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Introduction

Observations indicate that most stars are in binary or higher multiplicity systems

(Preibisch et al., 1999; Sana et al., 2012, 2013; Duchêne and Kraus, 2013; Chini

et al., 2013; Sota et al., 2014; Kobulnicky et al., 2014; Dunstall et al., 2015; Moe

and Di Stefano, 2017; Sana, 2017). In a binary two stars orbit each other, bound

by their mutual gravitational pull. If the orbital separation is short enough the

stars interact, drastically altering their evolution. In the past decades, the means

to perform complex calculations have drastically improved, giving us the chance

to explore the physics of binary evolution in greater detail. This helped explain

several observed properties, amongst others, why some stars are more luminous

than expected or have peculiar surface abundances. Nonetheless, large uncertainties

persist in the field of binary star physics.

In 2015, the gravitational waves from two colliding black holes were detected

for the first time (Abbott et al., 2016b). For decades it has been hypothesised

that two massive stars in an isolated binary could interact without external influ-

ences and form a binary black hole system tight enough to merge in a Hubble time

(van den Heuvel and De Loore, 1973; Tutukov and Yungelson, 1973). In this dis-

sertation I follow in the footsteps of many other studies and assume the observed

gravitational-wave events come from isolated binary evolution, even though other

formation channels for the mergers of neutron stars and black holes are also possible.

The aim is to study what constraints, if any, properties of gravitational-wave events

can place on the evolution of massive stars in binaries.

The general approach in of this dissertation is to evolve a population of stars un-

der various model assumptions and estimate the rates and properties of gravitational-

wave mergers for each model. The predicted distributions enable a quantitative or

qualitative assessment of the impact of current uncertainties in binary-star physics

on estimates of the rates and masses of gravitational-wave events. Evaluating the

effect of uncertainties is crucial to determine whether comparisons between synthetic

populations of gravitational-wave sources and observations can place meaningful con-
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Contents Chapter 0

straints on binary-star physics. If the uncertainties are large and model-dependent

features are not predicted, then the detections of gravitational-wave mergers may

only provide marginal constraints.

In this dissertation I assess the impact of the following model assumptions. In

chapter 4 I investigate the uncertainties in the rate and initial chemical composition

with which stars form and the impact of these uncertainties on the predictions of

the merger rate of neutron stars and black holes. In chapter 5 I vary the response

of stars to mass loss and explore how it alters the interactions that lead to the

formation of binary black holes. In chapter 6 I examine whether Cygnus X-1 may

evolve into a binary black hole system and if the observed mass of the black hole in

Cygnus X-1 provides constraints on the wind mass-loss rates of stars. Chapter 1 and

chapter 2 provide introductory material for the reader on stellar evolution and binary

interactions. Chapter 3 summarises the theoretical model used in this dissertation

to evolve a population of stars. Chapter 7 provides a summary and personal view

on the conclusions of this dissertation.
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Part I

Introductory Chapters
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Chapter 1

Single Stellar Evolution

1.1 Introduction

The theory of stellar evolution involves relativistic physics, thermal physics, nuclear

physics, quantum physics and more. There are plenty of textbooks and notes that

review the theory of stellar evolution and its history in great detail (e.g. Chan-

drasekhar, 1939; Maeder, 2009; Kippenhahn et al., 2012). This chapter gives a brief

summary of some of the basic concepts of the evolution of single stars. The focus is

mostly on the evolution of massive stars with mass M ≳ 8 M⊙, which are capable

of forming neutron stars and black holes.

Sections 1.2 and 1.3 give a basic introduction to stellar physics and nuclear fusion

in stars and largely follow the textbooks of Kippenhahn et al. (2012) and Hansen

et al. (2012). For more in-depth discussions and derivations I refer the reader to

these textbooks. Section 1.4 describes the evolution of a massive star in terms of

its temperature, luminosity and radius. Sections 1.5, 1.6 and 1.7 provide a brief

introduction to stellar winds, stellar rotation and supernovae. Section 1.8 briefly

summarises the differences in stellar models and some of the major uncertainties.

The chapter closes with a summary in section 1.9.
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Chapter 1 1.2. Basic definitions

1.2 Basic definitions

Stars are gaseous bodies without a “hard” boundary which defines their surface. For

this reason, in practice the radius of a star’s photosphere is often used as a proxy for

the radius of the star itself. Following this approximation, the radius R of a star is

then defined as the distance, from its centre, where the optical depth τ , calculated

from infinity,

τ =

∫ ∞

R

κρ dr, (1.1)

equals 2/3. Here κ and ρ are respectively the opacity and the density of the gas

through which photons travel. Under the assumption that a star emits its entire

luminosity L as a black body, the effective temperature (Teff) is related to the radius

and luminosity by

L = 4πR2σT 4
eff , (1.2)

where σ is the Stefan-Boltzmann constant. For an interesting discussion on the

different definitions of stellar radii and temperatures, see Baschek et al. (1991).

1.2.1 Hydrostatic equilibrium

Pressure at any point within a star consists of both gas pressure Pgas and radiation

pressure Prad,

P = Pgas + Prad =
k

µmp

ρT +
1

3
aT 4, (1.3)

where k is the Boltzmann constant, µ the mean molecular weight, mp the proton

mass, a the radiation constant, ρ the density and T the temperature. The first term

on the right hand side is the ideal gas law and the second term comes from the

Stefan-Boltzmann law1.

1For a derivation see chapters 1 & 2 of Chandrasekhar (1939).
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1.2. Basic definitions Chapter 1

A spherical star of total mass M and radius R is in hydrostatic equilibrium if

everywhere within the star

dP

dm
= − Gm

4πr4
, (1.4)

where P is the pressure, G is the gravitational constant and m the mass of the

gas within a distance r from the centre. In other words, a star is in hydrostatic

equilibrium when its gravitational force, aimed towards the centre, is balanced by

the pressure within a star.

1.2.2 Timescales

Different processes of stellar evolution happen on different timescales. For the cal-

culations of interest in this dissertation, it is common practice to refer to three

characteristic timescales of a star, namely its dynamical, Kelvin-Helmholtz 2 and

nuclear timescale.

1.2.2.1 Dynamical timescale

A star which is no longer in hydrostatic equilibrium will expand or contract until

hydrostatic equilibrium is recovered. The expansion or contraction proceeds on the

dynamical timescale of the star,

τdyn =

√
R3

GM
. (1.5)

This timescale is a factor of 2π smaller than the period of a Keplerian orbit grazing

the stellar surface, and is thus of the same order of magnitude as the free-fall collapse

time of the star in the absence of pressure.

2The Kelvin-Helmholtz timescale is sometimes also referred to as the thermal timescale of a star.
However, in later chapters a slightly different definition is introduced for the thermal timescale and
therefore equation 1.6 is only referred to as the Kelvin-Helmholtz timescale.
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Chapter 1 1.2. Basic definitions

1.2.2.2 Kelvin-Helmholtz timescale

Another commonly used timescale is the Kelvin-Helmholtz timescale,

τKH =
GM2

2RL
, (1.6)

where L is the stellar luminosity. This timescale estimates the time it takes for a

star to radiate away all of its gravitational energy with its current luminosity L. For

example, this is the timescale that governs the contraction of a star when nuclear

fusion within a star ceases and as a result the star contracts while remaining in

hydrostatic equilibrium (Kippenhahn et al., 2012).

1.2.2.3 Nuclear timescale

The nuclear timescale estimates the lifetime of a star when undergoing a specific

phase of nuclear fusion, such as hydrogen fusion. The nuclear timescale,

τn =
En

L
, (1.7)

assumes a star fuses its entire reservoir of nuclear energy, En, while its luminosity

remains equal to its current luminosity L.

Typically τn ≫ τKH ≫ τdyn; this is indeed the case for all stars which are burning

hydrogen and helium in their cores, or in other words, during most of the lifetime

of a star. For the Sun, during its hydrogen-burning phase (see Sec.1.4), the nuclear

timescale is ∼ 10 Gyr, whereas the thermal and dynamical timescales are ∼ 10 Myr

and ∼ 1 hour respectively (Kippenhahn et al., 2012).

1.2.3 Metallicity

Another crucial property which determines the life of a star is its chemical composi-

tion, often expressed in terms of metallicity. In astrophysics we refer to any element

with a higher atomic number than helium as a metal. The metallicity Z of a star is
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1.2. Basic definitions Chapter 1

then defined as the mass fraction of metals in the star and it is related to the mass

fraction of hydrogen X and helium Y by

Z = 1 −X − Y. (1.8)

1.2.4 Convective and radiative transport

Energy produced by nuclear fusion or released from gravitational potential energy is

transported outwards to the stellar surface. The two main means of energy transport

within a star are radiation and convection. The efficiency of these processes depends,

amongst others, on the temperature gradient within a star.

If radiation is the only process which transports energy outwards, then the tem-

perature gradient as a function of the distance from the stellar centre r equals:

dT

dr
= − 3

4ac

κρ

T 3
F, (1.9)

where F is the radiative flux and c the speed of light.

Convection occurs when there is a steep temperature gradient. Consider a small

amount of gas which heats up due to absorption of photons and expands adiabat-

ically. The “blob” of gas is less dense compared to its surroundings. Buoyancy

forces carry the blob upwards whilst the adiabatic expansion cools the blob of gas.

However, if the temperature gradient within a star is steeper than the change in

temperature due to the adiabatic expansion, then the blob of gas remains hotter

than its surroundings. The process becomes dynamically unstable and convective

flows develop within the star which carry the energy outwards3. The momentum of

this convective flow allows it to penetrate into the radiative layer, a process known

as convective overshoot (Roxburgh, 1965; Shaviv and Salpeter, 1973).

How energy is transported throughout a star is crucial in determining the star’s

evolution, and, during hydrogen burning, it mostly depends on the mass of the star.

The energy transport within hydrogen-burning stars with masses above ∼ 1.2 M⊙

3This analogy is attributed to Prandtl (1925) in (Kippenhahn et al., 2012).
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Chapter 1 1.3. Nuclear Fusion

is predominantly convective in the core and radiative in the envelope. Stars less

massive than ∼ 1.2 M⊙ have radiative cores and convective envelopes. Stars below

∼ 0.3 M⊙ are fully convective (Paxton et al., 2011).

1.3 Nuclear Fusion

Nuclear fusion is the process by which atomic nuclei fuse together and form heav-

ier elements (Eddington, 1926). It is a complicated process, which involves many

branches of modern physics, including for example quantum tunneling (Gamow,

1928), particle physics and statistical mechanics (e.g. the Pauli exclusion principle).

The details of such nuclear fusion are however not crucial for the content of this

dissertation. For this reason, what happens in the core of a star is presented in the

following, commonly used, simplified picture. The interior of stars can easily reach

temperatures of millions of degrees (the exact value of the maximum temperature in

the interior of a star depends on its mass and chemical composition). At these high

temperatures nuclei are often found in their ionised state. For nuclear fusion, it is

therefore necessary to overcome the Coulomb force which repels atomic nuclei from

each other, as the attractive strong force only acts at very short nuclei separations.

Extreme conditions are therefore needed for initiating nuclear fusion. These require-

ments can be met in the core of a star. In practice, nuclear fusion only occurs if the

reaction is exothermic, i.e. if it is energetically advantageous and the star releases

energy during the process. The internal energy of nuclei, which regulates the energy

balance of these nuclear reactions, depends on the mass and proton number and

reaches its maximum at the formation of iron mass. For heavier elements fusion is

therefore no longer an exothermic reaction.

1.3.1 Hydrogen fusion

Hydrogen fusion happens through two different sets of reaction chains. The first is

the proton-proton chain or pp chain (Bethe and Critchfield, 1938). The pp chain
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1.3. Nuclear Fusion Chapter 1

fuses hydrogen to form 3He and subsequently 4He. The second chain involves carbon,

nitrogen and oxygen and is therefore named the CNO cycle (Weizsäcker, 1937; Bethe,

1939).

Nuclear reaction rates of both the pp chain and the CNO cycle depend on several

parameters, amongst others, the temperature of the gas. The rate at which energy

is released through fusion by the pp chain scales with temperature as ∝ Tα with

α ∼ 4, whereas for the CNO cycle the rate of energy released scales with temperature

with α ∼ 18 (Karakas and Lattanzio, 2014). At temperatures above T ≈ 15×106 K

(Kippenhahn et al., 2012) the CNO cycle is the dominant process by which hydrogen

is fused into helium. This central temperature is achieved in stars with initial masses

above M ≈ 1.2 M⊙.

When hydrogen is depleted in the core, central hydrogen fusion comes to a halt.

At the boundary between the helium core and the hydrogen envelope, hydrogen

abundances and temperatures are high enough to sustain hydrogen fusion. There-

fore, hydrogen fusion continues in a shell around the core. As shell burning continues

the helium core gains in mass. The core is no longer pressure supported by radiation

from nuclear fusion and contracts, increasing in temperature and density.

1.3.2 Fusion of heavier elements

Helium fusion proceeds at temperatures T ≳ 108 K (Kippenhahn et al., 2012; Hansen

et al., 2012). The helium is fused into carbon through the triple-alpha reaction,

whereby two helium nuclei form beryllium which fuses with an addition helium

nucleus to form carbon. Additional alpha capture may also occur and generate

oxygen from carbon and neon from oxygen. In stellar evolution, however, it is

general practice to refer to nuclear-burning phases by the dominant process which is

responsible for the luminosity of a star; in the case just described, helium burning.

Temperatures need to exceed T ≳ 5 × 108 K to fuse carbon, mostly into sodium

and neon. Oxygen fusion proceeds at temperatures above T ≳ 109 K, creating ele-

ments such as sulfur, phosphorus, silicon and magnesium. At temperatures around

14



Chapter 1 1.3. Nuclear Fusion

T ≈ 3 × 109 K, silicon particles are photodisintegrated into smaller elements and

free neutrons, protons and alpha particles. These particles react with the remaining

silicon nuclei and form iron, which is the final product of nuclear fusion in stellar

cores (Kippenhahn et al., 2012).

1.3.3 Stellar-mass thresholds and timescales of nuclear-burning stages

Not all stars are able to fuse elements up till iron. The maximum central temperature

a star can reach increases with the stellar mass. The stellar-mass thresholds, which

specify whether a star is capable of fusing certain elements, depend on a range of

parameters such as its metallicity, the degree of overshooting and rotational velocity.

The following thresholds and timescales are derived from detailed simulations of non-

rotating stars with initial metallicities of Z = 0.02 taken from Paxton et al. (2011).

For simplicity the following mass ranges only consider fusion in stellar cores and

not in shells or thermal pulses. Stars with initial masses between 0.9 ≲ M/M⊙ < 2.0

ignite helium in a helium flash after the core has become fully degenerate. Stars

with masses M ≳ 2.0M⊙ start fusing helium inside their core before it is fully

degenerate. Stars heavier than 8.0M⊙ are massive enough to ignite carbon during

their evolution. Stars with masses between 2.0 ≲ M/M⊙ ≲ 8.0 end their lives as

white dwarfs whereas more massive stars continue to evolve until their cores explode

or collapse into a neutron star or black hole.

As a general rule of thumb stars spend about 90% of their lives fusing hydrogen.

The lifetime of a star decreases with mass. A star with an initial mass of 2 M⊙ fuses

hydrogen for approximately 0.9 × 109 yr, whereas a 15 M⊙ star and a 25 M⊙ star

fuse hydrogen for about 1.1 × 107 yr and 6.4 × 106 yr respectively (Paxton et al.,

2011). Each consecutive burning phase of heavier elements proceeds on shorter and

shorter timescales. For example, a star with in an initial mass of 15 M⊙ goes through

helium fusion in 1.1× 106 yr, carbon in 4.2× 103 yr, neon in 3.5 yr, oxygen in 4.1 yr

and silicon in 0.8 × 10−2 yr (Paxton et al., 2011).

Similar to hydrogen fusion, each core burning phase is followed by a shell burn-
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1.4. Stellar phases and evolution Chapter 1

Figure 1.1: Schematic diagram of the internal structure of a massive star in a late
stage of its evolution. The bottom half shows the most predominant element in
each layer of the star. The top half shows the nuclear reaction in each burning shell
between the layers. The figure is adapted from McCracken and Stott (2013).

ing phase (though the next phase of core burning may start concurrently with the

previous phase of shell burning). The core is no longer pressure supported and con-

tracts, increasing in temperature and density until, if the star is sufficiently massive,

it ignites the next burning phase. By the time a massive star starts to form an

iron core, it has developed what is often referred to as an onion-skin structure with

multiple shell burning layers, as depicted in Fig.1.1.

1.4 Stellar phases and evolution

This section describes the generic evolution of a non-rotating massive star. The

different evolutionary phases are named after their location and features in the

Hertzsprung-Russell (HR) diagram, which depicts the luminosity L versus the effec-

tive surface temperature of a star Teff . Figure 1.2 is a schematic representation of
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Chapter 1 1.4. Stellar phases and evolution

the evolution of massive stars in time in the HR diagram.

1.4.1 Main-sequence and Hertzsprung-gap stars

A population of hydrogen-burning stars with different masses form a sequence in

the HR-diagram. These main sequence (MS) stars evolve on a nuclear timescale

until hydrogen is depleted in their cores. At the end of the MS phase the core is

no longer supported by nuclear fusion and contracts. In a massive star the core

mass exceeds the Schönberg-Chandrasekhar limit (Schönberg and Chandrasekhar,

1942) and therefore has insufficient support against gravity and collapses. The star

is no longer in thermal equilibrium. The released energy from the collapsing core,

combined with fusion in the hydrogen-burning shell, results in a rapid expansion

of the envelope (see Fig. 1.2). The core contraction and envelope expansion occur

on a Kelvin-Helmholtz timescale which is shorter than the prior MS phase and the

following helium-burning phase (for a 15 M⊙ star by about two orders and one order

of magnitude, respectively). Due to the short timescale it is not likely to observe

a star during this phase, resulting in a gap of observations in the HR-diagram.

Therefore, this phase is commonly referred to as the Hertzsprung gap (HG).

1.4.2 Giant branch

Expansion results in the cooling of the outer layers of a star. Core contraction

is halted when central temperatures reach ∼ 108 K and the core is supported by

nuclear fusion of helium. The evolutionary phase during which helium ignition

occurs depends on the mass of the star.

Massive stars with initial masses M ≲ 15 M⊙ reach the first giant branch (FGB)

before igniting helium in the core. During the HG the envelope expands and the

effective temperature drops. The outermost layers cool until, at around 5000 K,

the neutral hydrogen atoms capture free electrons from the partially ionised heavier

elements and form hydrogen anions (H−). The H− has a high opacity and the

outermost part of the envelope starts to develop a thicker convective region. The core
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1.5. Stellar winds Chapter 1

continues to contract, but the envelope cannot cool any further due to the Hayashi

limit (Hayashi and Hoshi, 1961). The Hayashi limit describes the edge of a“forbidden

region” in the HR diagram. Any star with cooler effective temperatures cannot

maintain hydrostatic equilibrium and convective flows quickly readjust the star until

its temperature and luminosity again follow the Hayashi limit. Therefore, as the core

contracts, the envelope continues to expand at a fixed surface temperature. Radial

expansion results in an increase in luminosity and the star ascends the FGB until it

ignites helium in the core. A star with an initial mass of ∼ 10 M⊙ and initial radius

of ∼ 10 R⊙ will have increased its radius to ∼ 200 R⊙ by the time it ignites helium

in the core (see Fig 1.2). After the depletion of helium in the core, helium fusion

continues in a shell around the core. Similar to the HG, the core contracts again

until it is hot enough to ignite carbon. The star expands again and evolves onto the

asymptotic giant branch (AGB).

Stars more massive than ∼ 15 M⊙ ignite helium in the core before reaching

the giant branch (see Fig 1.2). However, the envelope has not yet reached thermal

equilibrium and the star keeps expanding, becoming a supergiant.

Stars more massive than 30 – 70 M⊙ (Smith, 2014) may lose their envelopes

through stellar winds either before or during the giant phase. The extent to which

mass is lost from the envelope depends on the star’s metallicity and wind mass-loss

rate. If the entire envelope is removed, what is left is a hot exposed core also known

as a Wolf-Rayet star (for a review see Abbott and Conti, 1987; Crowther, 2007),

which are characterised by broad emission lines in their spectra.

In massive stars, nuclear fusion continues until dynamical instabilities in their

cores result in core collapse and possibly a supernova.

1.5 Stellar winds

Stars have outflows of matter from their surfaces known as stellar winds. Winds are

accelerated from the surface of a star until they reach a terminal velocity, v∞. The

18



Chapter 1 1.5. Stellar winds
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Figure 1.2: Evolutionary tracks of single stars with an initial metallicity of Z =
0.0142. The colours relate to the different stellar phases of stars: main sequence
(MS), Hertzsprung gap (HG), first giant branch (FGB), core helium burning (CHeB),
asymptotic giant branch (AGB) and supergiant phase. All stars were evolved using
the analytic fits to stellar tracks by Hurley et al. (2000) as implemented in COMPAS

(see chapter 3).
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1.5. Stellar winds Chapter 1

wind mass-loss rate is found by calculating

Ṁ = 4πr2ρ(r)v∞, (1.10)

where ρ is the average density and r the distance from the centre of the star. The

distance r can be recovered from radio and infrared spectra of the star while the

terminal velocity can be inferred from P-Cygni profiles4 in the ultra-violet spectrum

(see e.g. Smith, 2014, and references therein). The terminal wind velocity is typically

a few times the escape velocity of the star (Castor et al., 1975), where the escape

velocity is defined as

vesc =

√
2GM

R
. (1.11)

Stellar winds are driven by radiation pressure and pulsations from the interior

of a star (for reviews on stellar winds and pulsations of massive stars see e.g. Wood

and Sebo, 1996; Lamers and Cassinelli, 1999; Puls et al., 2008; Smith, 2014). The

mechanism responsible for radiation pressure in stellar winds is commonly divided

into two types: line- and dust-driven winds.

1.5.1 Line-driven winds

Atoms absorb photons at specific frequencies. Photon absorption accelerates the

atoms, which are coupled to a stellar atmosphere by Coulomb interactions. Absorp-

tion of photons in a stellar atmosphere therefore results in a line-driven stellar wind

(Lucy and Solomon, 1970; Castor et al., 1975). The number of line transitions in

an atom depends on the size of the nucleus and the level of ionization of the atom.

The mass-loss rate, therefore, depends on the luminosity, surface temperature and

metallicity of the star.

Wind mass-loss rates of non-interacting massive stars on the MS, early on the HG

4P-Cygni profiles are spectral lines, named after the variable star P Cygni, characterised by the
presence of both absorption and emission.

20



Chapter 1 1.5. Stellar winds

before the envelope cools during the giant phase and Wolf-Rayet stars are dominated

by line-driven winds. Theoretical and observational estimates of mass-loss rates from

massive stars typically range from 10−7 M⊙ yr−1 up to a few times 10−5 M⊙ yr−1

(Lamers and Cassinelli, 1999). Nieuwenhuijzen and de Jager (1990) derive, from

detailed stellar tracks, a generic prescription of the wind mass-loss rates for all

massive stars with surface temperatures above 5000 K and hydrogen-rich envelopes

(thus excluding Wolf-Rayet stars),

−Ṁ = 9.6 × 10−15(L/L⊙)1.42(M/M⊙)0.16(R/R⊙)0.81 M⊙yr−1. (1.12)

Here the mass-loss rate increases with increasing luminosity, mass and radius of a

star. Given that line-driven winds rely on the presence of metals, stars with a higher

metallicity on average experience higher wind mass-loss rates (see e.g. Kudritzki and

Puls, 2000; Vink et al., 2001).

1.5.2 Dust-driven winds

When the stellar envelope expands during the HG, its radius increases and the

surface temperatures drop. During the AGB, the outer layers of a star becomes

cool enough, 1000–1500 K, for dust grains to form. Since dust grains absorb from

the continuum, their contribution to the opacity of the gas is far greater than the

effect of atomic lines. Observations of AGB stars show that wind velocities range

from 3–30 km s−1 (Höfner and Olofsson, 2018). Furthermore, these stars pulsate

resulting in additional shedding of the outer parts of the envelope. The expelled gas

cools further and is blown away by dust-driven winds (Vassiliadis and Wood, 1993;

Yoon and Cantiello, 2010; Smith, 2014).

There are still large uncertainties regarding mass-loss rates of AGB or supergiant

stars. Moreover, studies only rarely include giant stars with masses above ∼ 10 M⊙

(for reviews see Willson, 2000; Smith, 2014; Höfner and Olofsson, 2018). Some

estimates from observations of red supergiants indicate mass-loss rates as high as
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10−3 M⊙ yr−1 (Smith, 2014).

1.5.3 Luminous blue variable winds

Some stars with masses above 50 M⊙, named luminous blue variables (LBVs), show

luminous irregular mass-loss events (Humphreys and Davidson, 1994). Part of the

variability in LBV winds is attributed to changes in the efficiency of line-driven

winds, which can explain mass-loss rates ranging from 10−6 to 10−4 M⊙ yr−1 (Vink

and de Koter, 2002). However, stars can also have eruptive events. This is the

case, for example, of η Carinae, which shed about 10 M⊙ on a timescale of 20

years (Owocki and Shaviv, 2012, and references therein). The driving mechanism

behind these outbursts is still unclear and possible explanations range from super-

Eddington winds, to instabilities in the envelope (when the stellar luminosity is

close to the Eddington limit) or eruptions triggered by a pulsational pair-instability

supernova (Smith, 2014, and references therein).

1.5.4 Wind mass-loss rates: complexity and uncertainties

Estimates of wind mass-loss rates rely, amongst others, on estimates of wind densities

and terminal velocities (see Eq. 1.10), which are either uncertain or show irregular

behaviour. For example, Lamers et al. (1995) infer terminal wind velocities of ob-

served MS stars and find that terminal velocities range from ∼ 500 km s−1 for stars

of ∼ 15 M⊙ to ∼ 3000 km s−1 for stars of ∼ 50 M⊙. However, terminal wind veloc-

ities are not a continuous function of stellar mass and temperature. Lamers et al.

(1995) and Vink et al. (1999, 2001) find that there are “bi-stability” jumps. The

terminal velocity sharply increases, as a function of surface temperature, due to a

change in opacities, such as at temperatures of ∼ 25000 K due to the ionisation of

Fe IV (Vink et al., 1999, 2001). Mass-loss rates are predicted to increase by a factor

of five at this bi-stability jump (Vink et al., 1999, 2001). Therefore, instead of a

single prescription such as Eq. 1.12, simulations of stars often rely on a patchwork of

different prescriptions which apply to different ranges of stellar masses, metallicities,
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temperatures and luminosities.

Results by Mokiem et al. (2007) and Bestenlehner et al. (2014) show that mass-

loss rates as inferred from observations are in reasonable agreement with theoretical

predictions, such as the mass-loss rates of massive stars such as those presented by

Vink et al. (2001). However, as noted in Bestenlehner et al. (2014), the empirical

estimates are still subject to theoretical uncertainties, in particular clumping of

the wind. Clumping is expected to occur in line-driven winds due to radiative

instabilities (Owocki et al., 1988; Sundqvist et al., 2018). Uncertainties in clumping

could mean that we overestimate wind mass-loss rates by as much as a factor of 10

(Puls et al., 2008). Section 6.A in chapter 6 provides an example of the impact of

uncertainties of stellar winds, due to clumping, on the evolution of massive stars

and the formation of compact objects.

1.6 Rotation

Observations of massive stars show that the majority of massive stars rotate with

rotational velocities in the range of 10 km s−1 to 600 km s−1 (Fukuda, 1982; Ramı́rez-

Agudelo et al., 2013, 2015). Stellar rotation has an impact on the evolution of stars

such as brightness, size of the nuclear-burning core and size of the star (for reviews

see e.g. Maeder and Meynet, 2000; Maeder and Meynet, 2010).

Stars with initial masses of 15 M⊙, experience rotation-induced mixing when

rotation rates exceed ∼ 200 km s−1. In these cases some of the processed material

in the stellar core can reach the stellar surface. The surface then shows abundance

patterns that non-rotating models cannot explain (Heger and Langer, 2000). Stellar

rotation also results in additional mixing of gas of the envelope into the stellar core

enhancing the MS lifetime possibly up to 30 per cent (Maeder and Meynet, 2000).

The maximum rotational velocity of a stellar surface, such that it is still bound

to the star, is often referred to as the Keplerian velocity or critical rotation rate,

v =

√
GM

R
, (1.13)
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where R is the stellar radius, assuming spherical symmetry or the equatorial radius,

if deformation is accounted for (the equatorial radius can be up to 1.5 times the polar

radius (Maeder, 2009)). If the stellar rotation is close to the Keplerian rotation rate

of the star, then evolution of the star will completely differ from the picture presented

in Sec. 1.4. Instead the entirety of the star is mixed through the core resulting in a

homogeneous evolving star. Such a star directly contracts towards the Wolf-Rayet

phase instead of expanding during and after the MS phase (see e.g. Maeder, 1987).

1.7 Final core collapse and supernovae

Massive stars end their lives when their cores collapse due dynamical instabilities.

In some cases the collapse is followed by a (partial) explosion of the star during a

supernova (SN). However, not all SNe are alike. What follows is a brief description

of some of the different SN types, based on explosion mechanism, originating from

the collapse of massive stars5.

1.7.1 Electron-capture supernovae

Electron-capture supernova (ECSN) progenitors are not massive enough to form a

degenerate iron core, instead fusion stops when the stellar core mostly consists of

oxygen and neon. In the absence of fusion the oxygen-neon core contracts until

a degenerate core is formed. In ECSN progenitors the oxygen-neon core is more

massive than the oxygen-neon Chandrasekhar mass and therefore the magnesium

and neon atoms within the core capture electrons. Heat from the electron-capture

process results in the ignition of oxygen, but nonetheless the dense core continues to

contract and collapse until the formation of a proto-neutron star and subsequent SN

(Miyaji et al., 1980; Nomoto, 1984). Calculations by Nomoto (1987) and Takahashi

et al. (2013) indicate a mass threshold of oxygen-neon core, above which ECSNe

5Other types of SNe exist; these include, for example, type Ia SNe coming from the explosions
of accreting, colliding or merging white dwarfs (see e.g. Hillebrandt and Niemeyer, 2000, for a
review).
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are possible, of 1.376 M⊙ and 1.367 M⊙ ± 0.01M⊙ respectively. Initial estimates

by Miyaji et al. (1980) and Nomoto (1984) indicate that stars with initial masses

between 8 ≤ M ≤ 12 M⊙ experience ECSNe. However, mass ranges of initial stellar

masses that produce ECSNe are uncertain and theoretical estimates may differ by

a few solar masses, because the relation between the initial mass of a star and the

final oxygen-neon core mass is sensitive to parameters such as the initial metallicity

of a star or the treatment of convection in the core (Takahashi et al., 2013).

1.7.2 Iron core-collapse supernovae

Stars which are massive enough to ignite neon and therefore avoid an ECSN continue

fusion until an iron core is formed. Once an iron core exceeds the Chandrasekhar

mass, 1.44M⊙, it collapses in what is commonly referred to as a core-collapse super-

nova (CCSN). In the case of CCSNe, the shock may be energetic enough to explode

the entire star. However, if enough energy is lost during the propagation of the

shock, e.g. by disintegrating nuclei along its path (see Janka et al., 2007; Burrows,

2013, for a review), and carried away by non-interacting neutrinos (Janka et al.,

2007), the shock may not be energetic enough to unbind material from a star (see

e.g. Shigeyama et al., 1988; Woosley, 1989; Fryer et al., 2012).

Mass which does not escape from the star falls back onto the remnant. The final

remnant mass is then mostly determined by the initial mass of the core at the onset

of the SN, the amount of accretion during the collapse and the final mass that falls

back onto the remnant. Fryer et al. (2012) estimate that the fraction of the total

mass of the star that falls back onto the remnant is negligible in stars with initial

masses below ∼ 11 M⊙, but is close to unity in stars with initial masses ≳ 40 M⊙

(depending on the initial metallicity of the star). Chapter 3 shows an example of

the remnant mass as a function of the initial mass of the star based on the models

of Fryer et al. (2012).
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1.7.3 Pair-instability supernovae

Massive stars, capable of creating helium cores with masses between 30 – 133 M⊙,

are expected to end their lives in pulsational pair-instability supernovae (PPISNe)

or pair-instability supernovae (PISNe) (Woosley, 2017). Woosley (2017) estimates

this is the case in non-rotating stars with initial masses ranging from 70 to 250 M⊙.

Photons with energies above 1.022 MeV can create an electron-positron pair. When

this process occurs within a star, the loss of photons leads to a reduction in radiation

pressure. The high temperature of helium cores with mass above ∼ 64 M⊙ (Woosley,

2017) allows for a significant loss of radiation pressure through pair creation and a

subsequent contraction of the core. This contraction results in hotter temperatures

which increase the rate of pair creation resulting in a runaway collapse. The collapse

and subsequent explosion, which is powered by oxygen and sometimes silicon burning

(Heger and Woosley, 2002), is what constitutes a PISN. The entire star disintegrates

without leaving a compact remnant.

Helium cores with masses 30 – 64 M⊙ also experience a loss of radiation pressure

due to pair instability. However, the following rapid nuclear fusion of oxygen and

silicon is not energetic enough to disintegrate the star. Instead, the core expands

until fusion ceases. Then the core contracts again on dynamical or thermal timescales

(Woosley, 2017). This process repeats until the core collapses in a CCSN and forms

a black hole (BH). Each rapid expansion of the core results in a pulse which injects

energy into the envelope. The star increases in luminosity and loses part of its mass

during the PPISN. Each pulse, with its mass loss, reduces the mass that is capable

of falling back onto the remnant during the SN. Some pulses (but not all of them)

may be seen as luminous SNe and the duration of the pair-instability period could

span many orders of magnitude from hours to thousands of years (Woosley, 2017).

Stars with helium cores more massive than ∼ 133 M⊙ are too massive to experience

PISNe and form BHs through direct collapse.
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1.7.4 Observations of supernovae

There are multiple observations that seem to support the existence of the different

aforementioned types of SNe. Light curves and spectra of SNe inform us on the

properties of the explosion and the progenitor star (see Smartt, 2009, for a review).

Continuous large scale observational surveys play a crucial role in monitoring the

sky to find the progenitor stars of SNe (Kochanek et al., 2008). Based on SNe for

which the progenitor are found, the observed minimum mass of these progenitors

confirms that the minimum mass to explode in a CCSN is ∼ 8M⊙ (Smartt, 2009).

Here are some examples of possible links between observations and supernova types

and mechanisms. The variability in the brightness of the supernova iPTF14hls

might be explained by pulsations of a PPISNe (Arcavi et al., 2017; Woosley, 2018).

Observations of a super-luminous SN have been linked to PISN (Kozyreva et al.,

2014). Some massive stars have been observed to disappear without a bright SN,

suggesting that they have collapsed and the envelope fell back onto the remnant

(Adams et al., 2017; Allan et al., 2020).

1.7.5 Supernova natal kicks

A SN ejects part of the mass of the star. Asymmetric ejection of the envelope or

neutrinos imparts momentum on the remnant. The amount of momentum depends

on the energetics of the explosion and the asymmetry of the ejecta.

Observational surveys of isolated pulsars indicate that their velocity distribution

is reasonably well approximated by a Maxwellian distribution with a root-mean-

squared speed of 265 km/s (Hobbs et al., 2005) or a combination of two different

Maxwellian distributions with average speeds of 120 km/s and 540 km/s (Verbunt

et al., 2017). Detailed three-dimensional supernova simulations indicate a possi-

ble connection between the progenitor mass and the final explosion and natal kick

(Müller et al., 2016; Mandel and Müller, 2020). However, there are still uncertainties

considering the relation between the supernova progenitor and the supernova kick.

The studies in this dissertation therefore rely on the simplified approach where the

27



1.8. Uncertainties in single stellar evolution and the formation of black holesChapter 1

kick velocity is drawn from a Maxwellian distribution and the direction is isotropic

in the frame of reference of the remnant. If the remnant experiences fall back during

its formation, the kicks are often assumed to be reduced by an amount proportional

to the fall back fraction (see e.g. Fryer et al., 2012).

1.8 Uncertainties in single stellar evolution and the for-

mation of black holes

Understanding of the evolution of stars heavily relies on computational methods, in

particular one-dimensional stellar evolutionary codes such as Geneva (Eggenberger

et al., 2008), KEPLER (Weaver et al., 1978, 1985; Woosley and Weaver, 1988), MESA

(Paxton et al., 2011, 2015), PARSEC (Bressan et al., 2012) and STARS (Eggleton, 1971,

1972; Eggleton et al., 2011). Differences in the results of simulations may arise due

to different numerical procedures (e.g. solving integrals or coupled stellar-structure

equations) or different physical assumptions (e.g. amount of convective overshooting

or wind mass-loss rates).

Reiter et al. (1995) show that different methods to solve the stellar structure

equations only result in differences of ∼ 10−3L⊙ in simulations of the luminosity

of the Sun. Stancliffe (2006) investigates the difference between simultaneously

and non-simultaneously solving the stellar-structure equations for stars with initial

masses of 3 M⊙ and 5 M⊙ at Z = 0.02. He finds that the results of the two schemes

only start to differ at the final stages of stellar evolution, during the thermal pulsa-

tions of a star. The impact of different numerical procedures is therefore expected

to be minor compared to differences due to physical assumptions, although more

studies into numerical uncertainties of massive stellar evolution are needed.

Differences in physical assumptions greatly impact the evolution of stars changing

their luminosities, radii, surface temperatures, stellar lifetimes and abundances (see

e.g. Chiosi, 1986; Kippenhahn et al., 2012; Weiss, 2002; Ekström et al., 2020). Those

same uncertainties also affect models of the formation of neutron stars and black
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holes, one of the main focuses of this dissertation.

Convective overshooting, the convective mixing between the core and stellar

envelope, results in an enhanced mixing of fuel into the core. Kaiser et al. (2020) find

that within the stellar-evolution code MESA differences in the amount of convective

overshooting lead to changes of up to 70 per cent in the helium-burning lifetime

and carbon-oxygen core mass. It is this carbon-oxygen core mass which plays an

important role in determining the final remnant mass (see e.g. Sec. 3.2.2).

Wind mass-loss rates remain highly uncertain (see Sec. 1.5). Renzo et al. (2017)

show how different wind mass-loss rates affect the final core structure and the star’s

ability to explode and form a neutron star or black hole. Renzo et al. (2017) estimate

that uncertainties in stellar winds result in about a 50 per cent uncertainty in the

mapping between the initial and final mass of the star, where the initial masses

range from 15 M⊙ to 35 M⊙ and the stars are evolved with solar metallicities.

Furthermore, in chapter 6 we show that differences in assumed wind mass-loss rates,

in even more massive stars, could result in changes in the remnant mass by more

than a factor of 2.

The effects of stellar rotation are still uncertain (see e.g. Maeder and Meynet,

2000). Stars which rotate near their Keplerian velocity (see Sec. 1.5) may avoid

expansion altogether and evolve as chemically-homogeneous stars (Maeder, 1987).

Stellar expansion plays an important role in this dissertation, since it is one the

main drivers of mass transfer between stars in a tight stellar binary. Chemically-

homogeneous stars are not included in the stellar models considered in this disser-

tation. They evolve through entirely different pathways and may also form merging

binary black holes (Marchant et al., 2016; Mandel and de Mink, 2016; Riley et al.,

2021). Estimates by Riley et al. (2021) indicate that up to 70 per cent of the de-

tected binary black hole mergers coming from isolated binary evolution may have

evolved through chemically-homogeneous evolution.
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1.9 Summary

This chapter briefly described some of the physics of single stellar evolution, in

particular the evolution of massive stars. As massive stars fuse elements in their

cores, they expand and lose mass through winds. After the final stage of nuclear

burning they end their lives in a SN, possibly leaving behind a neutron star or black

hole.

