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A B S T R A C T   

In this study, seven different types of regression-based predictive modelling techniques are used to predict the 
product gas composition (H2, CO, CO2, CH4) and gas yield (GY) during the gasification of biomass in a fluidised 
bed reactor. The performance of different regression-based models is compared with the gradient boosting model 
(GB) to show the relative merits and demerits of the technique. Additionally, SHapley Additive exPlanations 
(SHAP)-based explainable artificial intelligence (XAI) method was utilised to explain individual predictions. This 
study demonstrates that the prediction performance of the GB algorithm was the best among other regression- 
based models i.e. Linear Regression (LR), Multilayer perception (MLP), Ridge Regression (RR), Least-angle 
regression (LARS), Random Forest (RF) and Bagging (BAG). It was found that at learning rate (lr) 0.01 and 
number of boosting stages (est) 1000 yielded the best result with an average root mean squared error (RMSE) of 
0.0597 for all outputs. The outcome of this study indicates that XAI-based methodology can be used as a viable 
alternative modelling paradigm in predicting the performance of a fluidised bed gasifier for an informed 
decision-making process.   

1. Introduction 

Optimising the production of clean, economically affordable energy 
and water with minimum impact on the environment is posing the most 
significant challenge of the 21st century [1]. A rapidly growing world 
population led to a substantial rise in energy demand. According to the 
International Energy Outlook report, globally the marketable energy 
consumption will increase by 48% between 2012 and 2040 [2]. As an 
alternative to depleting fossil fuel reserves, researchers have been 
attracted to explore clean and renewable energy resources. In this re-
gard, energy recovery from biomass and waste is important for both 
developing and developed countries. Biomass has become an attractive 
source of energy because it not only reduces carbon and greenhouse gas 
(GHG) emissions to the environment but also improves the air quality 
[3]. 

Biomass originates from a range of different sources in a wide variety 
of forms from untreated biomass (straw, peel kernels, husk etc.), treated 
biomass (wood pellets, olive pruning, softwood pellets etc.) to cultivated 
energy crops, residues and waste-derived fuels (animal manures, dry 
sewage sludge, municipal solid waste etc.). Lignocellulosic biomass is 

now considered as a realistic renewable energy source with unique ad-
vantages, for instance, low sulphur content, high volatile matter and 
oxygen content, and is ideally emitting a net-zero carbon into the at-
mosphere [4]. 

Thermochemical processes such as combustion, gasification and 
pyrolysis are widely used for energy recovery from dry lignocellulosic 
biomass [5]. To convert biomass into bioenergy, gasification is emerged 
as an alternative to traditional combustion technology, offering distinct 
advantages such as higher energy efficiency, lower emissions of partic-
ulate matter, NOx and SOx while being compliant with emission stan-
dards [6]. In addition, the gasification process can generate electricity 
from the waste with an efficiency of 34% compared to the incineration 
process, which has thermal efficiency of around 20% [5]. Gasification 
provides flexibility to produce heat and power based on a clean biomass- 
derived product gas or synthesis gas. The product gas is a combination of 
different gases that evolved during the gasification process, which in-
volves several chemical reactions. The product gases, after being 
cleaned and filtered, can be used in a variety of applications ranging 
from internal combustion-based electric generators to combustion for 
thermal applications or synthesis of chemicals. Furthermore, the by- 
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product from the gasifier can be used in the construction industry or in 
power plants as a supplementary fuel or as a component material for 
fertiliser [7–9]. 

