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Abstract 

This thesis, firstly, due to the lack of knowledge in influence of harsh outdoor 

environment on the performance of the low-THz automotive sensors, the investigation 

has been done to demonstrate the performance of low-THz sensors in the presence of 

different radome contaminants (mud, oil, grit, etc.) and various weather conditions 

(rain, snow, fog, etc.) to prove the feasibility of using low-THz frequencies (100 GHz -1 

THz) in automotive radar in uncontrolled environmental conditions. 

Secondarily, this thesis reports and discuss the important and yet unsolved task on 

automotive surface recognition and shows the  possibility of using Low THz radar for 

road surface classification by exploring the radar signal backscattering from surfaces 

with different roughness, and finally this thesis demonstrate the novel approach to 

surface classification based on the analysis of radar images obtained using the low THz 

imaging radar and demonstrate the advantage of low THz radar for surface 

discrimination for automotive sensing. The proposed experimental technique in 

combination with a convolutional neural network provides high surface classification 

accuracy.
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Chapter 1:  Introduction 

1.1 Motivation 

The last few years have been favorable for the autonomous vehicle (AV) technology. 

Major companies are considering AV as a solution to reduce road accidents and 

fatalities. A study on identifying the cause of road crashes in Europe shows the main 

cause of these accidents to be human error [1], which leads to death of 49 road deaths 

per minutes and totally about 25000 road death per a year in Europe [2]. Even in the 

case of non-fatal crashes, the economic costs are undeniably high, while with using the 

vehicles equipped with autonomous driving technologies, the number of accidents 

could significantly decrease which emphasize AV importance and its potential to 

overcome the human error and improve safety to road users. Furthermore, AV can 

increasing the road capacity, and as a result reduce the pollution, improve access to 

mobility and guarantee new jobs for the automotive and electronic sectors. 

An integral element of prospective AV technology is a surface identification (Surface ID) 

system. This system should remotely classify the road surfaces and alert driver or AV 

computer about potential hazardous road surfaces, such as ice (especially “black ice”), 

standing water or changes in road pavement, which will allow the vehicle to remain 

safely under control as it transitions from one surface to another, reducing costly 

damage, avoiding injury and saving lives. Automatically adapting vehicle speed to 

surface conditions is an essential step in providing autonomous driving. In four-wheel 

drive vehicles, Surface ID system will enable two or four-wheel drive to be selected as 

appropriate, therefore helping to reduce CO2 emissions. 

Spanning from fully manual to fully autonomous vehicles, there are six level of AV 

classification, which were defined in 2014 by Society of Automotive Engineers (SAE) [3] 

and named SAE J3016. This classification is based on the amount of driver involvement 

in the act of driving.  The 6-level automation from level zero to level five is reproduced 

in Table 1.1 [3].  Level zero correlates to having no automation and instead complete 

human control of the vehicle. Levels one and two the driver needs to drive and must 

constantly supervise the driver support features while in level 3 to 5 the driver not 

driving when automated driving features are engaged. Level 3 automated vehicles are 

expected to enter the world by 2021, according to public claims by such automotive 

manufacturers as Ford, Honda, Toyota, Volvo, BMW, and Mercedes-Benz and others 
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which advertised to have a level 3 cars available for consumer purchase subject to their 

national regulations and automotive law [4]. Currently, the market remains dominated 

by partially autonomous level 2 vehicles. 

 



Chapter 1: Introduction 

 

  

  Page 3 

Ta
b

le
 1

.1
: 

SA
E 

J3
0

1
6

le
ve

ls
 o

f 
d

ri
vi

n
g

 a
u

to
m

a
ti

o
n

 [
3

] 

 



Chapter 1: Introduction 

 

  

  Page 4 

 

Figure 1.1: Automotive remote sensors: yellow-green – optical or LIDAR, blue – microwave 
(radar), orange - ultrasonic[5] 

Different sensor technologies are used for AV (see Figure 1. 1) such as optic cameras [6-

10], light detection and ranging (LIDAR) [11,12], sonar [13]-[5], and radar [14-22].  LiDAR 

use laser and because of high resolution has the advantage of detecting small objects, 

accurate depth perception, which allows LiDAR to measure the distance to an object 

within a few centimetres, up to 100 metres away. Optical cameras are cheap and 

lightweight and they produce an easily understandable colour image of the scene. In 

addition, stereo cameras provide depth map where distance to the object can be 

evaluated by disparity of cameras. However, severe weather conditions negatively 

affect the performance of LIDAR and optical cameras. Furthermore, optical cameras 

require adequate visible radiation levels and have poor performance in limited lighting 

conditions. The advantages of sonar are the small size of a transceiver, simplicity and 

cheapness combined with high range resolution. The limitation of sonar is related to the 

fact that being a mechanical wave the acoustic signal is affected by volumetric 

particulates in the non-uniform media (spray, rain), or exhaust, and wind, leading to 

significant inaccuracies of the results. Therefore, the sonar is mostly used in parking 

sensors at distances up to 6-8 metres. To provide partial or full autonomy, automotive 

sensors should be operational under all weather conditions, including rain, snow and 

fog, and at any time of the day. Unlike LIDAR, optical sensors and sonar, radar sensors 
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have the advantage of robust operation in harsh weather and lighting conditions [23-

25].This is, due to the ability of electromagnetic (EM) waves at frequencies below the 

infra-red band to propagate through optically non-transparent media such as fog, smoke 

and spray, with much lower loss. Figure 1. 2 shows acuity on  Bystrove’s [26] study for 

comparison of the remote sensor technologies in various lighting and weather 

condition. 
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Figure 1.2: Sensing challenges[26] 
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Furthermore radar offers the following advantages in comparison to other AV sensors 

technology: 

• Direct measurements of range and speed. 

• The sensors can be mounted behind radar transparent materials (e.g. plastic 
vehicle bumper) with low reduction of sensitivity if needed for design aspects 
and environmental protection. 

• Radar can detect multiple objects simultaneously. 

• Radar can easily differentiate between stationary and moving objects 

Currently, one of the trends in the development of automotive radars is to increase the 

operating frequency from 24 GHz to 79 GHz and higher. According to European 

Telecommunications Standards Institute (ETSI)[27] and the Federal Communications 

Commission (FCC)[28] Regulations ,  Mid-range radar operating at 24 GHz has a 

maximum bandwidth of 200 MHz. Short range 79 GHz radar has wider operational 

bandwidth of 4 GHz which results in much higher range resolution and more detailed 

road surface imaging. Antenna size reduction is another key aspect for automotive 

applications due to already dense in-vehicle packaging, and if achieved, this will result 

in lower integration costs. Therefore, there is a need for new sensing systems that fulfil 

the entire range of requirements for LIDAR, radar, and camera systems. Low Terahertz 

(low THz) range refers to the spectrum range form 0.1-1 THz which occupies the region 

between the upper end of the radio spectrum and the lower end of the Infra-Red 

spectrum (see Figure 1.3). This frequency range has benefits of significantly higher range 

resolution because of wider bandwidths available [29,30], which lead to more image-

like scene characterization by such a radar. At the same time, unlike LIDAR and optical 

sensors, low THz sensors have the advantage of robust operation in harsh weather and 

lighting conditions [23-25]. Importantly, operation at higher frequencies leads to more 

compact electronics components, in particular antennas, thereby responding to 

challenges of more and more dense packaging of multiple sensors and processing 

systems for modern and future cars. Until recently, the high cost was an obstacle to the 

widespread implementation of low THz radar systems, but with the development of 

appropriate technologies [31], it has been steadily decreasing. 
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Figure 1.3: The terahertz frequency band with capabilities which is a trade-off between 
microwaves and infrared and optical frequencies [32] 

Low THz has found for a wide range of indoor application such as standoff personnel 

screening(at 675 GHz)[33] , material characterization [34] and, importantly, low THz 

radar has been proposed as a candidate to provide high-resolution imagery for future 

autonomy [35-37]. High influence of atmospheric conditions (absorption by atmospheric 

gases, and also absorption and scattering by atmospheric aerosols) on signal 

propagation at higher frequencies, is recognized as the major limitation of employing 

low THz frequencies in outdoor applications. Thus, the influence of the harsh outdoor 

environment on the performance of the low THz sensors remains largely unknown and 

became an objective for Microwave Integrated Systems Laboratory (MISL) group in the 

University of Birmingham since 2016.  

The well-known graph of atmospheric attenuation (absorption by atmospheric gases) 

versus frequency (between 100 GHz and 1 THz) shown in Figure 1. 4 [38], which shows 

a region of local minimum attenuation between absorption peaks at frequencies 

referred to as “atmospheric windows”. The chosen low THz frequency for this thesis 

and the currently used automotive radar frequency both lie in such atmospheric 

windows. As can be seen from Figure 1. 4 the atmospheric attenuation, primarily due to 

water vapour absorption, is significant in many spectral regions in the low THz band, 

especially in adverse weather conditions [24,39]. However, there are transmission 

windows around 340 GHz, 400 GHz, and 650 GHz, where atmospheric loss in clear air 

does not exceed 10 dB/km, 20 dB/km, and 60 dB/km, respectively. Therefore, for the 

automotive radar operational range of up to 100 meters, atmospheric loss will not 
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exceed 10 dB and makes a relatively small contribution to the power budget needed to 

guarantee the system efficiency [40]. 

As mentioned above there is a lack of knowledge on the influence of harsh outdoor 

environments on the performance of the low THz sensors, so the first objective of this 

thesis is investigating the performance of low THz sensors in the presence of different 

radome contaminants (mud, oil, grit, etc.) and various weather conditions (rain, snow, 

fog, etc.) to prove the feasibility of using low THz frequencies in automotive radar in 

uncontrolled environmental conditions. 

 

Figure 1.4: Atmospheric attenuation windows[38] 

To overcome the challenge of remote road surface classification which still has remained 

an unsolved task in the implementation of AV, the low THz radar could be considered 

due to its wide operating bandwidth which is very sensitive to surface roughness and 

capable to provide high image resolution. This will allow high resolution road surface 

images to be obtained, to recognize different type of surfaces. 

It is significantly important for automotive radar designers to consider the signal 

backscattering from the road surface while considering increase in frequency.  Based on 

Fraunhofer criterion the surface is considered rough if the surface rms height h (root 
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mean square average of the heights above or below a mean reference line) satisfies the 

inequality ℎ ≥ 𝜆 (32 𝑐𝑜𝑠 𝜃),⁄  where 𝜃 is the angle of incidence relative to the surface 

normal and λ is the signal wavelength. From the Fraunhofer criterion, it follows that with 

an increase in the frequency of the radar, its ability to distinguish surfaces improves. 

Consider, for example, rough asphalt with h=1 mm and smooth asphalt with h= 0.3 mm. 

For a radar with a frequency of 79 GHz (wavelength of 3.8 mm) with an incidence angle 

of over 70°, both of these surfaces will be smooth and indistinguishable. At the same 

time, a radar with a frequency of 300 GHz (wavelength of 1 mm) will be able to 

distinguish them even at an incidence angle of 85°. Let us assume that the radar is 

mounted at a height of 1 m above the road. An angle of 70° corresponds to only 3 m, 

and an angle of 85° correspond to almost 12 m, so the second objective of this PhD 

research is the investigation of the possibility of using Low THz radar for road surface 

classification by exploring the scattering of radar signal from surfaces with different 

roughness.. Initially, new improved method for measuring backscattering coefficient of 

rough surfaces has been proposed to estimate the normalized radar cross-section (RCS) 

of surfaces of different roughness as a function of radar and configuration, such as 

polarization, grazing angle, surface roughness parameters and dielectric constant, which 

will play an important role in understanding the complex problem of signal reflection 

from actual road surfaces.  

The AV vehicle for having full or partial autonomy require to sense the vehicle’s 

surrounding environment based on the received images from its sensors, in all weather 

and lighting condition. AS mentioned previously unlike LIDAR and optical camera low 

THz radar has advantageous of working in all weather and lighting condition so the third 

objective of this PhD thesis is to investigate the performance of low THz imaging radar. 

in the surface ID task.  

As Convolutional Neural Networks (CNNs) have been successfully applied to different 

classification tasks such as image analysis in medicine image segmentation, also with 

applications in the field of automated driving (like object detection), it seems promising 

to use a CNN-based approach for surface classification task.  

In this PhD study a new approach was explored to surface classification based on the 

analysis of different images with various roughness, obtained using the Low Terahertz 

radar in the laboratory and the proposed experimental techniques in combination of 
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CNN have been used for surface classification task, and these results have led me to the 

final step of this PhD research which classifies actual road surfaces (asphalt, gravel, 

mud…) based on the actual road scene collected during outdoor trials and again used 

CNN for classification task 
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1.2 Thesis structure 

• Chapter 2 describes a radar definition and basic radar operation also provide  in 

details the background for the topics covered in the later chapters such as 

electromagnetic wave (EWM) propagation and scattering mechanism , and the 

concepts of radar cross section, clutter, penetration depth, radar waveform 

choices and signal processing, millimetre wave and THz sensing, radar imaging 

and neural network classification. 

 

• Chapter 3 presented the methodology utilised in the experimentation and to 

analyse the data collected to produce significant results, which can be used for 

the design of low THz radars for future autonomous vehicles. The low THz radar 

systems which was used for this PhD research to collect the data for 

experimental purpose described and characterized in this chapter. 

 

• Chapter 4 describe and characterized the signal attenuation through 

contaminant accumulate radome of automotive sensor in the range of low THz 

radar.  The study of signal attenuation by tree leaves at 300 GHz radar as well as 

the results on signal attenuation by different water in low THz automotive radar 

have been presented in this chapter. Furthermore, the summary of results of 

attenuation of low THz signals due to radome contamination which has been 

done by MISL group are shown and discussed.  

 

• Chapter 5 explore the scattering of signals within mm- and low Terahertz 

frequency range, represented by frequencies of 79 GHz, 150 GHz, 300 GHz, and 

670 GHz, from surfaces with different roughness to demonstrate advantages of 

low THz radar for surface discrimination for automotive sensing. 
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• Chapter 6 shows surface classification based on the analysis of the radar image 

of the sand paper with different roughness which is obtained using the Low 

Terahertz radar at two frequencies of 150 GHz and 300 GHz. the convolutional 

neural network has been used in the classification of sandpaper with different 

roughness (grit). In next stage an approach has been considered to surface 

classification based on the analysis of the 79 GHz imaging radar data. The six type 

of actual road with different roughness has been considered and the gained 79 

GHz roads radar images has been classified with convolutional neural network. 

 

• Chapter 7   conclusions are drawn and potential further research topics are 

discussed.
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Chapter 2:  Literature review 

2.1 Principles of radar system 

2.1.1 Radar definition  

The origin of radio (electromagnetic) wave detection dates back to the last decades of 

the 19th century. The German physicist Heinrich Hertz demonstrated that the radio 

waves could be reflected by metallic objects and dielectric material [41] and this 

investigation become a basis for target detection which was issued as a patent for ‘’an 

obstacle detector and ship navigation’’ by  German engineer Christian Huelsmeyer in 

1904. He invented the device called Telemobiloscope which was able to detect the 

presence of distant objects by using radio waves [42]. The radar (Radio Detection and 

Ranging), as known today, was developed during the Second World War as an ideal 

technique for detecting military bomber aircrafts. The two purpose of such radars were 

detection and estimation of the location of objects remotely. However modern radar is 

being developed to enable target identification and classification, and even to produce 

images of objects. For example radar is now used to detect aircraft, ships, spacecraft, 

guided missiles, motor vehicles, and many practical applications are developed using 

radar, including medical imaging, security, weather forecasting, astronomy, navigation 

and more recently automotive radar. 

The principle of radar system as can be seen in Figure 2. 1, is that the transmitter 

generate the Electromagnetic Magnetic (EM) signal and routed to the antenna via the 

duplexer (a device that permits both transmission and reception of EM waves with a 

single antenna). The antenna acts as a transducer to couple the EM into the surrounding 

area. Generally, the radar antenna will form a beam of EM energy by concentrating the 

propagating EM wave in a given direction. Thus, the beam can be designed to achieve 

desired angular coordinates by effectively pointing the antenna in the direction through 

a combination of mechanical and electrical means [43]. Only part of transmitted signal 

is intercepted by the target which is located within the antenna beam and is reradiated 

in all directions. The receiving antenna collects the returned energy and delivers it to the 

receiver via duplexer. The receiver amplifies the weak received signals and processes 

them in order to detect the presence of targets and to extract their locations (ranges) 

and relative velocities and to gather other information about the targets according to 

the radar application [41]. The distance to the target, R (range) is determined by 

https://www.britannica.com/technology/navigation-technology
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measuring the time 𝑇𝑅 required by the transmitted radar signal to reach to the target 

and return, and is shown as a relation of 

                                                               

                                                                                  
2

RcT
R =                                                        (2. 1) 

where 𝑐 = 3 × 108  𝑚 𝑠⁄   is the speed of electromagnetic radiation. 

 

 

 

 

 

 

 

 

 

 

It should be noted that the radar is the only type of sensor or device which is able to 

measure the range to the remote target in adverse weather (fog, rain, snow,) and poor 

lighting condition (day and night). 

Radar systems can be classified in four different configurations based on its transmitter 

and receiver topology: monostatic, quasi-monostatic bistatic and multistatic.  

• Monostatic radar: which is the most common type of the radar and exploits the 

backscattering from target. The transmitter and receiver are collocated as 

viewed from target. As the same antenna is used to transmit and receive the 

signal, a duplexer is needed to separate the transmit chain from receive chain 

and vice versa. 

• Quasi-monostatic radar: the transmit and receive antennas are slightly 

separated but still appear to be at the same location as viewed from the target. 

• Bistatic radar: A radar configuration having transmitter and receiver separated 

and located in different places, as shown in Figure 2. 2(b). 

 

 

Transmitter Duplexer 

Receiver 

 

RADAR Transmitted 

Received signal 

Antenn

Target 

R 

Figure 2.1: Radar system 
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• Multistatic radar: Figure 2.2(c) shows the multistatic radar which consist one 

or more transmitter and more than one receiver.  

 

 

 

 

 
                          (a)                                                                            (b)             

 

(c) 

   Figure 2.2: Monostatic (a), bistatic (b) and multistatic (c) radar configuration 

 
 
 
 
 
 
 

Transmitter/Receiver 
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2.1.2 Radar equation 

The radar equation is a very useful mathematical expression that determines the radar 

performance and it is a necessary tool for radar system designers. It encompasses 

factors related to detect a target, transmitter, receiver, antenna and environment [44].  

If the radar radiating power is denoted by 𝑃𝑡, and if G is antenna gain (we consider that 

transmitting and receiving antennas have the same gain) then the power density 𝑃𝐷 at 

the distance R  from the radar is [44] 

                                                                   
24

t
D

PG
P

R
=                                                          (2. 2)

   

The measure of the amount of incident power intercepted by the target and radiated 

back in the direction of the radar is denoted as the radar cross section, so the reflected 

power density at the radar system is 

                                                                    
0 2 4(4 )

tPG
P

R




=                                                              (2. 3) 

The amount of this reflected power received by the radar is found using the antenna 

effective area 𝐴𝑒 which can be expressed as  

 

                                                                     
2

4
e

G
A




=                                                               (2. 4) 

So by combining (2. 3) and (2. 4) the mean power received by the radar is  

 

2 2

3 4(4 )

t
r

PG
P

R

 


=                                                           (2. 5)  

To have a more accurate and realistic model of radar performance, it is necessary to 

consider some radar disturbance such as the propagation medium and path loss, 

atmospheric noise, thermal noise introduced within radar, system losses (non-ideal 

component) and signal processing losses. Therefore the equation (2. 5) should be 

multiplied for a factor 𝐿 < 1 which includes all the mentioned losses. 
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The total noise at the output of the receiver 𝑁 may be considered to be equal to thermal 

–noise  which is unavoidable noise and generated by the thermal agitation of conduction 

electrons multiplied by a factor called the receiver noise figure 𝐹𝑛  [44]. 

 

 nN kTBF=                                                            (2. 6) 

where k=Boltzmann’s constant= 1.38 × 10−23 𝐽 𝑑𝑒𝑔⁄ , 𝑇 is temperature and generally 

assumed to be 290 Kelvin(K) and 𝐵 is receiver bandwidth . 

We can now compare the received power with the noise power which can be expressed 

in terms of signal to noise ratio (SNR) and can be written as  

 

 
2 2

3 4(4 )

tr

n

PGP
SNR L

N R kTBF

 


= =                                    (2. 7) 

 From (2. 7) the maximum detection range 𝑅𝑚𝑎𝑥 of a given radar can be obtained as 

 

 
2 2

1 4

max 3

min

( )
(4 ) ( )

t

n

PG
R L

SNR kTBF

 


=                             (2. 8) 

where 𝑆𝑁𝑅𝑚𝑖𝑛 is the minimum value of SNR required to achieve the desired radar per. 

 

 

2.1.3 Radar cross section 

The quantification of targets detection performance and maximum detection range, is 

extremely important in radar applications. This requires the knowledge of the 

reflectivity of objects, which is characterized by Radar Cross Section (RCS). RCS is a 

measure of the proportion of the scattered power by target which is radiated towards 

the receiver [44,45] . There are a number of different factors that determine the RCS of 

an objects which include: the target material, the size of the target compared to the 

wavelength of the illuminating radar signal, frequencies, the absolute size of the target, 

the incident and reflected angle and the polarization of the transmitted and the received 

radiation in respect to the orientation of the target. 
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From equation 2. 4 , the monostatic radar RCS is  

3 4

2 2

(4 ) r

t

R P

PG





=                                                     (2. 9) 

If we take the ratio of equation 2. 2 to equation 2. 1, we obtain the result  

                                                        2 0lim(4 )
x

D

P
R

P
 

→
=                                            (2. 10) 

where the limit has been added to emphasize the range 𝑅, at which the power density 

DP  is measured is in the far-zone region of the target [46].  

0P  and DP  are related to the electric field of their corresponding waves by : 
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where 0 , 𝐸𝑅𝑥 and 𝐸𝑇𝑔  is wave impedance of air , the reflected field strength at radar 

and strength of incident field at the target , respectively.  

So another way to express the RCS in terms of electric field amplitude is  
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                                  (2. 11) 

The RCS of an object is dependent on the ratio between the target dimensions and 

wavelength, and the following three scattering regions can be seen for simple shape 

object [45,47]: 

• Rayleigh region (𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑖𝑧𝑒 ≪ 𝜆): the RCS∝ 𝜆4 and 𝑅𝐶𝑆 ∝ (𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑜𝑙𝑢𝑚𝑒)2: 

At low frequency, when the size of the target in the propagation plane is small 

compared to wavelength. In this region target acts as a point scattered with 

almost negligible RCS contribution. 

• Resonant or Mie region (𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑖𝑧𝑒~𝜆): in medium frequencies where the size 

of target is comparable with the incident wavelength, the incident wave phase 

changes significantly along the target surface. 
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• Optical region ( 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑖𝑧𝑒 ≫ 𝜆): in high frequencies the RCS is roughly the 

same size as the real area of the target. In this region the target size are much 

larger compared to the radar wavelength. This region is favorites of this PhD 

research as we mainly focused on mm wavelength which is much smaller than 

our measurement target. 

 

A sphere is most commonly used as a calibration target in laboratory experiments or 

measurement field since the orientation or positioning of the sphere will not affect radar 

reflection intensity measurements [48]. In [49] the best solution for the RCS of sphere 

made of a perfect electric conductor (PEC) with the radius of r has been presented. The 

three scattering regions discussed previously from Perfect Electric Conductor (PEC) 

smooth metal sphere can be calculated by [50] 
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 ( ) ( ) ( )n n nh x j x jy x= +                                               (2. 16) 

where, 𝑗𝑛 and ℎ𝑛are the radius, n-th order spherical Bessel and Hankel function, 

respectively.  
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Figure 2. 3 shows the normalized radar cross section of PEC sphere as a function of its 

circumference measured in wavelength (𝑘𝑎) and the trend which identified the three 

regions was mentioned earlier obtained by calculating (2.11) at different wavelength. 

 

 

Figure 2.3: The normalized RCS PEC sphere[48] 

 

2.2 Radar waveform choices and signal processing 

As mentioned earlier, the target’s range is estimated by measuring the EMW round trip 

travel time to and from the target. The target radial velocity ( r ) is estimated based on 

the Doppler frequency shift induced on the EMW from the motion of the target relative 

to the radar. It is very important to find out the form of the EMW transmitted by the 

radar (waveform) to determine the accuracy with which the targets’ range and radial 

velocities are estimated. The radar waveforms can be classified into two general classes 

to determine the radar range: pulsed radar, which uses amplitude modulation, and 

continuous waveform (CW) radar which uses frequency modulation (FM) or phase 

modulation (PM) techniques. 
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Pulsed radar generates and transmits a narrow rectangular shape pulse modulating a 

sinewave carrier. By having the narrower pulse, the wider bandwidth will be achieved 

and therefore the range measurement would be more accurate in comparison to those 

radar using CW waveforms [51]. The pulse radar employs high peak power to 

concentrate all the energy in a short period of time which usually needs large, heavy and 

inefficient components, whereas, CW use low continuous power which allows the CW 

radar to be built using cheaper and more efficient component in comparison to those 

using pulse waveforms [51], for example the FMCW radars can be powered by batteries 

or solar panels in portable or remote deployment. Since the CW radar is not able to 

measure the target range, in order to overcome this inability the transmit and receive 

waveforms must have some sort of timing marks. By comparing the timing marks at 

transmit and receive, CW radars can extract target range. The timing mark can be 

implemented by modulating the transmit waveform, and one commonly used technique 

is frequency modulated continuous waveform (FMCW). In this thesis two main 

modulated waveforms are used: the stepped frequency waveforms (SFW) and (FMCW) 

which will be presented in details in the next sections.   

