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ABSTRACT

Real-time flood forecasting is crucial for supporting emergency responses to inundation-prone regions. Due to uncertainties in the future (e.g.,
meteorological conditions and model parameter inputs), it is challenging to make accurate forecasts of spatiotemporal floods. In this paper, a real-
time predictive deep convolutional generative adversarial network (DCGAN) is developed for flooding forecasting. The proposed methodology
consists of a two-stage process: (1) dynamic flow learning and (2) real-time forecasting. In dynamic flow learning, the deep convolutional neural
networks are trained to capture the underlying flow patterns of spatiotemporal flow fields. In real-time forecasting, the DCGAN adopts a cascade
predictive procedure. The last one-time step-ahead forecast from the DCGAN can act as a new input for the next time step-ahead forecast, which
forms a long lead-time forecast in a recursive way. The model capability is assessed using a 100-year return period extreme flood event occurred
in Greve, Denmark. The results indicate that the predictive fluid flows from the DCGAN and the high fidelity model are in a good agreement (the
correlation coefficient � 97% and the mean absolute error � 0:008m) for a lead-900 time step forecast. This is an important step toward real-
time flow forecasting although further evaluation of the DCGAN performance is required in complex realistic cases in the future.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0051213

NOMENCLATURE

pr Total number of nodes in a scalar grid in the computation
domain X

X Locations of nodes in the computation domain X,
X ¼ ðX1;…;Xpz ;…;Xpr Þ

s Lead time length of the predictive variable solutions
K Previous time length of the historical variable solutions
U Variable solutions at temporal and spatial spaces
~U Variable forecast during the lead time period tN ; tNþs

Ug Variable solutions obtained by the generator during the train-
ing process

Ud Real variable data used to distinguish it from the generated
data Ug during the training process

I Input dataset, containing previous length-K time series of
variable solutions

O Output dataset, containing the one-time step-ahead predic-
tive variable solution

I. INTRODUCTION

Floods, as one of the most dangerous natural disasters, cause loss
of life and property in many countries in the world. For example,
according to a report by the Parliamentary Office of Science and
Technology,1 urban flooding causes losses of 270 million pounds per
year in England and Wales with 80 000 homes at risk. Therefore, rapid
real-time flood forecasting is of great significance for flood hazard mit-
igation and advanced management of policy responses to flood disas-
ter.2–4 In general, floods are characterized by nonlinearity and non-
stationarity fluid flows,5–7 which exhibit complex spatiotemporal
dynamics. In addition, the long lead-time flood forecasting faces the
increasing uncertainties from various sources, for example, model
inputs and parameters. Thus, it is particularly difficult to make accu-
rate long lead-time flood forecast in traditional computational
dynamic models.8

Recent research progress reports have demonstrated that
machine learning-based methods are powerful in simulating nonlinear
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and complex systems.9–11 The deep learning methods can identify the
main dynamic patterns from historical datasets and reveal the intricate
structures.12–17 Recent research efforts in machine learning have been
made to predict the spatiotemporal physical dynamics.14,18–20 For
example, Hu et al.18 proposed a long-short term memory (LSTM)-
reduced order model (ROM) for flooding prediction, where having the
compatibility of LSTM and ROM enabled solving predictive problems
efficiently and accurately. Ahmed et al.21 And Shi et al.22 first introduced
convolutional neural network (CNN) to LSTM for precipitation now-
casting. It has been proved that CNN is a powerful tool for extracting
the spatial dynamic features and reducing the dimensional size. Wiewel,
Becher, and Thuerey14 also proposed the hybrid-CNN-LSTM for
predicting the temporal evolution of dense physical functions.
Notwithstanding the success of machine learning in the aforementioned
applications, most of these models are applicable to sequence nowcast-
ing using the history datasets, and only one-time step-ahead or very
short lead-time forecast could be achieved.23–27 There are still challenges
in real-time forecasting for a long lead-time, for example,

• Uncertainty in future flow dynamics (meteorological, hydrological
and boundary condition uncertainty): we need to explore whether
the trained machine learning model using the datasets in the past
is able to predict the future flow dynamics (beyond the training
period). This is dependent on whether the available training data-
sets are good/big enough for capturing various complex fluid
flow dynamics in the future.