It is clear that the evolution of massive stars, despite all the advances in the field,

remains uncertain. The uncertainties due to stellar evolution are largely outside the

scope of this dissertation, except for a limited discussion of Wolf-Rayet winds in

chapter 6. The main scope of this dissertation is constraining binary-star physics

using observations of gravitational waves and the COMPAS code (see chapter 3). The

COMPAS code relies on a single set of stellar models and the uncertainties quoted

in chapters 4, 5 and 6 therefore do not account for the uncertainties coming from

single-stellar evolution. Newer versions of COMPAS do allow for estimates of the

contributions of chemically-homogeneous stars (Riley et al., 2021). Future efforts

will simultaneously explore uncertainties coming from both single- as well as binary-

star physics using the COMPAS code by implementing METISSE (Agrawal et al., 2020),

which enables interpolation between different sets of single stellar models.
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Binary Stellar Evolution

This chapter reviews some of the basic concepts of binary stellar evolution. The

focus is mostly on mass transfer through Roche-lobe overflow. The technical details

of the models used to study the evolution of massive stellar binaries in this thesis

are found in chapter 3.

Section 2.1 provides a brief introduction followed by section 2.2 which describes

the gravitational potential field of two stars in a binary. Sections 2.3 and 2.4 describe

the effects of tides and wind mass loss on the orbital separation and eccentricity of

a binary system. Section 2.5 presents a summary of the physics involved in mass

transfer through Roche-lobe overflow. Section 2.6 describes the effect of gravitational

waves on the orbit of the binary. Section 2.6 presents the main formation channel

for merging binary black holes and neutron stars through isolated binary evolution.

The following terminology is used in this chapter to refer to the stars. The

primary star (subscript 1) is the more massive star in the binary at zero-age main

sequence (ZAMS). The secondary star (subscript 2) is the less massive star at

ZAMS. Mass transfer could be initiated by either the primary or secondary star

(or in some cases even both) and invert the mass ratio of the system. Here it is

more important to indicate which star initiated the mass transfer. The subscript D

refers to the star which loses mass, the donor, whereas the subscript A refers to the

accreting companion star, the accretor.
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2.1 Introduction

Observational studies1 of young stellar populations suggest most of the massive stars

are born in binaries or higher multiplicity systems. Massive stars are found with

companions in both the field and in clusters (Duchêne and Kraus, 2013; Preibisch

et al., 1999; Kobulnicky et al., 2014) and at different metallicities (Sana et al.,

2013, 2012; Chini et al., 2013; Sota et al., 2014). The average number of com-

panions per massive primary star ranges between 0.5 and 1.5 (Preibisch et al.,

1999; Sana et al., 2013; Kobulnicky et al., 2014; Dunstall et al., 2015; Moe and

Di Stefano, 2017; Sana, 2017). The probability density of the orbital separation

a of observed massive stellar binaries appears to be roughly proportional to a−1

Opik:1924,Sana:2013,Kobulnicky:2014. However deviations have been observed: par-

ticularly at periods of less than a thousand days, where massive stellar binaries

appear to favour shorter separations compared an to Öpik law (a−1) (Sana et al.,

2013). About 70% of massive stars in binaries are expected to interact with their

stellar companion (Sana et al., 2013).

Binary interactions can change the mass of both stars, remove the envelope of

the donor, enrich the surface of the accretor, change the apparent age of the star,

affect the rotation rates of stars and result in the merger of the two stars. Stars in

binary systems evolve through various evolutionary channels which in turn are asso-

ciated with different observations2. Binary interactions in massive stars are linked

to astrophysical phenomena such as blue stragglers (McCrea, 1964; van den Heuvel,

1967; Stryker, 1993), Algol systems (Crawford, 1955; Morton, 1960; Hjellming, 1989;

Pustylnik, 1998), runaway stars (Blaauw, 1961, 1993; van Rensbergen et al., 1996),

X-ray binaries (Davidson and Ostriker, 1973; Hutchings et al., 1973; van den Heuvel

and De Loore, 1973), peculiar surface helium abundances on main sequence (MS)

stars (Tuchman and Wheeler, 1990), ultra-luminous X-ray sources (King et al., 2001;

1See e.g. Moe and Di Stefano (2017) and Sana (2017) for schematic figures that relate the
observational technique to the orbital properties of the binary.

2See Fig. 1 of Han et al., 2020 for a nice schematic overview of evolutionary channels and
observations.
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Figure 2.1: A three-dimensional representation of the Roche potential of a binary,
where the mass ratio of the point masses is 2. The figure is taken from the lecture
notes of van der Sluys (2019). The surface below shows the equipotential lines.
The bold equipotential connecting to L1 depicts the Roche lobes of the two stars.
If a star expands and overflows its Roche lobe, then mass is transferred onto the
companion through L1.

Rappaport et al., 2005), the origin of magnetic fields in massive stars (de Mink et al.,

2014; Schneider et al., 2016), luminous red novae (Ivanova et al., 2013a) and the for-

mation of binary neutron stars and black holes (van den Heuvel and Heise, 1972;

Tutukov and Yungelson, 1973). Aside from astrophysical events, binary interactions

also affect the large scale evolutionary processes such as the enrichment of the in-

terstellar medium (De Donder and Vanbeveren, 1999; de Mink et al., 2009; Izzard

et al., 2013) and the ionization of the early universe (Stanway et al., 2016; Götberg

et al., 2017).

2.2 Roche potential
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In a binary system two stars orbit each other bound by their reciprocal gravita-

tional pull. The total angular momentum of two stars in a binary is the sum of the

orbital angular momentum and the rotational angular momentum of each star,

J = M1M2

√
Ga(1 − e2)

Mtot

+ I1ω1 + I2ω2, (2.1)

where G is the gravitational constant, a the orbital separation, e the eccentricity,

Mtot = M1 + M2 is the total mass of both the stars, I the moment of inertia of a

star and ω the angular frequency of a star.

Figure 2.1 depicts two point masses orbiting in a circular binary system and

the gravitational potential field in a co-rotating reference frame. The lines in the

square plane show the equipotential surfaces. Such a gravitational potential field

is known as the Roche potential, as discussed and calculated in great detail by,

amongst others, Kopal (1954) and Plavec and Kratochvil (1964). A test mass in

the rotating reference frame experiences centrifugal and gravitational forces. At a

Langrangian point L, such as L2 in Fig. 2.1, a test mass does not experience a net

force. A test mass which is initially at rest at L2 remains in orbit around the stars

at L2.

Close to a point mass, the equipotential surface describes approximately a sphere

centred on the point mass. Further away from the point mass the equipotential starts

to become non-spherical. At the inner Lagrangian point L1 the two equipotential

surfaces around each point mass intersect for the first time (see the bold line in

Fig. 2.1). The equipotential surface around a point mass, which connects to L1, is

referred to as a Roche lobe.

The Roche radius is the radius of a sphere with the same volume as the Roche

lobe (Kopal, 1954). Eggleton (1983) provides a fitting formula for the Roche radius,

RRL =
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
a, (2.2)
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where RRL is the Roche radius, a the separation of the binary and q the mass ratio

of the system. The Roche radius of the primary is found by using q = M1/M2 and

the Roche radius of the secondary by q = M2/M1. The above fit to the Roche radius

is accurate to within one percent over the entire range of q (Eggleton, 1983).

2.3 Tides

The closer the stellar surface is to the boundary of the Roche lobe, the more the

surface deforms and the star becomes approximately an oblate spheroid. The part

of the stellar surface which is further away from the centre of the star is darker (von

Zeipel, 1924). The effect, called gravitational darkening, depends on the energy

transport within the envelope of a star (Lucy, 1967). Gravitational darkening due

to the Roche potential is observed for multiple sources such as stars in X-ray binaries

(see e.g. Orosz et al., 2011; Ratti et al., 2013).

The bulge on the stellar surface faces the companion star as the stars circle

around the centre of mass. The bulge exerts a torque onto the star through tidal

effects. The torque comes from either a misalignment between the rotational angular

momentum of the star and the orbital angular momentum, an eccentric orbit or a

difference between the rotational frequency of the star and the orbital frequency.

Tides are commonly divided into equilibrium tides and dynamical tides. A star

under the exclusive effect of equilibrium tides would roughly assume the shape of its

Roche potential, while remaining in hydrostatic equilibrium. The tides essentially

subject the star to drag forces. In the case of a convective envelope these drag forces

are dissipated into the envelope by convective eddies (Zahn, 1977). A star under the

exclusive effect of dynamical tides can be approximated by an oscillator, excited by

the gravitational pull of the companion. When these oscillations are damped, energy

is dissipated (Eggleton et al., 1998, and references therein). Equilibrium tides are

more effective in stars with convective envelopes whereas dynamical tides dominate

in stars with radiative envelopes (Zahn, 1977; Lai, 1997).

The equilibrium tide tends to align the rotational angular momentum of the star
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and orbital angular momentum of the binary, synchronize the orbital period and

rotational period of the star and circularize the orbit (Darwin, 1879; Hut, 1980,

1981; Eggleton et al., 1998). The same is true for the dynamical tides (Zahn, 1977;

Lai, 1997) although in some instances the continuous excitation of the oscillations

might results in an increased eccentricity (Eggleton et al., 1998).

The theory of tides successfully explains the orbital properties of giant stars and

in turn helps to constrain uncertainties in stellar evolution such as the depth of the

convective surface layer (Verbunt and Phinney, 1995). Tidal effects further help to

explain the orbits of planets and pre-main-sequence stars (Mazeh, 2008). However,

in some cases, such as barium stars, tidal effects seem too efficient in circularizing

the orbits (Pols et al., 2003), unless other binary-star physics is responsible for

reintroducing the eccentricity of the orbit (see e.g. Izzard et al., 2010, and references

therein).

2.4 Wind mass loss and wind mass transfer

Stars lose mass through stellar winds (see Sec. 1.5). Part of the mass lost through

winds leaves the binary, draining some angular momentum. A fraction of the wind

material can potentially interact with the companion star.

A common assumption to estimate the effect of wind mass loss on the orbital

parameters of a binary is that matter leaves isotropically from the surface of the star.

Under this assumption, this matter instantaneously leaves the system taking away

the orbital angular momentum it had at the surface of the star. In this scenario the

orbital separation widens by

ȧ

a
= −Ṁtot

Mtot

, (2.3)

where wind mass loss is defined as Ṁtot < 0.

A star in a binary can interact with the wind of the other star, depending on the

orbital properties, peculiar velocity of the system and the velocity of the wind. A
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star accretes from the stellar wind of a companion through Bondi-Hoyle-Lyttleton

accretion (Hoyle and Lyttleton, 1939; Bondi and Hoyle, 1944). The accretion is less

efficient when the velocity of the wind is much faster than the orbital velocity of the

accreting star. Winds accelerate outwards from the surface of the star. Therefore,

for wide binaries there is little accretion and the winds are fast enough such that

equation 2.3 is valid.

In the regime where the orbital velocity is comparable to the velocity of the wind

(slow winds), for example if the star is close to filling its Roche lobe, part of the

mass beyond the Roche lobe is transferred onto the companion through wind Roche-

lobe overflow (RLOF). The mass-accretion rate of wind RLOF possibly results in

anisotropic outflows (Theuns et al., 1996; Mohamed and Podsiadlowski, 2007; Chen

et al., 2020). Since the wind is no longer isotropically ejected from the original star,

the orbital evolution of the system differs from equation 2.3. If the wind velocity is

comparable to the orbital velocity and the companion is heavier than the mass-losing

star, then the wind mass loss and wind mass transfer results in additional loss of

angular momentum and the orbital separation reduces instead of widening (see e.g.

Schrøder et al., 2021).

When a binary system is tidally locked the orbital frequency is the same as the

rotational frequency of the star. Wind mass loss increases the orbital separation and

hence decreases the orbital frequency. Thus, the combination of wind mass loss and

tidal locking decreases the rotation rate of stars in binaries. However, additional

angular momentum loss due to magnetic braking, combined with the tidal locking,

shortens the orbital separation (Verbunt and Zwaan, 1981; Ivanova and Taam, 2003;

Justham et al., 2006).

Bondi-Hoyle-Lyttleton accretion and wind RLOF are important for the period

distribution and surface abundances of lower mass asymptotic giant branch stars in

symbiotic binaries (Mohamed and Podsiadlowski, 2007; Izzard et al., 2010; Abate

et al., 2013; Saladino et al., 2018; Abate, 2019). Wind RLOF in high-mass X-ray

binaries is also linked to detections of ultra-luminous X-ray sources (El Mellah et al.,
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2019).

2.5 Roche-lobe overflow

If a star expands and the stellar surface reaches L1, the gas at the stellar surface is not

uniquely bound to the star. Further expansion results in RLOF and gas flows to the

companion star in the form of mass transfer. Here, it is assumed for simplicity that

tidal effects have circularized the orbit and synchronized the rotational frequencies of

the binary system at the onset of mass transfer (Zahn, 1977; Verbunt and Phinney,

1995), although this may not be valid in very eccentric systems (Sepinsky et al.,

2007) or stars where the radial expansion timescale is shorter than the timescale

of circularization (Vigna-Gómez et al., 2020). The total angular momentum of the

binary is then equal to the orbital angular momentum of the system as given in

equation 2.1, with e, ω1 and ω2 equal to zero. The change in the separation due to

mass transfer is given by

ȧ

a
= 2

J̇orb
Jorb

− 2
Ṁ1

M1

− 2
Ṁ2

M2

+
Ṁtot

Mtot

, (2.4)

where other forms of mass and angular momentum loss such as magnetic braking

are ignored.

Solving for the effects of the mass-transfer phase, such as the change in separation

in Eq. 2.4, is a complex problem even in the absence of other mechanisms such as

magnetic braking, tides and wind mass transfer that happen before and during the

mass-transfer phase. The changes in orbit, angular-momentum loss, mass-transfer

rate, mass-accretion rate (and so stellar masses) and Roche radii are all coupled to

each other (see Eq. 2.2 and Eq. 2.4). As mentioned in chapter 1, the evolution of

a single star is computationally challenging. Furthermore a star is sometimes also

driven out of thermal or hydrostatic equilibrium during mass transfer and a binary

system possibly has non-symmetric outflows. Therefore a full scale evolution of two

stars during mass transfer, accounting for the details of all these phenomena, is
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currently not computationally feasible, especially if expanded to entire populations

of stars.

Studies often investigate one or a few aspects of mass transfer, while making

simplifying approximations for the others. For example, three-dimensional simula-

tions, which focus on the mass-transfer rates and mass loss of stars, may simplify the

stars as fully convective polytropes (Regős et al., 2005; D’Souza et al., 2006; Lajoie

and Sills, 2010). Hence these results are only valid for a limited number of systems

such as low mass stars or white dwarfs. On the other hand, one dimensional stellar

evolutionary codes are capable of investigating the response of the stellar structure

to mass loss or mass accretion (Kippenhahn and Meyer-Hofmeister, 1977; Ge et al.,

2015; Pavlovskii and Ivanova, 2015). However, they rely on assumptions on the

amount of mass and angular momentum lost from the system.

The physics of mass transfer can be roughly divided into the following topics:

the mass-transfer rate, the efficiency of mass accretion, the amount of angular mo-

mentum lost from the system and the stability of mass transfer. What follows is

a (crude) description of each of these four topics. This description mostly relies

on results presented in papers between 1960 - 1990. The models and assumptions

are often more simplistic compared to current simulations but they provide a more

intuitive insight into the different physics and their influence on mass transfer in

stellar binaries. Furthermore, they provide the foundation of commonly used sim-

plifying approximations for the physics of mass transfer as currently implemented

in population-synthesis codes.

2.5.1 Mass-transfer rate from the donor star

Mass transfer changes both the orbital separation and the mass ratio of a binary

system and therefore the Roche lobes of the binary (see Eq. 2.2). At the same time,

the donor star adjusts its radius in response to mass loss. The more the stellar

radius exceeds the Roche lobe, the higher the mass-transfer rate. Here we follow the

notation of Hjellming and Webbink (1987) to quantify the response of the stellar
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radius to mass loss by using the dimensionless ζ parameter,

ζ =
ṘD/RD

ṀD/MD

=
d ln(RD)

d ln(MD)
, (2.5)

where RD and MD are the radius and mass of a mass-donating star. The response of

the Roche radius to mass loss is denoted by ζRL, in which case the stellar radius RD

in Eq. 2.5 is substituted by the star’s Roche radius RRL,D. In our notation mass loss

from the donor corresponds to a negative ṀD and therefore, if the (Roche) radius

of the donor shrinks, the ζ (ζRL) is positive.

The response of the stellar radius to mass loss depends on the rate of mass loss.

The adiabatic response of the donor star to mass loss is denoted by ζad and the

thermal response of the donor to mass loss is given by ζth. If (ζad, ζth) > ζRL then

the stellar radius remains inside the Roche radius after mass loss and the mass

transfer stops until the donor expands to once again fill its Roche lobe. When

ζad > ζRL > ζth, the donor star cannot adjust its radius to the Roche radius while

remaining in thermal equilibrium but it does adjust to the Roche radius on adiabatic

timescales. The mass-transfer rate is then comparable to the rate if the donor would

lose its entire envelope on its thermal timescale (see e.g Morton, 1960; Kippenhahn

and Weigert, 1967; Kippenhahn et al., 1967). When ζRL > ζad the star cannot adjust

adiabatically to stay within the Roche lobe and the mass-transfer rate is comparable

to the donor star losing its entire mass on its dynamical timescale. This is referred

to as dynamically-unstable mass transfer.

To understand the implication of these considerations, let us focus on the specific

example of MS donors. Morton (1960) finds that mass transfer from a MS donor

consists of two phases, a fast thermal phase and a slow phase driven by the nuclear

evolution of the donor. During the first phase the Roche lobe shrinks (ζRL > 0)

due to mass transfer. The Morton (1960) models of stars in thermal equilibrium

are not capable of readjusting to the shrinking Roche lobe (ζRL > ζth). The star is

driven out of thermal equilibrium and mass transfer proceeds on a thermal timescale.

Once the secondary becomes more massive, the Roche lobe of the donor expands as
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a result of mass transfer. The MS star regains thermal equilibrium (ζth > ζRL). The

star expands to fills its Roche lobe due to the nuclear evolution of the core and the

second mass-transfer phase proceeds on the nuclear timescale of the donor (Morton,

1960).

According to the works of Morton (1960); Kippenhahn and Weigert (1967); Kip-

penhahn et al. (1967); Lauterborn (1970) and Paczyński and Sienkiewicz (1972),

mass transfer from massive stars is commonly divided into three cases: A, B and

C. Case A applies to mass transfer from massive MS stars, similarly to the just

mentioned results of Morton (1960). Therefore, case A mass transfer can have a fast

phase and a slow phase, the details of which depend on the mass ratio of the system

and the assumed physics of mass transfer. Case B considers mass transfer from

Hertzsprung gap (HG) stars. The HG star evolves on a thermal timescale as the

core contracts and the envelope expands. Thus, regardless of the mass ratio, mass

transfer proceeds on thermal timescales and the star loses almost its entire envelope,

leaving an exposed helium core (Kippenhahn and Weigert, 1967; Kippenhahn et al.,

1967). Case C assumes mass transfer is started by a giant star with a convective

envelope after the exhaustion of core helium burning (Lauterborn, 1970). Paczyński

and Sienkiewicz (1972) show that in the case of red giant stars, with fully convective

envelopes, the envelope expands as a result of mass loss. Therefore, the response of

the envelope drives further mass transfer and the donor star loses its entire envelope

on timescales comparable to its dynamical timescale.

This section outlines the crucial role of the star and Roche radius responses

to mass loss in determining the mass-loss rates and timescales of mass transfer. Of

course, the picture presented here is an oversimplification of the complex and chang-

ing processes which actually occur during mass transfer. Paczyński and Sienkiewicz

(1972) already mention that comparing the values of ζ is indeed not enough to un-

derstand the entire mass-transfer phase. They show that, by assuming polytropes

for the structure of the star, the timescales of mass transfer from a fully convec-

tive donor varies from nuclear timescales to dynamical timescales during a single
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mass-transfer phase.

2.5.2 Response of the accreting companion

Suppose a star accretes mass from a companion star. The mass falls from the inner-

Lagrangian point L1, which is at a distance RL1 from the centre of the accreting

star, and all the gravitational potential energy is radiated away in the form of lumi-

nosity. During a mass-transfer episode the accreting star needs to radiate away the

gravitational potential energy at a rate

Lacc =
GMAṀA

RA

− GMAṀA

RL1

, (2.6)

where MA and RA are the mass and radius of the accreting star. If the energy is

not sufficiently radiated away, then the star is driven out of hydrostatic equilibrium.

The Eddington luminosity, LEdd, is the maximum luminosity that can be carried by

radiation. Hence the critical accretion rate at the stellar surface, assuming spherical

symmetry, equals

Ṁcrit = LEdd

(
GMA

RA

)−1

. (2.7)

This critical accretion rate is a theoretical upper limit, assuming spherically sym-

metric accretion.

The aforementioned accretion rate does not take into account the response of

a star to mass accretion. For example, numerical models of main-sequence stars

by Kippenhahn and Meyer-Hofmeister (1977) and Neo et al. (1977) show that a

main-sequence star increases in both radius and luminosity during accretion if the

mass-transfer rate is high enough. Kippenhahn and Meyer-Hofmeister (1977) con-

sider the simplistic picture where the accreted gas has a similar composition to the

accretor and the gas accreted spherically symmetrically at a constant rate onto the

surface without having any velocity. The accreting star increases in radius and lu-

minosity when the mass-accretion rate is comparable to the thermal timescale of
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the star. Neo et al. (1977) show the radius and luminosity of a 20 M⊙ star starts

to increase when the accretion rate is about 60 per cent of the critical accretion

rate. A 1.5 M⊙ star only has to accrete at 1 per cent of its critical accretion rate

to increase in size and luminosity. Webbink (1976); Ulrich and Burger (1976); Neo

et al. (1977); Flannery and Ulrich (1977) and Kippenhahn and Meyer-Hofmeister

(1977) find that the thermal and dynamical mass-transfer rates during case B and

case C mass transfer result in an increase in the size of the accreting companion.

The radius of an accreting main-sequence star increases in size by a factor ∼ 2 –

10 (Webbink, 1976; Ulrich and Burger, 1976; Neo et al., 1977; Flannery and Ulrich,

1977; Kippenhahn and Meyer-Hofmeister, 1977).

2.5.3 Non-conservative mass transfer

In this dissertation the mass-accretion rate of a star ṀA is defined as

ṀA = −βṀD, (2.8)

where β is the mass-accretion efficiency which can take on the values 0 ≤ β ≤ 1..

When the mass-transfer effciency β is lower than 1, mass is lost from the system

and the mass-transfer phase is non-conservative.

Expansion of an accreting companion potentially results in the accreting com-

panion filling its own Roche lobe, depending on the orbital separation of the stars

and the mass-transfer rate from the donor star. If boths stars fill their Roche lobes

then the binary becomes a contact binary. Such a contact binary phase does not

necessarily result in the merger of the two stars if the system rotates as a rigid body

(Lucy, 1968). However, any additional mass transfer results in an overflow through

the outer Lagrangian points and the mass-transfer phase becomes non-conservative.

An alternative mechanism for non-conservative mass transfer is a rotationally-

limited mass-transfer phase. Packet (1981) calculates the effects of mass accretion on

the rotation rate of a star, assuming the star is uniformly rotating and the absence
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of tidal forces. Furthermore, it is assumed that matter is accreted from a disk in

the star’s equatorial plane and this matter moves at the Keplerian velocity (see also

Eq. 1.13). The accreted matter has specific angular momentum,

j =
√

GMARA, (2.9)

and mass accretion spins up the star. Packet (1981) find that a star rotates at

break-up velocity after accreting about 5 to 10 per cent of its initial mass. The star

is no longer capable to accrete from the accretion disk. If mass transfer continues,

the disk increases in size. If the mass transfer ceases before the disk fills the Roche

lobe, then the disk may gradually be accreted by the star (Packet, 1981). If instead

the disk overflows the Roche lobe during the mass-transfer phase, then mass transfer

is non-conservative (β < 1) and mass is lost through one of the Lagrangian points

(Packet, 1981). However, Popham and Narayan (1991) find that there exists an

accretion-disk configuration for accreting stars where the star and the accretion disk

reach an equilibrium rotation rate. Such a configuration allows the star to continue

to accrete without spinning up any further. They are unable to confidently state if

this equilibrium rotation rate is below the break-up velocity of a star. If a star could

reach this equilibrium rotation rate, then the accretion of angular momentum does

not reduce the mass-transfer efficiency β.

2.5.3.1 Mass-transfer efficiency β

The mass-accretion efficiency β is often estimated through simplified parameterisa-

tions. As mentioned in the previous paragraphs the mass transfer rate from a donor

star and the response of an accreting companion relate to the timescales of both

stars. Therefore a common approach is to compare the timescale of mass transfer

from the donor τD and the thermal timescale of the accretor τth,A as done in Pols

and Marinus (1994); Portegies Zwart and Verbunt (1996); Hurley et al. (2002).

Additional physics can be included to account, for example, for the expansion of

an accreting companion. Here an example is given following Hurley et al. (2002),
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the companion accretes a fraction β of the mass lost by the donor,

β = min

(
1, C × τD

τth,A

)
. (2.10)

The mass transfer becomes non-conservative (β < 1) if the thermal timescale of the

accretor exceeds the mass-transfer timescale of the donor by a factor larger than C.

If the accretor increases in size, the thermal timescale changes due to the change in

R and L (see also Eq. 1.6). Assuming the accreting star keeps a constant luminosity,

a value of C > 1 represents the factor by which the radius of the accretor increases.

However, the interpretation of C can be broadened to incorporate the uncertainty

in the timescale of mass transfer from the donor, where a value of C > 1 represents

an increase in the timescale.

Several studies have looked into constraining the efficiency of mass transfer by

comparing modelled populations to populations of semi-detached binaries and Algol

systems which form through case A or early case B mass transfer (see e.g. Nelson

and Eggleton, 2001; Ibanoǧlu et al., 2006; Chen et al., 2006; de Mink et al., 2007;

van Rensbergen et al., 2011). Nelson and Eggleton (2001) show that a subgroup of

Algol systems is consistent with their models of conservative case A mass transfer.

However no single assumption is capable of reproducing all Algol systems (Nelson

and Eggleton, 2001; Ibanoǧlu et al., 2006; de Mink et al., 2007; van Rensbergen

et al., 2011). Furthermore, these findings might not be directly applicable to the

evolution of massive stars since only 22 Algol systems contain a massive star with a

mass M > 10 M⊙ of which 4 are more massive than 20 M⊙ (Skowron et al., 2017).

Simulations of Wolf-Rayet + O-star binaries indicate that the observed popu-

lation must have formed through non-conservative mass transfer (Wellstein et al.,

2001; Petrovic et al., 2005a; Shao and Li, 2016). This is consistent with case B

mass transfer onto a companion star which leaves behind a Wolf-Rayet star. The re-

sults appear consistent with the approximation of Eq. 2.10, since the post-MS donor

evolves on rapid timescales and corroborates the findings of de Mink et al. (2007)

that mass transfer from initially wider systems is non-conservative. However, recent

46



Chapter 2 2.5. Roche-lobe overflow

studies into the formation and distribution of Be X-ray binaries indicate that mass

transfer from HG stars could be more conservative (β > 0.3, Shao and Li, 2014;

Vinciguerra et al., 2020).

Population-synthesis studies commonly adopt one of two possibilities: they either

assume a fixed mass transfer efficiency of β = 0.5 (see e.g. Belczynski et al., 2007) or

they follow a prescription similar to Eq. 2.10 (see e.g. Hurley et al., 2002; Schneider

et al., 2015; Stevenson et al., 2017). Studies using the approximation of Eq. 2.10

recover, in almost all cases, conservative case A mass transfer and non-conservative

case B and case C mass transfer (see for example the appendix in Schneider et al.,

2015).

2.5.3.2 Loss of angular momentum

Mass leaving a binary system has some angular momentum. In what follows only

the orbital angular momentum is considered and the rotational angular momentum

is ignored for simplicity. The change in orbital angular momentum is defined as

J̇orb = Ṁlossγ
Jorb
Mtot

, (2.11)

where γ determines the specific angular momentum of the mass leaving the system

hloss in units of the specific orbital angular momentum. The value of γ depends on

the location or mode by which the mass leaves the binary system.

The three most common“mass-loss modes” that are considered are Jeans’s mode,

isotropic re-emission and the formation of a circumbinary ring (see e.g. Huang, 1963,

for an introduction into these idealized mass-loss modes). Both Jeans’s mode and

isotropic re-emission assume that the velocity of the mass leaving a binary system

is fast and therefore the mass leaving the binary system does not interact with

the binary system itself. In Jeans’s mode mass is ejected spherically symmetrically

from the surface of a donor star with the specific angular momentum of the donor

star, γ = MA

MD
. During isotropic re-emission mass leaves, spherically symmetrically,

from the surface of the accreting companion with γ = MD

MA
(see e.g. Pols, 2012,
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for a derivation). Mass loss through a circumbinary ring is an idealized scenario

where mass leaving a binary system forms a ring around the centre of mass of the

binary. The ring rotates with the binary system and the mass leaves through the

circumbinary ring. It carries specific angular momentum given by

γ =
(MA + MD)2

MAMD

√
aring
a

, (2.12)

where aring is the radius of the circumbinary ring (Huang, 1963).

2.5.4 Common-envelope evolution

So far one of the main underlying assumptions for (non-)conservative mass transfer

has been that during the mass-transfer phase any mass surrounding the stars is either

co-rotating with the binary or leaves without interacting with the binary system. An

alternative possibility is the formation of a common envelope (Paczyński, 1976). In

this scenario the mass-transfer rate is fast enough (for example during dynamically-

unstable mass transfer) such that the envelope of the donor star engulfs the binary

system. If the size of a common envelope is larger than several times the orbital

separation of the binary, then there is insufficient angular momentum in the system

to maintain co-rotation of both the common envelope and the binary (Meyer and

Meyer-Hofmeister, 1979; Rasio and Shapiro, 1995).

The loss of co-rotation results in friction between the binary system and parts

of the common envelope. Friction allows transfer of angular momentum and gravi-

tational potential energy of the binary orbit into the envelope. The envelope gains

angular momentum and is heated up by the transfer of energy from the binary orbit.

The loss of gravitational potential energy and orbital angular momentum reduces

the orbital separation of the binary (Paczyński, 1976; Meyer and Meyer-Hofmeister,

1979).

Initially common envelopes were studied in the context of the formation of binary

pulsars (Taam et al., 1978) or cataclysmic variables (see e.g. Paczyński, 1976; Meyer
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and Meyer-Hofmeister, 1979). It is suggested that common-envelope events are

responsible for the observed planetary nebulae which host a tight binary (Livio and

Soker, 1988; de Kool, 1990). This is especially true for those planetary nebulae which

have a bipolar morphology (De Marco, 2009; Passy et al., 2011; Hillwig et al., 2016;

Jones and Boffin, 2017, and references therein). Mass ejection during a common-

envelope phase might be responsible for luminous red novae (Ivanova et al., 2013b;

Pastorello et al., 2019; Howitt et al., 2020). Furthermore, recent population-synthesis

studies suggest their importance for the creation of binary neutron stars and binary

black holes (amongst others, Smarr and Blandford, 1976; Bethe and Brown, 1998;

Voss and Tauris, 2003; Pfahl et al., 2005; Belczynski et al., 2008; Dominik et al.,

2012; Kruckow et al., 2018; Giacobbo et al., 2018; Vigna-Gómez et al., 2018; Spera

et al., 2019).

Meyer and Meyer-Hofmeister (1979) discuss the multiple effects that need to

be taken into account when estimating the effect of a common-envelope event on

a binary system such as the orbital parameters of the binary, the geometry of the

envelope, the density of the stars, the viscosity of the envelope and the efficiency

with which orbital energy of the binary is deposited into the envelope. Nowadays

several methods are available to evaluate the common-envelope phase. They explore

different physical assumptions and timescales, as a comprehensive study would still

be too computationally expensive (for reviews see e.g. Izzard et al., 2011; Ivanova

et al., 2013a). Hydro-dynamical simulations, such as those performed by Rasio and

Shapiro (1995); Taam and Ricker (2006); Passy et al. (2011), are able to investi-

gate the geometry of the common envelope. However, these simulations typically

cover only a few orbital periods of the common-envelope phase (Izzard et al., 2011).

One-dimensional simulations are capable to include physics such as explosive nu-

clear burning (Podsiadlowski et al., 2010) or recombination energy (Ivanova, 2018)

which may add to the energy budget of the common-envelope phase, however these

simulations rely on simplified assumptions for the geometry of the common envelope.

49



2.5. Roche-lobe overflow Chapter 2

2.5.4.1 The onset of a common-envelope event and the “α-λ” formalism

In some studies, such as the population-synthesis studies in this dissertation, the

main questions of interest are to estimate when a common-envelope event starts

and if it results in a stellar merger. A stellar merger happens when the binary

system does not have enough orbital energy and orbital angular momentum to eject

the common envelope. The onset and outcome of a common-envelope event can

be estimated by evaluating the dynamical stability of mass transfer and the energy

budget of the binary system. Assuming a common-envelope event starts during

dynamically-unstable mass transfer, the threshold for a common-envelope event is

ζRL > ζad, (2.13)

which approximates when a donor star is unable to stay within its Roche lobe on

its dynamical timescale (see e.g. Paczyński, 1976; Hjellming, 1989).

At the onset of the mass-transfer phase, the envelope of the donor is initially

bound to the core of the star with a binding energy (Paczyński, 1976; Webbink,

1984),

Ebind = −GMDMenv,D

λRD

, (2.14)

where Menv,D is the envelope mass of the donor and λ a fitting parameter describing

the density distribution of the envelope (de Kool, 1990). The amount of orbital

energy released when a binary spirals in, from an initial orbital separation of ai to

a final orbital separation of af is

∆Eorb = −GMDMA

2ai
+

GMcore,DMA

2af
, (2.15)

where Mcore,D is the mass of the core of the donor.

To estimate if a common-envelope event results in a stellar merger, the binding

energy of the envelope of the donor star is compared to the orbital energy of the
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binary system. The binary system is able to expel the envelope if there is enough

orbital energy,

Ebind < α∆Eorb, (2.16)

where α determines the efficiency with which the orbital energy is injected into

the envelope (Livio and Soker, 1988). Note that the above approximation does not

take into account parameters and processes such as the timescales of the spiral-

in, the transfer of angular momentum and subsequent spin up of the envelope and

the three dimensional configuration of the common envelope (for a discussion and

references see e.g. Livio, 1989; Iben and Livio, 1993; Izzard et al., 2011 and Ivanova

et al., 2013a). Alternative methods for evaluating the outcomes of common-envelope

events include comparing the orbital angular momentum before and after a common-

envelope event (see e.g. Nelemans et al., 2000).

de Kool (1990) finds that the number of binaries in nebulae with orbital periods

less than a day is reasonably explained by a value α = 1, whereas Livio and Soker

(1988) quote α = 0.3 as a crude average. More recent studies of a population of post

common-envelope binaries, where a white-dwarf orbits a main-sequence star, also

indicate that the average value of α ranges from 0.25 to 0.3 (Zorotovic et al., 2010;

Toonen and Nelemans, 2013), although the value of α might differ for individual

systems (Zorotovic et al., 2010; De Marco et al., 2011). Furthermore, these results

are mostly relevant for low-mass stars and to date only about 5% of the observed

post common-envelope binaries host a massive star (Kruckow et al., 2021).

The value of α during common-envelope evolution of massive stars remains un-

certain. Moreover, some studies suggest additional energy sources such as recombi-

nation of helium in the common envelope (Livio, 1989; Ivanova, 2018) or explosive

nuclear reactions (Podsiadlowski et al., 2010) help the ejection of the envelope. In

some cases this could result in α > 1. Passy et al. (2011) perform hydrodynamical

simulations of the common-envelope phase and similarly conclude that recombina-

tion energy is needed to eject the envelope. Therefore, the value of α could be larger
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than 1, if the recombination energy is not included in λ.

The aforementioned studies do not necessarily contradict each other. Aside from

α the binding energy parameter λ is also uncertain. Stellar-evolution codes indicate

that the binding energy λ of massive stars range from 0 to 5 depending on the mass

and evolutionary phase of the star (Tauris and Dewi, 2001; Xu and Li, 2010a,b;

Loveridge et al., 2011), whereas for low-mass AGB stars (M < M⊙) λ could be as

high as 100 (Dewi and Tauris, 2000). Therefore, differences in estimates of the value

of α might actually be due to a difference in the binding energy of the envelope.

Studies (see e.g. Dominik et al., 2012; Kruckow et al., 2018; Giacobbo et al.,

2018; Vigna-Gómez et al., 2018; Spera et al., 2019) show that the choice of α and λ

has a considerable effect on rate estimates of binary black hole mergers. For some

models the rate of binary black hole mergers differs by an order of magnitude solely

due to different choices for α.

2.6 Gravitational-wave radiation

A consequence of the theory of general relativity by Einstein is that two point

masses in a binary emit gravitational waves. The emission of gravitational waves

drains gravitational potential energy and orbital angular momentum. Consequently

the orbital separation of two point masses m1 and m2, or average orbital separation

in case of a non-circular orbit, in a binary decreases over time,

〈
da

dt

〉
= −64

5

G3m1m2M

c5a3(1 − e2)7/2

(
1 +

73

24
e2 +

36

96
e4
)
, (2.17)

where G is the gravitational constant, c the speed of light, a the semimajor axis

of the orbit, e the eccentricity and M the total mass of the binary system (Peters,

1964). In addition the orbit also circularises (Peters, 1964),

〈
de

dt

〉
= −304

15
e

G3m1m2M

c5a4(1 − e2)5/2

(
1 +

121

304
e2
)
. (2.18)

52



Chapter 2 2.6. Gravitational-wave radiation

Equations 2.17 and 2.18 can be used to calculate the time it takes for a binary

with initial separation a0 and initial eccentricity e0 to spiral in and merge due to

the emission of gravitational waves,

t(a0, e0) =
15

304

c5

G3m1m2M

[
a0(1 − e20)

e
12/19
0

(
1 +

121

304
e20

)−870/2299
]4

(2.19)

×
∫ e0

0

e29/19[1 + (121/304)e2]1181/2299

(1 − e2)3/2
de.

The time for two solar-mass stars in a circular binary with an orbital separation

of 2 R⊙ to spiral in and collide due to gravitational waves is ∼ 109 yr. The effect

of gravitational-wave emission on the evolution of two low-mass stars in a binary

is already discussed in Paczyński (1967b), even before observations of the orbital

decay of two neutron stars in the Hulse-Taylor binary (Hulse and Taylor, 1975;

Weisberg and Taylor, 2005). The loss of angular momentum drives mass transfer

between low-mass stars and explains double white-dwarf binaries with periods of

less than a day (Paczyński, 1967a). However, for two stars of 10 M⊙ with an orbital

separation of 20 R⊙ the inspiral time is ∼ 1010 yr. The evolutionary timescale of

such a star is 107 yr and hence the influence of gravitational waves is negligible

during its lifetime. However, gravitational waves are important after both massive

stars have collapsed and formed a double compact-object binary. In isolated binary

evolution, the double compact object binary does not experience interactions with

other stars which harden the binary. It is the emission of orbital angular momentum

through gravitational waves that hardens the double compact object binary until it

merges.

2.6.1 Binary-star physics that lead to binary black-hole mergers

One method to constrain uncertainties in the physics of binary stellar evolution

is by simulating large populations of stellar binaries to predict various observable pa-

rameters such as stellar masses and separations (see e.g. Yungelson, 2005; Eldridge,

2017 and Han et al., 2020 for a general introduction to binary population synthesis).
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In addition the simulations predict which binary interactions, such as mass-transfer

phases and common envelopes, lead to different astrophysical phenomena. Inter-

actions leading to the formation and eventual merger of a binary black hole are a

particularly timely example in view of recent gravitational-wave observations (Ab-

bott et al., 2016b, 2018a, 2019; Abbott et al., 2021). In turn a statistical comparison

between the observed and simulated population of binary black-hole mergers may

help to constrain the formation channels of these phenomena and the binary-star

physics involved.