 

2.2.1 FMCW waveform 

The FMCW radar basically measures the range, velocity and angle of arrival of targets 

within the line of sight of the incident beam. FMCW radar transmits a signal called chirp. 

A chirp is a sine wave whose frequency increases (up-chirp) or decreases (down-chirp) 

linearly within the given time interval.  

Figure 2. 4 shows the up-chirp transmitted and received signal which shows how the 

frequency is changing linearly with time interval. 
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Figure 2.4: frequency vs time relation of linear FMCW transmit and receive chirp 

 

FMCW signals can be processed either through matched filter or heterodyne detection. 

A matched filter is a filter with a transfer function which is equal to the mirror image of 

the transmitted signal, and delayed accordingly to ensure causality. In this approach the 

signal compresses in time domain and thus the output digitization needs fast analogue 

to digital convertor (ADC). In this research heterodyne detection is used which is 

explained below. 

In the heterodyne detection, received chirp is mixed with the portion of the transmitted 

chirp and then low-pass filtered, and as a result the frequency difference between 

transmitted and received chirp will be generated which is called beat- frequency(𝑓𝑏). In 

FMCW radar for measuring the range the beat-frequency is measured and can be 

obtained by: 

                                                             b

B
f

T
=                                                         (2. 17)                                                    

Where 𝐵 is the frequency deviation which is called sweep bandwidth and 𝑇 is the sweep 

time, 𝜏 is the round-trip time from transmitter to the target with the distance 𝑅 (range) 

and back and can be expressed as 

                                          
2R

c
 =                                                                  (2. 18)  
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By substituting equation (2. 18) in equation (2. 17), we can write equation (2. 19), which 

is related to the beat frequency to the range [52]. 

 
2

b

cT
R f

B
=                                                               (2. 19) 

Since the effective beat frequency resolution bf  of baseband signal is 1
T

 (based on 

the effective 3dB bandwidth of CW signal of length T is 1/T), The range resolution R   

corresponding to bf can be written by: 

                                                            
2

c
R

B
 =                                                           (2. 20) 

A mathematical analysis of heterodyne transmitted up-chirp in a time interval T can be 

written by [53,54]: 

   2( ) cos ( ) cos(2 )t t t c

B
t A t A f t t

T
   = = + ,   

2 2

T T
t−                 (2. 21) 

where 𝐴𝑡 is the amplitude of the transmit signal and  𝑓𝑐  is the carrier frequency. 

The received chirp is a delayed copy of the transmitted chirp in equation (2. 21): 

   2( ) cos ( ) cos(2 ( ) ( ) )r r r c

B
t A t A f t t

T
      = − = − + −          (2. 22) 

where 𝐴𝑟 is the amplitude of the received signal. 

The output of mixer in the receiver is obtained from multiplication of transmitted and 

received chirp and can be expressed using trigonometric identities and shown in 

equation (2. 23). 
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In equation (2. 23), the second term has frequency of nearly twice the carrier frequency 

so after mixer it is removed by low pass filter (LPF). The remaining signal is beat-

frequency as shown in the following: 
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r t
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The beat-frequency for the single chirp duration T can be computed by the derivative of 

the cosine argument: 
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The spectral analysis of the beat-frequency gives the information on range of a target so 

the Fourier transform (FT) is applied on a single chirp to extract the time delay and 

therefore range information. The FT of a single chirp is: 
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Equation (2.26) illustrates the spectrum of a single chirp is a sin x/x function centred at 

the beat-frequency related to the target time delay. 
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2.2.2 Stepped frequency waveform 

High range resolution (HRR) profile are of interest to radar designers. It is known that 

the radar range resolution is proportional to its bandwidth so in order to achieve HRR, 

wide bandwidth is needed. However, use of wide Bandwidth signals often complicates 

the design of receiver and transmitter. To overcome these drawbacks and having HRR 

radar, Einstein,T.H. [55] introduced the stepped frequency waveform. The Stepped 

frequency waveform consists of a series of 𝑁 narrowband pulses with the length of 

𝜏.The frequency is changing pulse to pulse by a fixed amount of Δ𝑓(see Figure 2.5) and 

the frequency of the 𝑛𝑡ℎ transmitted pulse is: 

                             0 ( 1)nf f n f= + −  ,    0,1,..., 1n N= −                    (2. 27) 

Where 0f  is nominal carrier frequency, f is the frequency step size, N is the number 

of pulse and ( 1)n f−  is the radar bandwidth. 

The analytic expression of the SFW is: 
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where RT is the Pulse Repetition Interval (PRI) and  

( ) ( / )x t rect t =  

( / ) 1rect t  = ,     
2 2

t −     

The coherent processing interval (CPI) which is known as a burst time is the total time 

to transmit and process the waveform and can be written as: 

 ( )CPI N PRI=                                                  (2. 29) 



Chapter 2: Literature review 

 

  

  Page 27 

 

Figure 2.5: Stepped frequency waveform 

 

The total bandwidth of SFW is: 

               SFWB N f=                                                                  (2. 30)  

So the range resolution is: 
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                                                            (2. 31)  

Therefore, as can be observed from equation (2.31), the increase in either number of 

pulses or frequency step size can result in the improvement in range resolution.  

The maximum range is given by: 
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2 2

c c
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                                                        (2. 32)  

In this thesis the SFW has been generated by vector network analyzers (VNA) which is 

capable to measure the scattering parameter (𝑆21) at different center frequencies 

within the available bandwidth in the frequency domain and convert it to the time 

domain through the inverse Fourier transform.  
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The range profile can be expressed from equation (2. 19) and shown by: 
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where, 𝑓0 is start frequency and 𝑓𝑛 is stop, 𝑊(𝑓) is the Fourier transform of a window 

function used to reduce the side lobes. 

2.3 Clutter 

Radar Clutter is defined as unwanted returns from the environment and unwanted 

objects, which can disturb the performance of the radar systems. Clutter typically can 

be classified into two main categories: surface clutter and volume clutter. Ground terrain 

or sea returns are typical surface clutter while weather (rain, hail, snow) or chaff are the 

examples of volume clutter. It is essential for a radar system designer to consider the 

return from the targets in the presence of unwanted clutter in addition to receiver 

thermal noise. It is quite simple to calculate the surface clutter and volume clutter in 

monostatic radar due to its single antenna geometry, whereas this calculation is more 

complicated in bistatic radar. 

The volume clutter cV   is shown by [56] : 
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Where R , az , el are  the target distance from antenna, antenna azimuth and elevation 

beamwidths in radians respectively and shown in Figure (2.6). PL =1.33 is the beam 

shape loss and   is range resolution and can be calculated by  
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Figure 2.6: volume clutter illuminated cell size in monostatic radar [57] 

 

The normalized volume clutter reflectivity  can be described as the total RCS of the 

volume of the distributed clutter sources , normalized by the volume clutter. 
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So if the volume clutter reflectivity and the radar parameters are known, the received 

clutter power is given by [56]: 
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where tL , acL  and cF  are transmission line loss, atmospheric attenuation and pattern 

propagation factor for the radar-to-clutter path respectively.  

The normalized surface clutter reflectivity   is shown in equation (2. 38) and can be 

described by the RCS of the distributed in the illuminated patch, normalized by the 

clutter patch area cA  (see Figure 2.7): 

    
cA


  =             (

2

2
mdB

m
)                                            (2. 38)  

     sec( )c az grA R  =                                                        (2. 39)  

  where, gr  is the local grazing angle(see Figure 2.7 ). 
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Figure 2.7: Clutter illuminated patch size in monostatic radar [57] 

 

2.4 Radar signal propagation mechanism 

The effects of radar EM wave propagation on the performance of a radar system can be 

discussed under five basic propagation mechanisms: atmospheric attenuation, 

diffraction, refraction, reflection and scattering. Atmospheric attenuation is the loss of 

radar energy which is mainly due to the absorption from water vapour and gaseous 

existing in the atmosphere (Oxygen and liquid hydrometeors) and generally increases 

with increasing frequency. Absorption is often neglected at wavelengths of 10 cm and 

longer, but becomes increasingly important at shorter wavelengths. When the EM 

waves hit an object, they are either transmitted, reflected, refracted, diffracted or 

scattered depending on the shape, size and material of the object and the wavelength 

of the EMW. 

2.4.1 Atmospheric attenuation   

Atmospheric attenuation is mainly due to incidence of certain gases (oxygen and water 

vapour) molecules in the atmosphere which cause dissipation of EM energy at certain 

frequencies. Figure 2.8 shows the specific value of atmospheric attenuation at 

frequencies of up to 1 THz for a pressure of 1013 hPa, temperature of 15° C for the cases 

of a water-vapour density of 7.5 g/m3 and a dry atmosphere [58]. As can be seen from 

the figure the atmospheric attenuation, primarily due to oxygen and water vapour 
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absorption, is significant in many spectral regions in the low THz band, however within 

a number of absorption windows e.g. around 150 GHz, 300 GHz, 400 GHz and 650 GHz 

the low atmospheric attenuation is observed which is of interest of this PhD research. 

 

Figure 2.8: Specific attenuation due to atmospheric gases[58] 

 

Other major causes of attenuation in the atmosphere are rain, snow, cloud and fog, of 

which rain and wet snow have the most effect on radar attenuation compared to clouds, 

fog and dry snow [56]. One of the aims of this PhD research is to investigate the effect 

of rain and snow on low THz radar and evaluate feasibility of low THz radar in outdoor 

environment. 

 

 

 

 

 



Chapter 2: Literature review 

 

  

  Page 32 

2.4.2 Reflection 

When transmitted EM waves encounter a change from one medium (air) to other 

medium or surface (considered as a target) with the dimension much greater than the 

wavelength of EM waves, some part of the energy is transmitted to the new medium 

and some part of it is absorbed and transformed to heat and the remainder of the energy 

is reflected (see Figure 2.9). If the encountered surface is a perfect conductor (metal), 

the electric charges are free to move on the surface and as a result all the EM waves are 

reflected back to the source. The ray representation of incident wave, reflected wave 

and transmitted wave are shown in Figure 2.9. When a reflection occurs the incident 

angle, 1  is the same as the reflected angle 1 . The Fresnel reflection coefficient   is 

the ratio between the reflected electric field rE   and incident electric field iE  in the 

medium of origin.  The reflection coefficient depends on the angle of incidence, the 

polarization and the frequency of the propagating wave [59] and can be written as [46]: 
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                                           (2. 40) 

The wave impedance for medium 1 and medium 2 is 1 0 1  =  and 2 0 2  =

respectively. 

where 0  , 1  , 2  , 0  are free space impedance, relative  permittivity of medium 1, 

relative permittivity of medium 2, free space wavelength respectively. So equation 2.40 

leads to: 
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Figure 2.9: Ray representation of oblique incidence 

 

2.4.2.1 Diffuse and specular reflection 

Two main mechanisms of signal scattering on surfaces with different roughness are 

shown in Figure 2.10. In the case of a perfectly smooth surface only specular reflection 

will occur. When the surface becomes rougher, the ratio of specular reflection 

component will decrease and the diffuse reflections, re-radiating signal in all directions, 

will become more prominent. In a case of very rough surface, the diffuse reflection 

prevails over specular. 

 

Figure 2.10: Reflection from smooth, moderately rough, and very rough surface 
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The type of scattering is defined by the surface rms height (root mean square average 

of the heights above or below a mean reference line) relative to wavelength. Based on 

the Fraunhofer criterion the surface is considered as rough if the surface rms height h 

satisfies the inequality        

 
32cos

h



                                                      (2. 41) 

where θ is the angle of incidence relative to the surface normal and λ is the signal 

wavelength [60]. 

To evaluate the surface roughness relative to the wavelength, it is convenient to use 

electromagnetic roughness kh, where k=2π/λ is the free space wave number. 

Fraunhofer criterion (2.41) can be expressed in terms of electromagnetic roughness as 

 0.2 coskh                                             (2. 42) 

This implies another definition for surface roughness [61], according to which a surface 

may be considered relatively smooth if its kh<0.2 and very rough if its kh≥2. 

What is the difference between scattering and reflection? 

It is worth noting the difference between reflection and scattering as the terms seem to 

have a very close meaning. As mentioned above, reflection occurs when propagating EM 

waves strike an object with the dimension much greater than the wavelength of EM 

waves while the scattering occurs when EM waves travel through a medium containing 

objects which are small relative to the wavelength of EM waves, and the number of 

these objects per unit volume is large [59].  Scattered waves are, in practice, produced 

by rough surfaces, foliage, lamp posts and precipitation. 
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2.4.3 Diffraction 

Diffraction occurs when the radio path between the Transmitter and receiver is 

obstructed by a surface that has sharp irregularities (edges). The secondary waves 

resulting from obstacles are present throughout the space and even behind the 

obstacle, giving rise to transmission even without Line-Of-Sight. This gives rise to several 

phenomena: radio signals can propagate around the curved surface of the earth, beyond 

the horizon and behind obstructions. The field strength of a diffracted wave in the 

shadowed region is the vector sum of the electric field components of all the secondary 

wavelets in the space around the obstacles.  

The amount of diffraction depends on the frequency and the size of the objects 

compared with wavelength. The lower the frequency, the more the wave is diffracted. 

The mechanism of diffraction is especially important at very low frequency (VLF), 

however in radar systems due to very small wavelength compared to earth’s 

dimensions, little energy is diffracted [44].   

Diffraction depends on the amplitude, phase and polarization of the incident wave at 

the point of diffraction [59,62].In the proposed PhD research, we are mainly work with 

low THz radar(79 GHz- 670 GHz) and the targets of interest are electrically much greater 

than the wavelength, so diffraction effects are not significant and we don’t consider 

them. 
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2.5 Penetration depth 

When an EM waves is incident on the surface of a material, some part of it may reflected 

from that surface and some part transmitted into the material. This EM wave interacts 

with the atoms and electrons inside the material. Depending on the nature of the 

material, the EM wave might penetrate very far into the material, or may die out very 

quickly.  

Penetration depth is a measure of how deep EM wave can penetrate into a surface 

material. It is defined as the distance from the surface into the dielectric at which the 

traveling wave power drops to 𝑒−1 from its value at the surface and can be expressed 

as [46]:  

1
P

a

D
k

=                                                             (2. 43) 

where 𝑘𝑎is the power absorption coefficient and its related to dielectric loss factor and 

can be written by:  

 
02 Im{ }ak k = −                                               (2. 44) 

Where 𝑘0 =
2𝜋

𝜆
 is a wave number and 𝜀 is the complex permittivity 𝜀′ − 𝑗𝜀′′ . 

So another way of expressing penetration depth in terms of relative permittivity and 

loss factor can be written by:                      
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2.6 Millimetre-wave and THz sensing 

The interest in the THz region dates back to the 1920s [63] and during the last 40 years 

it has seen fantastic development due to the exceptional properties of the THz waves as 

well as its various possible applications. THz electromagnetic waves are located at the 

boundary between the microwave and infrared regions and offer an effective bridge 

between electronic and photonic technologies and represent a large scope of unused, 

unexplored bandwidth. THz radiation is transparent to non-polar, non-metallic solids 

material like plastic, wood and ceramic, however, metallic materials completely block or 

reflect THz waves. Although non- polar liquids are transparent in THz regime, polar 

liquids like water cause high attenuation and because of high volume of water in human 

skin, it attenuates most of THz rays. THz radiation is not considered dangerous for 

humans as THz rays would be harmlessly dissipated as heat in the first 100 microns of 

skins tissues [64]. Furthermore, THz radiation can propagate well in non-transparent 

media such as dust, fog and smoke with low losses due to smaller wavelength in 

comparison to object size. 

The Earth’s atmosphere is a strong absorber of THz radiation due to the chemical 

composition of the atmosphere (oxygen and water vapour) as seen in Figure 2.8 

,however certain relatively low attenuation windows(Figure 2.8) are available that reduce 

the effect of this problem. THz radiation has been successfully investigated for many 

applications such as security [64] , non-invasive through-layer vision [65] , and medical 

imaging [66] and more recently automotive sensing [67] . 

 

2.6.1 Low THz radar 

Although the THz band runs from 0.1 THz to 3 THz, in this thesis we are considering the 

lower part of THz band which is known as the low THz band and we mainly focus on 

frequencies of 79 GHz, 150 GHz, 300GHz and 670 GHz. The atmospheric attenuation is 

less severe and the technology more mature in this portion of the band [68]. Currently, 

by rapid improvement in developing high power compact transmitters [69,70] and 

Monolithic Microwave Integrated Circuits (MMIC), the low THz radar system 

architecture has been constantly improved, allowing the implementation many new 

applications in a short and medium range [71]. Importantly because the spectrum is not 

in use or licenced currently, the wide operational bandwidth available in low THz, which 
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leads to significantly higher range resolution is achievable and increases the sensitivity 

to the surface texture, leading to more image-like scene characterization by such a 

radar. Another significant benefit of using the low THz frequencies for radar is, operation 

at higher frequencies leads to more compact electronics components, in particular 

antennas. Also low THz sensors have the advantage of robust operation in harsh 

weather and lighting conditions. Until recently, the high cost was an obstacle to the 

widespread implementation of low THz radar systems, but with the development of 

appropriate technologies, it has been steadily decreasing.  

2.6.2 Low THz automotive radar 

Since the 1960’s automotive radar has been under research and development by 

academic and industrial companies. Developments in the 1960s began at around 10 GHz 

[71] , increasing the potential operating frequency to 24 GHz [72], 47 GHz [73], and 95 

GHz [68], and currently settling at 76-77 and 77-81GHz.  

Table 2.1 summarize the current radar sensors for short, medium and long range 

applications. In automotive radar, short range radar (SRR) is typically used for   

measurements of up to 30 m ahead of the vehicle and detect objects over a wide angular 

region and usually used for applications such as parking aid and obstacle detection 

(pedestrian, cyclist). The medium range radar (MRR) application refers to 

measurement range up to 150 m and apply to applications with a medium distance and 

speed profile, like Cross Traffic Alert (CTA). The range between 10 m to 250 m is used 

for long range radar (LRR) measurement, over a narrow angular region which is used for 

Adaptive Cruise Control (ACC), emergency braking, collision warning. AV can have 

multiple SRRs, MRRs and LRRs with addition to other sensors (optic cameras, Lidar,…) to 

provide full or partial autonomy. These sensors are shown in Figure 2.11. 
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Table 2.1: Existing automotive radar charecteristics [74] 

 LRR MRR  SRR 

Frequency band 76-77 GHz  77-81 GHz 77-81 GHz 

Bandwidth 600 MHz 600 MHz 4 GHz 

Maximum output power (EIRP) 55 dBm -9 dBm/MHz -9 dBm/MHz 

Distance range 10-250 m 1-100 m 0.15-30 m 

Range resolution 0.25 m 0.25 m -0.075 m 

Velocity accuracy 0.6 m/s 0.6 m/s 0.6 m/s 

Angular accuracy 0.1° 0.5° 1° 

Antennas azimuth 3dB beamwidth ±15° ±40° ±80° 

Antennas elevation 3dB beamwidth ±5° ±5° ±10° 

 

 

 

 

Figure 2.11: Autounoumous Vehicle sensors 
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As mentioned in chapter 1.1, major companies are considering AV as a solution to 

reduce road accidents and fatalities, and they are producing tens of millions of radar 

sensors annually and thereby the question of mutual interference and co-existence will 

have to be addressed. Increased available bandwidth is one of the methods of use to 

mitigate some of these effects. As answer to the request to enlarge the allocated 

bandwidth, the low THz radar systems explained in section 2.6 introduce a new 

generation of radars which is the subject of the current research and development work 

taking place at the Microwave Integrated System Laboratory (MISL), University of 

Birmingham. This band, currently unallocated, offers the possibility of using large 

absolute bandwidths, with the same fractional bandwidth occupied by the commercial 

automotive radars, and therefore potentially reducing the problem of mutual 

interferences between radars [75]. Another advantage of low THz radar for automotive 

industry is wide operating bandwidth providing increased range resolution which leads 

to obtaining images similar to optical. Based on the Fraunhofer criterion (equation 2.39) 

the high frequency leads to an increase of surface roughness relative to signal 

wavelength.  As a result, a high amount of diffuse scattering is received from the full 

extent of an object. Furthermore, small antenna size which leads to minimization of the 

system and as a result minimizes the cost of integration of the system.  

Figure 2.11 illustrate an example of an off-road scenario which is taken by low THz radar 

(150 GHZ) imagery [36]. The range, and angular position from each imaged object in the 

scene can be seen clearly. The high diffuse backscattering, texture sensitivity and high 

resolution of the radar imagery are immediately apparent, which shows the obvious 

difference between targets and demonstrates that high frequencies are more favorable to 

produce high quality images. 
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Figure 2.12: Example imaged scene, (a) video ground truth, (b) 150 GHz scanned radar 

image. Letters highlight image features: F—foliage, P—pedestrian, V—vehicle, O—
obstruction (branch), T—track, G—gulley (water filled)—image normalised to image 

maxima [36] 
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2.7 Artificial Neural Network 

Neural networks (NN), which is known as artificial neural networks (ANN), are subfield 

of machine learning which imitate the way that  human brain learns through set of 

algorithms and enables systems to automatically learn and improve from experience 

and by the use of data [76] and solve the problem. 

Typical ANNs as shown in Figure 2.13 are comprise of the following layers: 

• Input layer which picks up the input signals and passes to the hidden layer.  

• One or more hidden layers (If ANN consists of more than two hidden layers, can 

be considered a deep neural network (DNN)) which responsible for majority of 

learning task(calculation and feature extraction)  

• Output layer which deliver the final result. 

  

 

 

Figure 2.13: Arthitecture of ANN 
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Each layer in ANN architecture has multiple artificial neurons (nodes) and each neuron 

connects to the neurons in the next layer with an associated weight and bias. Based on 

McCulloch and Pitts (MP) [77] model the weights are multiplied with the input signal, 

and a bias is added to all of them (see equation 2. 46). This processes is called 

feedforward. The output signal is generated by applying the activation function over the 

weighted sum of the inputs (see equation 2. 47). Activation functions decide which 

nodes should be active (fire) for feature extraction and send it to the next hidden layer 

or as an output and which node shouldn’t be sending to the next layer. There are specific 

activation functions available that can be applied, depending upon the sort of task we 

are performing such as sigmoidal, Tan hyperbolic, Binary which are explained in the next 

section. The Figure 2.14 shows the MP model of ANN followed by its processing.  
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Equation 2. 46 and 2. 47 describe the MP model as below:           
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= −                                                 (2. 46) 

where 𝑦𝑛 is activation value, M is number of input signal, 𝑊𝑖 is the synapse weight 

associated with the ith input, 𝑎𝑖 is signal input and b is bias. 

 ( )inY F y=                                                      (2. 47) 

where 𝑌 denotes the output signal which is a nonlinear function ( )inF y  of the activation 

function(𝑦𝑛). 
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Figure 2.14: McCulloch and Pitts (MP) model of neuron 
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Like the human brain, machines are capable to learn in different ways, so to design a 

learning process in ANN, we should first have a model of the environment in which a 

neural network operates, so we must know what information is available to the 

network. We refer to this model as a learning paradigm [78]. There are two main 

learning paradigms: supervised and unsupervised learning. In a supervised learning, certain 

data are labelled in a dataset to help classify output data and predict outcomes [79]. Some 

of the applications of supervised learning are speech recognition, pattern recognition, 

handwriting recognition, image classification. In unsupervised learning the algorithm is not 

provided with any pre-assigned labels or scores for the training data [80] so the ANN 

understands the data structure provided as input on its own. 

For the purpose of image classification in supervised learning, each image needs to be 

labelled within the certain class and the goal is that the network should learn some 

specific features of the image during the training process and become capable of 

identifying the labels of un-seen images in a testing process. Formerly, the ANNs were 

initially used for image classification before they were extended to the more prominent 

convolutional neural network (CNN). The latter has solved several of the drawbacks of 

ANN. Some of the benefits of CNN to ANN for image classification task are illustrated as 

a bellow: 

 

• CNN utilizes weight-sharing which reduces the number of weights in comparison 

to ANN, therefore as a result the network is faster and has lower memory 

requirements.  

• The 2-dimensional image can be fed to the CNN directly without converting to a 

1-dimensional image (which is necessary for ANN). This gives the benefit of 

maintaining the spatial properties of the image.  

• By using actual raw image data as an input, the pre-processing of image is no 

longer needed.  

