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A B S T R A C T

SpK is part of the numerical codebase at Imperial College London used to model high energy density physics
(HEDP) experiments. SpK is an efficient atomic and microphysics code used to perform detailed configuration
accounting calculations of electronic and ionic stage populations, opacities and emissivities for use in post-
processing and radiation hydrodynamics simulations. This is done using screened hydrogenic atomic data
supplemented by the NIST energy level database. An extended Saha model solves for chemical equilibrium
with extensions for non-ideal physics, such as ionisation potential depression, and non thermal equilibrium
corrections. A tree-heap (treap) data structure is used to store spectral data, such as opacity, which is dynamic
thus allowing easy insertion of points around spectral lines without a-priori knowledge of the ion stage
populations. Results from SpK are compared to other codes and descriptions of radiation transport solutions
which use SpK data are given. The treap data structure and SpK’s computational efficiency allows inline
post-processing of 3D hydrodynamics simulations with a dynamically evolving spectrum stored in a treap.
1. Introduction

Radiation magnetohydrodynamics (RMHD) codes are commonly
used in the modelling of High Energy Density Physics (HEDP) experi-
ments. The system of RMHD equations require external data/models to
be closed, namely opacities, equation of state and transport coefficients.
Constructing synthetic diagnostics from RMHD simulations requires
post-processing with accurate models of the emission, absorption and
scattering processes. Microphysics models are used to calculate thermo-
dynamic, transport and radiative properties and their accuracy is vital
in HEDP modelling.

In microphysics models, a thermodynamic ensemble of quantum
mechanical states must be considered in order to determine macro-
scopic properties. Marrying a small scale accurate quantum mechanical
description with the many-body and many-species thermodynamic sys-
tem is an exceedingly difficult task and a field of active research.
There are two overarching approaches; the ‘physical’ and ‘chemical’
pictures. In the physical picture, one works at the level of electrons and
nuclei, calculating electronic states self-consistently. Bound electronic
states cause ions, atoms and molecules to emerge. However, current
physical picture models cannot independently describe all of parameter
space due to the approximations made in their construction or due the
computational expense or intractability. The approach that we shall use
is in the chemical picture. In the chemical picture, we define species
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within the material; free electrons, bound electrons, ions, molecules,
etc. Each of these species is described through its own free energy and
interaction term which can be derived from the partition functions.

A benefit of the chemical picture is that it is conceptually closer to
the macroscopic quantities we wish to extract. Chemical picture models
can be constructed to work over large parts of density–temperature pa-
rameters space and are generally computationally expedient. However,
there are two issues which arise from this approach. Firstly, although
the equations of chemical equilibrium are simpler than the many-body
equations of the physical picture, one must construct models for the
partition functions based on microscopic properties and interactions.
For all but the simplest terms, these models are approximate in nature.
Secondly, we have drawn a distinction between chemical species such
as free and bound electrons where physically there is no difference
in their properties and interactions. Indeed, core bound electrons and
high energy free electrons do behave differently and are well described
by different models. However, in the middle ground it is less clear
that the distinction is meaningful. Interactions between free and bound
electrons must be added back into the model after the separation of
terms — a physical picture model has no such issue.

In constructing a suitable microphysics model, we wish to be able
to compute the quantities needed to close the RMHD equations across a
wide range of parameter space in multi-material systems and have the
vailable online 5 June 2023
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potential to run inline to post-process RMHD simulations to produce
synthetic diagnostics. Therefore, a balance between fidelity, efficiency
and robustness must be struck in our choice of models. For example,
accounting for the fine structure of multi-electron ions in a plasma
background is a great computational task so a reduced atomic model
must be used to allow efficient calculations. As discussed above, a
chemical picture model is best suited to the task of describing a wide
parameter space and in plasma physics the Saha equation [1] is the
canonical example of this. In this work, we describe the fast atomic and
microphysics model SpK, which has been developed at Imperial College
London to be used in conjunction with the RMHD code Chimera [2–
4]. SpK is an atomic model code which uses the screened hydrogenic
model (SHM) with energy levels taken from the NIST database to
perform detailed configuration accounting (DCA) calculations of the
state populations, free electron number density, emissivity and opacity
at given conditions using an extended Saha model. SpK can work in
local thermodynamic equilibrium (LTE) or collisional-radiative equi-
librium (CRE), the latter allowing the modelling of low density, mid Z
plasmas. Multigroup emissivity and opacity tables produced by SpK are
used within the radiation-hydrodynamics code Chimera and SpK inline
or tables are used to post-process simulations to produce synthetic
diagnostics.

2. Atomic physics model

2.1. Energy levels and configurations

As a balance between fidelity and efficiency, SpK uses detailed
configuration accounting (DCA) with levels split by quantum numbers
𝑛 and 𝑙. This makes for an efficient structuring where a given bound
electron configuration of the form:

(𝑛𝑙
𝑁𝑙1
1 )(𝑛𝑙

𝑁𝑙2
2 )(...)(𝑛′𝑙

′𝑁𝑙′1
1 )(𝑛′𝑙

′𝑁𝑙′2
2 )(...)

onstitutes a singular energy level. The energy of the configuration can
ither be calculated using a simplified model or looked up from the
IST energy level database. In SpK, the default is to use NIST energy

evel values but when these are unavailable the screened hydrogenic
odel with 𝑙-splitting developed by Faussurier et al. [5] is used. In

his model, each subshell electron experiences a 𝑍𝑘∕𝑟 central poten-
ial where 𝑍𝑘 is a constant screened nuclear charge. This screened
harge is calculated using the occupation of the other subshells and
re-computed screening coefficients (𝜎𝑘𝑘′ ):

𝑘 = 𝑍 −
∑

𝑘′
𝜎𝑘𝑘′ (𝑁𝑘′ − 𝛿𝑘𝑘′ ) (1)

here 𝑁𝑘 is the occupancy of the 𝑘th subshell and 𝛿 is the Kronecker
elta to prevent self-screening. Single electron wavefunctions have a
ydrogenic form but scaled by the effective charge. This allows analytic
ormulae to be derived for important quantities such as dipole matrix
lements. In summary, the implemented DCA atomic model uses the
IST database, when available, for energy levels and screened hydro-
enic model results for other atomic properties, such as dipole matrix
lements and oscillator strengths. In this way, SpK’s atomic model is
uitably complete without requiring any explicit numerical solution to
he many-body Hamiltonian.

The approach described above provides an efficient atomic model
rom which macroscopic quantities such as opacity can be calculated.
owever, this has come at the sacrifice of accuracy. The lack of atomic

ine structure has a large impact on the level of spectroscopic detail.
or example, as levels are split only on 𝑛 and 𝑙, the 1𝑠2𝑝 → 1𝑠2

ransition is not split into resonance and inter-combination lines. The
se of the screened hydrogenic model to calculate energy levels and
atrix elements can lead to errors over more sophisticated Hartree–

ock calculations or measurements. Additionally, relativistic effects [6]
re appreciable for atomic charges > 30 and, while NIST energy levels
2

ill include these effects, screened-hydrogenic-model predictions are
argely classical and thus increasingly erroneous at larger 𝑍. Therefore,
he SpK atomic model’s current range of validity for nuclear charges is
< 30. Relativistic extensions to the screened hydrogenic model [7]

ould be used to extend this range.

.2. Radiative processes

In section Section 4 we will describe the population solver used to
alculate the ionic and electronic state populations. In this section, we
ill assume knowledge of the electronic structure and populations and

how how the radiative properties of plasmas can be calculated using
he atomic physics models described in Section 2.1. As we are working
n the chemical picture, free and bound electrons are treated differ-
ntly. Therefore, we will consider free–free, bound–free and bound–
ound electronic transitions separately. We will also assume thermal
quilibrium in the following.