Despite all the uncertainties in binary-star physics, studies report a similar series

of events that lead to the formation and merger of binary black holes coming from

isolated binary evolution. This series of events is commonly referred to as a formation

channel. What follows is a brief description of the “classic” formation channel of

binary black holes as described in e.g. Tutukov and Yungelson (1993); Lipunov

et al. (1997); Belczynski et al. (2002a); Belczynski et al. (2016) and Stevenson et al.

(2017). Fig. 2.2 shows a diagram3 of the evolutionary channel, where in this case the

black hole masses are similar to the gravitational-wave event GW151226 (Abbott

et al., 2016a). The formation channel shows that the formation of binary black holes

relies on all of the aforementioned physics of mass transfer and its uncertainties (not

to mention uncertainties that come from single stellar evolution). A binary system

starts with two massive stars on the MS. The more massive primary star evolves

faster and expands first. Expansion results in the primary overflowing its Roche lobe,

most likely during the HG or core-helium-burning (CHeB) phase. The following

mass-transfer phase is dynamically stable and, depending on the thermal timescale

of the accretor, the companion accretes a fraction of the envelope of the primary.

The primary is stripped of its envelope and becomes a helium main sequence (HeMS)

star, which can be observed as a Wolf-Rayet star. The primary continues to evolve

and finally collapses into a black hole (BH). The binary consists of a MS star in

3Diagrams like Fig. 2.2 are a long-standing tradition in binary evolution; see e.g. Paczyński
(1966); Kippenhahn et al. (1967) for a mass-transferring binary and Tutukov and Yungelson (1973)
and van den Heuvel and De Loore (1973) for diagrams of the formation of double neutron stars.
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orbit with a BH. The MS secondary continues to fuse hydrogen in its core until it

too evolves away from the MS and expands. The secondary star fills its Roche lobe

during the HG or CHeB phase and starts a mass transfer episode. The mass transfer

episode is dynamically unstable and results in a common-envelope (CE) event. After

expelling the envelope the secondary, a HeMS star, orbits the black-hole primary

at a short orbital separation of several solar radii. The secondary collapses into a

BH and the final binary black-hole spirals in and merges due to the emission of

gravitational waves. The assumed formation channel of binary black holes makes

them interesting candidates to use as constraints on binary-star physics such as the

physics of mass transfer.

2.7 Summary

This chapter briefly described some of the physics involved in binary stellar evolution,

in particular mass transfer. Binary stellar evolution has already been extensively

studied. The concepts and approximations made during the 1960s and 1970s are

still very much in use today. Binary interactions alter the properties of stars and

their orbits and are linked to multiple astronomical phenomena. However, there

still are uncertainties in the physics involved in binary interactions. Those same

uncertainties also affect the estimates for the formation and merger rates of binary

black holes, which is the topic of this dissertation. This is particularly true for the

physics of mass transfer and common-envelope evolution, which is predicted to play

a dominant role (see Fig. 2.2) in the formation of binary black-hole mergers.
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Figure 2.2: Assumed evolutionary channel of the gravitational-wave event
GW151226 (Abbott et al., 2016a) as published in Stevenson et al. (2017). The
binary initially starts with two massive MS stars. The primary star (left) expands
during the HG and overflows its Roche lobe, transferring mass onto the companion
star. The secondary star accretes a few solar mass and the remainder of the mass
is isotropically re-emitted from its stellar surface through fast winds. The primary
star is left as an exposed HeMS star which continues to evolve and collapses into a
BH. The secondary star evolves until it too fills its Roche lobe during the CHeB
phase. The mass transfer phase is determined to be dynamically unstable and starts
a common-envelope event. After the envelope is expelled the exposed HeMS star
orbits the primary BH at a tight separation of ∼ 5 R⊙. The secondary collapses
into a BH and the BH binary tightens through the emission of gravitational-waves
until it merges. The stars are simulated at a metallicity of Z = 0.002 using the
alpha-version of the COMPAS population-synthesis code (for more information see
Stevenson et al., 2017).
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COMPAS

The previous chapters provided a brief introduction into the physics of single and

binary stellar evolution and their uncertainties. One approach to constraining these

uncertainties, as undertaken in this dissertation, is by simulating large populations

of stars using different assumptions to statistically compare the simulated popula-

tions to observations. In some cases such population-synthesis studies require the

evolution of thousands to millions of binary systems (see e.g. chapter 4). In detailed

one-dimensional stellar-evolutionary codes evolving a single binary could take a few

hours or more. Rapid population-synthesis codes often use pre-calculated grids or

analytic fits of a population of stars combined with methods to interpolate between

results, for example at different initial masses or metallicities. It takes as little as

10 milliseconds to evolve a single binary, enabling the creation of large populations

of stars using rapid population-synthesis codes.

This chapter describes the assumptions and physics used in this thesis to estimate

the rate of black-hole and neutron-star mergers forming through isolated binary evo-

lution. The rapid population-synthesis code, used to solve the evolution of massive

stellar binaries, is called COMPAS, acronym for Compact Object Mergers: Population

Astrophysics and Statistics. COMPAS is a rapid population-synthesis code similar to

codes such as BSE (Hurley et al., 2000, 2002), STARTRACK (Belczynski et al., 2002b,

2008), SeBa (Portegies Zwart and Verbunt, 1996; Nelemans and van den Heuvel,

2001; Toonen et al., 2012), binary_c (Izzard et al., 2004b, 2006, 2009; Izzard et al.,
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2017) and MOBSE (Giacobbo et al., 2018).

This thesis relies on the alpha-version of COMPAS (Stevenson et al., 2017; Vigna-

Gómez et al., 2018), which predates the public version found on https://compas.

science/ as published in Team COMPAS: J. Riley et al. (2021). Section 3.1 dis-

cusses the assumed initial distributions of massive stars used in this dissertation.

Section 3.2 describes the single stellar models. Section 3.3 explains the approxima-

tions used to model the physics of mass transfer. Section 3.4 mentions some of the

uncertainties coming from the assumptions in our models.

Hereafter, the most and least massive star in a binary at zero-age main sequence

(ZAMS) are referred to as the primary and the secondary respectively. During mass

transfer, the stellar parameters of the mass-losing star are indicated by the subscript

D (donor), whereas the stellar parameters of the accreting star are indicated by the

subscript A (accretor). The mass ratio is defined as q = MD/MA unless written

otherwise.
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3.1 Initial distributions

The massive stellar binaries are evolved from ZAMS. Their initial orbital properties

are sampled from a set of distributions, whose details are based on observations. We

assume that 70 per cent of all stars are born in binaries (Sana et al., 2012). Both the

masses of single stars, and the mass of the primary follow the initial mass function

of Kroupa (2001). The companion mass is drawn from a uniform distribution of

q = Msecondary/Mprimary ranging from 0 to 1. The initial orbital separation a is

distributed as a−1 between −1 ≤ log10(a/AU) ≤ 3 (Öpik, 1924; Kobulnicky et al.,

2014). All systems are initially assumed circular. For simplicity, we consider the

distributions to be uncorrelated to each other and independent of metallicity and age

of the Universe. The distributions and uncertainties related to the initial metallicities

of stars are discussed in chapter 4.

3.2 Stellar evolution

3.2.1 Single stellar models

COMPAS uses the analytic fits to single stellar models of Hurley et al. (2000, 2002)

which include the earlier works of Tout et al. (1996, 1997). The fits are made

to a grid of stellar models computed by Pols et al. (1998). The grid of evolu-

tionary tracks consists of 25 masses ranging from 0.5 to 50M⊙ at metallicities of

Z = 0.0001, 0.0003, 0.001, 0.004, 0.01, 0.02 and 0.03. The models are computed us-

ing the Eggleton code (Eggleton, 1971, 1972; Pols et al., 1995). The fits of Hurley

et al. (2000) are made to a set of tracks of Pols et al. (1998) which include enhanced

mixing in the core due to overshooting (denoted as OVS in Pols et al., 1998). The

analytic fits describe the luminosities and radii of stars as a function of the age of a

star. The accuracy of the fits is reported to have root-mean-square errors of three to

five percent (Tout et al., 1996; Hurley et al., 2000) compared to the original stellar

tracks. The effective surface temperature Teff is recovered by the Stefan–Boltzmann

law. Core masses for giant stars are recovered by a core mass-luminosity relation
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(Tout et al., 1997; Hurley et al., 2000). The stellar tracks do not include effects of

wind mass loss. The effect of wind mass loss is modelled by ‘ageing’ the star (see

Sec 7.1 in Hurley et al. 2000). Wind mass-loss rates are calculated using the pre-

scriptions of Hurley et al. (2000) with the updated recipes of Belczynski et al. (2010,

and references therein). Chapter 6 explores some of the uncertainties regarding the

wind mass-loss rates from Wolf-Rayet stars.

3.2.2 Supernovae

The condition for core collapse, possibly followed by a SN, is based on the total

mass of the star, its helium core, and its carbon-oxygen core (see also the discussion

of Pols et al. 1998; Hurley et al. 2000. The SN is treated as an instantaneous event

which leaves a massive compact remnant (except pair-instability SNe). A fraction of

the envelope which is expelled during the SN could fall back onto the remnant. The

dependence of fall-back fraction and the remnant mass on the mass of the carbon-

oxygen core at the moment of the SN is based on the prescription by Fryer et al.

(2012), where in this dissertation the “delayed model” is used. The “delayed model”

does not assume a mass gap for remnant masses in the range of ∼ 2–5M⊙. By not

assuming this mass gap, we can explore whether other physics or selection effects

can explain the lack of observed remnants with masses between ∼ 2–5M⊙. A mass

gap is also not consistent with observations of microlensing, unless black holes (BHs)

receive substantial kicks during the supernova (Wyrzykowski and Mandel, 2019).

Chapter 4 does not yet account for possible pair-instability supernovae (PISNe)

or pulsational pair-instability supernovae (PPISNe), since these were not yet im-

plemented in the COMPAS code. Chapters 5 and 6 do account for these types of

supernovae, by adopting the model based on Marchant et al. (2019) as implemented

and described in Stevenson et al. (2019).

The direction of a kick is isotropically distributed in the frame of reference of

the exploding star. Kicks of core-collapse supernovae are drawn from a Maxwellian

distribution with a one-dimensional root-mean-squared speed of σ = 265 km s−1
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Figure 3.1: Purple: Remnant mass distribution of the“delayed”model by Fryer et al.
(2012) for single stellar models from COMPAS (including fall back). Grey: The fall-
back fraction of the envelope. The remnants are more massive at lower metallicities,
predominantly due to reduced wind mass-loss rates. Note that the remnant mass and
fall back by Fryer et al. (2012) are monotonically increasing functions for increasing
core and envelope masses. The variations come from the final envelope masses at the
onset of the supernova (SN), which vary because different initial masses experience
wind mass-loss rates through different discontinuous prescriptions (see e.g. Fig. 6.5).
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based on observations of isolated pulsars (Hobbs et al., 2005). Natal kicks of electron-

capture supernovae, or supernovae whose progenitors are ultra stripped by a neutron

star companion, are drawn from a Maxwellian distribution with one-dimensional

root-mean-square kick of 30 km s−1 (Pfahl et al., 2002; Podsiadlowski et al., 2004;

Tauris et al., 2015, 2017; Vigna-Gómez et al., 2018). In the case where a fraction of

the envelope falls back onto the remnant, the kick is linearly reduced by the fall-back

fraction fb (Fryer et al., 2012),

Vkick = (1 − fb)Vkick,drawn, (3.1)

where Vkick,drawn is the velocity of the kick drawn from the Maxwellian distribution

and Vkick is the velocity applied to the remnant.

Figure 3.1 shows the remnant mass and fall-back fraction fb as a function of

the initial mass of a star at several metallicities. On average wind mass-loss rates

decrease at lower metallicities. A star at a lower metallicity therefore retains more

mass during its lifetime, resulting in a more massive core and remnant compared to

a star of similar mass at a higher metallicity (see also Belczynski et al., 2010; Spera

et al., 2015; Stevenson et al., 2017).

In this dissertation, the stellar models are extrapolated beyond the grid of initial

masses of modelled by Pols et al. (1998), which extended to MZAMS ≤ 50 M⊙. Spera

et al. (2015) compare the remnant masses calculated using the population-synthesis

code SSE, on which COMPAS is based, to those calculated using the population-

synthesis code SEVN, which relies on stellar tracks computed with PARSEC (Bressan

et al., 2012) with initial masses ranging between 0.1 M⊙ – 350 M⊙. Spera et al.

(2015) show that the remnant masses estimated by SEVN are close to identical to

those coming from SSE for masses below MZAMS = 60 M⊙. Remnant masses coming

from more massive stars differ at most by 20 per cent.
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3.3 Binary physics

In COMPAS we currently do not account for the change in orbital separation through

tidal effects, magnetic breaking and gravitational-wave radiation. It is, however,

assumed that tides are efficient in circularizing the orbit before the onset of a mass-

transfer episode (Portegies Zwart and Verbunt, 1996; Hurley et al., 2002). The

strength of tides and their capability to rapidly circularise the binary of massive

stars before mass transfer is debatable (see e.g. Zahn, 1977; Hut, 1980; Sepinsky

et al., 2007; Vigna-Gómez et al., 2020). Few O-stars show magnetic fields (Ramı́rez-

Agudelo et al., 2013). Moreover magnetic fields are mostly found in single mas-

sive stars and not in massive stellar binaries (Schneider et al., 2016, and references

therein). Therefore, magnetic braking is currently not taken into consideration. As

mentioned in Sec. 2.6, the short lifetimes of massive stars imply that gravitational

waves have a negligible impact during their evolution. Therefore, the alpha-version of

COMPAS does not include the effect of gravitational-wave emission during the lifetime

of the stars, only after the formation of a double compact object. The alpha-version

of COMPAS does not include Bondi-Hoyle-Lyttleton accretion (Hoyle and Lyttleton,

1939; Bondi and Hoyle, 1944) nor does it take into account stellar rotation.

This last paragraph implies that, in COMPAS, the orbit of massive stellar binaries

only changes due to wind mass-loss (see Eq. 2.3), supernovae and mass transfer.

What follows is a brief summary of the physics of mass transfer, as implemented in

COMPAS.

3.3.1 Onset and stability of mass transfer

Mass transfer between two stellar companions is initiated when at least one of

the stars fills its Roche lobe (see also Sec. 2.2). We check for this condition by

comparing the radius of each star R∗ to its Roche radius RRL; if for at least one

of the stars R∗ > RRL, we assume that the binary system is experiencing a mass-

transfer episode. To estimate the Roche radius, we use the fit by Eggleton (1983):
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RRL = a
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, (3.2)

where a is the orbital separation and q is the mass ratio between the stars. The

Roche radius of the donor star is then found by q = MD/MA, where subscript D

refers to the donor star and subscript A to the accreting companion.

Mass transfer is determined to be dynamically stable (see also chapter 2) if

ζad > ζRL. (3.3)

For massive main sequence (MS)/Hertzsprung gap (HG) stars we adopt simple esti-

mates, based on detailed calculations by Ge et al. (2015), and set their correspondent

ζad respectively to ζad = 2 and ζad = 6.5. For more evolved stars, ζad is given by

Soberman et al. (1997). In chapter 5 we show the impact of our assumptions on ζad

for post-MS stars, on the rates and formation channels of binary black holes. Mass

transfer from helium main sequence (HeMS) and post-HeMS stars is always assumed

to be stable in COMPAS. This assumption differs substantially from other population-

synthesis codes and is adopted based on its ability to recover the orbital periods and

eccentricities for double neutron stars in the Galaxy (Vigna-Gómez et al., 2018).

COMPAS currently does not differentiate between prompt and delayed dynamical in-

stability of mass transfer. In the latter, a thermally stable mass-transfer phase

precedes a dynamical instability. In other words, if at the onset of a mass-transfer

episode ζad > ζRL, then the entire mass-transfer episode is considered dynamically

stable in COMPAS.

3.3.2 Dynamically-stable mass transfer

Solving a dynamically-stable mass-transfer phase requires knowledge of the mass-

transfer rate, mass-accretion-rate and angular momentum lost from the binary sys-

tem. Each of these is solved for at the onset of a mass-transfer episode after which
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the stellar and orbital parameters are adjusted for the effects of mass transfer.

3.3.2.1 Mass-transfer rate

The mass-transfer rate is determined by the timescale of the expansion and the

change in the size of the Roche radius of a donor star. Mass transfer stops once the

radius of a donor star fits inside its Roche lobe, RD < RRL.

The fits to stellar models by Hurley et al. (2000) describe stars which are in

thermal and hydrostatic equilibrium. Therefore, we cannot self-consistently de-

termine when RD < RRL if the mass transfer proceeds on thermal or dynamical

timescales. Instead we choose to strip the entire envelope of a donor star, MD,env in

a single timestep. However, to calculate the mass-transfer rate and mass-accretion

efficiency, β, we use the thermal or dynamical timescale of a donor star and not the

single timestep to avoid unrealistically high mass-transfer rates.

Mass transfer from a MS donor star could consist of both a fast mass-transfer

phase on the thermal timescale of the donor and a slower mass-transfer phase on

the nuclear timescale of the donor. During conservative mass transfer the transition

from the fast to the slow mass-transfer phase happens when the mass-ratio of the

system is approximately unity1. In COMPAS, during the fast mass-transfer phase, a

MS donor star is stripped of its mass, in a single timestep, until the donor star fits

inside its Roche radius whilst in thermal equilibrium. To evaluate if a donor star

fits inside its Roche radius we simultaneously evaluate the radius of the donor star

after losing an amount of ∆M and the Roche radius of the donor star after having

transferred an amount of ∆M . The mass-transfer rate is found by dividing ∆M by

the thermal timescale of the donor star. A similar procedure is used to evaluate the

slow nuclear-timescale mass-transfer phase, however in this case the mass-transfer

1The threshold of q = 1 between thermal- and nuclear-timescale conservative Case A mass
transfer is based on the change in the sign of the derivative of the orbital separation, ȧ, in Eq. 2.4.
At q ≤ 1 the orbit widens in response to mass transfer. However, assuming the donor star is
initially more massive than the accretor, the Roche radius of a donor already widens at q ≈ 1.16
during conservative mass transfer, where q = MD/MA. The value of q at the transition from the
fast to the slow mass-transfer phase differs during non-conservative mass transfer and depends on
the amount of angular momentum lost from the binary system.
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rate is found by dividing ∆M by the nuclear timescale of the donor star.

Our approach for MS mass transfer differs from other population-synthesis codes

such as the ones presented by Hurley et al. (2002); Belczynski et al. (2008); Toonen

et al. (2012) and Spera et al. (2019). A comparison of our results to STARTRACK

showed that we recovered similar values for β. Therefore, the orbital evolution is

also relatively similar, aside from the timescale of mass transfer and the amount of

widening due to wind mass loss.

A HG star expands on a thermal timescale, driven by the contraction of the stellar

core. Therefore, the mass-transfer rate proceeds on a thermal timescale (Kippenhahn

and Weigert, 1967; Kippenhahn et al., 1967) and is calculated by dividing the mass

of the envelope of a donor star by its thermal timescale, where in COMPAS the thermal

timescale is defined as

τD,th =
GMDMD,env

RDLD

, (3.4)

and therefore the mass-transfer rate equals

ṀD =
MD,env

τD,th

. (3.5)

In COMPAS it is assumed that stars on the first giant branch (FGB) and stars

which have ignited helium in their cores have fully-convective envelopes. It is com-

monly assumed that mass loss from a star with a convective envelope results in the

expansion of the envelope (see e.g. Paczyński and Sienkiewicz, 1972). Therefore, it

is assumed in COMPAS that mass transfer from stars with convective envelopes pro-

ceeds on the dynamical timescale of the donor star, where we define the dynamical

timescale as

τdyn =

√
2R3

D

GMD

. (3.6)

Considering an envelope as fully convective based on the stellar type of a star has
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been used in the models in Stevenson et al. (2017); Vigna-Gómez et al. (2018) and

in chapter 4. In chapter 5 this assumption is reconsidered and compared against a

prescription which determines if a stellar envelope is fully convective based on the

effective surface temperature, Teff , of a star.

For HeMS stars, we calculate the mass-transfer rate using the same procedure

as for MS stars. The mass-transfer rates of helium Hertzsprung gap (HeHG) and

helium giant branch (HeGB) stars are estimated similarly to HG and stars with fully

convective envelopes respectively.

3.3.2.2 Mass-accretion rate

To define the maximum accretion rate of an accreting, non-degenerate star ṀA,max,

we firstly assume that the star does not significantly change its radius or luminosity

during mass transfer. For this condition to hold we require that the gravitational

potential energy introduced by the accreted matter is balanced by the outflowing

energy,

GMA ṀA,max

RA

= LA =⇒ ṀA,max ∼
RALA

GMA

≈ MA,env

τth
, (3.7)

where, for MS accreting stars, the MA,env in the last expression is substituted with

MA. The fraction of the mass gained by a non-degenerate accretor can then be

described by the β parameter,

β = min

(
1, C × ṀA,max

ṀD

)
, (3.8)

where the multiplicative factor C is set to 10, following Tout et al. (1997) and

Hurley et al. (2002). With this factor we effectively relax our previous assumption

in Eq. 3.7, where an accreting star does not change in radius or luminosity (see also

Sec 2.5.3.1). The actual mass accretion rate is then found by

ṀA = βṀD, (3.9)
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and the consequent rate of mass lost from the system equals

Ṁloss = (1 − β)ṀD. (3.10)

If instead the accretor is a compact object, i.e. a white dwarf, a neutron star or

a black hole, the accretion flow is assumed to be Eddington limited. In this case

ṀA,max is defined as:

ṀA,max =
4πGmp MA

ε cσt

, (3.11)

where mp is the mass of the proton, ε is the fraction of energy that is radiated away,

c the speed of light and σt the Thomson cross section. Mass transfer onto a neutron

star or a black hole is almost always completely non-conservative, β ≈ 0, due to the

rapid mass-transfer rate compared to the Eddington-limited mass-accretion rate.

3.3.2.3 Angular-momentum loss

During dynamically-stable mass transfer, we assume gas flows from the donor star

through the inner Lagrangian point and reaches the surface of the companion star.

Any mass not accreted by the companion star leaves the binary system draining an

amount of the orbital angular momentum estimated from,

J̇orb = Ṁlossγ
Jorb
Mtot

, (3.12)

where γ determines the specific angular momentum of the mass leaving the system

hloss. Throughout this study we assume that mass is lost by isotropic re-emission

from the surface of the accretor and γ is given by (Pols, 2012),

γ = hloss

(
Jorb
Mtot

)−1

= q. (3.13)
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Stars are assumed to be spherically symmetric and therefore, since we ignore

stellar rotation, the total angular momentum is simply

Jorb = MDMA

√
Ga

Mtot(1 − e2)
, (3.14)

where Mtot = MD + MA and e is the eccentricity of the system (assumed to be zero

before the first SN or circularized during a mass-transfer episode).

3.3.2.4 The orbital separation after mass transfer

As mentioned in the introduction of this section, we assume that mass transfer

circularises the orbit. The change in orbital separation, after the orbit is already

circularized, due to mass transfer is

ȧ

a
= 2

J̇orb
Jorb

− 2
ṀD

MD

− 2
ṀA

MA

+
Ṁtot

Mtot

. (3.15)

Combining equations 3.5, 3.9, 3.12 and 3.15 the change in orbital separation during

mass transfer is

ȧ = −2a
ṀD

MD

[
1 − βq − (1 − β)(γ + 1/2)

1

1 + 1/q

]
. (3.16)

Given an amount of mass, ∆M , being transferred (see Sec. 2.5.1) in a single

timestep, ∆t, the change in orbital separation is then recovered by integrating

Eq. 3.16 in a thousand steps. A constant mass-transfer rate is assumed such that

ṀD = ∆M/(1000 × ∆t), keeping the value of β fixed.

3.3.3 Dynamically-unstable mass transfer: common-envelope evo-

lution

Dynamically-unstable mass transfer is assumed to lead to a common-envelope event.

We apply the “α-λ” formalism (see Sec. 2.5.4) to solve for the final separation of the

stars after the common-envelope event. Here the orbital energy is used to heat up
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neutron stars

and expel the envelope with an efficiency α, which is set to 1. The binding energy of

the envelope is approximated as its binding energy to the donor star. The binding

energy of the common envelope to the donor star is described by the fitting parameter

λ, for which we use the fitting formulae by Xu and Li (2010a,b) as implemented in

Dominik et al. (2012). We assume that the timescale of common-envelope phase is

too short for either of the stars to accrete any mass.

3.4 Uncertainties on our assumption on the merger rates

of black holes and neutron stars

Each of the aforementioned assumptions has some uncertainties. de Mink and Bel-

czynski (2015) and Klencki et al. (2018) show that uncertainties in the initial dis-

tributions of stars affect rate estimates of the mergers of black holes and neutron

stars by a factor of ≲ 2. Many studies (see e.g. Tutukov and Yungelson, 1993;

Lipunov et al., 1997; Belczynski et al., 2002a; Marassi et al., 2011; Dominik et al.,

2012; Kruckow et al., 2018; Giacobbo and Mapelli, 2018; Chruslinska et al., 2018;

Vigna-Gómez et al., 2018) show that different prescriptions for binary physics affect

the rates and distributions of black hole and neutron star mergers by a few orders

of magnitude. For example, Dominik et al. (2012) find that the difference in their

rates vary by a factor 2–6 between the assumption of β = 0 and β = 1, where the

rate of binary neutron stars and black hole neutron stars increase with efficient mass

transfer and the rates of black hole neutron stars decrease with more efficient mass

transfer. Chruslinska et al. (2018) calculated the merger rates of double neutron

stars depending on, amongst others, the amount of angular momentum lost dur-

ing mass transfer at metallicities of Z = 0.02, 0.002 and 0.0003 and show that the

Galactic merger rates vary from 10−1 Myr−1 to 102 Myr−1. Similar uncertainties

are reported for the physics of natal kicks and common-envelope efficiencies (Do-

minik et al., 2012; Kruckow et al., 2018; Giacobbo and Mapelli, 2018; Chruslinska

et al., 2018; Vigna-Gómez et al., 2018). The model assumptions presented here are,
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overall, similar to the ones adopted in various other population-synthesis codes. It

is, however, clear that, despite many available observations in both classical and

gravitational-wave astronomy, the physics of binary evolution remains poorly con-

strained and, therefore, our inferred merger rates of neutron stars and black holes

have large uncertainties.
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Chapter 4

The effect of the metallicity-specific star formation history on

double compact object mergers

Coenraad J. Neijssel, Alejandro Vigna-Gómez, Simon Stevenson, Jim W. Barrett,

Sebastian M. Gaebel, Floor S. Broekgaarden, Selma E. de Mink, Dorottya Szécsi,

Serena Vinciguerra and Ilya Mandel

Abstract We investigate the impact of uncertainty in the metallicity-specific star

formation rate over cosmic time on predictions of the rates and masses of double

compact object mergers observable through gravitational waves. We find that this

uncertainty can change the predicted detectable merger rate by more than an order

of magnitude, comparable to contributions from uncertain physical assumptions

regarding binary evolution, such as mass-transfer efficiency or supernova kicks. We

statistically compare the results produced by the COMPAS population synthesis

suite against a catalog of gravitational-wave detections from the first two Advanced

LIGO and Virgo observing runs. We find that the rate and chirp mass of observed

binary black hole mergers can be well matched under our default evolutionary model

with a star formation metallicity spread of 0.39 dex around a mean metallicity ⟨Z⟩

that scales with redshift z as ⟨Z⟩ = 0.035× 10−0.23z, assuming a star formation rate

of 0.01 × (1 + z)2.77/(1 + ((1 + z)/2.9)4.7) M⊙ Mpc−3 yr−1. Intriguingly, this default

model predicts that 80% of the approximately one binary black hole merger per day

that will be detectable at design sensitivity will have formed through isolated binary

evolution with only dynamically stable mass transfer, i.e., without experiencing a

common-envelope event.
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4.1 Introduction

There were 10 binary black hole (BBH) detections and a binary neutron star (BNS)

in the first and second observing runs of the advanced Laser Interferometer Gravitational-

wave Observatory (aLIGO) and Virgo gravitational-wave detectors (Abbott et al.,

2016; Abbott et al., 2018b; Abbott et al., 2017). The intrinsic rate of BBH mergers

is currently estimated by the LIGO-Virgo collaboration to be 24–112 Gpc−3yr−1 ,

whereas for BNSs it is 110–3840 Gpc−3yr−1 (Abbott et al., 2018a). These intrinsic

rate estimates depend on the assumed shape of the mass and rate distribution of the

double compact object (DCO) mergers, which remains uncertain. Multiple possible

stellar origins exist for DCOs such as dynamical capture in open/globular/nuclear

clusters, Lidov-Kozai resonances in hierarchical triples, chemically-homogeneous

evolution in compact stellar binaries and mergers of primordial black holes (see

Miller, 2016; Mandel and Farmer, 2018; Giacobbo and Mapelli, 2018, for reviews).

We focus on the merger rate of DCOs that come from isolated binary evolution. It

appears that most of the massive stars (M> 8 M⊙) in the field are born in bina-

ries (Kiminki and Kobulnicky, 2012; Sana et al., 2012; Moe and Di Stefano, 2017).

Once formed, these isolated binaries evolve without external influences and a frac-

tion becomes DCOs. However, the exact physics of stellar and binary evolution and

the resulting rates of DCO mergers are still uncertain (e.g., Dominik et al., 2015;

Eldridge and Stanway, 2016; Kruckow et al., 2018; Chruslinska et al., 2018).

The evolution of massive stars takes a few million years, but their inspiral as

DCOs can span years to billions of years (e.g., Portegies Zwart and Yungelson,

1998a; Belczynski et al., 2002b; Eldridge and Stanway, 2016; Mapelli et al., 2017).

The detected mergers could therefore have formed at very high redshifts. Observa-

tions show that the star formation rate (SFR) changes significantly as a function

of redshift (Madau and Dickinson, 2014). At redshifts z ≳ 2 the SFR estimates

become increasingly more sensitive to the assumed extinction, which is uncertain

(Madau and Dickinson, 2014; Strolger et al., 2004). The SFR determines the num-

ber of stellar binaries formed and hence introduces an uncertainty on the rate of
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DCO formation.

Metallicity, and particularly the fraction of iron in the star at birth, significantly

impacts the rate of mass loss through line-driven winds. Consequently, it has a

significant effect on the DCO mass distribution and merger rate (Belczynski et al.,

2010; Stevenson et al., 2017; Giacobbo et al., 2018). The metallicity of star-forming

gas depends on redshift, as subsequent generations of stars enrich the interstellar

medium through winds and explosions with metals formed during their evolution.

Galaxy catalogs, such as the Sloan Digital Sky Survey (Tremonti et al., 2004), show

that there is an empirical correlation between the galaxy stellar mass and the mean

metallicity of the galaxy. Furthermore, the galaxy stellar-mass function (GSMF) and

the galaxy stellar mass – metallicity (MZ)-relation evolve with redshift. Different

calibrations or galaxy samples lead to different results (Savaglio et al., 2005; Kewley

and Ellison, 2008; Furlong et al., 2015). Thus there is not only uncertainty in the

overall SFR but also in the distribution of the metallicities in the star forming gas.

Combined, these result in an uncertainty in the metallicity-specific star formation

rate (MSSFR), which affects estimates of the rates and properties of DCO mergers.

4.2 Aim and overall method

Our aim is to assess how the uncertainty in the MSSFR affects predictions for the

rate and distributions of DCO mergers. In this section, we introduce the key steps

in the calculation of the redshift-dependent DCO merger distribution and the rate

of detectable DCO mergers.

The time it takes for a binary to evolve its stars and then merge at tm as a

DCO due to the emission of gravitational waves is called the delay time (tdelay). The

formation time tf is related to the merger time tm by tf = tm − tdelay. We calculate
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the rate of mergers at any given time as a function of chirp mass as,

d3Nmerge

dtsdVcdMchirp

(tm) =

∫
dZ

∫
dtdelay×

d3Nform

dtdelaydMSFRdMchirp

(Z)
d3MSFR

dts dVc dZ
(tf = tm − tdelay),

(4.1)

where Z is the metallicity, z is the redshift, ts is the time in the source frame of

the merger, and Vc is the comoving volume. The first term in the integrand is the

number of DCOs per unit star-forming mass MSFR per unit delay time and per unit

chirp mass Mchirp = M
3/5
1 M

3/5
2 (M1 + M2)

−1/5, where M1 and M2 are the individual

compact object masses. We compute this first term over a grid of metallicities by

running the COMPAS population-synthesis code. The second term is the amount

of mass going into the formation of stars, MSFR (from hereon referred to as star-

forming mass), at the birth of the binary per unit time, volume, and metallicity

(MSSFR), which we model analytically.

The second step is to calculate the distribution of observable DCO mergers. We

do this by converting tm to a redshift z and integrating the entire visible volume

in shells of thickness dz. At each redshift we calculate the probability of detecting

a binary (Pdet) given its chirp-mass (Mchirp) and luminosity distance (DL(z)). The

total number of observable mergers (Nobs) per unit chirp mass per unit observing

time (tobs) is then,

d2Nobs

dtobsdMchirp

=

∫ zmax

0

dz
dts
dtobs

dVc

dz
×

d3Nmerge

dts dVcdMchirp

(z)Pdet(Mchirp, DL(z)),

(4.2)

where dVc/dz is the differential comoving volume as a function of redshift and

dts/dtobs = 1/(1+z) translates the rate to the observer frame (e.g. Hogg, 1999). We

assume a flat cosmology with ΩM = 0.308 and a Hubble constant of H0 = 67.8 km

s−1 Mpc−1 (Ade et al., 2016). Altogether this general method is similar to works

such as Langer and Norman (2006), Dominik et al. (2013), Mandel and de Mink

(2016), Eldridge and Stanway (2016), Madau and Fragos (2017) and Chruslinska
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and Nelemans (2019).

We sequentially solve the aforementioned equations, providing results for each

intermediate step. The paper is therefore structured as follows:

– Section 4.3: COMPAS population-synthesis code

We create a large sample of DCOs from a broad range of metallicities using the

rapid population-synthesis element of the COMPAS suite. We briefly describe

the model assumptions used to evolve our massive stellar binaries.

– Section 4.4: d3Nform

dtdelaydMSFRdMchirp
- DCO population

We show the results of our population synthesis of DCOs. We describe some of

the key features such as their mass distribution at different formation metal-

licities in our simulation. We describe the three main formation channels for

BBHs. At a tenth of solar metallicity, ignoring selection effects, we find that

a third of the BBHs merge without experiencing a common-envelope event.

– Section 4.5: d3MSFR

dtsdVcdZ
- MSSFR

We combine observations and simulations of galaxy stellar mass distributions

with mass – metallicity relations to construct a MSSFR. These different pre-

scriptions introduce an uncertainty into our DCO merger rate distributions.

We propose a parametrised, smooth metallicity distribution, which facilitates

the exploration of the MSSFR parameter-space

– Section 4.6: d3Nmerge

dtsdVcdMchirp
- DCO Merger Distributions

We calculate the redshift-dependent DCO distribution by convolving the MSSFR

with our DCO population. We find that variation in MSSFR prescriptions sig-

nificantly affects both the total rate and mass distributions of DCOs mergers.

– Section 4.7: d2N
dtobsdMchirp

- Gravitational-Wave Detections

We apply selection effects of gravitational-wave detectors to our cosmic DCO

populations. From this we get both rate and mass distributions of detectable

BBH mergers for different MSSFR prescriptions. We use a Bayesian approach

to compare the predictions of different MSSFR models against the observed
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sample of gravitational waves from BBH mergers. We find that the MSSFR

could change the predicted rate of gravitational-wave events from BBH mergers

by almost an order in magnitude.

– Section 4.8: Discussion and Conclusion

We review our findings and discuss future prospects.

4.3 COMPAS population-synthesis code

We generate our population of DCOs by modelling isolated binary evolution with the

population-synthesis code COMPAS (Stevenson et al., 2017; Barrett et al., 2018a;

Vigna-Gómez et al., 2018; Stevenson et al., 2019). We use Monte Carlo simulations

to empirically estimate the rate density of DCOs per unit star-forming mass in delay

time and chirp mass at each simulation metallicity:

d3Nform

dtdelaydMSFRdMchirp

(Z, tdelay,Mchirp).

In this section we briefly describe the parameter space of our simulation and our

model assumptions for isolated binary evolution. The data will be made publicly

available at http://compas.science.

4.3.1 Initial distributions

The five main initial parameters that describe a stellar binary are the primary m1

and secondary m2 masses, the orbital separation a, the orbital eccentricity e, and the

metallicity of the stars Z at the zero-age main sequence (ZAMS). The mass of the

initially more massive star, the primary, is drawn from an initial mass function (IMF)

according to Kroupa (2001). The mass of the initially less massive secondary star is

given by,

m2 = m1 × q, (4.3)
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where q is the initial mass ratio (0 < q < 1). We draw the mass ratio q from a

flat distribution (Sana et al., 2012). We assume that the distribution of separations

is ∝ a−1 (Öpik, 1924), where initial separations range from 0.1 < a/AU < 1000,

and the orbits are all circular at birth. We assume that these distributions are

both independent of each other as well as independent of metallicity. Recent studies

such as Moe and Di Stefano (2017) suggest that the initial distributions might be

correlated. Varying the distributions of the initial parameters affects the merger

rates by a factor of ≲ 2 (de Mink and Belczynski, 2015; Klencki et al., 2018).

For the metallicities Z of the binaries we use 30 grid points spread uniformly in

log(Z) over a broad range of metal mass fractions 0.0001 ≤ Z ≤ 0.03. We evolve

three million binaries with a total star-forming mass of the order of 6.5 × 107 M⊙

per grid-point.

To optimise the number of binaries containing a neutron star (NS) of black hole

(BH) per binary simulated, whilst still leaving enough room in the parameter space

to make sure we simulate all possible NSs and BHs, we draw primaries with masses

equal to or larger than 5 M⊙ (this represents a very naive version of importance

sampling introduced by Broekgaarden et al. 2019). Our upper mass limit is 150

solar masses. In this mass range the power index of the IMF is -2.3. Due to this

sampling, our simulation does not represent the rate of BBHs per unit star-forming

mass evolved in all stars. Hence, we need to correct for the ‘true’ amount of mass

evolved in all stars (both single and binary). We calculate this by assuming a binary

fraction of 70 per cent and a flat mass ratio for all stellar masses (Sana et al., 2012).

This results in a total star-forming mass per metallicity grid point of ∼ 3.1×108 M⊙.

It is this star-forming mass that we use as our normalisation dMSFR. Exact binary

fractions and hence our normalisation are still uncertain (Sana, 2017; Moe and Di

Stefano, 2017). For example, adopting a 50 per cent binary fraction would increase

the ratio of single stars to binary stars, increasing our normalisation by 30 per cent.
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4.3.2 Single stellar models

Stellar evolution in COMPAS is based on the stellar models by Pols et al. (1998).

We use analytical fits to these models by Hurley et al. (2000, 2002) to rapidly evolve

binaries. Our wind mass-loss rates for stars with temperatures below 12500 K are

prescribed by Hurley et al. (2000) and references therein. For hot massive stars

(T > 12500K) we use the wind mass-loss rates by Vink et al. (2001) as implemented

in Belczynski et al. (2010). There is a region in the Hertzsprung-Russell diagram

at low effective temperatures and high luminosities in which no stars are observed.