So in this PhD research the CNN was chosen to classify the low THz radar image for the 

purpose of surface classification task, which is described in detail in chapter 6. 
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In order to reduce the complexity in understanding the CNN architecture some of the 

main concepts which are shared by both networks (ANN and CNN) like the neuron 

activation function (Rectified Linear Unit, Sigmoid Function, Softmax Function, Tanh 

function), network training, loss function and optimization algorithm are initially 

discussed in this section in relation to ANN architectures, and The framework of CNN 

architectures is covered in section 2.8. 

2.7.1 Activation function 

As mentioned before the activation function decides, whether a neuron should be 

activated (fire) and send to the next layer or not be activated. The main purpose of the 

activation function is to introduce non-linearity into the output of a neuron to make it 

capable to learn and perform more complex tasks .The activation function is responsible 

for transforming the weighted sum of inputs to the neuron into an output value to be 

fed to the next hidden layer or output. In any ANN or CNN, prediction accuracy depends 

on the number of layers used in the neural network architecture and most importantly, 

the type of activation function which is used. There are different activation functions 

but the most commonly used are non-linear activation function. Some non-linear 

activation functions such as Sigmoid, Tanh, Softmax, ReLU are explained below. 

2.7.1.1 RELU activation function 

Since 2017 the Rectified Linear Unit (ReLU) function is known as the most popular 

activation function in deep neural networks (DNN) [81] and has been applied in many 

applications of DNN such as computer vision, word processing, voice recognition, image 

classification .The RELU function, shown in equation 2. 48, returns the maximum of input 

𝑥 and zero. If the input is less than 0 (negative value), the ReLU activation function 

returns zero (0) and if the input value is greater than 0 (positive value), the ReLU function 

output is the same as original input value. Figure 2. 15a shows the curve and scope of 

ReLU activation function.  

( ) max( ,0)iF x x=                                           (2. 48) 

 

Some recent study [82] claims that the ReLU function can be considered as one of the 

fastest activation functions and it’s aiming to reduce the complexity and computation 

time and works well in large neural networks. However there is a limitation faced by this 

activation function which is named ‘’Dying ReLU ‘’. The Dying ReLU problem means that 



Chapter 2: Literature review 

 

  

  Page 46 

many ReLU neurons die and become inactive, and for all inputs they output zero. In this 

case, no gradient flows and if the number of inactive neurons in the neural network is 

high, the performance of the model is affected. To solve this problem the leaky ReLU 

function can be used (see equation (2. 49) [83]. 
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Where 𝑥𝑖  is the input of the nonlinear Leaky ReLU activation function 𝐹(𝑥) on the ith 

channel, and 𝑎𝑖 is a coefficient controlling the slope of the negative part. 

The Leaky ReLU has been showed in Figure 2. 15b where the slope on the negative range 

is slightly changed, causing the ReLU function range to leak. 

 

  

                                 (a)                                                                                   (b) 

Figure 2.15: Activation function (a) ReLU, (b) Leaky ReLU[83] 
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2.7.1.2 Sigmoid function 

The Sigmoid activation function is a non-linear function which takes any real value as 

input and delivers outputs between 0 and 1. Figure 2.  16 shows the curve and scope of 

Sigmoid activation function and mathematically it can be presented as [84]: 

 
1
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=
+

                                              (2. 50) 

 

 

Figure 2.16: Sigmoid activation function curve [84] 

The Sigmoid function and its derivative are simple and reduce the computation time, 

but since the derivative interval is short, we have a data loss problem in this function, so 

the more hidden layers our neural network has, or in other words, the deeper it is, the 

more information is compressed and deleted in each layer and as a result, more data is 

lost. Therefore due to this drawback it is preferable not to use these functions in deep 

neural networks, however, it can still be used to implement simple neural networks and 

logistic regression [84]. 
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2.7.1.3 SoftMax Function 

This activation function has almost the same function as the Sigmoid function, but with 

some differences that make it a more efficient and widely useful function. As mentioned 

previously, the output of Sigmoid is the value between 0 and 1 and it’s suitable for cases 

where we want to get the probability of a particular class so this activation function is 

not preferred in multi-class classification, however Softmax function unlike Sigmoid 

function can be used for multi-class classification. The Softmax function produce the 

output (within the range of 0 and 1) with the sum of the probabilities which has been 

equal to 1 [85] . For instance, if the neural network aims to classify five various classes, 

the output is a vector with five values having a total equal to one. The soft max activation 

function is often used in the last layer of the neural network classifier (fully connected 

layer). 

The mathematical equation of the Softmax function is as follows [86]:  

 1
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j k
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e
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
 for 𝑗 = 1, … , 𝑘                           (2. 51) 

where 𝑥 is the input vector to the softmax function and k is the number of the classes 

in the multi class classifier. 
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2.7.1.4 Hyperbolic tangent function (Tanh) 

Tanh function which takes a real value which lies in the range between -1 and 1 as 

shown in equation 2. 52 [85] .  
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The Tanh become the preferred function over sigmoid function as it has gradients which 

are stronger, also, it is centralized the output to zero. However, similar to Sigmoid 

function, this function suffer from vanishing of the gradient [85].  

Figure 2. 17 shows the curve and scope of Tanh activation function as below: 

 

Figure 2.17: Tanh activation function curve [87] 

 

After defining the hidden layers and activation function, the loss function and 

optimizer needs to be specified. 
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2.7.2 Training the network 

One of the most widely used methods for training the neural networks is ‘’back 

propagation of error ‘’. In this method, there are two steps in each iteration: the first 

step is the feed forward, which, as mentioned before, is done by multiplying the input 

data in weights and then summing it with bias and the predicted output that is probably 

different from the actual output. This is where the network determine how much error 

the feed forward step had by using the loss function. The next step, is back propagation 

which goes back through the network and updates the weights and bias (with an 

optimizer algorithm) in a way that produces a result closer to the actual output and with 

less error in the next iteration. This repetition (feed forward and back propagation) is 

done until minimizing the error for each output neuron and the network as a whole, 

thereby minimizing the difference between prediction output and actual output. 

 

2.7.3 Loss function 

Selecting the appropriate type of loss function depends on several factors such as the 

type of machine learning algorithm, the time cost of running the algorithm,... . In 

general, loss functions can be divided into two main categories:  

• Regression loss functions: Mean Square Error, Mean absolute Error, Mean Bias 

Error   

• Classification loss functions: Hing loss, Categorical Crossentropy 

2.7.4 Optimization algorithm  

An optimizer algorithm is applied in backpropagation to update the weights and bias of 

each neuron in order to minimize the loss function. Some of the best optimization 

methods used in machine learning model are Gradient Descent, Stochastic Gradient 

Descent (SGD), Stochastic Gradient Descent with momentum (SGDM) and Adam 

optimizer. More details of each of these optimizer can be found in [88]. 
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2.8 Convolutional neural network 

Artificial Intelligence has seen vast growth in recent years in bridging the gap between 

human and machine capabilities. Researchers in this field are working on various aspects 

of it to make special innovations happen. One of these aspects is computer vision with 

the specific algorithm of CNN. The goal is to enable machines to see the world like 

human, and to perceive it in a way similar to humans and apply this gained knowledge 

to many tasks such as image and video recognition, image analysis, image classification, 

and recommendation systems [86]. The structure of the CNN is actually inspired by the 

visual cortex of the brain. In 1962, two scientists, Hubble and Wiesel, introduced an 

interesting experiment on a cat brain [89]. They showed that by seeing the edges in 

different images, certain neurons in the visual cortex of the brain are stimulated. For 

example, by seeing the horizontal lines, certain neurons are stimulated, and by seeing 

the perpendicular lines, different neurons are stimulated and show sensitivity. They 

found that all of these neurons were arranged together in the form of columnar 

structures, and the result of their cooperation was that we could have a good visual 

perception of our surroundings. The basis of the work of the CNN is like the visual cortex 

of our brain. In fact, on a CNN, there are several layers, each with a specific layer to 

identify specific items. Finally, the output of the model is complete visual perception. 

The typical structure of a Convolutional Neural Network is mainly composed of input 

layer, convolution layer, pooling layer, fully connected layer and output layer, as 

explained below. 

2.8.1 Input layer 

The input of the whole CNN is known as an input layer. In CNN for image classification 

task the input is normally a representation of a 2D image which can be expressed as a 

matrix of pixel values from 0 to 255, which describes the pixel's grey level at that point.  
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2.8.2 Convolutional layer  

The convolutional layer (CVL) is responsible for feature extraction from input image. 

Each CVL applies filters (kernels) on a matrix of input image for feature extraction such 

as blur, sharpen, and edge detection. The matrix of feature map which generated by 

sliding the filter over the input image is shown in Figure 2. 18.  

 

  Input image 

1 0 1 0 1 0 

0 1 1 0 1 1 

1 0 1 0 1 0 

0 1 0 1 1 0 

1 0 1 0 1 0 

0 1 1 0 1 1 

Figure 2.18: Convolution operation 

The size of the output feature map is based on the stride and filter size, therefore for 

the input image with a matrix size of (𝐻 × 𝐻) and sliding filter with a matrix size of 

(𝐹 × 𝐹) and a stride of (S), the output feature map with the size of (𝑊 × 𝑊) is given by 

[90]: 

 1
H F

W
S

− 
= + 
 

                                               (2. 53) 

Stride defines the movement of the filter, if for example we set the stride=2, the filter 

takes two steps at the time. The stride default value is equal to zero. 

After the convolution has completed the activation function which is explained in 

section 2.7.1 will apply to all values in the filtered image, in order to apply nonlinear 

feature. 
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2.8.3 Pooling layer 

The pooling layer is also called subsampling or down sampling layer. This layer is 

responsible to reduce the size of each previous feature map and retains the most 

important information. There are two most used types of method of pooling: Max 

Pooling and Average Pooling [91] : Max Pooling returns the maximum pixel value from 

the part of the image covered by the filter (image patch). Max Pooling also does the 

"Noise Suppressant" function. It removes all the noise activation at the same time as 

reducing the size. Average Pooling returns the average of all values from the part of the 

image covered by the filter (image patch).  The output after max pooling would be a 

feature map containing the most prominent features from the previous feature map 

while the output after average pooling would be the average features in the image 

patch, so it can be said that Max Pooling is much better than Average Pooling. 

2.8.4 Fully connected layer  

The fully connected layer (FCL) is usually used in the last layers of the network. As 

mentioned previously, the main features of the  input have been extracted by the CV 

layer and the generated feature maps are down sized by pooling layer, then the output 

of the feature maps of the final pooling layer are transformed into 1D arrays and 

connected to one or more FCLs. In that case, every input is connected to every output 

by a learnable weight [92] and map the extracted features into the final output, such as 

classification. Each FCL is followed by a non-linear activation function. The activation 

function applied to the last FCL should be selected appropriately for each task. For 

example for multiclass classification tasks, the Softmax activation function should be 

used while for binary classification the Sigmoid activation function is the best choice 

[92]. 

 

 



Chapter 3: Methodology 

 

  

  Page 54 

Chapter 3:  Methodology 

3.1 Overview 

This chapter explores the overall methodology, which was designed to produce 

significant results applicable utilised to the design of low THz radar in future autonomy. 

In the following sections, firstly, the low THz radar systems used for this PhD research to 

collect the data for experimental purposed are described and characterized. The overall 

methodology for measuring the attenuation caused by radome contamination is 

described, however the measurement set up for each specific contamination described 

in details in chapter 4. Also this chapter describes the methodology for producing high 

resolution two dimensional (2D) imaging for automotive applications. The specified 

measurement methodology which was specifically developed and designed for forming 

low THz images in laboratory conditions and real outdoor scenarios is explained in 

details in chapter 6.  

3.2 Radar system 

In this study, two classes of experimental radar systems are described:  

• The vector network analyser (VNA) which is used as a Stepped Frequency Radar 

(SFR) system to generate the SFW waveform, transmit the signal and receive the 

response through the attached antennas and finally save it for processing and 

further evaluation. In the PhD research the VNA is applied for measuring the 

signal reduction through radome contaminants within the range of low THz 

radar, VNA also used for measuring the signal backscattering from different 

rough surfaces at the range of low THz frequencies as well as for experiments on 

various rough surface radar imaging at low THz frequencies. 

• 79 GHz FMCW radar system using fan-beam horn antennas, which has been used 

in the field experiments to classify the different road surfaces. 
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3.2.1 SFR VNA system 

As mentioned in section 2.2.2, the SFR systems transmit pulses at different carrier 

frequencies in order to perform discrete modulation over time. VNA is used as a Stepped 

Frequency Radar, because it has the ability to measure the phase and amplitude 

between transmit and receive ports over a wide frequency range. VNA is capable to 

measure the transmission coefficient ( 21S  ) and reflection coefficient ( 11S  ) as shown in 

equations (3.1) and (3.2) for two port VNA. 

 2
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where 2V − ,  1V +  are  amplitudes of incoming voltage from receiver port , outgoing 

voltage from transmitter port respectively. 

In this PhD research three different VNA is used to generate SFW signals: 

• 300 GHz portable VNA (Agilent Fieldfox N9918A ) for measuring the transmit 

ion coefficient through different radome contaminet( leaf, sand, oil,…) 

• PNA N5232a in the range of low THz (150GHz - 670 GHZ) to measure 

transmitivity through water-containing contaminants on antenna radome. 

• VNA  PNA-X  N5247B to measure the backscattering from different surface 

roughness in the range of low THz frequencies. 
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3.2.1.1    300 GHz SFR  

Figure 3.1 illustrate the 300 GHz radar system comprise an portable VNA( Agilent 

Fieldfox N9918A ) connected to frequency up/ down convertor developed by VivaTech 

[93] in collaboration with MISL group, University of Birmingham. The mentioned system 

has been used for measuring the transmissivity through uniform layer of leaves [94]. 

 

Figure 3.1: portable VNA and frequency converters 

The VNA generates stepped-frequency (SF) signals from 2 to 18 GHz which are up-

converted to 282-298 GHz and transmitted by the square horn antenna with 10° 3dB 

beamwidth in both elevation and azimuth planes. The received signal is down-converted 

to 2-18 GHz and the scattering parameters ( 21S  ) are measured. The converters and VNA 

are synchronised to an external 10 MHz reference signal provided by a rubidium 

oscillator.  

Figure 3.2 shows the system schematic and the main parameters of the 300 GHz stepped 

frequency system are shown in Table 3. 1.  
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Figure 3.2: Schematic diagram of 300 GHz VNA and frequency convertors 

 

 

Table 3.1: 300 GHz SFR radar parameter 

parameter SFR 

Frequency band 282-298 GHz 

Bandwidth 16  GHz 

output power  -17 dBm 

Antenna gain 24 dBi  

Antenna azimuth 3dB beamwidth   10° 

Antenna elevation 3dB beamwidth 10° 

IF bandwidth 1 KHz 

Antennas type Horn antenna 
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In order to increase the measurement accuracy through VNA and to achieve better 

dynamic range, the noise floor should be kept to a minimum. The following features help 

to reduce the noise floor: 

• High Averaging: There are two types of averaging: point or sweep averaging. The 

Point averaging calculate the averaging on each data point before going to the 

next data point. The sweep averaging take the average of total sweeps. The 

higher the averaging factor, the less noise floor.  

• Minimise the IF Bandwidth: The received signal is converted from its source 

frequency to a lower intermediate frequency (IF). Based on the model of VNA 

generally the IF bandpass filter bandwidth is adjustable down to a minimum of 1 

Hz to the maximum of 15 MHz. In this PhD thesis the IF bandwidth has been 

chosen empirically for all used VNA’s (with respect to VNA range allowance to 

ensure  the noise floor was kept to a minimum while still achieving a reasonable 

acquisition time. In different experiments it varied from 100 Hz up to 1 kHz. 

However we should note that both techniques of averaging and reducing IF bandwidth 

leads to increasing the acquisition time. 

Additionally, the VNA needs to warm up (for minimum 30 minute) and stabilize before 

calibration and measurement which help to minimize thermal drift errors 

 

3.2.1.2 SFR PNA  

Data collection for measuring the transmissivity through a layer of water at frequencies 

of 300 GHz and 600 GHz were carried out with a SFR radar system composed of a 2-port 

Keysight Programmable Network Analyser (PNA N5232a) and linear up/down converters 

developed by VivaTech (Nice, France) in collaboration with the University of 

Birmingham. The PNA generates a stepped-frequency signal (4-20 GHz) which is up-

converted to 282-298 for 300 GHz radar and 656- 672 GHz for 670 GHz radar and 

transmitted by xT  antenna. The received signal is received by an identical receiver 

antenna xR  and down-converted (4-20 GHz) and the scattering parameters are 

measured. Figure 3.3 shows the rectangular horn antennas at 300 and 670 GHz. The 

converters and VNA are phase locked to an external 10 MHz reference signal provided 

http://na.support.keysight.com/vna/help/latest/S2_Opt/Trce_Noise.htm#averaging
http://na.support.keysight.com/vna/help/latest/S2_Opt/Trce_Noise.htm#Variable_IF_Bandwidth
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by a rubidium oscillator. The system outline is visible in Figure 3.3 and the system 

parameters are summarized in Table 3.2. 

    

                                   (a)                                                                                 (b) 

Figure 3.3: Antennas (a) 300 GHz, (b) 670 GHz 

 

 

 

 

Figure 3.4: Photo of PNA SFR radar system 
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Table 3.2: parameters of the 300 GHz and 670 GHz SFR radar 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1.3 SFR VNA 

Figure 3.5 shows the Keysight N5247B VNA which is capable of measuring the full two-

port scattering parameters in the frequency range from 10 MHz up to 1.1 THz using the 

frequency converter units [95]. The mentioned VNA has been used in practical 

measurements of signal reduction through a single leaf at low THz (150 GHZ-900 GHz) 

as well as measuring the backscattering of different rough surfaces at  low THz 

frequencies range (79, 150, 300, 670 GHz). The system was also used with scanning 

imaging antennas, as shown in figure 3.6, to collect data to produce high resolution 

image of different rough surfaces at frequencies of 150 and 300 GHz in order to classify 

them. 

Parameters  300 GHz 670 GHz 

Frequency band  282-298 GHz 656-665 

GHz 

Sweep Bandwidth  16 GHz 9 GHz 

Output power -17 dB -10 dB 

Antenna type  rectangular 

horn 

Square 

horn 

Antenna Azimuth 

Beamwidth  

10° (-3 dB) 10° (-3 dB) 

Antenna Elevation 

Beamwidth 

10° (-3 dB) 10° (-3 dB) 

IF bandwidth 100 Hz 1 KHz 

Antenna gain 25 dBi 20 dBi 

Antenna dimension 6x8x22 mm 3x4x6 mm 

Fairfield  128 mm 71 mm 

Range resolution 9.4 mm 16.7 mm 
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Figure 3.5: photo of VNA with up/down convertors. 

 

 

                                  a                                b                                 c                            d 
Figure 3.6: Antennas: (a) 79 GHz, (b) 150 GHz, (c) 300 GHz, and (d) 670 GHz. 
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Figure 3.7: ELVA-1 300 GHz horn antennas 

3.2.2 FMCW radar  

The 79 GHz FMCW radar which was specially developed by ELVA [96] for MISL group in 

University of Birmingham, has been used for image data collection of different road 

surfaces with various roughness and texture.  A photo of 79 GHz FMCW radar and a 

block diagram of overall system operation are shown in Figure 3.8 and 3.9 respectively. 

13GHz signal is amplified by a power amplifier and up-converted to 79GHz by using (×6) 

multiplier fed by 13.1 GHz sweep synthesizer. The receiver, using an IQ mixer, mixes the 

transmitted signal with a replica of the received signal and is sampled through use of a 

picoscope [97] . 
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Figure 3.8: Summarized outline of 79 GHz FMCW radar 

 

Figure 3.9:Photo of 79 GHz FMCW radar[98] 
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The 79 GHz radar signal bandwidth was set to 5 GHz to achieve about 3 cm range 

resolution (
2

cr
B

 =  ) and cover full automotive frequency allowance of 5 GHz (76–81 

GHz). In order to obtain high-resolution radar images, two fan-beam horn antennas 

were used, having a narrow beamwidth (2.2°)in azimuth direction to provide a high 

angular resolution in azimuth and a wider beamwidth (15°) in vertical direction to deliver 

the required wide illuminated footprint along the path. The system specification is 

provided in Table 3.3. 

 

Table 3.3: 79 GHz FMCW radar specification 

Parameter  79 GHz FMCW 

Frequency band  77-82 GHz 

Wavelength 3.8 mm 

Bandwidth 5 GHz 

Output Power 15 dBm 

Antenna type Fan beam horn antenna 

Azimuth Beamwidth 2.2° (-3 dB) 

Elevation Beamwidth 15° (-3 dB) 

Range resolution 30 mm 

Receiver noise figure, dB 10 

Sweep time, ms 1  

Sweep repetition interval (SRI), ms 4.3 
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3.3 Radome contamination  

At the start of this PhD research, a lack of the knowledge of signal reduction in presence 

of radome contaminant (oil, dust, leaves,…) at low THz frequencies was a big motivation 

for MISL group in the University of Birmingham to research the feasibility of low THz 

radar in outdoor scenario. This section describes the overall measurement methodology 

and measurement setup which has been applied by MISL group for measuring the signal 

reduction in presence of radome contaminant at low THz frequency range in laboratory 

condition.  

3.3.1 Measurement methodology  

The measurement setup is explained in [94]. Figure 3.10(a) shows the general view of 

measurement set up where
rP ,

RP , 
xT  and 

xR  represent the incident power , reflected 

power from the bottom of sample ( assuming the sample holder attenuation is 

negligible), received power at the receiver antenna, transmit antenna and received 

antenna respectively. When the signal comes from the transmitter and reaches the 

bottom of sample, part of the incident power ( iP ) reflects back to the transmit antenna 

( rP ). The rest of the signal transmits through the sample holder as well as the sample, 

hits the target and finally travels back to the receiver ( RP ). The actual measurement 

setup is shown in Figure 3.10 (b). The quasi-monostatic radar system (consisting of 

collocated xT  and xR  antennas) is located under the sample holder looking up at the 

reference target which is the suspended corner reflector with known RCS of 29.4 dBsm 

(decibels per square meter) at 300 GHz. A sample of contaminant is placed on a sample 

holder, between the antennas and the reference target in the path of the signal to 

obscure the radar beam. The sample holder was chosen from rigid material to provide 

robust and stable surface which can tolerate the weight of a sample without bending. It 

also needed to be easy to replace after each experiment. Furthermore the sample 

holder needed to have low reflection and low signal attenuation, a thickness equal to an 

integer number of half wavelengths and a low dielectric constant. The chosen sample 

holder was foam, made of closed cell polyurethane which demonstrated less than 2 dB 

attenuation at low THz frequencies and having the thickness of 50 mm which equals an 

integer multiple of half wavelengths at 150 GHz (2 mm) and 300 GHz (1 mm) and a 

dielectric constant of approximately 1.2 at both mentioned frequencies. The antenna’s 

beamwidth in both elevation and azimuth is 10° for both frequencies. The distance 
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between the sample holder and antennas, and antenna and target is 200 mm and 220 

mm respectively. The area that the sample needs to cover should be greater than the 

footprint of the illuminating beam, defined by the radiation pattern 3 dB roll-off, to 

guarantee that most of the energy passes through the sample.  Based on the mentioned 

distances and antenna’s beamwidth, the sample must cover an area exceeding 35 mm 

× 35 mm. The main benefit of this measurement setup is that various samples can be 

applied without the need for further alignment.  

 

   

                                          (a)                                                                            (b) 
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(c)  

Figure 3.10: Experimental setup configuration (a) general view (b) actual system setup (c) 
antenna setup 

 

We use term ‘transmissivity ‘ to indicate the signal level  reduction due to presence of 

sample combined with other possible propagation mechanisms (scattering, absorption, 

reflection and refraction) which can be computed as: 

                                                    ( )
0

10log R

R

P
T dB

P

 
=  

 
 

                                              (3. 3) 

where PR0
 and PR represent the received powers when reflected  by the reference target 

through the sample holder without the sample and with presence of the sample, 

respectively. 
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3.3.2 Theoretical model 

In order to evaluate the transmissivity through contaminant built up on the antenna 

radome at low THz frequencies the Fresnel theory [99] is used. The model is developed 

for a three layer structure, air-contaminant-air as shown in Figure 3.11.  

 

Figure 3.11: Three-layer structure used to model the transmissivity through uniform layer of 
leaves 

 

The transmissivity in the third layer (air) can be computed as bellow 
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where 𝜂0 is the wave impedance of air and 𝜂𝑖𝑛 is the input impedance at the interface 

of radome contaminant  and air and can be calculated using transmission line theory 

[100]  : 
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where 𝑙 is the thickness of layer of contaminant and  𝜂2 is the wave impedance in the 

second medium(radome contaminant) and can be described by: 

   ( )j j  +                                                      (3. 6) 
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where σ is the conductivity of material, μ is the magnetic permeability and ε is the 

dielectric  permittivity of radome contaminant , γ is propagation constant and can be 

calculated by: 

    1j j j


  


+ = −                                                           (3. 7) 

where α and β are attenuation constant and phase constant respectively. 