The free–free process, bremsstrahlung, occurs within the free con-
inuum of states so can produce/absorb photons at any energy. The
pacity of thermal bremsstrahlung for ion species 𝑖 is given by [8]:

ff
𝑖,𝜈 = 𝑛𝑖𝜎𝑖,ff

[

1 − exp
(

− ℎ𝜈
𝑘𝐵𝑇

)]

𝑔ff(𝜈, 𝑇 )𝜙ff(𝜈, 𝑇 , 𝜂) , (2)

here 𝜎𝑖,ff is the semi-classical cross section from Kramers [9], 𝑔ff
s the free–free Gaunt factor and 𝜙ff is the free–free degeneracy cor-
ection [10]. An electron transition between a bound and free state
an produce photons at any energy above a threshold. The threshold
nergy is the energy required to promote the electron from the bound
tate to the lowest energy free state. The opacity of thermal bound–free
bsorption for state 𝑗 is given by [11]:

bf
𝑗,𝜈 = 𝑛𝑗𝜎𝑗,bf

[

1 − exp
(

− ℎ𝜈
𝑘𝐵𝑇

)]

𝑔𝑗,bf(𝜈, 𝑇 )𝜙𝑗,bf(𝜈, 𝑇 , 𝜂) , (3)

where 𝜎𝑗,bf is the semi-classical photo-ionisation cross section for state
𝑗, 𝑔𝑗,bf is the bound–free Gaunt factor and 𝜙𝑗,bf is the bound–free
degeneracy correction [10]. In SpK, photo-ionisation cross sections are
calculated using the semi-classical formula from Rose [12]. Gaunt fac-
tors are introduced to include full quantum-mechanical corrections to
the semi-classical cross section expressions. In SpK, Karzas & Latter [13]
free–free and bound–free Gaunt factors are calculated using the code
from Janicki [14].

The opacity for the line transition between states 𝑗 and 𝑘 is:

𝜅bb
𝑗𝑘,𝜈 =

ℎ𝜈𝑗𝑘
4𝜋

𝑛𝑗𝐵𝑗𝑘

[

1 −
𝑔𝑗𝑛𝑘
𝑔𝑘𝑛𝑗

]

, (4)

𝑔𝑗𝑛𝑘
𝑔𝑘𝑛𝑗

= exp
[

−
ℎ𝜈𝑗𝑘
𝑘𝐵𝑇

]

, (5)

where 𝑔𝑗 denotes the degeneracy of state 𝑗 and ℎ𝜈𝑗𝑘 the energy differ-
ence between states 𝑗 and 𝑘. It should be noted that Eq. (4) is true even
out of thermodynamic equilibrium. The Einstein coefficients, 𝐵𝑗𝑘, can
e translated into the more familiar oscillator strength, 𝑓𝑗𝑘, notation.
he oscillator strength quantifies the quantum-mechanical correction
o the classical expression based on the Larmor formula:

𝑗𝑘 = 𝜋𝑒2

𝜖0𝑚𝑒𝑐ℎ𝜈𝑗𝑘
𝑓𝑗𝑘𝛷(𝜈) , (6)

𝑓𝑗𝑘 = 2
3
𝑚𝑒

ℏ2
ℎ𝜈𝑗𝑘

|

|

|

𝑟𝑗𝑘
|

|

|

2
, (7)

where 𝑟𝑗𝑘 is the dipole matrix element and 𝛷(𝜈) is the line shape func-
tion. In SpK, dipole matrix elements are calculated using the screened
hydrogenic expressions of Khandelwal et al. [15].

In SpK, the line shape function, 𝛷(𝜈), takes a Voigt profile due
to the convolution of Gaussian and Lorentzian shapes from various
physical processes. The Gaussian width is taken as the sum of Doppler
broadening and the unresolved transition array (UTA) width. The
Lorentzian width is taken as the sum of the natural line width and Stark
broadening. A fast and accurate numerical expression from Limandri

et al. [16] is used to compute the Voigt shape function.
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Fast approximate models for Stark broadening, such as Dimitrije-
vic and Konjevic [17,18], use the Born-Bethe inelastic cross section
based on dipole matrix elements. The total electron impact Lorentzian
broadening for a transition between states 𝑖 and 𝑘 is given by [19]:

𝛾𝐸𝐼
𝑖𝑘 = 𝑘𝐸𝐼

[

∑

𝑗
𝑔𝐸𝐼 (𝜈𝑖𝑗 )

|

|

|

𝑟𝑖𝑗
|

|

|

2
+
∑

𝑙
𝑔𝐸𝐼 (𝜈𝑘𝑙) ||𝑟𝑘𝑙||

2
]

, (8)

𝐸𝐼 = 3
(

4𝜋𝐸𝐻
3

)
3
2 𝑛𝑒𝑎30
√

𝑘𝐵𝑇𝑒
, (9)

here 𝑔𝐸𝐼 are the Maxwellian averaged electron impact Gaunt fac-
ors as given by Griem [19] and Dimitrijevic and Konjevic [17,18].
gain, screened hydrogenic dipole matrix elements are used in this
alculation.

Within multi-electron systems, a configuration to configuration
ransition is potentially split into a large number of term lines de-
ending on the arrangement of component angular momenta. DCA
alculations are not resolved at the term level so miss these additional
ine structures, this leads to large inaccuracies in opacity evaluations.
ne successful method to compensate for these missing term lines

s using unresolved transition arrays (UTAs). In UTA models, statis-
ical moments of the term levels are used to smooth the single DCA
onfiguration to configuration transition to better represent the true
tructure of term lines. In SpK, the distribution energy moments of
auche, Arnoult and Peyrusse (Table 3.2 in Ref. [20]) are used to
alculate the configuration energy widths. These calculations involve
later integrals, for which we use Naqvi’s screened hydrogenic formu-
ae [21], Wigner 3- and 6-j symbols, for which we use the SLATEC
ubroutines [22–26], and finally the spin–orbit integrals, for which we
sed the screened hydrogenic analytic result [6]. The UTA Gaussian
idth is calculated as the quadrature sum of upper and lower level

onfiguration widths [27,28]:
2
UTA = 𝜎2𝐸,𝑖 + 𝜎2𝐸,𝑗 , (10)

here 𝑖 and 𝑗 are the upper and lower level indices and 𝜎𝐸 is the con-
iguration width. It is noted that for a more detailed UTA model [20]
he width of the transition array is generally narrower than the quadra-
ure sum of configuration widths. Summing the configuration widths
quates to the lowest order UTA model as it assumes no correlation
etween the levels and ignores selection rules from LS coupling. The
orrelation arises from the propensity law that high (low) energy levels
f the upper configuration de-excite preferentially towards the high
low) levels of the lower configuration to, approximately, respect core
nd spin invariance selection rules [20]. Future work will look to
mprove the SpK UTA model.

Natural line broadening arises due to the uncertainty principle and
ontributes to a Lorentzian line shape. Canonically, the line width is
iven as the sum of spontaneous emission Einstein coefficients. On
op of this natural width, one can add the radiation broadening due
o stimulated emission. Including both photo-excitation and photo-
onisation, the full width formula for a transition from upper state 𝑖
s given by [29]:

𝑅𝐵 = 2𝜋ℎ𝑒2

𝜖0𝑚𝑒𝑐3

[

∑

𝑗<𝑖

2𝑙𝑗 + 1
2𝑙𝑖 + 1

𝜈2𝑖𝑗

(

1 + 𝑐3

8𝜋ℎ𝜈3𝑖𝑗
𝐸(𝜈𝑖𝑗 )𝑓𝑖𝑗

)

+
∑

𝑘>𝑖

𝑐3

8𝜋ℎ𝜈𝑖𝑘
𝐸(𝜈𝑖𝑘)𝑓𝑖𝑘

+∫

∞

𝐼

ℎ𝑐3

8𝜋
𝑑𝑓𝑖
𝑑(ℎ𝜈)

𝐸(𝜈)𝑑ℎ𝜈
]

, (11)

here 𝐸(𝜈) is the frequency resolved radiation energy density, 𝐼 is
hoto-ionisation energy of state 𝑖 and 𝑑𝑓𝑖∕𝑑(ℎ𝜈) is the differential
scillator strength. In SpK, the differential oscillator strength is assumed
𝜈3 and the constant of proportionality is calculated using the f-sum

ule [30]. Radiation broadening is only a significant effect in low elec-
ron density plasmas in high radiation temperature backgrounds [29],
3

t is therefore not routinely included in SpK calculations. w
. Spectral data structures