The boundary of this region is called the Humphreys-Davidson limit (Humphreys

and Davidson, 1994). If a star enters this region we apply an overall wind mass-loss

rate of 1.5× 10−4 M⊙ yr−1 (Belczynski et al., 2010). From here onwards we refer to

these winds as luminous blue variable (LBV) winds.

4.3.3 Mass-transfer stability

The Roche lobe of a star defines the volume within which the self-gravity of the

star exceeds the tidal pull of its companion. We use the approximation of Eggleton

(1983) for the Roche-lobe radius. When a star expands, its radius may exceed its

Roche lobe. At this moment, the star commences mass transfer onto the companion,

this phase is commonly referred to as Roche-lobe overflow (RLOF). If mass transfer

results in the star further exceeding its Roche lobe then we assume the RLOF is un-

stable. We evaluate if a mass-transfer episode is dynamically unstable by comparing

the radial response of the Roche lobe to mass transfer d log(RL)/d log(m) against

the response of the stellar radius to mass transfer d log(R∗)/d log(m) (Paczyński

and Sienkiewicz, 1972; Hjellming and Webbink, 1987; Soberman et al., 1997). We

approximate the radial response of the star as a function of its stellar type. The

stellar types are as defined in Hurley et al. (2000).

– Main sequence (MS):

We use d log(R∗)/d log(m) = 2.0 for core-hydrogen-burning stars.
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– Hertzsprung gap (HG):

We use d log(R∗)/d log(m) = 6.5 for HG stars. Both MS and HG approxima-

tions follow our models in Vigna-Gómez et al. (2018), based on the work by

Ge et al. (2015). More detailed models based on the evolutionary phase of

the star and the amount of mass loss have been explored by Ge et al. (2015),

Woods and Ivanova (2011) and Pavlovskii et al. (2017).

– Massive stars with convective envelopes:

We use fits from Hjellming and Webbink (1987) and Soberman et al. (1997)

for the radial response to adiabatic mass loss of all evolved stars beyond HG.

These fits are based on condensed polytropes for deeply convective stars and

depend on the mass fraction of the core compared to the total mass of the star

(Hjellming and Webbink, 1987). We will investigate the applicability of these

approximations in future work (Neijssel, 2022).

– Stripped stars:

We make a special exception for mass transfer from exposed helium cores. The

mass transfer from exposed helium stars might be more stable than previously

expected, yielding ultra-stripped stars Tauris et al. (2015, 2017). Currently we

assume all mass-transfer episodes from helium stars are stable. This assump-

tion is not based on a physical model but is instead found to be necessary

to recreate the orbital periods and eccentricities of the observed sample of

Galactic double neutron stars in our models (Vigna-Gómez et al., 2018).

4.3.3.1 Stable mass transfer

If a mass-transfer episode is dynamically stable, the companion star accretes a frac-

tion β of the mass lost by the donor. In our model, this mass-transfer efficiency β de-

pends on the ratio of the thermal timescales tth of the stars β = min (1, C × tth1/tth2),

where 0 ≤ β ≤ 1, and C = 10 to allow for accretor radial expansion while adjusting

to mass transfer (Paczyński and Sienkiewicz, 1972; Hurley et al., 2002; Schneider

et al., 2015). Any mass that is not accreted leaves the system instantaneously, tak-
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ing away the specific angular momentum of the accretor (Hurley et al., 2002). For

NS and BH accretors we assume the accretion is Eddington-limited, which results

in a highly non-conservative mass-transfer phase with β ≈ 0.

4.3.3.2 Unstable mass transfer

If a mass-transfer episode is dynamically unstable the envelope of the donor enfolds

the entire binary in a common-envelope event (Paczyński, 1976). This is a complex

phase and we parametrise it in the so-called ‘α–λ’ formalism (see Ivanova et al.

(2013a) for a review). During a common-envelope event the two stars spiral in

due to friction with the envelope and lose orbital energy and angular momentum.

This loss of orbital energy can heat up and expel the envelope. To see if a binary

is able to expel the common envelope, we compare the orbital energy against the

binding energy of the envelope of the star (Webbink, 1984). The efficiency, α, defines

the efficiency by which orbital energy is capable of heating up the envelope (Livio

and Soker, 1988). We assume that all of the orbital energy goes into expelling the

envelope (i.e. α = 1). The binding energy of the envelope depends on the stellar

structure of the star and is parametrised by λ (de Kool, 1990). Our choices of λ are

based on the binding energy fits by Xu and Li (2010b) as implemented by Dominik

et al. (2012).

Within the common envelope we define two scenarios for donor stars which are on

the Hertzsprung-gap, following Belczynski et al. (2007). In the ‘optimistic’ scenario

we evaluate the common-envelope evolution for Hertzsprung-gap stars using the ‘α–

λ’ prescription. In the ‘pessimistic’ scenario we assume that unstable mass transfer

from Hertzsprung-gap donors always results in a merger. The latter will therefore

decrease the number of DCOs compared to the optimistic assumption. Common-

envelope events with MS donors are assumed to lead to a prompt merger in all

variations.
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4.3.3.3 Supernovae

We use the ‘delayed’ model of Fryer et al. (2012) to determine the remnant mass

from the pre-supernova (SN) mass of the star and its carbon-oxygen core. This

model avoids an enforced lower mass gap between NSs and BHs. A lower mass

gap is also not consistent with microlensing observations unless BHs are assumed

to receive substantial natal kicks (Wyrzykowski and Mandel, 2019). The explosion

can be asymmetric and as a result impart a kick on the formed remnant. The

kicks are drawn from a Maxwellian distribution with a one-dimensional standard

deviation σ = 265 km s−1 based on the observations of isolated pulsars (Hobbs

et al., 2005). If the progenitor either experiences an electron-capture supernova or is

ultra stripped by a NS companion, we lower the one-dimensional root-mean-square

kick to 30 km s−1 (Pfahl et al., 2002; Podsiadlowski et al., 2004; Tauris et al., 2015,

2017; Vigna-Gómez et al., 2018). The fraction fb of mass that falls back onto the

newly born compact object is prescribed by Fryer et al. (2012). All of the ejecta

falls back (fb=1) for carbon-oxygen core masses above 11 M⊙. The natal kick is

proportionally reduced based on the fallback fraction according to

Vkick = (1 − fb)Vkick,drawn. (4.4)

The direction of the kick is assumed to be isotropically distributed in the frame of

reference of the exploding star.

4.4 DCO population

In this section we describe the three main BBH formation channels. We focus on

BBHs because they are the most common DCOs among already observed gravitational-

wave events. More information on BNSs can be found in Vigna-Gómez et al. (2018)

and the channels for black hole – neutron star binaries (BHNSs) are left for an-

other study. In this section we also present the metallicity, mass, mass-ratio, and

delay-time distributions for our model DCO population.
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The necessity of binary interactions to form close binary systems, which host

compact objects, has already been extensively studied in contexts such as the for-

mation of cataclysmic variables (Paczyński, 1967b) or X-ray binaries and double

neutron stars (van den Heuvel and De Loore, 1973; Tutukov and Yungelson, 1973).

A 30 M⊙ + 30 M⊙ circular BBH needs a separation of ≲ 45 R⊙ to merge in the age

of the Universe, whereas the progenitor stars can expand up to hundreds of solar

radii. Therefore, progenitors of DCOs are expected to interact(for a review on the

formation of BBHs see e.g. Mandel and Farmer, 2018).

Observations indicate ∼ 50 percent of massive stars in binaries will interact

(Kiminki and Kobulnicky, 2012; Sana et al., 2012). Only a small fraction of inter-

acting massive binaries will form merging DCOs. This requires stars to avoid merger

during mass transfer; to have sufficient mass to form compact objects; the binary,

must remain bound during and after SNe and, after the formation of a DCO, the

binary must be tight enough to merge within the age of the Universe. Our main

goal is to determine which DCOs we can detect as gravitational-wave sources hence

we are only interested in the systems that merge within the age of the Universe.

The results shown below assume the pessimistic common-envelope assumption. The

optimistic assumption currently over-predicts the rates of BBHs (e.g. Dominik et al.,

2012; Belczynski et al., 2016) and we show results using the optimistic assumption

in Appendix 4.C.

4.4.1 BBH formation channels

In our simulations 97% of all BBHs that merge within a Hubble time form through

one of three distinct channels. Here we briefly summarise the evolutionary phases

of the three main formation channels. The fractions in parentheses indicate the

fraction of all systems that reach a certain event or phase in that specific formation

channel. The fraction of binaries forming BBHs and the ratios between formation

channels depends slightly on metallicity (see also Fig. 4.1). We focus on the systems
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that evolved at a metallicity of Z = 0.1Z⊙
1, and therefore the fraction refers to

the percentage of systems remaining compared to all of the systems evolved at this

metallicity.

1. – Channel I –

This is the dominant, ‘classical’ channel of BBH formation as described in,

e.g., van den Heuvel and De Loore (1973); Tutukov and Yungelson (1993);

Lipunov et al. (1997); Belczynski et al. (2002a); Belczynski et al. (2016) and

Stevenson et al. (2017).

1.1. -Stable mass transfer- The primary star expands sufficiently to engage in

an episode of mass transfer (51.71%). For the majority of these systems,

the first mass-transfer episode will happen between a post-MS primary

star and a MS companion (49.26%). The mass-transfer episode is dynam-

ically stable and strips the hydrogen envelope from the primary, leaving

an exposed helium core with a main-sequence companion star (23.06%).

1.2. -First supernova- The exposed core is massive enough to collapse into a

BH. The binary survives the supernova (2.66%).

1.3. -Unstable mass transfer- The secondary star evolves and starts an episode

of dynamically-unstable mass transfer resulting in a common envelope

(0.87%). The system is able to expel the envelope leaving a tighter bi-

nary (0.50%).

1.4. -Second supernova- The secondary also collapses into a BH and the bi-

nary system survives the second supernova (0.43%).

1.5. -DCO merger- The resulting BBH is then able to merge within the age

of the Universe due to the emission of gravitational waves, which leaves

1In this study, we define the Solar metallicity mass fraction as Z⊙ = 0.0142 and the Solar
oxygen abundance as log10[O/H]⊙ +12 = 8.69 based on Asplund et al. (2009); see appendix 4.A.5
for details.
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0.24% of all our evolved binaries merging as BBHs. Allowing for the

optimistic common-envelope assumption, which allows for HG donors to

survive a dynamically-unstable mass-transfer episode, increases the num-

ber of BBHs in this channel (0.39%).

2. – Channel II –

The second channel is similar to the ‘classical’ channel and goes through the

same steps until the episode of mass transfer initiated by the secondary, which

is dynamically stable in channel II.

2.1. -Stable mass transfer- see channel I.

2.2. -First supernova- see channel I.

2.3. -Stable mass transfer- The secondary starts mass transfer as a post-MS

star. The mass-transfer episode is now dynamically stable and does not

result in a common-envelope phase (1.35%).

2.4. -Second supernova- The secondary collapses into a BH without disrupting

the binary (1.02%).

2.5. -DCO merger- Even without the common-envelope phase the BBH hard-

ens (reduces orbital separation) sufficiently during the second mass-transfer

episode to spiral in and merge within the age of the Universe (0.15%).

Compared to Stevenson et al. (2017) we changed our prescription for comput-

ing d log(R∗)/d log(m) of HG donors (see Sec. 4.3.3). In combination with our

prescription for angular momentum loss during non-conservative mass transfer

onto a compact-object primary (see Sec. 4.3.3.1), the mass-transfer episode is

on average now stable at mass ratios up to mdonor/maccretor ≈ 4.5. A mass-

transfer episode with a donor star that is significantly more massive than the

accretor can substantially harden the binary (van den Heuvel et al., 2017).

With the increased stability these mass ratios are sufficiently extreme such

that a BBH is able to merge within the age of the Universe.
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The stability of the second episode of mass transfer acts as a bifurcation point

between channel I and channel II. Currently, channel II only happens for HG

donors in our models, since we treat core-helium-burning donors as fully con-

vective, making mass-transfer episodes involving core-helium-burning donors

less dynamically stable.

Pavlovskii et al. (2017) find that increasing the stability of mass transfer with

a giant donor star reduces their rates of BBHs mergers and could possibly

explain the formation rate of ultra-luminous X-ray binaries. Furthermore,

van den Heuvel et al. (2017) show that the increased stability of mass trans-

fer could explain the formation of short period X-ray binaries consisting of a

Wolf-Rayet star orbiting a BH. The X-ray binary could possibly continue to

evolve into a close BBH (van den Heuvel et al., 2017).

3. – Channel III –

The third channel for forming BBHs is similar to the double-core common-

envelope channel introduced by (Brown, 1995; Dewi et al., 2006).

3.1. -Unstable mass transfer- In this scenario both stars evolved beyond the

HG before engaging in an episode of mass transfer (1.40%). This mass-

transfer episode is dynamically unstable (1.27%) and the binary survives

the common-envelope ejection (0.71%). However, unlike the similar for-

mation channel for BNSs (Vigna-Gómez et al., 2018), there is no further

episode of mass transfer.

3.2. -Two supernovae- Both stars collapse in supernovae (non-simultaneously);

0.04% of binaries remain bound as a BBH.

3.3. -DCO merger- The DCO spirals in due to the emission of gravitational

waves. In the end 0.03% of all binaries evolved go through this channel

and merge within the age of the Universe.

The remaining three per cent of BBHs form through alternative channels. These
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Figure 4.1: Yield of double compact objects with tdelay < 14 Gyr per unit star-
forming mass from COMPAS population synthesis. BBHs are in blue, BHNSs in
mint and BNSs in red. The curve under the BBH yield is shaded by the contribution
of each channel (the white residual is due to rare alternative channels). The error
bars show the sampling uncertainty of each simulation.

include systems which have an additional moment of mass transfer after a common-

envelope phase, or systems where the first moment of mass transfer is started by the

secondary after the primary’s supernova kick fortuitously tightened the binary.

4.4.2 Yield per metallicity

The yield of merging DCOs per unit star-forming mass depends on the metallicity

at which stars form, as shown in figure 4.1. As previously pointed out by Belczynski

et al. (2010), Giacobbo et al. (2018) and Spera et al. (2019), the rate of BBH forma-

tion is particularly sensitive to metallicity with a steep decline in BBH production at
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higher metallicities. Therefore, while BBHs are the dominant type of merging DCOs

at sub-solar metallicities, they are rarer than BNSs and BHNSs at solar metallicity.

At higher metallicities, higher wind mass-loss rates prevent the growth of the

carbon-oxygen core (Belczynski et al., 2010; Spera et al., 2015; Stevenson et al.,

2017), leaving a less massive remnant. This affects the natal kicks imparted on the

BHs. In the prescription of Fryer et al. (2012), stars with carbon-oxygen cores above

11 M⊙ do not receive any natal kick due to the complete fall back (see Eq. 4.4). In

our models, stars with metallicities of Z = 0.1 Z⊙ and initial masses of M ≳ 35 M⊙

experience complete fall back. At Solar metallicity the initial mass needs to be above

∼ 60 M⊙ to form a carbon-oxygen core massive enough to experience complete fall

back. Therefore, we expect more potential BBH progenitors to be disrupted at

higher metallicities.

Even when assuming that BBHs form without natal kicks, our simulations show

that the yield of BBHs still remains sensitive to the initial metallicity of stars.

Further inspection showed that this is due to the sensitivity of the wind-driven

mass loss to metallicity. Wind-driven mass loss increases at higher metallicities.

Therefore, at higher metallicities, the binary widens more due to wind mass loss and

is left with reduced envelope masses which limit the amount of orbital hardening

during common-envelope ejection or stable mass transfer. Note that here we focus

on the possible progenitors of gravitational-wave events and thus on BBHs which

merge within the age of the Universe. When considering all BBHs and the BH natal

kicks are set to zero, the BBH yield becomes almost independent of metallicity.

The NS progenitors have lower mass-loss rates compared to BBHs and the en-

velope mass is less sensitive to metallicity; moreover, their natal kicks are generally

uncorrelated with metallicity. Hence it is not surprising that the yield of BNSs per

unit solar mass evolved is less sensitive to metallicity, as also found by Giacobbo

and Mapelli (2019).

92



Chapter 4 4.4. DCO population

0 10 20 30 40 50 60 70 80
Mtot[M�]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

dN
fo

rm
/

(d
M

to
t

dM
S

F
R

)
[1

0
−

6
M
−

2
�

]

×10−6

BBH

BHNS

Z�/10

Z�/5

Z�/2
Z�

Z�/10

Z�/5

Z�/2
Z�

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

×10−5

BNS
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4.4.3 Total-mass distribution

Figure 4.2 shows the total-mass distributions of DCOs merging within the age of

the Universe for several metallicities. As discussed in the previous section, lower-

metallicity stars with reduced wind-driven mass-loss rates leave more massive rem-

nants. For all metallicities the bulk of the total BBH masses lie between 15 & 35 M⊙.

More massive BBHs are suppressed by the IMF and wind-driven mass loss. The most

massive binary black hole formed at a given metallicity is a function of both our

assumptions about wind mass loss in massive stars, and our remnant prescription

(these simulations do not include (pulsational) pair-instability supernova (PISN) –

see Stevenson et al., 2019). Meanwhile, BHs with low masses get large kicks in the

Fryer et al. (2012) prescription, and are therefore less likely to remain bound and

form a BBH, explaining a dearth of BBHs with total masses below 15 M⊙. The

‘delayed’ Fryer et al. (2012) remnant prescription does not enforce a lower mass gap

between NSs and BHs, so we find some BBHs with total masses below 10 M⊙ in our

simulations, although these are relatively rare.

The presence of spikes in BBH masses, particularly in the highest mass bin

at Z = 0.5Z⊙ and Z = 0.2Z⊙, are due to mass loss prescriptions, particularly

LBV winds, that map a range of ZAMS masses to a single remnant mass (see

Appendix. 4.B). Similar features are found in Dominik et al. (2015).

For BNSs we recover a similar total-mass distribution to Vigna-Gómez et al.

(2018). As discussed in Vigna-Gómez et al. (2018), this distribution, driven by the

Fryer et al. (2012) prescription, does not match the observed distribution of Galactic

BNSs. For example, in our model, BNSs have total masses in the range 2.5–5.0 M⊙,

while observed Galactic BNSs with precise mass measurements have total masses in

the narrower range 2.5–3.0 M⊙ (Farrow et al., 2019).

4.4.4 Delay-time distribution

The delay time is the time from the formation of two stars in a binary to their merger

as a DCO. We follow Peters (1964) to estimate the time from DCO formation to
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merger through the emission of gravitational waves, where the change in orbital

angular momentum due to gravitational waves equals,

dJgr
dt

= −32

5

G7/2M2
1M

2
2

√
M1 + M2

c5a7/2(1 − e2)2
. (4.5)

The delay-time distribution is roughly uniform in log10(tdelay) for all DCOs (see

Fig. 4.3). Furthermore, for the pessimistic assumption it is not very sensitive to

metallicity. These findings are similar to Dominik et al. (2012) and Mapelli et al.

(2017).

4.4.5 Mass-ratio distribution

Figure 4.4 shows the mass-ratio distributions of DCOs merging within the age of

the Universe at several metallicities. It is clear that the distributions differ between

different types of DCOs and depend on metallicity.

Most BNSs in our model form through either iron-core collapse from the lowest

mass stars, or through electron-capture supernovae (to which we associate a fixed

remnant mass of 1.26 M⊙, Vigna-Gómez et al., 2018). This results in a peak at equal

mass ratios for BNSs. There is some spread in mass ratios at higher NS masses, but

we do not expect extreme mass ratios given the limited range of possible NS masses.

The BHNSs favour more extreme mass ratios. The average NS mass is 1.2 M⊙

and the threshold between NS and BH is 2.5M⊙ in our models. This already results

in a mass ratio of 0.5, but most of the BHs are heavier. Further details are outside

the scope of this study.

The mass-ratio distribution of BBHs depends on the formation channel. The

classical channel I with a common-envelope phase occurs over a broad range of mass

ratios between the donor star and the accreting BH. This channel yields a relatively

flat mass-ratio distribution. Meanwhile, channel II, in which the mass transfer onto

the BH is dynamically stable, has an upper limit of 4.5 for the mass ratio between

the donor and the BH accretor. Mass ratios close to, but less than, 4.5 are preferred
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as they provide the most orbital hardening. After this mass transfer, the stripped

donor star collapses into a BH. This results in a BBH mass ratio around q ≳ 0.6. If

such an additional peak is observed in the mass-ratio distribution of gravitational-

wave events, its prominence and location could constrain the ratio of formation

channels and hence the stability of mass transfer.

4.5 Metallicity-specific star formation rate

We split the calculation of the MSSFR into two independent factors, the SFR and

the metallicity density function dP/dZ:

d3MSFR

dtsdVcdZ
(z) =

d2MSFR

dtsdVc

(z) × dP

dZ
(z). (4.6)

In practice, the SFR and the metallicity distribution may be correlated (see for

example Furlong et al. 2015). However, decoupling the SFR and the metallicity

distribution is a convenient simplifying assumption that yields sufficient degrees of

freedom given current observational constraints.

We discuss detailed models of the SFR and metallicity distribution in Appendix 4.A.

Here, we summarise the key approach to justify the shape of a phenomenological

model that can be used for future inference. We highlight a particular choice of

the model parameters that, coupled with our default binary evolution model, well

matches the data from the first two observing runs of the advanced detector network

(see section 4.7).

Figure 4.5 illustrates our SFR model. All models in Fig. 4.5 agree well at low

redshift, z ≲ 2, other than differences in calibration due to the assumed initial

mass function (Madau and Fragos, 2017). At higher redshift, Strolger et al. (2004)

assume greater extinction and find a higher rate of star formation than Madau and

Dickinson (2014). We follow the functional form of Madau and Dickinson (2014) in
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our phenomenological model,

d2MSFR

dtsdVc

= a
(1 + z)b

1 + [(1 + z)/c]d
M⊙ year−1 Mpc−3. (4.7)

The entire parameter space would be 4-dimensional, but we find that all of these

SFR prescriptions are reasonably reproduced by setting b = 2.77, c = 2.9 and letting

a and d vary in the intervals [0.01–0.015] and [3.6–5.6], respectively. In section 4.7,

we show that a = 0.01 and d = 4.7 yield a good match to gravitational-wave

observations when coupled with the metallicity distribution model discussed below

and our default binary evolution model.

The metallicity density function at each redshift is typically obtained by con-

volving a GSMF with a MZ relation. Both of these are subject to significant uncer-

tainties, and we describe several GSMF fits (Panter et al., 2004; Furlong et al., 2015)

and MZ relations (Savaglio et al., 2005; Langer and Norman, 2006; Ma et al., 2015)

in Appendix 4.A. We show the metallicity distribution at several redshifts from a

combination of some of these predictions in figure 4.6. This figure also shows our

fiducial model – a log-normal distribution in metallicity,

dP

dZ
(z) =

1

Zσ
√

2π
e−

(ln(Z)−µ(z))2

2σ2 , (4.8)

with redshift-independent standard deviation σ in ln(Z) space around a redshift-

dependent mean µ of ln(Z) given by,

⟨Z⟩ = e(µ+
σ2

2
). (4.9)

We follow Langer and Norman (2006) in parametrising mean metallicity as

⟨Z(z)⟩ = Z010αz, (4.10)

where Z0 is the mean metallicity at z = 0 and the parameter α has negative values,

yielding lower mean metallicity at higher redshifts. The free parameters of the
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metallicity distribution are therefore Z0, α and σ. We show in section 4.7 that

Z0 = 0.035, α = −0.23 and σ = 0.39 yield a good match to gravitational-wave

observations when coupled with our other assumptions. This preferred distribution

has a similar shape to the metallicity distribution inferred by Rafelski et al. (2012)

from measurements of damped Lyman α galaxies.

4.6 Distribution of DCO mergers

In this section we focus on the rate and mass distribution of DCO mergers as a

function of redshift. We convolve the DCO population formed at each redshift

(section 4.4) with the MSSFR (section 4.5), incorporating the delay-time distribution

according to equation 4.1. We do not yet take into account selection effects. We

find that the choice of MSSFR affects the total merger rate as a function of redshift,

the relative rate of different types of DCO, and the mass distribution. Additionally

we show that our predicted distributions do not match the priors used by Abbott

et al. (2016) and Abbott et al. (2018b,a) to infer gravitational-wave signals.

4.6.1 Rate and redshift of cosmic DCO mergers

Figure 4.7 shows the intrinsic rate of DCO mergers as a function of redshift over a few

MSSFR combinations. In our preferred MSSFR model, the merger rate at redshift

z = 0 is 49, 57, 20 Gpc−3 yr−1 for BBHs, BNSs, and BHNSs, respectively. These

rates are the lowest compared to other models considered in section 4.5. The rate at

redshift z = 0 is an order of magnitude less compared to our previous MSSFR model

(Barrett et al., 2018a). The main reason is that our new preferred model favours

extra-solar metallicities at redshifts close to zero (see Fig. 4.6). This suppresses

the yield of BBHs and shifts their peak merger rate to higher redshifts which is in

principle measurable with future gravitational-wave observations (Fishbach et al.,

2018; Vitale and Farr, 2018). The presence of extra-solar metallicities at z = 0 in

our preferred model is consistent with results of some other MSSFR models such as
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the MZ relation found by Ma et al. (2015). Using their MZ relation to estimate the

BBH merger rate also yields lower rates. Indeed, when we assume the MZ relation

by Langer and Norman (2006), which has a mean solar metallicity at a redshift of

z = 0, we find that the BBH merger rate increases compared to our preferred model.

The slope of the power-law in the redshift-dependent GSMF of Furlong et al. (2015)

ranges from -1.43 at z = 0 to -1.99 at z > 4, whereas the redshift-independent

Schechter function by Panter et al. (2004) has a slope of −1.16. Therefore the

distribution of Furlong et al. (2015) has a lower average galaxy stellar mass with

correspondingly lower metallicities, yielding higher DCO merger rates compared to

the GSMF of Panter et al. (2004) assumed in Barrett et al. (2018a).

The rates of BNS and BHNS mergers differ only by a factor of few at redshifts

z > 2 for the MSSFR combinations considered here. At these redshifts the mean

metallicity is sub-solar for all of our MSSFR combinations. In our models the yield

of BNSs and BHNSs is roughly constant as a function of metallicity and therefore

varying the distribution of metallicities by changing the MZ relation does not greatly

affect the results. Only once the mean metallicity is about solar or extra-solar, for

example at z = 0, does the yield of BNSs and BHNSs become sensitive to metallicity

and therefore to a change in MZ relations. The different estimates for the rates of

BHNS mergers span an order of magnitude (10–100 yr−1Gpc−3) at z = 0. We note

that the change in the MSSFR affects not only the overall DCO merger rate, but

also the ratio between merger rates of different DCO types.

4.6.2 Mass distribution and redshift of cosmic DCO mergers

Figure 4.8 shows the normalised total-mass distribution of BBH mergers at several

redshifts in our preferred MSSFR model. The merger rates of the systems are the

result of the convolution of the redshift dependence of the MSSFR with the delay-

time distribution. There is a significant contribution to low-redshift mergers from

DCOs that formed at low metallicity and high redshift, with long delay times (see

Fig.4.3). These low-metallicity systems give rise to high-mass BBH mergers (see
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Figure 4.7: The intrinsic rate of DCO mergers per cubic Gpc per year. The colours
denote different DCO types: BBHs in dark blue, BHNSs in mint, and BNSs in
red. The solid line is our preferred phenomenological model. The dashed line is
the default model of Barrett et al. (2018a), which combines the SFR of Madau and
Dickinson (2014), the MZ-relation of Langer and Norman (2006), and the redshift-
independent GSMF of Panter et al. (2004). The dotted line replaces the latter with
the redshift-dependent single Schechter GSMF of Furlong et al. (2015).
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Figure 4.8: The normalised total-mass distribution of BBH mergers at redshifts 0,
1.5, and 3 (shaded dark to light) for our preferred MSSFR model. The narrow spikes
above 30 M⊙ relate to the LBV systems (for more details see appendix 4.B). The
dotted and dashed curve emulate the priors by Abbott et al. (2016) and Abbott
et al. (2018a). The dotted curve indicates the total-mass distribution assuming that
the more massive BH is sampled from a power law with an index of -2.3 paired
with a companion drawn from a flat mass-ratio distribution. The dashed curve is
a total-mass distribution where both BH masses are sampled from M−1 density
distribution. For the minimum BH remnant mass we assumed 2.5 M⊙ given that we
have not a lower remnant-mass gap in any of our models.
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Figure 4.9: The normalised total-mass distribution of BBH mergers at redshift z = 0.
The MSSFR models are the same as in Fig. 4.7.

Fig. 4.2). There is a greater tail of high-mass DCOs merging at redshift z = 0

compared to higher redshifts. Fig. 4.8 shows that the rate of systems with total

masses Mtot > 50 M⊙ is about three times higher at z = 0 compared to z = 3 (see

also Dominik et al. 2015 and Belczynski et al. 2016).

The normalised total-mass distribution is sensitive to the metallicity at which

stars form, and therefore depends on the assumed MSSFR prescription. We show the

impact of the MSSFR on the mass distribution of DCOs merging at redshift z = 0 in

figure 4.9. As with the BBH merger rate discussed in section 4.6.1, MSSFR models

which have relatively more star formation at lower metallicities (our previous model

in Barrett et al. 2018a, especially with the Furlong et al. 2015 GSMF variation)

show enhanced high-mass tails relative to MSSFR models with higher metallicity
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(our preferred model) or reduced high-redshift, low-metallicity SFR (the Ma et al.

2015 MZ relation combined with the SFR of Madau and Dickinson 2014 and the

redshift-independent GSMF of Panter et al. 2004). The peaks at high masses, such

as at Mtot ≈ 51 M⊙ and Mtot ≈ 56 M⊙, in figures 4.8 and 4.9 are due to mass loss

prescriptions, particularly LBV winds (for more details see Appendix 4.B). These

depend on metallicity, hence the prominence of the peaks varies depending on the

MSSFR prescription.

4.6.3 Priors and rate estimates

The DCO merger rate inferred from gravitational-wave observations is sensitive to

the assumed mass distribution of the DCOs (Abbott et al., 2018b,a). We show the

mass priors assumed by Abbott et al. (2016) and Abbott et al. (2018a) in figure 4.8;

it is clear that these are inconsistent with our predicted mass distribution. Abbott

et al. (2018a) account for uncertainties in the shape of the BBH mass distribution by

varying the slope of a power law distribution. However, as we show in Fig. 4.8, the

mass distribution of BBHs might be more complex than a simple power law, and is

furthermore a function of redshift, along with the merger rate itself. Therefore, DCO

merger rates and mass distributions inferred from simple priors or phenomenological

models should be treated with caution.

The complex dependence of the mass distribution of merging DCOs on both the

binary evolution model (e.g. Dominik et al., 2013; Mapelli et al., 2017; Stevenson

et al., 2017) and the MSSFR (this study), and the variation in the mass distribution

and merger rate with redshift, makes it challenging to propose alternative priors.

Therefore, it is preferable to apply selection effects to the model population to

compare model predictions against observations. This is the approach we take in

the next section.
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4.7 Gravitational-wave detections

This section focuses on the effect of the MSSFR on the predicted rates and mass dis-

tributions of detectable DCO mergers. We evaluate these using Eq. 4.2. We predict

the total rate of detectable DCO mergers as a function of redshift and describe the

mass distribution of BBH mergers. We carry out a Bayesian model comparison of

different MSSFR prescriptions, taking into account both the number and the mass

estimates of the 10 BBH mergers detected during the first and second observing

runs of aLIGO (Abbott et al., 2016; Abbott et al., 2018b). We do not include in our

analysis the 6 additional BBH candidates found in the same data set by Venumad-

hav et al. (2019) with an independent search pipeline and somewhat different data

quality choices.

4.7.1 Selection effects

For the selection effects we use the same method as described in Barrett et al.

(2018a). We use a single detector signal to noise ratio (SNR) threshold of 8 (Aasi

et al., 2016), above which we assume that gravitational waves from the merger are

detectable. To evaluate the SNR for a given DCO system, we compute the waveforms

for the appropriate masses using a combination of IMRPhenomPv2 (Hannam et al.,

2014; Husa et al., 2016; Khan et al., 2016) and SEOBNRv3 (Pan et al., 2014; Babak

et al., 2017). We approximate the sensitivity of the second observing run (Abbott

et al., 2018b) to be similar to the first observing run (Abbott et al., 2016). The

fraction of systems with SNR above the threshold of 8 at a given distance (redshift),

after sampling over the sky location and orientation of the binary (Finn and Chernoff,

1993), yields the detection probability Pdet(Mchirp, DL).

4.7.2 Rate and redshift of gravitational-wave detections

The rate of detectable DCO mergers depends on the underlying merger rate, which

increases up to redshift z ∼ 2 (Fig. 4.7). However, the detection probability drops
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Variation MSSFR Detection rate [yr−1] Likelihoods (log10)
SFR MZ GSMF BBH BHNS BNS LMchirp

LR Ltot

Preferred model 22.15 0.23 0.08 -32.32 -0.90 -33.22
Madau et al. Ma et al. (2004) 1 18.43 0.4 0.11 -33.9 -0.97 -34.87

2 94.35 0.51 0.12 -32.42 -8.86 -41.28
3 113.92 0.52 0.13 -32.48 -11.9 -44.38

Langer et al. 1 247.22 1.28 0.22 -32.24 -34.85 -67.09
2 441.08 1.19 0.22 -32.61 -70.6 -103.21
3 492.27 1.25 0.23 -32.77 -80.23 -113.0

Langer et al., offset 1 28.72 0.23 0.09 -32.3 -1.07 -33.38
2 120.3 0.35 0.11 -32.68 -12.93 -45.61
3 148.74 0.35 0.11 -32.87 -17.62 -50.49

Strolger et al. Ma et al. (2004) 1 32.93 0.52 0.12 -33.82 -1.31 -35.13
2 203.93 0.6 0.14 -32.81 -27.14 -59.95
3 208.21 0.61 0.14 -32.65 -27.9 -60.54

Langer et al. 1 406.39 1.28 0.23 -32.44 -64.11 -96.55
2 659.25 1.19 0.24 -32.98 -111.92 -144.9
3 710.91 1.25 0.24 -33.09 -121.79 -154.87

Langer et al., offset 1 89.79 0.33 0.11 -32.46 -8.18 -40.63
2 267.34 0.43 0.12 -33.2 -38.48 -71.68
3 292.76 0.43 0.12 -33.22 -43.1 -76.33

Table 4.1: Rate estimates and likelihoods per MSSFR variation. The numbers in the
column GSMF refer to 1=Panter et al. (2004), 2=Furlong et al. (2015) using a single
Schechter function, 3=Furlong et al. (2015) using a double Schechter function. The
detection rates are estimated for a year of coincident observing with the sensitivity
of the first observing run of aLIGO. The likelihoods account for BBH detections
during the first and second observing runs, assuming the same sensitivity (Abbott
et al., 2016; Abbott et al., 2018b). The total log likelihood Ltot is the sum of the
log likelihoods of the chirp-mass distribution LMchirp

and the rate LR.

off at higher redshift. These competing effects mean that the detection rate of BBH

mergers peaks at a redshift between 0.1–0.15 depending on the MSSFR model at

the sensitivity of the first two observing runs. This is shown in Fig. 4.10. Note

that this figure displays the number of detections per unit redshift per unit observer

time, rather than per unit volume per unit source time as in Fig. 4.7 (see Eq. 4.2 for

the additional factors of dVc/dz/(1 + z)). Because NSs are less massive than BHs,

mergers involving NSs cannot be observed as far as BBH mergers. The detection

rates of BHNS and BNS mergers per unit redshift peak at z ≈ 0.03 and z ≈ 0.015,

respectively. As discussed in Sec. 4.6.1, the sensitivity of the detection rate to

MSSFR variations tracks the sensitivity of the DCO formation rate to metallicity

(see Fig. 4.1).

Table 4.1 shows the observed rate per DCO type per year. The combined ob-

serving time of the first two observing runs is about 166 days: 48 days of coincident
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data for the first and 118 days for the second observing run (Abbott et al., 2016;

Abbott et al., 2018b). Thus, 10 detections translate to an observed detection rate

of 22 BBH mergers per year. Most of our variations significantly overestimate the

observed rate. As previously mentioned, variations that favour a higher SFR (Strol-

ger et al., 2004), lower metallicities (Langer and Norman, 2006) or lower galaxy

stellar masses (Furlong et al., 2015) predict a higher detection rate. We find that

by changing the MSSFR alone we can vary the predicted rate of detectable BBH

mergers by more than an order of magnitude.

All of our predictions for detectable BNS mergers are fewer than one every four

years of observing time, suggesting that GW170817 was a fortuitous event if we

believe our models. MSSFR models with the highest star-formation rates predict

more than one detectable BHNS merger in one year observing time, however, these

are generally inconsistent with observations in their BBH merger rate predictions.

4.7.3 Mass distribution of detectable BBH mergers

The top panel of Fig. 4.11 shows the predicted chirp-mass distributions of detectable

BBH mergers for several MSSFR variations. We use the chirp masses of the BBHs

mergers here since these are typically better observationally constrained than the

total masses.

Mergers of more massive DCOs emit louder gravitational-wave signals that can be

detected to greater distances. Therefore, the mass distribution of detectable BBHs

is biased to higher masses relative to the intrinsic mass distribution of Fig. 4.9. The

impact of MSSFR variations on the shape of the distribution follows the discussion in

Sec. 4.6.2. However, the selection effects emphasise the peak due to the LBV winds at

chirp masses around 25 M⊙ (see also appendix 4.B). Although the ‘delayed’ remnant

mass model of Fryer et al. (2012) used in our simulations does not enforce a lower

mass gap between NS and BH masses, we find that low-mass merging BBHs are

very rare, especially after selection effects are applied. We do not expect significant

numbers of detections in the lower mass gap for any of the MSSFR variations.
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Figure 4.11: Top panel: The normalised chirp-mass distribution of BBH merg-
ers detectable at the sensitivity of the first two observing runs. The masses are
in the source reference frame. The MSSFR models are the same as in Fig. 4.7.
The numbers in the label are the predicted annual detection rate. Bottom panel:
Approximate Gaussian posteriors (see appendix 4.C) of BBH mergers detected
during the first and second observing runs (Abbott et al., 2018b), from left to
right: GW170608, GW151226, GW151012, GW170104, GW170814, GW170809,
GW170818, GW150914, GW170823, GW170729. The cyan area shows randomly
sampled cumulative density functions from the posteriors, indicating the spread due
to the measurement uncertainty. The black lines are cumulative density functions
when 10 events are randomly drawn from the preferred model.
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The bottom panel of Fig. 4.11 shows that our preferred MSSFR model predicts

a chirp-mass distribution of detectable BBH mergers that is consistent with the de-

tection from the first two advanced detector observing runs. Approximate Gaussian

posteriors (see appendix 4.C) for the ten detections are shown in cyan at the bottom

of the plot. We construct observed CDFs by taking a random sample from each of

these ten posteriors. The set of cyan curves indicates the range of observed CDFs

consistent with measurement uncertainty. Meanwhile, each black curve represents

a CDF constructed by sampling from the predicted distribution of detectable BBH

events under the preferred MSSFR model. The visual overlap between the black and

cyan regions indicates that the observations are consistent with the model within

the statistical uncertainty of this limited data set, although the CDF of the data

does not perfectly match the model prediction.

4.7.4 Bayesian comparison of MSSFR models

We showed that the choice of the MSSFR affects both the detectable rates and mass

distributions of DCO mergers. Here we quantitatively compare these models against

observations during the first and second observing run (Abbott et al., 2018b). We

consider the total rate of events and the relatively well-measured chirp masses. We

do not consider other properties such as relatively poorly measured mass ratios or

source redshifts given the narrow range of redshifts reached to date. Bavera et al.