Gasification has been identified as a highly efficient thermochemical 
conversion process but due to its complex nature, this technology is yet 
to be deployed at an industrial scale. To understand the complexity and 
optimal operation condition, it is essential to conduct time-consuming 
and costly large-scale gasification experiments. Therefore, mathemat-
ical modelling techniques can be a viable option, which could save both 
time and money [10]. The advanced machine learning algorithm-based 
models require fewer system-level details compared to equilibrium, 
fluid dynamic- or kinetic-based models. ANN-based machine learning 
techniques have extensively been utilised to predict the product gas 
compositions, gas yield and the calorific value in gasification processes. 
Guo et al. developed ANN-based models to predict the product gas yield 
and gas composition in an atmospheric steam-blown biomass fluidised 
bed gasifier and proposed that the multilayer feed-forward neural 
network outperformed traditional regression models [11]. The ANN- 
based model was used in the feasibility study of the municipal solid 
waste gasification process [12]. Chavan et al. proposed two different 
types of ANN-based data-driven models in order to predict the gas 
heating value and the gas production rate from a fluidised bed coal 
gasifier operating in a steady state condition [13]. Similarly, an ANN- 
based algorithm was used in bubbling and circulating fluidised bed 
gasifiers to estimate the major product gas compositions (CO, CO2, H2 
and CH4) and the total gas yield [14]. Pandey et al. predicted the lower 
heating value of the gas and products and gas yield originating from a 
fluidised bed municipal solid waste gasifier and proposed a robust 
approach to optimised the network [15]. ANN-based models have also 
been used in a downdraft fixed bed gasifier to predict gas composition 
[16]. Machine learning-based regression models have been developed 
for predicting gas composition and higher heating value. The authors 
have claimed that the multilayer perceptron and decision tree regression 
models had comparatively improved outcome compared to polynomial 
regression and support vector regression [17]. Shahbaz et al. illustrated 
an ANN-model to study the performance of fixed bed steam gasification 
of palm oil waste using steam to biomass ratio (SBR), temperature, Coal 
bottom ash and CaO/biomass [18]. Recently, an attempt was made to 
predict the effect of bed materials in bubbling fluidised bed gasification 
using an ANN-based algorithm [19]. Serrano et al. have also presented 
an ANN-based algorithm for estimation tar from a bubbling fluidised bed 
gasifier [20]. Yan et al. applied ANN-based machine learning algorithms 
to estimate the performance of heterogeneous, multi-component mate-
rials as oxygen carriers for chemical-looping processes [21]. 

Despite the distinctive advantages and the proven prediction capa-
bility of advanced machine learning techniques, so far mostly ANN- 
based models have been used. In the recent past, attempts have been 
made to derive analytical regression models using genetic programming 
algorithm and exploiting fuzzy optimisation for a sustainable palm oil- 
based integrated biorefinery and Bayesian method to quantify the un-
certainty in data-driven modelling approached pertaining to the gasifi-
cation process [10,22–24]. The gradient boosting method was applied to 
predict the gas yields from the supercritical water gasification process 
and features were interpreted by the SHapley Additive exPlanations 
(SHAP) value [25]. However, there have been very few cases of devel-
oping explainable artificial intelligence (XAI) models with subsequent 
validation using experimental results and identifying the key influ-
encing parameters of the gasifier performance reported. The present 
study is focused on exploiting a range of machine learning models such 
as linear regression, multilayer perception, ridge regression, least angle 
regressions, random forest, bagging and gradient boosting methods to 
predict the product gas composition and the total product gas yield. 
Additionally, SHAP-based XAI method has been utilised to explain in-
dividual predictions as well as identify the key influencing parameter. 
To the best of the author’s knowledge, this work is the first of its kind 
where a gradient-boosting tree-based model has been used under 

multiple-input and single-output (MISO) settings in a gasification system 
with XAI. The key objective of this research is to develop and propose 
data-driven mathematical models, which can be used to simulate the 
gasification process with model explainability and improved accuracy. 
In addition, the proposed model can be useful in identifying, which 
input parameter has the maximum influence on product gas composition 
and gas yield, and as a result, it could help to optimise the performance 
of the gasifier. 

2. Material and methods 

2.1. Material 

Fig. 1 shows the input and output variables used in this study. Nine 
input variables: carbon (C), hydrogen (H), oxygen (O), moisture (MC) 
and ash (Ash) contents for the biomass, and the process parameters such 
as equivalence ratio (ER), reactor temperature (T), bed material (BM), 
steam to biomass mass ratio (SBR). These variables are represented by 
the input vector x̂ = [C, H, O, MC, Ash, ER, T, BM, SBR]. The input data 
for the models were chosen based on the biomass properties (C, H, O, MC 
and ash content) and the process conditions of the gasifier (T, ER and 
SBR). ER is defined as the ratio between the actual air fed to the gasifier 
and the necessary amount of air required for stoichiometric combustion 
of the biomass [10]. The output variables hydrogen (H2), carbon mon-
oxide (CO), carbon dioxide (CO2), methane (CH4) and gas yield (GY) are 
represented by the output vector ŷ = [H2, CO, CO2, CH4, GY]. A total of 
222 experimental observations from fluidised bed gasifiers were used in 
this study. 

