi| ≤ ε. Suppose
this is not true, and let k be the smallest integer i such that |xn,i − xi| > ε. Assume that xn,k >
xk + ε (the other case can be handled similarly). In particular, recalling (2.2), |Vn,k| ≥ εn/2,
and so [k] ⊆ A. Since x1 ≥ x2 ≥ ... and xn,1 ≥ xn,2 ≥ ... , we have for all 1 ≤ i ≤ k ≤ i′ that,
neglecting O(1/n) error terms, xn,i ≥ xn,k > xk + ε ≥ xi′ + ε, so |Vn,i| ≥ |Vi′ |+ εn/2. Thus,
for all positive integers i ≤ k, we must have µ(i) < k. In other words, µ([k]) ⊆ [k − 1], which
contradicts µ being a bijection. This completes the proof of the lemma.

Remark 1. Lemma 3.8 in [2] proves that if xn,x ∈ P are such that xn → x pointwise,
then the corresponding graphons Qxn

converge to Qx; that is, all the p(F,Qxn
) converge to

p(F,Qx).

Lemma 2.5. The space P and distance δedit have the following properties.

(i) The space (P, δedit) is a compact metric space.
(ii) The set of complete partite graphs P is dense in (P, δedit).
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(iii) The function λ can be extended to a continuous function on the whole of P, namely by
defining

λ(x) := lim
n→∞

λ(Gn,x), for x ∈ P.

Proof. We begin with (i). From the definitions it is clear that δedit(x,y) = δedit(y,x) for
all x,y ∈ P. By Lemma 2.1(iii), δedit defined on P satisfies the triangle inequality. Finally, by
definition, δedit(x,y) = 0 if and only if x = y. So (P, δedit) is a metric space. To show that it is
compact, Proposition 2.3 implies that it suffices to show that P is compact under the topology
of pointwise convergence. For this, let (xn)n be an infinite sequence of elements of P. Then we
can define its accumulation point y iteratively as follows. Initially let i = 0. By passing to a
subsequence of (xn)n, we may assume that (xn,i+1)n converges to some yi+1 ∈ R. If yi+1 = 0,
then stop and output y := (y1, ... , yi, 0, 0, ... ). Otherwise, increase i by one and continue. If
the iteration does not terminate, output y := (y1, y2, ... ). One can easily see that y is indeed
an accumulation point of (xn)n, completing the proof of (i). Alternatively, the compactness of
P follows from observing that P is a closed subset of the compact space [0, 1]N.

Part (ii) immediately follows since for every x ∈ P, the sequence (Gn,x)n of complete partite
graphs converges in edit distance to x. Indeed, for each n ∈ N we have that xGn,x ∈ P, and the
definitions imply that xGn,x converges pointwise to x. By Proposition 2.3, it also converges in
edit distance.

It remains to prove (iii). Recall that we fixed a function γ : Gk → R and for all n ∈ N and
G ∈ Gn, we defined λ(G) as in (1.1). Let γmax := max{|γ(F )| : F ∈ Gk} (which exists since the
domain of γ is finite for fixed k). Let n ∈ N, let G ∈ Gn and let xy be a pair in V (G). Then

|λ(G)− λ(G⊕ xy)| ≤
(
n

k

)−1 ∑
X∈(V (G)

k ):

x,y∈X

[γ(G[X])− γ((G⊕ xy)[X])] ≤
(
n−2
k−2
)
· 2γmax(
n
k

) =
2
(
k
2

)
γmax(
n
2

) .

Therefore, using the triangle inequality, we have for any G,H ∈ Gn that

|λ(G)− λ(H)| ≤ 2

(
k

2

)
γmax · δ̂1(G,H) +O(1/n) ≤ 6

(
k

2

)
γmax · δedit(G,H) +O(1/n), (2.4)

where the final inequality follows from Lemma 2.1(i). Thus

|λ(Gn,x)− λ(Gn,y)| ≤ 6

(
k

2

)
γmax · δedit(Gn,x, Gn,y) +O(1/n),

and by (i) we have that the function λ : P → R given by λ(x) := limn→∞ λ(Gn,x) is well-defined
for all x ∈ P and is continuous with respect to δedit.

Note that the extension in Part (iii) of Lemma 2.5 is unique since P is dense in P.
The lemma implies that λmax := limn→∞ λ(n) defined in the introduction can equivalently

be defined as λmax := max{λ(x) : x ∈ P}. Moreover, for every x = (x1, x2, ... ) ∈ P, we have
that λ(x) has the following analytic formula. Let ω1, ... , ωk be independent samples from Ωx

which is the probability space on N0 := {0, 1, 2, ...} where the probability of i is xi. Let the
random sample G(x, k) be equal to

Gω1, ... ,ωk
x :=

(
[k],

(
[k]

2

)
\

(⋃
i∈N

(
{j : ωj = i}

2

)))
,

which is the complete graph on [k] except we do not connect two distinct indices j, h ∈ [k]
if ωj = ωh 6= 0. One can show using the Chernoff bound and the Borel-Cantelli lemma that
(G(x, n))n converges to x in P with probability 1 (see e.g. the more general Proposition 11.32
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in [26]). Clearly we have that

λ(x) = E(γ(G(x, k))).

We let OPT consist of all maximisers x ∈ P, that is,

OPT = OPT(λ) := {x ∈ P : λ(x) ≥ λ(y) for all y ∈ P} = {x ∈ P : λ(x) = λmax} 6= ∅.

The non-emptiness assertion follows from Lemma 2.5(i) and (iii). Let us see why the forward
inclusion of the third equality is true. Take any x ∈ P with λ(x) ≥ λ(y) for all y ∈ P. For each
n ∈ N, since λ is symmetrisable, there is a complete partite graph Fn on n vertices such that
λ(Fn) = λ(n). Let yn := xFn

. For any x ∈ P, we have λ(Gn,x) ≤ λ(Fn) = λ(n). By passing
to a subsequence we may assume that yni

converges to some y ∈ P. Then λ(x) ≤ λ(y) =
limi→∞ λ(ni) = λmax. Thus we must have λ(x) = λmax, as desired.

This definition of OPT is equivalent to the one in the introduction. Indeed, let a =
(a1, a2, ... ) ∈ P be such that there exists a sequence (Hn)n of complete partite graphs such
that, as n→∞, we have v(Hn)→∞, λ(Hn)→ λmax and for every i ≥ 1 the number of vertices
in the i-th largest part of Hn is (ai + o(1))v(Hn). Then xHn

→ a and λ(a) = limn→∞ λ(Hn) =
λmax, as required. On the other hand, let x ∈ P be such that λ(x) = λmax. Then (Gn,x)n is
the required sequence of graphs.

2.3. Polynomials

We will be interested in various functions on P, in particular the extension of λ from the
family of complete partite graphs to P. For these we introduce a notion of polynomial on P
which will help us prove that functions related to λ are continuous.

Let Σ(d) := {(d1, ... , dt) ∈ Nt : t ∈ N0 and d1 + ... + dt = d} be the set of ordered tuples of
positive integers summing to d. Let S∅(x) := 1 and for t ∈ N and d := (d1, ... , dt) ∈ Σ(d),
define an elementary symmetric polynomial Sd : {x ∈ RN : ‖x‖1 <∞} → R by

Sd(x) = Sd1, ... ,dt(x) :=
∑

distinct
i1, ... ,it∈N

t∏
j=1

x
dj
ij
. (2.5)

Since
∑

distinct
i1, ... ,it∈N

∏t
j=1 |xij |dj ≤

(∑
i≥1 |xi|

)d
<∞, each Sd(x) converges absolutely.

We say that a function p : P → R is a P-polynomial if it can be written as a finite polynomial
of SId(x) := Sd(xI) variables for I ⊆ N, where xI ∈ P is obtained from x by removing every
xi with i ∈ I and moving back remaining entries to fill in the ‘gaps’. (Thus SId(x) is defined
by the version of (2.5) where the sum is restricted to indices not in I.) So, for example,

x0 = S∅(x)− S1(x), xi = S1(x)− S{i}1 (x) for i ∈ N and x1 + x3 + x5 + x7 + ... = S2·N
1 (x) are

P-polynomials, while x1 + 2x2 + 3x3 + ... is not. Given any P-polynomial p, there is a finite
partition N = I1 ∪ ... ∪ Is such that p(x1, x2, . . . ) = p(y1, y2, ... ) where y is any element of P
obtained from x by permuting indices within each part Ii. Indeed, one can obtain I1, ... , Is by
grouping together indices that belong to exactly the same sets I in the definition of p.

Take any m ∈ N. Consider 1
h (Sd(x′)− Sd(x)) where, for all i ≥ 1 we have x′i = xi, except

x′m = xm + h for some m ≥ 1, and let h→ 0. Apply the binomial expansion to each (xm + h)dj .
As all series converge absolutely, we can change the order of summation and collect the same
powers of h. We obtain

Sd(x′)− Sd(x)

h
=

∑
distinct

i1, ... ,it∈N

∂

∂xm

 t∏
j=1

x
dj
ij

+ δ
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where δ is an error term satisfying |δ| ≤ h · 2d. So we can define partial derivatives ∂p
∂xi

for i = 1, 2, ... via term-by-term differentiation. Also, if p = s(Sd : d ∈ N≤k) where s is a
finite polynomial, then define ∂p

∂x0
:= − ∂s

∂S1
. Thus we can define partial derivatives of any P-

polynomial, and each such derivative is itself a P-polynomial. For a complete partite graph G
on n vertices with parts V1, ... , Vm of size at least 2 and clique part V0, define for I ⊆ N

SId(G) := (d!)−1
(
n

d

)−1 ∑
distinct

i1, ... ,it∈[m]\I

∏
1≤j≤t

dj !

(
|Vij |
dj

)
=

∑
distinct

i1, ... ,it∈[m]\I

∏
1≤j≤t

( |Vij |+O(1)

n

)dj
,

(2.6)

and let Sd(G) := S∅
d (G). So SId(G) = Sd(GI) where GI := G−

⋃
i∈[m]∩I Vi.

Lemma 2.6. Let d be an integer and let d ∈ Σ(d). Then

(i) Sd is uniformly continuous on (P, δedit).
(ii) Each P-polynomial is uniformly continuous on (P, δedit).

(iii) For all x ∈ P we have Sd(x) = limn→∞ Sd(Gn,x).

Proof. We start with (i). By Proposition 2.3, convergence in edit distance and pointwise
convergence induce the same topology on P. By Lemma 2.5(i), P is compact. Therefore it
suffices to show that each Sd is continuous under pointwise convergence, which is e.g. given
by the metric d(x,y) :=

∑
i≥1 2−i|xi − yi|. For this, fix d = (d1, ... , dt) ∈ Nt, let ε > 0 and let

δ = 2−8d/ε. Let x,y ∈ P satisfy d(x,y) ≤ δ. Choose M = dlog2(δ−1/2)e (so 1/M ≤ ε/(4d)) and
let x′ = (x1, ... , xM , 0, ... ) and y′ = (y1, ... , yM , 0, ... ). Then d(x,x′) =

∑
i>M 2−ixi ≤ 2−M ≤√

δ. So d(x′,y′) ≤ 3
√
δ. Moreover,

Sd(x)− Sd(x′) =
∑

1≤s≤t

∑
i>M

xdsi Sd(s)(x(i)) ≤ txM+1 ≤ d/M ≤ ε/4,

where d(s) = (d1, ... , ds−1, ds+1, ... , dt) and x(i) = (x1, ... , xi−1, xi+1, ... ). Similarly Sd(y)−
Sd(y′) ≤ ε/4. Now, Sd(x′) is a polynomial in at most M variables. For each 1 ≤ i ≤M + 1,
let zi := (x1, ... , xi−1, yi, yi+1, ... , yM , 0, ... ). Then

|Sd(x′)− Sd(y′)| = |Sd(z1)− Sd(zM+1)| ≤
M∑
i=1

|Sd(zi+1)− Sd(zi)|.