The complex permittivity is the most influential parameter defining the transmissivity 

through radome contaminant which depends on the material, operating frequency, 

temperature, humidity,… The values of permittivity of leaves and water under their 

measuring frequencies will demonstrate in section 4.2.4 and 4.3.3, respectively. 
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3.4 Backscattering of Radar Signal from Rough Surface 

The lack of comprehensive and consistent surface scattering studies over both the 

millimetre-wave and THz range simultaneously motivates this PhD research. Hence, the 

second aim of this PhD research is to study and characterize the effect of signal 

backscattering from rough surfaces in the range of millimetre-wave and low THz 

frequencies (79 GHz-670 GHz) within the context of Surface ID for automotive sensing. 

To achieve this goal and attain accurate measurement, sandpaper of different 

coarseness (grit) was used as a reference surface. The results can easily be extended to 

the case of real road surfaces if their roughness and complex permittivity are quantified. 

This section provides precise description of the experimental methodology for 

measuring the signal backscattering from different sandpaper of different coarseness 

(grit). 

3.4.1  Normalized RCS 

The reflective properties of a surface are characterized by its normalized RCS. The 

normalized RCS of a distributed target is an ensemble average of the RCS σ per unit area: 

                                                         
0 A =                                                         (3. 8) 

where A is the illuminated area. In chapter 5 Section 5.5  we will show how this ratio can 

be determined using a VNA.  

The return power when the target is illuminated by a monostatic radar can be calculated 

using radar equation: 
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 


=                                                   (3. 9) 

where 𝑃𝑡 and 𝑃𝑟 are transmitted and received power, 𝐺 is antenna gain, 𝑅 is the distance 

to the target, and σ is radar cross section. Thus, knowing the characteristics of the 

system, we can calculate σ from equation (3.9).  
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This calculation can be simplified, and measurement accuracy improved by calibrating 

the system and excluding the values of 𝐺 and λ from the calculation. To calibrate the 

system, we carried out the free space measurement by placing the receiver at the 

distance 2 × 𝑅0 from the transmitter. Then the power received by the antenna is 

described by Friis Transmission formula:  

                                                 
2 2

2 2(4 ) 4

t
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R




=                                                      (3.10) 

From equations 3.9 and 3.10 it follows that 

                                                    2 r

Rf

P
R

P
 =                                                         (3.11)     

The squared magnitude of the VNA transmission coefficient S21 is equal to the ratio of 

received power to transmitted power [101]  

                                                          
2

21 r tS P P=                                                 (3.12) 

  

Therefore, RCS can be calculated as: 
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S
 =                                                     (3. 13) 

where 𝑆21𝑓 is the measured transmission coefficient in free space. Thus, by measuring 

S-parameters for the surface under test and in free space, and calculating the 

illuminated area, we can find the normalized RCS 𝛿0 as defined in equation 3.8. In 

chapter 5 we will describe precisely the measurement setup for measuring normalized 

radar cross-section (RCS) of rough surfaces and present a method to calculate the 

normalized RCS of surfaces of different roughness as a function of radar and topology 

parameters, such as polarization and aspect angle. Also, the obtained measurement 

results have been demonstrated which analysed for compliance with Fraunhofer 

criterion and were compared with normalized RCS, calculated based on an improved 

empirical model. 
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3.5 High resolution imaging radar  

As mentioned in Chapter 1, unlike LIDAR and optical cameras, radar has advantages of 

operating in harsh weather and any lighting condition, so the imaging radar is used to 

capture a 2D (azimuth, range) image map of the road surfaces and objects in a road 

environment. Radar imagery generally refers to the system which forms the image of an 

object or road surface by registering the intensity of reflected signal to determine the 

amount of backscattering signal. The backscattering signal is then built into a two- 

dimensional image map. The high resolution image can be applied for object and road 

surface classification and feature detection. The method which is applied in this PhD 

research to gain the backscattering map of the scene and the image of road surface and 

objects in the road is based on a physical beam mapping method. In order to create the 

high resolution radar image for a medium range automotive application the following 

general requirements are needed: 

• The antennas with wide E-plane (elevation) beam E  to provide the required 

wide illuminated footprint along the path and narrow H-plane (azimuth) beam 

H  to provide fine angular resolution. Figure 3.12 illustrates the antenna 

footprint on the ground in monostatic setup. 

•  Wide operational bandwidth to deliver the high range resolution. In this thesis, 

the wide bandwidth has been achieved by 150 and 300 GHz SFW radar (section 

3.2.1.3) and a 79 GHz FMCW radar (section 3.2.2). 
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Figure 3.12: Single beam monostatic configuration for imaging radar. H is the antenna 
elevation; 𝜣𝑬 and 𝜣𝑯   are beamwidths of antenna pattern in E-plane and H-plane 

accordingly. R is the distance to the center of the footprint, defined by beam axis direction; 
Rc is the linear angular range at the distance R.[35] 

 

The high resolution image is created by narrow-beam scanning antenna (in azimuth) 

which illuminates to a small part of the scene in each scan angle and scanning the scene 

electronically with rotating table. The rotating table rotation and the data acquisition 

are run by codes which had been written in Matlab and save the backscattered signal 

data one after each other to hard disc . The 2D image is produced by augmenting range 

profiles produced at each azimuth position (scanning angles). Figure 3.13 shows the 

vehicle scanning the illuminated area in the front of the antennas mounted on the 

vehicle. The polar range profile then converted to the Cartesian x-y surface. The 2D 

intensity image map as a function of range and azimuth angle were generated in 

MATLAB.  The 2D radar image are composed of many pixels, which each pixel in the 

radar image represents the radar backscatter for that area. Figure 3.14 shows the 

schematic image map (a) example of scene camera image (b) with correspondence 79 

GHz radar image (c). 
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Figure 3.13: Vehicle scanning the illuminated area in the front of the antennas mounted on 
the vehicle. 
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                                                           (b) 

 

                                                        (c) 

Figure 3.14: Curved image map from rotating scanning imaging antennas(a), camera 
image(b), 79GHz radar image (c) 
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In this PhD research in order to verify the methodology, we explore the performance of 

imaging radar at 150 GHz and 300 GHz in classification of surfaces with different 

roughness in the laboratory conditions and classify the radar image with application of 

neural network, which is explained in details in chapter 6 section 6.3. These gained 

results lay the foundation for our further work on the development of automotive radar 

for surface classification. So in our next stage we applied the developed approach to the 

radar image of actual road scenes collected during outdoor trials ( actual road scenarios), 

and  classify through neural network, for which the methodology , analytical approach  

and the gained result will be described in details in chapter 6 section 6.4. 
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3.6 Summary 

This chapter firstly, discuss the low THz radar systems used for this PhD research in order 

to collect the data for indoor and outdoor experiments. For the experimental purpose 

two type of radar systems have been used: The Stepped Frequency Radar (SFR) in the 

range of low- THz frequencies (150GHz- 670 GHz) and 79 GHz FMCW radar.   

Secondly, the overall methodology and measurement set up for characterisation of the 

attenuation caused by radome contamination (including oil, dust and leaves) at low THz 

frequencies is described. 

Thirdly the overall methodology of measuring the signal backscattering from different 

sandpaper of different coarseness (grit) has been discussed in this chapter and the 

method of measuring the normalized RCS is shown, and finally this chapter describes 

the methodology for producing high resolution two dimensional (2D) imaging for 

automotive applications.  
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Chapter 4:  Signal reduction due to radome contaminant 

4.1 Overview 

As mentioned before, low-Terahertz (low THz) radar is the new research trend for 

automotive applications, as it can provide higher image resolution compared to 

traditional automotive radars. The knowledge of the performance of radars in harsh and 

uncontrolled outdoor environment is fundamentally important for the development of 

automotive sensors. 

As shown in Figure 4.1, the areas of potential signal reduction in automotive radars 

occur in three media: radome contamination (leaves, ice, sand,..); wave propagation 

through atmospheric conditions  such as snow, rain, fog and hail; and radar installation 

behind the car’s surface components. Understanding these mentioned areas is critical 

before applying low THz technologies into automotive applications.  

 

Figure 4.1: signal reduction medium for automotive radar 
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This chapter focused on characterising the signal attenuation through contaminants 

accumulated on the radome of automotive sensor in the range of low THz radar which 

was carried out by the author of this thesis and MISL group at university of Birmingham.  

The chapter combines original results obtained by the author regarding the signal 

attenuation caused by radome contaminant (water, leaves) at low THz range, as well a 

review of works undertaken at MISL as part of the project TRAVEL. In the following 

sections, firstly the study of signal attenuation by tree leaves at 300 GHz radar published 

by the author [94] is shown. Secondarily, results on signal attenuation by different water 

in low THz Automotive Radar are shown, which written by the author of this thesis and 

accepted by European Microwave Conference (EuMC) and will be published in January 

2022 [102]. Thirdly, the summary of results of attenuation of low THz signals due to 

radome contamination which has been done by MISL group and published on [103-105] 

are shown.  
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4.2 Signal Reduction by tree leaves in Low THz Automotive Radar 

4.2.1 Overview 

In this section, the attenuation of signal propagating through leaves which can build up 

on the antenna radome is investigated.  In the following sub sections, three sorts of 

leaves (Laurel, Birch, and Willow) are chosen in this measurement as likely obscurants 

which can stick to automotive radar radome and cause signal degradation. 

Transmissivity through a uniform layer of the leaves with different water contents is 

measured with 300 GHz radar. The water content is estimated in leaves drying gradually. 

The complex permittivity of the leaves with different water contents is estimated and 

these values are used to calculate the transmissivity through the uniform layer of leaves. 

Comparison of transmissivity in equivalent water layer with that of leaves having the 

same water content is made. Measured transmissivity through leaves is compared with 

that obtained by a theoretical model. The mentioned research was published by auther 

of this thesis in [94]. 
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4.2.2 Introduction 

For  automotive sensing the degradation of radar signal propagation through layers of 

obscurant built up on a sensor radome is an important issue as the chance of covering 

radome of the car sensor by leaves (especially during autumn) is high and this can cause 

a temporary outage of  sensor functioning. A leaf will interact with Electromagnetic (EM) 

wave and can cause signal reduction. In [106], the complex permittivity of coffee leaves 

with respect to the leaves’ water content are studied for frequencies between 0.3-1.8 

THz. The measured and calculated values of real part of the refractive index for water 

layer and fresh leaves show a good agreement. However, for the absorption rate 

observed at higher frequency range (0.6-1.8 THz) there is a large discrepancy between 

the measurement and calculated results. The improved permittivity model is proposed 

in [106] by accounting for the scattering through Rayleigh roughness factor. When the 

leaves are fresh it is shown that transmission losses are around -10dB and then the 

transmission losses increase to -0.9 dB after leaves are left for 21 days drying in natural 

conditions (see figure 4.2). The effect of leaves with different water content on 

absorption coefficient is also studied in [107] at 94 GHz: it was shown that there is an 

increase in the transmission due to natural water loss in Fatsia japonica and Catalpa 

bignonioides leaves during 200 hours of natural drying. The transmittance when the 

japonica and Catalpa bignonioides leaves are fresh is shown to be -9  and -6 dB, 

respectively, however this value increases until they become almost dry and become -

3.09 and 0.44, respectively. The aim of this study which was published in [94] is to study 

the effect of leaves on low THz wave propagation. Transmissivity through a uniform 

layer of leaves is calculated based on Fresnel theory [99] .The measurement results of 

transmissivity at 300 GHz through a uniform layer of leaves are presented for three 

different species - laurel, birch and willow. This research shows how the knowledge of 

transmission performance, as well as the dielectric permittivity of leaves will have 

possible effect on the automotive radar performance. 
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Figure 4.2: Coffea arabica leaf (a)Transmitted intensity at 300 GHz  (b) and volumetric water 
content reduction  [106] 

 

 

 

 

 

 

 

 



Chapter 5: Low terahertz radar signal backscattering for surface identification  

 

  

  Page 83 

4.2.3 Theoretical model 

In order to evaluate the transmissivity through leaves built up on the antenna radome 

at low THz frequencies the Fresnel theory [99] is used. The model is developed for a 

three layer structure, air-leaves-air as discussed in section 3.3.2. 

The complex permittivity is the most influential parameter defining the transmissivity 

through leaves. Leaves have the complex structure made of biological tissues (solid plant 

material), air and water. The complex permittivity of a complex mixture can be explained 

by Effective Medium Theory (EMT) as developed by Landau, Lifshitz, Looyenga (LLL 

model) [100]. LLL model describes permittivity of a two-compound mixture and a third-

order extension of LLL model taken from [108] is used in this work: 

 3 33 3( ) ( ) ( ) ( )L W W S S A Af f f f      = + +                    (4. 1) 

Here ξW, ξS , ξA are volume concentrations of water, solid plant material and air 

respectively, which can be calculated by the following formulas: 
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The indices 1, 2, 3 stand for the measured values of fresh leaves, drought stressed leaves 

and pressed leaves respectively. M is the mass of leaves, T is the thickness of leaves, 𝐴 

is the area of uniform layer of leaves and 𝜌 reperesents the specific gravity of water. 

To evaluate the concentration of solid material, the leaves (which contains air and solid 

material) are pressed under a load of 1 tonnes for few minutes to remove all air within 

the leaves. The leaves thickness are evaluated by measuring their thickness using a 

micrometer screw and determining their means from fresh until they are almost dry.  In 

our measurement on Laurel leaves the average thickness of fresh leaves and dry leaves 

was approximately 0.35mm and 0.2 mm, respectively, while the average leaf thickness 

after pressing was measured as 0.13 mm. The change in thickness attributes to the loss 

of air. 
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In [109], the complex permittivity of water at frequency of 300 GHz is obtained as:  

𝜀𝑊 = 4.5 − 4.8𝑗 

The complex dielectric permittivity of solid plant material is taken as in [106]: 

𝜀𝑆 = 3.12 − 0.25𝑗 

The leaves’ water content reduction is evaluated by measuring their weight until they 

are almost dry. Because the rates of water reduction are slightly different for individual 

leaves, the average weight of leaves is used. This averaging is one of the causes of 

measurement error but it can be used to generate a statistically representative set of 

measurements. The Water Content Reduction (WCR) of leaves is calculated by: 

( )%
FW DW

WCR
FW

−
=                                                (4. 2) 

where FW is weight of leaves when fresh and DW is weight of leaves when dry.  

Figure 4. 3 shows the rate of water content reduction over the time. The error bars of 

WCR are calculated by standard deviation of their weights at different periods of time. 

It can be seen that the leaves’ water content reduces with similar rate over the certain 

time for all species of leaves. The rapid rate of losing water content within the first 10 

hours changes to slow rate within following 10 hours to 65 hours of drying. As the Willow 

leaves are thinner than leaves of birch and laurel their rate of WCR is faster for the first 

40 hours. Water content reduces 10% during first 2 hours and reached nearly 42%, after 

10 hours. The laurel and birch leaves have almost the same WCR trend. 
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Figure 4.3: Evaluation of leaf water content based on time. 

 

4.2.4 Methodology 

The main focus of this study is on evaluating the signal reduction of low THz waves when 

passing thorough uniform layer of leaves. In order to achieve the goal of this research 

and attain more accurate practical measurement, the transmissivity through 3 different 

species (Laurel, Birch, Willow) are measured and the effect of their water content on 

signal transmission at 300 GHz are studied. Laurel, Birch and Willow are denoted as L, B 

and W, accordingly. 

 

 

 

   

                              (a)                                              (b)                                              (c) 

Figure 4.4: Photo of detached leaves of (a) Willow (b) Lauren and (c) Birch 
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4.2.5 Measurement 

The SFR radar which was explained in section 3.2.1.1, sweeping from 282 to 298 GHz, 

used for measurement, is developed by VivaTech in collaboration with the University of 

Birmingham. 

The measurement setup is described in detail in 3.3.1. As shown in Figure 4.5 the 

monostatic radar is located under the sample holder looking up at the reference target 

–a suspended corner reflector or sphere with known RCS. Samples (leaves) are placed 

on the sample holder. The intensity of signal propagating through the sample and 

reflected from the target is compared to that when no sample is present. 

 

Figure 4.5: Measuremet setup configuration 
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The received signal is recorded in the frequency domain and transformed to the time 

domain using an Inverse Fast Fourier Transform (IFFT).  

 The signal transmissivity due to the presence of a uniform layer of leaves combined with 

other possible propagation mechanisms (scattering, absorption, reflection and 

refraction) can be calculated by equation 3.3. 

 As shown in Figure 4. 4 leaves Laurel 4. 5b and BIrch 4. 5c cut into a similar sized square 

pieces to cover the area without overlapping or gaps to form the uniform layer. These 

leaves are arranged to have area larger than 7 cm to impose the sample within the 

footprint of illuminating beam and allow most of the energy transmitting through the 

leaves. The leaves are left on the sample holder for about 70 hours till they lose almost 

all their water content. The transmission through the leaves is measured during this 

time. Reference sets of leaves are chosen to quantify the rate of their water content 

reduction. The room temperature and humidity are measured by EasyLog | EL-USB-2 

[110]: the temperature of 222 Celsius (°C) and humidity of 455 per cent are observed 

throughout the measurement campaign.   

Some spread of measured values from different sets of leaves may arise due to the 

presence of small air gaps between individual leaves (increased during the drying 

process) and also due to different rates of water reduction for individual leaves.  
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4.2.6  Result and discussion 

Figure 4.6 illustrates the transmissivity through a uniform layer of Laurel leaves vs. WCR 

at 300 GHz. As expected there is an increase in transmissivity as leaves lose their water 

content with the max reduction of -20 dB when leaves are fresh. In the range of 30% to 

40% of WCR, a fall in transmissivity is recorded which can be explained by change of size 

of leaves as they lose water and therefore appearance of air gaps between them. The 

signal loss due to presence of fresh leaves of Laurel, Willow and Birch are -20 dB, -16 dB 

and -12 dB, respectively. The general trend shows a dramatic increase in transmissivity 

until they lost almost all of their water. The transmissivity of -2.2 dB, -3.9 dB and -1.5 dB 

are measured for water stressed leaves L, W and B. 

 

Figure 4.6: Measured transmissivity through three leaves respect to volume water content 
reduction 
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The measured and calculated results of transmissivity through uniform layer of Laurel 

leaves at 300 GHz with respect to WCR are plotted in Figure 4.7. Discrepancies between 

the measurements and the calculated results can be explained by the possible gaps 

between the leaves, different rates of water reduction in leaves (as it shown in Figure 

4.4, the group of leaves sit together and  generate uniform layer of leaves) and also 

scattering inside the leaves. Both measured and calculated results show an increase in 

transmissivity with a decrease of water content which confirms the fact that the water 

within the leaves is the main cause of signal reduction.  

 

Figure 4.7: Calculated and measured result of transmissivity through leaves respect to WCR, 
using effective permittivity of leaves [106] 
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To study the contribution of water on transmissivity through leaves, an equivalent 

uniform layer of water (assuming negligible scattering inside the leaves) is considered. 

The value of volumetric water content of leaves has been calculated as 5 ×

10−4 𝑔 𝑚𝑚3⁄ . Then, the equivalent water thickness for each WCR state is calculated. 

The transmissivity is calculated by equation (3.4) and the value of permittivity of water 

is obtained from [109]. Measurement and theoretical results of transmissivity through 

leaves with respect to equivalent uniform water layer at 300 GHz are depicted in Figure 

4. 8. The agreement between the measured and calculated transmissivity is very good. 

The correlation between measured and calculated transmissivity and water thickness 

proves again that the water inside leaves it the main cause of signal reduction. 

 

Figure 4.8: Measured and calculated results of transmissivity through equivalent uniform 
water layer, using water permittivity 
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4.2.7 Conclusions 

In this study, the experimental and theoretical results of transmissivity through uniform 

layer of leaves at 300 GHz are presented. The transmissivity is calculated in two ways: 

(i) by using effective permittivity of leaves and (ii) considering equivalent water layer for 

different WCR and using water permittivity. The second model shows a better 

agreement with the measured results. Therefore, further studies on the effect of water 

containing obscurants should be focussed around developing equivalent water layer 

model to evaluate reduction of signal strength.  
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4.3 Signal reduction due to a layer of water at low THz frequency for 
automotive radar applications 

4.3.1 Overview 

The knowledge of the performance of radars in harsh and uncontrolled outdoor 

environment is fundamentally important for the development of automotive sensors. It 

is known that the presence of water in the atmosphere and on the radome are the main 

causes of losses in the propagation channel and will cause degradation in the 

performance of AV sensors in adverse weather condition, so that in our study we are 

carrying out investigations on the transmissivity through layer of water on low THz 

signals. The transmissivity through uniform layer of pure water, salty water with 

different levels of salt and actual seawater are measured and analysed at 300 GHz and 

670 GHz and compared with the obtained results at 150 GHz [109].  Also, in this section 

the estimation of the permittivity of pure water and salty water with different levels of 

salt and actual seawater from the measured transmission coefficient is discussed. The 

measured results are compared with a theoretical model based on Fresnel transmission 

theory and show good agreement between the theoretical model and practical results.  

4.3.2 Introduction 

As mentioned above, In order to analyse the feasibility of low THz automotive sensors it 

is necessary to study their performance in harsh and uncontrolled outdoor environment. 

As mentioned in section 2.4.1 the atmospheric attenuation, primarily due to water 

vapour absorption, is significant in many spectral regions in the low THz band as shown 

in [38], especially in adverse weather conditions [24], [39]. However, there are 

transmission windows around 340 GHz, 400 GHz, and 650 GHz, where atmospheric loss 

in clear air does not exceed 10 dB/km, 20 dB/km, and 60 dB/km, respectively [38]. The 

results obtained in [111] for frequencies of 77 GHz and 300 GHz show that even in heavy 

rain the attenuation of the radar signal did not exceed 20 dB/km, and in [112] measured 

attenuation during snowfall was below 15 dB/km. Therefore, for the automotive radar 

operational range of up to 100 meters, atmospheric loss will not exceed 10 dB and 

makes a relatively small contribution to the power budget needed to guarantee the 

system efficiency [40].  
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In section 4.2 of this thesis the signal attenuation through radome covering by tree leaf 

was discussed, additionally the radar performance operation at low THz frequencies in 

the presence of other radome contaminants (sand, oil, ice, etc.) [103-105]  formed on 

the radome has been studied by MISL group in the university of Birmingham. The 

transmissivity through uniform layers and randomly distributed droplets of pure and 

salty water at 150 GHz and 300 GHz was investigated in our laboratory [109]. The 

transmissivity at 670 GHz presented in this PhD research is measured with a spatially 

separated transmitter and receiver, in a traditional communication setup; whereas, the 

measurement methodology in [109] was quasi-monostatic. Because of this, the 

transmissivity at 300 GHz is also measured with the same experimental setup to 

compare the measurement results of the two setups, and also to investigate the effect 

of increased frequency on the attenuation of the signal in the water layer. 

The transmission loss due to presence of water in the signal propagation path has been 

widely studied at microwave and mm-wave frequencies [113-117], and the results show 

a high dependence of loss on the carrier frequency and considerable loss even with a 

very thin layer of water. In [113], the transmissivity increases when the radome water 

thickness is increased, which generates a transmission loss of up to 20 dB at 20 GHz 

when the water thickness is 1.5 mm. In [116], the attenuation of near-Infrared radiation 

was measured through different water film thicknesses between 100 and 380 μm. The 

high attenuation in water films was confirmed, even for very small water film thickness. 

In this study, a preliminary study on the attenuation of signals at 300 GHz and 670 GHz 

in the presence of a uniform layer of water in the propagation path is reported. The new 

experimental and theoretical results of the total loss due to presence of pure water and 

water contaminated with salt at both frequencies of 300 GHz and 670 GHz are shown 

and compared with measured results at 150 GHz obtained from [109]. The obtained 

results demonstrate the potential of using low THz sensors for outdoor applications. 
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4.3.3 Theoretical model 

The Fresnel theory as discussed in section 3.3.2 were used, for a three layer structure, 

air-water-air to evaluate the transmissivity through water built up on the antenna 

radome at low THz frequencies.   

 As mentioned in section 3.3.2 the complex permittivity of the water is the important 

parameter defining the transmissivity through water. The relative complex permittivity 

of water 𝜀𝑟 = 𝜀𝑟
′ − 𝑗𝜀𝑟

′′, is a function of frequency and temperature. The Double Debye 

model [118-120] is a popular model which has been used for calculation of complex 

permittivity of pure water and is given by the relation: 

 1 1
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1 1
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 Where 𝜀∞, 𝜀𝑆 , 𝜀1 is the dielectric constant in the high frequency limit, static dielectric 

constant and the intermediate dielectric constant respectively. 𝑇1 is the first Debye 

relaxation time, and 𝑇2 is the second Debye relaxation time. 

The value of permittivity reported in the literature for pure water at frequency of 150 

GHz is between 5.03 and 7.5 for real part (𝜀𝑟
′ ) and between 8.07 and 10.4 for imaginary 

part (𝜀𝑟
′′). These values at frequency of 300 GHz are account between 3.8 and 6.6 for 𝜀𝑟

′   

and between 4.19 and 6.23 for 𝜀𝑟
′′ [118-121]. From 600 GHz to 700 GHz the reported 

permittivity’s [122-124] is between 2 and 5 for real part (𝜀𝑟
′ ) and between 2 and 6 for 

imaginary part (𝜀𝑟
′′) .The permittivity parameters of saline water at mentioned 

frequencies are missing from literature.  