The dataset used in this study were collected from literature and 
were all from fluidised bed gasifiers operating at steady state condition. 
Therefore, the application of the proposed models are limited to flui-
dised bed reactor systems. The experiments were performed at different 
temperature (650 ≤ T ≤ 1050 ◦C) and equivalence ratio (0.15 ≤ ER ≤
0.49). The input and output variables are in different units, and the 
mean and standard deviation of values are not in the same order in a 
numeric sense. Since input and output parameters are not in the same 
numeric range and can have numerical issues while fitting such kind of 
dataset in data-driven modelling approaches. To encounter the numer-
ical issues, the dataset was normalised and then the normalised dataset 
is used for training and testing purposes. The dataset was divided into 
training and testing sets: 70% data were used to train the model and 30% 

Fig. 1. Multiple Input and Single Output (MISO) systems and Data descriptor: 
input variables x̂ =[C, H, O, MC, Ash, ER, T, BM, SBR] and output variables ŷ =

[H2, CO, CO2, CH4, GY], where carbon (C), hydrogen (H), oxygen (O), moisture 
(MC) and ash (Ash) contents for the biomass, and the process parameters such 
as equivalence ratio (ER), reactor temperature (T), bed material (BM), steam to 
biomass mass ratio (SBR), hydrogen (H2), carbon monoxide (CO), carbon di-
oxide (CO2), methane (CH4), and gas yield (GY). MISO uses all nine input 
variables to estimate the composition of each output composition by training 
five different prediction models (i.e. Predictor 1 to Predictor 5). 
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was used for testing (to validate the performance of the algorithm for 
unknown entries). Azadi and Karimi-Jashni [26] provided a detailed 
explanation of the advantages and disadvantages of different accuracy 
measures such as mean absolute error (MAE), root mean squared error 
(RMSE), and normalised root mean squared error (NMSE). Hence, to 
evaluate the performance of the trained predictive models on the test 
data, we have selected the RMSE and the coefficient of determination 
(R2) value to demonstrate the goodness of fit for training and testing 
data which is a summary of fitness performance in supervised learning. 

The experimental data from fluidised bed gasifiers was compiled by 
[19] from works of literature [4,27–49]. Table 1 reports the means and 
variances for all the different input and output variables. This infor-
mation is reported to show the nature of the dataset and to facilitate 
reproducibility. Details of the datasets are provided in Supplementary 
information. Additionally, the Python implementation of the proposed 
work is available via open source in GitHub: https://github.com/sagiha 
ider/XAI-Gasification-Modelling.git. 

2.2. Methods 

The objective of this study as mentioned above is to predict the 
product gas composition (H2, CO, CO2, CH4) and the total product gas 
yield (GY) from the input variables from input vector x̂. The solution is 
to predict the numerical output compositions from numerical input 
variables. So, for this purpose, we have designed a specialised machine 
learning model that supports predicting the different outputs from the 
same set of variables. The model (as shown in Fig. 1) uses all nine input 
variables to estimate the composition of each output composition by 
training five different prediction models (Predictor 1 to Predictor 5). In 
order to gain better insight and interpretability on the influence of the 
input variables on each trained model, this study also identified the most 
relevant input variables for each output composition yielded from its 
corresponding trained model. Additionally, it is well known that AI- 
based prediction algorithms are not expected to be perfect due to 
various factors such as dataset shift, data bias, etc. [50]. Their unex-
plained failures can be adverse. 

To overcome this challenge, these days researchers are focusing on 
developing XAI methods, which have emerged as an effort to gain trust 
using AI-based predictive algorithms. SHAP interpretability method 
proposed by Lundberg and Lee [51] is used in this study (a brief 
description of SHAP is presented in Section 3.1). This approach is 
distinctive and will help to understand the correlation of the relevant 
input variables to their corresponding output which could lead to further 
improvements in future models. 

2.3. Overview of the modelling paradigm 

Consider a challenge of function estimation in the classical super-

vised learning setting. Let’s assume a supervised dataset (X,Y)N
i=1, where 

X = (x1,⋯, xN) refers to the explanatory input variables set and Y is a set 
of the response variable. The goal is to reconstruct the unknown func-
tional dependence with the estimate f(X), such that some specified loss 
function Ψ(Y, f) is minimised: 

f̂ (X) = Y  

f̂ (X) = argmin
f (X)

Ψ(Y, f (X))

The response variable Y can come from different distributions. This 
naturally leads to the specification of different loss functions Ψ. In 
particular, if the response variable is binary, (i.e. Y ∈ 0, 1), one can 
consider the binomial loss function. If the response variable is contin-
uous, (i.e. Y ∈ R), one can use any loss function based on the need such 
as L2 squared loss function, L1 absolute loss function, or the robust 
regression Huber loss. 

2.3.1. Machine learning methods 
We have applied seven perspective-supervised machine learning 

models (Multivariate Linear Regression (LR), Multilayer perception 
(MLP), Ridge Regression (RR), Least-angle regression (LARS), Random 
Forest (RF), Bagging (BAG) and Gradient Boosting (GB)) to predict the 
product composition and the product gas yield from fluidised bed gas-
ifiers. Details of each supervised machine learning algorithm are given 
in each section below, respectively. 