Now

Sd(zi+1)− Sd(zi) =
∑

1≤s≤t

(xdsi − y
ds
i )Sd(s)(z

(i)
i ) = pi(xi)− pi(yi)

where we view pi as a polynomial in one variable. Thus pi is Lipschitz with constant at most
maxz∈[0,1] |p′i(z)| ≤ d1 + ... + dt = d. So |pi(xi)− pi(yi)| ≤ d|xi − yi|. Thus

|Sd(x)− Sd(y)| ≤ ε/2 + d

M∑
i=1

|xi − yi| ≤ ε/2 + d2Md(x,y) ≤ ε/2 +
√
δ < 2ε/3,

completing the proof of (i).
Now (ii) follows immediately since every Sd is bounded, and sums and products of bounded

uniformly continuous functions are uniformly continuous.
For (iii), fix x ∈ P. In Gn,x, writing V ni for the ith part, we have each (|V ni |+O(1))/n→ xi

as n→∞, so as Sd is continuous we have Sd(Gn,x)→ Sd(x).
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3. Strictness and a restatement of the main result

In this section, we will finally define what it means for λ to be ‘strict’. Very roughly speaking,
it means that when an elementary change is made to a complete partite graph on which λ is
maximised, the decrease in λ is as much as it possibly could be. An ‘elementary change’ is
either ‘flipping a pair’ (changing a non-edge to an edge or vice versa); or adding a vertex
which is either adjacent to every vertex in a part, or to no vertex in a part. It seems that it is
more convenient to state this property in terms of limits rather than graphs (which is why the
definition is deferred until now). We will first make the relevant definition and then discuss it
further.

3.1. Definitions and notation

Definition 4 (∇••i1i2λ and ∇•b,αλ). Given an n-vertex graph G = (V,E) and a pair x, y of
vertices of G, define

∇••xyλ(G) :=
1(
n−2
k−2
) (Λ(G)− Λ(G⊕ xy)).

Given x ∈ P and i1, i2 ∈ supp∗(x), define

∇••i1i2λ(x) := lim
n→∞

∇••v1v2λ(Gn,x),

where v1, v2 are distinct vertices of the vertex classes Vi1 and Vi2 of Gn,x respectively.
For all i ∈ N0, we define ei to be the function ei : N→ {0, 1} with ei(j) = 0 if and only if

j = i (so e0 ≡ 1). Let b : N→ {0, 1} and α ∈ [0, 1]. We write G+b,α u for the graph obtained
from G with P-structure V0, V1, ... , Vm by adding a new vertex u and, for i ≥ 1, adding every
edge between u and Vi if b(i) = 1, and no edges otherwise; and adding bα|V0|c edges between
u and V0. Define

∇•b,αλ(G) :=
1(
n
k−1
) (Λ(G+e1,1 u, u)− Λ(G+b,α u, u)) =

1(
n
k−1
) (Λ(G+e1,1 u)− Λ(G+b,α u))

where u /∈ V (G), and let

∇•b,αλ(x) := lim
n→∞

∇•b,αλ(Gn,x) and λ(x, (b, α)) := lim
n→∞

λ(Gn,x +b,α u, u).

By convention take α = 1 if x0 = 0 (when V0 = ∅).

Given k0 ∈ N0 and a tuple k = (k1, ... , kt) of positive integers, define the graph Gk0k as
follows. Let Gk0k be the complete partite graph with t parts U1, ... , Ut of size k1, ... , kt
respectively, together with an additional k0 singletons x1, ... , xk0 , whose union is denoted by
U0.

Both limits in Definition 4 exist and each λ,∇••i1i2λ, ∇•b,αλ, λ(·, (b, α)) is a P-polynomial.
Indeed, since each Gn,x is a complete partite graph (with parts V n0 , V

n
1 , ... ), the quantities

λ(Gn,x),∇••v1v2λ(Gn,x) and ∇•b,αλ(Gn,x) are finite polynomials in variables |V n0 | and SId(Gn,x)
for d ∈ Σ(d) with d ≤ k and I ⊆ N. Indeed, for λ we need only I = ∅; for ∇••v1v2λ we could
take only I = ∅, {v1}, {v2}, {v1, v2} and their complements, and for ∇•b,αλ, I = ∅, supp(b) and

their complements. Thus, by Lemma 2.6, ∇••i1i2λ and ∇•b,αλ are P-polynomials.
In fact, one can explicitly write these polynomials. For positive integers b1 ≥ ... ≥ br,

let sym(b1, ... , br) be the number of permutations of [r] that keep the sequence (b1, ... , br)
unchanged. In other words, if we take i0 := 1 < i1 < ... < iq < r + 1 =: iq+1 such that bi = bi′ if
and only if there is j ∈ [q] such that ij−1 ≤ i, i′ < ij then sym(b1, ... , br) = (i1 − i0)! ... (iq+1 −
iq)!. Also, write

(
t

t1, ... ,ts

)
:= t!(t1! ... ts!)

−1 when
∑s
i=1 ti = t. Consider p(Ka1, ... ,a` , ·), which

is one instance of λ, where a1, ... , a` are in non-increasing order, and let t ∈ [`] be the largest
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integer such that a1, ... , at ≥ 2. Then we have the following analytic formula:

p(Ka1, ... ,a` ,x) = p(Ka1, ... ,a` , Qx) =

(
a1+···+a`
a1, ... ,a`

)
sym(a1, ... , a`)

∑
0≤s≤`−t

(
`− t
s

)
xs0 · Sa1, ... ,a`−s

(x).

(3.1)
The next proposition gives that for all x ∈ OPT, ∇•ei,1λ(x) = 0 for all i ∈ supp∗(x), which

corresponds to saying that every vertex in the realisation of an optimal x contributes optimally
to λ. Thus

∇•b,αλ(x) = λ(x)− λ(x, (b, α)) for all (b, α) and x ∈ OPT.

Proposition 3.1. Define k and λ as in (1.1). The following hold for all x ∈ P.

(i) For all i ∈ supp∗(x) we have 1
k ·

∂λ(x)
∂xi

= λ(x, (ei, 1)).

(ii) If in addition x ∈ OPT, then for all i ∈ supp∗(x) we have 1
k ·

∂λ(x)
∂xi

= λ(x).
(iii) The following pairs differ by O(1/n) as n→∞: {λmax, λ(n)}, {λ(x), λ(Gn,x)} and

{λ(Gn,x, u), λmax}, the last pair for x ∈ OPT and u ∈ V (Gn,x).

Proof. The equality in (i) can be checked directly.
For (ii), the theory of Lagrange multipliers implies that, for all i, j ∈ supp∗(x), we have

∂λ(x)
∂xi

= ∂λ(x)
∂xj

. Indeed, if we fix the rest of x apart from xi, xj , fix s = xi + xj and vary xi, xj ,

then we can view λ as a polynomial in xi, xj (of degree at most k). Introducing a new variable
µ, the Lagrangian is L(xi, xj , µ) = λ(x)− µ(xi + xj − s). The stationary points of L occur

when ( ∂L∂xi
, ∂L∂xj

, ∂L∂µ ) = (0, 0, 0), i.e. when ∂λ(x)
∂xi

− µ = ∂λ(x)
∂xj

− µ, as required. Since λ is a P-

polynomial with each monomial having total degree k, we have for all i ∈ supp∗(x) that

∂λ(x)

∂xi
=
∑
j≥0

xj
∂λ(x)

∂xj
= k · λ(x),

giving the required.
Let us turn to Part (iii). The inequality |λmax − λ(n)| = O(1/n) follows from a standard

blow-up trick, see e.g. [32, Lemma 2.2]. The claim for the second pair follows from the fact
that each named function on P is a P-polynomial, a finite polynomial of Sd(GIn,x) terms, so
the error bound comes from (2.6) when applied to Gn,x. For the last claim of Part (iii), a

version of (2.6) implies that |λ(Gn,x, u)− 1
k ·

∂λ(x)
∂xi
| = O(1/n) where u is in the i-th part of

Gn,x. Then Part (ii) gives the required.

Corollary 3.2. For every ε > 0 there exists δ > 0 such for all x,y ∈ P with δedit(x,y) ≤
δ, we have

|λ(x)− λ(y)|, |∇•b,α(x)−∇•b,α(y)|, |λ(x, (b, α))− λ(y, (b, α))| ≤ ε

for all b : N→ {0, 1} and 0 ≤ α ≤ 1, and

|∇••i1i2λ(x)−∇••i1i2λ(y)| ≤ ε

for all i1, i2 ∈ supp∗(x) ∩ supp∗(y).

Proof. We have seen that each function λ,∇••i1i2λ,∇
•
b,αλ, λ(·, (b, α)) is a P-polynomial

with degree at most k and with coefficients whose absolute values are bounded. Thus
Lemma 2.6 implies that the family of λ,∇••i1i2λ,∇

•
b,αλ, λ(·, (b, α)) over all i1, i2, b, α is uniformly

equicontinuous, as required.
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The following crucial definition of the strictness property of a function λ requires that both
∇••i1i2λ and ∇•b,αλ are bounded from below whenever (b, α) is not close to some (ei, 1). Roughly
speaking, this means that λ is sensitive to small alterations in a graph.

Definition 5 (Strictness). We say that λ is strict (with parameter c) if there is c = c(λ) > 0
such that for each x ∈ OPT, we have
(Str1) ∇••i1i2λ(x) ≥ c for all i1, i2 ∈ supp∗(x),
(Str2) ∇•b,αλ(x) ≥ c((1− α)x0 + mini∈supp∗(x) wi), where

wi := 1i>0bixi +
∑

j∈supp∗(x)\{0,i}

(1− bj)xj .

In the next two subsections, we will motivate these definitions, which appear somewhat
complicated at first sight.

3.1.1. ∇••i1i2λ: flipping a pair of vertices Take a complete partite graph G of large order
n such that λ(G) ≈ λmax and let G′ = G⊕ xy be obtained by flipping the adjacency of an
arbitrary pair xy ∈

(
V
2

)
. Then the number of vertex subsets of size k which contain both x

and y is
(
n−2
k−2
)
, so in the worst case, γ decreases by a constant for all such subsets, and thus λ

decreases by Ω(
(
n−2
k−2
)
/
(
n
k

)
) = Ω(1/n2). Property (Str1) says that this worst-case behaviour is

realised for every ‘wrong’ pair xy.
Observe that

∇••i1i2λ(x) = Eω3, ... ,ωk∼Ωx [γ(Gi1,i2,ω3, ... ,ωk
x )− γ(Gi1,i2,ω3, ... ,ωk

x ⊕ {1, 2})],

that is, we look at the conditional expectation of the change in λ if we flip the pair {1, 2} in a
random sample G(x, k) conditioned on ω1 = i1 and ω2 = i2.

3.1.2. ∇•b,αλ: adding a new vertex Again consider a complete partite graph G of large
order n such that λ(G) ≈ λmax and obtain a graph G′ from G by adding a new vertex u which,
for each part of G, either connects to all or none of its vertices (here we are thinking of V0,
if it exists, as consisting of |V0| singleton parts). If the attachment of u mirrors an existing
vertex, then its contribution to λ is approximately λmax (and G′ is the same as G in the limit).
But, if not, as u lies in

(
n
k−1
)

subsets, in the worst case, λ decreases by Ω(
(
n
k−1
)
/
(
n+1
k

)
) =

Ω(1/n). Property (Str2) says that this worst-case behaviour is realised for every u with ‘wrong’
attachment.

Suppose that Gn,x has P-structure V0, V1, ... , Vm(n). Then, for 0 ≤ i ≤ m(n), let Wi be the
minimum number of edits needed to move the vertex u in Gn,x +b,α u into the i-th part.
So each Wi being large corresponds to u being attached in an atypical manner, and some Wi

small means that u behaves like an existing vertex. It is not hard to show that limn→∞Wi/n =
wi + (1− α)x0, and of course if b = ei and α = 1, then wi + (1− α)x0 = 0 (since no edits are
needed to move u to the i-th part). So (Str2) requires that, whenever n is large, the contribution
to λ lost by a vertex u in Gn,x +b,α u is a significant fraction of the number of edits needed to
fit u into Gn,x.

Observe that (using Proposition 3.1 and the remark immediately before it)

∇•b,αλ(x) := Eω1, ... ,ωk∼Ωx [γ(Gω1, ... ,ωk
x )]− Eω1, ... ,ωk−1∼Ωx [γ(G

ω1, ... ,ωk−1
x +b,α u)],

where G
ω1, ... ,ωk−1
x +b,α u is the random graph obtained by adding u to G(x, k − 1) with ui an

edge when ωi 6= 0 if and only if b(ωi) = 1, and ui an edge when ωi = 0 with probability α.

3.2. Main result

We are now ready to precisely state the ‘limit version’ of our main result.
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Theorem 3.3. Let k be a positive integer and let γ : Gk → R. Define λ : G → R by setting
λ(G) :=

(
n
k

)−1∑
X∈(V

k) γ(G[X]) for all G ∈ Gn and n ∈ N, and let λ(n) := maxG∈Gn λ(G).

Suppose that λ is symmetrisable and |OPT(λ)| <∞. Then λ has perfect stability if it is strict.