(2019) compare a possible model for BBH spins evolving through channel I (see

section 4.4.1) using the COMPAS data presented here against observations. In this

analysis (as in Barrett et al. 2018a), the total log likelihood Ltot is the sum of the

rate log likelihood LR and the likelihood of the normalised chirp-mass distribution

LMchirp
,

Ltot = LMchirp
+ LR. (4.11)
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The rate likelihood assumes a Poisson distribution for the detection of gravitational-

wave events, where the MSSFR model gives the expected number of detections

over the duration of the first two observing runs. The chirp-mass likelihood is the

product over the ten events of the probabilities of making individual detections

given the predicted chrip-mass distribution (see appendix 4.C). A difference of 1 in

log likelihoods, corresponding to a factor of 10 in the likelihoods, implies that the

higher-likelihood model is preferred over the lower-likelihood model by a factor of

10 (i.e., has an odds ratio of 10 : 1, assuming both models are equally probable a

priori). Table 4.1 shows the total likelihoods for the pessimistic common-envelope

assumptions. A longer list of variations, including the optimistic common-envelope

assumption, can be found in tables 4.3 and 4.2.

The rate likelihoods differ significantly given our range in rate estimates. Many of

the MSSFR models greatly overestimate the rates and are strongly disfavoured under

the assumed model of binary evolution. Meanwhile, despite the visual difference

in the shape of the chirp-mass distribution (see Fig. 4.11), the difference in the

chirp-mass likelihoods is small. More detections will make it possible to jointly

explore MSSFR and evolutionary models using the observed chirp-mass distributions

(Barrett et al., 2018a). Given our binary evolution model, the log-likelihoods indicate

a preference for higher star-formation metallicities at low redshifts to match the

observed BBH rate and chirp-mass distribution.

In section 4.5 we introduced a 5-parameter phenomenological model of the MSSFR.

With suitable parameter choices this generic model can match all of the detailed

models considered here, while providing the convenience of a continuous, smooth

parametrisation that is useful for inference. We also introduced a particular choice

of these 5 parameters – our preferred model – that yields a good match to both

the number of BBH mergers detected during the first two observing runs (10.06

predicted vs. 10 observed) and their chirp mass distribution (section 4.7.3 and the

bottom panel of Fig. 4.11). As table 4.1 shows, this preferred model also yields the

highest likelihood among all considered models. This preferred model favours a SFR
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similar to Madau and Fragos (2017), which includes the contribution from stars in

binaries. However, we do favour a higher SFR at high redshifts, where metallicity

is lower, to enhance the fraction of massive BBH merger events. We caution, how-

ever, that the MSSFR parameters in the preferred model are chosen ad hoc, with

some ‘Fingerspitzengefühl’. We refrain from further optimising the MSSFR param-

eters since the uncertainty in binary evolution should be taken into account. Future

analyses should jointly infer the parameters of the MSSFR and parameters describ-

ing the binary evolution model, using gravitational waves and other observational

constraints.

4.8 Conclusion and discussion

We showed that assuming different MSSFR within observational constraints can vary

the rate of BBH mergers by more than an order of magnitude within a fixed stellar

and binary evolution model2 and affect the ratio between BBH, BHNS, and BNS

detection rates. This is comparable to the impact of uncertainties on evolutionary

physics such as wind mass-loss rates, conservativeness of mass transfer, the efficiency

of common-envelope evolution and BH natal kicks (Dominik et al., 2012; Kruckow

et al., 2018; Giacobbo and Mapelli, 2018).

The sensitivity to MSSFR is predominantly driven by the impact of metallicity on

the yield of BBHs per unit star-forming mass. This is consistent with earlier findings

(e.g., Dominik et al., 2015; Chruslinska et al., 2018). In particular, Chruslinska et al.

(2018) also find that a higher average metallicity is required in order to not over-

predict the BBH merger rate.

Here, we explored the impact of the MSSFR while keeping the binary evolution

model unchanged. In practice, joint inference on stellar and binary physics and the

MSSFR is required to fully interpret observations (e.g., Chruslinska et al., 2018).

For example, (pulsational) PISNe (see for example Woosley (2017) and references

therein) can prevent the formation of BHs with masses between around 50 and 130

2There is a further uncertainty from the definition of solar metallicity, see appendix 4.A.5.
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M⊙, i.e., with chirp masses between 45 and 115 M⊙ for equal-mass binaries. Abbott

et al. (2018a) find that existing gravitational-wave detections show evidence for a

maximum black hole mass of around ∼ 45 M⊙, consistent with population synthesis

studies such as Belczynski et al. (2016); Spera and Mapelli (2017) and Stevenson

et al. (2019). However in Fig. 4.11, we show that it is possible to reproduce such a

limit within the evolutionary model of this paper, which does not include pulsation

PISNe, by choosing a suitable MSSFR alone (Madau and Dickinson (2014); Ma

et al. (2015); Langer and Norman (2006)). A similar argument can be made for the

presence or absence of a mass gap between NSs and BHs. Beyond gravitational-

wave observations, other observational constraints such as the epoch of reionisation

(Stanway et al., 2016), SNe (Chruslinska and Nelemans, 2019; Eldridge et al., 2019),

and X-ray binaries (Madau and Fragos, 2017) can further help to lift the degeneracy

between binary physics and the MSSFR.

We introduced a phenomenological description of the MSSFR with 5 continu-

ous parameters (section 4.5) to facilitate the joint exploration of the MSSFR and

parametrised evolutionary assumptions. We also proposed a particular choice of the

MSSFR model parameters that represents a good match to the BBH gravitational-

wave detections made during the first two observing runs of advanced LIGO and

Virgo. We use constraints from BBH observations rather than BNS or BHNS be-

cause the precision of the latter observational constraints is limited by the small

number of detections. Assuming our preferred model, the observed BNS detection

GW170817 appears to be fortuitous, however our models are consistent with other

observational constraints on BNS merger rates, such as observations of Galactic

binary pulsars (Vigna-Gómez et al., 2018). Future detections will enable joint infer-

ence of both the MSSFR and the parametrised evolutionary model uncertainties and

may shift the preferred model presented in this study. In the meantime, we used this

model in other population studies, such as Stevenson et al. (2019). Looking ahead,

we can apply this preferred MSSFR model to make predictions for the detection rate

and chirp mass distribution at the expected design sensitivity of LIGO gravitational-
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wave observatory, shown in figure 4.12. We predict 380 BBH detections per year, or

approximately one detection per day, within our default evolutionary model.

Our phenomenological model of the redshift-dependent MSSFR is adequate for

exploring cosmologically averaged merger rates. Studies of specific galaxy hosts or

host types (e.g., in the context of electromagnetic counterpart observations) require

more detailed models, such as those considered by Lamberts et al. (2016); Chruslin-

ska and Nelemans (2019); Boco et al. (2019).

Figure 4.12 also highlights the importance of the dynamically stable mass transfer

channel without a common-envelope phase to form of detectable merging BBHs. We

find that channel II may be responsible for 80% of all detected BBH mergers. This

highlights the importance of mass transfer stability criteria, which merit further

investigation. Meanwhile, the narrow chirp mass spike at around 25 M⊙ is due to

the operation of LBV mass loss at a particular metallicity (cf. Dominik et al., 2015).

The peaks do not have a great impact on the overal rates and likelihood distributions,

but possibly complicate efforts to emulate the results of population-synthesis codes

using techniques such Gaussian process regression (Barrett et al., 2017). While

we expect that a finer metallicity grid or interpolation between metallicities would

lead to a smoother chirp mass distribution, this again highlights the importance

of highly uncertain LBV winds for these predictions (Mennekens and Vanbeveren,

2014). Finally, the sampling accuracy of predictions (e.g., the time-delay distribution

for BHNS in Figure 4.3) could be improved with more efficient importance sampling

techniques (Broekgaarden et al., 2019).

Our predictions suggest that approximately one thousand detections could be

reached within a couple of years of operation of advanced detectors operating at de-

sign sensitivity. Barrett et al. (2018a) showed that this will be sufficient to constrain

the binary evolutionary parameters to a fractional accuracy of a few percent. Our

phenomenological MSSFR model can be incorporated into this hierarchical mod-

elling framework to be enable joint inference on binary evolution and the cosmic

history of star formation.
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4.A Metallicity-specific star formation rate

4.A.1 Cosmological star formation rate - SFR

We consider several prescriptions for the cosmological SFR as a function of redshift

z. The first is from Madau and Dickinson (2014):

d2MSFR

dtsdVc

(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
M⊙ yr−1 Mpc−3. (4.12)

At higher redshifts the observations become more sensitive to extinction which re-

mains uncertain. Strolger et al. (2004) construct a fit for the SFR using a different
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extinction correction, as

d2MSFR

dtsdVc

(t) = 0.182 × (4.13)(
t1.26e−t/1.865 + 0.071 e0.071(t−t0)/1.865)

)
M⊙ yr−1 Mpc−3,

where t(z) is the age of the Universe at redshift z in Gyrs, and t0 is the current

age of the Universe, which they set to 13.47 Gyrs. These two SFR models agree

at low redshifts, z ≲ 2, where both models peak; however, the model of Strolger

et al. (2004) has a shallower drop off at higher redshifts (see Fig. 4.5). Simulations

so far have not independently constrained the SFR at high redshifts. There are,

for example, additional uncertainties such as the role of active galactic nuclei and

feedback on the interstellar medium (Taylor and Kobayashi, 2015).

Madau and Fragos (2017) use an updated SFR compared to Madau and Dickin-

son (2014). A key difference is assuming a broken power-law IMF by Kroupa (2001)

instead of the classic power-law by Salpeter (1955). This increases the relative num-

ber of massive stars and therefore lowers the overall SFR normalisation by a factor of

0.66. The shape of the Madau and Fragos (2017) and Madau and Dickinson (2014)

SFR models is similar, and we generally use the Madau and Dickinson (2014) pre-

scription in our analysis. However, we adjust the low-redshift normalisation of our

preferred model to approximately match the more recent estimate of Madau and

Fragos (2017).

Estimates of the SFR at high redshifts rely on proxy observations, such as UV

luminosities or gamma-ray bursts. For UV luminosities dust attenuation is an is-

sue. Correlations between UV continuum slopes, redshift and dust obscuration wit-

nessed in lower-redshift galaxies can be extrapolated to higher-redshift observations

(Bouwens et al., 2009). The sensitivity to the assumed IMF introduces additional

uncertainties (Hopkins and Beacom, 2006). These combined uncertainties lead to a

broad range of high-redshift SFR estimates (Hopkins and Beacom, 2006), between

107 and 108M⊙Gpc−3yr−1 at z = 6 (cf. Fig. 4.5). Gamma-ray bursts are not sensi-

tive to dust, but the connection between their rate and the underlying SFR is itself
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model-dependent. Yüksel et al. (2008) recover an SFR drop-off at higher redshifts

from gamma-ray burst observations that is less steep than the drop-off recovered

from UV observations. The various SFR models used in this study are generally

consistent within uncertainties in the literature, despite being based on different

observational evidence and different assumptions.

4.A.2 Galaxy stellar mass to metallicity - MZ-relation

As described in section 4.5, we can construct star-forming metallicity density func-

tions by convolving the galaxy stellar mass distribution with the MZ relation, which

connects the galaxy stellar mass (M∗) and metallicity. We describe the MZ relations

considered in this work in this subsection, and the GSMFs in the next one.

Stellar metallicities are assumed to match the metallicity of the interstellar gas

of their surroundings at birth. Observations are typically given in terms of the

ratio of the number density of oxygen and hydrogen in the gas, generally written as

log10[O/H]+12. Conversions to metallicity depend on the assumed solar abundances.

In this study we define the solar metallicity mass fraction as Z⊙ = 0.0142 and

the solar oxygen abundance of log10[O/H]⊙ + 12 = 8.69 based on Asplund et al.

(2009). Ma et al. (2015) discuss some of the uncertainties in the slopes and offsets

in the MZ relation, including the use of different observational samples or metallicity

diagnostics, or the use of different simulation resolutions and feedback mechanisms

in theoretical models (e.g., Taylor and Kobayashi, 2015).

In Barrett et al. (2018a) we used the prescriptions of Langer and Norman (2006),

who in turn use a MZ relation from Savaglio et al. (2005). This MZ relation is derived

from a fit of 56 galaxies in the Gemini Deep Deep Survey with a mean redshift of

around 0.7. Savaglio et al. (2005) provide a quadratic and linear bisector fit, the

latter being

log10[O/H] + 12 = 0.478 log10

(
M∗

M⊙

)
+ 4.062. (4.14)
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Figure 4.13: Comparison between different MZ relations at a redshift of 0.7, at which
the relation of Savaglio et al. (2005) was determined. We also show our introduced
offset to Langer and Norman (2006) which overlaps with the bisector fit of Savaglio
et al. (2005). Note that the extrapolation of the quadratic fit of Savaglio et al. (2005)
beyond their upper limit of log10(M∗) = 11 results in a turnover. The dot-dashed
horizontal line is our definition of the relation between solar metallicity and solar
oxygen number density (Asplund et al., 2009).
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We use the bisector fit because it is a monotonically increasing function of galaxy

mass. The large differences at higher masses between the fits are largely due to

the inclusion or exclusion of just four high-mass galaxies (Savaglio et al., 2005),

illustrating the uncertainty at the extreme ends of MZ relations. Langer and Norman

(2006) approximate this fit with a simplified MZ relation:

M∗

Mx

=

(
Z

Z⊙

)2

, (4.15)

where Mx = 7.64×1010 M⊙ (Panter et al., 2004). Langer and Norman (2006) assume

that the mean metallicity decreases exponentially with redshift as,

⟨Z⟩ = Z⊙10−0.3z. (4.16)

When we translate this back into a MZ relation we find that there is difference

between the approximate Langer and Norman (2006) MZ relation and the fit of

Savaglio et al. (2005) (see Fig. 4.13). We introduce an offset to the model of Langer

and Norman (2006) in order to recover the relation by Savaglio et al. (2005). This

offset together with the original redshift scaling results in a high mean metallicity

at redshift zero, but we keep this as an alternative model to look at its effects.

The second MZ-relation we consider is a theoretical model due to Ma et al.

(2015). They combine cosmological simulations with stellar population synthesis

models and a variety of feedback mechanisms to trace the evolution of the interstellar

gas, for galaxy stellar masses ranging between 4 ≤ log10(M∗/M⊙) ≤ 11 and redshifts

between 0–6. Ma et al. (2015) give the MZ-relationship as

log10

(
Zgas

Z⊙

)
= 0.35

[
log10

(
M∗

M⊙

)
− 10

]
+ 0.93e−0.43z − 1.05.

(4.17)
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Figure 4.14: Comparison between the galaxy stellar mass density functions at red-
shifts z = 0 (solid), z = 1.5 (dashed), and z = 3 (dotted). The relation by Panter
et al. (2004) is independent of redshift, therefore there is only a single curve (black).
The double Schechter function by Furlong et al. (2015) (pink) has a steeper drop off
at higher galaxy stellar masses compared to their single Schechter function (mint).
Both power-law slopes of Furlong et al. (2015) are steeper than the Schechter func-
tion of Panter et al. (2004). This shifts the former distribution towards lower galaxy
stellar masses, which translates to lower metallicities.
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4.A.3 Galaxy stellar mass density function - GSMF

The GSMF is empirically constructed by converting the luminosity of a sample of

galaxies into a stellar mass, assuming a mass-to-light ratio. Although samples and

methods differ between compilations, Baldry et al. (2008) show that for galaxies

within the mass range of 8.5 ≤ log10(M∗/M⊙) ≤ 12 at redshift z < 0.1, there is

good agreement on the shape of the GSMF.

The general shape is that of a Schechter function (Schechter, 1976):

ΦM∗(z)dM = ϕ1(z)

(
M∗

Mc(z)

)−α(z)

e−
M∗

Mc(z)dM, (4.18)

where α determines the slope of the GSMF at the low-mass end, Mc is the turnover

mass, and ϕ1 the overall normalisation. However, a double Schechter function ap-

pears to better fit the extreme mass ends of the GSMF (Baldry et al., 2008; Furlong

et al., 2015):

ΦM∗(z)dM = e−
M∗

Mc(z)×[
ϕ1(z)

(
M∗

Mc(z)

)−α1(z)

+ ϕ2(z)

(
M∗

Mc(z)

)−α2(z)
]
dM.

(4.19)

The double Schechter function fit determined from the EAGLE simulations by

Furlong et al. (2015) is able to reproduce the empirical observations of Duncan et al.

(2014). We performed a linear fit to the tabulated coefficient values in the appendix

of Furlong et al. (2015) (see their table A1) to recover both a single and double

Schechter GSMF. Their results are for redshifts in the range 0.1 < z < 4 and we

linearly interpolate the coefficients within that range. We also extrapolate for lower

and higher redshifts. In order to avoid unphysical behaviour, we set ϕ2, which is

zero at z = 0.1 to also be zero at all redshifts below 0.1; fix α2 = −1.79 at z ≤ 0.5;

and enforce α ≥ −1.99 everywhere. This allows us to extrapolate the Furlong et al.

(2015) GSMF over the full range z ∈ [0, 6.5].

The GSMFs has an overall normalisation which in principle carries information
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on the star formation history, although Furlong et al. (2015) note that the normal-

isation of their fits is imperfect at the highest redshifts, while the slope remains

well fitted. However, we use a simplified model in which the SFR is independent

of the GSMF, allowing us to independently parametrise and test the SFR and the

metallicity distribution. Consequently, the normalisation coefficients ϕ are relevant

only for describing the ratio between the two Schechter functions in Eq.4.19.

Figure 4.14 shows the different GSMF relations at a few redshifts. For com-

parison we also use a redshift-independent single Schechter function of Panter et al.

(2004) as used in Langer and Norman (2006) and our previous work (Barrett et al.,

2018a).

Even though the Panter et al. (2004) GSMF is redshift-independent, the metal-

licity distribution still changes due to the redshift dependence in the MZ relation.

Meanwhile, the Furlong et al. (2015) GSMF is redshift-dependent: as galaxies grow

over time, the mass distribution shifts toward higher masses at lower redshifts (Dun-

can et al., 2014). Conversely, the masses are lower at higher redshifts, favouring

lower metallicity. Coupled with a redshift-dependent MZ relation, this further re-

duces mean metallicity at higher redshifts.

4.A.4 Metallicity-specific star formation rate - MSSFR

The MZ relation allows us to convert the GSMF into a metallicity distribution

dP/dZ (the last term of Eq. 4.6). In practice, when integrating over metallicity, we

sum over discrete bins. We convert the edges of those bins into limits on galaxy

stellar masses in order to determine the fraction of star formation that happens in

a given metallicity bin as the fraction of the GSMF that falls into the appropriate

mass range at a given redshift.

We convert the number density of Eq. 4.19 into a mass density by multiplying

by M∗. The form of this equation makes it possible to carry out the mass integral

analytically, with the amount of mass at M∗ ≤ Mx given through the incomplete
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gamma functions Γ̂:

∫ Mx

0

M∗ΦM∗dM∗ = Φ1Γ̂(α1 + 2,
Mx

Mc

) + Φ2Γ̂(α2 + 2,
Mx

Mc

) (4.20)

The fraction of mass in the range between Mx ≤ M∗ ≤ My can be obtained from

the above equation after normalisation with the complete gamma function Γ. Figure

4.6 shows several of the resulting star formation metallicity distributions at a few

redshifts.

We compute the MSSFR by multiplying the metallicity distribution at a given

redshift by the SFR at that redshift (Eq.4.6). Altogether we test the effect of 18

variations (2 SFR × 3 MZ × 3 GSMF), as well as our preferred MSSFR model.

The two SFR variations differ mostly at redshifts above 2. The MZ relations span

the range between extra-solar and sub-solar metallicities at z = 0. The GSMFs

variants include a static redshift-independent fit and two redshift-dependent fits,

which evolve toward higher galaxy stellar masses at lower redshifts (see tables 4.2,

4.3).

4.A.5 Definition of solar values

In this study we defined the solar metallicity mass fraction as Z⊙ = 0.0142 and the

solar oxygen abundance as log10[O/H]⊙ + 12 = 8.69 based on Asplund et al. (2009).

However, the assumed solar values differ between papers, so our choice is not always

consistent with the fits used.

In particular, Ma et al. (2015) assume a mass fraction of Z⊙ = 0.02 and a specific

iron mass fraction of 0.00173 to obtain an oxygen abundance of log10[O/H]⊙ + 12 =

9.0. Savaglio et al. (2005) assume an oxygen abundance of 8.69, but mention that

systematics can lead to uncertainties in the range between 8.7 and 9.1. Meanwhile,

their single stellar models for their galaxy models assume a mass fraction of Z⊙ =

0.02 (Leitherer et al., 1999). On the other hand, Furlong et al. (2015) use a solar

mass fraction of Z⊙ = 0.0127.
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Figure 4.15: The predicted number of BBH detections per year at the sensitivity
of the first observing run for different choices of the solar mass fraction Z⊙ and
oxygen abundance (log10[O/H] + 12)⊙. The MSSFR model is based on the SFR of
Madau and Dickinson (2014), with the MZ relation of Ma et al. (2015) and the double
Schechter GSMF of Furlong et al. (2015). The same (pessimistic) evolutionary model
is assumed. The white square denotes the point in parameter space we assumed for
this study.
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We evaluate the impact of the assumed solar metallicity and oxygen abundances

on our predictions by varying these within a single MSSFR model. Figure 4.15

shows the predicted number of BBH detections per year at the sensitivity of the

first observing run over a two-dimensional grid of solar metallicities and oxygen

abundances, while keeping all other model parameters fixed. We see that these

uncertainties alone could change the predicted values by up to a factor of 3.

4.B Remnant masses of single stars

In COMPAS models, metallicity impacts the masses of compact remnants by influ-

encing stellar evolutionary tracks and the rates of wind-driven mass loss. The Fryer

et al. (2012) recipes for calculating the remnant mass are based on the mass of the

carbon-oxygen core and the total stellar mass at the moment of the supernova. If

the carbon-oxygen core mass exceeds 11 M⊙, there is assumed to be no explosion.

In that case, the entire mass of the star, other than the 10 per cent of the mass

assumed to be lost through neutrino emission, collapses into the remnant.

However, within our models, all single stars above a certain initial mass yield the

same remnant mass at a given metallicity.3 This is driven by our implementation of

LBV-wind mass loss (see Sec. 4.3).

Figure 4.16 shows three tracks of very massive single stars. The shaded region is

where we apply the LBV-wind mass-loss rates (Belczynski et al., 2010). When stars

are on the main sequence (core-hydrogen-burning phase), they evolve on a nuclear

timescale, which is not sufficiently fast to overcome the LBV winds and pass through

the Humphreys-Davidson limit (Humphreys and Davidson, 1994) into the shaded

region. At point 1 the stars start to turn off the main sequence. By this time stars

with initial masses of 100 and 110 solar masses have the same mass. At point 2 they

begin to evolve onto the Hertzsprung gap. It is at this point that the analytical

fits of Hurley et al. (2000) define a core mass. This core mass only depends on the

3These simulations do not include PISNe or pulsational PISNe. Future COMPAS analyses will
incorporate them (Stevenson et al., 2019).
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Figure 4.16: Single stellar tracks of stars with initial masses of 90 M⊙, 100 M⊙,
and 110 M⊙. The metallicity of the stars is Z = Z⊙/3. The purple portions of the
tracks indicate the core-hydrogen-burning phase (main sequence), while subsequent
evolution is shown in black. The region in which we apply the LBV-wind-mass-loss
rate is shaded. At point 1 the 100 M⊙ and 110 M⊙ stars turn off the main sequence.
At point 2 they start evolving onto the Hertzsprung gap. The two tracks evolve
identically from point 1, resulting in the same remnant mass.
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current properties of the stars, so the two stars continue evolving identically. Their

faster, thermal-timescale evolution now allows them to pass through the Humphreys-

Davidson limit and enter the shaded region. The stars end up having the same

remnant mass.

The process described above can yield sharp peaks in the BBH mass distribution.

Every BBH progenitor in which both stars go through this LBV phase on the main

sequence will end up with the same total BBH mass. This is the maximum total

mass for a given metallicity. The lower the initial mass for this LBV-wind mass

loss, i.e., the higher the metallicity, the more binaries will have degenerate remnant

masses. The lowest initial mass for LBV-wind mass loss is around a third to a half

solar, which explains the sharp peaks for the total BBH mass distribution at half

solar (see Fig. 4.2). This feature of the COMPAS and StarTrack implementation of

LBV winds also explains the asymptote of the maximal remnant mass in figure 1

of Belczynski et al. (2010) and the peaks in the highest mass bins of Dominik et al.

(2012).

4.C Statistics

In this appendix, we describe our procedures for computing the likelihood of a given

MSSFR model given the observed number of detections and their chirp masses, and

describe the use of bootstrapping to estimate the Monte Carlo simulation uncer-

tainty.

4.C.1 Evaluating model likelihoods

We can write the total likelihood Ltot(d|M) of observing the data set d, which

consists of Nobs detections with individual data di, given a model M that predicts

NM expected detections with a probability distribution of source properties PM , as
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(e.g., Mandel et al., 2019)

Ltot(d|M) =
NNobs

M

Nobs!
e−NM

Nobs∏
i=1

p(di|PM). (4.21)

Here, we focus on the chirp mass Mc, as the parameter which is best constrained by

gravitational wave observations and is directly predicted by COMPAS simulations.

Writing the preceding equation in logarithmic form, the log-likelihood of a particular

MSSFR model is

log10 (Ltot(d|M)) = log10 (L(Nobs|NM)) +

Nobs∑
i=1

log10 (L(Mc,i|pM(Mc))) ,
(4.22)

where Mc,i is the measured chirp-mass of the i’th gravitational wave observation and

pM(Mc) is chirp-mass distribution characterising the MSSFR model M . The first

term is abbreviated as LR in table 4.3. The second term, LMchirp
≡ L(Mc,i|pM(Mc))

is the probability of detecting a chirp mass Mc,i given the chirp-mass distribution

predicted from the MSSFR model M .

COMPAS Monte Carlo simulations yield a discrete set of chirp masses and their

respective rates. A kernel density estimator is used to turn this set of discrete data

points into an approximated continuous function. We do this by approximating

each of Nsim chirp masses produced by the COMPAS simulation as a 1-dimensional

Gaussian centred on the simulated chirp-mass value Mj. All Gaussians have the

same bandwidth σ, determined using the default ‘Scott’s rule’ (Scott, 2015) of the

Gaussian kernel density estimator in the scipy package (Oliphant, 2007; Perez et al.,

2011). Each simulated data point j contributes to the overall probability density

function proportionally to its observing rate Rj, estimated in Eq. 4.2. Therefore we

re-weigh each data point by Rj and normalise by the total rate Rtot,

pM(Mc) =
1

Rtot

Nsim∑
j=1

Rj
1√

2πσ2
e−

(Mc−Mj)
2

2σ2 . (4.23)
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For a single perfect detection, the likelihood of observing a chirp-mass Mc would

be given by Eq. 4.23. In practice, gravitational-wave measurements suffer from obser-

vational uncertainty, although these are typically small for chirp masses. Chirp-mass

posteriors of individual detections were not yet available when this work started;

therefore, we reconstruct them as symmetric Gaussian distributions with 90 per

cent confidence intervals matching those reported in Abbott et al. (2016); Abbott

et al. (2018b). The reported error-bars are asymmetric, so the median of our recon-

structed posterior is slightly shifted compared to the original. Given the accuracy

of chirp mass measurement, we make two further simplifications. We ignore the

impact of the priors used in Abbott et al. (2018b) (which is reasonable inasmuch

as the posterior is determined by the sharply peaked likelihood function), and do

not reweigh by those priors; and we ignore the selection effects on the chirp mass

for the purpose of population analysis, since the selection function does not vary

significantly over the range of likelihood support (see Mandel et al. (2019) for a

discussion of both issues). With these simplifications, the likelihood of observing a

particular gravitational wave event i, characterised by the approximated Gaussian

posterior of the chirp mass pi(Mc), given a MSSFR model M , becomes

L(Mc,i|pM(Mc)) =

∫ ∞

0

pi(Mc) pM(Mc) dMc. (4.24)

Figure 4.17 shows our constructed posterior for GW150914 (red); part of the chirp-

mass distribution estimated from the MSSFR model which combines the SFR of

Madau and Dickinson (2014), the MZ relation of Ma et al. (2015) and the GSMF

of Furlong et al. (2015) (blue); and the convolution between the two (black). The un-

normalised integral of this convolution is our estimate of the likelihood L(Mc,i|pM(Mc)).

4.C.2 Bootstrapping

Our simulation is based on a Monte Carlo sampling of binaries. We estimate the

sampling uncertainty on all derived quantities via bootstrapping: we uniformly re-

133



4.C. Statistics Chapter 4

Figure 4.17: An example of the likelihood calculation for GW150914. The dashed
vertical lines show the 90 per cent confidence interval from Abbott et al. (2016).
The dotted vertical line is the median from Abbott et al. (2016) and the solid
vertical line is the median after symmetrising. The red curve is a mock gaussian
posterior. The blue curve is part of the normalised chirp mass distribution obtained
by applying a one dimensional KDE to the results of the COMPAS simulation. The
black curve shows the Gaussian likelihood convolved with the model. The fainter
lines show scatter in the chirp-mass distribution and the convolution as estimated
with bootstrapping.
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sample a set with the same total number of binaries from our already evolved initial

set of binaries (with replacement), including systems which did not form a DCO.

The central value in tables 4.2, 4.3 corresponds to the original sample, while the

error bars correspond to the 5th and 95th percentile rates and likelihoods from

bootstrapping.
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MSSFR Variation BBH Rates BHNS Rates BNS Rates
SFR MZ GSMF z = 0 merg. O1 det. z = 0 merg. O1 det. z = 0 merg. O1 det.

Gpc−3 yr−1 yr−1 Gpc−3 yr−1 yr−1 Gpc−3 yr−1 yr−1

Pessimistic
Preferred model 49.00+1.93

−1.68 21.80+0.47
−0.50 56.87+1.80

−1.89 0.07+0.00
−0.00 20.00+1.34

−1.03 0.23+0.02
−0.015

Madau et al. Ma et al. (2004) 1 63.07+1.86
−1.76 18.43+0.42

−0.4 32.22+1.7
−1.43 0.4+0.02

−0.02 85.97+2.47
−2.41 0.11+0.0

−0.0

2 158.56+2.07
−2.48 94.35+1.37

−1.39 40.73+1.37
−1.13 0.51+0.02

−0.02 90.87+2.39
−2.15 0.12+0.0

−0.0

3 174.71+2.28
−2.7 113.92+1.12

−1.22 42.14+1.43
−1.22 0.52+0.02

−0.02 91.42+2.37
−2.24 0.13+0.0

−0.0

Langer et al. 1 448.84+4.28
−5.24 247.22+2.63

−2.78 95.47+1.85
−2.12 1.28+0.03

−0.03 144.57+2.08
−2.3 0.22+0.0

−0.0

2 563.44+4.1
−5.9 441.08+5.72

−6.24 91.76+1.73
−1.8 1.19+0.03

−0.03 143.81+1.93
−2.1 0.22+0.0

−0.0

3 589.13+4.27
−6.05 492.27+5.85

−6.63 96.32+1.9
−1.9 1.25+0.03

−0.03 147.1+1.92
−2.3 0.23+0.0

−0.0

Langer et al., offset 1 59.17+1.27
−1.34 28.72+0.46

−0.45 18.98+1.01
−0.77 0.23+0.01

−0.01 72.09+3.21
−3.01 0.09+0.0

−0.0

2 151.84+1.88
−2.23 120.3+2.12

−2.23 28.67+0.92
−0.88 0.35+0.01

−0.01 79.27+2.67
−2.52 0.11+0.0

−0.0

3 167.64+1.92
−2.29 148.74+2.0

−2.05 29.4+0.97
−0.98 0.35+0.01

−0.01 79.32+2.57
−2.51 0.11+0.0

−0.0

Strolger et al. Ma et al. (2004) 1 101.98+3.01
−2.88 32.93+0.83

−0.84 42.11+2.4
−1.81 0.52+0.03

−0.02 91.66+2.71
−2.49 0.12+0.0

−0.0

2 255.46+4.49
−5.7 203.93+5.17

−4.76 49.05+2.1
−1.68 0.6+0.02

−0.02 98.87+2.59
−2.72 0.14+0.0

−0.0

3 271.91+4.09
−4.67 208.21+3.29

−3.38 50.49+1.98
−1.66 0.61+0.03

−0.02 98.72+2.4
−2.72 0.14+0.0

−0.0

Langer et al. 1 574.91+6.58
−8.19 406.39+5.25

−5.66 99.35+2.32
−2.43 1.28+0.03

−0.04 153.78+2.74
−2.9 0.23+0.0

−0.0

2 688.91+9.03
−10.42 659.25+15.27

−14.58 95.9+2.65
−2.62 1.19+0.03

−0.03 153.93+3.49
−3.4 0.24+0.01

−0.01

3 714.15+8.77
−11.17 710.91+15.17

−14.29 100.12+2.67
−2.69 1.25+0.03

−0.03 157.4+3.8
−3.43 0.24+0.01

−0.01

Langer et al., offset 1 132.55+3.38
−3.54 89.79+1.42

−1.42 27.88+1.96
−1.27 0.33+0.02

−0.01 79.81+3.16
−3.29 0.11+0.0

−0.0

2 259.14+5.65
−6.53 267.34+8.2

−7.55 36.67+1.58
−1.57 0.43+0.02

−0.02 88.47+3.1
−3.58 0.12+0.01

−0.0

3 276.57+5.32
−6.48 292.76+7.71

−6.55 37.36+1.64
−1.56 0.43+0.02

−0.02 88.34+2.88
−3.29 0.12+0.0

−0.0

Optimistic
Preferred model 190.85+3.94

−3.99 36.80+0.65
−0.65 158.8+3.13

−3.49 0.23+0.00
−0.01 56.68−1.87+2.21 0.51+0.02

−0.02

Madau et al. Ma et al. (2004) 1 291.23+4.93
−5.28 46.27+0.7

−0.72 89.32+3.19
−2.47 0.85+0.03

−0.02 231.08+4.36
−4.8 0.33+0.01

−0.01

2 408.74+4.03
−5.52 128.37+1.44

−1.48 102.22+2.67
−2.07 1.04+0.03

−0.02 227.38+4.13
−4.46 0.33+0.01

−0.01

3 431.55+4.5
−5.58 148.55+1.26

−1.38 104.83+2.71
−2.18 1.06+0.03

−0.02 226.34+3.71
−4.21 0.33+0.01

−0.01

Langer et al. 1 938.86+6.16
−7.01 332.4+2.92

−2.77 201.14+3.44
−3.1 2.33+0.04

−0.04 209.7+2.85
−2.73 0.33+0.0

−0.0

2 1002.87+5.33
−6.55 517.59+5.41

−6.39 187.17+2.79
−2.49 2.16+0.04

−0.03 210.0+2.47
−2.48 0.33+0.0

−0.0

3 1042.93+5.27
−6.97 572.54+5.69

−6.41 193.78+2.98
−2.65 2.25+0.04

−0.03 208.21+2.55
−2.49 0.33+0.0

−0.0

Langer et al., offset 1 190.7+3.5
−3.65 43.44+0.52

−0.52 59.21+2.69
−2.15 0.52+0.02

−0.01 236.54+6.48
−6.59 0.34+0.01

−0.01

2 317.64+3.16
−4.02 141.94+2.28

−2.08 74.72+2.18
−1.91 0.73+0.02

−0.02 232.11+5.66
−5.96 0.34+0.01

−0.01

3 335.02+3.3
−4.01 170.2+2.17

−2.02 75.38+2.2
−1.9 0.73+0.02

−0.02 231.52+5.68
−5.52 0.33+0.01

−0.01

Strolger et al. Ma et al. (2004) 1 361.59+5.79
−6.7 64.2+1.08

−1.12 111.51+4.29
−3.31 1.09+0.04

−0.03 238.44+4.5
−4.66 0.34+0.01

−0.01

2 523.11+5.83
−8.21 239.42+5.7

−4.94 116.48+3.27
−2.7 1.18+0.03

−0.03 235.98+4.6
−4.62 0.34+0.01

−0.01

3 547.87+6.08
−7.09 244.58+3.4

−3.41 119.46+3.05
−2.75 1.22+0.03

−0.03 234.53+3.89
−4.63 0.34+0.01

−0.01

Langer et al. 1 1061.19+8.04
−9.88 486.78+5.82

−5.84 204.37+3.37
−3.35 2.33+0.05

−0.04 220.3+3.44
−3.03 0.34+0.01

−0.01

2 1118.71+8.74
−10.66 730.55+14.82

−14.5 189.09+2.96
−3.06 2.14+0.04

−0.04 221.11+4.03
−3.54 0.34+0.01

−0.01

3 1157.22+9.06
−11.19 785.44+14.83

−14.23 194.98+3.02
−3.31 2.22+0.04

−0.04 219.59+3.93
−3.66 0.34+0.01

−0.01

Langer et al., offset 1 291.8+5.57
−5.44 107.66+1.37

−1.53 76.78+3.4
−2.67 0.7+0.02

−0.02 244.96+6.31
−6.62 0.35+0.01

−0.01

2 440.74+6.82
−7.95 290.5+8.53

−7.21 87.17+2.78
−2.77 0.86+0.03

−0.02 240.95+6.21
−6.05 0.35+0.01

−0.01

3 460.27+6.42
−7.84 315.88+7.94

−6.5 87.82+2.79
−2.54 0.86+0.02

−0.03 240.19+6.13
−5.99 0.34+0.01

−0.01

Table 4.2: Table showing the merger and detection rates per DCO type. The
columns labeled ‘z = 0 merg.’ are the merger rate per year per cubic gigaparsec at
zero redshift without selection effects; columns labeled ‘O1 det.’ are the expected
rate of detections per year at the sensitivity of the first observing run. The error bars
show the 90 per cent confidence interval due to Monte Carlo sampling evaluated via
bootstrapping. The numbers in the column GSMF refer to 1=Panter et al. (2004),
2=Furlong et al. (2015) (single Schechter function), 3=Furlong et al. (2015) (double
Schechter function). Optimistic and pessimistic variants relate to the ability to eject
the common envelope when the donor is a Hertzsprung-gap star.
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MSSFR Variation Likelihoods (log10)
SFR MZ GSMF LMc LR Ltot

Pessimistic

Preferred model −32.32+0.16
−0.18 −0.90+0.00

−0.00 −33.22+0.16
−0.18

Madau et al. Ma et al. (2004) 1 −33.9+0.14
−0.16 −0.97+0.01

−0.02 −34.87+0.14
−0.16

2 −32.42+0.07
−0.08 −8.86+0.21

−0.21 −41.28+0.24
−0.26

3 −32.48+0.07
−0.07 −11.9+0.19

−0.18 −44.38+0.23
−0.22

Langer et al. 1 −32.24+0.05
−0.05 −34.85+0.5

−0.47 −67.09+0.49
−0.47

2 −32.61+0.06
−0.06 −70.6+1.23

−1.05 −103.21+1.22
−1.05

3 −32.77+0.06
−0.07 −80.23+1.32

−1.04 −113.0+1.3
−1.09

Langer et al., offset 1 −32.3+0.09
−0.1 −1.07+0.02

−0.02 −33.38+0.09
−0.1

2 −32.68+0.08
−0.08 −12.93+0.38

−0.33 −45.61+0.42
−0.38

3 −32.87+0.07
−0.07 −17.62+0.35

−0.33 −50.49+0.38
−0.36

Strolger et al. Ma et al. (2004) 1 −33.82+0.14
−0.17 −1.31+0.06

−0.05 −35.13+0.18
−0.17

2 −32.81+0.11
−0.1 −27.14+0.87

−0.91 −59.95+0.93
−0.97

3 −32.65+0.08
−0.08 −27.9+0.61

−0.58 −60.54+0.63
−0.61

Langer et al. 1 −32.44+0.06
−0.06 −64.11+1.08

−0.97 −96.55+1.08
−1.02

2 −32.98+0.1
−0.1 −111.92+2.83

−2.81 −144.9+2.9
−2.83

3 −33.09+0.09
−0.1 −121.79+2.8

−2.83 −154.87+2.86
−2.9

Langer et al., offset 1 −32.46+0.08
−0.1 −8.18+0.21

−0.21 −40.63+0.23
−0.26

2 −33.2+0.12
−0.12 −38.48+1.44

−1.48 −71.68+1.51
−1.51

3 −33.22+0.11
−0.11 −43.1+1.29

−1.27 −76.33+1.35
−1.34

Optimistic

Preferred model −33.1+0.08
−0.11 −1.58+0.05

−0.05 −34.73+0.12
−0.11

Madau et al. Ma et al. (2004) 1 −36.37+0.11
−0.1 −2.46+0.07

−0.07 −38.84+0.16
−0.14

2 −32.61+0.05
−0.06 −14.24+0.25

−0.23 −46.85+0.27
−0.26

3 −32.52+0.04
−0.05 −17.59+0.24

−0.21 −50.1+0.24
−0.22

Langer et al. 1 −32.55+0.05
−0.04 −50.38+0.52

−0.52 −82.93+0.5
−0.53

2 −32.55+0.04
−0.05 −85.01+1.21

−0.98 −117.56+1.23
−1.02

3 −32.67+0.04
−0.05 −95.41+1.28

−1.07 −128.08+1.29
−1.11

Langer et al., offset 1 −32.85+0.07
−0.06 −2.18+0.05

−0.05 −35.03+0.09
−0.08

2 −32.49+0.06
−0.06 −16.48+0.39

−0.37 −48.97+0.43
−0.39

3 −32.59+0.05
−0.06 −21.27+0.35

−0.36 −53.85+0.38
−0.36

Strolger et al. Ma et al. (2004) 1 −35.37+0.11
−0.12 −4.58+0.15

−0.14 −39.95+0.21
−0.19

2 −32.54+0.08
−0.08 −33.45+0.89

−0.99 −65.99+0.95
−0.98

3 −32.39+0.05
−0.05 −34.37+0.62

−0.6 −66.77+0.65
−0.62

Langer et al. 1 −32.38+0.05
−0.05 −79.19+1.11

−1.08 −111.57+1.14
−1.11

2 −32.78+0.08
−0.09 −125.54+2.79

−2.83 −158.32+2.82
−2.86

3 −32.86+0.08
−0.08 −136.06+2.78

−2.82 −168.92+2.79
−2.88

Langer et al., offset 1 −32.24+0.06
−0.07 −10.91+0.24

−0.21 −43.15+0.23
−0.24

2 −32.83+0.1
−0.1 −42.69+1.46

−1.51 −75.52+1.53
−1.51

3 −32.84+0.09
−0.08 −47.34+1.31

−1.35 −80.18+1.31
−1.36

Table 4.3: Table showing the log likelihoods of observing the rate and chirp mass
distribution of BBH mergers detected during the first two observing runs, within
our default binary evolution model and for a range of MSSFR variations. Ltot is the
total likelihood, LR is the Poisson likelihood of observing 10 BBH events over 166
days of coincident observation, and LMc is the likelihood of observing the chirp-mass
distribution. The error bars show the 90 per cent confidence interval due to Monte
Carlo sampling evaluated via bootstrapping. The numbers in the column GSMF
refer to 1=Panter et al. (2004), 2=Furlong et al. (2015) (single Schechter function),
3=Furlong et al. (2015) (double Schechter function). Optimistic and pessimistic
variants relate to the ability to eject the common envelope when the donor is a
Hertzsprung-gap star.
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Chapter 5

Revisiting the stability of mass transfer for the rates and formation

channels of binary black hole mergers.