Figure 4. 9 [109] shows a simulation result of transmissivity at frequencies of 24 GHz and 

77 GHz (current automotive frequencies), 150 GHz, 300 GHz. The theoretical values are 

calculated using the permittivity obtained from literature which was mentioned above. 

The values of permittivity of pure water at 77 GHz and 24 GHz are taken from [120,125]. 

As can be seen from Figure 4.9 for water thickness smaller than 0.5 mm (the maximum 

water accumulated on the automotive radar), the difference between current 

automotive radar (77 GHz) and 150 GHz and 300 GHz is about 10 dB which demonstrates 

the potential of using the low THz radar for outdoor applications as this requirement is 

achievable with very short wavelength signals. 
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Figure 4.9: Calculated transmissivity of pure water as a function of water thickness at 24 
GHz, 77 GHz, 150 GHz, and 300 GHz at 23 °C. The error bars correspond to the uncertainty in 
the double Debye model parameters in equation (4. 8). [109] 

 

Due to unavailability and inconsistency between reported values for permittivity of 

water at low THz range, the permittivity of pure water and saline water with different 

levels of salt (constrained by the range of reported permittivity values in literature) was 

obtained from value of measured transmission coefficient and explained in details 

below. 

In [126] a different experimental method for computing the material permittivity has 

been described. In this study the free-space technique has been used for calculation of 

complex permittivity of pure and saline water from measured transmission coefficient. 

The complex permittivity has been evaluated by using a root-finding algorithm [126], 

which minimizes the estimation error between theoretical and measured values of 

transmissivity, constrained by the range of reported permittivity values for pure water.  
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The permittivity was calculated by the equation:   

 ( ) ( ) ( )' '' ' ''

1

, , ,
N

r r meas i th i r r

i

E T t T t   
=

= −                    (4. 4) 

where N is the number of measurements, it is the thickness of  i-th water layer, measT  is 

the measured transmissivity, and thT is calculated transmissivity.  

The error calculated using equation 4.4 for the different combination of 𝜀𝑟
′   and 𝜀𝑟

′′  at 

frequencies of 150 GHz (𝑓1), 300 GHz (𝑓2) and 670 GHz (𝑓3) are shown in Figures 4. 10, 4. 

11 (a) and (b) respectively and the final permittivity calculated minimizing the estimation 

error between theory and measurement for mentioned frequencies are shown as: 

1( ) 7 10r f j = −    

2( ) 6.4 4.52r f j = −   

3( ) 5.69 2.08r f j = −  

 

Figure 4.10: Error between measured and theoretical transmissivity for different values of 
pure water permittivity at 150 GHz [109] 
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(a) 

 

(b) 

Figure 4.11: Error between measured and theoretical transmissivity for different values of 
pure water permittivity at (a)300 GHz (b) 670 GHz 
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(b) 

4.3.4 Measurement methodology 

Figure 4. 12b shows the experimental setup. The transmitter and receiver antennas are 

facing each other with spatial separation of 1.5 meter. The sample is placed in the direct 

propagation path between the transmitting and receiving antennas. The sample is 

situated in the far field of the antennas. The antennas are square horns with azimuth 

and elevation 3dB beamwidth of 10°, and 20 dBi gain. As shown in Figure 4. 12a, the 

area of the sample is 10 times greater than the area illuminated by the 3dB beam to 

ensure the passage of most energy through the sample. Transmissivity through different 

thicknesses of water layer is characterized by comparing the transmission through the 

wet paper tissues and through the dry paper tissues (reference). 

 

 

Figure 4.12: (a) Sample with specific illuminating area footprint (blue circle),    
(b)measurement setup 

The main challenge in this measurement is producing thin layer of water due to physical 

properties of water (cohesion, adhesion and surface tension). The similar technique as 

explained in [109] is employed here to produce a thin layer of water by wetting tissue 

paper. In order to produce the thin layer of water, the specific known amount of water 

which was measured by syringe and spread on a tissue paper with known area; so by 

using the equation for the volume of a cylinder (𝑉 = 2ℎ𝑟𝜋  )the level water thickness 

can be computed. By using this method the accuracy of 0.05 mm is achievable to provide 

a uniform layer of water. Several tissue papers are stacked together to produce a thicker 

layer of water. As the wet tissue paper needs to be placed vertically between the 

antennas, a hoop is used to hold the wet tissue straight and vertically. 

(a) 
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Analysis of the effect of water salinity on low THz propagation is undertaken in this PhD 

research as the deposited salt on a car radome in a coastal area can block the EM waves 

also during winter/autumn deposited salt on the road can stick to the radome and cause 

similar blockage effect. In order to analyse the effect of a layer of sea water or 

contaminated water with salt (for example salt from grit), saline water was produced 

with different levels of salinity in the laboratory. The salinity of water is expressed in 

grams of salt per kilogram of water (g/kg) and known as Practical Salinity Unit (PSU). The 

water salinity can also written as part per thousand (PPt) or percentage figure (%), where 

15 PSU is equivalent to 15 PPt and is equal to 15%. Salt composition in sea water is not 

uniform throughout the world. Seawater salinity is mainly approximate between 32PSU 

and 37PSU [127], So in our experiment three salinities have been chosen (31PSU, 35PSU 

and 38PSU) as samples as well as the actual seawater from the Aegean Sea which was 

measured and analysed for comparison to investigate how saline water deposited on a 

radome can affect the signal attenuation in low THz waves. 

 In this study all the measurement have been carried out for 4 or more realization. 

Possible error might arise due to the presence of air gaps, non-perfect uniformity of the 

water layer, non-uniformity of the tissue paper and evaporation of water during multiple 

measurements, which slightly change the water layer thickness. 

Data collection using this system has been carried out with a radar system composed of 

a 2-port Keysight Programmable Network Analyser (PNA N5232a) and linear up/down 

converters developed by VivaTech (Nice, France) as described in section 3.2.1.2. The 

VNA generates a stepped-frequency signal which is up-converted and transmitted. The 

received signal is down-converted and the scattering parameters are measured. The 

converters and VNA are phase locked to an external 10 MHz reference signal provided 

by a rubidium oscillator. 
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The signal level reduction (labelled as transmissivity) due to presence of the uniform 

layer of water is the result of various propagation phenomena, such as scattering, 

absorption, reflection, and refraction. It can be computed as: 
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where n is the total number of sweeps, 𝑃𝑟1
is the received power with presence of sample 

(water), 𝑃𝑟0
is the received power without the sample. 

Specifications of the system components are provided in Table 4.1, and Figure 4.13 

shows a schematic of the system.  

                                

 

Figure 4.13: System schematic 
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Table 4.1: Parameters of the measurement system 

Parameters  300 GHz 670 GHz 

Frequency band  282-298 GHz 656-665 GHz 

Sweep Bandwidth  16 GHz 9 GHz 

Output power -15 dB -10 dB 

Antenna Azimuth 

Beamwidth  

10° (-3 dB) 10° (-3 dB) 

Antenna Elevation 

Beamwidth 

10° (-3 dB) 10° (-3 dB) 

Antenna gain 25 dBi 20 dBi 

Antenna dimension 6x8x22 mm 3x4x6 mm 

Far field  128 mm 71 mm 

Range resolution 9.4 mm 16.7 mm 
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4.3.5 Result and discussion 

In this section, the measurement result of transmissivity through uniform layer of pure 

water and saline water with three level of salinity (31%, 35%, 38%) and actual seawater 

are presented and compared with theoretical model based on Fresnel theorem.  

The measured transmissivity through uniform layer of pure, saline (three salinity levels) 

and sea water at 300 GHz and 670 GHz are illustrated in Figure 4. 14 (a) and Figure 4.14. 

(b), respectively.   The measured results are shown as functions of water thickness in a 

range of 0.1 mm to 0.5 mm with 0.1 mm steps. The measured results are averaged over 

four or more sample realization and the error bars show the obtained standard 

deviation. The trends of the graphs show that the transmissivity is decreasing with 

increasing water thickness. The results show a slight decrease in the transmissivity with 

increasing water salinity at both frequencies. The small difference in the measured 

transmissivity through pure and contaminated water shows that contamination in the 

water covering the radome has a small impact on the transmissivity. 

 

(a) 
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(b) 

Figure 4.14: Measured transmissivity through pure water, actual seawater, and water of 
three different salinities as a function of water thickness at 23 °C (a) at 300 GHz and (b) at 
670 GHz. 
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A comparison between the measurement results obtained by the explained 

experimental setup in this thesis and quasi-monostatic setup explained in [109] at 

300 GHz shows acceptable agreement between them, considering one-way path 

propagation. Therefore, the measured transmissivity at 150 GHz presented in [109] is 

used to plot the transmissivity through 0.3 mm uniform layer of pure, saline (3.5%) and 

actual sea water versus frequency, shown in Figure 4.15. As expected, a decreasing trend 

in transmissivity is observed when the frequency is increased for the same thickness of 

water. 

 

Figure 4.15: Measured transmissivity through 0.3 mm layer of pure water, sea water and 
water with 3.5% salinity versus frequency 
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As mentioned earlier there is a little information in literature on the permittivity 

parameters of saline water and sea water at low THz frequencies. In [125] the 

permittivity of sea water has been measured for frequencies up to at least 90 GHz. The 

permittivity of NaCl with molarity of 2 mol/L (molarity = PSU/58.45) at frequency of up 

to 1 THz has been reported in [128] . Finally in [129] the measurement result of the 

Permittivity of saline water with salinity range from 0.1 mol/L to 3 mol/L in the 

frequency ranges from 0.1 THz to 2.7 THz has been reported. The permittivity of saline 

water with salinity close to sea water level at our working frequencies range (150 GHz, 

300 GHz, 670GHz) is missing in literature. So the permittivity obtained by equation 4.4 

with the root-finding algorithm mentioned in Section 4.3.3. 

The obtained permittivity for pure water and water with  

3.5% salinity at both frequencies are shown in Table 4. 2. 

 

Table 4.2: Calculated permittivity of pure water and saline solutions at 300 GHz and 670 GHz 

 300 GHz 670 GHz 

𝜀𝑟
′  𝜀𝑟

′′ 𝜀𝑟
′  𝜀𝑟

′′ 

Pure water 6.44 4.52 5.69 2.08 

3.1% salinity 4.62 4.41 4.32 2.10 

3.5%salinity 5.67 4.5 4.7 2.13 

3.8% salinity 5.74 5.01 4.31 2.06 

Sea water 6.64 4.59 3.73 2.13 
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Figure 4. 16 depicts the measured and theoretical transmissivity of pure water and water 

with salinity of 3.5% as a function of thickness at frequencies of 300 GHz and 670 GHz.  

The theoretical values are calculated using the permittivity obtained with the root-

finding algorithm. All the graphs show a good agreement between the theoretical and 

measured transmissivity. The small discrepancies are likely due to the presence of air 

gaps, non-perfect uniformity of the water layer, non-uniformity of the tissue paper and 

evaporation of water during multiple measurements, which slightly change the water 

layer thickness. 

 

 

 (a) 
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(c) 

(b) 
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(d) 

Figure 4.16:  Calculated and measured transmissivity through pure water at (a) 300 GHz and 
(b) 670 GHz, and water with salinity of 3.5% at (c) 300 GHz and (d) 670 GHz as a function of 
uniform thickness at 23 °C. 
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4.3.6 Conclusion 

Measured and theoretical results of the transmissivity through a uniform layer of water 

at 300 GHz and 670 GHz are presented in this study. Good agreement is demonstrated 

between the results obtained through measurements and a theoretical model based on 

the Fresnel theory. When compared with those obtained in our previous study [109] at 

150 GHz, the results show an increase in attenuation due to the presence of a uniform 

thickness of water, with an increase in frequency.  
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4.4 Attenuation through sand, oil, ice in low THz radome 

As mentioned earlier the radome contamination in automotive sensors can cause a 

considerable signal power reduction. The EMW can interact with these radome 

contaminants and as a result cause signal attenuation and adverse effects on radar 

performance, up to complete signal blockage and sensor failure. At the time this PhD 

research started, published information on the impact of radome contaminants on wave 

propagation is rather limited even at 77 GHz and practically absent for low THz bands. 

so in University of Birmingham MISL group comprehensive experimental and theoretical 

research on the signal attenuation of many common contaminants that occur in 

automotive practice, namely: gasoline and diesel [105], sand [103], water [109], ice 

[104] and fallen leaves [94]  has been carried out in the range of low THz frequencies. 

The measurement methodology is explained in section 3.3.1 and for theoretical 

modelling Fresnel theory [99] which was developed for a three layer structure has been 

used.  A more detailed explanation of the measurement methodology and theoretical 

modelling can be found in the referenced literature. Table 4.3 shows the summarized 

results of two way transmission loss through mentioned radome contaminations.   

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Low terahertz radar signal backscattering for surface identification  

 

  

  Page 111 

 

Table 4. 1: Two way signal reduction (in dB) on a contaminated radome[30] 

Contaminant Frequency  

77 GHz 150 GHz 300 GHz  

Water 

(0.45mm) [109] 

PW 30 29 38 

SW (3.5%) 23.2 22 31 

DW NA 34.6 40 

Sand (Particle 

size:0.2 mm) 

(thickness:1 

mm) [103] 

Dry NA ~0 10 

Moist 

(10 %) 

NA 12.6 26 

Ice (1 mm)[104] 0.4 1.4 3.2 

diesel[105] 0.6 0.8 1.1 

gasoline 1 1.4 1.5 

Leaf 

(0.37 mm)[94] 

fresh 30 34 40 

dry ~0 ~0 4 

Water droplet 

with coverage 

area in %[109] 

10% NA 2 2 

20% NA 4 1.6 

Abbreviations: PW-Pure water, DW-Contaminated water with road dirt, SW-Salty 

water 

 

The values which are shown bold are the highest measured signal reductions. The 

underlined values shown in Table 4. 3 are just from the calculation. By comparing the 

results presented in Table 4. 3 we can conclude, the presence of water on the radome 

surface or contaminant containing water has the dominant effect in signal degradation 

at all frequencies. As mentioned in section 4.3.5 signal reduction due to the uniform 

layer of the water mainly depends on water layer thickness as well as percentage of salt 

in the water and operational frequency and strong signal attenuation has been observed 

due to uniform layer of water. However that case is not a real life road scenario. The 

most common case in real road scenarios is randomly distributed water droplets 
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obscuring the radome which was investigated in [109], indicating that random 

distributed water on the antenna radome have a less detrimental effect on the wave 

propagation in comparison with a uniform layer of water. Losses are influenced by the 

water droplet size, density and distribution. Results in [79] show that the wave 

propagation through water droplets on the antenna radome at high frequency does not 

reduce the performance of the radar sensors significantly. This is attributable to the fact 

that gaps between droplets have an electrical dimension larger than the wavelength, 

increasing the transmissivity through a screen of randomly distributed droplets. Such 

effect demonstrates the potential of using the low THz sensors for outdoor applications 

as this requirement is achievable with very short wavelength signals. 

In [103] the transmissivity through sand when sand layer thickness is increasing (from 0 

mm to 45 mm stepped by 3 mm) was measured at 150 GHz and 300 GHz. To get better 

understanding into the effects within a sand-filled medium, the transmissivity through 

five species of calibrated particle with different size as well as natural sand was 

measured at 150 GHz and 300 GHz. The results shows that transmissivity is decreasing 

when the sample thickness increases for both frequency ranges. Moreover, the result 

indicates that coarser sand particles produce greater attenuation than finer particles at 

both mentioned frequencies. However, in real road scenario the smaller particles of 

sand are more likely to attach to the radome, possibly forming a uniform layer. 

Comparison between gained results at 150 GHz and 300 GHz indicate that the signal 

reduction at 300 GHz is higher than at 150 GHz.  According to [104,105] ice, diesel and 

gasoline  are almost transparent at 77 GHz and the attenuation increases slightly at 150 

GHz and 300 GHz. Transmissivity through leaves was explained in details in section 4.2. 

Based on the finding research which has been carried out by MISL group we can 

conclude that by shifting the automotive frequency from the current automotive 

frequency (below 100 GHz) to low THz frequency region does not introduce dramatic 

increase in attenuation through atmosphere over the range of operation (up to 2 m) on 

automotive radars. 
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4.5 Summary 

This chapter reports results in regards of signal reduction due to radome contamination. 

In section 4.2 the attenuation of signal propagation through uniform layer of leaves 

which can build up on the antenna radome was investigated by the author of this thesis. 

The transmissivity through three sorts of leaves (Laurel, Birch, and Willow) was measure 

constantly with 300 GHz radar from when the leaves were fresh until they completely 

lost their water content through natural evaporation. The increase in transmissivity was 

observed while the leaves were losing their water content. The signal loss due to 

presence of fresh leaves of Laurel, Willow and Birch are -20 dB, -16 dB and -12 dB, 

respectively, while the transmissivity of -2.2 dB, -3.9 dB and -1.5 dB are measured for 

water stressed leaves Laurel, Willow and Birch. The results prove that the water inside 

the leaves is the main cause of signal reduction. The transmissivity figures are calculated 

in two ways: (i) by using effective permittivity of leaves and (ii) considering equivalent 

water layer for different WCR and using water permittivity. The second model shows a 

better agreement with the measured results.  

In section 4.3 the transmissivity through a uniform layer of pure water, salty water with 

different levels of salt and actual seawater are measured and analysed at 300 GHz and 

670 GHz by the auther of this thesis and compared with the obtained results at 150 GHz 

[109]. The results show that the transmissivity is decreasing with increasing water 

thickness. Also a slight decrease in the transmissivity is observed with increasing water 

salinity at both frequencies. Additionally the results indicate that an increase in 

attenuation due to the presence of a uniform thickness of pure water, salty water and 

actual sea water, with an increase in frequency. 

And finally in section 4.4 the attenuation through radome contamination (sand, Ice, 

gasoline and diesel) which was carried out by MISL group was discussed briefly. The 

measurement result of sand accumulated on a radome at 150 GHz and 300 GHz indicate 

that coarser sand particles produce greater attenuation than finer particles at both 

mentioned frequencies, furthermore the attenuation due to radome accumulated by 

sand at 300 GHz is higher than at 150 GHz. 

Other common radome contaminant such as ice, diesel and gasoline are almost 

transparent at 77 GHz and the attenuation increase slightly at 150 GHz and 300 GHz.  
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Chapter 5:  Low terahertz radar signal backscattering for 
surface identification 

5.1 Overview 

This chapter explores the scattering of signals within mm- and low Terahertz frequency 

range, represented by frequencies of 79 GHz, 150 GHz, 300 GHz, and 670 GHz, from 

surfaces with different roughness to demonstrate advantages of low THz radar for 

surface discrimination for automotive sensing. This study has been published in [130]. 

The work was done by the author of this PhD research under supervision of the paper’s 

co-authors, Professor Gashinova, Professor Gardner, Dr Bystrov and Dr Navarro-Cia .  

The response of four surfaces (sandpaper) with different roughness was measured and 

their normalized radar cross sections were estimated as a function of grazing angle and 

polarization. The Fraunhofer criterion was used as a guideline for determining the type 

of backscattering (specular and diffuse). The proposed experimental technique provides 

high accuracy in the measurement of backscattering coefficient (normalized radar cross-

section) and its dependence on the frequency of the signal, polarization, and grazing 

angle. An empirical scattering model was used to provide a reference, which is based on 

calculation of Fresnel reflection coefficients for different polarizations and grazing 

angles. To compare theoretical and experimental results of the signal scattering on test 

surfaces, the permittivity of sandpaper has been measured under supervision of Dr 

Miguel Navarro-Cia using time-domain spectroscopy in the school of Physics and 

Astronomy of University of Birmingham. It was shown that the empirical methods for 

diffuse radar signal scattering developed for lower radar frequencies can be extended 

for the low THz range with sufficient accuracy. The results obtained will provide 

reference information for creating remote surface identification systems for automotive 

use, which will be of particular advantage in surface classification, object classification 

and path determination in autonomous automotive vehicle operation. 
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5.2 Introduction 

In chapter 1, I introduced the advantageousness of low THz radar in AV. The use of such 

radars allows an AV to effectively classify road objects and perform route planning 

[131,132].  

Surface classification is an important outstanding problem in the implementation of 

autonomous vehicles. The extensive review of the papers on surface identification 

(Surface ID) using radar techniques can be found in [133]. As follows from the review, 

the most promising method for solving this problem is the analysis of the features of the 

backscattered signal with different polarization [19].   

The principles of Surface ID are based on the theory of electromagnetic signal reflection 

from surfaces. Surface scattering is a function of surface roughness, characterized by its 

statistical parameters such as rms height and correlation length, radar frequency, 

grazing angle, and the effective permittivity of the material of the surface [134]. The 

problem of signal scattering from random surfaces has been investigated for many years 

[135]. There are two well-known solutions accounting for different ratios of wavelength 

and surface heights: (i) the Kirchhoff approximation, when surface roughness is larger 

or comparable to the wavelength and (ii) the small perturbation model, which performs 

better if the variation of surface heights is small relative to the wavelength [61]. Several 

models have been developed that combine these two, but they all have limitations on 

the signal frequency, on the surface dielectric constant and roughness characteristics 

[46]. Various empirical approaches are also widely used in the analysis of backscattering, 

where theoretical models are expanded or modified based on empirical observations to 

improve the performance of the original model in the interpretation of experimental 

data [15,136]. 

Advances in modern electronics have led to the emergence of commercially available 

radar components with frequencies above 100 GHz and this frequency range is currently 

of particular interest to automotive radar developers. At the same time, in most 

publications the analysis of radar signal backscattering is carried out in the frequency 

range up to 100 GHz and there is a limited number of studies investigating scattering of 

signals above 200 GHz. Most of these publications present research on diffuse scattering 

from rough surfaces in THz communication channels using time-domain spectrometers 

[137,138]. These works cover bistatic scattering measurements in the frequency range 
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from 100 GHz to 1 THz from a set of specially manufactured scattering targets with 

known roughness parameters. In [139] surface scattering was measured using a vector 

network analyzer (VNA) for 325-500 GHz and a dedicated system for 650 GHz. Of 

particular interest is [140], which examines 222 GHz polarimetric monostatic radar 

backscatter response of different types of real surfaces, such as asphalt, concrete, dirt, 

and grass of various length. 

The lack of a comprehensive and consistent surface scattering studies over both the 

millimeter-wave and THz range simultaneously motivates this study. Hence, the aim 

here is to study and characterize the effect of signal backscattering from rough surfaces 

in the range of millimeter-wave and low THz frequencies (79 GHz-670 GHz) within the 

context of Surface ID for automotive sensing. The groundwork reported here for control 

samples (i.e., sandpapers with known geometrical parameters) identifies the impact of 

all critical parameters (e.g., surface roughness and dielectric properties, grazing angle, 

and polarization) on the surface backscattering and lays the foundations to make 

predictions for real road surfaces. Preliminary results related to this study were 

presented in [141] . In this study, an improved experimental technique for measuring 

normalized radar cross-section (RCS) of rough surfaces has been proposed and a method 

to calculate the normalized RCS of surfaces of different roughness as a function of radar 

and topology parameters was presented, such as polarization and aspect angle. The 

obtained measurement results were analyzed for compliance with the Fraunhofer 

criterion and were compared with normalized RCS, calculated based on an improved 

empirical model.  

In this chapter firstly, the type of signal scattering based on the Fraunhofer criterion is 

discussed. Then, the methodology of backscattering coefficient measurement is 

described, the empirical model of signal scattering is discussed, and the results of 

sandpaper dielectric permittivity measurement are presented. The measured 

normalized RCS of sandpaper samples of four different levels of coarseness of the 

abrasive particles (grit) are presented in Section 5.4 and overall results are discussed in 

section 5.6. Finally, in Section 5.7, the conclusions and plans are formulated.  

 

 



Chapter 5: Low terahertz radar signal backscattering for surface identification  

 

  

  Page 117 

5.3 Backscattering of Radar Signal from Rough Surface  

To classify surfaces with different roughness using radar, we should understand the 

nature of the reflection of the signal from such surfaces. Two main mechanisms of signal 

scattering on surfaces with different roughness are shown in Figure  5. 1. In a case of 

perfectly smooth surface only specular reflection will occur. When the surface becomes 

rougher, the ratio of specular reflection component will decrease and the diffuse 

reflections, re-radiating signal in all directions, will become more prominent. In a case 

of very rough surface, the diffuse reflection prevails over specular. 

 

Figure 5.1: Reflection from smooth, moderately rough, and very rough surface 

 

The type of scattering is defined by the surface rms height (root mean square average 

of the heights above or below a mean reference line) relative to wavelength. Based on 

the Fraunhofer criterion, the surface is considered as rough if the surface rms height h 

satisfies the inequality   

                                                               
32cos

h



                                                              (5. 1) 

where Θ is the angle of incidence relative to the surface normal and λ is the signal 

wavelength [60].  
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To evaluate the surface roughness relative to the wavelength, it is convenient to use 

electromagnetic roughness kh, where k=2π/λ is the free space wave number. 