• Accumulated forecast error: In real-time forecasting, the predicted
variable solution from the previous time levels will be used as
inputs for prediction at the next time levels. With increasing the
length of forecast, the cumulative error in time series prediction
may become larger, thus leading to a predictive failure in long
lead-time forecasting. In the work of Hu et al.,18 it was found
that the predictive accuracy in LSTM modeling decayed rapidly
when the predictive lead-time was extended to beyond the train-
ing period. This indicates that capturing dependencies of features
between successive time periods in the model becomes more
intractable as the prediction horizon extends in time. This consti-
tutes a challenge in real-time forecasting for a long lead-time.

In this work, a deep convolutional generative adversarial network
(DCGAN) is proposed to tackle challenges presented by the long lead-
time flooding forecasting. GANs are capable of processing high-
dimensional datasets and producing high-resolution images.28–31 Recent
progress in deep learning has shown that GAN-based techniques are
promising for spatiotemporal-based applications such as trajectory pre-
diction, events generation and time-series data imputation.32 Cheng
et al.33 first introduced DCGAN for predicting spatiotemporal flow dis-
tributions. This work mainly focused on simulations of parameterized
nonlinear fluid flows for a training period. It was shown that the complex
features of flow dynamics were captured by the adversarial networks.

In this work, further implementation of the DCGAN has been
presented for long lead-time flood forecasting in the future (beyond
the trained period). The capability of the DCGAN has been evaluated
for a realistic flooding event in Denmark. The main features of the pre-
dictive DCGAN are:

• An efficient DCGAN architecture, consisting of deep convolu-
tional neural networks, learns rich distributions from the high-

dimensional spatiotemporal datasets and yields a low computa-
tion cost for predicting spatiotemporal floods.

• A cascade predictive implementation of the DCGAN provides accu-
rate predictive results for a long lead-time, which highlights the
potential in complex and massive applications. During dynamic
flow learning, the spatiotemporal flow features of historical high-
dimensional flow fields are deeply exploited by the deep convolu-
tional neural networks, thus capturing the underlying flow patterns.
During real-time forecasting, the forecast process follows a cascade
manner, which means that the last one-time step-ahead predictive
solution is used as a new input for the next step forecast.

• Having the capability of exploring the flood propagation process
over an urban area.

The paper is organized as follows: The governing equations for
flood forecast problems are briefly formulated in Sec. II. The real-time
DCGAN for flood forecasting is introduced in detail in Sec. III.
Section IV demonstrates the predictive performance of the DCGAN
using flood events in Greve, Denmark, as a realistic test case. Finally in
Sec. V, conclusions are presented.

II. SPATIOTEMPORAL FLOOD FORECASTING
PROBLEM

In traditional computational dynamic models, the parameterized
set of partial differential equations (for example, the Navier–Stokes or
shallow water equations) are used for resolving flood dynamics prob-
lems as

RðU ; l; x; tÞ ¼ S; (1)

where R is the nonlinear model operator, U represents the variables to
be predicted (for example, velocity, pressure, water depth, etc.), x is the
spatial coordinate system, l denotes the uncertainty parameters,
boundary and initial conditions, t is the time, and S denotes the source
term.

The spatiotemporal flood forecast process is a way to learn from
the historical dataset U 2 <tN�pr and predict the future flow solution
U 2 <tNþs�pr on the spatial space (where s is the lead time step, N rep-
resents the number of time steps, pr is the total number of nodes in the
computation domain X). Given the solutions/dataset at the previous
length-K time series of variable solutions fUti ji ¼ 1;…;Kg, the fore-
cast of length-s time series of variable solutions fUti ji ¼ 1;…; sg can
be expressed mathematically as

Utnþ1 ;…;Utnþs ¼ P Utn�Kþ1 ;…;Utn ; lð Þ; (2)

where P represents a dynamic forecast model for the fluid flows
expressed in Eq. (1), Utn is the variable spatial solution at time step tn,
and l as the conditional input is used to improve the forecast accu-
racy. In this work, the dynamic predictive model P will be represented
by a real-time predictive DCGAN, which will be introduced in Sec. III.

The variables used in Secs. III and IV are defined in the
Nomenclature.