Multi-electron and/or multi-material systems involve many energy
evels leading to large numbers of transitions. High energy resolution is
esired around spectral lines but not required in the continuum regions.
hen calculating a spectrum, it is not known a-priori which ionic stages

nd electronic states will be occupied and therefore which transitions
ill be present in the spectrum. However, it can be very memory-
xpensive to include resolution around every possible transition. Thus
hen calculating spectra, the question of data storage is crucial. The
ost common way to record the properties of an object set involves

he use of a data structure called an array. A typical array is defined as
contiguous zone of the computer memory that stores a collection of

ndexed elements. When a value needs to be saved or retrieved from a
ocation, the address of the corresponding memory zone is calculated
nd directly accessed in (1) time. If the number of objects to insert
s not known before runtime, a growable or dynamic array is needed.
uch a structure is created by estimating at the very beginning the
aximum amount of memory to be required and by allocating an array

f such fixed-size. Elements can then be added or removed at the end of
his reserved space in constant time. As simple as this approach is, it has
everal disadvantages. Firstly, if the initial estimate of the maximum
ize 𝑛 is smaller than the number of elements to be finally inserted,

reallocation of the array (taking (𝑛) time) has to be performed
hen full capacity is reached. Secondly, any insertion or deletion at
n arbitrary position in the array takes a linear time as it requires the
ollowing elements to be moved. Finally, if no simple formula links the
ndex of the record with its value, searching for an arbitrary element
ay necessitate looping through every single object in the array.

To address the issues with static arrays for spectral data storage,
method was derived from a self-balancing binary search tree imple-
entation. A tree is a data structure using an organisation of nodes
imicking an arborescent hierarchy. Each node is a parent object that
ay have several children located directly below it in the structure.
he tree begins at a single node known as the ‘root’ and nodes with no
hildren are known as ‘leaves’. Binary trees are a special case of tree
opology in which each node has a maximum of two children, one ‘left’
nd one ‘right’. Along with the local node data, the memory addresses
f those children are stored in the pointer field of the node object. A
inary Search Tree (BST) is a binary tree with special features. The
ata zone of a BST node contains a field for a so-called key value. This
ey belongs to an ordered set with a comparison operator. Searching
he tree involves comparing to the key value and moving left or right
epending on the result of the comparison, and repeating until the
atching key is found. A BST is said to be balanced if none of its

eaves is much farther away from the root than the others. For such
balanced BST, the average number of steps between the root and

ne leaf is log2(𝑛). Search and insert procedures can be very quick on
alanced BSTs. Unfortunately, in general, there is no guarantee that
generic construction process will lead to such a balance. The treap

ata structure was first introduced by Aragon and Seidel [31] in 1989.
lthough similar in many respects to BSTs, treaps have the particular
bility to remain balanced. Compared to regular tree nodes, treap node
bjects have an extra field containing a randomly generated value
alled priority. This value, allocated at the node creation, determines its
lace in the hierarchy: any operation (insertion/deletion) performed on
he treap, while keeping the in-order traversal order (key order) intact,
ust ensure that the parents have higher priorities than their children.
he final structure obtained by following this rule is equivalent to a
inary tree constructed by inserting the items in decreasing order of pri-
rity (i.e. priority decreasing with distance from the root). If the initial
istribution of node priorities is random, the tree is balanced with high
robability. The averaged (log 𝑛) time complexity for search, insertion
nd deletion operations makes treaps ideal candidates for spectral data
torage. In our approach, each spectral point is represented by a node

hose key and value are respectively equal to the photon frequency
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Fig. 1. (a) A set of unstructured nodes with key values (∈ [1, 7]) and random priority
alues. The priorities set an insertion order of 2, 1, 5, 3, 6, 7 and 4. (b) The constructed
reap with both a key-ordered binary search tree and heap-ordered priorities. Also
hown is an additional doubly linked list which links adjacent key values. (c) A
chematic of the spectral treap node structure implemented in SpK.

nd spectral intensity. Operations performed on line profiles often
equired working on a set of points with good frequency locality. A
roadening process, for example, will modify the amplitude of the
pectral points on the left and right of the line centre. If we start by
ointing to the node at this central frequency, devising a method to
rovide fast access to the nearby nodes is desirable. A more practical
olution consists in maintaining a doubly linked list on top of the treap
y adding two extra pointers to the node object which point to the
odes with adjacent key values. An example of a treap structure and
ts construction is given in Fig. 1. The dynamic nature of the treap data
tructure is particularly well suited to the solution of radiative transfer
n 3D hydrodynamic simulations. The spatial variation in density and
emperature will give rise to varying emission and absorption spectra.
eing able to dynamically add resolution around emission and absorp-
ion features as one propagates a spectrum through the simulation grid
ives both accuracy and efficiency. SpK’s post-processing capabilities
ill be discussed further in Section 7.

. Population solver

In order to evaluate macroscopic properties such as opacity, the
ccupation of free and bound electron states must be calculated. We
ill assume that the atomic kinetic time-scale is much faster than the
volution of the macroscopic system, and thus an equilibrium will
e reached. The solution of the equilibrium electron population will
epend on thermodynamic properties such as density and temperature.
n the following we will describe the theory and numerical models used
n SpK for this calculation.

.1. Local thermal equilibrium, LTE

In thermal equilibrium, partitioning of a thermodynamic system
etween the different species is determined through chemical equilib-
ium. For plasmas, we are concerned with the equilibrium between free
lectrons and the various ion stages. For the ideal plasma, this is found
ith the Saha equation, where one considers the chemical equilibrium
f ionisation between stages 𝑖 and 𝑖 + 1:

𝑖 ⇌ 𝐴𝑖+1 + 𝑒− , (12)

𝜇𝑖 = 𝜇𝑖+1 + 𝜇𝑒 , (13)

here 𝜇 is the chemical potential and the subscript denotes the species.
sing the canonical expressions for the ideal translational and inter-
al partition functions, the expression of chemical equilibrium be-
omes [32]:
𝑛𝑖+1𝑛𝑒 = 𝑛𝑒𝑒

−𝛽𝜇𝑒
(𝑖𝑛𝑡,𝑖+1

)

(14)
4

𝑛𝑖 𝑖𝑛𝑡,𝑖
b

= 𝑛𝑒𝑒
−𝛽𝜇𝑒

(

∑

𝑛 𝑔𝑛,𝑖+1 exp
[

−𝛽𝜖𝑛,𝑖+1
]

∑

𝑛 𝑔𝑛,𝑖 exp
[

−𝛽𝜖𝑛,𝑖
]

)

𝑒−𝛽𝐼𝑖 ,

where 𝛽 = 1∕𝑘𝐵𝑇 is the inverse temperature, 𝐼𝑖 is the ground state
ionisation energy, 𝑖𝑛𝑡,𝑖 is the internal partition function [33] of ionic
state 𝑖, and 𝑔𝑛,𝑖 and 𝜖𝑛,𝑖 are the state degeneracies and excitation
energies of state 𝑛 for ion stage 𝑖. The omitted ionic translational
partition functions cancel almost exactly as the ion masses only differ
by a single electron mass. The chemical potential of the free electrons
can be calculated for a given electron density 𝑛𝑒, in the classical limit
this simplifies to:

lim
𝜇𝑒→−∞

(

𝑛𝑖+1𝑛𝑒
𝑛𝑖

)

= 2
𝜆3𝑒

(𝑖𝑛𝑡,𝑖+1

𝑖𝑛𝑡,𝑖

)

, (15)

where 𝜆𝑒 is the electron thermal deBroglie wavelength. We see in-
creased temperature drives ionisation and increased density drives
recombination [34]. While the Saha solution is well-behaved over the
whole space, one must remember that here we have neglected all
interactions between species, such as the Coulomb attraction between
free electrons and ions. Therefore, the present Saha result is inaccurate
at higher densities. Even when neglecting interaction terms, one will
quickly run into difficulties. This is because the internal partition func-
tion diverges if the infinity of bound levels of an isolated atom/ion are
considered. This non-physicality is a symptom of the separate treatment
of bound and free electrons. In reality, the highest lying bound states
will be perturbed by nearby charges and become delocalised. The
truncation of the internal partition function is an active field of research
including the phenomena of ionisation potential depression (IPD) and
electric microfields.