Fraunhofer criterion (5.1) can be expressed in terms of electromagnetic roughness as 

                                                                 0.2 coskh                                                          (5. 2) 

This implies another definition for surface roughness [61], according to which a surface 

may be considered relatively smooth if its kh<0.2 and very rough if its kh≥2. 

Figure 5. 2 shows graphs of rms height calculated in accordance with equation (5.1) 

defining the surface as rough with respect to different radar frequencies. Diffuse 

scattering dominates in regions above lines for each frequency, ensuring non-zero 

return to radar receiver as surface will become rough. Threshold lines with a constant 

value of h correspond to three typical road surfaces: 0.2 mm for smooth concrete, 0.33 

mm for smooth asphalt, and 0.9 mm for rough asphalt [15].  

 

Figure 5.2: Roughness characterization of road surface as a function of incident angle and 
radar frequency[141] 
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The returned radar signal is defined by the RCS of the surface considered as a distributed 

target. As follows from the radar equation [142], the probability of target detection in a 

noisy environment depends on its RCS. In the cases that are considered, target detection 

means the ability to extract surface features from the backscattered signal. From a 

consideration of Figure 5.2, we can draw preliminary conclusions about the potential 

applicability of a radar operating at different frequencies for surface classification. 

From Figure 5.2 it follows that a 79 GHz radar will not be able to distinguish smooth 

asphalt from smooth concrete at angles over 70° (the corresponding rms values are 

below the curve for 79 GHz, which suggests that they all appear effectively smooth). At 

the same time, 300 GHz radar can distinguish these surfaces to an angle of about 85°, 

and a 680 GHz radar is potentially able to distinguish smooth asphalt from smooth 

concrete up to an angle over 85°. Therefore, by increasing the radar frequency the ability 

to identify the type of road surface at higher incidence angle Θ will improve. From here, 

we can make a conclusion about good prospects for using low THz radars for surface 

recognition. 

In the case of automotive radars, low grazing (high incidence) angles are expected. 

Suppose we want to recognize a road surface at the distance of R0 = 10 m in front of the 

car (Figure 5.3). At a speed of 40 km/h, the car will cover such a distance in about a 

second. This is the time in which the automatic system must determine the optimum 

terrain response settings for the surface ahead to maintain momentum and vehicle 

control as one surface transitions to another. The maximum height at which the radar 

can be installed on a passenger car is approximately H = 1.5 m (e.g., mirror on the 

windshield). Under the conditions considered, the incident angle Θ will be 

approximately 81.5° which corresponds to a low grazing angle γ = 8.5°. If the radar is 

positioned within the bumper of the car at a height of 60 cm, the grazing angle will be 

only 3°. 
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Figure 5.3: Automotive sensing scenario: H—Radar height over ground, α—Elevation beam width, 

𝑹𝟎—Ground range, θ—Incident angle, γ—Grazing angle. 

 

In practical automotive radar implementation, at small grazing angle, the illuminated 

surface footprint will extend over a wide ground range. Let us say that the elevation 

beam width α = 10°, then the illuminated area of the road would lie from 6 m to 24 m, 

which corresponds to the range of grazing angles from 13.5° to 3.5°. Therefore, when 

analyzing the backscattered signal, we must consider the backscattering at different 

grazing angles. Applying time gating, we can choose a strip of surface lying at a certain 

angle. Analysis of the dependence of the backscattered signal power on the grazing 

angle provides additional information about the properties of the surface. 
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5.4 Experimental Methodology 

The focus of this research is on studying the low THz signal backscattering from surfaces 

with different roughness. To achieve this goal and attain accurate measurement, 

sandpaper of different coarseness (grit) was used as a reference surface. The results can 

easily be extended to the case of real road surfaces if their roughness and complex 

permittivity are quantified. This section provides a concise and precise description of the 

experimental results, their interpretation, as well as the experimental conclusions that 

can be drawn. 

The reflective properties of a surface are characterized by its normalized RCS and 

described in section 3.4.1. 

5.4.1 Empirical Scattering Model 

The empirical approaches to rough surface scattering are based on theoretical models 

and experimental observations. One of the best-known empirical models of radar 

backscattering response of natural surfaces was proposed in [136] for 0.1 < kh < 6.0 and 

2.5 < kl < 20, where l is the correlation length; it was experimentally verified at 1.5–9.5 

GHz. This model allows calculating co-polarization and cross-polarization ratios  
𝛿𝐻𝐻

°

𝜎𝑉𝑉
0⁄  

and  
𝛿𝑉𝐻

°

𝜎𝑉𝑉
0⁄ . Hereinafter, the first subscript indicates the transmitter antenna and the 

second subscript indicates the receiver antenna polarization. 

 According to this model, the co-polarized backscatter ratio can be described by the 

equation: 

                                                  0

1

3 22
(1 ( ) )khHH

VV

p e




 

 

 −= = −                                                       (5. 3) 

where Γ0 is the Fresnel reflectivity coefficient at nadir (i.e.𝜃 = 0), which depends on 

the relative permittivity 𝜀𝑟 of the surface material: 𝛤0 = |
1−√𝜀𝑟

1+√𝜀𝑟
|

2

. 
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Cross-polarized backscatter ratio can be calculated as 

 

                                            00.23 (1 )khVH

VV

q e








−= =  −                                                 (5. 4) 

The magnitude of σ0
VV is described by the expression: 

 

                                                     3cosVV V Hg p =  +                                              (5. 5) 

where p is given by equation (5.3), 𝑔 = 0.7[1 − 𝑒𝑥𝑝(−0.65(𝑘ℎ)1.8)], ΓV and ΓH are 

Fresnel reflectivity for vertically and horizontally polarized waves, respectively, at the 

incidence angle Ө. After calculating σ0
VV using equation (5.5), the normalized RCS for 

other polarizations can be found from equations (5.3) and (5.4). 

From equation (5.3) follows, that at small incidence angles the ratio of co-polarized 

signals p is close to one and decreases with increasing angle. The higher the roughness 

of the surface, the smaller the difference between normalized RCS at different 

polarizations. In addition, this ratio depends on the dielectric constant of the material. 

The cross-polarized ratio q is always much less than one and shows a stronger sensitivity 

to the surface roughness and a weaker dependence on the dielectric properties. In this 

study, tests are performed to show how this model matches the results of measuring 

signal backscattering at low THz frequencies. 
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5.4.2 Relative Permittivity of Surface Material 

 

To use this empirical model, the dielectric properties of the surface material should be 

known. Sandpaper with grits 40, 80, 120, and 240, manufactured by Sealey Group (St 

Edmunds, UK), was chosen as a test surface (models PP232840, PP232880, WD2328120, 

and WD2328240, respectively). Sandpaper grits are categorized according to the 

coarseness of the abrasive particles used. The sandpaper is composed of backing 

material (paper or woven fibre) with εr = 2.0, covered with abrasive (aluminum oxide 

grains) with εr = 9.7, and adhesive (resin) with εr = 1.5-2.5 at 1 MHz frequency [143]. The 

value of effective dielectric permittivity can be obtained from the dielectric constants 

and volume fractions of constituents of the test material. However, such data is not 

available in the open literature. 

To retrieve the dielectric constant of sandpaper over the complete low THz range, the 

Menlo Systems THz time-domain spectrometer TERA K15 Mark II in a quasi-optical 

configuration was used along with a material parameter extraction algorithm [144], 

similarly to [145]. This retrieval algorithm minimizes the difference between the 

measured (defined as ratio of the sample spectrum to the reference spectrum computed 

by Fourier transform of the corresponding waveforms) and theoretical complex transfer 

functions using the Nelder-Mead simplex algorithm[146], whereby the thickness- and 

frequency-dependent complex refractive index of the sample are extracted after 

numerical optimization.  

To estimate the thickness of the sample, the system measures temporal separation 

between the leading pulse and its echo and between successive echoes within the 

sample. The soundness of the algorithm is validated by comparing the thickness output 

by the retrieval algorithm and that provided by the sandpaper manufacturer.  
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To minimize the influence of scattering from the test surface in the retrieval method, we 

worked with a focused beam configuration using TPX (Polymethylpentene) plano-

convex lenses [147] as shown in Figure 5. 4. In such configuration, the diffuse scattering 

within ±10 deg. approximately [148,149] was collected owing to the relay lens in the 

detection side and contributed to the retrieval method. 

Figure 5.4: TDS system measurement set up 

 

A collimated configuration was also employed for large grit number (fine grit) sandpaper 

to check consistency of the data. An 80 mm diameter round sandpaper sample was 

placed in the sample holder at the focal plane of the optical system where the 

frequency-dependent beam-waist was estimated to be larger than 1 mm below 700 GHz 

[147,148]. To decrease systematic errors, a series of three independent reference and 

sample measurements was taken.  

For the characterization of the average power of return from rough surface, effective 

parameters suffice. Assumed homogenization of the medium is the conventional 

approach for the modelling of microwave structures where an effective dielectric 

permittivity is assigned to the multi-layered structure (which can be seen as the 

weighted average of dielectric properties of individual layers such as abrasive, substrate, 
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etc.). The simulation results presented below confirm this assumption as the dielectric 

permittivity used to generate analytical results agree very well with measurements. 

The average measured permittivity values of sandpaper as well as their standard 

deviations at low THz frequencies are shown in Table 5.1. Due to the coarse roughness 

of the 40-grit sandpaper sample, the retrieval algorithm only converged for one of the 

three runs. Hence, the absence of standard deviation in Table 5.1 for this case.   

The loss tangent, which is the measure of signal loss due to the dissipation of 

electromagnetic energy in the sandpaper, can be defined as  

 

  '' 'tan  =                                                                   (5. 6) 

where 𝜀′ and 𝜀′′ are the real and the imaginary components of permittivity. The 

measured values of tan δ are given in Table 5.1. In most cases, they are in the range of 

0.20-0.30. 
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Table 5.1.   Measured sandpaper relative permittivity 

Frequency 

Sandpaper grit 

40 80 120 240 

150 GHz εr 3.6 3.6 4.4 4.9 

 σεr - 0.1 0.3 0.2 

 tan δ 0.25 0.25 0.29 0.24 

300 GHz εr 3.4 3.4 3.9 4.6 

 σεr - 0.1 0.5 0.2 

 tan δ 0.27 0.28 0.30 0.22 

670 GHz εr 2.9 3.5 3.1 4.3 

 σεr - 0.1 0.3 0.2 

 tan δ 0.25 0.22 0.49 0.20 
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5.5 Measurement setup 

For the backscattering experiments, we used the Keysight N5247B VNA which was 

described in sub section 3.2.1.3. The experimental setup is shown in Figure 5. 5. 

 

                 

 

The measuring system that corresponds to a quasi-monostatic radar with two closely 

spaced Tx and Rx antennas was stationary, only the test surface rotated and therefore 

the distance between the centre of the illuminated area and antennas, always remained 

the same. The rotation step was 5°, and the incidence angle varied from zero, when the 

antennas were perpendicular to the surface, to 80°, when they were almost parallel to 

the surface. Scattering coefficients were measured for co-polarized (vertical and 

 
a 

 
b 

Figure 5.5:Experimental setup configuration (a) schematic setup (b) 
actual setup. 
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horizontal polarization) and cross-polarized transmit and receive signals at frequencies 

of 79 GHz, 150 GHz, 300 GHz, and 670 GHz. Different polarizations were obtained by 

rotating either Tx or Rx modules. Specifications of the system and set-up parameters are 

provided in Table 5. 2, the photo of the used antennas for mentioned measurement are 

shown in Figure 3.6 in subsection of 3.2.1.3. 

 

  

 

 

For 79 GHz measurement we chose 4 GHz bandwidth which is defined by the European 

frequency regulation [27] for automotive radars in the 79 GHz frequency band. At higher 

frequencies, the wider bandwidths can be readily achieved to improve range resolution. 

Therefore, to resolve extended targets/surfaces with the imaging radar the 16 GHz 

Table 5.2: Parameters of the measurement system 

 

Frequency, GHz 

79  150  300  670  

Frequency band, GHz 77-81 142-158 282-298 656-672 

Wavelength, mm 3.8 2.0 1.0 0.4 

Sweep bandwidth, GHz 4 16 16 16 

Transmitted power, dBm 6 -6 -9 -25 

Antenna azimuth beamwidth (-3dB) 10° 10° 10° 10° 

Antenna elevation beamwidth (-3dB) 10° 10° 10° 10° 

Antenna gain, dBi 20 24 25 20 

Antenna aperture dimensions, mm 11×15 17×18 6×8 3×4 

Far field range, mm 76 202 128 71 

Range resolution, mm 37.5 9.4 9.4 9.4 
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bandwidth has been used for 150 GHz, 300 GHz and 670 GHz radar measurement and 

the bandwidth kept the same to compare the results. The sandpaper rms height was 

measured in [150], and they are shown in Table 5.3 together with measured total 

thickness with backing paper/fabric and calculated electromagnetic roughness. The 

parameters given in [150] should be considered approximate, since there are no strict 

standards for sandpaper and the roughness can vary from batch to batch within certain 

limits. 

 

 

                 

The sample with dimensions of 28 cm by 46 cm was fixed in a frame mounted on a 

rotating table at 30 cm from the antennas. This distance is sufficient, since the far field 

distance of the antennas, estimated by  

 

22Fd D =                                                        (5. 7) 

where D is the maximum linear dimension of the antenna (Table 5. 2), did not exceed 

20 cm.  

 

 

 

Table 5.3: Sandpaper Parameters 

Grit Thickness, 
mm 

Surface 
rms, mm 

Electromagnetic roughness kh 

79 GHz 150 GHz 300 GHz 670 GHz 

40 1.25 0.11 0.18 0.34 0.69 1.55 

80 0.46 0.06 0.10 0.19 0.38 0.84 

120 0.43 0.03 0.05 0.09 0.19 0.42 

240 0.28 0.01 0.02 0.03 0.06 0.14 
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From consideration of Figure 5.5a, it follows that the illuminated area is an ellipse with 

semi-minor and semi-major axes: 

 0 tan
2

a R


=   and  0

cos
2tan

2
cos( )

2

b R





=

+

                      (5. 8) 

where α is the antenna beamwidth. Thus, in the case under consideration, only the semi-

major axis b depends on the aspect angle to the sample, increasing with the increase of 

incidence angle, while the semi-minor axis a is 26 mm. At an incidence angle of 82° the 

sandpaper sample is not anymore beam filling and this defines the largest incidence 

angle for which measurements can be made. To remove diffraction and other possible 

reflections, the signal was range-gated from 15 cm to 45 cm. 

Antenna beamwidth α = 10° (Table 5.2), and by approximating that 

𝑐𝑜𝑠 (
𝛼

2
) = 𝑐𝑜𝑠(5°) ≈ 1, the area of the ellipse A=πab can be expressed as 

     

2 2

0 tan
2

cos( )
2

R

A







+

                                                        (5. 9) 

Knowing RCS (equation 3.13) and A (equation (5.9)), the normalized RCS can be 

calculated by equation (3.12). The mentioned experimental setup allows taking 

measurements more conveniently than traditional methods with a fixed sample and 

moving antennas [19], because it does not require the use of a rotating frame for 

antennas and modules and the distance remains unchanged at any incidence angle. 

However, this method is applicable only for lightweight samples that can be mounted 

vertically. 

THz radiation penetration depth 𝐷𝑃, defined as the distance from the surface into the 

dielectric at which the traveling wave power drops to e-1 from its value at the surface, 

can be expressed as [60]: 

                   

1 2
1 2

2
''

' 1 2
1 1

2 (2 ) '
pD

 

  

−    
= + −   

     

                  (5. 10) 
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It should be noted that we are not applying the empirical model for scattering at 79 GHz. 

Therefore, considering Table 5.1 data and Equation (5. 10), the maximum penetration 

depth is reached at 150 GHz and is in the range from 0.7 to 0.8 mm, which is more than 

the thickness of most sandpapers (see Table 5.3). In this case electromagnetic radiation 

is propagated in the air outside the sandpaper boundary, and reflections from objects 

outside the paper are cut off by time gating. At higher frequencies, the penetration does 

not exceed the thickness of the sandpaper. Thus, there is reflection from the surface 

and volume, and our experiment can be regarded as a special case of the scenario 

considered in [136]. 

 

 

5.6 Results and discussion 

In this section the results of normalized RCS measurement for sandpaper with grits of 

40, 80, 120, and 240 at different low THz frequencies (79, 150, 300, 670 GHz) are 

presented and compared with the empirical model, which is described in Section 5.4.1. 

As can be seen from Table 5.3, the considered combinations of roughness and 

frequencies cover all possible ranges - from very smooth to rough surface. At a 

frequency of 79 GHz, all surfaces will be smooth or relatively smooth, and at a frequency 

of 670 GHz, most of them will be rough or relatively rough. The frequencies of 150 GHz 

and 300 GHz are intermediate options between these two extremes.  

To avoid dependence of the result on any potential texture, which may happen during 

abrasive layer deposition or bends, we have changed orientation of the sample by 

rotating it within the same imaging plane. For convenience of measurement, each 

sample was rotated by a step angle and measured, clockwise and anticlockwise. In the 

paper we refer to different measurements of the same sample. In the figures below, 

normalized RCS are represented as smoothed curves using a third-degree polynomial 

approximation. 
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5.6.1 Normalized RCS in Vertical Polarization 

As a reference point, we chose a radar with a centre frequency of 79 GHz and 4 GHz 

bandwidth. The measured normalized RCS 𝜎𝑉𝑉
°  at 79 GHz is shown in Figure 5. 6a for 

different sandpapers. The results were averaged over six or more measurements; the 

error bars show the obtained standard deviation. 

As can be seen from Figure 5. 6a, except for the final part of the graphs (grazing angle 

above 70°), the difference between 𝜎𝑉𝑉
°  of four sandpaper grits is within the accuracy of 

the measurement. At large grazing angles, the backscattering is highest because the 

geometry is close to specular reflections direction. However, this is outside the range of 

angles of interest for automotive pre-emptive sensing. When the angle decreases, the 

backscattering signal decreases for all samples equally. Indeed, based on the values of 

sandpaper electromagnetic roughness (Table 5. 3), all these samples are electrically 

“smooth”. Signal is mostly reflected away from the radar and the difference in 

backscattered signals would be insufficient for reliable classification. 

The angular width of the specular reflection region depends on the antenna beamwidth. 

As the grazing angle decreases, the power 𝑃𝑟 of the backscattered signal drops down to 

almost noise level. In accordance with equation (3. 11), this power drop is a result of a 

decrease in the normalized RCS 𝜎0 (equation 3. 8). 

In Figure 5. 6b, the result of normalized RCS 𝜎𝑉𝑉
°  measurement at 150 GHz is shown as a 

function of a grazing angle. The graph clearly shows the difference in reflection from 40-

grit sandpaper compared to all other grits. Indeed, based on Table 5. 3 in the first case 

we have a moderately rough surface with electromagnetic roughness 0.34 and in all 

other cases a smooth surface with electromagnetic roughness less than 0.2. 

In accordance with the Fraunhofer criterion (equation 5. 1), the diffuse reflection region 

for sandpaper with grit 40 occurs at a grazing angle above 35°. The normalized RCS of 

40-grit sandpaper reduces at lower angles however it remains considerably higher than 

for smoother sandpapers. 

Figure 5. 6c depicts the result of 𝜎𝑉𝑉
°  measurement at 300 GHz as a function of a grazing 

angle for sandpapers with 40, 80, 120 and 240 grit. The reflection of a signal from 40-

grit sandpaper is diffuse in almost the entire range of grazing angles, and in accordance 

with equation (5. 1) it has a specular reflection mechanism only below 17°.  
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No considerable differences were found in backscattering from sandpaper with grit 80 

and 120. This is in some contradiction with the data in Table 5.3 where at a frequency 

of 300 GHz the electromagnetic roughness of sandpaper with grit 80 is 0.41 (mainly 

diffuse reflection), and sandpaper with grit 120 is 0.19 (mostly specular reflection). As 

discussed above in the Section 5.4.1, the properties of the backscattered signals are 

determined not only by the roughness of the surface, but also by its dielectric constant. 

The results for 𝜎𝑉𝑉
°  as a function of the grazing angle are shown in Figure 5. 6d for 

670 GHz. Graphs presented in Figure 5. 6d significantly differ from the previous results 

Figure (5. 6a–c), Reflection from all types of sandpaper, except for sandpaper with grit 

240, is predominantly diffuse. According to the Fraunhofer criterion, this reflection 

pattern is preserved, depending on the size of the grit, until the angle decreases to 15°-

25°. With a further decrease in the grazing angle, the normalized RCS rapidly decreases. 

At the same time, an expected trend for return power is observed: the higher the 

roughness of the surface, the greater the power of the reflected signal. Reflection from 

240-grit sandpaper is generally specular; the graph is characterized by a peak at high 

grazing angles with the width depending on the width of the antenna beam, and a rapid 

decrease at lower angles. 

 

( a) 
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( b) 

 

( c) 
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( d) 

Figure 5.6: The normalized RCS 𝝈𝑽𝑽
° : (a) 79 GHz, (b) 150 GHz, (c) 300 GHz, and (d) 670 GHz. 
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Figure 5.7 shows discrete values of normalized RCS 𝜎𝑉𝑉
°  versus electromagnetic 

roughness (see Table 5. 3) for different sandpapers at a grazing angle of 10°. The general 

trend for the normalized RCS to increase with increasing 𝑘ℎ is clearly seen. 

 

Figure 5.7: normalized RCS 𝝈𝑽𝑽
°  as a function of  electromagnetic roughness at a grazing 

angle of 𝟏𝟎°. 
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5.6.2 Measured and Calculated Normalized RCS 

Figure 5. 8 depicts the measured and calculated normalized RCS at different signal 

polarizations: 𝜎𝑉𝑉
° , 𝜎𝐻𝐻

° , and 𝜎𝐻𝑉
°  as a function of grazing angle increment. In this section, 

only reflection from sandpaper with two extreme values of roughness (grit 40 and grit 

240) at two frequencies (150 GHz and 600 GHz) are considered, since the above 

examples illustrate well the general dependencies. The theoretical values are calculated 

using the empirical model explained in Section 5.4.1.  

All considerations regarding the behaviour of the graphs at different frequencies 

depending on the roughness of the surface, made during the discussion of Figure 5. 6a-

d are valid for this case. As can be seen from the Figure 5. 8a-d, at higher grazing angles 

the graphs for signals with horizontal and vertical polarization coincide within the 

measurement accuracy. It follows from Equation (3. 13) that in all cases 𝜎𝐻𝐻
° /𝜎𝑉𝑉

° ≤1, and 

a noticeable difference between normalized RCS manifests itself with a decrease in the 

grazing angle. Calculations show that with an increase in the relative permittivity of the 

surface material, this difference also increases. In the example under consideration, εr 

of the sandpapers at a frequency of 150 GHz lay in the range from 3.6 to 4.9 (Table 5.1). 

In the case of real road surfaces, the relative permittivity value can vary within a much 

wider range, for example, from 4.27 to 15.20 at 4.8 GHz [136].We can expect that certain 

similar differences will exist in the low THz frequency range. This will make the 

difference between the curves 𝜎𝐻𝐻
°  and 𝜎𝑉𝑉

°  more noticeable and simplify the task of 

classifying surfaces. 

As can be seen from Figure 5. 8a-d, at grazing angles less than about 50°, the 

experimental results are in good agreement with normalized RCS calculated according 

to (5. 3) - (5. 5). This allows us to draw a conclusion about the applicability of the 

empirical scattering model, introduced in Section 5.4.1, for the low THz range of signals. 

It should be noted that the empirical model could not be used for the cases of specular 

reflections which take place at high grazing angles. However, as already mentioned, the 

low grazing angles is interesred, and therefore this limitation does not seem significant. 

The normalized RCS for cross-polarized signal 𝜎𝑉𝐻
°  (𝜎𝐻𝑉

° ) are significantly weaker than 

for co-polarized signal. In accordance with the empirical model, cross-polarized 

backscatter ratio q (equation (5. 4) ) does not depend on the grazing angle. Indeed, in 

the case of 40-grit sandpaper, at a signal frequency of 150 GHz in the range of angles 
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from 30° to 90°, the difference between the co-polarized and cross-polarized signal is 

about 16 dB (Figure 5. 8a). At a signal frequency of 670 GHz, this difference was about 

14 dB (Figure 5. 8b)). Similar dependences are observed for paper with grit 240 (Figure 

5. 8c-d). 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.8: Measured and calculated normalized RCS: (a) grit 40 at 150 GHz, (b) grit 40 at 670 
GHz, (c) grit 240 at 150 GHz, and (d) grit 240 at 670 GHz. 
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Table 5.4 shows the ratio q measured in the range from 30° to 90°. As can be seen from 

the table, for each sample and frequency, this ratio varies within relatively small limits 

over the specified range of grazing angles. 

 

As can be seen from Figure 5. 8a–c, at low grazing angles, there was some difference 

between the model and the experiment. This may be the result of the backscattering 

return power approaching the noise floor of the instrument. This effect is especially 

noticeable when measuring cross-polarization returns σ𝑉𝐻
°  (σ𝐻𝑉

° ), since the power of the 

backscattered cross-polarized signal becomes very small. In addition, the sandpaper 

sample is not ideally flat which affects the accuracy of the measurements for small 

grazing angle wherein the sample’s unevenness becomes more relevant. 