General Multivariate Linear Regression (LR): The general linear 
model or general multivariate regression model is a packed way of 
simultaneously using several multiple linear regression models. Multiple 
linear regression models can be written as equation (1): 

‖Y − XB‖2
2 (1) 

where Y is a matrix of multivariate measurements (i.e. dependent 
variables), and X is a matrix of observations (i.e. independent variables). 
B is a matrix containing parameters that are usually to be estimated by 
minimising the residual sum of squares between the observed dependent 
variables in the dataset, and the dependent variables predicted by the 
linear approximation. 

Multilayer Perceptron (MLP): A MLP [52] is a type of artificial neural 
network (ANN) that consists of multiple layers of interconnected nodes, 
each with learnable weights and biases. The first layer receives input 
data, which is then transformed through a series of non-linear trans-
formations in the hidden layers before producing an output in the final 
layer. MLPs are commonly used for classification and regression tasks 
and can learn complex non-linear relationships between inputs and 
outputs. The weights and biases are typically updated using back-
propagation, which involves computing gradients and adjusting the 
parameters to minimise the loss function. 

Ridge Regression (RR): RR is a linear least square with l2 regular-
isation, which aims at avoiding over-fitting. It minimises the objective 
function as follows: 

‖Y − XB‖2
2 + λ‖B‖2

2 (2) 

The regularisation term in eq.2 is known as l2-norm or Ridge 
regression penalty or squared penalty. 

Least-angle regression (LARS): LARS regression is also a linear least 
square with 11 regularisation, which aims at avoiding over-fitting. LARS 
regression provides an alternate way to train a Lasso regularised linear 
regression model that adds a penalty to the loss function during training. 
LARS uses the Akaike information criterion (AIC) and Bayes Information 
criterion (BIC) to select the value of the regularisation parameter by 
making a trade-off between the goodness of fit and the complexity of the 
model. It minimises the objective function as follows: 

Table 1 
Means and variances for all the different input and output variables.   

Variable Mean Variance  

C [wt.% db] 47.97 12.43  
H [wt.% db] 6.16 2.36  
O [wt.% db] 34.06 13.16  
MC [wt.% ar] 8.88 5.79 

Input Ash [wt.% db] 10.53 13.62  
ER [-] 0.27 0.07  
T [◦C) 790.30 60.03  
BM – –  
SBR [-] 0.21 0.60  
H2 [vol.% N2 free] 22.57 8.98 

Output CO [vol.% N2 free]CO2 [vol.% N2 free] 30.0833.44 7.7110.09  
CH4 [vol.% N2 free] 9.12 3.97  
GY [Nm3/kg daf] 2.32 0.97 

For bed material: 1: Silica sand; 2: Ofite; 3: Olivine; 4: Alumina, 
where db, dry basis; ar, as received; daf, dry ash free. 
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1
2*n samples

‖Y − XB‖2
2 + λ‖B‖ (3) 

The regularisation term in eq.3 is known as l1-norm or Lasso 
regression penalty or absolute penalty, where n samples is the number of 
samples in the dataset. 

Random Forest (RF): RF is a tree-based supervised learning algo-
rithm, which fits a number of decision trees on different subsets of the 
training dataset to enhance the predictive performance. It also helps in 
preventing over-fitting. In random forest, tuning of two important 
hyper-parameters is required (i.e. number of estimators (trees) and the 
maximum depth of the tree). 

Bagging (BAG): BAG is almost the same as the RF. The only differ-
ence is that bagging fits a number of decision trees on random subsets of 
the training dataset to enhance the predictive performance. It also helps 
in preventing overfitting by reducing the variance. In bagging also 
tuning of two important hyper parameters is required (i.e. number of 
estimators (trees) and the maximum depth of the tree). 

Gradient Boosting (GB): GB machines are a family of powerful tree- 
based machine-learning techniques that have shown considerable suc-
cess in a wide range of practical applications. In the context of the paper, 
an overview of the GB modelling paradigm is provided as follows: 

GB algorithm builds a collection of trees called (an ensemble) of 
shallow trees, where each tree in the ensemble improves on the previous 
one. These shallow trees are generally called weak predictive models, 
which can act as powerful predictive models when appropriately tuned. 
In GB, boosting supports adding new models to the ensemble in a 
sequential manner. Additionally, boosting help in handling the bias- 
variance trade-offs by building a weak learner and then sequentially 
boosting the performance by adding new trees, where a newly added 
tree manages the error made by the previously added tree. In other 
words, the newly added tree considers specific rows from the training 
dataset, which made the largest prediction error in the previous tree. A 
schematic diagram illustrating the concept of GB is presented in Fig. 2. 