The following corollary states that strict symmetrisable functions exhibit classical stability,
in the sense that any sufficiently large graph which is sufficiently close to being optimal can be
edited by changing an arbitrarily small fraction of its adjacencies to obtain a complete partite
graph with the correct part sizes.

Corollary 3.4. Define k and λ as in (1.1) and suppose that they satisfy the assumptions
in Theorem 3.3, and suppose further that λ is strict. Then for all ε > 0 there exist δ, n0 > 0
such that for every graph G of order n ≥ n0 for which λ(G) ≥ λmax − δ, there is x ∈ OPT(λ)
for which δedit(G,x) ≤ ε.

Proof. Let c = c(λ) > 0 be such that λ is strict with parameter c. Apply Theorem 3.3 to
obtain C such that λ is perfectly stable with constant C. Suppose that the statement does
not hold. Then there is a sequence of counterexamples (Gn)n with vn := v(Gn)→∞ such
that λ(Gn) ≥ λmax − 1/n but δedit(Gn,x) > ε for all x ∈ OPT. By taking a subsequence if
necessary, we may assume that each vn ≥ n. Let n be sufficiently large. By Theorem 3.3, there
is some Hn ∈ Pvn for which

δ̂1(Gn, Hn)/C ≤ λ(vn)− λ(Gn) ≤ λ(vn)− λmax +O(1/vn) ≤ O(1/n)

where we used Proposition 3.1(iii). But then by (2.4),

λ(Hn) ≥ λ(Gn)− 2

(
k

2

)
γmaxδ̂1(Gn, Hn)−O(1/vn) ≥ λmax −O(1/n)

(
1 + 2C

(
k

2

))
.

So, writing xn := xHn
, and taking a subsequence if necessary, we see that xn → x ∈ OPT. But

then, when n is sufficiently large, using Lemma 2.1,

δedit(Gn,x) ≤ δedit(Gn, Hn) + δedit(xn,x) ≤ δ̂1(Gn, Hn) + δedit(xn,x) < ε,

a contradiction.

4. Finitely many maximisers

We will need the following result which states that if the limit problem has finitely many
optimisers, then all non-zero entries in them are separated from 0 by some constant β > 0.

Lemma 4.1. If |OPT| <∞ then there is β > 0 such that OPT ⊆ Pβ.

The rest of the section is dedicated to proving Lemma 4.1. Our proof is an adaptation of
the proof of Glebov, Grzesik, Klimošová and Král’ [14] who, in particular, worked on the
finite forcibility of graphons which are a countable union of cliques. Recall notions related
to graphons in Section 2.1. A graphon Q is finitely forcible if there are finitely many graphs
F1, ... , F` such that for every graphon Q′, if p(Fi, Q) = p(Fi, Q

′) for all i ∈ [`], then Q and Q′

are weakly isomorphic.
First, we need the following result which is Lemma 11 in [14] (except it is obtained by

complementing all graphs and using our language of partite limits).
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Lemma 4.2. If OPT = {x} consists of a single element x then there is `0 (in fact, we
can take `0 = k where k is as in the definition of λ) such that, for any y ∈ P with y0 = x0, if
p(Ki,x) = p(Ki,y) for every 2 ≤ i ≤ `0 then y = x.

Proof. Our x corresponds to a graphon Qx. The fact that x is the unique element of OPT
is equivalent to saying that the equations p(P3, Q) = 0 (the induced density of triples spanning
exactly one edge) and λ(Q) = λmax force Q to be Qx up to weak isomorphism in the space of
graphons. In particular, Qx is finitely forcible. The constraint p(P3, Q) = 0 forces Q ∈ Q (that
is, to be a complete partite graphon) and thus automatically forces p(F,Q) = 0 for every graph
F which is not complete partite so we can ignore all such induced densities.

Thus the equation λ(Q) = λmax can be viewed as involving only induced densities of complete
partite graphs on at most k vertices. We claim that it can be equivalently rewritten as some
polynomial in x0 and induced densities of independent sets of size at most k. Then, supposing
that the claim is true, if Qy ∈ Q has y0 = x0 and the same induced densities of K2, ... ,Kk as
Qx, then Qy and Qx are weakly isomorphic and thus y = x.

It remains to prove the claim. For this, it suffices to prove that for any complete partite
graph F = Ka1, ... ,a` with vertex set [k] and with ` parts, for all x ∈ P, we have that p(F,Qx)
is some polynomial of x0 and p(K2, Qx), ... , p(Kk, Qx). The claim is clear for ` = 1 so assume
2 ≤ ` ≤ k. Assume that a1, ... , a` are in non-increasing order, and let t ∈ [`] be the largest
integer such that a1, ... , at ≥ 2. Recall the analytic formula (3.1) for p(F,Qx). We have

Sa1, ... ,a`(x) = Sa1(x)Sa2, ... ,a`(x)− Sa1+a2,a3, ... ,a`(x)− Sa2,a1+a3, ... ,a`(x)− ...

... − Sa2, ... ,a`−1,a1+a`(x) (4.1)

and for every a ≥ 2 we have p(Ka, Qx) = Sa(x). The claim now follows by induction on `.
Indeed, every Sa1, ... ,a`−s

(x) can be expressed as a polynomial of Sa(x) for 2 ≤ a ≤ k, by (4.1)
and induction, as required.

We need the following easy generalisation of Lemma 4.2.

Lemma 4.3. If OPT is finite then there is `0 such that, for every x ∈ OPT and every
y ∈ P with y0 = x0, if x and y have the same induced density of Ki for every 1 ≤ i ≤ `0 then
y = x.

Proof. For every pair z, z′ ∈ OPT there is some graph F such that p(F,z) 6= p(F,z′).
Indeed, since z 6= z′, their graphonsQz, Qz′ are not weakly isomorphic and thus have a different
induced density of some graph F . Of course, this F has to be complete partite (otherwise
its induced density in both z and z′ is zero). Let F1, ... , Fm be all such graphs F where
m ≤

(|OPT|
2

)
. Let `0 := k + 2 maxi∈[m] v(Fi). Now let x and y be as in the lemma.

Consider the new optimisation problem where we maximise

λ′(z) := λ(z)−
m∑
i=1

(p(Fi, z)− p(Fi,x))2.

Again, as in the proof of Lemma 4.2, λ′ can be written as a polynomial of x0 and induced
densities of anticliques on at most `0 vertices. Also, clearly, x is the unique element of OPT(λ′).
Apply Lemma 4.2 to OPT(λ′) = {x}.

Proof of Lemma 4.1. Let `0 be as in Lemma 4.3. It is enough to show that, for every
x ∈ OPT, there are at most m := `0 distinct non-zero values among x1, x2, ... (then since
|OPT| <∞ the lemma trivially follows).
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Suppose on the contrary that xi1 , ... , xim+1
are all positive and distinct for some 1 ≤ i1 <

... < im+1. Without loss of generality, assume that these are the smallest such indices we could
have chosen. Consider unknown variables yi1 , ... , yim+1

and set yi := xi for every other i ≥ 1.
We get a contradiction to our choice of `0 if we show that there is a choice of yi1 , ... , yim+1 > 0
such that

m+1∑
j=1

ydij =

m+1∑
j=1

xdij , for every d = 1, ... ,m, (4.2)

but the reordering y′ of y (so that y′1 ≥ y′2 ≥ ... and y′0 = y0) is not equal to x. (Indeed, then
y′ ∈ P by the case d = 1 of (4.2) and it satisfies p(Kd,y

′) = p(Kd,x) for every d = 2, ... , `0 by
the corresponding case of (4.2).)

Consider the map g : Rm × R→ Rm which sends (z1, ... , zm+1) to (
∑m+1
j=1 zdj )md=1. The Jaco-

bian of g(·, xim+1
) : Rm → Rm, which sends z ∈ Rm to g(z, xim+1

), has non-zero determinant
at z0 := (xi1 , ... , xim). Indeed, the (s, t)-entry of the Jacobian at (z1, ... , zm) is szs−1t so if we
divide its s-th row by s we obtain the Vandermonde matrix of z1, ... , zm, so its determinant is
m!
∏

1≤s<t≤m(zs − zt) which is non-zero at z = z0.
Thus the Jacobian of g(·, xim+1) is invertible. By the Implicit Function Theorem, for every

choice of yim+1
sufficiently close to xim+1

there is a continuous choice of (yi1 , ... , yim) close to
(xi1 , ... , xim) satisfying (4.2). Choose such a yim+1

not equal to any xj and such that yi1 , ... , yim
are all positive. Then the reordering y′ of the obtained sequence y is not equal to x, giving
the desired contradiction.

5. The proof of Theorem 3.3

In the first part of the proof, we find a suitable ‘hypothetical counterexample’ H on h vertices
(Claim 5.2). This means that H is very close to being optimal (λ(H) is almost as large as λ(h)),
but it is comparatively far from being complete partite (though it is important that H is not
too far from being complete partite, and also that H is very large). Using (Sym1), given a
candidate for H which has too many imperfections, we can incrementally symmetrise it until
this is no longer the case, and without decreasing λ.

In the second part of the proof (Claim 5.3), we use the strictness of λ to obtain a
contradiction. We compare H with the graph H ′ obtained by removing all imperfections
(roughly speaking H ′ is the closest complete partite graph to H). The ratios of part sizes
of H ′ are necessarily close to some x ∈ OPT. The contradiction will come from the fact
that λ(H ′)− λ(H) is too large (which implies that H is actually far from optimal). We
would like to argue that λ(H)− λ(H ′) can be approximated looking at each wrong pair
e ∈W := E(H)4 E(H ′) separately and summing its contribution to the function. This need
not be true if e is incident to many other wrong pairs, so instead we consider two families
of wrong pairs: those incident to vertices in B, which are those with high degree in W , and
the collection E′ of remaining wrong pairs. The fact that each e ∈ E′ has a large contribution
to λ(H)− λ(H ′) will follow from (Str1): namely that ∇••i1i2λ(x) is large, where i1, i2 are the
indices of the parts where e lies. The fact that the edges incident to each v ∈ B have a large
contribution to λ(H)− λ(H ′) is slightly more involved. For this we use (Sym2) to symmetrise
the neighbourhood of v, and, depending on the attachment of v in the resulting graph, the
required conclusion will follow from (Str1) (if it is ‘canonical’) and (Str2) (otherwise).

The following lemma will be useful when comparing λ evaluated on a complete partite graph
with λ evaluated on the same graph with a few imperfections.

Lemma 5.1. Let c > 0 and let γ : Gk → R be fixed. Let H,H ′ be graphs on the same vertex
set of size h, where h is large and H ′ ∈ P has P-structure V0, V1, ... , Vm. Write R := E(H)4
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E(H ′) and given x ∈ V (H ′), write p(x) for the index of the part of H ′ containing x. Define

ξ0 := k2|R|c/h2, ξ1 := 2γmaxk
4|R|2/h4, ξ2 := 2γmaxk

3|R|∆(R)/h3.

Then λ(H ′)− λ(H) is

(i) at least ξ0/2− ξ1 − ξ2 if ∇••p(x)p(y)λ(xH′) ≥ c for all xy ∈ R;
(ii) at least ξ0/2− ξ2 if ∇••p(x)p(y)λ(xH′) ≥ c for all xy ∈ R and R is a star;
(iii) at most ξ0 + ξ1 + ξ2 if ∇••p(x)p(y)λ(xH′) ≤ c for all xy ∈ R.

Proof. Write S := λ(H ′)− λ(H) =
(
h
k

)−1∑
X∈(V

k) (γ(H ′[X])− γ(H[X])) and

S1 :=

(
h

k

)−1 ∑
xy∈R

∑
X∈(V

k):{x,y}⊆X

(γ(H ′[X])− γ((H ′ ⊕ xy)[X]))

=

(
h−2
k−2
)(

h
k

) ∑
xy∈R

∇••p(x)p(y)λ(H ′) =

(
k
2

)(
h
2

) ∑
xy∈R

(
∇••p(x)p(y)λ(xH′) + o(1)

)
.

Then
(
h
k

)
|S − S1| ≤

∑
X∈I1 2γmax where I1 := {X ∈

(
V
k

)
: |R ∩

(
X
2

)
| ≥ 2}. The number of X

that contain two disjoint pairs from R is at most |R|2 ·
(
h−4
k−4
)
. The number of X containing two

adjacent pairs from R is at most |R| ·∆(R) ·
(
h−3
k−3
)
. So

|I1|(
h
k

) ≤ |R|2(h−4k−4
)

+ |R|∆(R)
(
h−3
k−3
)(

h
k

) ≤ |R|
2k4

h4
+
|R|∆(R)k3

h3
.