 

 

 

 

 

 

 

 

 

 

Table 5.4. Cross-polarized backscatter ratio q, dB 

Grazing angle 30° 60° 90° 

Grit 40, 150 GHz -16 -16 -17 

Grit 40, 670 GHz -13 -14 -14 

Grit 240, 150 GHz -26 -26 -26 

Grit 240, 670 GHz -19 -20 -22 
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5.6.3 Discussion 

The difference in the power of the vertically polarized and horizontally polarized signal 

allows us to conclude about the dielectric parameters of the surfaces. In real road 

conditions, due to different dielectric permittivity, the difference between signals 

backscattered from different surfaces will be significantly larger than in the experiment.  

For example, in [140]  it is shown that at a frequency of 94 GHz the effective dielectric 

constant of road surfaces varies from 2.5 for dirt road to 4.2 for concrete. If we assume 

that the roughness of these surfaces is the same, then in accordance with (5. 3) - (5. 5), 

due to a different dielectric constant, the difference between normalized RCS of these 

surfaces at 45° will be 6.5 dB. For comparison, the variations of εr measured at 150 GHz 

for sandpaper are in the range from 3.6 to 4.9 (see Table 5.1). This gives us the difference 

of normalized RCS due to εr of about 2.6 dB. In particular, the analysis of backscattered 

signals can be used to determine surface moisture to detect ice and water [19,133] . 

The backscattered cross-polarized signal also carries information about the properties 

of surfaces (roughness and dielectric constant); however, its low power at low grazing 

angles can make it difficult to extract and analyze the parameters of such a signal. The 

ability to use such information will depend on the practical implementation of the radar. 

The absolute values of the reflected signals cannot serve as a reliable basis for surface 

identification, since they depend on the individual parameters of the transmitter and 

the receiver, their installation accuracy, antenna radome contamination (dirt, mud, 

snow, etc.). Therefore, the use of co-polarization and cross-polarization ratios, together 

with other signal characteristics, will give more reliable classification results. 

The ability to distinguish surfaces gives good prospects for imaging radar in recognizing 

road markings, which may be important when developing autonomous cars [35]. As 

shown in [131,132], wide band 79 GHz automotive radar allows sufficiently accurate 

image segmentation and classification of surfaces and obstacles which are the key 

technologies to provide valuable information for path planning in autonomous driving. 

From these results, it follows that increasing the frequency of the radar can potentially 

lead to more accurate discrimination of a larger number of surfaces. 
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Let us now consider the effect of surface clutter return on the recognition of road 

objects. The results of measuring surface RCS lead to important conclusions about the 

degree of this influence. The normalized RCS decreases rapidly with decreasing grazing 

angle (increasing distance). Therefore, the power of the signal reflected from the road 

surface which is proportional to 𝜎 𝑅0
4⁄  (equation (3. 9) will decrease faster than the 

power of the signal reflected from the considered as point targets road objects which is 

proportional to 1 𝑅0
4⁄ . This leads to an increase in signal-to-clutter ratio. Let us say that 

in the case of 40 grit sandpaper at a frequency of 300 GHz, this ratio was 0 dB at an angle 

of 45°. Then, as follows from Figure 5. 6c, with a decrease in the angle to 10°, due to a 

decrease in the normalized RCS, this ratio will increase to approximately 10 dB. Of 

course, we must consider that with a high-resolution radar, even road objects will be 

area scatterers so the simple  1 𝑅0
4⁄  rule does not really apply to them. However, the 

obtained results give us confidence that such techniques might be feasible and with the 

range of hundreds of metres, reflection from the road surface will not impede the 

recognition of objects.  
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5.7 Conclusion 

The aim of this work was to study the characteristics of low THz signal reflection from 

surfaces with different roughness in terms of applicability in automotive radars. it should 

be noted that how the reflected signal from the road surfaces can be used to classify 

surfaces.   The radar with frequencies: 79 GHz, 150 GHz, 300 GHz, and 670 GHz were 

examined and measured the backscattering from sandpaper with grit 40, 80, 120 and 

240. The resulting frequency and grit combinations cover all possible variants, from very 

smooth to very rough surfaces. 

In general, three areas can be distinguished in the graphs of normalized RCS of co-

polarized signal:  

1. The initial section of the graph relates to the dominant specular reflection region, 

where the reflected signal is weak and rapidly decreases with increasing distance 

(decreasing grazing angle). The power of such a signal is likely to be insufficient 

for the classification of surfaces. 

2. The diffuse reflection region, the extent of which is determined by the 

Fraunhofer criterion, where the reflected signal is strong enough for 

distinguishing surfaces with different roughness. This region may be almost 

absent when the signal is reflected from a smooth surface when the power of 

backscattering signal is low. 

3. The third distinctive region where the level of the reflected signal is maximum, 

its angular range depends on the beamwidth of the antenna. The smoother the 

surface, the more prominent this region. With a very rough surface, this region 

is barely visible. 

The use of a signal in the low THz range allows us to obtain diffuse reflection from road 

surfaces, which are smooth surfaces at the usual frequencies of automobile radars (24 

GHz or 79 GHz). 

The results of proposed experiments showed that the Fraunhofer criterion could serve 

as a sufficiently accurate guideline for determining the surface roughness 

characterization in the low THz range. The empirical scattering model, discussed in 

Section 5.4.1, showed good accuracy in diffuse reflection area in comparison with our 

measured result in the low THz range; it provides an important understanding of the 
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features of radar signal backscattering. However, its use requires knowledge of the 

properties of surfaces, including roughness and the dielectric constant. 

This work provides an insight into the effects of surface roughness on signal 

backscattering, which will play an important role in understanding the complex problem 

of signal reflection from actual road surfaces. The results obtained will allow selection 

of the features of the backscattered signal to effectively distinguish between road 

surfaces.  

The novelty and importance of these results lie in the experimental demonstration of an 

advantage of moving higher in frequency for the automotive surface ID radar in terms 

of increased normalized RCS measured at various conditions and range of grazing angles, 

in confirmation of the applicability of the known models of signal backscattering to the 

region of low THz frequencies, and in substantiating the possibility of surface 

identification by analyzing the parameters of polarized backscattered signal. 
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5.8 Summary 

This chapter reports the radar signal backscattering within the mm-wave and low THz 

frequency range of 79 GHz, 150 GHz, 300 GHz, and 670 GHz and from the sandpaper 

with grit 40, 80, 120 and 240 to demonstrate benefits of low THz radar for surface 

identification for automotive sensing. 

In section 5. 3 the Fraunhofer criterion was discussed as a guideline for determining the 

type of backscattering (specular and diffuse). 

The responses of four sandpapers, made of similar material, but of different roughness 

were measured and their normalized radar cross sections were estimated as a function 

of grazing angle and polarization. The experimental technique developed in this work 

provides backscattering coefficient (normalized radar cross-section) measurement with 

high accuracy, as a function of frequency, polarization, and grazing angle. 

The results show that the Fraunhofer criterion could serve as a sufficiently accurate 

guideline for determining the surface roughness characterization in the Low THz range. 

The empirical model showed good accuracy in comparison with measured results in the 

Low THz range; it provides an important understanding of the features of radar signal 

backscattering. However, its use requires knowledge of the properties of surfaces, 

including roughness and the dielectric properties of the surface material. The results 

obtained will provide reference information for creating remote surface identification 

systems for automotive use, which will be of particular advantage in surface 

classification, object classification and path determination in autonomous automotive 

vehicle operation.
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Chapter 6:  Surface classification based on low THz radar 
imaging using convolutional neural network 

6.1 Overview 

As mentioned in previous chapter the development of an automotive surface 

recognition system is an important and yet unsolved task. So, in this chapter, a novel 

approach to surface classification has been considered based on the analysis of the Low 

THz radar images, using convolutional neural networks (CNN). Firstly in section 6.3  it 

shows the promising results which were published in [151] in classification of surfaces 

(sandpapers) with known roughness in laboratory conditions using 150 GHz and 300 GHz 

radars. The proposed experimental technique in combination with a convolutional 

neural network provides high surface classification accuracy.  And secondly in section 

6.4 the novel approach has been applied to the data of actual road scenes collected 

during outdoor trials, obtained using 79 GHz scanning radar and creating the real road 

surface images. Finally in order to classify the surfaces with a neural network, the unique 

dataset based on the gained radar images has been produced. The proposed dataset 

contains different types of road surfaces which are labelled in six different classes for 

road surface classification tasks. The proposed study provides high surface classification 

accuracy and has been published in [152]. The work described in this chapter and in the 

mentioned publications [136,137] was carried out and both publications were written 

by the author of this thesis under supervision of the co-authors of the papers, Professor 

Gardner and Professor Gashinova and Dr Bystrov. 
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6.2 Introduction  

The first works on the recognition of road surfaces using stationary radar appeared back 

in the 1980s and since then the topic has attracted constant attention by researchers 

and the automotive industry. Although during recent years there has been great 

progress in AV development, there are still some unsolved tasks, among them the 

development of surface identification (Surface ID) system. This system should remotely 

classify the road surfaces and alert the driver or AV computer to potentially hazardous 

road surfaces, ice, standing water or changes in road path, which will allow the vehicle 

to remain safely under control as it transitions from one surface to another, reducing 

costly damage, avoiding injury  and saving lives. Automatically adapting vehicle speed to 

surface conditions is an essential step in providing autonomous driving. In four-wheel 

drive vehicles, Surface ID system will enable two or four-wheel drive to be selected as 

appropriate, therefore also helping to reduce CO2 emissions. 

There are different sensor technologies for road surface classification, such as optic 

cameras [6-10], light detection and ranging (LIDAR)[11,12], sonar[5,13], and radar [14-

22]. LIDAR uses laser light and because of high resolution has the advantage of detecting 

small objects. Optical cameras are cheap, lightweight, they produce an easily 

understandable colour image of the scene and they support sufficient range. In addition, 

stereo cameras provide a depth map where distance to the object can be evaluated by 

disparity of cameras. However, severe weather conditions negatively affect the 

performance of LIDAR and optical cameras. Furthermore, optical cameras require 

adequate visible radiation levels and have poor performance in limited lighting 

conditions. The advantages of sonar are the small size of a transceiver, simplicity and 

cheapness combined with high range resolution. On the other hand, the sonar has a low 

range (usually up to 6-8 meters), and it is mostly used in parking sensors. To provide 

partial or full autonomy, automotive sensors for surface classification should be 

operational under all weather conditions, including rain, snow and fog, and at any time 

of the day. Unlike LIDAR, optical sensors and sonar, radar sensors have the advantage 

of robust operation in harsh weather and lighting conditions [23-25].  

As mentioned previously, because of the advantages of  operating in high frequency 

ranges , currently, one of the trends in the development of automotive radars is to 

increase the operating frequency from 24 GHz to 79 GHz and higher. However by 
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increasing the operating frequency the signal backscattering from road surfaces needs 

to take into account. 

Our research is based on the theory of electromagnetic signal backscattering from rough 

surface; Some of the important parameters which highly influence the surface 

backscattering are: surface roughness, characterized by root-mean-square (rms) height 

and correlation length; dielectric property of the surface material, which largely 

depends on its moisture content; and radar operational frequency. The backscattering 

coefficient of a distributed target as explained in equation (3.4) is an ensemble average 

of the radar cross section σ per unit of illuminated surface area A. In chapter 5 the results 

of experimental verification of this theory have been presented for low THz frequency 

range. For the considered case of automotive radar, the diffuse backscattering is of 

particular interest. Indeed, an increase in the power of the reflected signal occurring in 

this case allows a more accurate classification of the type of road surface. In contrast, 

the power of the signal backscattered from a smooth road surface is low and is not 

sufficient for surface differentiation. Most road surfaces are effectively smooth when 

low frequency radar signals are used. In order to evaluate the surface roughness relative 

to wavelength the Fraunhofer criterion (5. 1) can be expressed in terms of 

electromagnetic roughness (kh) as explained in equation (5. 2) and based on that surface 

may be considered relatively smooth if its kh<0.2 and very rough if its kh≥2. From the 

Fraunhofer criterion it follows that with an increase in the frequency of the radar, its 

ability to distinguish surfaces improves. For example as its expressed in figure 5.2 rough 

asphalt with h=0.90 mm and smooth asphalt with h= 0.33 mm. For a radar with a 

frequency of 79 GHz (wavelength of 3.8 mm) with an incidence angle of over 82°, both of 

these surfaces will be smooth and indistinguishable (5. 1). At the same time, a radar with 

a frequency of 300 GHz (wavelength of 1 mm) will be able to distinguish them even at 

an incidence angle of 88°. Let us assume that the radar is mounted at a height of 1 m 

above the road. An angle of 82° corresponds to only 7 m, and an angle of 88° - of almost 

30 m. 
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In this chapter the performance of low THz imaging radar in the Surface ID task has been 

analyzed. This became possible by improving the resolution of the radar with increasing 

frequency, bandwidth, and using a signal wavelength commensurate with the roughness 

of the road surface. This work will allow us to subsequently move on to surface 

recognition using low THz radar. 

As mentioned above, road surface classification using different sensor technologies has 

been investigated in many works, including those related to radars operating in the 

millimeter wave (mmWave) range up to 100 GHz [20-22], however there is no evidence 

of the study on recognition of different road surfaces based on the analysis of data 

obtained using imaging radar at frequencies corresponding to definition of low THz (0.1 

THz-1 THz). The novelty of this work is the use of imaging radar to recognize road 

surfaces within the range of low THz radar and classify them by application of neural 

networks.  

In [26,133], attention was focused on the practical implementation of the surface 

recognition system. In [133] the combination of 24 GHz polarimetric radar and 40 kHz 

sonar was used to classify different road surfaces (asphalt, grass, gravel, sand and 

bitumen) in various weather condition (ice, snow, and rain). Different statistical 

classification methods were used for surface identification, and the most accurate 

between them was multilayer perceptron (MLP), which is a class of feedforward artificial 

neural network (ANN). When using MLP, the classification accuracy of fourteen surfaces 

exceeded 95%.  
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6.3 Surface classification based on Low Terahertz Radar Imaging and 
Convolutional Neural Network 

The new approach to road surface recognition considered here is based on analysis of 

surface images using a convolutional neural network (CNN). The novelty of this work is 

the use of imaging radar to recognize road surfaces. This became possible by improving 

the resolution of the radar with increasing frequency, bandwidth, and using a signal 

wavelength commensurate with the roughness of the road surface. In this section only 

the results obtained in controllable conditions are present at very short ranges due to 

currently limited power available from used instrumentations, as will be described in 

next sub section. In section 6.4 the results of actual road surface classification in outdoor 

trial are presented. 

6.3.1 The experimental setup  

The experiment was conducted at the Terahertz measurement facility of the University 

of Birmingham. The centrepiece of the facility is the Keysight N5247B vector network 

analyser (VNA), which is capable of measurement of the full two-port scattering 

parameters in the frequency range up to 1.1 THz using the frequency converter units as 

explained in section 3.2.1.3. The experimental setup is shown in Figure 6.1. The aim is  

to distinguish the patch of sandpaper of different roughness against the surface of the 

floor, which ultimately should lead to image segmentation and surface identification. 

 

 

 

 

 

 

 

 

 



 
Chapter 6: Surface classification based on Low THz radar imaging using Convolutional 
neural network 

 

  

  Page 151 

 

 

 

 (a) 

 

(b) 

Figure 6.1: Experimental setup (a) system schematic (b) actual system configuration 
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In order to obtain high-resolution radar images, two fan-beam horn antennas were 

used, having a narrow beamwidth in azimuth direction to provide a high angular 

resolution in azimuth and a wider beamwidth in vertical direction to deliver the required 

wide illuminated footprint along the path. The bandwidth of the sweep is 8 GHz for 150 

GHz and 16 GHz for 300 GHz radar to achieve the sub-cm range resolution.  The antennas 

parameters and specifications of the measurement system components are provided in 

Table 6.1. 

Table 6.1: Parameters of the measurement system 

Parameters 150 GHz 300 GHz  

Frequency Band  142-150 GHz 282-298 GHz 

Sweep Bandwidth  8 GHz 16 GHz 

Antenna Azimuth Beamwidth  22° (-3 dB) 22° (-3 dB) 

Antenna Elevation Beamwidth 2.2° (-3 dB) 2.2° (-3 dB) 

Antenna gain 30 dBi 29 dBi 

Antenna External Dimensions 9x80 mm 9x65 mm 

Far Field  6.4 m 8.19 m 

Range resolution 18.7 mm 9.4 mm 

 

As a test surface, the sandpaper with grits 40, 80, 120, 240 and 320 was used. The 

roughness parameters were measured in [150] and shown in Table 6.2. Using sandpaper 

allows carrying out experiments with surfaces, the roughness of which is known and lies 

within the controlled limits. The sandpaper is laid on the carpeted floor and located at 

an average distance of 45 cm from the antennas. Such a short distance is chosen only 

due to limited power of used THz VNA transmitter.  
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The test surface is stationary, the quasi-monostatic radar with two closely spaced Tx and 

Rx antennas rotates on a turntable which is controlled by computer and allows the radar 

system scanning in azimuth. The horn antennas azimuthal beamwidth is 2.2° one way, 

so the antennas increment angle is set to half the beamwidth (1.1°). In order to provide 

the image of the whole scene with the sandpaper with dimension of 23 cm x 28 cm,  the 

scene was scanned from -30° to +30°. Therefore, the number of azimuthal scans forming 

each image was 60. 

Table 6.2: Sandpaper Parameters 

Grit 
Surface 

rms, mm 
Electromagnetic roughness kh 

79 GHz 150 GHz 300 GHz 670 GHz 

40 0.13 0.18 0.34 0.69 1.55 

80 0.07 0.10 0.19 0.38 0.84 

120 0.03 0.05 0.09 0.19 0.42 

240 0.02 0.02 0.03 0.06 0.14 

320 0.01  0.03 0.06  

The range profiles produced at each azimuth position are augmented to produce the 

image of the scene as explained in section 3.5 . The polar range profile is then converted 

to the Cartesian x-y surface. The intensity images were generated in MATLAB.  In the 

next section, the radar images of sand paper with different roughness (grits of 40, 80, 

120, 240, and 320) at 150 GHz and 300 GHz are presented and the results are discussed. 
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6.3.2 Experimental results and Analysis 

6.3.2.1 Images of samples 

From electromagnetic roughness values, presented in Table 6.2, it follows that at 150 

GHz only 40 grit sandpaper can be considered as a rough surface and at 300 GHz both 

40 and 80 grit sandpapers will generate diffuse reflections. This conclusion is confirmed 

by the images below. In figure 6. 2, 150 GHz radar images of sandpaper with grit 40 and 

80 are presented. The patch of sample with grit 40 is clearly distinguishable from the 

background, but the backscattering from the sandpaper with grit 80 is not. This effect is 

observed for remaining finer grade patches and not shown here. 

 

(a) 
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(b) 

Figure 6.2: 150 GHz radar images of sandpaper with grit (a) 40 and (b) 80, the rectangle 
shows the position of the sample 
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In Figure 6. 3, the images of sandpapers with grit 40, 80, 120, 240 and 320 obtained at 

300 GHz are shown. In Figure 6. 3a-c sandpaper patches with grit 40, 80, and 120 are 

clearly seen due to their high diffuse backscattering effect. This effect is much less in the 

case of sandpaper with 240 grit and its image merges with the background. The 

appearance of specular reflection can be observed in Figure 6. 3e as can conclude from 

consideration of the low reflected power region within the bounding box corresponding 

to the patch. 
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(b) 
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(d) 

 

(e) 

Figure 6.3: 300 GHz radar images of sandpaper with grit (a) 40, (b) 80, (c) 120, (d) 240, and 
(e) 320. the rectangle shows the position of the sample 
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6.3.2.2 Backscattering coefficient 

The reflective properties of a surface are characterized by its backscattering coefficient. 

As mentioned in equation (3. 8), the backscattering coefficient of a distributed target is 

an ensemble average of the radar cross section σ per unit of illuminated area A. 

The VNA, used in our experiment, is primarily intended for measuring scattering in terms 

of S-parameters, which are complex matrix elements that show reflection/transmission 

characteristics (amplitude and phase) in frequency domain. As was shown in equation 

(3. 9), the radar cross section can be calculated as 

2
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where S21  is the measured transmission coefficient and S21f   is the transmission 

coefficient in free space. Because the area A is the same in all our experiments, the radar 

cross section σ and the backscattering coefficient σ0 are proportional to S21. 

As mentioned in section 5.4.1 one of the most well known empirical models for 

calculating the backscattering coefficients was proposed in [136]. This model which is 

applied for this study, is used to calculate the corresponding coefficients for the 

vertically polarized signal only and is compared with the measured values. The results 

are presented in Figure 6. 4. 
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Figure 6.4: Backscattering coefficient for vertically polarized signal,  lines represent the 
theoretically calculated curves, cIrcles indicate the experimentally measured values 

Overall correspondence is observed between the measured results and the theoretical 

calculations up to a backscattering coefficient level of approximately -40dB. Further, the 

signal-to-noise ratio drops, measurement accuracy decreases and finally the signal 

becomes indistinguishable from the noise. Deviations of the measured values from the 

theoretical calculations can be explained by the difference in the parameters of the used 

samples from those given in [150]. Since the parameters of the grit are not strictly 

standardized, each manufacturer allows some deviations from the generally accepted 

values of roughness.   

Since the above images and theoretical analysis lead to the conclusion about the limited 

capabilities of a radar with a frequency of 150 GHz for the classification of the surfaces 

under study, for this purpose only 300 GHz radar data was used. In the next section, the 

preliminary results of the classification of surfaces using convolutional neural network 

(CNN) are presented.  
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6.3.3 Classification using CNN 

CNN is a type of artificial neural network (ANN) which can automatically extract the 

features of the sample and propagate them from a low layer to a high layer through 

multiple layers of convolutional operations and generate the output in the form of class. 

CNN has been successfully applied for many applications such as image and speech 

recognition, object detection and pattern recognition [153]. CNN utilizes weight-sharing 

which reduces the number of weights in comparison to ANN, therefore as a result the 

network is faster and has lower memory requirements. The 2-dimensional image can be 

fed to the CNN directly without converting to 1-dimensional image (which is necessary 

for ANN). This gives the benefit of maintaining the spatial properties of the image. By 

using actual raw image data as an input, the pre-processing of image is no longer 

needed. In this regard, among other autonomous vehicle path planning algorithms, such 

as [131,132], CNN have recently been widely used in processing data coming from 

optical [154] and radar sensors [155,156]. 

The main focus of this section is to classify sandpaper radar images, which simulate 

examples of various road surfaces, based on their roughness. Because of mentioned 

advantages of CNN in other applications of machine learning model, the CNN was chose 

to classify the sandpapers with different grits.  

6.3.3.1 Data set  

Our data set consists of the cropped sandpaper patches from raw radar images obtained 

from four types of sandpaper with various roughness: grits 40, 80, 120 and 320. Each 

patch is represented by an array of pixels (89 × 93) and their examples are illustrated in 

table 6.3. The full dataset of radar imagery, consisting of 534 different cropped patch 

images, is divided into four folder which represent four classes: grit 40 (109 radar 

images), grit 80 (126 radar images), grit 120 (240 radar images), grit 320 (60 radar 

images. The training dataset has to be larger than the testing dataset in order to avoid 

underfitting, so the training set comprised 75% of images (400 images), which were 

chosen at random, and the remaining 25% (134 images) formed the test set. In Matlab 

code the ‘’imageDatastore’’ function has been used which automatically labels the 

images based on their folder names. 
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sandpaper 
type 

Sample 1 Sample 2 Sample 3 Sample 4 

Grit 40 

    

Grit 80 

    

Grit 120 

    

Grit 320 

    
 

Table 6.3: Road Surfaces Cropped Images, 89×93 pixel 
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6.3.4 Network Architecture 

The typical structure of the CNN is composed of convolution layers (CVL), subsampling 

layers (pooling layers), followed by fully connected (FC) layers. The feature extraction of 

input sample is performed by CVL and pooling layers, while the fully connected layers 

map the extracted features into final output, such as classification. The CNN architecture 

design for the proposed sandpapers radar images classification task is illustrated in 

Figure 6. 5. The output of both CVL and pooling layer calculated by equation (2. 53). The 

network architecture state of the art has massively vary by different choices of: number 

of CVL layer, the number of kernel and their size, as well as using some techniques for 

instance , activation functions, regularization, batch normalization, which can mainly 

influence the network performance efficiency. 

For the proposed image classification, the CNN architecture has a form of: 

Input→CONV→Batch Normalization→ReLU→Pool→ Drop out→FC→Softmax→Output 

 

 

Figure 6.5: CNN schematic architecture for sand paper classification 

 

 

 

 

Next, each component of this architecture and the implementation of the CNN as a 
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whole is describe and analysed in detail. 

The 89×93×3 RGB pixel cropped sample from the raw radar image is presented as an 

input and fed to the network. The CNN performance is improved by using several 

techniques to speed up the training process and optimise the testing accuracy, such as 

batch normalization and dropout layer, which are outlined below. The parameters 

related to these learning techniques are selected based on typical values or chosen 

according to empirical studies.  