III. DEEP CONVOLUTIONAL GAN FOR REAL-TIME
FLOOD FORECASTING

The main objective of this work is to develop a real-time predic-
tive DCGAN tool for spatiotemporal flood modeling. To achieve this
objective, a two-stage process is adopted (shown in Fig. 1):
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• Dynamic flow learning. During the training process, the dynamic
model P in Eq. (2) is represented by the DCGAN, which com-
bines the generator G and discriminator D modules. Given the
training input–output datasets ðItr;OtrÞ, the spatiotemporal flow
features and dynamic patterns of historical floods are deeply
exploited by the DCGAN. Once the training process is finished,
an optimal dynamic system P is obtained aiming to learn the
flow features in time and space (the details of the training pro-
cess, see Sec. III A).

• Real-time forecasting. The real-time forecast adopts a cascade
manner for predicting the flow evolution over time. The last one-
time step-ahead forecast from the DCGAN can act as a new
input for the one-time step-ahead forecast, which forms a long
lead-time forecast in a recursive way (the details of the forecast-
ing process, see Sec. III B).

A. Dynamic flow learning of DCGAN

A DCGAN consists of two modules: a generator G and a discrim-
inator D.34 As shown in Fig. 2, the generator is responsible for generat-
ing spatiotemporal distributions of data Ug from a random
distribution I. The discriminator is responsible for distinguishing the
real data Ud from the generated data Ug by making a binary decision.
Therefore, the dynamic model P is represented by the two modules in
the DCGAN (P ¼ ðG;DÞ).

1. Generator network

We use a deep neural network Fg that takes the inputs I with
length-K time steps fUtn�Kþ1ðXÞ;…;Utn�iþ1ðXÞ;…;UtnðXÞ;lg. As
shown in Fig. 2, the generator consists of deep convolutional layers,
and each hidden layer is followed by an activation function [e.g., the
rectifier nonlinearity (ReLU), the hyperbolic tangent function, and
the sigmoid function].35 The convolutional layers are able to capture
the spatial and temporal dependencies in a flood field by using filters.
Filters often extract certain types of features from the inputs and can
represent spatially localized interactions.36 The batch normalization37

is used which stabilizes learning by normalizing the output values
retain a mean of 0 and standard deviation of 1. During the training
process shown in Fig. 2, the parameters w (weights and bias in the

neural network) in the generator are updated to minimize the loss
functionlG,

lG ¼ EI�pIðIÞ log ð1� DðGðIÞÞÞ½ �; (3)

where pIðIÞ is a prior distribution for the inputs I.

2. Discriminator network

The discriminator takes as its inputs a generated forecast Ug

and a targeted output (i.e., real data) O (O ¼ Ud ¼ Utnþ1ðXÞ). The
generated and targeted datasets in the discriminator are processed
using deep convolutional layers and full-connected layers, and
each hidden layer is also followed by an activation function and
batch normalization similar to the architecture used in the genera-
tor. The output layer is densely connected to the final hidden layer
which yields a number between 0 and 1. The output DðUdÞ ¼ 1
means that the targeted outputs Ud are accepted by the discrimina-
tor while DðGðIÞÞ ¼ 0 means that the generated forecasts Ug are
rejected.

In the model training process, the parameters f (weights and bias
in the neural network) in the discriminator are updated by maximiz-
inglD as

lD ¼ EUd�pdataðUdÞ logDðUdÞ½ � þ EI�pIðIÞ log ð1� DðGðIÞÞÞ½ �; (4)

where pdataðUdÞ is the probability data distribution for the targeted
outputsUd .

Combining the loss functions lG in Eq. (3) and lD in Eq. (4),
the objective function for the DCGAN can be expressed as

min
G

max
D

lðG;DÞ ¼ EUd�pdataðUdÞ logDðUdÞ½ �
þ EI�pI ðIÞ log ð1� DðGðIÞÞÞ½ �: (5)

In practice, gradient-based methods, for example, the adaptive
moment estimation (Adam) optimizer38 and RMSprop,39 are used to
optimize the loss function lðG;DÞ. The model architecture and
parameters of the DCGAN are described in detail in Table I applied to
flood prediction problems in this paper. After completing the dynamic
learning process of the DCGAN, the parameters in the generator and
discriminator are optimized. The flood fields U in the lead-time steps
can then be predicted by the DCGAN.