The key elements such as weak learners and their training with 
respect to errors are also discussed. A weak learner model is one whose 
prediction performance is slightly better than random guessing, which 
can be 50%-50% in terms of binary classification settings. Boosting helps 
to improve the performance in each model by using their experience 
from the previous model, where it will specifically focus on rows of the 
training data with the largest error in the previous tree. Focusing on the 
error from the previous tree, the new tree in the sequential model which 
enhances its performance as outlined by the pseudo gradient boosting 
code. The python package scikit-learn was used for this purpose.  

Algorithm 1 Gradient Boosting Algorithm 

Input: X, Y 
Output: Ŷ
Step 1: Fit a decision tree to the data: f1 (X, Y) 

(continued on next column)  

(continued ) 

Algorithm 1 Gradient Boosting Algorithm 

Step 2: Then fit the next decision tree to the error of the previous tree: h1(X) = (Y −
f1(X)) 

Step 3: Add new tree to model: f2(X + h1, Y) 
Step 4: Then fit the next decision tree to the error of the previous tree f2: h2(X) = (Y −

f2(X)) 
Step 5: Add new tree to model: f3(X + h2, Y) 
Step 6: Repeat this process until the condition is met (i.e. based on ross- validation)  

2.3.2. Computational resources 
Simulations were performed on a Google Colab Pro cloud-based 

Python environment, which consists of Intel(R) Xeon(R) CPU @ 2.20 
GHz processors with 32 GB of RAM, CPU Core = 2. The computational 
time cost of training the predictive models are as follows: General 
Multivariate Linear Regression (LR): 0.00078 s; MLP: 4 × 10− 6 s; Ridge 
Regression (RR): 0.000723 s; Least angle regression (LARS): 0.0175 s; 
Random Forest (RF): 0.864 s; Bagging (BAG): 1.009 s; and Gradient 
Boosting (GB): 1.182 s. 

3. Results 

3.1. Interpretability using SHAP 

SHAP computes the contribution of each feature of an instance × to 
explain its prediction. This form of explanation uses the Shapley values 
from coalition game theory, which provides information on how to fairly 
distribute the contribution of each prediction among the features. This 
paper uses a variant of SHAP for a tree-based machine learning model 
called TreeSHAP [53]. The predictions from the GB model are inter-
preted both globally and locally. Global interpretability provides insight 
into the contribution of each feature to the estimated output, which can 
either be positive or negative. Additionally, each instance or observation 
is allotted its own SHAP value, which can greatly increase the trans-
parency of a model in terms of explainability. Using the SHAP method, 
one can easily explain the reasoning behind a single prediction, which 
further provides details about the impact of the features. This form of 
interpretability is local in nature and can easily be illustrated with the 
help of a summary plot. The summary plot in Fig. 3 uses a toy dataset 
with 8 representative variables (X1-X8), which combines feature 
importance with feature effects. Each point on the summary plot is a 
Shapley value for a feature and an instance. The feature order on the Y- 
axis is determined by feature importance in decreasing order and the X- 
axis presents the Shapley value. The colour represents the value of the 
feature from low to high. Overlapping points are jittered in the Y-axis 
direction, so we get a sense of the distribution of the Shapley values per 
feature. The SHAP value plot can further show the positive and negative 
relationships of the predictors with the target variable. 

Fig. 2. Gradient boosting-based sequential ensemble approach.  
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3.2. Regression analysis using GB 

General multivariate, ridge, least-angle, random forest, bagging and 
GB regression-based predictive models were exploited, and a thorough 
grid-search method was used to find the optimal learning rate (lr) and 
number of boosting stages (est) in the training stage. It was found that the 
GB regression model at lr = 0.01 and est = 1000 yielded the best result in 
terms of the average root mean square error (RMSE) for all outputs. The 
following optimal parameters (after a thorough grid search) were 
employed for each of the comparative algorithms:  

• RR: Regularisation Strength = 1.0; Tolerance = 1000.  
• MLP: activation function = Rectified Linear Unit; regularisation 

parameter = 0.0001; learning rate = 0.01; number of hidden neu-
rons = 2; optimiser = adam; loss function = mean squared loga-
rithmic error loss 

• RF: Number of Trees = 500; criterion = mean squared error; Boot-
strap = True.  

• BAG: Number of estimators = 500; Bootstrap = True. 