To extract the certain features of the image which can help the model to learn specific 

characteristics of the image, a convolution layer with 16 kernel size of 5×5 is applied.  

The batch normalization is applied on the outputs of CVL to speed up the network 

training and reduce the sensitivity to network initialization. Some recent studies [82] 

suggested that non-linear activation functions like Rectified Linear Unit (ReLU) 𝑓(𝑥) =

𝑚𝑎𝑥(0, 𝑥) improves both learning speed and classification performance in comparison 

with traditional neuron models. Therefore, in our CNN the batch normalization is 

followed by non-linear ReLU activation function and our testing results showed that by 

using ReLU activation function the classification performance improves by 4% from 93% 

to 97%.  

The max pooling layer with filter size of 2×2 and stride of 2 pixel is applied to reduce the 

number of dimensions of the image without losing important features or patterns to 

make the learning easier/faster and to avoid overfitting. Dropout is a regularization layer 

which zeroes-out the random number of neurons during training to prevent the 

overfitting.  

In our proposed CNN model, the drop-out rate of 0.3 is applied during training, so the 

neuron activation output is multiplied by 0.7 during testing.  

The convolutional and max pooling layers are followed by one fully connected neural 

layer with 4 neurons which correspond to the number of different sandpaper grits under 

consideration and combines all the features learned by the previous layers in order to 

classify the image. The SoftMax function [157] then generates a vector of probabilities 

with one value for each possible class.  

 

The output result is a probability of the image belonging to one of four classes where 
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the maximum value indicates the predicted sandpaper grit.  

After designing CNN network architecture, the network needs to be trained. In this study 

the stochastic gradient descent has been used with momentum (SGDM) optimizer [158] 

with the default value learning rate of 0.01 to speed up the training process. All the data 

processing and the CNNs training were performed in MATLAB which was written by 

author of this thesis. 

Too many layers can add unnecessary complexity and may overfit the network without 

improving the performance. Our proposed shallow CNN with one convolutional layer 

provides less computation and training time and reduces the number of parameters to 

be learned, while achieving a suitable classification accuracy.  

6.3.5 Sand paper classification result 

The classification performance of the proposed CNN-based model was evaluated 

preliminarily on limited number of  300 GHz radar images of sandpaper with four 

different grits, namely 40, 80, 120, and 320. The images were precisely cropped by 89×93 

pixels. As mentioned before the training set comprised 75% of images, which were 

chosen at random, and the remaining 25% formed the validation set. The model was 

trained over 50 epochs.  

The accuracy A is the number of correct predictions made by CNN, divided by the total 

number of predictions [159]: 

                        
TP TN

A
TP FP TN FN

+
=

+ + +
                                                       (6. 1) 

where TP is true positive which denotes items that are correctly identified. For example, 

for the reference class ‘grit 40’, TP are sandpaper images with grit 40 which correctly 

identified as 40 grit sandpaper. FP are false positives and they are items incorrectly 

identified, for example sandpaper image with grit 80 classified as 40 grit sandpaper. TN 

are true negatives and they are all the images correctly rejected from the 40 grit 

sandpaper reference class. Finally, FN are false negatives and they are items from the 

reference class which are wrongly classified (40 grit sandpaper classified as 80 grit 

sandpaper, for example). 
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 The accuracy on the testing set is presented in the form of a confusion matrix in Table 6. 

4. The four columns refer to four sandpaper actual grits, and the rows represent the 

resulting grits to which the analysed sandpapers were attributed by the developed CNN-

based model. As can be seen from the confusion matrix, in case of sandpapers with grits 

320, all samples were correctly classified. Two samples with roughness of 40 grit were 

classified incorrectly as 120 grit and two 120-grit samples were classified incorrectly as 

having 40 grit roughness. Four samples of 80 grit sandpaper were classified incorrectly as 

having grit 120. Thus, the accuracy of the correct recognition of samples was on average 

97 percent. 

 

 

 

 

 

 

The recall, precision, and F1-score [160] have been used in the performance analysis: 

 

( )

TP
recall

TP FN
=

+
                                                       (6. 2) 

 
( )

TP
precision

TP FP
=

+
                                                   (6. 3) 

 
1

2

( )

recall precision
F

recall precision

 
=

+
                                             (6. 4) 

Applying the proposed approach within the existing set of data can result in achieved 

precision, recall, and F1-score of 97.7%, 97.5%, and 97%, respectively.   

  

  Grit 40 Grit 80 Grit 120 Grit 320 

A
ct

u
a
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Grit 40 
79 0 2 0 

Grit 80  
0 90 0 0 

Grit 120 
2 4 178 0 

Grit 320 
0 0 0 45 

 
Table 6.4: Confusion Matrix of the Classification Results 
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6.4 Road Surface Classification Based on Radar Imaging Using 
Convolutional Neural Network 

In the previous section (6.3) an approach to surface identification based on the analysis 

of the sub-THz radar images using a convolutional neural network (CNN) has been 

presented. The promising results in classification of surfaces with known roughness 

were obtained in laboratory conditions using 150 GHz and 300 GHz radars. 

In this section the performance of mmWave 79 GHz imaging radar in the Surface ID task 

is analysed. This work will allow us to subsequently move on to surface recognition using 

sub-THz radar. In this study the novel approach has been applied to the real road surface 

images, obtained using 79 GHz scanning radar. This technique makes it possible to solve 

an important outstanding task in the implementation of autonomous vehicles and 

classify different road surfaces (asphalt, mud, gravel, river, rocky road and uneven 

countryside road). Increasing radar frequency from 24 GHz to 79 GHz allows increasing 

radar bandwidth and therefore higher range resolution. Moreover, the shorter signal 

wavelength provides increased interaction with the physical surface texture, giving 

additional information due to more diffuse scattering. An experimental imaging radar 

with mechanically scanned fan beam antennas has been used. In this research, the 

dataset created from the 79 GHz scanned fan beam radar data. This dataset consists of 

cropped images of different types of road surfaces which are labelled in six different 

classes for road surface classification tasks. 

In the following sub sections, the methodology of data collection is described, also the 

radar images of different road surfaces with various properties and roughness, 

captured with 79 GHz radar, are presented and analysed. In section 6.4.3, the six types 

of surfaces are classified with CNN based on their images. 

 

 

6.4.1 Methodology of Data Collection 

The purpose of this research was to test the performance of mmWave imaging radar in 

classification of different road surfaces with different characteristic such as rms 

roughness, texture, composition, and surface structure. In order to achieve the goal of 
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this research, the backscattered radar signal data from different road surfaces was 

recorded, the corresponding radar images were obtained by processing this recorded 

data, and finally, CNN was applied for classification. 

The asphalt radar images were taken around the campus of the University of 

Birmingham in winter 2019. The radar images of different road surfaces, such as rocky, 

gravel, muddy, uneven countryside road, and a river were recorded in Scotland during 

autumn 2019. The river can be considered as an extreme model of water on the road 

(puddles or flooded road). 

The frequency-modulated continuous-wave (FMCW) radar with a central frequency of 

79 GHz which has been designed and built in collaboration with ELVA-1 [96] was used 

for image data collection. This is shown in Figure 6. 6 along with aligned LIDAR and stereo 

camera for the ground truth optical imagery and control of the scene. The radar is placed 

in the rear of a test vehicle and approximately 1.35 m above the road surface. 

is placed in the rear of a test vehicle and approximately 1.35 m above the road surface. 

The radar signal bandwidth was set to 5 GHz to achieve about 3 cm range resolution and 

cover full automotive frequency allowance of 5 GHz (76–81 GHz). In order to obtain high-

resolution radar images, two fan-beam horn antennas were used, having a narrow 

beamwidth in azimuth direction to provide a high angular resolution in azimuth and a 

wider beamwidth in vertical direction to deliver the required wide illuminated footprint 

along the path. The horn antennas azimuthal one-way beamwidth is 2.2°, so the 

antennas increment angle was set to half the beamwidth (1.1°). The 79 GHz antennas 

were placed approximately 1.6 m above the road surface. 
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Figure 6.6: Experimental setup configuration 
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The antenna parameters and specifications of the measurement system components 

are provided in Table 6. 5. The experimental radar rotates on a turntable which is 

controlled by computer and allows the radar system scanning ± 30° field of view with a 

frequency of 0.83 Hz in azimuth. The range profiles produced at each azimuth position 

are augmented to produce the image of the scene. The polar range profile is then 

converted to the Cartesian x-y surface. The final image is formed by creating a map 

showing the backscatter power received by resolution cells, whose dimensions are 

defined by the range and cross-range resolutions as shown in Figure 6. 7 and Figure 6. 

8. The intensity images were generated in MATLAB. 

Table 6.5: Parameters of the Measurement System 

 

 

 

 

 

 

 

 

 

 

 

In the next section, the radar images obtained using the equipment described above are 

presented and analysed in terms of surface classification. 

 

 

Parameters 
 

Frequency band 77-82 GHz 

Wavelength 3.8 mm 

Bandwidth 5 GHz 

Output Power 15 dBm 

Azimuth Beamwidth 2.2° (-3 dB) 

Elevation Beamwidth 15° (-3 dB) 

Range resolution 30 mm 

Scan rate 0.83 Hz 

Azimuthal step 1° 

Total azimuthal scan 

angle 

60° 
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6.4.2 Experimental results and analysis 

In Figure 6. 7 the camera images of an asphalt road scene, even countryside road and 

muddy road are shown with corresponding 79 GHz radar imagery which shows the range, 

angular position, and intensity of reflection power. The colour bar in the following figures 

indicates the signal power in dB on an arbitrary scale. 

The texture sensitivity and high resolution of the radar imagery are clearly visible and 

prove that the diffuse backscattering from road surface occurs at 79 GHz frequency. The 

road surface is clearly visible in Figure 6.7(b) and Figure 6.7(d) due to reduced 

backscattering from the smoother texture of the actual road in comparison with 

roadsides. This is not the case in Figure 6.7(f) as greater backscattering is observed from 

actual road surface than from roadsides. Probably this can be explained by relatively 

high dielectric permittivity of water and gravel mix which forms the muddy road.  

Figure 6.8(a) is the camera image relevant to the radar image shown in Figure 6.8(b), 

where the sample area of river, gravel road, and rocky road were, respectively, 

illustrated in white box, red box, and blue box. The differences between the areas of 

gravel road, rocky road, and river can be seen clearly in Figure 6.8(b). 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

 (f) 

Figure 6.7: Photos and radar maps of asphalt road (a),(b), countryside road (c),(d), and 
muddy road (e),(f). 

 



 
Chapter 6: Surface classification based on Low THz radar imaging using Convolutional 
neural network 

 

  

  Page 175 

 

(a) 

 

(b) 

Figure 6.8: Riverside image scene: camera image (a), radar map (b); the white, red and blue 
boxes denotes to area of river, gravel and rocky road 
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The average reflected power (𝑃̃𝑅), in dB on an arbitrary scale, of river, gravel, rocky, 

countryside, muddy road, and city road (asphalt) is presented in Table 6. 6. The results 

are averaged over ten or more surfaces measurements within 2×3 m2 cells. The range 

gating up to 10 m was used to account for variability of grazing angles (from 13.5° to 

nearly 2°) specific for automotive scenarios, to remove dependence of the power 

returns (normalized RCSs) on the grazing angle for the areas of the same surface. 

Table 6.6: road surface parameters 

 RIVER ASPHALT UNEVEN GRAVEL ROCKY MUD 

rms, mm - 0.6 7 10 15 5 

𝑷̃𝑹, dB 65 77 83 84 90 91 

 

Surface roughness was measured during the experiment by taking 20 depth readings on 

20 cm of typical surface length. The impact of surface roughness on scattering is 

prominent and the reflection power is increasing by increasing the surface roughness. 

However, some other parameters like material permittivity can influence surface 

backscattering, as we can see in the case of a muddy surface which is a compound of 

gravel and water. 

The absolute values of the reflected signals cannot serve as a reliable basis for surface 

identification, since they depend on the individual parameters of transmitter and 

receiver, their installation accuracy, radome contamination (dirt, mud, snow, etc.). 

Therefore, in our work, we use radar images for surface classification. As I mentioned in 

section 2.7 for image analysis the CNN class of neural networks is most commonly 

applied.  Based on the results shown in   section 6.3.5 of this thesis,  these networks are 

well suited to the task and can be designed to be accurate, reliable and fast in terms of 

feature extraction and feature expression. 
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6.4.3 Road surface classification with CNN 

In section 6.3.3 radar images of different grits sandpapers were demonstrated which 

were obtained in laboratory conditions, to simulate examples of various road surfaces, 

based on their roughness, and then they were classified with CNN. In this section the 

main focus is on the classification of actual different road surfaces based on their radar 

images which have been taken in actual road scenarios. So, we create the dataset from 

the 79 GHz scanned fan beam radar data. Our data set consists of the cropped patches 

from raw radar images obtained from six different road surfaces with various roughness. 

Each patch is represented by an array of pixels (100×65) and their examples are 

illustrated in Table 6. 7. 

The full dataset of radar imagery, consisting of 2011 different cropped patch images, is 

divided into six classes: 

• asphalt (190 radar images) 

•  uneven country side road (445 images) 

•  muddy road (225 images) 

•  gravel road (155 images) 

• rocky road (354 images) 

•  river (642 images) 

The training dataset has to be larger than the testing dataset in order to avoid 

underfitting, so the training set comprised 75% of images (1504 images), which were 

chosen at random, and the remaining 25% (501 images) formed the test set. 
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Table 6.7: Road Surfaces Cropped Images, 100×65 pixel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surface 
type 

Sample 1 Sample 2 Sample 3 Sample 4 

Asphalt 
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For our proposed road surface classification task, The specific CNN architecture has been 

designed to classify the different radar images of  road surface and has been illustrated 

in Figure 6. 9 . The CVL and pooling layer output have been calculated using equation (2. 

53).For our proposed image classification, the CNN architecture has a form of: 

Input→CONV→Batch Normalization→ReLU→Pool→ Drop out→FC→Softmax→Output 

 

Figure 6.9: CNN simplified schematic structure for road surface classification task 

 

The 101×65×3 RGB pixel cropped sample from the raw radar image is presented as an 

input and fed to the network. The CNN performance is improved by using several 

techniques to speed up the training process and optimise the testing accuracy, such as 

batch normalization and dropout layer, which are outlined below. The parameters 

related to these learning techniques are selected based on typical values or chosen 

according to empirical studies.  

As mentioned before in order to extract the important features of the radar image which 

can help the model to learn specific characteristics of the image, a convolution layer 

with 16 kernel size of 3×3 is applied. 

 Like our previous model for classification of sandpaper radar images the batch 

normalization is applied on the outputs of CVL to speed up the network training and 

reduce the sensitivity to network initialization. In the CNN proposed here, the batch 

normalization is followed by non-linear ReLU activation function and our testing results 

showed that by using ReLU activation function the classification performance improves 

by 0.5% from 98.4% to 98.9%.  
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The max pooling layer with filter size of 3×3 and stride of 3 pixel is applied to reduce the 

number of dimensions of the image without losing important features or patterns to 

make the learning easier/faster and to avoid overfitting.  

In our proposed CNN model, the drop-out rate of 0.2 is applied during training, so the 

neuron activation output is multiplied by 0.8 during testing. The convolutional and max 

pooling layers are followed by one fully connected neural layer with 6 neurons which 

correspond to the number of surfaces under consideration and combines all the features 

learned by the previous layers in order to classify the image. The SoftMax function [157] 

then generates a vector of probabilities with one value for each possible class. The 

output result is a probability of the image belonging to one of six classes where the 

maximum value indicates the predicted road surface.  

After designing CNN network architecture, the network needs to be trained as it 

explained in section 6.3.4.  
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6.4.4 Road surface classification result  

In this section the performance of the proposed CNN was evaluated with respect to 

classification of six different road surfaces radar based on 79 GHz radar images. The 

accuracy A which is shown in equation (6. 1) is the number of correct predictions made 

by CNN, divided by the total number of predictions. 

For instance, for the reference class ‘asphalt’, TP are asphalt images correctly identified 

as asphalt. FP are false positives and they are items incorrectly identified, for example 

mud images classified as asphalt. TN are true negatives and they are all the images 

correctly rejected from the asphalt reference class. Finally, FN are false negatives and 

they are items from the reference class which are wrongly classified (asphalt classified 

as mud, for example). 

Table 6. 9 shows the accuracy of the training set in the form of a confusion matrix .The 

columns in the matrix refer to predicted classes (five types of road surfaces and river), 

and the rows represent the actual classes of surfaces. As it’s indicate in Table 6. 9 , all 

the samples of asphalt, mud, rocky road, and river was classified correctly, 332 out of 

334 images of uneven road sample were classified correctly and only  two samples were 

classified as gravel, 104 out of 116 samples of gravel road were classified correctly while 

12 sample was classified incorrectly as a uneven road. This can be explained by similar 

structures of these surfaces. Thus, the classification accuracy was 98.9%, which shows 

the best surface classification performance. 
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Table 6.8: Confusion Matrix of the Classification Results 

                             

 

 

 

 

 

 

 

The recall, precision, and F1-score as shown in equations (6. 2)-(6. 4) have been used in 

the performance analysis and we have achieved precision, recall, and F1-score of 99.1%, 

98.1%, and 98.6%, respectively, which proves the potential of imaging radar in road 

surface classification based on the surface texture and profile of the road surfaces. 
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  Asphalt Uneven Gravel Mud River Rocky 
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Asphalt 142 0 0 0 0 0 

Uneven 0 332 12 0 0 0 

Gravel 0 2 104 0 0 0 

Mud 0 0 0 169 0 0 

River 0 0 0 0 481 0 

Rocky 0 0 0 0 0 265 
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6.5 Summary and conclusion 

In this chapter firstly, a novel approach has been explored to classify the surfaces based 

on the analysis of the image obtained using the Low Terahertz radar at two frequencies 

of 150 GHz and 300 GHz .The mentioned techniques demonstrate the benefit of high 

frequency radar which offers higher accuracy due to sensitivity of the microwave signal 

to the surface roughness. The convolutional neural network (CNN) has been applied in 

the classification of sandpaper with different roughness (grit). The proposed 

experimental technique in combination with CNN provides good surface classification 

accuracy which laid the foundation for the subsequent work on the development of 

automotive radar for surface classification. 

 In the next stage an approach considered to surface classification based on the analysis 

of the 79 GHz imaging radar data and classifying six types of road (asphalt, mud, gravel, 

river, rocky road and uneven countryside road) with different roughness and dielectric 

properties. The unique dataset which includes cropped images of different types of 

mentioned road surfaces are labelled in six different classes for road surface 

classification tasks.  Although, the overall results show that the use of a 79 GHz scanning 

radar with subsequent image processing using a CNN allows achieving high accuracy of 

surface recognition, however this is not the fact for surfaces with similar structures, 

because as can be seen in table 6.8  12 samples of the gravel road ( rms roughness of 10 

mm) were classified incorrectly as an uneven road (rms roughness of 7 mm). Low THz 

radars, as have been demonstrated in the Section 6.3.2, are sensitive to small 

differences between surfaces parameter, which is an advantage over lower frequency 

radars. The use of 79GHz was due to availability of automotive radar, while low THz 

measurements currently could only be carried out in a laboratory, stationary. 
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Chapter 7:  Conclusion and Future Work 

7.1 Summary and Conclusion 

This chapter will conclude the study by summarising the key research findings in relation 

to the research goals, as well as proposing future plans for this research study. 

The aim of this PhD research is to study the feasibility of using low THz radar in the future 

AV. To achieve this goal the following objectives have been considered: 

• Investigating the performance of low THz sensors in the presence of different 

radome contaminants and various weather conditions 

• Studying the normalized RCS from surfaces with different roughness and 

dielectric properties for remote classification purposes. 

• Studying the performance of low THz imaging radar for surface identification task 

• Applying CNN to 79 GHz radar images in order to classify the real road surfaces, 

as a starting point for further classifications achievable with THz radar and CNN. 

The novelty and importance of these objectives, which have been successfully met in 

this PhD programme, lie in the demonstration of an advantage of moving to higher 

frequency radar for the future autonomy. The possibility of using radars with a high 

frequency even in the case of radome contamination is shown, the improvement of 

surface recognition with increasing frequency is analysed, and a new method of surface 

recognition using imaging radar is proposed and confirmed. 

To achieve the first objective of this PhD research, a set of practical and theoretical 

research work has been done which was described in details in chapter 4. The signal 

reduction due to presence of uniform layers of leaves at 300 GHz was measured and 

analysed, and the results shows that the water inside the leaves is the main cause of 

signal reduction. The transmissivity through a uniform layer of pure water, salty water 

with different levels of salt and actual seawater were measured and analysed at 300 GHz 

and 670 GHz. The reduction in transmissivity has been observed when increasing water 

thickness along with an additional slight decrease in the transmissivity observed with 

increasing water salinity at both frequencies. Additionally the results indicate that the 

attenuation due to the presence of a uniform thickness of pure water, salty water and 

actual sea water, increases with frequency. Overall, based on the above experiments 

and other research carried out by MISL group, on the radome contaminants, it can be 
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concluded that water within the contaminants is the main cause of attenuation and its 

effect is in general more detrimental at higher frequencies. 

Chapter 5 explores signal backscattering within the mm-wave and low Terahertz 

frequency range, represented by frequencies of 79 GHz, 150 GHz, 300 GHz, and 670 GHz, 

from surfaces with different roughness in regards to achieving the second objective of 

this thesis. The responses of four sandpapers, made of similar material, but with 

different roughness were measured and their normalized radar cross sections were 

estimated as a function of grazing angle and polarization. The obtained results show the 

advantages of low THz radar for surface discrimination for automotive sensing and 

provide reference information for creating remote surface identification systems for 

automotive use, in the field of surface classification, object classification and path 

determination. 

In chapter 6, an approach has been considered to surface classification based on the 

analysis of the sandpaper image with different roughness using 150 GHz and 300 GHz 

imaging radar. The CNN has been applied to radar images of sandpapers (with different 

roughness) obtained at these two frequencies. The proposed experimental technique in 

combination with CNN provides good surface classification accuracy. The achieved high 

resolution radar imagery at two frequencies of 150 GHz and 300 GHz demonstrate that 

high frequency is more favourable to provide surface identification due to sensitivity of 

the wave to the surface texture and roughness. The gained high resolution radar 

imagery of sandpapers led to the next step of this PhD research which was the 

classification of actual road surfaces. The novel approach was applied to the real road 

surface images (asphalt, mud, gravel, river, rocky road and uneven countryside road), 

obtained using 79 GHz scanning radar. A similar CNN approach which was applied for 

classifying sandpaper radar images was applied to 79 GHz actual road surfaces. The 

gained results show that the use of a 79 GHz scanning radar with subsequent image 

processing using a CNN allows us to achieve high accuracy of surface recognition. As 

mentioned previously the main goal of moving to low THz frequency in surface ID tasks 

is to collect more information from road surfaces and it was demonstrated that (based 

on the gained results of sand paper images at 150 GHz and 300 GHz radar) the high 

frequency radar images provide more information about features of the road surfaces 

even with similar structure. 
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To sum up, this PhD research clearly demonstrates the great potential of using the low 

THz radar in future autonomous car instead of traditional radar. Considering the 

expansion of the radar equipped cars and the sharp increase in the use of radar 

technology in individual cars, there would be a high possibility of frequency interference 

and overcrowded spectrum at 77GHz, therefore the automotive radar operation could 

prosper by entering into a new era of higher frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7: Conclusion and Future Work 

 

  

  Page 187 

7.2 Future plan 

Although, the theoretical and practical studies in this PhD research provide the solid 

basis for the expansion of low THz radar systems for the future autonomous car, 

undoubtedly, there are further research needed in this field.   

Within the area of signal attenuation through radome covered with leaves, further 

research is needed to analysis the attenuation of non-uniform layers of randomly 

distributed wet leaves corresponding to realistic road scenarios at the range of low THz 

frequencies (150-700 GHz).  

The study of signal reduction due to layer of water at low THz radar has focused on 

propagation through a uniform layer of water, which is a simplified approximation of a 

real-life scenario. Further studies on transmissivity through randomly distributed water 

droplets obscuring the radome (already completed at 150 GHz and 300 GHz) are needed 

at 670 GHz. 

In the field of low THz radar signal backscattering for surface identification task, further 

investigation is necessary to study the signal reflection from asphalt, gravel, sand, grass, 

etc. at low THz frequencies, paying particular attention to the peculiarities of reflection 

from coatings formed by weather conditions (water, snow, ice). Knowledge of the 

patterns of low THz radar signal reflection from various surfaces and their dependence 

on the parameters of the measuring system will allow to select the features of the 

backscattered signal to effectively distinguish between road surfaces.  

The results of imaging radar at low THz for surface classification task and using CNN, 

which are explained in details in chapter 6, lay the foundation for further work on the 

development of automotive Surface ID system. The future plan is to extend the dataset 

by measuring the road surfaces in various weather conditions (snow, rain, ice) and to 

apply 300 GHz imaging radar in order to obtain radar images with higher resolution. 
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