4.1.1. Non-ideal effects
The combined effects of pressure ionisation can be included in our

chemical picture model by modifying the internal partition function.
Following the work of Mihalas, Hummer and Däppen [35–37], this
is done through the reduced statistical weights, 𝑤𝑛, and shift to the
ontinuum, 𝛥. Mathematically these effects are given by:

𝑖𝑛𝑡 →
∑

𝑛
𝑤𝑛𝑔𝑛 exp

[

−𝛽𝐸𝑛
]

, (16)

𝐼𝑖 → 𝐼𝑖 − 𝛥 . (17)

his assumes the bound states continue to resemble the corresponding
solated atom states and that the dominant effects are an effective
owering of the continuum and reduction of bound state occupation
ear the continuum. This is a good approximation for core electrons
ut can expected to be poorer for levels nearer the continuum. More
ophisticated models, such as INFERNO [38] and PURGATORIO [39],
olve self-consistently the ‘ion in jellium’ system and thus resolve the
ndividual level response.

Various IPD models exist and each uses different approximations to
rrive at the shift in the continuum. A popular model developed by
tewart and Pyatt [40] retrieves the low coupling (𝛤 = 1

3𝜅
2
𝐷𝑟

2
𝑤𝑠 ≪ 1,

here 𝑟𝑤𝑠 = (3∕4𝜋𝑛𝑖)1∕3) Debye limit and high coupling ion-sphere
imit. The Stewart–Pyatt IPD model has had some success [41] and
ome failure [42] in explaining experimental data. In SpK, one can
witch between the Debye, ion-sphere or Stewart–Pyatt analytic mod-
ls, although Stewart–Pyatt is used by default.

Recent work by Lin et al. [43,44], has shown that the static structure
actor (SSF or 𝑆(𝑘)) can be used to calculate IPD. These quantum
tatistical models are attractive as they offer a more rigorous and accu-
ate calculation of IPD. Also, established non-ideal statistical mechanics
odels such as the Hyper-Netted-Chain (HNC) approximation can be
sed to calculate the SSF. Lin et al. [43,44] showed one can split the IPD
ontributions from fast moving free electrons and the ions surrounded

y their screening cloud of slow moving electrons. The calculation of
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the ionic contribution to the continuum shift is reduced to an integral
over the screened ionic SSF [43,44]:

𝛥ion = 𝑒2

2𝜋2𝜖0𝑟2𝑖
𝐹 (𝛤𝑖)∫

∞

0

𝑆𝑍𝑍
𝑖𝑖 (𝑞)
𝑞2

𝑑𝑞 , (18)

𝑆𝑍𝑍
𝑖𝑖 (𝑘) =

(

1 −
𝑞𝑠𝑐(𝑘)
�̄�

)2
𝑆𝑖𝑖(𝑘) . (19)

Similarly, for the free electron contribution:

𝛥elec = 𝑒2

2𝜋2𝜖0𝑟2𝑖
𝐹 (𝛤𝑖)∫

∞

0

𝑆0
𝑒𝑒(𝑞)
𝑞2

𝑑𝑞 , (20)

here we define the following mean charges for the reduced system:

̄ =
∑

𝑍𝑖𝑛𝑖
∑

𝑛𝑖
, 𝑍∗ =

∑

𝑍2
𝑖 𝑛𝑖

∑

𝑍𝑖𝑛𝑖
, (21)

nd coupling strength 𝛤𝑖, ionic radius 𝑟𝑖 and the 𝐹 (𝛤𝑖) function are
efined as [44]:

𝛤𝑖 =
(�̄� + 1)(𝑍∗ + 1)𝑒2

4𝜋𝜖0𝑟𝑖𝑘𝐵𝑇
, (22)

𝑟𝑖 =
[

3(�̄� + 1)
4𝜋𝑛𝑒

]
1
3

, (23)

𝐹 (𝛤𝑖) =
3𝛤𝑖

√

1 − 0.4
(

3𝛤𝑖𝛾20
)3∕4 + 3𝛤𝑖𝛾20

, 𝛾0 ≡
[ 4
9𝜋

]

1
3 . (24)

The IPD for a given ion stage 𝑖 is then given by the charge-scaled sum
of these components:

𝛥𝑖 =
𝑍𝑖 + 1
𝑍∗ + 1

[

𝑍∗𝛥ion + 𝛥elec] (25)

owards including a similar model in SpK, a one-component-plasma
OCP) HNC code has been implemented to numerically calculate the
creened ionic SSF. The Ng acceleration scheme [45] and the sepa-
ation of long- and short-ranged terms given by Springer et al. [46]
re utilised. The OCP HNC equations are solved for the electron-
creened [47] interaction between average-ions of charge �̄� in order to
btain the SSF. Separate to the HNC code, the electron screening cloud
unction, 𝑞𝑠𝑐 (𝑘), is calculated including the static local field correction,
𝑒𝑒:

𝑠𝑐(𝑘) =
−�̄�𝛱𝑅

𝑒𝑒(𝑘)𝑉𝑒𝑒(𝑘)
1 − (1 − 𝐺𝑒𝑒)𝛱𝑅

𝑒𝑒(𝑘)𝑉𝑒𝑒(𝑘)
, (26)

where 𝑉𝑒𝑒(𝑘) = 𝑒2∕(𝜖0𝑘2) is Fourier-space electron–electron Coulomb
potential, 𝛱𝑅

𝑒𝑒 is the retarded polarisation function and is calculated
using the closed form expressions from Dandrea et al. [48], and 𝐺𝑒𝑒
s calculated using the Farid et al. [49] expression. Currently, the free
lectron SSF, 𝑆0

𝑒𝑒(𝑞), is taken as the Debye limiting case. While this IPD
odel has improved accuracy over Stewart–Pyatt and similar models, it

s less robust and considerably more computationally expensive. Results
rom this model will be discussed in detail in Section 5.4.

The pressure ionisation (PI) model used to calculate the reduced
tatistical weights, 𝑤𝑛, is based on the work of Mihalas, Hummer and
äppen [35–37,50]. Using the microfields distribution, one calculates

he probability that a state remains bound in the presence of the
icrofields. The critical electric field which unbinds a state is the
roduct of the classical saddlepoint field [37] and a Stark ionisation
actor [37], 𝑘𝑛. The microfields distribution, 𝑃 (𝛽), is used to find the

cumulative probability, 𝑤𝑚
𝑛 , of experiencing a field strength less than a

ritical field, 𝐹 𝑐 :

𝑚
𝑛 = ∫

𝛽𝑐𝑛

0
𝑃 (𝛽)𝑑𝛽, 𝛽𝑐𝑛 = 𝑘𝑛

𝐹 𝑐
𝑛

𝐹0
, (27)

𝐹 𝑐
𝑛 =

𝜋𝜖0𝐸2
𝑛

𝑍𝑒3
, 𝐹0 =

�̄�𝑒
4𝜋𝜖0𝑟2𝑤𝑠

=
𝑒𝑛𝑒

4𝜋𝜖0𝑛𝑖

(

4𝜋𝑛𝑖
3

)2∕3
, (28)

where 𝐹 𝑐
𝑛 is the saddle point field for state 𝑛 of energy 𝐸𝑛; and 𝐹0 is

the field strength arising from an ion at the mean interionic separation.
5

t

SpK has implementations of both the Holtsmark [51] and Q-fit [50]
microfield distributions. At high densities, bound states can also be
perturbed strongly by frequent overlap with other extended particles.
Mihalas, Hummer and Däppen also reduce the statistical weight of
states the more volume they occupy relative to that remaining after
taking into account the volumes occupied by all other atoms and
ions. To save considering all possible excited states of each ion in the
calculation of volume available to a single state, the approximation is
made that all perturbing ions are in their ground state [35–37,50]. SpK
also includes this model, which gives the probability a state exists as:

𝑤𝑔
𝑛 = exp

(

−4𝜋
3

∑

𝑖
𝑛𝑖(𝑟

𝑔
𝑖 + 𝑟𝑛)3

)

. (29)

Here, 𝑟𝑛 and 𝑟𝑔𝑖 are the expectation values of the radii of the outermost
orbitals of state 𝑛 and the ground state of ion species 𝑖, 𝑛𝑖 is the total
number density of the ion species, and the summation takes place
over all possible ion species (including neutral atoms). The overall
occupation probability of a state is then the product of probabilities
arising due to both plasma microfields and ground-state perturbers,
𝑤𝑛 = 𝑤𝑚

𝑛 𝑤
𝑔
𝑛 . A similar implementation of non-ideal effects is included

in the chemical picture, LTE model CHEMEOS [52–54], which is also
based on the framework of Mihalas, Hummer and Däppen. CHEMOS
uses the same microfields formulation as SpK but the IPD term (or
excess Coulomb free energy) is defined through analytic fits to Monte
Carlo and HNC calculations.

4.1.2. Numerical scheme
The logarithm of the Saha equations are solved iteratively using

a Picard step with damping [55], the logarithm equations more ac-
curately capture the disparate scales which occur in the ionic stage
populations. With ionic stage index 𝑖 and iteration index 𝑗, the Saha
iterative loop has the following form [56]:

𝑛𝑒,𝑗 = �̄�𝑗𝑛𝑡𝑜𝑡 , (30)

𝜃𝑖+1,𝑗 = 𝜃𝑖,𝑗 + ln
[

𝑒,𝑗
]

+ ln
[ 𝑖𝑛𝑡,𝑖+1,𝑗

𝑛𝑒,𝑗𝑖𝑛𝑡,𝑖,𝑗

]

− 𝛽(𝐼𝑖 − 𝛥𝑖,𝑗 ) , (31)

𝑓𝑖,𝑗 = exp
[

𝜃𝑖,𝑗 − max𝑖(𝜃𝑖,𝑗 )
]

, (32)

�̄�′
𝑗 =

∑

𝑖 𝑍𝑖𝑓𝑖,𝑗
∑

𝑖 𝑓𝑖,𝑗
, 𝑛𝑖,𝑗 =

𝑓𝑖,𝑗
∑

𝑖 𝑓𝑖,𝑗
𝑛𝑡𝑜𝑡 , (33)

�̄�𝑗+1 = 𝜆�̄�𝑗 + (1 − 𝜆)�̄�′
𝑗 , (34)

where 𝑛𝑡𝑜𝑡 is the total number of nuclei in all ionic stages,  denotes the
nternal and free electron partition functions and Eq. (31) is the loga-
ithm of the Saha equations. The ionic ‘fractions’, 𝑓𝑖,𝑗 , are constructed
uch that they have a maximal value of 1. This is to ensure stability
ver a large range of ion densities. Picard iteration (Eq. (34)) updates
he 𝑗th ionisation estimate where the damping, 𝜆, is typically set at
0%. To initialise the iterative Saha solution, the average ionisation is
stimated using a Thomas–Fermi estimate [27,57], i.e. �̄�0 = �̄�𝑇𝐹 . The
aha loop is exited when �̄�𝑗+1 and �̄�𝑗 converge within tolerance.

.2. Non local thermal equilibrium, NLTE

Busquet et al. [58–61] have developed a numerically simple method
o transform an existing LTE code into a pseudo non-LTE (NLTE) one,
here simple modifications to the Saha equation can be used to capture
LTE effects. To illustrate this methodology, let us first consider a

imple atomic configuration consisting of only two single levels of
espective population densities 𝑛1, 𝑛2 statistical weights 𝑔1, 𝑔2 and
nergy separation 𝛥𝐸. In equilibrium, the populations and rates 𝑊
etween levels balance:
𝑛2
𝑛1

=
𝑊1→2
𝑊2→1

=
𝑛𝑒𝐶12 + 4𝜋𝐼𝜈𝐵12

𝑛𝑒𝐶21 + 𝐴21 + 4𝜋𝐼𝜈𝐵21
(35)

ith 𝐶𝑖𝑗 the rate of electron collisional excitation/de-excitation be-
ween the two levels 𝑖 and 𝑗. The different rates can be obtained using
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the expression of the Einstein coefficients and following the estimation
of the collisional excitation cross section given by Van Regemorter [62]
and Mewe [63]. For collisional-radiative equilibrium, we only consider
collisional excitation/de-excitation and spontaneous radiative decay:
𝑛2
𝑛1

=
𝑔2
𝑔1

exp [−𝛽𝛥𝐸]

1 + 2
√

3
𝑐3ℎ2𝑒2 �̄�

√

𝜋𝑘𝐵𝑇𝑒
2𝑚𝑒

𝛥𝐸3

𝑛𝑒

, (36)

where �̄� is the Gaunt factor for collisional excitation. The above expres-
sion tends towards the Boltzmann distribution for high electron density,
low electron temperature and small energy gap. In other cases, the
upper level is depopulated in comparison to the Boltzmann equilibrium.
Busquet et al. showed that one can extend this expression in order to
evaluate the equilibrium populations between two ion stages 𝑖 and 𝑖+1,
summing up the transition rates between the superlevels formed by the
excited state configurations of each ion and averaging the transition
energies:
𝑛𝑖+1
𝑛𝑖

=
∑

𝑊𝑖→𝑖+1
∑

𝑊𝑖+1→𝑖
, (37)

= 2
𝑛𝑒𝜆3𝑒

(

∑

𝑛 𝑔𝑛,𝑖+1 exp
[

−𝛽𝜖𝑛,𝑖+1
]

∑

𝑛 𝑔𝑛,𝑖 exp
[

−𝛽𝜖𝑛,𝑖
]

)

(38)

×
exp

[

−𝛽⟨𝛥𝐸⟩

]

1 + 2
√

3
𝑐3ℎ2𝑒2 �̄�

√

𝜋𝑘𝐵𝑇𝑒
2𝑚𝑒

1
𝑛𝑒

⟨𝛥𝐸2𝑓 ⟩
⟨𝛥𝐸−1𝑓�̄�⟩

,

where 𝑓 is the oscillator strength and angle brackets denote occupation
probability averages over the states of the ion stage.

Finally, using the following approximation was found to not signif-
icantly change the resulting ionisation equilibrium:

⟨𝛥𝐸2𝑓 ⟩
⟨𝛥𝐸−1𝑓�̄�⟩

≈ 5 ⋅ 𝐼3𝑖 (39)

where 𝐼𝑖 is the ionisation energy of ion stage 𝛼. Combining these results
gives a simple multiplicative factor to the Saha equation:
𝑛𝑖+1𝑛𝑒
𝑛𝑖

= 𝑓Saha,LTE(𝑛𝑒, 𝑇𝑒)𝐾NLTE(𝑛𝑒, 𝑇𝑒) , (40)

𝐾NLTE =

[

1 + 𝛼
𝐼3𝑖

√

𝑘𝐵𝑇𝑒
𝑛𝑒

]−1

, (41)

where 𝛼 = 1.34 × 1013 cm−3eV−7∕2. This additional multiplicative term
is equivalent to including a modified electron temperature in exponent
of the LTE Saha equation:

𝑒
− 𝐼𝑖

𝑘𝐵𝑇𝑒 𝐾NLTE = 𝑒
− 𝐼𝑖

𝑘𝐵𝑇𝑒,eff , (42)

𝑇𝑒,eff =
𝑇𝑒

1 + 𝑇𝑒
𝐼𝑖

ln
(

1 + 𝛼
𝐼3𝑖 𝑇

1∕2
𝑒

𝑛𝑒

)
, (43)

showing that the NLTE effects act as an effective reduction in the
electron temperature, with the greatest effect for ion stages with large
ionisation energies e.g. H-like and He-like ions. This formulation is also
used to modify expressions for emissivity and opacity by considering
the altered level populations in NLTE.