It is evident from the literature review that the predictions of ANN- 
based are generally suitable for complex datasets. Furthermore, clas-
sical regression approaches are exploited to fit polynomial models 
without significant nonlinearity. We have applied six different regres-
sion methods i.e. Liner regression (LR), Ridge Regression (RR), Multi-
layer Perceptron (MLP, Least-angle regression (LARS), Random Forest 
regressor with decision Tree as a weak learner (RF) and a Bagging re-
gressor with Decision Tree as a weak learner (BAG) as tabulated in 
Table 2. It compares the average RMSE across the six outputs of the GB 
regressor with other standard and ensemble regression methods. The 

comparison includes LR, RR, MLP, LARS, RF and BAG. Amongst 
different combinations for the input variables, the best solution by 
regression analysis was found using the BAG model containing a mean 
RMSE of 0.07442 compared to GB which has an RMSE of 0.0604 which 
is less than the other regression models. Fig. 4 shows the test data pre-
diction of each output composition (in red) using the MISO model and a 
comparison with its true experimental values (in blue). 

It can be seen from Table 2 that the selected GB regressor model is 
superior to the rest of the regressors. In addition, it is worth mentioning 
that the reason for choosing the GB simulation paradigm in this study is 
not only limited to its better performance but also includes its ability to 
avoid over-fitting, robustness to small changes in the dataset, encour-
agement of diversity and interpretability of the results. 

The reported RMSE of product gas compositions were 0.0941 for H2, 
0.0584 for CO, 0.0839 for CO2, and 0.0524 for CH4 whereas, the RMSE 
for gas yield was 0.0046. It is evident from Table 2 that the predictability 
of GB based regression model outperformed other models. Although, the 
R2 value for CO is slightly lower but is within a whisker limit with RF and 
BAG methods. Furthermore, the RMSE values positively indicate the 
accuracy of the GB regression model to the true values of the output 
composition and vindicate the efficacy and robustness of the proposed 
predictive approach. The optimal model is selected based on the mini-
mum reported RMSE value in Table 2. The discussion section is focused 
on identifying the key influencing input parameters on product gas 
composition and gas yield as well their importance in the gasification 
process. 

4. Discussion 

Various machine learning mostly ANN-based approaches have been 

Fig. 3. SHAP summary plot on a toy dataset with 8 representative variables (X1-X8), where X-axis represents the Shapley value and Y-axis shows the features.  

Table 2 
RMSE and R2 comparison of GB with other Regression Methods on the test dataset.  

Model H2 CO CO2 CH4 GY Mean 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

LR  0.1199  0.410  0.1465  0.323  0.1291  0.389  0.1249  0.137  0.0659  0.764  0.1173  0.4046 
MLP  0.1289  0.317  0.1498  0.292  0.1130  0.531  0.1344  0.001  0.0682  0.747  0.1188  0.3779 
RR  0.1155  0.452  0.1470  0.318  0.1121  0.540  0.1225  0.170  0.0639  0.778  0.1122  0.4516 
LARS  0.1164  0.444  0.1465  0.323  0.1285  0.395  0.1257  0.127  0.0646  0.774  0.1163  0.4126 
RF  0.0727  0.783  0.0891  0.749  0.0726  0.807  0.0735  0.701  0.0635  0.782  0.0743  0.7644 
BAG  0.0734  0.779  0.0893  0.748  0.0721  0.810  0.0733  0.703  0.0628  0.786  0.0742  0.7652 
GB  0.0568  0.868  0.0901  0.744  0.0687  0.827  0.0429  0.898  0.0437  0.897  0.0604  0.8468  
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exploited as a predictive tool for estimating product gas composition, 
gas yield, calorific value etc. Moreover, the XAI-based approach is not 
yet used. In addition, identifying the key influential input parameter and 
its importance is rarely reported in the literature. 

In previous studies, an equation-based approach was used for 
calculating the relative impact of input variables on the predicted output 
[54]. In contrast to the equation-based approach, this work used the 
Shapley value (refer to Section 3.1) to explain the importance and in-
fluence of the capacity of each input variable on each output parameter. 
We have compared the results of the GB model and pointed out the most 
important and highest impacting features as input. These features were 
selected based on SHAP value, a feature selection methodology. In the 
following section, we have explained how input variables are influ-
encing the output and the mechanism behind it. 

A summary plot of the global contribution of input variables is pre-
sented in Fig. 5. Fig. 5 presents the influencing input parameter on a 
specific output. It is worth noting that the most influencing input 
parameter may be negatively affecting the performance of the gasifier. 
The hydrogen content of the biomass has been identified as the most 
influencing parameter for hydrogen content in the product gas. It is 
clearly indicating that the hydrogen composition in the product gas is 
directly correlated to the hydrogen content in the biomass. Apart from 
hydrogen content, the temperature of the gasifier and steam to biomass 
ratio positively influence the hydrogen content in the product gas. This 
can be linked with the improved water gas shift reaction which favoured 
in the forward direction at an elevated temperature. It can be evident 
from Fig. 5 that the ER is the second most influencing parameter how-
ever, it is negatively impacting the hydrogen content in the product gas. 
Increasing ER favours oxidisation reactions that would also increase the 
gasifier temperature and as a result, the equilibrium reactions shift in a 
forward direction leading to higher CO2 and H2O concentration at the 

expense of CO and H2 [55]. This is also evident by looking at the in-
fluence of oxygen content. The effect of the remaining input parameters 
is negligible as they are jittered on the corresponding X-axis. 