All three parts follow immediately, noting for (ii) that when R is a star it has no disjoint pairs.

We now have all the tools in place to prove our main theorem.

Proof of Theorem 3.3. Let λ be a symmetrisable graph parameter as in (1.1). Note that λ
is not identically 0 (otherwise OPT is infinite). Lemma 4.1 implies that there exists β > 0 such
that OPT ⊆ Pβ . So |supp(x)| ≤ 1/β for all x ∈ OPT.

Suppose that λ is strict with parameter c > 0. Without loss of generality we may assume
that c� β, 1/γmax, 1/k. We want to show that there exists a constant C > 0 such that for
every graph G on at least 1/C vertices, there exists a complete partite graph H on the same
vertex set such that δ̂1(G,H) ≤ C(λ(v(G))− λ(G)). Suppose that this is false. That is, there
exists a sequence of counterexamples (Gn)n with vn := v(Gn)→∞, such that

1 ≥ dn := δ̂1(Gn,Pvn) > n(λ(vn)− λ(Gn)), so (5.1)

λ(vn) ≥ λ(Gn) > λ(vn)− 1

n
, (5.2)

and thus λ(Gn)→ λ(vn).
Using the graphs Gn, we now find a large graph H which is almost optimal and has a small

but comparatively large number of imperfections.

Claim 5.2. For all ε > 0, there exists ε′ > 0 such that the following holds. For all N > 0,
there exist x ∈ OPT and a graph H on vertex set [h] such that h > N , δedit(H,x) ≤ 2ε and
λ(H) ≥ λ(h)− 1/N . Further, δedit(H,Ph) ≥ min{ε′, N(λ(h)− λ(H))}.
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Proof. We consider two cases depending on whether (dn)n contains a subsequence converg-
ing to 0. If it does not, then our counterexamples are eventually always far from being complete
partite. In this case we perform an additional step of symmetrising each Gn to obtain a graph
which has a controlled number of imperfections; this number will be a small fraction of v2n. In
the other case, the counterexamples are becoming gradually more like complete partite graphs
so the number of imperfections could be subquadratic (in vn).

Case 1: (dn)n does not contain a subsequence converging to 0.

In this case, there exists ξ > 0 such that dn ≥ ξ for all sufficiently large n. Since we are free to
make ε and ξ smaller we may assume without loss of generality that ξ = ε. Further, we may
assume that dn ≥ ε for all n ∈ N.

Let Vn := V (Gn). Property (Sym1) (applied with parameter ε) implies that there exists
n0 = n0(ε) such that for each n ≥ n0, we can find a sequence Gn,0, Gn,1, ... , Gn,m(n) of graphs
on Vn such that Gn,0 := Gn; G′n := Gn,m(n) is complete partite; for all i ∈ [m(n)], we have

λ(Gn,i−1) ≤ λ(Gn,i); and δedit(Gn,i−1, Gn,i) ≤ δ̂1(Gn,i−1, Gn,i) < ε. By (5.2), we have for all
0 ≤ i ≤ m(n) that λ(vn) ≥ λ(Gn,i) ≥ λ(Gn) > λ(vn)− 1/n.

Let yn := xG′n . By choosing a convergent subsequence since (P, δedit) is compact, we may
assume that yn converges to some y ∈ P. But λ(yn)→ λmax, so y ∈ OPT by the continuity
of λ. By definition, δedit(Gn,0,OPT) ≥ δedit(Gn,0,Pvn) = dn ≥ ε and δedit(Gn,m(n),OPT)→
δedit(y,OPT) = 0. Let t be the largest element of [m(n)] such that δedit(Gn,t,OPT) ≥ ε, and
let Jn := Gn,t. By increasing n0, we can assume that t < m(n). Then

δedit(Jn,OPT) ≤ δedit(Gn,t, Gn,t+1) + δedit(Gn,t+1,OPT) < 2ε.

That is, δedit(Jn,OPT) ∈ [ε, 2ε]. Let xn ∈ OPT be such that δedit(Jn,xn) = δedit(Jn,OPT).
We claim that there exists ε′ > 0 for which pn := δedit(Jn,Pvn) ≥ ε′ for all sufficiently large n.

Indeed, if the claim is not true, then by passing to a subsequence we may assume that
pn → 0. For each n, pick a complete partite graph Pn on vn vertices with δedit(Jn, Pn) = pn.
Let zn := xPn

∈ P be the sequence that encodes the part ratios of Pn. We can pass to a
subsequence of n such that zn converges to some z ∈ P; then λ(z) = limn→∞ λ(Pn) = λmax.
Thus z ∈ OPT. However, by Lemma 2.1,

ε ≤ δedit(Jn,OPT) ≤ δedit(Jn, z) ≤ δedit(Jn, Pn) + δedit(zn, z) ≤ pn + o(1)→ 0,

a contradiction.
This ε′ satisfies the lemma. Indeed, for any given N > 0, choose n > N sufficiently large so

that vn > N and δedit(Jn,xn) ∈ [ε, 2ε] and δedit(Jn,Pvn) ≥ ε′. Then we can set x := xn and
H := Jn and h := vn, since λ(Jn) ≥ λ(vn)− 1/n ≥ λ(h)− 1/N . The claim is proved in this
case.

Case 2: (dn)n contains a subsequence (dni)i such that dni → 0 as i→∞.

Assume without loss of generality that (dn)n → 0. Therefore, there exists a sequence (xn)n
with xn ∈ P such that δedit(Gn,xn)→ 0. By choosing a convergent subsequence of (xn)n, we
may assume that the sequence itself converges to some x ∈ P. Then for sufficiently large n,
δedit(Gn,x) ≤ δedit(Gn,xn) + δedit(xn,x)→ 0. Then the continuity of λ with respect to δedit
and (5.2) imply that x ∈ OPT. We can choose n sufficiently large so that, by (5.1), H := Gn
satisfies all the required properties in Claim 5.2 (where, for concreteness, we let ε′ := 1). This
completes the proof of the claim. �

Choose an additional constant 0 < η � c. Obtain ε > 0 by applying Corollary 3.2 with η2, 6ε
playing the roles of ε, δ respectively. We may assume that ε� η. Claim 5.2 furnishes us with
an ε′ > 0 which we may assume satisfies ε′ � ε. Now choose N ∈ N such that 1/N � ε′. We
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have the following hierarchy:

0 < 1/N � ε′ � ε� η � c� β, 1/γmax, 1/k. (5.3)

Apply Claim 5.2 to yield an x ∈ OPT and a graph H on h ≥ N vertices. Let us list some
properties of x (which will be all we need from now on):

(P1) m := |supp(x)| ≤ 1/β.
(P2) x ∈ Pβ .
(P3) ∇••i1i2λ(x) ≥ c for all i1, i2 ∈ supp∗(x).
(P4) ∇•b,αλ(x) ≥ c((1− α)x0 + mini∈supp∗(x) wi), where

wi = 1i>0bixi +
∑
j∈supp∗(x)\{0,i}(1− bj)xj ,

for all b : N→ {0, 1} and α ∈ [0, 1].
(P5) Whenever y ∈ P satisfies δedit(x,y) ≤ 6ε and supp∗(y) = supp∗(x) =: S, we have

that |f(x)− f(y)| ≤ η2 for all choices of i1, i2 ∈ S, b : N→ {0, 1}, α ∈ [0, 1] and f ∈
{λ,∇••i1i2λ, λ(·, (b, α)),∇•b,αλ}.

(P6) δedit(x, H) ≤ 2ε.

Properties (P1) and (P2) follow immediately from |OPT| <∞ and Lemma 4.1. Proper-
ties (P3) and (P4) follow since λ is strict with parameter c. Property (P5) follows from our
choice of ε and the fact from Corollary 3.2 that any f in this family of functions is uniformly
equicontinuous. Property (P6) is a direct consequence of Claim 5.2.

Let H be the family of h-vertex graphs with P-structure (Vi : i ∈ supp∗(x)), that is, V0 (if
it exists) is a clique, Vi is a non-empty independent set for all i ∈ [m] = supp∗(x) \ {0} and
(Vi, Vj) is complete for every distinct i, j ∈ supp∗(x).

Among all graphs in H, let H ′ be one whose edit distance δedit to H is minimised, with
P-structure (Vi : i ∈ supp∗(x)) as above, where V (H ′) = [h] =

⋃
{Vi : i ∈ supp∗(x)}. Define

W := ([h], E(H)4 E(H ′)), and call the edges of W wrong. By the definition of H ′, (P6) and
Lemma 2.1, we have that δedit(H,H

′) ≤ δedit(H,x) +O(1/h) ≤ 3ε. Consequently e(W ) =
∆̂1(H,H ′) ≤ 3h2/2 · δedit(H,H ′) ≤ 5εh2. Let v be the vector of part ratios in H ′, i.e. v := xH′ .

Then

δedit(v,x) = δedit(H
′,x) ≤ δedit(H,H ′) + δedit(H,x)

(P6)

≤ 5ε. (5.4)

Note that, by (P2), this implies vi = |Vi|/h ≥ c/2 for all i ∈ [m]. Call a vertex x bad if it is
incident to at least ηh wrong pairs, i.e. dW (x) ≥ ηh. Let B consist of all bad vertices and
Bc = [h] \B of all good (i.e. not bad) vertices. Let also E′ := E(W [Bc]) and e′ := |E′|. By
definition of B and that ε� η, we have

e′ ≤ e(W ) ≤ 5εh2 and |B| ≤ 2e(W )

ηh
≤ 10ε

η
· h ≤

√
εh. (5.5)

For a vertex v of H ′ let H ′ ⊕ v denote the graph obtained from H ′ by removing every edge
containing v and then for all y ∈ [h] \ {v} adding the edge vy if and only if y ∈ NH(v). The
heart of the proof is the following claim.

Claim 5.3. The following statements hold.

(i) δedit(H
′, H) ≤ 2

(
|B|
h + e′

h2

)
.

(ii) For every v ∈ B, λ(H ′)− λ(H ′ ⊕ v) ≥ kcη3/2

3h .

(iii) λ(H ′)− λ(H) ≥ η2
(
|B|
h + e′

h2

)
.
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We first see how this claim completes the proof of Theorem 3.3. We have by Claim 5.2 that

1

N
≥ λ(h)− λ(H) ≥ λ(H ′)− λ(H)

(iii)

≥ η2
(
|B|
h

+
e′

h2

)
(i)

≥ η2

2
δedit(H

′, H) ≥ η2

2
δedit(H,Ph)

≥ η2

2
min{ε′, N(λ(h)− λ(H))}. (5.6)

If ε′ ≤ N(λ(h)− λ(H)), then considering the first and last terms of (5.6) gives 1/N ≥ η2ε′/2, a
contradiction to our choice of N (i.e. (5.3)). If instead ε′ > N(λ(h)− λ(H)), then considering
the second and last terms of (5.6) gives 1 ≥ η2N/2, also a contradiction to our choice of N .
Thus Theorem 3.3 holds given Claim 5.3.

Proof of Claim 5.3. For (i), we see that

δedit(H
′, H) ≤ δ̂1(H ′, H) ≤

∑
v∈B dW (v) + e′

h2/2
≤ 2|B|

h
+

2e′

h2
.

For (ii), fix an arbitrary v ∈ B, and let p(v) ∈ supp∗(x) be such that v ∈ Vp(v). Let H consist
of all graphs G on [h] = V (H ′) with G− v = H ′ − v and for each i ∈ [m], either NG(v) ⊇
Vi \ {v} or NG(v) ∩ (Vi \ {v}) = ∅ (and with arbitrary attachment to V0). That is, either v is
adjacent to every vertex or no vertices in each part V1, ... , Vm. For brevity, let H ′v := H ′ ⊕ v.

Apply (Sym2) with parameter ε to H ′v at v to obtain a sequence of graphs
H ′v =: H0, H1, ... ,Hr ∈ H, such that Hi − v = H ′v − v for all i ∈ [r]; λ(Hi−1) ≤ λ(Hi); and
∆̂v

1(Hi−1, Hi) ≤ ε(h− 1) for all i ∈ [r], where here for any two graphs J, J ′ which differ only
at a vertex v, we define ∆̂v

1(J, J ′) to be the minimum number of edits of pairs containing v to
make J equal to J ′.

By the definition ofH, there are b : [m]→ {0, 1} and 0 ≤ α ≤ 1 such that b(i) = 1 ifNHr
(v) ⊇

Vi \ {v} and b(i) = 0 if NHr (v) ∩ (Vi \ {v}) = ∅; and dHr (v, V0) = bα|V0|c (if V0 = ∅ we let
α := 1). We consider two cases depending on (b, α): in Case 1 the attachment of v in Hr is
very different to any vertex in H ′ − v, and in Case 2 it is similar.