FIG. 1. The schematic diagram of the
dynamic flow learning and forecast pro-
cesses (taking the wave as an example).
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B. Real-time forecast of DCGAN

Once the DCGAN used for representing the dynamic model
P is generated during the dynamic learning process, the one-
time step-ahead forecast of fluid field ~U can be obtained. For
the one-time step-ahead flood forecast in Eq. (2) can be rewrit-
ten as

Utnþ1ðXÞ ¼ G Utn�Kþ1ðXÞ;…;UtnðXÞ; l
� �

: (6)

To further achieve the long lead-time forecast of floods, a cascad-
ing deployment is used as shown in Fig. 3. It starts with the one-time
step-ahead forecast f~UtnðXÞjn ¼ K þ 1g, given the inputs I 2 <tK�pr

containing K � time steps historical data fUtnðXÞjn ¼ 1; ::;Kg.
Afterwards, in the following one-time step-ahead forecast f~UtnðXÞjn
¼ K þ 2;…g, the previous predicted solution f~UtnðXÞjn
¼ K þ 1;…g will be included in the inputs. Given the previous
length-K time steps, the forecast of length-s time steps in Eq. (2) or
Eq. (6) can be rewritten as

~UtnþiðXÞ

¼
G Utn�kþiðXÞ;…;UtnðXÞ; ~U tnþ1ðXÞ;…; ~U tnþi�1ðXÞ;l
� �

; i� K;

G ~U tn�KþiðXÞ;…; ~U tnþi�2ðXÞ; ~Utnþi�1ðXÞ;l
� �

; i> K;

8<
:

(7)

FIG. 2. Illustration of the dynamic flow learning system: a deep convolutional GAN (DCGAN), which consists of a generator and a discriminator. The generator and discrimina-
tor are composed of convolutional layers and full-connected layers. The combination of the loss functions in two modules forms the adversarial training.

TABLE I. Architecture and model parameter setting of the DCGAN.

Module Layer

Generator G Input
Conv2D, leaky ReLU (a ¼ 0:2)
Conv2D, leaky ReLU (a ¼ 0:2)
Conv2D, leaky ReLU (a ¼ 0:2)
Conv2D, leaky ReLU (a ¼ 0:2)

Output, Tanh
Discriminator D Input

Conv2D, leaky ReLU (a ¼ 0:2)
Conv2D, leaky ReLU (a ¼ 0:2)
Conv2D, leaky ReLU (a ¼ 0:2)
Conv2D, leaky ReLU (a ¼ 0:2)

Full connected, leaky ReLU (a ¼ 0:2)
Output (1), Sigmoid

Parameters Setting
Filter size 3� 3
Batch normalization momentum¼ 0.8
Batch size 10
Optimizer Adam
Learning rate; momentum 2� 10−4, 0.5
Epochs 500
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where i ¼ ð1;…; sÞ, and the historical flow datasets (Utn�kþi ;
…;UtnðXÞ) are used when i<K, while all the inputs originate from
the predicted solution at the previous time steps when i>K (beyond
the training period).

C. Model evaluation

To assess the performance of the DCGAN model developed
in this study, different statistical evaluations including the root
mean squared error (RMSE), the Nash–Sutcliffe efficiency
coefficient (NSE), the coefficient of correlation (CC), the mean
absolute error (MAE), the mean magnitude of relative error
(MMRE), Nash–Sutcliffe efficiency ratio (NSER), and the percent-
age of accuracy-precision (PAP)40 are used. The Nash–Sutcliffe
efficiency coefficient and percentage of accuracy-precision are
defined as

NSE ¼ 1�

Xn
i¼1

ðUi
g � Ui

dÞ2

Xn
i¼1

ðUi
d � Ui

d Þ2

2
66664

3
77775; (8)