In Fig. 5, we can see that the most influencing parameter for CO 
output is directly linked with the indigenous amount oxygen content of 
the biomass. Temperature plays a positive impact on CO due to 
improved Boudouard reaction favouring CO production. Nevertheless, 
ER can have a detrimental effect on CO because it favours the formation 
of more stable compound CO2 resulting from partial oxidation of CO. 
Steam to biomass ratio (SBR) also affects the final composition of the 
product gas triggering a water–gas shift reaction. Ash content and bed 
materials show a positive influence on CO. The effect of moisture con-
tent is almost neutral. In conclusion, the unique dynamics of CO output 
are mainly driven by the carbon and oxygen content of the biomass and 
the process temperature. 

A graphical representation of Shapley value on CO2 clearly indicates 
that ER greatly influences the concentration of the product gas (pro-
moting oxidation reaction). It indicates that the maximum CO2 con-
centration in the product gas can be linked with the higher ER. 
Temperature and SBR have a positive influcence on the concentration of 
CO2 in the product gas linked with equilibrium reaction shift and the 
water-gas shift reaction. The impact of the oxygen content is almost 
negligible. 

The CH4 content in the final product gas basically represents the 
amount of CH4 formed during the devolatilisation process [56]. How-
ever, from Fig. 5 it is evident that the temperature of the reactor is the 
key influencing parameter for CH4 followed by the carbon content. The 
steam to biomass ratio also improves methane formation moreover, the 
effect of steam to biomass ratio compared to temperature is almost 
negligible. The CH4 concentration remains fairly constant since the 
steam methane reforming reaction does not dominate/play an 

Fig. 4. Gradient boosting-based comparison of individual predicted values with true values of H2, CO, CO2, CH4, and GY and their RMSE values on the test dataset.  
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influential role below 1000 ◦C and the CH4 formation is kinetically 
controlled [57]. Despite the fact that higher temperature inside the 
reactor favoured the endothermic reactions, it can be recommended that 
the temperature of the gasifier should be carefully controlled because it 
could lead to auto-thermal operational conditions (with an increase in 
ER) which will increase the CO2/H2O ratio compared to the desired 
CO/H2 ratio. 

In addition to comparing the overall performances of proposed ma-
chine learning methods, one must investigate the prediction perfor-
mance for each output variable to explore the viability of machine 
learning methods for the biomass gasification process more deeply. 
Lastly, rather than treating the CO and CO2 outputs as a part of the 
biomass gasification process, one can create models specifically 
designed process just for predicting those outputs parameters individ-
ually. By using a different set of features and hyper-parameter config-
urations,it would be possible to obtain greater prediction performance 
for CO and CO2. 

In a nutshell, we have shown that GB or other machine learning 

paradigms can be helpful in investigating the impact of input variables 
and can play an important role in optimally designing large-scale gasi-
fication experiments with desired product gas yield and composition. 
Similarly, the process parameters (T, ER and SBR) can be optimised 
accordingly. Overall, advanced data-driven modelling approaches such 
as GB has the potential to provide key information for the optimisation 
of the gasification process and can save time and money. The present 
model predicted well the impact of the key input and process parameters 
on the output over the range of tested operating conditions. Neverthe-
less, it can further be improved if the model can be trained with more 
data with a wider range of operating conditions. 

5. Conclusion 

In this work, a GB-based data-driven modelling approach was 
exploited to predict the impact of input and process parameters on 
product gas composition and the total product gas yield in a fluidised 
bed gasifier. Compared to classical regressions (LR, RR), Least-angle 

Fig. 5. Summary plot to interpret the global contribution of features on prediction.  
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regression (LARS), Multilayer perception (MLP), Random Forest (RF) 
and Bagging (BAG), the Gradient Boost (GB) model shows the best 
predictive capacity with the lowest RMSE (0.0604) and highest R2 

(0.8468). Furthermore, we discussed and illustrated the impact of 
influencing input variables using a graphical representation called SHAP 
value. 