Case 1: At least one of the following holds: (a) x0 > 0 and α < 1− η/2; (b) |b−1(0)| ≥ 2; (c)
x0 = 0 and b−1(0) = ∅.

We will first show that
h

k
(λ(H ′)− λ(Hr)) ≥ ∇•b,αλ(x)− 3η2. (5.7)

For this, let y be the vector of part ratios of H ′r − v = H ′ − v, i.e. yi = |Vi|/(h−
1) if i ∈ {0, ... ,m} \ {p(v)} and yp(v) = (|Vp(v)| − 1)/(h− 1). Then Hr = (H ′ − v) +b,α v =
Gh−1,y +b,α v and so

h

k
(λ(H ′)− λ(Hr)) =

h

k
·
(
h

k

)−1 ∑
X∈(V

k):X3v

(γ(H ′[X])− γ((Gh−1,y +b,α v)[X]))

=
h

k
·
(
h−1
k−1
)(

h
k

) (λ(H ′, v)− λ(Gh−1,y +b,α v, v))

= λ(v, (ep(v), 1))− λ(y, (b, α)) +O(1/h).

Now δedit(x,y), δedit(x,v) ≤ 5ε. So we have

λ(v, (ep(v), 1))− λ(y, (b, α))
(P5)

≥ λ(x, (ep(v), 1))− λ(x, (b, α))− 2η2 = ∇•b,αλ(x)− 2η2,

where the final equality follows from Proposition 3.1(i). This proves (5.7). Now,

λ(H ′)− λ(H ′ ⊕ v) ≥ λ(H ′)− λ(Hr)
(5.7)

≥ k

h

(
∇•b,αλ(x)− 3η2

)
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so to complete the proof of the claim, it suffices to show that ∇•b,αλ(x) ≥ cη3/2/2.
We will use the lower bound on ∇•b,αλ(x) given by (P4), and that xi ≥ β > c for all i ∈

supp∗(x) from (P2). Suppose first that (a) holds. Since each term in the expression for wi is
non-negative, we have for all i ∈ supp∗(x) = {0, ... ,m} that ∇•b,αλ(x) ≥ c(1− α)x0 ≥ cβη/2 >
cη3/2/2, as required. Suppose secondly that (b) holds. Then for every i ∈ [m], either bi = 1 or
bj = 0 for some j ∈ [m] \ {i}. So wi ≥ minj∈[m] xj ≥ β for all 0 ≤ i ≤ m, as required. Finally,
if (c) holds, x0 = 0, b = (1, 1, ... ), supp∗(x) = [m] and wi = xi ≥ β for all i ∈ [m], as required.

Case 2: Either (a) x0 = 0 and |b−1(0)| = 1, or (b) x0 > 0, α > 1− η/2, and |b−1(0)| ≤ 1.

Notice that Cases 1 and 2 are the only possible outcomes (recalling that if x0 = 0, then α = 1).
For all 0 ≤ i ≤ r, let

di := min
j∈supp∗(x)

∆̂v
1(Hi, (H

′ − v) +ej ,1 v),

i.e. the smallest number of edits at v needed to move v into some part in Hi. Now, d0 = dW (v) ≥
ηh. On the other hand, dr is comparatively small: if (a) holds, then dr = 0, and if (b) holds, then
dr ≤ ηh/2. So we can choose the largest integer 0 ≤ t < r such that dt ≥ ηh, and let H∗ := Ht

and d∗ := dt. Let j∗ ∈ supp∗(x) be such that d∗ = ∆̂v
1(Ht, H̃) where H̃ := (H ′ − v) +ej∗ ,1 v.

So λ(H∗) ≥ λ(H ′ ⊕ v) and additionally

ηh ≤ d∗ ≤ ∆̂v
1(Ht, Ht+1) + dt+1 ≤ ε(h− 1) + ηh ≤ 2ηh.

So one must make between ηh and 2ηh edits to H∗ at v to move v to the j∗-th part,
and the (complete partite) graph obtained in this way is H̃. Since δedit(H̃,H

′) · h2/2 ≤
∆̂1(H̃,H ′) ≤ h, we have by (5.4) that δedit(xH̃ ,x) ≤ δedit(H̃,H ′) + δedit(H

′,x) ≤ 5ε+ 2/h ≤
6ε. Now, (P5) and (P3) imply that for each of the d∗ vertices u for which uv was flipped, we
have ∇••p(u)p(v)λ(xH̃) ≥ ∇••p(u)p(v)λ(x)− η2 ≥ c/2. Lemma 5.1(ii) implies that λ(H̃)− λ(H∗) ≥
k2d∗c/2h2 − 2γmaxk

3(d∗)2/h3. So

λ(H ′)− λ(H ′ ⊕ v) ≥ λ(H̃)− λ(H∗) +O(1/h) ≥ k2η3/2c/3h,

as required for (ii).

For (iii), our task is to obtain a suitable lower bound on T := λ(H ′)− λ(H). Notice that the
only k-sets X contributing to T are those containing some e ∈W . Let

T0 :=
∑
v∈B(λ(H ′)− λ(H ′ ⊕ v)) and T ′ := λ(H ′)− λ(H ′ 4 E′).

In a similar fashion to part (ii), we will first give lower bounds for T0, T
′ respectively, and

then show that T is well-approximated by T0 + T ′. First consider T0. By Claim 5.3(ii), we
have T0 ≥ |B|kη3/2c/(3h). Now consider T ′. Again ∇••p(x)p(y)λ(xH′) ≥ c/2 for all xy ∈ E′, so
Lemma 5.1 and (5.5) imply that

T ′ ≥ k2e′/h2 · (c/2− 50γmaxk
2ε2 − 2γmaxkη) ≥ k2ce′

4h2
.

For the final step, note that
(
h
k

)
|T − T0 − T ′| ≤

∑
X∈I0 2γmax, where

I0 =

{
X ∈

(
V

k

)
: |X ∩B| ≥ 2 or |X ∩B|, e(W [X \B]) ≥ 1

}
.

But

|I0|(
h
k

) ≤ |B|2(h−2k−2
)

+ |B|e′
(
h−3
k−3
)(

h
k

) (5.5)

≤ |B|
h

(
2k2
√
ε+ 5k3ε

)
≤ ε1/3T0. (5.8)

Thus

T ≥ T0 + T ′ − 2γmax(
h
k

) |I0| (5.8)≥ T0/2 + T ′ ≥ |B|kη
3/2c

6h
+
k2ce′

4h2
≥ η2

(
|B|
h

+
e′

h2

)
,
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as desired. This completes the proof of Claim 5.3. �

Thus we complete the proof of Theorem 3.3.

6. Applications to inducibility

First we prove Lemma 1.2 which is essentially Theorem 1 in [36].

Proof of Lemma 1.2. In fact, we can require that |E(Gi−1)4 E(Gi)| is at most n− 1 (resp.
at most 1) in (Sym1) (resp. (Sym2)) for every graph G of every order n ≥ k.

Let us show (Sym1). Initially, let H := G and let V = {V1, ... , Vn} be the partition of V (H)
into singletons. At each stage, every part of V will consist of twin vertices, i.e. vertices with
identical neighbourhoods (in particular, every part is an independent set). We will modify the
current graph H and the current partition V = {V1, ... , Vs} so that at each step λ does not
decrease while the affected edges are incident to a single vertex.

If for each 1 ≤ i < j ≤ s, H[Vi, Vj ] is complete bipartite, then H is a complete partite graph
so we stop. Otherwise, pick i < j, x ∈ Vi and y ∈ Vj such that xy 6∈ E(H). Let X = NH(x) and
Y = NH(y). Fix a complete partite graph F . Note that every A ⊆ V with H[A] ∼= F is one of
the following four kinds: (1) x ∈ A, y /∈ A; (2) x /∈ A, y ∈ A; (3) x ∈ A, y ∈ A; and (4) x /∈ A,
y /∈ A. Given H − x− y, we can thus write

p(F,H) = fF (X) + fF (Y ) + gF (X ∩ Y, V \ (X ∪ Y )) + CF

for some constant CF > 0 and functions fF and gF . Here fF (X) (resp. fF (Y )) counts the
number of copies of F of type (1) (resp. type (2)) as this depends only on X (resp. Y ). For
disjoint U,W , we define gF (U,W ) to be the number of copies of any graph J with V (J) ⊆
U ∪W such that by adding two new vertices z, z′ to J and adding edges {uz, uz′ : u ∈ U} to J
we obtain a copy of F . Observe that if {x, y} ∪ V (J) induces a copy of F in H as above, then
x and y are in the same partite set, U ∩ V (J) ⊆ X ∩ Y and W ∩ V (J) ∩ (X ∪ Y ) = ∅. Thus
gF (X ∩ Y, V \ (X ∪ Y )) counts type (3) copies. The type (4) count is a constant depending
only on H − x− y. Then, letting f =

∑
F cF · fF and defining g, C similarly, we have

λ(H) = f(X) + f(Y ) + g(X ∩ Y, V \ (X ∪ Y )) + C. (6.1)

Notice that g(·, ·) is non-decreasing in both arguments, that is,

g(U,W ) ≤ g(U ′,W ′), ∀ U ⊆ U ′,W ⊆W ′. (6.2)

Indeed, if F is a clique, then no copy of F contains both x and y, and cF ≥ 0 otherwise.
Suppose that f(X) ≥ f(Y ), let Hxy be the graph obtained from H by making y a clone of x.

Let H ′ = Hxy and let V ′ be obtained from V by moving y to the part containing x. It satisfies
all the claimed properties as

λ(Hxy) = 2f(X) + g(X,V \X) + C
(6.1),(6.2)

≥ f(X) + f(Y ) + g(X ∩ Y, V \ (X ∪ Y )) + C = λ(H).

Finally, it remains to argue that one can avoid infinite cycles. The rule for breaking ties
f(X) = f(Y ) with e.g. |Vi| ≥ |Vj | is to take H ′ = Hxy. This strictly increases

∑
V ∈V |V |2 ∈

[n, n3] so that are at most n3 steps where λ stays constant. (In fact, one can bound the total
number of steps by 1 + 2 + ... + n− 1 =

(
n
2

)
: if there are currently i ≥ 2 groups and we merge

one group entirely into another, then we can do this by moving at most n− i+ 1 vertices.)
Let us show (Sym2). Given G and z as in the property, we have a partition consisting of all

partite sets in G− z and z will always stay a single part. Given any partite set Vi of G− z,
we can partition vertices Vi = V ′i ∪ V ′′i depending on their adjacency to z, say V ′i ⊆ N(z).
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Start with this initial partition into parts V ′i and V ′′i . Fix arbitrary non-adjacent vertices x ∈
V ′i , y ∈ V ′′i , note that (6.1) and (6.2) still hold. If f(X) > f(Y ), take G′ = Gxy. If f(X) < f(Y ),
take G′ = Gyx. The rule for breaking ties is again to clone the vertex from the larger part: if
f(X) = f(Y ) and, say, |V ′i | ≥ |V ′′i |, take G′ = Gxy. Otherwise, take G′ = Gyx. Note that G′

differs from G only in one pair. As before, λ has not decreased. Then redefine V ′i , V
′′
i and repeat

the process. The final graph has N(z) ⊆ Vi or N(z) ∩ Vi = ∅. (Note that each tie f(X) = f(Y )
strictly increases |V ′i |2 + |V ′′i |2 so as before there are at most n3 steps where λ stays constant,
so there are no infinite cycles.) Repeating this for all i, we make at most n steps in total, and
the resulting graph is as desired.

6.1. Proofs of Theorems 1.3–1.6

Since by Lemma 1.2, p(F, ·) is symmetrisable whenever F is complete partite, to prove
Theorems 1.3–1.6 it suffices to determine OPT (if it is not already known), and then check
that p(F, ·) is strict. The result then follows from Theorem 3.3.

In all cases, OPT consists of a single point, and checking strictness is generally straightfor-
ward (it is slightly more involved for F = K1,t). However, determining OPT where it is not
already known, for F = K2,1,1,1 and F = K3,1,1, is challenging and we are required to solve
a polynomial optimisation problem. We use computer-assisted semidefinite programming to
solve the last problem.