Coenraad J. Neijssel, Alejandro Vigna-Gómez, Simon Stevenson, Serena Vinciguerra,

and Ilya Mandel

Abstract:

Rapid population synthesis is a useful tool for estimating the formation and

merger rates of binary black hole mergers. We assess the impact of our description

of the adiabatic response of the stellar radius to mass loss on the rate and mass

distribution of binary black hole mergers forming through isolated binary evolution.

Our updated prescription, based on detailed models, predicts that the majority of

gravitational-wave events of merging binary black holes formed without the need of

a common envelope event.
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5.1 Introduction

Gravitational-wave observatories detect the coalescence of double compact objects

(DCOs). Several catalogues (Abbott et al., 2016b, 2018a, 2019; Abbott et al., 2021)

are now published detailing the observed mergers of binary black holes (BBHs),

binary neutron stars (BNSs) and the perhaps-detected coalescences of black hole –

neutron star binaries (BHNSs) such as GW190425 and GW190814 (Abbott et al.,

2020a,b). One of the possible origins of these coalescing compact systems is the

evolution of isolated binaries. In this scenario the two compact objects are born as

a pair of massive stars in a binary and evolve without external influences (where a

massive star is defined as having an initial zero-age main sequence (ZAMS) mass

MZAMS ≳ 8 M⊙). Many aspects of the physics of massive stars and binary evo-

lution, such as wind mass-loss rates, mass transfer and supernovae, remain highly

uncertain. However, assuming that the merging compact binaries, detected with

gravitational-wave observations, formed through isolated binary evolution, their in-

ferred properties, such as the component masses and spins, may provide constraints

on these aspects.

One possible method for constraining binary-star physics with gravitational-wave

events is by statistically comparing the properties of a simulated population of DCOs

with the properties inferred from observations. Because detailed modelling of mas-

sive stellar binaries is computationally expensive, their evolution is often modelled

using simplifying approximations in “stellar population-synthesis” codes. Several

studies modelling the population of DCOs already highlight the impact of vari-

ous uncertainties in e.g. the velocity and direction of the kick imparted during a

supernova (SN) event (Tutukov and Yungelson, 1993; Lipunov et al., 1997; Porte-

gies Zwart and Yungelson, 1998b; Belczynski et al., 2006; Dominik et al., 2012;

Giacobbo and Mapelli, 2018; Chruslinska et al., 2018; Vigna-Gómez et al., 2018) or

the binding energy of the stellar envelope and efficiency of ejecting a common enve-

lope during dynamically-unstable mass transfer (e.g. Dominik et al., 2012; Giacobbo

and Mapelli, 2018; Vigna-Gómez et al., 2018).
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Currently observed gravitational-wave events must have been generated by bi-

naries that formed and merged within the lifetime of the universe. For two 25 M⊙

black holes (BHs) to merge within a Hubble time (∼ 14 Gyr), their separation should

be no more than ∼ 0.2 AU (Peters, 1964); for two neutron stars (NSs) of 2 M⊙ the

upper limit in separation lowers to ∼ 0.03 AU. However, massive stars have a radius

of several solar radii (1 R⊙ ≈ 5 10−3 AU) already at the beginning of their life and

may expand up to hundreds of solar radii during their evolution. Therefore, some

events must tighten the orbital separation of the binary at or after the formation

of at least one compact star, to form a DCO which merges within a Hubble time.

Hereafter we refer to compact binaries merging within a Hubble time as merging

DCOs.

Two of the possible mechanisms which can reduce the orbital separation are

fortuitous natal kicks, imparted on the remnant of a star during a SN, and mass-

transfer events, when at least one of the stars overflows its Roche lobe. During a SN

the core collapses and the released energy ejects (part of) the envelope, imparting a

kick to the remnant if the ejection is asymmetric. However, in some cases, the shock

produced during the collapse might not be energetic enough to unbind material

from the star (Shigeyama et al., 1988; Woosley, 1989; Fryer et al., 2012). The

star collapses without a SN, since the envelope falls back onto the remnant, and

the remnant does not receive a natal kick. Fryer et al. (2012) already noted that

the effect of fallback is negligible for stars with initial masses below 11 M⊙ but

increases towards higher initial masses. Therefore, SNe likely play an important

role in the formation of merging BNSs but not in the creation of merging BHs

with remnant masses above ∼ 15 M⊙. This implies that, to explain the observed

mergers of massive DCOs in the context of isolated binary evolution, it is necessary

to invoke mass-transfer episodes between the two binary components. Multiple

studies (amongst others, Smarr and Blandford, 1976; Bethe and Brown, 1998; Voss

and Tauris, 2003; Pfahl et al., 2005; Belczynski et al., 2008; Dominik et al., 2012;

Kruckow et al., 2018; Giacobbo et al., 2018; Vigna-Gómez et al., 2018; Spera et al.,
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2019) suggest that a common-envelope (CE) resulting from dynamically-unstable

mass transfer (Paczyński, 1976, see e.g. Ivanova et al. 2013a for a review) plays a

crucial role in the mergers of BBHs, BHNSs and BNSs.

Neijssel et al. (2019) estimate that the majority of the detectable BBH mergers

did not experience a CE event. This differs from other studies, including the earlier

predictions by Stevenson et al. (2017) which relies on the same population-synthesis

code COMPAS. In COMPAS mass transfer is considered dynamically stable if,

ζad < ζRL, (5.1)

at the onset of mass transfer, where ζad is the adiabatic response of the stellar radius

of the donor to mass loss and ζRL is the response of the Roche lobe of the donor to

mass loss. The difference between the results of Stevenson et al. (2017) and Neijssel

et al. (2019) is attributed to changes in the adiabatic response of the donor star

to mass loss. In this paper, we study the impact on our rate estimates of merging

DCOs of various recipes for ζad. We focus in particular on the formation of merging

BBHs.

The structure of the paper is as follows. In Sec. 5.2 we describe the formation of

merging BBH through dynamically-stable and dynamically-unstable mass transfer.

In Sec. 5.3 we introduce different prescriptions for modelling the adiabatic response

of the stellar radius of the donor at the onset of mass transfer, aimed at determining

the dynamical stability of the mass-transfer episode. In Sec.5.4 we show the impact

of these models on our estimates of the merger rates of BBHs, for a population

simulated with a single initial metallicity. In Sec. 5.5 we discuss possible caveats

and additional uncertainties. In this study we use the alpha-version of the COMPAS

population-synthesis code (Stevenson et al., 2017; Vigna-Gómez et al., 2018). The

COMPAS population-synthesis code and the modelling assumptions are described in

chapter 3.

At this preliminary stage we only study the impact for stars with initial metal-

licities of Z = 0.0045. At this metallicity, adopting the radial response of the donor
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star to mass loss proposed by (Ge et al., 2015) (for donor stars which have not

yet developed a deep convective envelope) increases the rate of merging BBHs by a

factor of 2, compared to the approach of (Neijssel et al., 2019). More importantly

the peak of the distribution of the total BBH mass shifts from Mtot ≈ 15 M⊙ to

Mtot ≈ 35 M⊙. This shift is almost entirely due to merging BBHs which formed with-

out a dynamically-unstable mass-transfer episode. Although tentative, this result

suggests that the more massive DCO mergers provide a different set of constraints

on the physics of massive stellar binaries than the constraints provided by their less

massive counterparts; indeed, according to our results, the rate of mergers from

massive compact binaries no longer relies on the uncertain physics of CE evolution.

5.2 Formation of merging DCOs

This section describes the three main formation channels of merging DCOs and

provides an example which highlights how different choices of ζad impact the for-

mation of merging DCOs. In particular we focus on systems forming without a

dynamically-unstable mass-transfer episode.

5.2.1 Three main formation channels of merging DCOs

Within the framework of isolated binary evolution, the merging DCOs, which con-

tribute to the detectable gravitational-wave population, are commonly assumed to

form through two main classes of formation channels (Belczynski et al. 2002a; Dewi

et al. 2005; Kruckow et al. 2018; Giacobbo and Mapelli 2018; Spera et al. 2019

and references therein). Most of the merging DCO objects form through formation

channels which require at least two mass-transfer episodes. First the binary system

experiences a dynamically-stable mass-transfer episode from the primary onto the

stellar companion. The donor star continues to evolve until it collapses into a NS

or a BH. The second mass-transfer episode starts when the companion expands

overflows its Roche lobe; at this point some mass is transferred back onto the com-
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Figure 5.1: The three main formation channels of DCOs merging within a Hubble
time. A mass-transfer episode initiated by a post-main sequence (MS) star leaves be-
hind a helium main sequence (HeMS) or helium Hertzsprung gap (HeHG) star. The
* indicates a phase where additional ultra stripping of the HeMS/HeHG star might
occur leaving behind a carbon-oxygen or oxygen-neon core instead of a HeMS/HeHG
star. This is mostly relevant for NSs and low mass BHs. The ** indicates the most
crucial mass-transfer phase to tighten the orbit. Fig. 5.3 focuses on the luminosities
and temperatures of donor stars at the onset of the mass-transfer phase indicated
by **. For BHNSs we find that a fraction of systems could instead experience the
first mass-transfer episode during the MS stage of the donor (Broekgaarden et al.,
2021).
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pact object. The mass-transfer episode dynamically unstable and results in a CE

phase, leaving a tight DCO (see channel II in Fig. 5.1). In the second most common

family of formation channels of merging DCOs, the first mass-transfer episode in-

volves two core-helium-burning or helium-shell-burning stars, which drive the mass

transfer to a CE event. The CE strips both stars of their envelopes while shrinking

their orbital separation. Both cores continue to evolve to form a DCO (see channel

III in Fig. 5.1). As described below, the two formation paths just described can be

enriched by additional mass-transfer stages. This is the reason why we are present-

ing them as classes and not as single formation channels. However, for simplicity

hereafter we will refer to these two families simply as channel II and channel III,

respectively. Other channels of merging BBHs forming through isolated binary evo-

lution exist such as those evolving through chemically-homogeneous evolution (see

e.g. Mandel and de Mink, 2016; Marchant et al., 2016), but they are currently not

taken into consideration in this work.

Both in channel II and channel III the donor star could experience an additional

mass-transfer phase after it has been stripped of its envelope (see the single asterisk

symbol in Fig. 5.1). When the donor star is stripped for the first time, it indeed

leaves a stripped HeMS or post-HeMS star, depending on the burning phase of

the core. During the HeHG, a star can significantly expand and therefore overflow

its Roche lobe, if the system is tight enough. In this case, the helium envelope

is removed leaving behind an ultra-stripped carbon-oxygen or oxygen-neon core.

Earlier simulations, using the COMPAS population-synthesis codes and similar model

assumptions, show that ultra-stripping is only relevant during the formation of BNSs

(Vigna-Gómez et al., 2018) and not for the progenitors of merging BBHs (Stevenson

et al., 2017; Neijssel et al., 2019).

As mentioned, Stevenson et al. (2017); Vigna-Gómez et al. (2018) find that merg-

ing DCOs mostly form through either channel II or III. However, Neijssel et al. (2019)

report that 35 per cent of the merging BBHs simulated at a metallicity of Z = 0.1Z⊙
1

1Z⊙ = 0.142 based on Asplund et al. (2009).
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did not form through either of them. These merging BBHs form through a family of

formation channels hereafter referred to as channel I. Channel I is similar to channel

II, however the mass-transfer episode onto the compact object is dynamically stable

and does not result in a CE (see also Fig. 5.1). This channel is reminiscent of the

earlier works for BNSs by Tutukov and Yungelson (1973) and De Loore et al. (1975)

and has recently been mentioned by Pavlovskii et al. (2017) and van den Heuvel

et al. (2017). Neijssel et al. (2019) estimate that channel I could be responsible for

80 per cent of the BBH mergers detectable by the LIGO gravitational-wave detectors

at design sensitivity depending on, amongst others, the model for the metallicity-

specific star-formation rate. The prevalence of channel I in Neijssel et al. (2019)

significantly differs from the results by Stevenson et al. (2017). Neijssel et al. (2019)

conclude that channel I becomes dominant, compared to Stevenson et al. (2017),

due to the different value of ζad assumed for Hertzsprung gap (HG) stars. Other

studies mention a similar channel, but, according to them, only few per cent of the

merging systems form through it (Kruckow et al., 2018; Giacobbo et al., 2018).

5.2.1.1 Optimistic vs. pessimistic assumption

Whether a CE event started by a HG donor results in the merger of the two stars is

uncertain. Calculations focused on lower-mass stars, in the context of formation of

double white dwarfs, indicate that a common-envelope event initiated by a HG donor

always leads to a stellar merger (Ivanova and Taam, 2004). This seems to be due to

the lack of a clear core-envelope separation (Dominik et al., 2012). This argument

however remains uncertain for stars more massive than white-dwarf progenitors.

In the optimistic scenario of our COMPAS code the binary system may avoid a

stellar merger during a CE event initiated by a HG donor, if there is enough gravi-

tational potential energy in the orbit to expel the envelope of the donor star. In our

pessimistic scenario the stars always merge when a mass-transfer episode started by

a HG star results in a CE event (Dominik et al., 2012); the main results of Neijssel

et al. (2019) assume this last scenario. Assuming the optimistic scenario results in
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an increased merger rate of DCOs by a factor of a few compared to the pessimistic

scenario (Dominik et al., 2012; Chruslinska et al., 2018; Neijssel et al., 2019). The

systems that form through the optimistic scenario, and not through the pessimistic

scenario, evolve through channel II. Neijssel et al. (2019) find that in the optimistic

scenario 17 per cent of the BBHs simulated at a metallicity of Z = 0.1Z⊙ form

through channel I, but do not report the percentage of detectable BBH mergers

forming through channel I (see chapter 4).

5.2.2 ζad and the formation of DCOs through channel I

Here we focus on the mass-transfer phase in channel I and II where a star transfers

mass onto a compact companion. The change in orbital separation a is given by,

ȧ

a
= −2

ṀD

MD

[
1 − βq − (1 − β)(γ + 1/2)

1

1 + 1/q

]
, (5.2)

where MD is the mass of the donor, β is the fraction of the mass accreted by the

companion, q = MD/MA is the mass ratio of the system and γ is the specific angular

momentum of the mass leaving the system in units of the specific orbital angular

momentum of the binary. Here we consider that any mass which is not accreted by

the compact companion is isotropically re-emitted from the surface of the accretor

such that γ = q.

Figure 5.2 shows the logarithm of the ratio between the initial separation at the

onset of such a mass-transfer phase and the final separation after the mass-transfer

phase. Here we assume, for simplicity, that the core of the donor star is half of

the total mass of the star. The final separation after the mass-transfer phase is

shorter if more mass is lost from the system or if the system initially has a higher

the mass-ratio.

As mentioned, the dynamical stability of a mass-transfer episode is determined

at the onset of a mass-transfer phase. The Roche lobe of the donor shrinks faster

if the initial mass ratio is larger. The hatched region in figure 5.2 indicates where
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Figure 5.2: The logarithm of the ratio between the final separation (afin) and the ini-
tial separation (aini) during a dynamically-stable mass-transfer episode. The donor
is assumed to lose half its mass, where the mass leaving the systems carries with
it the specific angular momentum it had at the surface of the accretor. The white-
dotted line indicates where aini = afin. The hatched region indicates where ζRL > 6.5
and a mass-transfer episode started by HG donor stars is considered dynamically
unstable. The black-dashed line indicates where aini = 10 afin.
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ζRL > 6.5, i.e. where a mass-transfer phase started by a HG donor is considered

dynamically unstable.

Let us consider for example a scenario where a 50 M⊙ HG star with a 25 M⊙

helium core transfers mass onto a 25 M⊙ BH companion at a distance of 2 AU (the

giant is about 1AU in radius). The HG star loses its entire envelope leaving behind a

25 M⊙ core which, after the HeMS and HeHG phase, completely collapses into a BH

without experiencing a kick. If the mass-transfer phase is dynamically unstable a CE

event with λ = 0.1 (as adopted in Stevenson et al. 2017) results in a final separation

after the mass-transfer phase of a ≈ 0.02 AU. If instead the mass-transfer phase is

dynamically stable and highly non-conservative (β ≈ 0), then the final separation is

approximately 0.8 AU. In the latter case, the BBH system is too wide to merge in

a Hubble time through the emission of gravitational waves.

The black-dashed line in figure 5.2 indicates the minimum required mass ratio of

a system at the onset of dynamically-stable mass transfer which allows the orbital

separation to shrink by at least a factor of ten. Hence, our choice for ζad = 6.5

enables systems with initial mass ratios 4.2 ≤ q = MD/MA ≤ 4.5 to experience non-

conservative dynamically-stable mass transfer and shrink their orbital separation by

at least an order of magnitude. To shrink the separation by at least factor of five

the initial mass ratio needs to be above 3.5. For non-conservative mass transfer

in the absence of magnetic braking, tides and gravitational-wave radiation, a mass

ratio threshold of 3.5 corresponds to ζad > 4.5. Stevenson et al. (2017) applied the

prescription by Soberman et al. (1997) to calculate ζad to all giant stars including

those on the HG. Here ζad > 3 only if the core mass constitutes more than 80 per

cent of the total mass of the star, which does not happen for HG stars based on the

fits by Hurley et al. (2000). Therefore, Neijssel et al. (2019) find that it is possible

to form merging BBHs through dynamically-stable mass transfer whereas Stevenson

et al. (2017) do not.
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5.2.3 Channel I forms massive equal-mass BBHs

The more massive the donor star is, compared to the compact companion at the onset

of mass transfer, the more efficiently the orbit shrinks through dynamically-stable

mass transfer. One might therefore expect this channel to produce merging BBHs

with extreme mass ratios. However, the remnant-mass distribution (Fryer et al.,

2012) flattens for the most massive stars, partly due to our implementation of stellar

winds (Belczynski et al., 2010). Therefore, a system with an extreme mass ratio at

the onset of a mass-transfer episode still results in a relatively equal-mass BBH.

Furthermore, the in-spiral through gravitational-wave emission is more efficient for

binaries with more massive and equal-mass remnants. Altogether, this introduces

a selection effect on the merging BBHs which form through the dynamically-stable

channel, favouring the detection of massive and nearly equal-mass BBHs (q ≳ 0.6).

5.3 Recipes for the adiabatic response to mass loss

The difference between the results of Stevenson et al. (2017) and Neijssel et al.

(2019) show that the assumed adiabatic response of the stellar radius to mass loss,

ζad, affects the estimates for the rates and masses of merging BBHs. In particular it

impacts the fraction of merging BBHs which form through channel I (see Fig. 5.1).

As mentioned this formation channel does not involve a dynamically-unstable mass-

transfer episode and results in more massive equal-mass systems compared to other

channels. However, our current approximations for ζad for post-MS stars are over-

simplified at best.

This section describes updated recipes for estimating ζad in the COMPAS population-

synthesis code based on results of detailed models. The recipes determine the ζad of

a star depending on a temperature threshold, which indicates if a star is assumed

to have a radiative envelope or a deep convective envelope. Moreover they adopt an

updated prescription for estimating the ζad of massive stars with radiative envelopes.
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5.3.1 Radiative vs. convective envelopes

Massive stars on the MS have radiative envelopes. As they expand and move away

from the MS a convective layer develops at the surface which grows in size. By

the time the star ascends the asymptotic giant-branch almost the entire envelope is

convective such that it dredges up helium from the core (Iben, 1974; Kippenhahn

et al., 2012). The response of a star to mass loss can be estimated by approximating

its structure with a polytrope. If we are describing a fully radiative sphere, this

approximation predicts that the star will shrink (ζad > 0); whereas if we are describ-

ing a fully convective sphere, this approximation predicts that the star will expand

(ζad < 0). The distinction between stars with convective and radiative envelope is

therefore crucial for the dynamical stability of mass transfer.

In Stevenson et al. (2017); Vigna-Gómez et al. (2018) and Neijssel et al. (2019)

the models do not differentiate between radiative or convective envelopes in massive

stars. For massive stars, the fits to stellar models by Hurley et al. (2000) only suggest

a growing convective envelope from the HG stage and consider fully convective

envelopes for stars beyond the HG (see text after Eq. 111 Hurley et al. 2000).

The adiabatic response to mass loss of MS and HG stars is therefore approximated

by fixed values of ζad based on the results of Ge et al. (2015) and are ζad = 2.0

and ζad = 6.5 respectively. Meanwhile the recipe for stars with fully convective

envelopes of Soberman et al. (1997) is applied for more evolved stars, e.g. core-

helium-burning (CHeB) stars.

According to our single stellar models, stars with initial masses above M ≳ 12M⊙

ignite helium before ascending their giant branch. When this situation occurs, to

estimate the ζad of a CHeB star, we currently apply the prescription by Soberman

et al. (1997) (as the star is more evolved than an HG star), even though a deep

convective envelope may not have yet been developed. For these stars we should

instead adopt a ζad more similar to the one for HG stars. For comparison, if the

core of a CHeB star is half its total mass at the onset of mass transfer, then the

recipe by (Soberman et al., 1997) estimates ζad ≈ 0.5 instead of our ζad = 6.5. For
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a fully non-conservative mass-transfer episode, this would correspond to a critical

mass ratio (qcrit = MD/MA) for dynamically-stable mass transfer of 1.5, instead of

our 4.5.

Other population-synthesis codes, which rely on the same analytic fits, already

have different stability criteria for hotter CHeB stars and those which are cool enough

to have deep convective envelopes (Belczynski et al., 2008; Toonen et al., 2012).

They base the state of the envelope on the effective surface temperature Teff of

a star, which they compare to a temperature threshold Tconv. Belczynski et al.

(2008) determine that stars with surface temperatures below log10(Tconv/K) = 3.73±

0.02 have deep convective envelopes based on models by Ivanova and Taam (2004).

Klencki et al. (2020) show with detailed single stellar models that the size of a

convective envelope depends, amongst others, on the metallicity of the star and the

numerical routines used to calculate convective overshooting. Hence, the uncertainty

quoted by Belczynski et al. (2008) does not reflect the full range of uncertainties

coming from single stellar evolution. We adopt log10(Tconv/K) = 3.73. If Teff < Tconv,

the star is considered to have a deeply convective envelope and ζad is determined by

the prescription of (Soberman et al., 1997). If Teff > Tconv, the star is assumed to

not yet have a deeply convective envelope. The prescription of ζad for these stars is

described in the next section.

5.3.2 Adiabatic response to mass loss of stars without deep convec-

tive envelopes

Our values of ζad = 2.0 for MS and ζad = 6.5 for HG stars are a single-value summary

of the detailed calculations of Ge et al. (2015). Instead Ge et al. (2015) show that

these values could be estimated as a function of the initial mass and the expansion

of the donor star at the onset of a mass-transfer episode and calculate their values

for stars with initial metallicity of Z = 0.02. The exact value of ζad depends on the

mass-loss rate and orbital properties. Ge et al. (2015) provide an effective ζad such

that there is no dynamical instability (delayed or prompt) during the entire mass-
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transfer phase. Therefore, we use the entire range of values of ζad as an alternative

model to our single value approximation. However, Ge et al. (2015) only provide

tabulated results and we have not yet found a robust method to interpolate their

results. Instead, we determine ζad by determining which of the tabulated values of

initial masses and radii are closest to the ones of the considered star. In appendix 5.A

we provide some additional information on the applicability of the results of Ge et al.

(2015) to our single stellar models. In the results section we compare this approach

against our previous single-value assumption for MS and HG stars.

5.4 Results

We present our results in three steps. First, we show the difference between our

default model, which assumes any post-HG star has a deep convective envelope, and

the model of Belczynski et al. (2008), where stars have deep convective envelopes

if Teff < Tconv. Second, we vary both the temperature threshold, Tconv, and the

single value of ζad for stars that do not have deeply convective envelopes. Third, we

combined the temperature-threshold approach of Belczynski et al. (2008) with a ζad

prescription based on the result of Ge et al. (2015), which estimates the ζad of stars

without deep convective envelopes, depending on their mass and radius. In all cases

our results focus on estimates of the rate and mass distribution of merging DCOs.

To estimate the properties of the merging DCO population detected by current

gravitational-wave detectors we need to simulate systems for a range of metallicities

and assume a model for both the star formation rate and selection effects (Dominik

et al., 2013; Chruslinska and Nelemans, 2019; Neijssel et al., 2019; Spera et al.,

2019). Here we focus our efforts on a single metallicity to explore a large range of

stability criteria and the rate of merging DCOs per unit solar mass evolved in all

stars (see Sec. 4.3.1 for further details on our methods of sampling and calculating

the mass evolved in all stars). The stars are simulated with an initial metallicity

of Z = 0.0045 because this is the dominant metallicity for the detectable DCOs

mergers according to Neijssel et al. (2019) and Stevenson et al. (2019).
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5.4.1 Convective envelopes: Stellar type vs. effective temperature

threshold

We performed a simulation of 2 × 105 binaries using model assumptions similar to

the default assumptions of Neijssel et al. (2019), except for the inclusion of pair-

instability supernovae, as implemented in Stevenson et al. (2019) and mentioned in

section 3. We apply the “pessimistic” CE assumption where we assume dynamically-

unstable mass transfer started by a HG star always results in a stellar merger.

Figure 5.3 depicts the luminosities and effective temperatures of donor stars at the

onset of the mass-transfer phase which reduces the orbital separation the most,

determining whether the binary system is able to merge as DCO within a Hubble

time (see also the double asterisk (**) symbol in Fig. 5.1).

The impact of our assumptions on ζad for stars with initial masses of MZAMS ≥

10M⊙ immediately becomes apparent in Fig. 5.3. Massive stars that start mass

transfer during the HG rarely form merging BBHs: if the mass-transfer episode

is dynamically unstable, then the system will merge (before the formation of a

BBH); if the mass-transfer episode is dynamically stable then the system remains

too wide, unless its separation is short enough to initiate a mass-transfer phase early

on the HG. Mass transfer started by stars during the first giant branch or after the

ignition of helium in the core is less dynamically stable and therefore more likely to

evolve through a CE. Hence, the symbols depicting merging BBHs sharply follow

the boundary between the HG and the CHeB phase. The same is true for BHNS

and BNS progenitors, however a mass-transfer phase onto a NS companion is more

likely to have an extreme mass ratio which shrinks the orbit during dynamically-

stable mass transfer enough to produce merging DCOs. Furthermore, a supernova

kick could potentially aid the formation of a merging DCO.

The vertical-dashed line in Fig. 5.3 is the temperature threshold for deep convec-

tive envelopes of Belczynski et al. (2008). This figure shows that most of the CHeB

donor stars, stars in the progenitor systems of merging DCOs, have been falsely

treated as having deep convective envelopes in previous COMPAS studies. Correcting
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Figure 5.3: The Hertzsprung-Russell (HR)-diagram of stellar tracks with an initial
metallicity of log10(Z/Z⊙) = −0.5, which is the dominant metallicity for the de-
tectable DCOs mergers in Neijssel et al. (2019) and Stevenson et al. (2019), and
initial masses of 5 M⊙, 10 M⊙, 20 M⊙, 40 M⊙ and 80 M⊙. The different colours
in the stellar tracks highlight different evolutionary stages. In particular the grey
lines depict the different giant phases; first giant branch (FGB), early asymptotic
giant branch (EAGB) and thermally-pulsating asymptotic giant branch (TPAGB)
as defined in Hurley et al. (2000). The simulation follow the default model where
ζad is based on the stellar type of the donor and includes pessimistic CE evolu-
tion, where dynamically-unstable mass transfer started by a HG always results in a
stellar merger. The black circles, stars and triangles depict the temperature and lu-
minosity of the donor star at the onset of the mass-transfer phase which shrinks the
orbital separation the most (see the double asterisk symbol in in Fig. 5.1) during
the formation of merging DCOs, identified by different symbol . The agglomera-
tion of circles at effective temperatures of log10(Teff/K) = 4.2 and luminosities of
log10(L/L⊙) = 6.0 is due to merging BBHs which did not experience a CE phase.
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for this, i.e. adopting the temperature threshold to determine which ζad prescription

to use, does not affect the BNS progenitors or BHNS progenitors, where the NS

forms first. This is because of the high mass ratio at the onset of the mass transfer

onto the NS. Indeed the average mass of a neutron star is about ∼ 1.3 M⊙, while for

the companion to form a compact object its mass needs to be greater than ∼ 8 M⊙.

Thus a ζad = 6.5 is often not sufficient to avoid dynamical instability during this

mass-transfer episode. Only BNSs forming through channel III, which have almost

equal mass ratios at the onset of the CE event, could avoid a CE if ζad = 6.5. How-

ever, in our models, the majority of BNSs formed through channel III experience

mass transfer when both stars are on the giant branch (Vigna-Gómez et al., 2020)

and hence they remain unaffected by the switch to a temperature threshold.

The mass ratios at the onset of the last mass-transfer phase are less extreme

in BBH progenitors compared to those of BNS progenitors. During the collapse of

the first BH progenitor the remnant retains more of the mass due to fallback (Fryer

et al., 2012). Therefore, most merging BBH progenitors in Fig. 5.3 with initial

masses ∼ 15 M⊙ < MZAMS < 40 M⊙ would have no longer experienced a CE during

the final mass-transfer episode intiated by a CHeB star, if we had used ζad = 6.5 for

CHeB donors with Teff > Tconv. Instead, this mass-transfer phase would have been

determined as dynamically stable. Dynamically-stable mass transfer would have left

these systems too wide to merge in a Hubble time. The same would have been true

for BHNS progenitors where the BH formed first.

In summary, the results of Neijssel et al. (2019) and Stevenson et al. (2019) for

the rate and mass distribution of merging BBHs would have been very different, if

they had adopted the temperature threshold by Belczynski et al. (2008) to determine

ζad for CHeB stars. The rate of mergers would have dropped and the mean total

mass of the BBH mergers would have increased, since the less-massive BBHs are

too wide to merge after dynamically-stable mass transfer. The change in rate and

mass distribution would have also propagated into the log-likelihood calculations

performed in Neijssel et al. (2019) and therefore the values for their model of the
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metallicity-specific star formation rate.

5.4.2 Varying the single values of ζad and Tconv

We previously showed that both the choices of ζad and a temperature threshold

Tconv considerably affect our results. Here we vary the values of Tconv and ζad for

post-MS stars with radiative envelopes. The prescriptions to estimate the mass-

transfer rate from a donor star remain unchanged and follow the description given

in chapter 3.3.2.1.

5.4.2.1 Varying the single value of ζad

Figure 5.4 shows the rate of merging DCOs estimated per unit solar mass evolved in

all stars in our simulation (see Sec. 4.3.1) and the fraction of of systems which evolve

through channel I. An increase in ζad results in more binary systems experiencing a

dynamically-stable mass-transfer phase. The fraction of systems evolving according

to channel I out of the population of merging DCOs can indeed vary from zero if,

in the absence of a deep convective envelope, ζad is assumed to be ≲ 3, to ∼ 1 for

ζad values above ∼ 8, ∼ 14 and ∼ 10 for BBHs, BNSs and BHNSs, respectively. For

merging BBHs, an increase in the ζad, assigned to stars with radiative envelopes,

raises the number of binary systems evolving through channel I, leaving the number

of binary systems evolving through channel II and III roughly constant. This is be-

cause the progenitors of the merging DCOs, forming through these two channels (II

and III), contain donor stars which are characterised by deep convective envelopes,

at the moment of the (**) mass-transfer phase (see Fig. 5.1). The value of ζad at the

onset of the mass-transfer phase is therefore evaluated via the prescription proposed

by Soberman et al. (1997) and is only sensitive to changes in Tconv.

The rate of merging BNSs is quite insensitive to the choice of ζad. The average

mass ratio at the onset of mass transfer from a massive star onto a NS companion is

above 15. Therefore the mass transfer does not become dynamically stable for the

choices of ζad considered here. For merging BHNS the impact of a change in ζad is
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Figure 5.4: Left column depicts the number of merging DCO per unit solar mass
evolved in all stars in our simulation (NDCO/M⊙), whilst assuming single ζad values
(y-axis) for post-MS stars with radiative envelopes and single Tconv values (x-axis),
to determine if a star has a deep convective envelope. The right column shows the
fraction of the merging DCOs that form through channel I. The black cross is the
location of our default assumptions of ζad = 6.5 and log10(Tconv/K) = 3.73. Every
row represents the contribution of DCOs of different nature; from top to bottom:
BBHs, BNSs or BHNSs. These results are based on a simulation of 2× 105 binaries
at each grid point and the stars have an initial metallicity of Z = 0.0045. For this
simulation, we follow the default model of Neijssel et al. (2019), with the additional
implementation of pair-instability supernovae. Zero values are shown in grey.
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less straight-forward since it depends on which type of compact object formed first.

5.4.2.2 Varying the single value of Tconv

When increasing Tconv from our default value of log10(Tconv/K) = 3.73, the number of

stars determined to have deep convective envelopes increases and the rate of merging

DCOs per unit solar mass evolved which form through channel II increases too.

When log10(Tconv/K) ≥ 3.9, the rate of binary systems evolving through channel II

drops because the first mass-transfer phase from a post-MS star onto MS companion

results in more stellar mergers.

The number of merging DCOs per unit solar mass evolved drops if Tconv is reduced

from log10(Tconv/K) = 3.73. Here, stars on the giant branch are assumed to not have

deep convective envelopes. The binary system would previously evolve through a

CE phase and form a merging DCO according to channel II or channel III. However,

by lowering the threshold to log10(Tconv/K) = 3.6, most giant donors are modelled

as having radiative envelopes. Therefore, the binary system no longer experiences a

CE and, because the mass transfer proceeds at large orbital separations, the system

is not able to merge through stable mass transfer. The relative rate of mergers

forming through channel II and channel III drops, resulting in an increased fraction

of mergers forming through channel I.

5.4.2.3 Comparison of values for ζad between studies

Other population-synthesis codes, such as STARTRACK (Belczynski et al., 2002b,

2008), SeBa (Portegies Zwart and Verbunt, 1996; Nelemans and van den Heuvel,

2001; Toonen et al., 2012), binary_c (Izzard et al., 2004b, 2006, 2009) and MOBSE

(Giacobbo et al., 2018), rely on the same analytic fits to stellar tracks as the COM-

PAS code. Different codes use various recipes for ζad to determine the dynamical

stability of mass transfer. In some cases a critical mass ratio is used, here defined

as qcrit = MD/MA, such that a mass ratio q ≥ qcrit results in dynamically-unstable

mass transfer. What follows is a brief summary of the different recipes for ζad used
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in the aforementioned population-synthesis codes.

The STARTRACK code, on which we base our approach and value of Tconv, uses

a qcrit = 3 as a critical mass ratio to avoid delayed dynamical instability during

mass transfer started by stars with hydrogen envelopes. However, they also adopt

a diagnostic diagram to determine the stability of a mass-transfer episode. The

latter makes direct comparison difficult. The SeBa code assumes a fixed value for

ζad = 4 for post-MS stars with radiative envelopes. For stars on the giant branch,

SeBa defines a critical radius to distinguish between stars with radiative or deep

convective envelopes (Toonen et al., 2012, priv. comm. Toonen). The binary_c

code adopts a qcrit = MD/MA = 1/0.65 for MS stars and qcrit = MD/MA = 2.5

for HG stars (de Mink et al., 2013) and otherwise follows (Hurley et al., 2002).

The MOBSE code relies on assumptions for mass transfer initiated by HG and CHeB

donors which are not specified and we therefore assume they also follow (Hurley

et al., 2002). Hurley et al. (2002) use a value of ζad = 6.85 for HG stars.

Values of ζad = 2.5, ζad = 6.5 or ζad = 10.0 correspond to critical mass ratios qcrit

of approximately 2.5, 4.5 and 6.2 respectively, assuming a mass-transfer efficiency

of β = 0 and angular momentum loss through isotropic re-emission. Therefore,

our choice of ζad = 6.5 for HG stars allows for greater dynamical stability than

binary_c, STARTRACK or SeBA and is similar to BSE (Hurley et al., 2002).