PAP¼100 1�
ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

����Ui
g�Ui

d

Ui
d

����
 !2

þ

Xn
i¼1

ðUi
g �Ui

dÞ2

Xn
i¼1

ðUi
d�Ui

d Þ2

2
66664

3
77775

2
vuuuuuuut

0
BBBBBB@

1
CCCCCCA;

(9)

where Ui
g and Ui

d are the ith forecasting and observed flows, respec-
tively, and Ud is the average observed flow. The MMRE and NSER
vary between 0 and þ1, with acceptable levels of performance
between 0 and 1. The PAP ranges from 0 to 100, while zero indicates
both poor accuracy and precision.40

The forecasts are also analyzed in terms of their distributions
by using the Q–Q plot, which is a visual method comparing
the values of observations in the predictive distribution on the
x-axis and the uniform distribution on the y-axis to examine the
reliability of the forecasting distribution. If the plot follows a
1:1 line, it means that the flood forecasts are perfectly reliable. The
advantage of Q–Q plot is that it can illustrate different aspects of
forecasts including under- or over-estimated predictive
uncertainty.41

FIG. 3. Illustration of the real-time fore-
cast of the DCGAN. The forecast of flood
fields employs a cascade manner, i.e., the
last one-time step-ahead forecast from the
DCGAN can act as a new input for the
next step-ahead forecast, which forms a
long lead-time forecast in a recursive way.
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IV. APPLICATION AND RESULTS
A. Study area

To assess the long lead-time predictive capability of the DCGAN
model, it has been applied to a flood event in the northeastern part of
Greve, Denmark. As shown in Fig. 4, Greve is a coastal city connected
to the Baltic Sea, with elevations between 12.76 and �2:1m in the
study domain area. It is potentially affected by flood disasters induced
by extreme sea-level events along its coast. For example, an extreme
historical flood in K�ge Bay occurred in 13th October 1760, with a
maximum water level of 3:7m.42 Considering the impact of climate
change in the next 100 years, future climate change conditions should
be taken into account to estimate the future extreme sea-level.43

Therefore, a 100-yr return period extreme water level event (2100

upper sea-level flood event in Berbel and Roman42) was used in this
paper, to predict the expected changes in future sea surges (as shown
in Fig. 5).

In this study, the training datasets and reference solutions
(referred to as the real/original water depths) are obtained from the
simulation results by running the high fidelity model—MIKE 3 FM,
which is a software tool for modeling unsteady three-dimensional free
surface flows.44 As shown in Fig. 5, the model domain representing
the coastal area in Greve (Denmark) has a size of 2:3� 7:5 km. The
unstructured mesh consists of a total of 39 290 points. An extreme sea-
water level event with a maximum value 3:08m is used as the input
boundary condition along the coastal line. No normal flow boundary
conditions were applied to other boundaries. The total simulation
time was 24h with a time step Dt ¼ 1 s. The simulations started from

FIG. 4. Study area in Greve, Municipality
of Denmark (left side see Ref. 43).

FIG. 5. Unstructured mesh of study area
and extreme sea water level along the
coastal line.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 056602 (2021); doi: 10.1063/5.0051213 33, 056602-6

VC Author(s) 2021

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0051213/16094358/056602_1_online.pdf

https://scitation.org/journal/phf


a “static” state. To illustrate the DCGAN capability for uncertainty
analysis and forecast, Sec. IVA performs a sensitivity analysis by the
DCGAN with respect to different incoming waves along the coastline,
while Sec. IVB demonstrates the forecasting capability of the DCGAN
for a long lead-time.

B. Uncertainty quantification

In this section, to evaluate model uncertainty in spatiotemporal
flood modeling, we consider different flood events of observed and
predicted floods using different incoming waves. As shown in Fig. 5,
15 types of input parameters (incoming waves) range from �30% to
þ30% of the water level in 2100 upper sea-level flood event are gener-
ated using a Gaussian distribution Nð�l;r2Þ. For example, the mean �l
is 2:18m and the variance of the distribution r2 is 0:047m at t ¼ 6 h
in Fig. 6(b). At t ¼ 12:5 h in Fig. 6(c), the water levels in 15 types of
incoming waves are obtained from the Gaussian distribution between
1:632 and 3:147m.