Proof of Theorem 1.3. Assume s ≤ t. First we collect some facts about the function fs,t
defined on [0, 1] given by fs,t(α) = αs(1− α)t + αt(1− α)s, recalling that for s < t, fs,t(α) =(
t+s
t

)−1
p(Ks,t, (α, 1− α, 0, ... )) for α ∈ [ 12 , 1], and fs,s can similarly be expressed with a factor

of 1
2 on the right-hand side:

(i) If s ≥
(
t−s
2

)
then the unique maximum of fs,t in [ 12 , 1] is 1

2 .
(ii) If s <

(
t−s
2

)
, then f ′s,t has a single root in ( 1

2 , 1), which corresponds to a maximum, has 1
2

a root corresponding to a minimum, and has no other roots in [ 12 , 1).
(iii) If α ∈ [ 12 , 1] maximises f1,t, then 1− α > 1

t+1 .

(iv) maxα∈[0,1](t+ 1)αt(1− α) =
(

t
t+1

)t
, attained uniquely at t

t+1 .

Note that fs,t is symmetric about α = 1
2 . For (i) and (ii), we just follow the proof of [7,

Theorem 3]. We have

f ′s,t(α) = αt(1− α)s−1h

(
1− α
α

)
where h(x) = sxt−s+1 − txt−s + tx− s.

Assume first that s ≥
(
t−s
2

)
. Setting x = 1 + ε for ε ≥ 0, one can show that h(x) > 0, so fs,t is

non-decreasing in [0, 12 ], and thus the unique maximum of fs,t in [0, 1] is at 1
2 , as required for

(i). (In the calculation in [7, Theorem 3], it is shown that h(x) ≥ 0, but there is equality in the
first inequality only if t− s = 1, but in this case the final inequality is strict.) Note that [7] uses
(t, s+ t) and (a, b) instead of our (s, t). Assume secondly that s <

(
t−s
2

)
. Following the remarks

after [7, Theorem 5], it suffices to show that h has a single root in (0, 1). This is a consequence
of h(0) < 0, h(1) = 0, h′(1) < 0 and h′′(x) < 0 for all x ∈ (0, 1), as required for (ii).

Next we show that (iii) holds. If t = 2, 3 (i.e. 1 ≥
(
t−1
2

)
), then (i) implies that 1− α = 1

2 , as
required. If t ≥ 4, then by (ii), f ′1,t has a unique root (i.e. 1− α) in (0, 12 ), corresponding to
a maximum and 1

2 is a root corresponding to a minimum. Thus f ′1,t(x) > 0 for x ∈ (0, 1− α)
and f ′1,t(x) < 0 for x ∈ (1− α, 12 ). One can check that f ′( 1

t+1 ) > 0, which gives 1− α > 1
t+1 .

This proves (iii). Property (iv) can be easily checked via differentiation: indeed, d
dαα

t(1− α) =
αt−1(t− (t+ 1)α) is strictly positive for 0 < α < t

t+1 , equals 0 at α = t
t+1 , and is strictly

negative for α > t
t+1 .
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Now we show that OPT = {(α, 1− α, 0, ... )} with α ≥ 1
2 (where fs,t(α) is uniquely max-

imised). This was essentially proved by Brown and Sidorenko [7]. They do not prove the
uniqueness of the optimal element but this can be extracted from their proof, so we only give
a sketch of how to do this here.

First we claim that if G is a complete multipartite graph on n vertices whose two largest
parts of sizes nr, nr−1 satisfy nr, nr−1 = Ω(n) and n− nr − nr−1 = Ω(n), then by merging
parts, we increase the induced Ks,t-density by Ω(ns+t). Indeed, to see the claim, fix ε > 0 and
suppose G = Kn1,n2, ... ,nr

with r ≥ 3 and n1 ≤ n2 ≤ ... ≤ nr with
∑
i∈[r] ni = n, nr−1 ≥ εn,∑

i∈[r−2] ni ≥ εn, and G′ = Kn1+n2,n3, ... ,nr
. It is shown in [7, Proposition 2] that merging

the two smallest parts in any complete multipartite graph with at least three parts does not
decrease the number of induced copies of Ks,t. Thus in G we can successively merge two
smallest parts until we obtain a graph G′′ with exactly three parts, of sizes m1 ≤ m2 ≤ m3

with m1 ≥ εn. Now merge the parts of size m1 and m2 to obtain a complete bipartite graph
G′′′. Then

I(Ks,t, G
′′′)− I(Ks,t, G)

≥ I(Ks,t, G
′′′)− I(Ks,t, G

′′)

=

(
m1 +m2

s

)(
m3

t

)
+

(
m1 +m2

t

)(
m3

s

)
−
(
m1

s

)(
m3

t

)
−
(
m1

t

)(
m3

s

)
−
(
m2

s

)(
m3

t

)
−
(
m2

t

)(
m3

s

)
−
(
m1

s

)(
m2

t

)
−
(
m1

t

)(
m2

s

)
≥
(
m1 +m2

s

)(
m2

t

)
+

(
m1 +m2

t

)(
m2

s

)
−
(
m1

s

)(
m2

t

)
−
(
m1

t

)(
m2

s

)
−
(
m2

s

)(
m2

t

)
−
(
m2

t

)(
m2

s

)
−
(
m1

s

)(
m2

t

)
−
(
m1

t

)(
m2

s

)
=

1

t!s!

(
mt

2((m1 +m2)s −ms
1 −ms

2 −ms
1) +ms

2((m1 +m2)t −mt
1 −mt

2 −mt
1)
)

+O(ns+t−1).

To prove the claim, it suffices to prove that this is at least O(ε)ns+t for all (s, t). Neglecting
the O(ns+t−1) error terms, the quantity in the last line is at least

1
t!s! (ms

1(t− 2)mt
1 +mt

1(s− 2)ms
1) ≥ 1

t!s!m
s+t
1 if s+ t ≥ 5

1
3!

(
2m1m

3
2 + 3m2

1m
2
2 −m3

1

)
≥ 2

3m
4
1 if (s, t) = (1, 3)

1
2!2!2m

2
2(2m1m2 −m2

1) ≥ 1
2m

4
1 if (s, t) = (2, 2)

1
2 (m2

2m1 −m2
1m2) ≥ (m2 −m1)m2

1 if (s, t) = (1, 2).

Since m1 ≥ εn, this proves the claim unless (s, t) = (1, 2) and m2 −m1 < εn. In this case, we
have I(K1,2, G

′′′)− I(K1,2, G
′′) = m2

1m3 −m3
1 +O(ε)n3 = µ2(1− 3µ)n3 +O(ε)n3 where µ :=

m1/n. We are done if µ < 1
3 − ε. If not, G′′ has three parts of size 1

3 ± ε which is far from
optimal, by comparing to the complete balanced bipartite graph. This completes the proof of
the claim.

Thus, if s ≥ 2, then every x ∈ OPT has exactly two non-zero entries which sum to 1, as
required. We want to show this also holds for s = 1. For this, we only need to show that there is
no 0 < x ≤ 1 for which x = (x, 0, ... ) is optimal. Indeed, λ(x) = p(K1,t,x) = (t+ 1)xt(1− x) ≤(

t
t+1

)t
by (iv). But λ(K1,t, (

t
t+1 ,

1
t+1 , 0, ... )) = (t+ 1)f1,t(

t
t+1 ) = 2

(
t
t+1

)t
, so x 6∈ OPT.

We have shown that every element of OPT is of the form (α, 1− α, 0, ... ) for some α ∈ [ 12 , 1].
By (i) and (ii), fs,t has a unique maximum in [12 , 1]. Thus OPT contains a unique element
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x := (α, β, 0, ... ) (where from now on we write β := 1− α). It remains to show that there is
c = c(λ) > 0 such that (Str1) and (Str2) hold, where λ(·) := p(Ks,t, ·).

Let G := Gn,x. First we check (Str1). A non-edge between two partite sets is not contained
in any induced copy of Ks,t, nor is an edge within a partite set. So ∇••xyλ(G) is the number of

copies of F in G containing the pair xy divided by
(
n−2
s+t−2

)
. Rather roughly, this is always at

least βs+t−2 + o(1) as n→∞.
Now we check (Str2). We have x0 = 0 and supp∗(x) = {1, 2}. Since x0 = 0, given any

(b(1), b(2)) =: (b1, b2) ∈ {0, 1}2, we are required to show that

∇•b,1λ(x) = λ(x)− lim
n→∞

λ(Gn,x +b u, u) ≥ cmin{b1α+ (1− b2)β, b2β + (1− b1)α}.

Recall that as usual the right-hand side equals 0 if (b1, b2) ∈ {(0, 1), (1, 0)}, so the inequality
is trivially true. If (b1, b2) = (0, 0), then u lies in no copies of Ks,t in Gn,x +b,1 u; similarly if
(b1, b2) = (1, 1) and s ≥ 2. So we may assume that (b1, b2, s) = (1, 1, 1), and we need to show
∇•b,1λ(x) ≥ cβ (recalling α ≥ β). We have

λ(x) = (t+ 1)(αβt + αtβ), λ(x, (b, 1)) = αt + βt.

Recall that ∂λ(x)
∂xi

= (t+ 1)λ(x) for i = 1, 2 by Proposition 3.1(ii). We have

∂λ(x)

∂x1
= (t+ 1)(βt + tαt−1β) and

∂λ(x)

∂x2
= (t+ 1)(tαβt−1 + αt), and so

2∇•b,1λ(x) = 2λ(x)− 2λ(x, (b, 1)) =
1

t+ 1

(
∂λ(x)

∂x1
+
∂λ(x)

∂x2

)
− 2(αt + βt)

= αt−1(tβ − α) + βt−1(tα− β) = αt−1((t+ 1)β − 1) + βt−1((t+ 1)α− 1).

It suffices to show that β > 1
t+1 , since then writing ε = β − 1

t+1 , we have ∇•b,1λ(x) ≥ (t+
1)1−tε. This follows from (iii), completing the proof.

Proof of Theorem 1.4. First we show that for F := Kr(t) with t > 1 + log r, we have
OPT = {x} where x = ( 1

r , ... ,
1
r , 0, ... ) and x0 = 0. This essentially follows from [7] where

it is proved that x lies in OPT (but without proving uniqueness), and [4, Theorem 13] where it
is proved that the Turán graph with r parts is the unique extremal graph; but as in the proof of
Theorem 1.3 we again need to make some modifications. Write λ(·) := p(Kr(t), ·), and observe
that λ(y) = (tr)!/(r!(t!)r) · St, ... ,t(y) where t is repeated r times. The method of Lagrange
multipliers, [7, Proposition 7] shows that every y which maximises λ has exactly r non-zero
entries (which sum to 1, since t > 1). Thus it suffices to show that Str(x1, ... , xr) := xt1 ... x

t
r

over all x1, ... , xr > 0 with x1 + ... + xr = 1 is uniquely maximised by ( 1
r , ... ,

1
r ). This is

easy to see for r = 2. Suppose it is not true for some r ≥ 3, and so x1 6= x2, say. Then
Str(x1, ... , xr) > Str(

x1+x2

2 , x1+x2

2 , x3, ... , xr), a contradiction.
We have proved that OPT = {x}. It remains to show that there is c = c(λ) > 0 such

that (Str1) and (Str2) hold.
Note that (Str1) is immediate as a non-edge between two partite sets is not contained in any

induced copy of F , and an edge within a partite set is not contained in any induced copy of F .
As in the proof of Theorem 1.3, this means that every ∇••ij λ(x) = λ(x), which is always at least(
1
r

)tr−2
+ o(1). Similarly (Str2) is immediate since any vertex in Gn,x without neighbours in

at least two parts does not have a Kr−1 in its neighbourhood so does not lie in any copies of
Kr(t), and any dominating vertex clearly lies in no copies of Kr(t). So again ∇•b,1λ(x) = λ(x)
whenever b 6= ei for any i ∈ [r].
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Proof of Theorem 1.5. Let us show that λmax is λ0 := 525
1024 and the vector a =

( 1
8 , ... ,

1
8 , 0, ... ), which is the limit of K8

n/8, ... ,n/8, is the unique maximiser. (Here, K`
n1, ... ,n`

is
the complete `-partite graph with parts of size n1, ... , n`.)

Let x ∈ OPT be arbitrary. At some places it will be convenient to use the language of finite
graphs. So let n be large and let G = Gn,x be a realisation of x with P-structure V0, ... , Vm.

Let us show that there are ` ∈ N, p := (1− x0)/` and a sequence x = x0, ... ,xt =
(p, ... , p, 0, ... ) ∈ OPT where for all j ∈ [t], xj,0 = x0, the entries of xj are obtained by replacing
some non-zero xj−1,i1 , xj−1,i2 in the entries of xj−1 with zj := xj−1,i1 + xj−1,i2 , and any yj
obtained by replacing xj−1,i1 , xj−1,i2 in the entries of xj−1 with non-negative reals that sum
to zj is also in OPT.