5. Model comparisons

In the following subsections, we will compare SpK results against
analytic and computational models from the literature. While SpK
operates in SI units (with eV for temperatures), we will facilitate easy
comparisons by converting to the units used in the literature.

5.1. Ionic fractions

The average ionisation, �̄�, and the ionic fractions are fundamen-
tal in the calculation of macroscopic plasma properties such as the
6

Fig. 2. (Top left) LTE SpK calculation of �̄� for Al. (Top right) NLTE SpK calculation
of �̄� for Al. Overlaid as coloured circles are results from a steady state NLTE FLYCHK
calculation. (Bottom left) Temperature lineout of �̄� at mass density of 0.01 g/cc.
(Bottom right) Fractional occupation of each ionic stage as calculated by SpK in LTE
and NLTE for a mass density of 0.01 g/cc. The largest deviations between LTE and
NLTE are seen at high temperature and high ionic stages.

equation of state, transport coefficients and opacity. Common average
atom models, such as Thomas–Fermi, do not resolve the separate ionic
stages. NLTE effects can also have a significant impact on the ionisation
equilibrium and the resulting derived quantities. In this section we will
compare SpK’s calculation of ionisation to the NLTE code FLYCHK [64].
FLYCHK utilises the screened hydrogenic model and allows solution to
the full rate equations in its NLTE calculations. In this comparison, the
steady state optically thin NLTE solution from FLYCHK is used. We will
use Aluminium as a test case — the results are shown in Fig. 2.

Good agreement is seen between SpK and FLYCHK on the average
ionisation level. The largest deviations are seen at intermediate den-
sities (≲ 𝜌solid, 2.7 g/cc for Al) and low temperatures (∼ 1 eV). This
warm dense matter (WDM) regime is highly sensitive to the pressure
ionisation models so disagreement is to be expected.

5.2. Integrated opacities

The Planckian and Rosseland mean opacities are key coefficients in
the transport of radiation through a medium. Within the diffusive ap-
proximation, the Planckian opacity describes the absorption/emission
properties of the plasma and the Rosseland opacity sets the diffusivity
of the radiation. These mean opacities also serve as a good benchmark
as the whole of density–temperature phase space can be easily visu-
alised. Model deviations suggest differences/errors in the population
and radiative property calculations. In this section, we will compare
opacities for Iron Oxide (Fe2O3) given its use in HEDP radiative prop-
erties experiments [65,66]. LTE Planckian and Rosseland opacities from
SpK, TOPS [67,68] and IMP [27] are compared in Fig. 3.

Good agreement is found across the temperature range between
all models at lower densities. The models separate more at higher
densities, with SpK predicting the highest integrated opacities at low
temperature. This is to be expected as SpK’s approach is to modify the
ideal Saha solution with additional non-ideal physics terms, which will
likely break down at high coupling where we are far from ideal gas
behaviour. In fact, SpK breaks the Bernstein & Dyson Rosseland opacity
upper limit at low temperatures. SpK’s inaccuracy at high coupling
parameter can be remedied by interpolating to cold opacity data —
this method is described in Section 6.1.
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Fig. 3. (Left column) Planck opacities of Fe2O3 as calculated by SpK, IMP and TOPS.
IMP calculations failed below a temperature of 10 eV. (Middle column) Rosseland
opacities of Fe2O3 as calculated by SpK, IMP and TOPS. (Top Right) Lineouts of the
Planck mean opacity at 0.01 and 10.0 g/cc as a function of temperature. (Bottom
Right) Lineouts of the Rosseland mean opacity at 0.01 and 10.0 g/cc as a function
of temperature. Also shown are, in the solid black lines, the scattering opacity 𝜅𝑇
calculated from the Thomson cross section and, in the dotted black line, the Bernstein
& Dyson opacity upper limit [69], 𝜅𝐵𝐷 . The plotted TOPS Rosseland opacities include
the scattering opacity, while SpK and IMP do not.

5.3. Spectrally resolved opacities

SpK can also produce spectrally resolved opacities which fully utilise
the strengths of the dynamic treap data structure. While SpK’s atomic
model is often insufficient for spectroscopic quality calculations of
spectral lines, intermediate spectral resolution is very important for
synthetic diagnostics and RMHD modelling. Filtered X-ray diagnostics
depend on the incident spectrum and multigroup radiation transport
requires multigroup opacity tables, which will be described further in
Section 6.

In this section, we will compare SpK results against the detailed
term accounting code ALICE [70]. We will use the test case used by
Hill et al. [70] of an LTE opacity calculation for Chlorine at 0.005 g/cc
and 100 eV, for which ALICE was compared to other well-benchmarked
opacity codes. Fig. 4 shows a comparison between SpK and ALICE
calculations for this test case.

Without the UTA model SpK has too few spectral lines due to DCA
lacking fine structure, this leads to troughs of low opacity between
lines. To approximately account for the fine structure line forests,
the DCA spectral lines are broadened by an additional Doppler width
calculated using UTA theory, see Eq. (10). When the UTA model is used
within SpK, good model agreement on the spectrally resolved opacity
is obtained. However, SpK does not resolve the line forests and instead
provides a much smoother spectrum.

5.4. Ionisation potential depression

As the plasma coupling parameter increases, non-ideal effects such
as IPD will be become more significant. Accurate IPD models are par-
ticularly important in modelling the warm dense matter regime where
the coupling parameter is order unity. SpK has a variety of IPD models
implemented, the most sophisticated of which is the static structure
factor based calculation derived by Lin et al. [43,44]. In this section,
7

Fig. 4. SpK LTE spectrally-resolved opacity calculation for Chlorine at 0.005 g/cc and
100 eV comparing to results from the detailed term accounting code ALICE [70]. The
separate subplots show SpK calculations with and without the UTA model described
in Section 2.2. The inclusion of UTAs ensures good agreement for the average opacity
within the line forests.

Fig. 5. (Left) IPD energies as a function of density for a �̄� = 5 and 𝑇 = 100 eV
plasma. Results from the static structure factor (SSF), Debye–Hückel (DH) and Stewart–
Pyatt (SP) models are shown. Also shown as a red diamond is the experimental result
from Ciricosta et al. [42] for 100 eV Al at 6 × 1022 1/cc number density. (Right)
Corresponding HNC calculations of the SSF at 10 g/cc, �̄� = 5 and 𝑇 = 100 eV. The
𝑆𝑂𝐶𝑃
𝑖𝑖 is calculated using unscreened ion potentials in the HNC and a screening cloud

𝑞𝑠𝑐 = 0; 𝑆𝑖𝑖 and 𝑆𝑍𝑍
𝑖𝑖 are as defined in Eq. (19).

we will compare IPD models and evaluate their effect on ionisation. In
Fig. 5 we show calculations of the IPD from various models for a single
ionic species plasma. The SSF calculation lies between the ideal Debye–
Hückel and Stewart–Pyatt results across a wide range of densities. This
is to be expected as Stewart–Pyatt interpolates between Debye–Hückel
and the large coupling ion sphere limit. Previous work on SSF IPD has
shown the Stewart–Pyatt model tends to the ion sphere limit much
faster than more detailed calculations [43]. The IPD calculated by the
SSF model is in line with the experimental result of Ciricosta et al. [42].
Also shown in Fig. 5 are the SpK HNC calculations of the SSF. Large dif-
ferences are observed between the unscreened one component plasma
𝑆𝑖𝑖 and the charge–charge SSF, 𝑆𝑍𝑍

𝑖𝑖 , showing the electron screening
cloud has a non-negligible effect on the low frequency ionic part of the
charge fluctuations [71].