Figure 5.5 shows the simulated properties of merging BBHs when adopting ζad =

2.5, ζad = 6.5 and ζad = 10.0. At total BBH masses of Mtot ∼ 15 M⊙ and mass

ratios of q ∼ 0.3 we cannot confidently differentiate between the models due to

uncertainties coming from our small sample size. However, at Mtot ∼ 35 M⊙ and

mass ratios of q ∼ 0.7, an increase in the value of ζad clearly results in more merging

BBHs. Changing ζad = 6.5 to ζad = 10.0 approximately quadruples the rate of

merging BBHs with total masses of Mtot ∼ 35 M⊙. As mentioned in section 5.2.3

and shown in figure 5.3, the additional merging BBHs, generated at higher values

of ζad, evolve through channel I and so increase the average total mass and shift the

average mass ratio closer to unity.
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Figure 5.5: The merger rate and the distribution of the total mass Mtot and mass
ratio q of merging BBHs at a metallicty Z = 0.0045.The simulations are done under
the pessimistic CE assumption and with log10(Tconv/K) = 3.73. Here the mass ratio
is q = Mlight/Mheavy, where Mlight is the least-massive BH and Mheavy the most
massive BH of the merging binary. The area within the dotted lines indicates the 90
per cent confidence interval, estimated by bootstrapping the recovered population
of merging BBHs 200 times.

The rate of formation, masses and mass ratios of merging BNSs do not differ

appreciably when adopting ζad = 2.5, ζad = 6.5 or ζad = 10.0. This is consistent

with the insensitivity seen also in Fig. 5.4 and explained previously. The different

populations of merging BHNSs indicate an increased population of extreme mass-

ratio systems (q < 0.1) at higher values of ζad, however a larger sample size would

be needed to confirm this trend.

In principle, the aforementioned population-synthesis codes are ideal tools to

probe the impact of different assumptions for ζad, qcrit on the formation of merging

DCOs. However, aside from the stability of mass transfer, these codes also assume

different binary-star physics; they differ, for example, in the calculation of crucial

parameters such as: the natal kicks from SNe, the efficiency of mass transfer and

the values for α and λ, describing CE events. A more detailed comparison study of

the evolution of massive stars and the impact of different physics is needed, similar

to the study by Toonen et al. (2014) for low mass stars. Therefore, caution must be

taken when implementing the methods to estimate ζad, as presented in this work,
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into other population-synthesis codes. Each code should perform their own study

into the effects of changing ζad on the estimated rates and mass distributions of

DCO mergers, given that differences in assumed binary-star physics might result in

different outcomes.

5.4.2.4 Difference between qcrit and ζad

Some codes rely on a qcrit to determine the dynamical stability of mass transfer,

whereas others determine the stability based on ζad. However, caution must be

taken when directly comparing the two values. As shown by the solid black line in

Fig. 5.2, the translation of ζad to a qcrit depends on the efficiency of mass transfer β.

We compare our results against those of Giacobbo et al. (2018) to highlight the

difference between requiring ζad > ζRL or q < qcrit to classify a mass-transfer episode

as stable. Giacobbo et al. (2018) also find that some of the BBHs merge through

channel I (they refer to it as the zero common-envelope channel). At a metallicity

of Z = 0.004, Giacobbo and Mapelli (2018) mention that 17 per cent of the BBH

mergers form through this channel. According to our model at a metallicity of

Z = 0.0045, assuming ζad = 6.5 and log10(Tconv/K) = 3.73, about 44 per cent of the

merging BBHs form through channel I.

We assume they adopt ζad = 6.85 for HG stars based on Hurley et al. (2002).

Although the difference could be due to other assumptions, we cannot exclude that

it originated from their translation of ζad = 6.85 to a fixed critical mass-ratio qcrit

applied for HG stars, as also done in Hurley et al. (2002). According to Hurley

et al. (2000), a ζad = 6.85 corresponds to a critical mass ratio of 4, assuming fully

conservative (β = 1) mass transfer. However, in our models we expect the mass

transfer onto a NS or BH to be non-conservative β ≈ 0, assuming the mass transfer

is Eddington limited. In this case a ζad = 6.85 is closer to a critical mass ratio of

∼ 5 (see also Fig. 5.2). If indeed we shifted our value of ζad, we find that 17 per cent

of merging BBHs form through channel I at this metallicity, similarly to Giacobbo

et al. (2018). However as mentioned before, this is only a tentative comparison.
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5.4.3 A mass- and radius-dependent value of ζad

Ge et al. (2015) tabulate values of ζad of stars with initial masses in the range

0.1 ≤ MZAMS/M⊙ ≤ 100 at a metallicity of Z = 0.02, following their evolution up

to the development of a deep convective envelope. Their values for the adiabatic

response of the donor star to mass loss range between −1 ≲ ζad ≲ 70. In the

absence of data for other different metallicities, we simply assume these ζad values

for all metallicities. In appendix 5.A we present our implementation of the ζad values

tabulated in Ge et al. (2015) and compare the values of ζad to stellar tracks of COMPAS

at different metallicities. Further studies are needed to discuss the impact of our

assumptions.

Adopting both a mass- and radius-dependent value of ζad and a temperature

threshold of log10(Tconv/K) = 3.73 to determine the state of the envelope further

increases the dynamical stability of mass transfer. Figure 5.6 shows the results of

the three main models of stability criteria introduced in this paper:

• our default model;

• ζad = 6.5 for post-MS stars with radiative envelopes and ζad of Soberman

et al. (1997) for stars with deep convective envelopes; unlike from our default

model, the state of the envelope is determined via a temperature threshold,

where stars with Teff < Tconv are assumed to have developed a deep convective

envelope;

• again using the temperature threshold criteria, we define ζad according to

Soberman et al. (1997) if Teff < Tconv, while we follow the tabulated values

of Ge et al. (2015) to estimate ζad if Teff > Tconv.

Compared to our default model the introduction of a temperature-dependent thresh-

old for radiative and convective envelopes results in an increased dynamical stabil-

ity of mass-transfer episodes started by CHeB stars with Teff > Tconv. Therefore,

about two thirds of the lower-mass BBH (Mtot ∼ 15 M⊙) progenitors no longer

form through channel II and are left too wide to merge within a Hubble time (see
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Figure 5.6: The merger rate and the distribution of the total mass Mtot and mass
ratio q of merging BBHs at a metallicty Z = 0.0045.The simulations are done un-
der the pessimistic CE assumption and with log10(Tconv/K) = 3.73. Here the mass
ratio is q = Mlight/Mheavy, where Mlight is the least massive BH and Mheavy the most
massive BH of the merging binary. The area within the dotted lines indicates the 90
per cent confidence interval, estimated by bootstrapping the recovered population of
merging BBHs 200 times. The default model (cyan line) assumes that all post-HG
stars have a ζad according to Soberman et al. (1997). The second model (blue line)
assumes that all stars with surface temperatures Teff < Tconv have deeply convective
envelopes and that therefore their ζad should follow the prescription of Soberman
et al. (1997). HG stars and CHeB stars with hotter surface temperatures have a
ζad of fixed to 6.5. The third model (purple line) assumes the same temperature
threshold as the second model (blue line) to distinguish between radiative and con-
vective envelopes. In this last case, however, the value of ζad for stars with radiative
envelopes is based on the work by Ge et al. (2015), which has been calculated from
the stars’ initial mass and radius at the onset of mass transfer.

also Sec.5.4.1). Further increasing the dynamical stability of mass-transfer episodes

started by the Roche-lobe overflow (RLOF) of radiative post-MS stars, by adopting

a mass- and radius-dependent value of ζad, results in ζad > 6.5 for post-MS massive

stars with radiative envelopes. The merger rate of BBHs increases by a factor of five

compared to our default. Almost all BBHs forming through channel I with more

than half of the BBHs having total masses above 30 M⊙ and mass ratios above 0.6

(see also Fig. 5.6).

164



Chapter 5 5.5. Discussion

5.5 Discussion

To recapitulate, Neijssel et al. (2019) find that at metallicities of ∼ 0.0142 about

a third of the merging BBHs form through channel I. Neijssel et al. (2019) falsely

assumed that all post-HG stars have deep convective envelopes. This especially un-

derestimates the mass transfer stability of CHeB stars (see Sec. 5.4.1). By applying

a threshold for the effective surface below which stars are assumed to be deeply

convective ( log10(Tconv/K) = 3.73 based on Belczynski et al. 2008), the increased

stability of CHeB donors results in a drop of systems forming though channel II with

final total BBH masses of ∼ 15 Modot. Further increasing the stability of massive

stars with radiative envelopes, by applying a mass and radius dependent prescription

based on Ge et al. (2015), increases the number of BBHs merging through channel

I. So far we have only considered the adiabatic response of the star to mass loss.

In the outer parts of the envelope of extended massive stars the thermal timescale

is sometimes shorter than the adiabatic timescale. Such super-adiabatic layers in

the outer part of the envelope of massive stars yield even higher value of ζ (Woods

and Ivanova, 2011; Passy et al., 2012; Ge et al., 2015; Pavlovskii et al., 2017). Ge

et al. (2015) report an increase in ζ by a factor of ∼ 1.5 for stars with masses above

50 M⊙.

The increased dynamical stability of mass transfer increases the rate of merging

BBHs with total masses of ∼ 35 Modot by almost an order of magnitude (see Fig. 5.6).

During the mass-transfer phase from a massive star onto a NS the mass ratios are

too extreme to be stabilised by the values of ζad for radiative stars reported in Ge

et al. (2015). Therefore, the rates and formation channels of merging BHNSs and

merging BNSs remain mostly unaffected, except for BHNSs where the BH forms

first.

5.5.1 Quasi-chemically-homogeneous evolution

Most of our BBH mergers no longer evolve through CE events after having adopted a

mass- and radius-dependent value of ζad and a temperature threshold of log10(Tconv/K) =
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3.73 to determine the state of the envelope. We explored the effects of ζad, but have

ignored other potential physics which would affect our results. The BBHs forming

through channel I start their last mass-transfer phase early on the HG, such that the

orbital separation of the systems is tight enough to form a merging BBH through

dynamically-stable mass transfer. If the companion star is spun up by accretion

(Packet, 1981) or in the presence of tidal locking the companion star could evolve

through quasi-chemically-homogeneous evolution instead (see e.g. Mandel and de

Mink, 2016; Marchant et al., 2016). The stellar companion of the BH would no

longer expand on the HG and avoid a mass-transfer phase onto the BH. Newer

versions of COMPAS contain recipes to approximate the physics of quasi-chemically-

homogeneous evolution in the rapid population-synthesis framework (Riley et al.,

2021). Future studies should determine if systems evolve through channel I as pre-

sented here or instead evolve through quasi-chemically-homogeneous evolution.

5.5.2 Avoiding contact

In Sec.5.4.2.4 we showed that the translation of ζad to qcrit depends on the mass-

accretion efficiency during a mass-transfer phase. In our results we only considered

ζad for the dynamical stability of mass transfer. There are both advantages and

disadvantages to using either a qcrit or ζad to determine the dynamical stability of

mass transfer. A single critical mass ratio qcrit does not account for the dependence

of ζRL on the mass-transfer efficiency β. During non-conservative mass transfer,

where mass leaves isotropically from the surface of the accretor, the mass lost from

the system has a stabilising effect. By comparing ζad to ζRL this stabilising effect

is automatically taken into account. However, mass transfer does not only become

dynamically unstable due to the response of the donor radius to mass loss.

A high mass-transfer rate could result in the accreting companion filling its Roche

lobe, because accretion either increases the radius of the accreting companion or

leads to the formation of a disk around it. For MS accretors, mass transfer could

already result in contact systems when the timescale of mass transfer is comparable
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to the thermal timescale of the accretor when filling its Roche lobe (see e.g. Web-

bink, 1976; Ulrich and Burger, 1976; Neo et al., 1977; Flannery and Ulrich, 1977;

Kippenhahn and Meyer-Hofmeister, 1977). In this case the mass-transfer episode

could become dynamically unstable due to the formation of a contact system and

subsequent formation of a common envelope, despite ζad < ζRL. A similar argument

is possible for BH and NS accretors and the formation of an accretion disk. Cur-

rently we assumed that a BH accretes at the Eddington limit and the remainder of

the mass instantaneously leaves the system. If instead, similar to the MS accretor,

the material does not leave the binary system, a contact phase could result in a CE.

Our results in Sec.5.4.2.4 show that the fraction of binary systems evolving through

channel I drops below 20 per cent if we assume the mass ratio at the onset of mass

transfer needs to be below qcrit ≈ 4 to avoid contact. If qcrit ≈ 2 then none of our

binaries evolve through channel I.

5.5.3 ζad and gravitational-wave detections

Let us assume that our models of binary star physics and our new choices of ζad

do reflect the true nature of the stability and physics mass transfer. The results

presented here, based on stars with initial metallicities of Z = 0.0045, indicate that

most of the massive BBH mergers, with total masses above 30 M⊙, form without

experiencing a CE or a natal kick. This is different compared to BNSs which are

expected to experience CE events and receive natal kicks. Chruslinska et al. (2018)

mention that the only way to simultaneously reconcile the predicted merger rates of

BBHs and BNSs is by assuming the physics of CEs differs between the two progeni-

tors. Here we offer the possibility that most of the merging BBHs do not experience

a CE at all even if we allow for the survival of CE events from HG donors under the

optimistic CE assumption (see also Fig. 5.7). Klencki et al. (2020) performed a range

of detailed simulations to show that the optimistic CE assumption is likely not valid

for massive stars and only mass transfer from red super giants is capable of surviving

a CE phase. Furthermore, if it is true that stars with masses above ∼ 40M⊙ never
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Figure 5.7: The total mass distribution of merging BBHs. The simulation assumes
log10(Tconv/K) = 3.73 based on Belczynski et al. (2008) and a mass and radius
dependent value of ζad for radiative stars based on Ge et al. (2015). LLeft: the
pessimistic CE assumption; right: the optimistic CE assumption (CE phases with
HG donors always end in a merger or may lead to CE ejection, respectively). The
colours indicate the formation channel of the binary system. The percentage indi-
cates the fraction of binary systems evolving through each channel. The percentage
in parentheses is the fraction of binary systems with total masses above 30 M⊙
evolving through each channel.

reach a red-supergiant phase, then it is unlikely that channel II or channel III is re-

sponsible for merging BBHs with total masses above ∼ 50 M⊙ (Klencki et al., 2020).

Our simulations assume stars with initial metallicities of Z = 0.0045, a similation at

Z = 0.001 would result in more massive remnants with total masses above ∼ 50 M⊙

forming through channel I. Channel I would not require the detection of red su-

per giants since the stars are stripped of their envelopes through dynamically-stable

mass transfer before they reach the giant branch.

Although tentative, our results indicate that estimates of the detection rate of

DCO mergers are sensitive to the value of ζad. It is however unlikely that observa-

tions of the mergers of DCOs provide a unique possibility to confirm the choices of

ζad and the possibility to have dynamically-stable mass transfer from post-MS which

are more than 4 times as massive as the accreting NS or BH. For example, here

we report that an increase from ζad = 6.5 to a ζad = 10.0 increases the mean total

mass of merging BBHs. In Neijssel et al. (2019) a similar change is found by altering

the metallicity-specific star formation rate in the early universe. This is just one of
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many parameters, such as the natal kicks or the value of α for CEs, that affect the

rate and mass distributions of BBH mergers.

5.5.4 Constraints from other observations

Ultra-luminous X-ray binaries (ULXs) provide additional constraints on the stabil-

ity of mass transfer from massive stars. Ultra-luminous X-ray binaries are systems

where the accretion rate onto the compact exceeds 1039 erg/s. A possible explana-

tion of this source is a high-mass X-ray binary (HMXB) which experiences thermal

timescale mass transfer from a massive star onto a BH or NS where the accre-

tion rate exceeds the Eddington limit (see e.g. King et al., 2001; Rappaport et al.,

2005; Pavlovskii et al., 2017, and references therein). The increased stability of

mass-transfer episodes during the RLOF of post-MS stars as presented here would

naturally result in an increased rate of ULXBs. Pavlovskii et al. (2017) report that

within their models dynamically-stable mass transfer started by massive giants is

capable of explaining both the rate of merging BBHs as well as the number of ULXs.

Other potential constraints come from the small population of short period Wolf-

Rayet X-ray binaries (WXBs). van den Heuvel et al. (2017) show that WXBs could

form through dynamically-stable mass transfer. Furthermore, they find that the

number of predicted WXBs is very sensitive to their choice of qcrit for dynamically-

stable mass transfer. A comprehensive study of the rate of formation of ULXs and

WXBs is needed to assess if the COMPAS models currently overestimate the stability

of mass transfer.

5.6 Conclusion

The detailed models of (Ge et al., 2015) show that the value of the adiabatic response

of the stellar radius to mass loss, ζad, for stars with radiative envelopes is larger

than the values commonly assumed in rapid population-synthesis codes. Where

population-synthesis codes commonly assume ζad ≤ 7, the values reported by (Ge
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et al., 2015) range between 10 and 70 for massive stars, depending on the initial mass

and the radius at the onset of mass transfer. In this study we show that an increased

value of ζad results in more binary systems evolving through channel I, which does

not include a CE phase. This formation channel is not new and has already been

reported in multiple studies such as van den Heuvel et al. (2017); Pavlovskii et al.

(2017) and Giacobbo and Mapelli (2018). Our tentative results indicate this channel

could be responsible for almost all of the detected gravitational-wave events coming

from the mergers of BBHs. Using tabulated values of ζad from Ge et al. (2015) for our

models at a metallicity of Z = 0.0045 more than doubles the rate of BBH mergers.

The rate of BBH mergers with total masses above 30 M⊙ quadruples and 95 per

cent of these binary systems evolve through only dynamically-stable mass transfer.

Detections of gravitational waves alone are unlikely to provide stringent constraints

and comparison to other observations such as ULXs and WRXs are needed.
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5.A Implementation Models and Illustrations

Here we provide a visual comparison (Fig. 5.8) of the values of the temperature

threshold for deep convective envelopes by Belczynski et al. (2008), the values of

ζad by Ge et al. (2015) and their applicability to our adopted single stellar models

(Hurley et al., 2000). The left column of Fig. 5.8 shows the single stellar tracks

of COMPAS in the HR-diagram. The middle column of Fig. 5.8 shows the radial

expansion of the stars, colour coded by stellar type. For clarity we omit the blue-

loops and stars that are close to self-stripping. Mass transfer is unlikely to happen

during these phases unless there is a fortuitous SN of the companion. Furthermore

we colour-coded all the giant-branch phases with the same colour for clarity.

The simulations by Ge et al. (2015) assume a metallicity of Z = 0.02. The top

panel in Fig.5.8 is at a metallicity of Z = 0.0142. The bullet points show the resolu-

tion in initial mass and radial expansion for ζad by Ge et al. (2015). Their maximum

expansion for stars with non fully convective envelopes coincides reasonably well

with our stellar models. The stellar tracks in COMPAS are based on the stellar models

by (Pols et al., 1998), which uses the detailed code by Eggleton (1971, 1972). The

stellar models by Ge et al. (2015) are made using STARS (Eggleton et al., 2011), a

later version of the detailed code by Eggleton (1971), which could explain the sim-

ilarities between the stellar tracks. The threshold for fully convective envelopes of

log10(Tconv/K) = 3.73 by Belczynski et al. (2008) is not that dissimilar to the transi-

tion to fully convective envelopes as found by Ge et al. (2015) for intermediate mass

stars. However, in our single stellar models, stars with initial masses above 30 M⊙

ascend the giant branch with surface temperatures below log10(Teff/K) = 3.6. Hence

the temperature threshold of Belczynski et al. (2008) potentially still overestimates

the temperatures at which massive stars develop deep convective envelopes. Klencki

et al. (2020) provide an alternative fit for Tconv, however our stellar models do not

reach such cool temperatures and therefore the fit is not applicable.
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Figure 5.8: A comparison between the fits to single stellar models of Hurley et al.
(2000), as implemented in the alpha-version of COMPAS, and the values of Tconv and
ζad. The left column shows the single stellar tracks in the HR-diagram colourcoded
by the stellar type following the terminology of Hurley et al. (2002):MS, HG, first
giant branch (FGB), CHeB, early asymptotic giant branch (EAGB) and thermally
pulsing asymptotic giant branch (TPAGB). The dashed vertical line indicates the
threshold for Tconv based on Belczynski et al. (2008). The middle column shows the
expansion of the star as a function of its initial ZAMS mass. The colour depicts the
stellar type of the star. The bullet points in the centre column depict the resolution
of the values ζad of Ge et al. (2015). The hatched region indicates where stars
are determined to have deep convective envelopes when applying log10(Tconv/K) =
3.73. The right column shows the values of ζad determined by the nearest value in
MZAMS, R of Ge et al. (2015). The maximum value of ζad is ∼ 70, but the scale of the
colourbar is limited for clarity. The right panel shows ζad even for fully convective
stars to indicate the behaviour when we extrapolate the results by Ge et al. (2015)
based on the nearest value. The drop in radii in models at Z = 0.000142 is an due to
an incorrect implementation of the fits of Hurley et al. (2000) stellar radii of CHeB
and is resolved in the beta-version of COMPAS.
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Chapter 6

Wind mass-loss rates of stripped stars inferred from Cygnus X-1

Coenraad J. Neijssel, Serena Vinciguerra, Alejandro Vigna-Gómez, Ryosuke Hirai,

James C. A. Miller-Jones, Arash Bahramian, Thomas J. Maccarone, and Ilya Mandel

Abstract Recent observations of the high-mass X-ray binary Cygnus X-1 have

shown that both the companion star (41 solar masses) and the black hole (21 solar

masses) are more massive than previously estimated. Furthermore, the black hole

appears to be nearly maximally spinning. Here we present a possible formation

channel for the Cygnus X-1 system that matches the observed system properties. In

this formation channel, we find that the orbital parameters of Cygnus X-1, combined

with the observed metallicity of the companion, imply a significant reduction in mass

loss through winds relative to commonly used prescriptions for stripped stars.
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Chapter 6 6.1. Introduction

6.1 Introduction

Cygnus X-1 is a high-mass X-ray binary (HMXB) in the Cygnus OB3 association,

which hosts a star in orbit with a black hole (BH) (e.g. Webster and Murdin, 1972;

Bolton, 1972, 1975; Hutchings et al., 1973). The BH accretes matter from the

stellar wind; this accretion powers X-ray radiation (e.g. Davidson and Ostriker,

1973; van den Heuvel, 1975; Conti, 1978; Petterson, 1978) and a jet (e.g. Bisiacchi

et al., 1974; Marti et al., 1996; Stirling et al., 2001). Orosz et al. (2011) inferred

the BH and stellar companion masses of Cygnus X-1 to be 14.8 ± 1.0 M⊙ and

19.2 ± 1.9 M⊙, respectively. Revised measurements of the distance to Cygnus X-1

(Miller-Jones et al., 2021) indicate that both objects are significantly more massive.

The temperature and luminosity of the optical companion are estimated to be Teff =

31.1 ± 0.7 kK and log(L/L⊙) = 5.63 ± 0.07 with a mass of Mopt = 40.6+7.7
−7.1 M⊙,

where we quote the median value and the 68 per cent confidence interval boundaries

(Miller-Jones et al., 2021). The mass of the BH is estimated as MBH = 21.2+2.2
−2.3 M⊙.

The binary has an almost circular orbit with a semi-major axis a = 0.244+0.012
−0.013 AU

and eccentricity e = 0.0189+0.0028
−0.0026 (Miller-Jones et al., 2021). The BH is inferred to

be nearly maximally spinning with a dimensionless spin of at least 0.95 according

to both disk continuum and reflection line fitting studies (Gou et al., 2011; Fabian

et al., 2012; Miller-Jones et al., 2021; Zhao et al., 2020). Via optical spectroscopy,

it has been found that the ratios of the surface abundances of both helium and iron

to hydrogen are about twice the respective values for the Sun (Shimanskii et al.,

2012). As we discuss below, these observations taken together present a challenge

for models of massive stellar binary evolution.

In this paper we describe the constraints that these observations place on the

Cygnus X-1 formation channel (Sec. 6.2). We explore how the helium main sequence

(HeMS) phase of this channel provides a constraint on the wind mass-loss rates

of massive stars (Sec. 6.3). We present the likely future of the system and its

implications for gravitational-wave detections (Sec. 6.4). Finally we discuss some

caveats and questions raised by the observations of Cygnus X-1 (Sec. 6.5).
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MS            MS        HeMS       BH          

time          
Figure 6.1: Assumed formation channel for Cygnus X-1. 1: Two stars (primary top,
secondary bottom) are born in a binary. 2: The primary star is more massive and
evolves faster, expands and starts a mass-transfer episode onto the secondary. 3:
The primary is left as a hot stripped HeMS star with a companion which could have
accreted a significant amount. 4: The primary star collapses and leaves behind a
BH orbiting the secondary MS star.

6.2 Cygnus X-1: Observations and assumed channel

We assume the following formation channel for Cygnus X-1 (see Fig.6.1 for illustra-

tion). Two stars are born in a binary. The more massive star (the primary) evolves

more quickly and expands first. The companion (the secondary) is close enough for

the late main-sequence primary to commence mass transfer. The primary is stripped

of its envelope, leaving an exposed helium core. The core continues nuclear fusion

until it collapses and forms a BH in orbit with the still core-hydrogen-burning main

sequence (MS) companion. In the sections below, we describe the observations and

theoretical analyses that support this channel.

6.2.1 Eccentricity, peculiar velocity and fallback

The collapse of a star into a compact object can impart both a natal kick from an

asymmetric explosion (see e.g. Fryer 2004 and references therein) and a kick from
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rapid symmetric mass loss to the system (Blaauw, 1961). The low eccentricity of the

Cygnus X-1 binary (Orosz et al., 2011; Miller-Jones et al., 2021) seems to disfavour

a significant natal kick. However, tidal forces could have circularised the system

since the collapse: for the inferred stellar and binary properties, the circularisation

timescale for dynamical tides (applicable for radiative-envelope stars, Zahn, 1977)

is only ∼ 105 years (estimated using equations (41) and (43) of Hurley et al., 2002).

On the other hand, the system’s small peculiar velocity strongly indicates that

the BH experienced nearly complete collapse with little mass ejection during its

formation (Mirabel and Rodrigues, 2003). The peculiar velocity is 10.7 ± 2.7 km

s−1 relative to its host association (Rao et al., 2019), which limits the amount of

instantaneous symmetric mass loss (Blaauw, 1961; Nelemans et al., 1999; Wong

et al., 2012) to ≲ 2 M⊙, unless the kick from symmetric mass ejection is fortuitously

cancelled by an oppositely directed natal kick. Further indirect evidence for the

low natal kick lies in the absence of Type C quasi periodic oscillations, which may

indicate Lense-Thirring precession due to spin-orbital misalignment as a result of a

natal kick (Stella and Vietri, 1998) and are observed in most known black hole X-ray

binaries (Ingram et al., 2016), the majority of which are believed to have received

strong (∼ 100 km s−1) natal kicks (Atri et al., 2019). The low amount of ejected

mass is also consistent with the current eccentricity in the absence of significant tidal

circularisation, and suggests nearly complete fallback onto the black hole except for

a small amount of neutrino mass loss (e.g. Nadezhin, 1980; Lovegrove and Woosley,

2013; Fernández et al., 2018). Nearly complete collapse matches the theoretical

models simulating the fall-back onto black holes of similar masses (Fryer et al.,

2012) and observational evidence for massive stars disappearing without supernovae

(Adams et al., 2017).

6.2.2 Black-hole progenitor mass

The Eddington-limited mass-accretion rate for a BH of this mass is ≲ 2 × 10−7 M⊙

yr−1. Under the assumption of Eddington-limited accretion (but see, e.g., Fragos
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and McClintock 2015; Eldridge et al. 2017; van Son et al. 2020, who relax this

assumption), only a negligible amount of mass could have been accreted onto the BH

since it formed (King and Kolb, 1999). The companion lifetime sets the accretion

duration to no more than a few Myr, meaning that at most ≲ few × 10−1 M⊙

could have been accreted. Assuming that the jet turned on promptly after the

formation of the black hole, the few×104 yr estimate of the age of the jet (Russell

et al., 2007) places an even stronger constraint on the amount of accreted mass,

≲ 10−2 M⊙ (see also Sell et al. 2015, who consider other models for the nebula

origin but reach similar conclusions about its age). Therefore, the current black-

hole mass MBH = 21.2+2.2
−2.3M⊙ is a good estimate for the progenitor mass just before

the collapse.

6.2.3 Black-hole spin & progenitor spin

The BH has a dimensionless spin χ close to unity, χ ≥ 0.95 (Gou et al., 2011; Fabian

et al., 2012; Miller-Jones et al., 2021), although spin measurements may have large

systematic errors because of modelling assumptions (Miller and Miller, 2015; Kawano

et al., 2017; Zhao et al., 2020). A spin close to unity, coupled with negligible mass

loss during collapse, suggests that if the pre-collapse progenitor had excess angular

momentum, χ > 1, it must have been carried away by a small amount of mass with

high specific angular momentum (cf. Janka, 2013, 2017; Batta and Ramirez-Ruiz,

2019; Murguia-Berthier et al., 2020).

The rotational angular momentum of the BH was either present in the progenitor,

or was gained during or after its collapse. Here we briefly summarise why we assume

that the angular momentum comes from the progenitor and why this implies that

the progenitor must have been stripped early in its evolution (see Mandel and Fragos

2020 for a longer discussion).

A BH needs to roughly double its mass through accretion in order to go from

zero to maximal spin (Bardeen et al., 1973; Thorne, 1974). This is not possible for

Cygnus X-1 under the assumption of Eddington-limited accretion. The spin could
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have been acquired during the collapse, e.g., if the companion torques some of the

ejecta which then fall back onto the BH (Batta et al., 2017; Schrøder et al., 2018), but

this requires some fine-tuning: for example, the ejecta must have sufficient velocities

to be torqued by the companion, but without a significant tail of escaping ejecta to

match formation through nearly complete fallback as discussed above. Therefore we

assume that the angular momentum was present in the progenitor at the moment

of the collapse.

Observations suggest that stars might be born as rapid rotators (Fukuda, 1982;

Rosen et al., 2012; Ramı́rez-Agudelo et al., 2013, 2015), although these observations

could be affected by binary interactions (Langer et al., 2008; de Mink et al., 2013).

Even if stars are born as rapid rotators, they spin down through wind-driven mass

loss and are unlikely to retain enough angular momentum to form rapidly spinning

BHs.

The black hole’s dimensionless spin is determined by the ratio of its total angular

momentum to the square of its mass. At lowest order, it is therefore insensitive to

the redistribution of angular momentum through the progenitor star. However, if

the bulk of the angular momentum moves into the envelope as the star expands, and

the envelope is subsequently removed by winds or mass transfer, the remaining core

is likely left with too little angular momentum to produce a rapidly spinning BH

(Petrovic et al., 2005b; Belczynski et al., 2017; Fuller and Ma, 2019; Bavera et al.,

2020; Mandel and Fragos, 2020). On the other hand, the core could retain sufficient

angular momentum to form a rapidly spinning BH if there is a large amount of dif-

ferential rotation between the layers of the star (Hirschi et al., 2005). Therefore, the

efficiency of angular momentum transport in the star plays a key role, yet both the

mechanism and degree of core-envelope coupling remain uncertain. Theory (Tayler,

1973; Spruit, 2002; Fuller et al., 2019; Takahashi and Langer, 2020) and observa-

tions, such as rotation rates of low-mass giant stars (Cantiello et al., 2014), suggest

that there may be efficient angular momentum transport and the envelope is cou-

pled to the core. If so, the observed rapid spin of the Cygnus X-1 black hole in a
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close binary, in which the progenitor must have lost its envelope, appears to require

pre-collapse interaction with the companion to spin up the stellar core.

Tidal locking of the period of the stellar rotation to the period of the binary

provides the most likely mechanism for producing a rapidly rotating BH progenitor

(Izzard et al., 2004a; Kushnir et al., 2016; Zaldarriaga et al., 2018; Belczynski et al.,

2017; Bavera et al., 2020). Chemically homogeneous evolution could yield rapidly

rotating black holes (Mandel and de Mink, 2016; Marchant et al., 2016), but is not

expected to operate at such high metallicities and is not consistent with the observed

expansion of the companion.

Instead, the following evolutionary sequence, proposed by Valsecchi et al. (2010)

for M33 X-7, a similar high-mass X-ray binary with a rapidly spinning BH, and

investigated in detail by Qin et al. (2019), appears to be the most likely formation

mechanism for Cygnus X-1. The binary starts out with a period somewhat shorter

than the current observed one. The more massive primary – the BH progenitor

– commences mass transfer while still on the main sequence. This mass-transfer

episode is likely to be largely non-conservative if limited by the spin-up of the ac-

cretor according to (Qin et al., 2019); this is favoured both by the observed evolu-

tionary state of the secondary (conservative mass transfer would imply an initially

lower-mass primary, and hence an older binary, placing an upper limit on the BH

progenitor mass that would make it unlikely to form such a massive BH) and the

observed period. The mass transfer removes the donor’s envelope, preventing sub-

sequent re-expansion and angular momentum loss. Meanwhile, the core remains

tidally locked to the MS companion. After hydrogen is exhausted in the core at the

end of the MS, the star contracts into a rapidly spinning HeMS star. While this

HeMS star is no longer tidally locked, it can still collapse into a rapidly spinning BH.

Qin et al. (2019) find that the efficiency of angular momentum transport does not

play a significant role for the evolution of the black hole progenitor during the main

sequence, where tidal locking keeps its core rapidly spinning, but could be a key

factor in determining the ultimate black hole spin through its impact on the angular
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momentum lost through winds in later evolutionary stages. The Qin et al. (2019)

models successfully reproduce systems with the orbital parameters of Cygnus X-1.

In fact, the match appreciably improves with the upward revision in the BH and

optical companion masses, as the observed masses in the bottom left panel of figure

3 of Qin et al. (2019) shift toward the locus of their model evolutionary trajectories

(though their evolutionary trajectories are only shown for an initial mass ratio of 0.4,

while the latest observations support more comparable masses). Given the number

of uncertainties relating to this first mass transfer episode, in what follows we focus

on the subsequent evolution of the binary under the assumption of this formation

channel for Cygnus X-1.

6.2.4 Companion mass & abundance

We compare the observed mass, luminosity and temperature of the optical compan-

ion against analytic fits to stellar tracks of Hurley et al. (2000) as implemented in

the COMPAS rapid population-synthesis code (Stevenson et al., 2017; Vigna-Gómez

et al., 2018). The observations are consistent with a MS star that is about 70 to 80

per cent through its core-hydrogen-burning phase, ignoring the impact of rotation.

These stellar tracks are for stars with regular hydrogen-rich atmospheres. Us-

ing them ignores the possible impact of non-standard surface abundances, and

so corresponds to the assumption that only a thin surface layer has a significant

over-abundance of helium, rather than a uniform distribution of enriched material

throughout the star. Stars in later stages of the MS with the relevant mass and

metallicity should have at most a very thin convective layer at the surface (e.g.,

Maeder et al., 2008; Kippenhahn et al., 2012). Therefore, mixing is expected to be

relatively inefficient: in the absence of large-scale convection, the Rayleigh-Taylor

instability is likely to be suppressed by temperature inversion in the accreted mate-

rial (Kippenhahn et al., 1980; Braun and Langer, 1995). The resulting thermohaline

mixing will mix the helium-rich material through the companion only on timescales

longer than the expected few×104 years since the formation of the BH if the bulk
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of the enriched material was accreted at or shortly before the BH formation.

The evolutionary channel shown in figure 6.1, assuming that the optical compan-

ion has not overflowed its Roche lobe. While previous studies explored this possibil-

ity, perhaps with intermittent Roche-lobe overflow followed by longer periods when

the binary is detached as in the present state, these models are typically based on

assumptions that the companion is less massive than the BH (Podsiadlowski et al.,

2003), which is inconsistent with present observations. Indeed, if we assume that

mass transfer onto a black hole is almost entirely non-conservative because of the

Eddington limit, the binary’s semi-major axis a evolves as

ȧ

a
= −2

Ṁopt

Mopt

[
1 −

(
γ +

1

2

)
Mopt

Mopt + MBH

]
, (6.1)

where γ is the specific angular momentum of the ejected material in units of the

binary’s specific orbital angular momentum J/(Mopt +MBH). The binary can widen

as a result of such mass transfer only if γ ≲ 1 for the observed component masses.

However, in the common assumption of isotropic re-emission from the accretor,

γ = Mopt/MBH ≈ 2. The ejected material would have to carry much lower specific

angular momentum in order for the binary to detach once Roche-lobe overflow from

the companion commences, which seems unlikely, lending support to our proposed

channel.

The estimated mass and lifetime of the companion already enable us to roughly

infer the initial mass of the BH progenitor. We assume that both stars are born and

start fusion at the same time and use a fit (Farr and Mandel, 2018) to the Brott

et al. (2011); Köhler et al. (2015) stellar models for the MS lifetime of non-rotating

massive stars. For this simple estimate, we ignore the impact of binary interactions,

consistent with the assumption of largely non-conservative mass transfer. The BH

progenitor should have had an initial mass of ∼ 55 – 75 M⊙ in order to complete its

evolution while leaving behind a MS companion of mass Mopt at ∼ 70% – 80% of

its MS lifetime.

The surface abundances of the companion are non-standard for massive MS stars
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and a challenge to explain even in the context of binary interaction. We discuss the

abundances in more detail in Section 6.5. Here, we focus on the iron abundance, as

this is key to the analysis of line-driven winds in the following section. Shimanskii

et al. (2012) find that the iron abundance of the companion is 2.2 times the solar iron

abundance, although precise measurements are challenging due to the complexity

of the system. Assuming Z⊙ = 0.014 for solar metallicity (Asplund et al., 2009),

this corresponds to an effective metallicity of Z ≈ 0.03. On the other hand, Daflon

et al. (2001) find a slightly sub-solar iron abundance of log ϵ(Fe) = 7.33 ± 0.12 in

HD 227460, which is a B0.5V star in the same Cygnus OB3 association as Cygnus

X-1. This could indicate that Z ≈ 0.01 is a better estimate of the initial iron

abundance, and the iron abundance of the companion in Cygnus X-1 has been

enhanced during the collapse of the primary to a BH. Therefore, we explore an

initial metallicity range 0.01 ≤ Z ≤ 0.03 in the following section.

6.3 Cygnus X-1: Maximum wind mass-loss rate

Hereafter we assume that, after the mass-transfer episode induced by the BH pro-

genitor, the primary is left with no hydrogen layer on top of the He core. This

assumption is consistent with the channel proposed by Qin et al. (2019), in which

the rapidly spinning BH is ultimately formed through the collapse of a Wolf-Rayet

star (see however discussion in Section 6.5).

In order for Cygnus X-1 to form through the channel depicted in Fig. 6.1, two

things must be true. Firstly, the HeMS star must be born with sufficient mass

to give rise to the observed BH mass even after losing mass through Wolf-Rayet

winds during the HeMS. However, at a given metallicity, there is a maximum to

the He core mass that can be formed at the end of the MS: as more massive stars

have higher wind mass-loss rates, terminal-age MS He core masses asymptotically

approach a maximum as a function of zero-age MS. This maximum He core mass is

plotted in figure 6.2. Because the BH progenitor is stripped of its hydrogen envelope

at the end of the MS for the binary evolutionary channel we assume, we can directly
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Figure 6.2: Maximum helium core mass at terminal-age MS as a function of metal-
licity, maximized over zero-age MS masses, based on the stellar tracks of Hurley
et al. (2000) as implemented in COMPAS (Stevenson et al., 2017; Vigna-Gómez et al.,
2018).

constrain the amount of mass loss during the HeMS phase. The Wolf-Rayet winds

must then not remove more than the difference between this maximum mass and

the final BH mass. We refer to this as the “MHeMS ≤ MHeMS,max” condition.