Indeed, suppose there are non-zero xi 6= xj , and let i+ j be minimal with this property.
Each copy of F = K2,1,1,1 intersects each Vi ∪ Vj in at most 3 vertices. Thus, if we fix the rest
of x, fix s = xi + xj and vary a = xi/s between 0 and 1, then the number of copies of F is
given by a polynomial p(a) of degree at most 2 which is symmetric around 1

2 : p(a) = p(1− a).
(Note that the number of copies of F having 2 + 1 vertices in Vi ∪ Vj is a constant times
a2(1− a) + (1− a)2a = a− a2, which has no a3 term, i.e. is also a quadratic polynomial.) If p
is not constant, then by symmetry, it follows that p′( 1

2 ) = 0 and since p′ is a linear function
of a, this is the only root. Thus p is maximised at 0, 1 or 1

2 and we can strictly increase p, a
contradiction. Thus p is constant, and any z obtained from x by replacing xi and xj by one or
two new entries whose sum of sizes is xi + xj is in OPT (corresponding to taking any value 0 ≤
a ≤ 1). We let i1 = i and i2 = j, giving x1. Then x1 and any y1 as described lie in OPT. If we
cannot take t = 1, then x1 has unequal non-zero entries and we can repeat the above. It remains
to check that this process terminates. If not, since we can always merge the largest part with
the next (non-equal non-zero) largest part, for all ε > 0 there is some m = m(ε) > 0 such that
xm,1 > 1− x0 − ε (recalling xm,0 = x0). Then p(F,xm) = 5!(1− x0)2/2 · x30/6 +O(ε) which is
maximised when x0 = 3

5 , with value 216
625 <

525
1024 , a contradiction.

Let y = xt, so y has ` equal non-clique parts each of ratio p = (1− y)/` for some y ∈ [0, 1].
Thus p(F,y) is equal to h`(y), where

h`(y) := 5! `
p2

2

(
(1− p)3

3!
− (`− 1)

p2

2
(1− 2p)− (`− 1)

p3

3!

)
.

Indeed, we first choose one part Vi where two non-adjacent vertices go (`
(
pn
2

)
choices). Then

the other 3 vertices of F have to go outside of Vi (
(
(1−p)n

3

)
choices) except we have to rule out

two (exclusive) cases: exactly two of them are in some Vj ((`− 1)
(
pn
2

)
(n− 2pn) choices) and

all three of them are in some Vj ((`− 1)
(
pn
3

)
choices). We have h′`(y) = 10

`4 (y − 1)q(y) where

q(y) = −30 + 49`− 21`2 + 2`3 + 90y − 123`y + 33`2y − 90y2 + 99`y2 − 12`2y2 + 30y3 − 25`y3.

We claim that for each ` ≥ 8, the function h` is strictly monotone decreasing (that is, the
optimal y is 0 meaning that the clique part is empty). So it suffices to show that q(y) > 0
for ` ≥ 8 and y ∈ [0, 1]. We have that q is positive at its endpoints: q(0) = 42 + 97(`− 8) +
27(`− 8)2 + 2(`− 8)3 and q(1) = 2`3. So if q(y) < 0 for some y ∈ [0, 1], then q′ has a root in
[0, 1]. However, the quadratic polynomial q′ has a negative coefficient at y2 and is positive
at endpoints: q′(0) = 1218 + 405(`− 8) + 33(`− 8)2 and q′(1) = 9`2, so there is no such root.
(These symbolic calculations can be found in 2111.nb in the ancillary folder of the arXiv
version of this paper [23].)

We claim that k ∈ R[`] given by k(`) = h`(0) is decreasing for ` ≥ 8. That is, out of all
y with at least 8 non-zero entries which are all equal, the unique extremal y is a. Indeed,
k′(`) = −10j(`)/`5 where j(`) = (`− 9)3 + 15(`− 9)2 + 60(`− 9) + 30 so k′(`) is decreasing
for all ` ≥ 9, and also k(9) = 1120

2187 <
525
1024 = k(8). (See 2111.nb.)



STABILITY FROM GRAPH SYMMETRISATION ARGUMENTS Page 31 of 37

Let us show that none of ` ∈ [7] is optimal. Fix such an `. Direct calculations show that
h`(0) < λ0 (while y = 1 gives Kn which has zero density of F ). So it remains to investigate
critical points, that is, y ∈ (0, 1) such that h` has derivative zero at y. Thus q(y) = 0.

Introduce a new variable z and define p1(y) := h′`(y) and p2(y, z) := z − h`(y). Thus if y is a
critical point with λmax = h`(y) and we define z := h`(y) then (y, z) belongs to the variety
V = V (I) ⊆ R2 defined by the ideal I := 〈p1, p2〉 generated by the polynomials p1, p2. By
applying Buchberger’s algorithm to I (where we eliminate the variable y) we see that J ,
the intersection of I with R[z] (the set of polynomials that depend on z only) is generated by
one polynomial q`, explicitly computed in 2111.nb for every ` ∈ [7]. We actually need only a
part of the above claim, namely that there are polynomials f1, f2 ∈ R[y, z] such that we have a
polynomial identity q`(z) = f1(y, z)p1(y) + f2(y, z)p2(y, z), that is, all terms on the right-hand
side depending on y cancel each other.

We have q1(z) = z(625z − 216) which has roots at z = 0, 216625 , and h1(z0) < λmax for both
roots z0. For each 2 ≤ l ≤ 7, the polynomial q` on inspection has the following properties: we
have q`(z) = zr`(z) where r` has degree at most 3, the coefficient of the leading term of r`
is positive, and furthermore, we have r`(0) ≥ 0, r`(λ0) < 0 and r`(1) < 0. This implies that
r` has no roots in [λ0, 1] and hence q` has no roots in (0, 1]. That is, it is impossible to have
λmax > λ0 (because, as a graph density, λmax is at most 1). Thus λmax = λ0 and none of the
polynomials can achieve λmax except when ` = 8 (with y = ( 1

8 , ... ,
1
8 , 0, ... ) being the unique

maximiser among y ∈ P with yi = yj for all i, j ∈ [8]).
If y = xt 6= x0, then xt−1 exists, and it is of the form xt−1 := ( 1

8 , ... ,
1
8 , a,

1
8 − a, 0, ... ) for

some 1
16 ≤ a <

1
8 , where 1

8 is repeated 7 times, and moreover the element of P obtained by
setting a = 1

16 , say, lies in OPT. A routine calculation shows this to be a contradiction (see
2111.nb).

Thus OPT = {a}, where a := ( 1
8 , ... ,

1
8 , 0, ... ) with a0 = 0.

Finally, it remains to check strictness. Let us check (Str1). First let x, y be in different parts
Vi, Vj of G = Gn,a. Write p = 1

8 and assume 8|n. Consider copies of K2,1,1,1 that contain both
x and y, with A denoting the 2-element part. Then in G, the edge xy can be such that x lies
in A (pn ·

(
6
2

)
· (pn)2) choices), y lies in A (the same), or neither x nor y lie in A (6 ·

(
pn
2

)
· 5pn

choices). In G⊕ xy, xy is a non-edge and so we can only have {x, y} playing the role of A in
F , so the number of such copies of F is

(
6
3

)
(pn)

3
. Thus for distinct i, j ∈ [8] we have

∇••ij λ(a) = 3!p3
(

2

(
6

2

)
+ 15−

(
6

3

))
=

150

512
.

Now let x, y be in the same part Vi of G. Then in G, the non-edge xy lies in
(
7
3

)
(pn)3 copies

of F . In G⊕ xy, the edge xy lies in 7
(
pn
2

)
· 6pn copies of F . So

∇••ii λ(a) = 3!p3
((

7

3

)
− 7 · 6

2

)
=

84

512
,

as required.
For (Str2), let b : [8]→ {0, 1} be such that |supp(b)| = k. Then

λ(a, (b, 1)) = lim
n→∞

(
n

4

)−1 (n
8

)4(
(8− k)

(
k

3

)
+

(
k

2

)
(k − 2) · 1

2

)
=

4!

84
·
(
k

3

)(
19

2
− k
)
.

Indeed, counting induced copies of F in Gn,a +b,1 u containing u: if u plays the role of a vertex
in A, then we choose the other vertex from this set among any of the 8− k parts not adjacent
to u, and then choose three distinct parts of the k adjacent to u to contain the other vertices.
If u plays the role of a singleton, we choose two among k parts for the other two singletons,
and another for A (dividing by two for both orders). Routine calculations show that this is
uniquely maximised (with value λ0) when k = 7, as required.
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Proof of Theorem 1.6. We will show that OPT = {( 3
5 , 0, ... )} and λmax = 216

625 . Let G be a
complete partite graph on n vertices which maximises the number of F := K3,1,1. Comparing
G to ( 3

5 , 0, 0, ... ), we have P (F,G) ≥ 216
625

(
n
5

)
+O(n4). Suppose that Y,Z are the two largest

parts of G, with |Y | = yn, |Z| = zn and y ≥ z. Let S := V (G) \ (Y ∪ Z).
First, let us derive a contradiction from assuming that z ≥ 2

5 . Let s := 1− y − z, so s ≤ 1
5 .

The number of copies of F with at least three vertices in S is at most

n5
(
s5

5!
+
s4(1− s)

4!
+
s3

3!
· yz
)
≤ n5

(
s5

5!
+
s4

4!
+
s3

4!

)
≤ n5 151

600 · 625
.

The number of copies of F with exactly two vertices in S is at most(
sn

2

)((
yn

3

)
+

(
n− sn− yn

3

))
=
n5s2

12
(y3 + (1− s− y)3) +O(n4). (6.3)

We have y ≤ 1− s− 2
5 (since z ≥ 2

5 ) and y > 1− s− y (since y ≥ z). For fixed s, the expression
y3 + (1− s− y)3 is maximised when y is as large as possible. Indeed, y3 + (1− s− y)3 for y ∈ R
is a quadratic polynomial whose coefficient at y2 is positive and whose minimum is at 1−s

2 ,
and we have y > 1−s

2 . So the expression in (6.3) is at most

r(s)n5 +O(n4) where r(s) =
s2

12

((
1− s− 2

5

)3

+

(
2

5

)3
)
.

We claim that r′ has no roots in (0, 15 ], which implies that r(s) attains its maximum at s = 1
5 ,

of value 160
600·625 . Indeed, r′(s) = s

300 t(s) where t(s) = −125s3 + 180s2 − 81s+ 14. Furthermore,
t(1) < 0 < t( 4

5 ) so t has at least one root in [ 45 , 1]. If the claim does not hold, then t has three
real roots, which are interlaced by the roots of the quadratic t′(s) = −3(5s− 3)(25s− 9). The
smallest root of t′ is 9

25 >
1
5 , and the coefficient of s3 in t is negative, so t has a root in (0, 15 ]

only if t( 9
25 ) < 0, a contradiction.

Every other copy of F has exactly 4 vertices in Y ∪ Z. So, writing q := 1−s
y , their number is(

yn

3

)
zn · sn+

(
zn

3

)
· yn · sn =

n5

6
(q3(1− q) + (1− q)3q)s(1− s)4 +O(n4)

which, for s ∈ [ 45 , 1], is maximised when (s, q) = (4
5 ,

1
2 ), with value 640

600 ·
n5

625 +O(n4). So
when z ≥ 2

5 , we have p(F,G) ≤ 5!
600·625 (151 + 160 + 640) < λ0, and we obtain the desired

contradiction.
Assume from now on that z < 2/5. Fix v ∈ Z. Let p(F,G, v) be the number of copies of F

containing v. Then

P (F,G, v) ≤ p(v) :=

(
zn− 1

2

)((
(1− z)n

2

)
−
(
yn

2

))
+

(
yn

3

)
(1− y − z)n

+
1

3

∑
w∈S

(
n− 1− d(w)

2

)
(d(w)− zn).

We would like a good upper bound for the last term. Since Z is the second largest part, we
have that (1− z)n ≤ d(w) ≤ n for all w ∈ S. Now f(x) = 1

2 (1− x)2(x− z) is maximised when
x = x0 := 1

3 (1 + 2z) and is decreasing on the interval [x0, 1]. Since z ≤ 2
5 , we have x0 ≤ 1− z,

so f defined in the range [1− z, 1] is maximised at x = 1− z. So the last term divided by n4

is at most

1

3

∑
w∈S

f(d(w))n−1 +O(1/n) =
1

3
(1− y − z)f(1− z) +O(1/n).
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Define

h(y, z) := 12

(
z2

4
((1− z)2 − y2) +

y3

6
(1− y − z) +

1

3
(1− y − z)f(1− z)− 9

625

)
= 2y3 − 2y4 − 2y3z + 5z2 − 2yz2 − 3y2z2 − 12z3 + 4yz3 + 7z4 − 108

625
.