The proposed GB-based regression model not only predicted the 
outcomes of product gas composition and the total gas yield from flui-
dised bed gasifiers accurately but also provided greater insight into the 
relative influence of the input variables (physical) on the final product. 
The developed model predicted product gas composition and the gas 
yield well and can be employed in learning and prediction of nonlinear 
complex mapping of gasification yields. Since, these data-driven simu-
lation paradigms offer distinctive advantages over the first principle 
(mass and energy balance) models such as it does not require domain- 
specific knowledge which makes it easy to exploit to simulate complex 
thermochemical processes. Therefore, it is expected that data-driven and 
machine-learning approaches will complement the design of experi-
ments, complex process optimisation, characterisation and sensitivity 
analysis of input parameters and their impacts on the final product. 

CRediT authorship contribution statement 

Daya Shankar Pandey: Conceptualization, Data curation, Investi-
gation, Methodology, Visualization, Formal analysis, Writing – original 
draft, Writing – review & editing. Haider Raza: Data curation, Formal 
analysis, Methodology, Visualization, Writing – original draft, Writing – 
review & editing. Saugat Bhattacharyya: Data curation, Formal anal-
ysis, Methodology, Visualization, Writing – original draft, Writing – 
review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

H.R. was supported by the Economic and Social Research Council 
(ESRC) funded Business and Local Government Data Research Centre 
under Grant ES/S007156/1. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.fuel.2023.128971. 

References 

[1] Omenn GS. Grand challenges and great opportunities in science, technology, and 
public policy. Science 2006;314(5806):1696–704. 

[2] J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure, L. Westfall, 
International energy outlook 2016 with projections to 2040, Tech. rep., US-DOE 
Energy Information Administration (EIA), Washington, DC (United States (2016). 

[3] Tester JW, Drake EM, Driscoll MJ, Golay MW, Peters WA. Sustainable Energy: 
Choosing Among Options. MIT press; 2012. 

[4] Katsaros G, Pandey DS, Horvat A, Almansa GA, Fryda LE, Leahy JJ, et al. 
Experimental investigation of poultry litter gasification and co-gasification with 
beech wood in a bubbling fluidised bed reactor–effect of equivalence ratio on 
process performance and tar evolution. Fuel 2020;262:116660. 

[5] Murphy JD, McKeogh E. Technical, economic and environmental analysis of 
energy production from municipal solid waste. Renew Energy 2004;29(7): 
1043–57. 

[6] Arena U. Process and technological aspects of municipal solid waste gasification. A 
review. Waste Manage 2012;32(4):625–39. 

[7] Serrano D, Kwapinska M, Sanchez-Delgado S, Leahy JJ. Fly ash characterization 
from cynara cardunculus l. gasification. Energy Fuels 2018;32(5):5901–9. 

[8] Pandey DS, Yazhenskikh E, Müller M, Ziegner M, Trubetskaya A, Leahy JJ, 
Kwapinska M. Transformation of inorganic matter in poultry litter during fluidised 
bed gasification. Fuel Process Technol 2021;221:106918. 

[9] Pandey DS, Kwapinska M, Leahy JJ, Kwapinski W. Fly ash from poultry litter 
gasification–can it be utilised in agriculture systems as a fertiliser? Energy Procedia 
2019;161:38–46. 

[10] Pandey DS, Pan I, Das S, Leahy JJ, Kwapinski W. Multi-gene genetic programming 
based predictive models for municipal solid waste gasification in a fluidized bed 
gasifier. Bioresour Technol 2015;179:524–33. 

[11] Guo B, Li D, Cheng C, Lü Z-a, Shen Y. Simulation of biomass gasification with a 
hybrid neural network model. Bioresour Technol 2001;76(2):77–83. 

[12] Xiao G, Ni M-J, Chi Y, Jin B-S, Xiao R, Zhong Z-P, et al. Gasification characteristics 
of MSW and an ANN prediction model. Waste Manage 2009;29(1):240–4. 

[13] Chavan P, Sharma T, Mall B, Rajurkar B, Tambe S, Sharma B, et al. Development of 
data-driven models for fluidized-bed coal gasification process. Fuel 2012;93:44–51. 

[14] Puig-Arnavat M, Hernández JA, Bruno JC, Coronas A. Artificial neural network 
models for biomass gasification in fluidized bed gasifiers. Biomass Bioenergy 2013; 
49:279–89. 

[15] Pandey DS, Das S, Pan I, Leahy JJ, Kwapinski W. Artificial neural network based 
modelling approach for municipal solid waste gasification in a fluidized bed 
reactor. Waste Manage 2016;58:202–13. 

[16] Baruah D, Baruah D, Hazarika M. Artificial neural network based modeling of 
biomass gasification in fixed bed downdraft gasifiers. Biomass Bioenergy 2017;98: 
264–71. 
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