The maximum He core mass plotted in figure 6.2 is very sensitive to the MS

wind prescriptions (see discussion in Renzo et al. 2017; Neijssel et al. 2019; Miller-

Jones et al. 2021). The analysis of the remnant mass from massive single stars is

particularly sensitive to luminous blue variable winds (Belczynski et al., 2010; Miller-

Jones et al., 2021), which can remove the hydrogen envelope of the star and hasten

the onset of the Wolf-Rayet phase (Conti, 1975); therefore, increasing the potential

remnant mass can be achieved by decreasing either luminous blue variable winds

or Wolf-Rayet winds. The plot in figure 6.2 assumes the default COMPAS luminous-

blue-variable mass-loss rate of 1.5 × 10−4M⊙ yr−1 (Belczynski et al., 2010) for stars

approaching the Humphreys-Davidson limit (Humphreys and Davidson, 1994). The

convective overshooting parameter employed in stellar evolution calculations is an-

other source of uncertainty, with greater overshooting leading to larger cores (Brott

et al., 2011). To explore the impact of convective overshooting, we simulated the He

core mass at terminal-age MS for stars with different metallicities starting from a

zero-age MS mass of 150 M⊙ using the stellar evolution code MESA (v12115, Pax-

ton et al. 2011). We find that varying the overshooting parameter by an order of
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magnitude between f = 0.02 and f = 0.2 (Qin et al. 2019 used f = 0.11) with the

step overshoot scheme changes the He core mass at terminal-age MS by between 1%

and 13% for the range of metallicities in figure 6.2. Finally, the COMPAS single stellar

evolution models are based on the fitting formulae of Hurley et al. (2000) to the evo-

lutionary tracks of Pols et al. (1998) which involve extrapolations to higher masses

than those covered by the initial range of models, and may under-estimate the He

core masses of massive stars. We therefore use the following additional constraint,

which bypasses these sources of uncertainty in the maximum He core mass.

In our assumed channel the secondary MS companion must not overflow its Roche

lobe onto the HeMS primary. We write this constraint as (Eggleton, 1983)

R2(t) ≤ a(t)
0.49q2/3(t)

0.6q2/3(t) + ln(1 + q1/3(t))
, (6.2)

where m2(t) and R2(t) are the mass and radius of the companion as a function of

time, m1(t) the mass of the BH or its progenitor, q(t) = m2(t)
m1(t)

, is the mass ratio, and

a(t) the orbital separation of the binary.

The orbital separation widens due to wind mass loss. In the limit of fast, non-

interacting winds, the widening is described by

ȧ

a
= −

˙Mtot

Mtot

, (6.3)

where Mtot = m1 + m2 is the total mass of the system. Because winds widen the

binary and remove mass from the HeMS primary faster than from its MS companion,

they increase the size of the secondary’s Roche lobe over time. Thus, even though

the secondary is not overflowing its Roche lobe now, it may have done so in the

past if the mass-loss rate was high. If we evolve the system back in time, the

requirement that the secondary never overflows its Roche lobe imposes an alternative

upper limit (Axelsson et al., 2011) on the maximum Wolf-Rayet wind mass-loss rate.

We refer to this as the “no Roche-lobe overflow (RLOF)” condition. Although the

non-interacting wind assumption, describing the widening of the binary (Equation
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6.3), may be an over-simplification for such short-period systems (MacLeod and

Loeb, 2020), it allows us to conservatively estimate the constraints imposed by the

existence of Cygnus X-1 and presented below.

We parametrise the mass-loss rate through Wolf-Rayet winds, modelled with

the prescription proposed by Belczynski et al. (2010) and based on (Hamann et al.,

1995; Hamann and Koesterke, 1998; Belczynski et al., 2010), with a multiplicative

parameter fWR, following Barrett et al. (2018b) (see Appendix 6.A for a definition

and discussion). We constrain the allowed parameter space of the wind strength by

rewinding the evolution of the binary from the current state. Because the BH formed

recently in our model, we set the luminosity and temperature of the MS companion

at the end of the HeMS phase of the primary equal to the current inferred luminosity

and temperature of the observed MS secondary. The mass and age of the secondary

inferred from temperature and luminosity vary slightly for different metallicities. As

we argued earlier, the BH is expected to lose negligible mass during collapse, so we

set the mass of the HeMS primary at the end of that phase equal to the inferred BH

mass. We assume that the secondary was 99.7% Roche-lobe filling at the end of the

primary’s HeMS phase (Miller-Jones et al., 2021)1.

The reverse evolution of the MS and HeMS stars is followed using the analytic

fits to the stellar tracks of Pols et al. (1998) as presented in Hurley et al. (2000).

The winds of the MS star are given by Vink et al. (2001). The HeMS winds are

parametrised with the multiplicative factor fWR as described above and in Appendix

6.A. The orbital response to mass loss is given by Eq. (6.3). We go back in the

evolution for a HeMS lifetime (note that the HeMS lifetime depends on how massive

the HeMS star initially was, which depends on the wind strength we assume) and

check that the MHeMS ≤ MHeMS,max condition is satisfied at the start of the HeMS

1In Miller-Jones et al. (2021) the Roche-lobe filling factor is defined as the ratio between the
distance from the center of the star to the point where the equipotential surface enclosing the
volume of the star crosses the axis connecting the star to its BH companion, and the distance from
the center of the star to the L1 Lagrange point. In this paper, we define the Roche-lobe filling
factor as the ratio between the radius of the star and the volume-equivalent Roche-Lobe radius
of Eggleton (1983). We therefore convert the median and one-σ lower bounds of 0.96 and 0.93
reported in table 1 of Miller-Jones et al. (2021) to values of 0.997 and 0.99, respectively, that we
use here.
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phase and the no RLOF condition is satisfied throughout this phase.

Figure 6.3 shows the upper limits on the wind strength, parametrized as fWR,

imposed by these two conditions as a function of metallicity. Both conditions show

that the wind strength has to be reduced from the nominal value fWR = 1 throughout

the range of metallicities we have explored. The strongest constraint is placed by

the MHeMS ≤ MHeMS,max condition, which is subject to uncertainties in the MS wind

strengths, overshooting, and the single stellar evolution fits of Hurley et al. (2000).

This yields an upper limit fWR ≲ 0.4 at Z = 0.01 and ≲ 0.05 at Z = 0.03. However,

even if we lift this constraint, the no RLOF condition still places a strong constraint

on the allowed mass loss rate: fWR ≲ 0.45 at Z = 0.01 and ≲ 0.15 at Z = 0.03.

We also explore the impact of BH mass and Roche-lobe filling factor measurement

uncertainties and find that the constraints on fWR change by ≲ 0.1 over the range

consistent with observations (Miller-Jones et al., 2021).

6.4 Cygnus X-1: Future evolution

The revised mass of the companion star in Cygnus X-1 makes it a potential candidate

for a future BH and raises the intriguing prospect that this system could form a

merging binary BH, connecting HMXBs with gravitational-wave sources. We model

the future evolution of the system and find that it is unlikely to form a merging

binary BH.

Belczynski et al. (2011) used earlier, lower estimates of the mass of the BH and

companion in Cygnus X-1 in order to analyse the future evolution of this system.

They predicted that imminent mass transfer from the nearly Roche-lobe filling com-

panion will significantly reduce the companion mass, leaving behind a core that

could only form a neutron star, not a BH. They further estimated that the natal

kick has a 30% probability of unbinding the binary, and there was only a ∼ 1%

probability that the ensuing neutron star – black hole binary would merge within

14 Gyr through gravitational-wave emission.

Here we update their predictions based on revised observations, using the COMPAS
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Figure 6.3: Upper limits on the parametrised Wolf-Rayet wind mass-loss rate from
HeMS stars. The MHeMS ≤ MHeMS,max (purple) and no RLOF (teal) conditions only
allow fWR values below the curves at metallicity Z. The dashed curves correspond
to assuming MBH = 19.2M⊙ and the current companion Roche-filling factor of 0.990
rather than the default values of 21.2M⊙ and 0.997 (solid curves), and indicate the
impact of observational uncertainty.
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population-synthesis code (Stevenson et al., 2017; Vigna-Gómez et al., 2018) for

binary evolution calculations. We estimate the initial masses and orbital separation

as in Section 6.3. We assume a Roche lobe filling factor of 0.997 and a metallicity of

Z = 0.02. The median values for the BH mass and the luminosity and temperature

of the MS companion from Miller-Jones et al. (2021) then yield MBH = 21.2 M⊙,

Mopt = 38.9 M⊙, a = 51.3 R⊙, and τMS = 0.81, i.e., the MS companion is 81 per

cent through its core-hydrogen-burning phase by time. Once the MS companion

overflows its Roche lobe, the mass-transfer phase could brighten Cygnus X-1 up

to close to its Eddington luminosity of a few ×1039 erg s−1. Once the envelope is

removed, the companion will appear as a Wolf-Rayet (WR) star in an HMXB in a

phase lasting for ∼ 3 × 105 years. In the default model described below, we apply

WR mass loss with fWR = 1 to such a star.

If we follow a treatment similar to Belczynski et al. (2011), in which the He core

mass is determined by the mass of the star at the end of MS (after stripping in this

case), we find the companion will collapse into a neutron star. Even if the binary

survives the neutron star natal kick, which happens in 7% of all binaries in our

models, it will generally be too wide to merge through gravitational-wave emission,

with only a 0.12% probability that it will merge in 14 Gyr, similar to the findings

of Belczynski et al. (2011). During this time, it may be detectable in radio pulsar

surveys as a neutron-star – black-hole binary, although the non-recycled pulsar will

likely only be observable as a radio source for a few tens of Myr. However, this

treatment may significantly under-predict the core masses of stars that donated

mass on the MS.

In our revised model, we address the potentially under-estimated core mass of

stripped MS donors under the assumption that this core mass is determined only by

the mass of the star at the end of the MS. We account for the substantial amount

of helium synthesized by the companion before interaction with the following crude

approximation. We consider a constant rate of helium production during the MS,

so the mass of helium produced is MHe,MS = τMSMc,final, where Mc,final is the final
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helium core mass that would be achieved at the end of the MS phase for the given

stellar mass, in the absence of mass transfer. Keeping track of the helium mass

synthesized before stripping, MHe,MS, leads to higher core masses at the end of the

MS phase.

With this correction, we predict that in the absence of BH natal kicks, Cygnus X-

1 will become a bound binary BH, but one that is too wide to merge within 14 Gyr.

If we incorporate the COMPAS prescription for BH kicks based on the “delayed” model

of Fryer et al. (2012), this changes to a 38% probability of surviving the kick and

forming a bound binary BH, with a 4% probability that this binary will merge within

14 Gyr through gravitational-wave emission due to a fortuitous kick. However, the

kick prescription for low-mass black holes that do not undergo complete fallback

(Fryer et al., 2012) is rather uncertain, with conflicting evidence on the natal kick

magnitudes of low-mass BHs (Repetto et al., 2017; Mandel, 2016; Mirabel, 2017;

Wyrzykowski and Mandel, 2019; Atri et al., 2019).

We also consider the impact of varying WR mass loss. Motivated by the results

reported in figure 6.3 for Z = 0.02, we reduce fWR to 0.2 from the value of 1

considered above. This increases the remnant mass of the current optical companion

from ∼ 2.9 M⊙ to ∼ 5.7 M⊙, and the binary’s probability of remaining bound after

the supernova from 38% to 62%. With our adjusted prescription for the helium core

mass of the stripped companion and fWR = 0.2, Cygnus X-1 has a 5% probability

to merge within 14 Gyr as a binary BH.

We thus find that it is possible that a small fraction of HMXBs like Cygnus

X-1 could form merging binary BHs, although this conclusion is sensitive to the

treatment of mass transfer from MS donors in population-synthesis models and to

the natal kick distribution of relatively low-mass BHs. If systems like Cygnus X-1

do become progenitors of gravitational-wave events, this would impact the mod-

elled spin distribution of merging binary black holes, which predict that binary

black hole mergers most likely have low effective spins (Kushnir et al., 2016; Zal-

darriaga et al., 2018; Belczynski et al., 2017; Fuller and Ma, 2019; Bavera et al.,
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2020). Gravitational-wave observations could ultimately address this possibility by

resolving the spin distribution with more events (e.g., Farr et al., 2017). Meanwhile,

wide, non-merging binary BHs could potentially be observable through microlensing

(Eilbott et al., 2017).

6.5 Cygnus X-1: Caveats and conundrums

We show that the current properties of the Cygnus X-1 system imply a reduction in

Wolf-Rayet wind mass-loss rates for exposed HeMS stars. These results depend on

several key assumptions.

We assumed that the optical companion did not experience Roche lobe overflow

in its past. This assumption is consistent with the challenge of detaching from

mass transfer once it commences given that the companion has roughly twice the

mass of the BH, as explained in section 6.2.4. However, it is somewhat surprising

that several HMXBs with well measured properties – Cygnus X-1, LMC X-1 and

M33 X-7 – share not only a high BH spin, but also a similar evolutionary state.

Selection effects favour observing bright, long-lived systems, i.e., those with massive

main-sequence donors that are close to Roche lobe filling (enabling more efficient

accretion). There may also be an evolutionary stalling point, increasing the number

of systems in this phase.

The latter scenario could indicate that the systems do manage to detach and

resume mass transfer multiple times. While this would negate our wind mass-loss

rate conclusions, it would imply that much less angular momentum is carried away

during non-conservative mass transfer onto a BH than we expected. Assuming non-

conservative mass transfer (valid if accretion onto a BH is Eddington-limited) from

a donor that is twice as massive as the accretor, the specific angular momentum of

the material ejected from the binary in units of the binary’s specific orbital angular

momentum must be γ < 0.85 in order to avoid a decrease in the size of the Roche

lobe (see Eq. 6.1 for the change in orbital separation). For comparison, isotropic

re-emission from the BH corresponds to γ = 2. Conversely, if γ = 2, the companion
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could still disengage from mass transfer if its radius shrinks faster than the size of the

Roche lobe in response to mass loss. This would require the adiabatic logarithmic

derivative of radius with respect to mass to exceed ζ ≡ d logR/d logM > 1.54,

which may be possible for stars in the late phase of their MS evolution that have

already lost some mass.

It is also possible that the primary is not fully stripped during the mass transfer

episode, but retains about ∼ 0.1 M⊙ of its hydrogen envelope (e.g. Yoon et al.,

2010; Yoon, 2017; Bersten et al., 2014; Götberg et al., 2017, 2018; Laplace et al.,

2020). The changed surface abundance could lead to reduced mass-loss rates until

the remaining hydrogen is completely removed. However, it is not clear whether

retaining an envelope of a fraction of a solar mass could be sufficient to prevent

Wolf-Rayet-like winds. In any case, whether Wolf-Rayet wind mass-loss rates must

be lower than anticipated or whether stars that experience mass transfer in binaries

are only partially stripped, the impact on binary evolution is similar: there is less

mass loss than previously assumed. In fact, our Wolf-Rayet wind reduction factors

can be broadly interpreted as constraints on winds from stripped stars, whether they

are naked helium stars or retain a small hydrogen-rich envelope.

Naked helium cores can expand significantly in the last stages of their lives,

potentially leading to another mass-transfer episode from the BH progenitor late in

the evolution. However, the degree of expansion is very mild for stars with initial

masses ≳ 20 M⊙ at near-solar metallicities (Yoon et al., 2010; Hirai, 2017; Laplace

et al., 2020), so Cygnus X-1 is unlikely to have experienced such a mass-transfer

episode.

As a consequence of its mass-accretion history, the secondary may be over-

luminous relative to single stars of the same total mass (Dray and Tout, 2007, but

see Hellings 1983, who concludes that they MS accretors quickly return to single-

star models, and Braun and Langer 1995, who reach the opposite conclusion and

find that accretors are under-luminous). Since we use single star evolutionary tracks

to estimate the properties of the secondary star, this can affect our wind constraint
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from the no-RLOF condition. However, since we choose a stellar model that matches

the observed radius of the secondary at the present day, we do not anticipate the

impact to be significant.

Finally, as figure 6.3 shows, the level of reduction in the winds is sensitive to the

assumed metallicity of Cygnus X-1. We now discuss this in more detail.

Shimanskii et al. (2012) report that helium, carbon, oxygen, aluminium, sulfur

and iron are overabundant by [X/H]= 0.23–0.43 dex compared to the solar values

(Anders and Grevesse, 1989). Nitrogen, neon, and silicon have an even higher over-

abundance of [X/H]=0.69–0.94 dex. These values appear robust against variations

due to orbital motion and Roche-lobe filling factors, although some hydrogen and

helium lines are sensitive to variations in the wind (Shimanskii et al., 2012). As

mentioned above, the observations of Shimanskii et al. (2012) suggest that the sys-

tem formed at initial metallicity of Z ≈ 0.03, although this differs from the inferred

metallicity of Z ≈ 0.01 based on observations of HD 227460 by Daflon et al. (2001).

Previous accretion from the BH progenitor could significantly alter the chemical

profile on the surface of the companion. For example, the detailed models of Qin

et al. (2019) predict the observed enhancement of companion nitrogen abundances

as a consequence of late main-sequence mass transfer from the BH progenitor. In

addition to direct accretion, which is expected to enhance helium and nitrogen abun-

dances, the deposited angular momentum can lead to a dramatic spin-up of the MS

star (e.g. Packet, 1981), although spin-up to near break-up frequencies may suppress

subsequent accretion. The surface could then be enhanced by helium and CNO-

elements due to rotational mixing (Meynet and Maeder, 2000; Heger and Langer,

2000; Przybilla et al., 2010). The rotational mixing might also make the star over-

luminous compared to a non-rotating model (Langer, 1992). The optical companion

is observed to be tidally locked at present, with an inferred ratio of the rotational to

orbital frequency of 1.05 ± 0.10 Miller-Jones et al. (2021). Assuming a present-day

rotational period of 5.6 days, the rotational frequency is a third of the Keplerian

(break-up) frequency at the stellar equator. Alternatively, as discussed above and
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contrary to the channel assumed in this work, the MS companion may have been

partially stripped by mass transfer onto the BH or its progenitor after the initial

mass transfer phase from the primary, revealing deeper layers of the star.

Although these mechanisms could be responsible for the overabundance of some

of the elements, they have difficulty in explaining the overabundance of late stage

burning elements such as silicon and iron. This implies that these elements were

primordially enhanced or were deposited from the progenitor of the BH in the final

stages of its evolution.

High primordial abundances imply that both stars in the binary had a high

metallicity at birth, which therefore requires a very strong reduction in the mass-

loss rate (a factor of ∼ 10) following the constraints described in section 6.3. On

the other hand, a weak explosion induced by the collapse of the core can lead to an

ejection of a small fraction of the outer part of the envelope at very low velocities.

Because most of the envelope is assumed to fall back into the BH, the ejected

material will be barely above the escape velocity, and could be efficiently accreted

by the companion in a RLOF-like manner. If the heavy elements synthesized at the

centre are efficiently mixed up to the outer regions before the inner slower material

starts falling back, these elements can accrete onto the surface of the secondary.

Such efficient mixing of heavy elements has been observed in supernovae such as

SN1987A and Cassiopeia A (e.g. Utrobin et al., 1995; Fesen et al., 2006), and has

been reproduced in 3D supernova explosion simulations (e.g. Hammer et al., 2010;

Wongwathanarat et al., 2015, 2017), while Liu et al. (2015); Hirai et al. (2018)

explore the contamination of a MS companion by supernova ejecta. However, it is

not clear whether similar degrees of mixing can be induced in failed supernovae that

form BHs rather than neutron stars, and the abundance pattern of the Cygnus X-1

companion merits further investigation.

Regardless of whether we assume that the observed companion metallicity of

Z = 0.03 (Shimanskii et al., 2012) is primordial, or use the lower metallicity of

Z = 0.01 based on HD 227460 (Daflon et al., 2001), we conclude that the observed
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properties of Cygnus X-1 require a reduction in Wolf-Rayet winds to ∼ 5–40% of

their previously assumed values in the context of our assumed evolutionary channel.

Recent theoretical modelling of mass loss from stripped stars (Vink, 2017; Sander

et al., 2020; Sander and Vink, 2020) points to reduced mass-loss rates compared

to earlier literature. Moreover, these models suggest a steep dependence on the

Eddington factor, which can change significantly during the lifetime of the stripped

star. This indicates that extrapolating the empirical Wolf-Rayet mass-loss rates to

the entire duration of the stripped star life is misleading. Our results are qualitatively

consistent with these findings. The reduced mass-loss rates could also be attributed

to strong wind clumping, which is expected to occur in line-driven winds due to

radiative instabilities (Owocki et al., 1988; Sundqvist et al., 2018). Clumping of

winds has been indirectly observed for massive MS stars in X-ray binaries (El Mellah

et al., 2018; Lomaeva et al., 2020) and stripped stars may also experience high

degrees of clumping.

We further find that HMXBs like Cygnus X-1 form through a different evolu-

tionary channel than the bulk of merging binary black holes (see, e.g., Mandel and

Farmer, 2018, for a review). However, a fortuitous natal kick accompanying the

birth of the secondary BH could lead Cygnus X-1 to merge as a BH binary within

14 Gyr. Gravitational-wave observations may be able to constrain the contribution

of this channel to the formation of merging binary BHs through spin measurements.
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6.A Wind mass-loss rate for stripped stars

In this appendix, we describe the particular parametrized formalism we used to

model wind-driven mass loss from stripped stars. While more recent theoretical

models are available (e.g., Vink, 2017; Sander et al., 2020), this provides us with a

convenient framework for investigating the empirical constraints placed by Cygnus

X-1.

Hamann et al. (1995) formulated a prescription for the wind mass-loss rate for

stripped or Wolf-Rayet stars as a function of the mass and luminosity of the stripped

star. Hamann and Koesterke (1998) expanded on this work by reducing winds by a

factor of
√
D where D is the wind clumping factor (Moffat et al., 1988; Nugis et al.,

1998). Vink and de Koter (2005) further introduced a metallicity dependence to the

winds. Combining the effects of clumping and metallicity leads to the prescription

(dM/dt)WR =
1√
D

10−11.95 L

L⊙

1.5

︸ ︷︷ ︸
1

Z

Z⊙

0.86

︸ ︷︷ ︸
2

M⊙ yr−1, (6.4)

where term 1 is the result of Hamann et al. (1995); Hamann and Koesterke (1998)

and term 2 is from Vink and de Koter (2005). Setting D = 100, i.e., reducing wind

mass-loss rates by a factor of 10, recovers Eq.(9) of Belczynski et al. (2010) and is

consistent with the winds of Yoon et al. (2010).

We follow Barrett et al. (2018b) in scaling the prescription of Belczynski et al.

(2010) by a multiplicative factor fWR in order to parametrise the uncertainty in the

wind mass-loss rates:

(dM/dt)WR = fWR × 10−13 L

L⊙

1.5 Z

Z⊙

0.86

M⊙ yr−1. (6.5)

Note that this is not the same fWR as used in Yoon et al. (2010) because ours already

assumes a reduction of the original wind prescription of Hamann et al. (1995). The

default assumption of fWR = 1 corresponds to the default models of Belczynski et al.

(2010); Yoon et al. (2010); Stevenson et al. (2017); Qin et al. (2019).
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It is challenging to interpret our constraints on fWR in terms of a wind clumping

factor D. A direct interpretation of fWR = 0.2 would imply a clumping factor of D =

2500 in the model of Eq. (6.4). Nugis et al. (1998); Nugis and Lamers (2000) used a

clumping factor ranging from 10 to 30; D could be as high as 16 according to Hamann

and Koesterke (1998). More recent theoretical models by Sander et al. (2017) use

depth-dependent clumping factors and suggest a maximum value at infinity of D∞ =

10 to be consistent with observations of electron-scattering wings. In later works

however, Sander et al. (2020) and Sander and Vink (2020) propose 50 as a maximum

upper limit for D∞, by comparison with previous theoretical works (Gräfener and

Hamann, 2005) and O/B star analyses (e.g. Bouret et al., 2012; Mahy et al., 2015).

A clumping factor of 2500 seems extra-ordinary compared to previous models. As

mentioned in the Section 6.5, additional constraints on the clumpiness of stellar

winds from massive stars can be obtained from X-ray binaries (e.g. Lomaeva et al.,

2020; El Mellah et al., 2018; Grinberg et al., 2017).

In light of the above, our reduction of fWR is probably best interpreted as an

overall constraint on mass loss from massive stripped stars (Vink, 2017), perhaps

indicating a different dependence on metallicity or luminosity (cf. Sander et al., 2020;

Sander and Vink, 2020), rather than a specific change in the clumping.

6.B Cygnus X-1 : Constraints on wind mass-loss rates

assuming single stellar evolution

The BH-mass in of Cygnus X-1 can be used to constrain the wind mass-loss rates

of massive stars using a set of assumptions. The main assumptions are; i) the rem-

nant mass is solely determined by single stellar evolution; ii) our stellar evolutionary

tracks are correct (Pols et al., 1998; Hurley et al., 2000); iii) the BH-mass is the max-

imum possible mass at the observed metallicity; iv) our remnant mass prescription

is correct (Fryer et al., 2012).

We use the COMPAS population-synthesis code (Stevenson et al., 2017) to evolve
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a population of single stars based on the analytic fits of Hurley et al. (2000). For

the remnant mass distribution we adopt the “delayed” prescription by Fryer et al.

(2012), although at high initial stellar masses there is no difference with the “rapid”

mechanism of Fryer et al. (2012). Given the aim and the similarity of our prescrip-

tions we are reproducing/updating the work done in Belczynski et al. (2010), on

which our current wind mass-loss prescriptions are based.

For stars above ≈40 M⊙ the most dominant wind mass-loss rates are the luminous

blue variable (LBV)-winds and the WR-winds. The wind mass-loss rates are defined

as (Belczynski et al., 2010):

(dM/dt)LBV = fLBV × 10−4 M⊙ yr−1 (6.6)

and

(dM/dt)WR = fWR × 10−13L1.5 Z

Z⊙

0.86

M⊙ yr−1. (6.7)

Belczynski et al. (2010) show that both a change in fLBV or WR-wind pre-

scription (using a reduced mass-loss rate (dM/dt)WR by Nugis and Lamers (2000))

can increase the BH mass. Instead of changing between different prescriptions for

(dM/dt)WR we opt to scale our prescription by fLBV. Using this we run a two-

dimensional grid of single stars to look at the combined parameter-space of fLBV

and fWR and the resulting remnant masses (see Fig. 6.4). We do this for a star with

a zero-age main sequence (ZAMS) mass of 150 M⊙. We corroborate the findings of

Belczynski et al. (2010) and show the degenerate parameter space of fLBV and fWR

that can reproduce a BH mass of 20.32+2.36
−2.41 M⊙.

6.B.1 Uncertainties in fWR and fLBV

Figure 6.4 takes an agnostic approach to the uncertainty in wind mass-loss rates. As

mentioned by Belczynski et al. (2010), the uncertainty in the LBV winds on which

these prescriptions are based (Vink and de Koter, 2002) span an order of a magnitude
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Figure 6.4: The remnant mass of a star born with M = 150 M⊙ given a combination
of fLBV and fWR. The solid and dashed line shows the BH-mass and its upper and
lower limits of 20.32+2.36

−2.41M⊙ as estimated by Miller-Jones et al. (2021). The star is
our default assumption. The triangles show the combinations of fLBV or
fWR (changing one parameter at a time relative to the default) which recover the
observed BH mass.
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(10−5 − 10−4M⊙ yr−1), where our default values are close to the upper limit. The

WR-winds are partially based on the work by Hamann and Koesterke (1998), which

includes the effects of clumping in the WR-winds. However the determination of,

for example, the clump density enhancement, D, depends on the type of WR-star

and is easily changed using other modeling parameters (Hamann and Koesterke,

1998). Our prescription is based on a clumping factor D = 4, but could be as

high as 10 (Hamann and Koesterke, 1998; Crowther, 2007). This would drop the

empirical established mass-loss rates by an additional factor
√

(10)/
√

(4) = 1.5

compared to our current values (Hamann and Koesterke, 1998). Hence our estimates

for fLBV and fWR (see the triangles in Fig. 6.4) are still roughly consistent within

the uncertainties of the prescription on which they are based and the same holds

true for the degenerate parameter space between the triangles.

6.B.2 Effect on the entire remnant mass distribution

Even though fLBV and fWR can have a similar effect on the maximum BH mass for

single stars, their effect on the entire remnant mass distribution differs. Figure 6.5

shows the remnant mass as a function of ZAMS mass for our default model and two

variations (the triangles in Fig. 6.4). LBV-winds increases the maximum mass of the

most massive stars (M ≳ 50 M⊙). Self-stripping through wind mass loss happens

already at lower masses and the effect of lowering the WR-winds affects stars as low

as 30 M⊙. Therefore lowering the WR-winds might be more efficient in increasing

the average BH mass at high metallicities. At lower metallicities the effects of winds

are reduced. The WR-winds depends on metallicity whereas the LBV-wind does

not (see eqs. 6.6 and 6.7). The WR-winds are reduced more and the LBV-winds are

more efficient in increasing the BH mass for all stars.
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Figure 6.5: The remnant mass as a function of ZAMS mass for our default and
two triangles in Fig. 6.4. The solid/dashed lines are for Z = 0.02 and Z = 0.002
respectively. The numbers indicates various masses from which the wind mass-loss
prescriptions start to contribute. 1: Single stars are massive enough to ‘self-strip’
their envelopes through wind mass-loss becoming stripped stars with WR-winds.
2:Stars are massive enough to reach the Humphrey-Davidson post-MS. 3:Stars are
massive enough to reach the Humphrey-Davidson during the MS limiting the max-
imum post-MS mass.

6.B.3 Additional variations

“LBV” winds on the MS

The flattening of the remnant mass spectrum at high initial masses is due to our

application of LBV-winds on the MS (see Neijssel et al. (2019)). Their effect on

the stellar cores is possibly artificial. Given the remnant mass distributions of Bel-

czynski et al. (2010, 2019) we suspect they have a similar implementation. Without

LBV-winds on the MS we have a continuous increase of remnant masses and could

form BHs similar to Cygnus X-1 even at our current settings. For a more de-

tailed investigation into LBV-winds and remnant masses see Giacobbo et al. (2018).

At lower metallicities the remnant masses, in the absence of LBV-winds, are then

quickly limited by (pulsational-)pair-instability-supernova (for our implementation

see Stevenson et al. (2019)).
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Figure 6.6: The remnant mass as a function of ZAMS mass for our default and
different alternative variations. The solid/dashed lines are for Z = 0.02 and Z =
0.002 respectively. The turn-over for low metallicities is due to pulsational-pair-
instability supernova which shed an increasing amount of mass at higher masses.

6.B.3.1 “Vink” winds

In principle one could also reduce all the wind mass-loss contributions including the

MS-winds for hot stars by Vink and de Koter (2002). Belczynski et al. (2019) show

the overall effect of reducing the combined winds in an attempt to recover a BH-

mass of 70 M⊙. If we set the wind mass-loss rates of the MS winds from Vink and

de Koter (2002) to zero, while keeping fLBV = 1.5 and fWR = 1, we can only raise

the final BH-mass of a 150 M⊙ star to ∼ 18 M⊙. Therefore, an increase in remnant

masses by reducing the combined winds is mostly due to fWR and fLBV and therefore

LBV winds and WR winds remain the only winds we take into consideration.

6.B.4 Constraints on winds from single stellar evolution

We corroborate the findings on the effects of winds on remnant mass distributions

such as presented in Belczynski et al. (2010); Giacobbo et al. (2018). We high-

light that, within our models, the observed BH mass of Cygnus X-1 pushes for a

reduction in winds. Both a lowering in Wolf-Rayet and the LBV winds can signifi-

cantly increase our remnant masses at high metallicities, but they span a degenerate
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parameter space. Furthermore, the findings are dependent on implementations espe-

cially those of the LBV-winds. Each choice of wind models at high metallicities has

a distinct effect on the remnant mass distribution. These choices could propogate

into remnant masses at lower metallicities and significantly affect predictions for

gravitational-wave events for current and future detectors.
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Summary and Conclusion

In this dissertation we investigated the rates and property distributions of black hole

binaries which merge within a Hubble time and are formed through isolated binary

evolution. The rapid population-synthesis code COMPAS was used to simulate the

evolution of large populations of massive stellar binaries under various assumptions.

The general goal was to assess the impact of various uncertainties in the physics

of massive stellar binaries on the rates and properties of double compact object

(DCO) mergers and determine whether detections of gravitational waves, coming

from merging DCO can provide significant constraints on the poorly constrained

binary-star physics. What follows is a brief summary to the research presented

in this dissertation. I end the dissertation with a personal view on the future of

population synthesis.

Gravitational-wave mergers that are detected today could have originated from

the very early universe. The results of chapter 4 show that the uncertainty in

the metallicity-specific star formation rate over cosmological timescales affect our

estimates on the rates and mass distributions DCO mergers. Rates vary by an or-

der of magnitude between different model assumptions and even commonly used

assumptions for the solar metallicity affect the rate by a factor ∼ 3. These uncer-

tainties are of similar levels as those from binary-star physics such as natal kicks and

common-envelop evolution (see amongs others Marassi et al., 2011; Dominik et al.,

2012; Eldridge and Stanway, 2016; Kruckow et al., 2018; Chruslinska et al., 2018;
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Vigna-Gómez et al., 2018). Therefore, to constrain binary-star physics one should

simultaneously constrain the metallicity-specific star formation rate.

In order to aid future studies, a scaleable model for the metallicity-specific star

formation rate is presented. This prescription is able to recover the various dis-

tinct models considered in chapter 4. Such a model might help future Bayesian

approaches (similar to Barrett et al., 2017) to simultaneously constrain model pa-

rameters governing uncertainties in binary-star physics and metallicity-specific star

formation rates.

In chapter 5 we discussed the impact of different prescriptions of the adiabatic

response of stars to mass loss on rates of DCO mergers. Detailed stellar models

(such as Ge et al., 2015; Pavlovskii et al., 2017) suggest that post-main sequence

(MS) stars, with radiative envelopes, respond quicker to mass loss than previously

expected. This increases the dynamical stability of mass transfer. The results of

chapter 5 indicate that an increased dynamical stability of mass transfer started by

post-MS stars, assuming the results of Ge et al. (2015), increases the merger rate of

binary black holes by a factor of 3–4 (at a metallicity of Z = 0.0045). Furthermore,

these merging binary black holes no longer experience a common-envelope evolution,

which is a significant shift from the commonly assumed formation channel. However,

the results presented in chapter 5 are only tentative. Larger simulations, including a

wider range of metallicities, are needed. Furthermore, we only considered common

envelopes due to dynamically-unstable mass transfer from the donor. A critical

assessment needs to be done into common envelopes that come from contact binaries.

In chapter 6 the evolution of the X-ray binary Cygnus X-1 was discussed. Obser-

vations by Miller-Jones et al. (2021) estimate that the mass of the black hole (BH)

in Cygnus X-1 is 21.2 M⊙, which is about 6 M⊙ more massive than previously as-

sumed. Previously the mass of the BH was used to constrain wind mass-loss rates

from Wolf-Rayet stars (Belczynski et al., 2010). Based on the formation channel by

Qin et al. (2019), which could explain the high spin of the BH, we find that the

Wolf-Rayet winds have to be reduced by a factor of 10 compared to Belczynski et al.
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(2010), assuming the system formed at Z = 0.02. However, prior binary interac-

tions could have resulted in a misinterpretation of the mass and metallicity of the

companion and it remains uncertain if the formation channel adopted in chapter 6

is correct. This system will remain an interesting object for theorists, given the

various peculiar properties of Cygnus X-1 such as the BH mass, the abundances of

the companion and the tight orbital reparation. The future evolution of Cygnus

X-1 is also explored. The MS companion will start an episode of mass transfer onto

the BH. The system has a low probability of forming a binary black hole merger.

However, the estimates critically depend on the way in which mass transfer from

massive main-sequence donors is treated.

Altogether this dissertation shows that uncertainties in almost every aspect of

binary-star physics, including the initial distributions, vary the rate estimates of

DCOs mergers by a factor of few or a lot more. It is unlikely that solely the detections

of DCOs mergers through gravitational-waves will provide strong constraints on

binary-star physics. However, it is certain that they add another interesting piece

to the complex puzzle.

Personal view of the future

Rapid population-synthesis codes still offer a powerful platform to highlight areas

of uncertainties in binary-star physics. Although some assumptions are simplistic,

they provide an intuitive feel to the physics involved in massive stellar binaries. The

simplistic analytic fits in population-synthesis codes could provide novel ways to

backwards model systems without too many simplifying assumptions on the stellar

physics, something which is currently substantially harder for detailed stellar evo-

lution codes. Furthermore, the models remain relevant due to researchers making

an extra effort to provide simple analytic recipes that approximate the results of

their detailed models such as fits for the binding energies of the envelope (Xu and

Li, 2010b; Loveridge et al., 2011), the adiabatic response of stars to mass loss (Ge

et al., 2015) and temperature thresholds for convective envelopes (Klencki et al.,
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2020).

At the same time care must be taken. There is a clear scientific bias towards

innovation and implementation of new physics to explain recent observations. Such

a bias is understandable since such theories and observations are directly challenging

our understanding. Inspired by the results of population-synthesis codes, a lot of

effort has gone into understanding the evolution of giants and stripped helium stars

or peculiar supernova types. However, codes, like COMPAS, that rely on the stellar

fits of Hurley et al. (2000) and Hurley et al. (2002) are already extrapolating beyond

the range of the original stellar models by Pols et al. (1998). In chapter 4 and

chapter 6 we show how the analytic fits of single stars without a distinct core, create

possibly artificial results for mass-transferring systems. This could affect science

cases such as, the maximum possible mass of black-holes, the formation of tight

high-mass X-ray binaries and the formation of neutron star - black hole binaries.

More effort must go into quantifying the impact of these features on previous results

given the number of rapid population-synthesis codes that use similar stellar models.

Solutions are being developed, with hybrid pipelines such as METISSE (Agrawal et al.,

2020) enabling the rapid population-synthesis codes to implement new single stellar

models based on detailed calculations.

In summary, I provide no fundamental proof for the physics involved with the

evolution of massive stars in binary systems. However, I hope that my efforts helped

in creating interesting methods and ideas for future studies.
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A., Langer, N., Tramper, F., Gräfener, G., Evans, C. J., Vink, J. S., Dufton, P. L.,
and Taylor, W. D. (2015). The VLT-FLAMES Tarantula Survey. XXI. Stellar spin
rates of O-type spectroscopic binaries. A&A, 580:A92.

Ramı́rez-Agudelo, O. H., Simón-Dı́az, S., Sana, H., de Koter, A., Sab́ın-Sanjuĺıan,
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R. C., Arias, J. I., and Alfaro, E. J. (2014). The Galactic O-Star Spectroscopic
Survey (GOSSS). II. Bright Southern Stars. ApJS, 211:10.

Spera, M. and Mapelli, M. (2017). Very massive stars, pair-instability supernovae
and intermediate-mass black holes with the sevn code. MNRAS, 470:4739–4749.

Spera, M., Mapelli, M., and Bressan, A. (2015). The mass spectrum of compact
remnants from the PARSEC stellar evolution tracks. MNRAS, 451(4):4086–4103.

Spera, M., Mapelli, M., Giacobbo, N., Trani, A. A., Bressan, A., and Costa, G.
(2019). Merging black hole binaries with the SEVN code. MNRAS, 485(1):889–
907.

Spruit, H. C. (2002). Dynamo action by differential rotation in a stably stratified
stellar interior. A&A, 381:923–932.

Stancliffe, R. J. (2006). Does simultaneous solution matter for stellar evolution
codes? MNRAS, 370(4):1817–1822.

Stanway, E. R., Eldridge, J. J., and Becker, G. D. (2016). Stellar population effects
on the inferred photon density at reionization. MNRAS, 456:485–499.

Stella, L. and Vietri, M. (1998). Lense-Thirring Precession and Quasi-periodic Os-
cillations in Low-Mass X-Ray Binaries. ApJ, 492(1):L59–L62.

Stevenson, S., Sampson, M., Powell, J., Vigna-Gómez, A., Neijssel, C. J., Szécsi, D.,
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