By the above, h(y, z) ≥ 12(p(v)n−4 +O(1/n)− 9
625 ) ≥ O(1/n), that is, h(y, z) ≥ 0 for all 0 ≤

z ≤ y with z + y ≤ 1 and z ≤ 2
5 . Let

R := {(y, z) ∈ [0, 1]2 : y ≥ z, y + z ≤ 1}.

Claim 6.1. For every (y, z) ∈ R with h(y, z) ≥ 0, we have that y ≥ 3
5 .

Suppose that the claim holds. Since G is optimal, Proposition 3.1 implies that v has optimal
attachment in G; that is, P (F,G, v) =

(
n−1
4

)
λ(G, v) =

(
n−1
4

)
λmax +O(n3) ≥ 9

625n
4 +O(n3).

Thus h(y, z) ≥ 0 for the y, z corresponding to Y, Z, since, as we have shown, z ≤ 2
5 . So y ≥ 3

5 .
Consider the graph H obtained by replacing Z by a clique. Then we lose every copy of F
containing the 3-independent set in Z (and lose no other copies) while we gain copies of F
with the 3-independent set in Y and the two other vertices in Z. So

P (F,G)− P (F,H)

120n5
≤ z3

3!

(1− z)2

2
− (3/5)3

3!

z2

2
+ o(1) =

z2

2

(
z(1− z)2

6
− 33

6 · 53

)
+ o(1)

≤ z2

2

(
4

6 · 33
− 33

6 · 53

)
+ o(1) ≤ −229

40500
z2 + o(1).

This is a contradiction to the optimality of G if z = Ω(1). Thus z = o(1) and, up to o(n2)
edits, G consists of an independent set of size yn and (1− y)n universal vertices. So p(F,G) =

120(y
3

3!
(1−y)2

2 ) + o(1). Ignoring the error term, this is uniquely maximised when y = 3
5 , with

value 216
625 . Then OPT = {a}, where a = ( 3

5 , 0, ... ).
So, in order to determine OPT, it remains to prove Claim 6.1.

Proof of Claim 6.1. First we consider (y, z) on the boundary of R. If z = 0 then h(y, 0) =
−108
625 + 1250y3(1− y) which is uniquely maximised when y = 3

5 . If y = z then h(y, y) = y2(2y −
1)(2y − 5)− 108

625 which is negative for y ∈ [0, 1].
Now we consider (y, z) in the interior of R. Let (y0, z0) in the interior of R be such that

h(y0, z0) ≥ 0 and y0 is minimal with this property (such a y0 exists by compactness of R and
continuity of h). Since (y0, z0) is in the interior of R, we have h(y0, z0) = 0 and ∂h

∂z (y0, z0) = 0
(otherwise we can find z′ ≈ z0 with h(y0, z

′) > h(y0, z0) = 0 and by the continuity of h, y′ < y0
and h(y′, z′) ≥ 0, contradicting the minimality of y0). Applying Buchberger’s algorithm to
eliminate z, we obtain a degree-12 polynomial q such that y satisfies h(y, z) = 0 = ∂h

∂z (y, z)
only if q(y) = 0 (see 311.nb):

q(y) := −2500858044 + 14506020000y − 18911610000y2 − 85830803750y3 + 545884288750y4

− 1430659375000y5 + 4001212109375y6 − 12503827343750y7 + 30477566015625y8

− 54597656250000y9 + 64171142578125y10 − 42002929687500y11 + 12102539062500y12.

Let α := 272
1000 and R′ := {(y, z) ∈ (0, 1]2 : z ≤ y ≤ α}. We claim that p(y) := q(y + α) is a

positive polynomial. Then q(y) > 0 for all y ∈ R \R′, and hence (y0, z0) ∈ R′. For this, it
suffices to show that there are polynomials r1(y), r2(y) with non-negative coefficients satisfying
p(y)r1(y) = r2(y). Once one fixes the degree d of r1, this amounts to solving a linear program,
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where ak is the k-th coefficient of p and bk is the k-th (unknown) coefficient of r1:

minimise
∑

0≤k≤d

bk

subject to
∑

j+k=i:
0≤j≤12;
0≤k≤d

ajbk > 0, i = 0, 1, ... , d+ 12,

bk > 0, k = 0, 1, ... , d.

In fact we only need a feasible solution, not an optimal one, so the objective function can
be anything. For degrees d = 1, 2, ... we attempted this (using python) until we obtained a
numerical solution for d = 16. The following degree-16 polynomial was obtained by multiplying
this solution by a fairly large power of 10 and rounding.

r1(y) = 405631585336x16 + 291048000156x15 + 172228102580x14 + 76577243592x13

+ 32501733953x12 + 13576227809x11 + 5344727909x10 + 1954537506x9 + 737097269x8

+ 264696828x7 + 90984085x6 + 30184081x5 + 10472958x4 + 3090485x3 + 1000538x2

+ 206609x+ 108298.

Clearly its coefficients are positive and one can check (see 311.nb) that the degree-28
polynomial p(y)r1(y) also has positive coefficients, as required.

Suppose we can find non-negative polynomials s0, ... , s3 in y, z and positive t ∈ Q such that

−h(y, z)− t− zs1 − (y − z)s2 − (α− y)s3 = s0,

where a polynomial p ∈ R[y, z] is non-negative if p(y, z) ≥ 0 whenever y, z ≥ 0. Then −h(y, z) >
0 on R′. This will complete the proof of the claim. Let x := (1, y, z, y2, yz, z2)ᵀ. To ensure that
the si are non-negative, it suffices to find positive semidefinite 6× 6 matrices Qi such that
si(y, z) = xᵀQix. For this, a sum-of-squares solver (we used the YALMIP Matlab toolbox [24,
25] with SeDuMi [37]) numerically maximises t such that the above equality holds; that is, we
obtain t′ ≈ 0.02 and real matrices Q′0, ... , Q

′
3 such that −h(y, z)− t′ − zs′1 − (y − z)s′2 − (α−

y)s′3 ≈ s′0, where s′i = xᵀQ′ix. Now let Qi be a (symmetric) rational approximation to Q′i for
i ∈ [3] and let R0 be a rational approximation to Q′0. We obtain
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R0 =



47560627
605583685 − 27288737

128683162 − 5823553
403766228 − 22660833

166625377
64761638
445638833 − 10092851

42370543
− 27288737

128683162
412450960
208083677 − 154126052

222170865 − 123333398
74059181 − 45208772

76054353
29997552
77062243

− 5823553
403766228 − 154126052

222170865
56961038
76246587

75134651
68479911 − 114623437

74768701
68436686
157424595

− 22660833
166625377 − 123333398

74059181
75134651
68479911

231222579
42911653 − 33046138

90840815 − 27557233
25108228

64761638
445638833 − 45208772

76054353 − 114623437
74768701 − 33046138

90840815
142375474
17195129 − 204334483

99244906
− 10092851

42370543
29997552
77062243

68436686
157424595 − 27557233

25108228 − 204334483
99244906

152251273
45491357

 < 0

Q1 =



113823133
103564772 − 153720698

116964597 − 514694857
175951034 − 26958123

134065612 − 5214837
679601578

424549711
451760648

− 153720698
116964597

98271451
22705510

108839271
102671668 − 37652132

76331505 − 98556781
98719039 − 86545565

156277133
− 514694857

175951034
108839271
102671668

178543136
16280101 − 13588975

554452603 − 66382289
197496474 − 315010733

72953806
− 26958123

134065612 − 37652132
76331505 − 13588975

554452603
127914572
23010911 − 93779957

771873704 − 258311971
316622401

− 5214837
679601578 − 98556781

98719039 − 66382289
197496474 − 93779957

771873704
183401329
33290110 − 60904303

161208591
424549711
451760648 − 86545565

156277133 − 315010733
72953806 − 258311971

316622401 − 60904303
161208591

502508117
78490640

 < 0

Q2 =



21520940
25577879 − 56020343

32074003
40731578
751516279 − 46544963

139367268 − 41177990
108764983 − 26606007

46612636
− 56020343

32074003
112841678
19842961 − 139240153

172670104 − 45501317
43903809

64055491
88725341

21288583
30121110

40731578
751516279 − 139240153

172670104
68362401
21097442 − 168386141

819717774 − 155286027
198655888

30506956
19158511

− 46544963
139367268 − 45501317

43903809 − 168386141
819717774

166235485
28138938

15677552
218059291 − 15992364

25871383
− 41177990

108764983
64055491
88725341 − 155286027

198655888
15677552
218059291

253525900
46511459

95613053
837681775

− 26606007
46612636

21288583
30121110

30506956
19158511 − 15992364

25871383
95613053
837681775

267687310
41812157

 < 0

Q3 =



29877454
113194375 − 110018062

390364861 − 39492021
93889856 − 44736353

260223501 − 27286543
148218452 − 211317628

549271497
− 110018062

390364861
168343502
34876437 − 63781869

56201314
813722845
556876698

1719950
4084346189

20149420
711586093

− 39492021
93889856 − 63781869

56201314
293980380
89098241 − 16659683

50114131
24295714
57792167

20062513
28511329

− 44736353
260223501

813722845
556876698 − 16659683

50114131
166235485
28138938 − 91733513

894919007 − 11949058
15299253

− 27286543
148218452

1719950
4084346189

24295714
57792167 − 91733513

894919007
187073509
34708874 − 1990762

36615949
− 211317628

549271497
20149420
711586093

20062513
28511329 − 11949058

15299253 − 1990762
36615949

192697280
35564393

 < 0.

At this stage it does not matter (for the purposes of a verifiable proof) where R0, Q1, Q2, Q3

came from; it suffices to show that they are positive semidefinite and that the polynomial

ε(y, z) := −h(y, z)− zs1 − (y − z)s2 − (α− y)s3 − r0
is positive on [0, 1]2, where r0 = xᵀR0x. To check positive semidefiniteness of a matrix A =
(aij)i,j∈[m], we first check that A is symmetric, then we use Sylvester’s criterion, which says
that a Hermitian matrix A is positive semidefinite if and only if A(k) = (aij)i,j∈[k] has positive
determinant for all k ∈ [m]. We bound ε(y, z) from below by its constant term minus the sum of
the absolute value of its other coefficients (see 311.nb) to see that ε(y, z) ≥ 1

50 in the required
region. This completes the proof of the claim. �

Since Claim 6.1 implies that OPT = {( 3
5 , 0, ... )}, it remains to check that p(K3,1,1, ·) is strict.

Consider G = Gn,a which has a clique part V0 of size 2n
5 +O(1) and another part V1 of size

3n
5 +O(1) which is an independent set. Now (Str1) is immediate as G⊕ xy has no induced

copy of F containing both x and y.
Now we check (Str2). Let c := 108

125 . We have supp∗(a) = {0, 1}, so given any b : {1} → {0, 1}
and α ∈ [0, 1] it is enough to show that

∇•b,αλ(a) = λ(a)− λ(a, (b, α)) = λ(a)− lim
n→∞

λ(Gn,a +b,α u, u) ≥ 2

5
c(1− α) = λmax(1− α),

that is, λ(a, (b, α)) ≤ λmaxα. If b(1) = 0 then u lies in a copy of K3,1,1 only if it lies in
the 3-set with two vertices in V1 and the two singletons are in N(u) ∩ V0, so λ(a, (b, α)) =(

4
2,2

) (
2α
5

)2 ( 3
5

)2
= λmaxα

2, as required. If b(1) = 1 then u lies in a copy of K3,1,1 only if the

3-set is in V1 and the other singleton is in N(u) ∩ V0, so λ(a, (b, α)) =
(

4
1,3

) (
2α
5

) (
3
5

)3
= λmaxα,

as required.
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This completes the proof of the theorem.

7. Concluding remarks

In this paper we have shown how to obtain stability from results in extremal graph theory
which use symmetrisation. We have applied our general theory to the inducibility problem for
complete partite graphs. It would be interesting to solve other instances of the polynomial
optimisation problem which amounts to determining i(F ).

It would be particularly interesting to find other extremal graph theory problems to which
our theory applies.
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1. J. Balogh, P. Hu, B. Lidický, and F. Pfender, Maximum density of induced 5-cycle is achieved by an
iterated blow-up of 5-cycle. Europ. J. Combin., 52:47–58, 2016.
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