With SpK, we can also investigate how the different models affect
the ionic stage populations by coupling the IPD models to the Saha
equilibrium solver. We will investigate the ionisation equilibrium for
polystyrene (CH) at 10% of solid density. Polystyrene is a common
ablator material in inertial confinement fusion (ICF) capsules and thus
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Fig. 6. (Top) Average ionisation of CH at 0.1 g/cc as a function of temperature.
ines are predictions from various models: Thomas–Fermi (TF) in dashed magenta, Hu
t al.’s ‘Saha-type’ fit [72] to orbital-free molecular dynamics simulations in dashed
ed, TOPS [67] in dashed green, the no IPD or ‘ideal’ prediction from SpK in cyan, the
SF-based IPD SpK result in black and the Stewart–Pyatt (SP) result in blue. Both SpK
esults use the Q-fit microfields pressure ionisation model. (Bottom) The ionic fractions
or various charge states of Carbon as a function of temperature from the SSF SpK
alculations.

ccurate calculation of its properties are key for predictive modelling of
CF experiments. The results of this investigation are shown in Fig. 6.
t is clear that including pressure ionisation physics is necessary in
his regime as the ideal (no IPD) result predicts a significantly lower
onisation than other models. The shell structure is evident in the
pK calculations and leads to a more structured change in ionisation
s a function of temperature. Both the SSF and Stewart–Pyatt IPD
odels were used in conjunction with the Q-fit microfields model of
ressure ionisation. Using the Holtsmark distribution leads to much
arger deviations as the C L-shell was ionised at much lower tem-
eratures. This is to be expected as screening reduces the probability
f experiencing large local electric fields so the ideal gas Holtsmark
reatment is inappropriate for WDM. The ionisation of the CH is in
ood agreement with the chemical picture model TOPS as well as the
its to physical picture models by Hu et al. [72], especially for the
tewart–Pyatt model.

While the first results from the SSF-based IPD model are encour-
ging, future work is needed to ensure it can be used as a standard
odel in SpK over analytic models like Stewart–Pyatt. The model itself

s not sufficiently robust. To ensure convergence in the HNC model,
he density must be stepped up and the radial distribution function
teratively evolved to gain stability. At very high coupling, the HNC
ode can fail to converge completely. The free-electron SSF, 𝑆0

𝑒𝑒, can
lso be more accurately evaluated, whether through the random phase
pproximation (RPA) or including the dynamic local field correction,
(𝑘, 𝜔). The model could also be extended to also calculate the mi-
rofields distribution, allowing a self consistent picture of the non-ideal
ense plasma physics. Until this capability is developed, we have shown
he combination of the Stewart–Pyatt IPD and Q-fit microfields models
re suitably accurate and can be used across the whole parameter space.

. Opacity tables & radiation transport

One of the primary uses of SpK is to produce LTE and NLTE opacity
ables for use in (RMHD) simulations using the code Chimera [2].
8

himera is an Eulerian radiation-magnetohydrodynamics code with
1∕3[73] multigroup radiation transport [74], flux-limited Spitzer–
ärm thermal transport [75] with explicit super-time-stepping [76],
xtensive extended MHD capabilities [77], Monte-Carlo alpha particle
ransport [4] and equation of state tables from FEoS [78–80]. The 𝑃1∕3

multigroup radiation transport equations are as follows:
𝜕𝐸𝜈
𝜕𝑡

= 𝜅𝑃 ,𝜈
(

𝑆𝜈 − 𝑐𝐸𝜈
)

− ∇ ⋅ 𝐹𝜈 , (44)

𝜕𝐹𝜈
𝜕𝑡

= −3𝜅𝐹 ,𝜈𝑐
′𝐹𝜈 − 𝑐′∇(𝑐𝐸𝜈 ) , (45)

𝑑𝑈𝑒
𝑑𝑡

= ∫ 𝜅𝑃 ,𝜈
(

𝑐𝐸𝜈 − 𝑆𝜈
)

𝑑𝜈 . (46)

where we have included a reduced speed of light, 𝑐′, which can be used
to increase computational efficiency at the cost of accuracy in the free-
streaming limit and the flux-averaged opacity [74], 𝜅𝐹 . The explicit
time integration is performed using an integrating factor [74,81] and
in the radiation energy density equation the flux divergence and ab-
sorption/emission terms are operator split. In 1D Cartesian geometry,
the method is as follows:

𝐹 𝑛+1
𝜈,𝑖+1∕2 = exp

[

−𝜏𝑖+1∕2
]

𝐹 𝑛
𝜈,𝑖+1∕2 (47)

−
𝑐
(

1 − exp
[

−𝜏𝑖+1∕2
])

3𝑑𝑥�̂�𝐹 ,𝜈,𝑖+1∕2

(

𝐸𝑛
𝜈,𝑖+1 − 𝐸𝑛

𝜈,𝑖

)

,

𝐸∗
𝜈,𝑖 = 𝐸𝑛

𝜈,𝑖 − 𝑑𝑡
𝐹 𝑛+1
𝜈,𝑖+1∕2 − 𝐹 𝑛+1

𝜈,𝑖−1∕2

𝑑𝑥
, (48)

𝛥𝑅,𝜈,𝑖 =
(𝑆𝜈,𝑖

𝑐
− 𝐸∗

𝜈,𝑖

)

(

1 − exp
[

−𝑐𝜅𝑃 ,𝜈,𝑖𝑑𝑡
])

, (49)

𝐸𝑛+1
𝜈,𝑖 = 𝐸∗

𝜈,𝑖 + 𝛥𝑅,𝜈,𝑖 (50)

𝑈𝑛+1
𝑒,𝑖 = 𝑈𝑛

𝑒,𝑖 −
∑

𝜈
𝛥𝑅,𝜈,𝑖 , (51)

𝜏𝑖+1∕2 = 3�̂�𝐹 ,𝜈,𝑖+1∕2𝑐
′𝑑𝑡 , (52)

�̂�𝐹 ,𝜈,𝑖+1∕2 =
2

1
𝜅𝐹 ,𝜈,𝑖

+ 1
𝜅𝐹 ,𝜈,𝑖+1

, (53)

with time index 𝑛, spatial index 𝑖, cell width 𝑑𝑥 and time step 𝑑𝑡 -
the above is easily generalised to other geometries and multiple spatial
dimensions. The exponential integrating factors are approximated using
a combination of Taylor series and fast numerical approximations [82].
Externally provided opacity data is needed for both 𝜅𝑃 ,𝜈 and 𝜅𝐹 ,𝜈 .
Currently multigroup Planckian and Rosseland opacities are used for
𝜅𝑃 ,𝜈 and 𝜅𝐹 ,𝜈 respectively to ensure accuracy in the diffusive limit. Since
Chimera is fully explicit, many sub-cycles of the radiation transport are
needed per hydrodynamic time step to ensure stability. To maintain
computational efficiency, the opacity table indices are cached for quick
interpolation in temperature at fixed density. During sub-cycling, the
opacities are also only looked up after a user-defined fractional increase
in electron temperature on a per-cell basis. A numerical benchmark
between multigroup P1∕3 and implicit Monte Carlo [83] is shown in
Fig. 7. The radiation boundary conditions [84] are treated as a Marshak
boundary with an incident radiation intensity, 𝐼𝜈 :

̂ ⋅ 𝐹𝜈 = ⟨𝜇⟩
(

𝑐𝐸𝜈 − ∫�̂�⋅𝛺<0
𝐼𝜈 (𝛺)𝑑𝛺

)

(54)

− ∫�̂�⋅𝛺<0
|�̂� ⋅𝛺| 𝐼𝜈 (𝛺)𝑑𝛺 .

For an isotropic incident flux, this simplifies to:

̂ ⋅ 𝐹𝜈 = ⟨𝜇⟩𝑐𝐸𝜈 −
2⟨𝜇⟩ + 1

4
𝑐𝐸𝜈,inc , (55)

where �̂� is the surface normal of the boundary, ⟨𝜇⟩ is the average cosine
of the exiting flux (generally set to 1∕2) and 𝐸𝜈,inc is the energy density
of incoming radiation. This boundary condition can be used to in-
clude an external isotropic radiation drive to radiation-hydrodynamics
problems such as inertial confinement fusion implosions.
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Fig. 7. A numerical benchmark of Chimera with Fleck & Cummings’ implicit Monte
Carlo solution to frequency dependent radiation transport, compared at 3 different
times, 𝑡, given as distance travelled in the free-streaming limit, 𝑐𝑡. Chimera is shown in
the solid lines and Fleck & Cummings’ results are shown with the diamond symbols. The
two panels show the results for two different absorption cross sections (in cm−1, with
ℎ𝜈 and 𝑇 in keV) proposed in the original work [83]. The plotted Chimera simulations
used a cell resolution of 100 um and 100 photon energy groups.

Fig. 8. A numerical benchmark of Chimera with the analytic diffusive radiative shock
problem of Lowrie [85,86]. The top panels show the Mach 2 subcritical shock and
the bottom panels show the Mach 5 supercritical result. The black dashed lines show
the analytic results and the red, green and blue lines show the electron temperature,
radiation temperature and mass density from Chimera respectively. The plotted Chimera
simulations used a cell resolution of 1∕3 um and a reduced speed of light 𝑐′ =
× 107 m∕s.

To test the coupling of radiation transport and hydrodynamics, the
on-equilibrium radiative shock benchmark of Lowrie [85] is simulated
sing Chimera. The dimensional upstream and downstream conditions
rom Chatzopoulos et al. [86] are used. The results are shown in Fig. 8.
ood agreement is found between Chimera and the analytic test prob-

em, thus verifying the implementation of the radiation-hydrodynamic
oupling in the diffusive regime. Other publications with Chimera
imulations [2–4,77,87,88] have utilised SpK opacity tables and the
mplementation of radiation transport described here.

.1. Cold opacity curves

As discussed in previous sections, many of the approximations used
n SpK break down in the high-coupling regime. Therefore, to ensure
ccuracy in opacity for low temperature, near solid density materials,
9
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SpK opacity tables have the option to use Henke [89] atomic form
factors to calculate the photo-absorption opacity:

𝜅𝑎 = 2𝑟0𝜆𝑓2𝑛𝑖 , (56)

where 𝑟0 is the classical electron radius, 𝜆 is the photon wavelength and
𝑓2 is the imaginary part of the atomic scattering factor. Around a user-
defined temperature the cold opacity is blended into the SpK-calculated
opacity:

𝜅 = 𝐿(𝑇 )𝜅SpK + (1 − 𝐿(𝑇 ))𝜅Henke , (57)

where 𝐿(𝑇 ) is the interpolation function and takes a logistic function
form.

6.2. Scattering opacity

For high photon energies, the scattering cross section can become
comparable to or exceed the absorption cross section. In the case
of isotropic scattering with negligible frequency shift, the radiative
transfer equation becomes:
[ 1
𝑐
𝜕
𝜕𝑡

+𝛺 ⋅ ∇ + (𝜅𝜈 + 𝜅𝑠,𝜈 )
]

𝐼𝜈 =

𝜈 + 𝜅𝑠,𝜈 ⋅
1
4𝜋 ∫ 𝐼𝜈𝑑𝛺 , (58)

here 𝜅𝑠,𝜈 is the scattering opacity, 𝐼𝜈 is the spectral radiation intensity
nd 𝑗𝜈 is the emissivity. From this, we can form the spectral moment
quations including the effects of scattering:
𝜕𝐸𝜈
𝜕𝑡

= 𝜅𝜈
(

𝑆𝜈 − 𝑐𝐸𝜈
)

− ∇ ⋅ 𝐹𝜈 , (59)

𝜕𝐹𝜈
𝜕𝑡

= −(𝜅𝜈 + 𝜅𝑠,𝜈 )𝑐𝐹𝜈 − 𝑐2∇ ⋅ 𝐏𝜈 , (60)

here 𝐏𝜈 is the radiation pressure tensor. From these equations, we can
ee that the scattering opacity should be included in the flux equation
ut not the energy density equation. Therefore, the scattering opacity
s typically added only to the Rosseland mean or multigroup opacities.
n SpK, the total Klein–Nishina cross section is used to calculate the
cattering opacity and can optionally be added to the opacity tables.
t is worth noting that since we have assumed negligible frequency
hift, scattering does not affect the photon–electron energy exchange
rocess. It should be noted that at high photon energies (ℎ𝜈 ∼ 𝑚𝑒𝑐2),
ompton scattering is far from isotropic and the frequency shift is large.
herefore, a more detailed approach to scattering is required at these
nergies.

. Post-processing capabilities

Another key application of SpK data is the post-processing of hydro-
ynamic simulations to produce synthetic diagnostic data. This involves
olving the radiation transport equation along a particular line of sight,
r characteristic:

𝐼𝜈 = ∫

∞

−∞
𝑆𝜈

(

1 − exp
[

−𝜏𝜈 (𝑠)
])

𝑑𝑠 , (61)

𝜈 (𝑠) = ∫

𝑠

−∞
𝜅𝜈 𝑑𝑠′ , (62)

here 𝐼𝜈 is the spectral radiation intensity arriving at the detector.
hese equations can be solved using the same inverse ray trace utilised
or neutron transport [90]. The spectral grid can be a dynamically
volving treap with SpK running inline or a static array using tables or
nline SpK. Fig. 9 shows a schematic of a spectrally resolved radiative
ransfer solution on a Cartesian grid using the treap data structure to
ynamically capture the line absorption features:

For large 3D simulations > 106 cells, a separate, more computation-
lly efficient inverse ray trace code based on SpK opacity tables has

een written named X-ray Post Processor (XP2).
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Fig. 9. A diagram showing how a spectrum is modified by the cells emissivity, 𝑗𝑖,
and opacity, 𝜅𝑖, as it is marched through the computational grid in the radiation
transport solution. The spectrum is stored using the treap data structure, allowing points
to be dynamically added as the spectrum evolves. This is especially important when
line absorption and emission features emerge from an otherwise smooth spectrum, as
demonstrated in this example.

8. Discussion & future work

In this work, we have described the fast atomic and microphysics
code SpK. The model works in the chemical picture and solves a mod-
ified Saha equation to find bound and free electronic state occupation
in chemical equilibrium. These modifications include non-ideal physics
such as ionisation potential depression and pressure ionisation and
the relaxation of local thermal equilibrium at low electron densities.
SpK is then used to compute spectrally resolved opacities on uniquely
designed data structures, treaps, and/or compute tabular data for use in
radiation-hydrodynamics or post-processing codes. Comparisons with
other state-of-the-art codes show reasonable agreement given SpK’s
range of validity.

There are many avenues for continued improvement of SpK’s capa-
bilities, we give a few notable examples here:

Work is under-way to compute equation of state and transport
properties using SpK. These capabilities would operate in much the
same way as the opacity model, chemical equilibrium would be solved
for and the resultant state and ionic occupancies would be used to
compute equilibrium properties. With opacity, equation of state and
transport properties all computed from the same model, the radiation-
hydrodynamics equations can be closed fully self-consistently.

The use of isolated atom levels and rates allows the potential
of reading in more accurate atomic data rather than relying on the
screened hydrogenic model with NIST, with the possibility of including
fine structure. In this work it has been shown that treating bound
states in a plasma as isolated atomic levels with reduced statistical
weight and energy shifts can lead to sharp jumps in ionisation at high
coupling — which is also seen in other chemical picture models like
ATOMIC/CHEMEOS [53]. As discussed, this is a result of using a low
coupling scheme and adding non-ideal physics models to extrapolate to
higher coupling. Whether this extrapolation can be improved will be
investigated, particularly a consistent coupling between the HNC and
Saha models in the dense plasma limit.

The chemical picture allows more complex species to be included
in the chemical equilibrium calculation. For example, the formation
and dissociation of molecules can be described by analytic partition
functions and thus could be included in SpK’s extended Saha population
solver. The inclusion of molecular states is particularly pertinent in the
context of inertial confinement fusion. The deuterium–tritium (DT) fuel
is initially in a molecular state and thus accurate simulation of ICF
physics requires an adequate description of molecular dissociation.
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