Given a set of incoming waves (in Fig. 6), the corresponding solu-
tion snapshots U (a total of 145 snapshots sampled at an equal time
interval of Dt ¼ 10min from 0 to 24h, N ¼ 145; pr ¼ 39 290) are
obtained by running the high fidelity model. In model training and
validation processes, a predictive DCGAN is constructed by using the
training and validated input-output pairs. We use the first 12 types of
incoming waves as the training inputs Itr, while the corresponding
training outputs Otr are the collection of the solution snapshots for
each type of incoming waves. During the online predictive process,
given a set of new inputs Ipre, the predictive analysis is undertaken by

the DCGAN. Here, the inputs Ipre are the last three types of incoming
waves (wave 13–15) shown in Fig. 6.

For a given input l 2 Ipre (wave 13), Fig. 7 presents the com-
parison of water depth obtained from the DCGAN and the original
high fidelity model at t ¼ 5; 9; 14; 18 h. It is worth noting that the
predicted flow fields from the DCGAN attain a closer agreement
with those from the high fidelity model at different time levels. The
basic flow physics is clearly captured, and the shape of the water
depth is predicted quite well, especially in urban areas (as shown in
the rectangles in Fig. 7). In addition, a relatively good correspon-
dence is observed between the predicted depth of DCGAN and
those of the original high fidelity model: the correlation coefficient
of results at time levels t ¼ 5; 9; 14; 18 h achieves values beyond
97% shown in Fig. 8. Table II further summarizes the statistical
metrics for model performance. It can be seen that the values of
MMRE and NSER at different time levels are below 0.25, and the
PAP values are beyond 82.

The results indicate that the DCGAN is able to obtain accurate
simulations of spatiotemporal distribution during a fixed simulation
period for given varied boundary conditions. The spatiotemporal flow
features have been faithfully represented as the flow evolves, and the
magnitude of predicted water depth during the simulation period is in
a good agreement with the reference water depth. The promising
results obtained show that the DCGAN is able to detect the underlying
functional mapping through pattern extraction, confirming results
obtained in the work of.35,45,46 Leinonen, Guillaume, and Yuan45 sug-
gested that the DCGAN has potential to solve probability distribution
problems in which the random fields have complex spatial structures.

FIG. 6. Different types of incoming waves obtained from the Gaussian distribution of the extreme sea water level (the solid line representing the 2100 upper sea flood level in
Fig. 5) from 0 to 24 h. (a) represents 15 types of incoming waves, and (b) and (c) are the Gaussian distribution of water depths at t¼ 6 and 12.5h, respectively.
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C. Real-time flooding forecast

In this section, we further test the forecasting ability of DCGAN
in future events that is beyond the training time. In this case, given the
incoming waves (2100 upper sea-level flood event shown in Fig. 5),

the corresponding solution snapshots U (a total of 2881 snapshots
sampled at an equal time interval of Dt ¼ 30 s from 0 to 24h) are
obtained by running the high fidelity model. In the study scenario, the
solutions at first 1800 time steps from 0 s to 15 h are selected as the
training datasets, while the remaining datasets from t1801 ¼ 15:01 to

FIG. 7. Comparison of the spatial distribution of predictive water depth obtained from the DCGAN and the original high fidelity model at t¼ 5, 8, 14, 18 h.
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t2881 ¼ 24h are prepared for one-time step-ahead forecast (as shown
in Fig. 1, tN ¼ t1800 and tNþs ¼ t2700Þ.

To evaluate the predictive ability of the DCGAN, a comparison
between the predicted water depth of the DCGAN and the high

fidelity model has been undertaken. Figure 9 depicts the temporal var-
iations of the water depth at eight points within the computational
domain area X. It can be observed that a relatively good agreement
exists between the predictive and original water depths from
t ¼ 15:02 to t ¼ 23 h. The water depths at eight detectors have the
same variation tendency as the incoming waves from t ¼ 15:02 to
t ¼ 23 h in Fig. 5. The DCGAN results of the water depth at detectors
P5 and P6 along the coastline are very close to those from the high
fidelity model although minor differences (< 0:005m) between results
at peaks are noticed. It can be seen that the water depths at detector P1
obtained from the DCGAN have a slight difference from that of origi-
nal high fidelity model after t¼ 21h. This is due to the fact that the
detector P1 is located at the channel, thus having a larger water depth
even though the level of incoming wave reduces. In addition, there

FIG. 8. The correlation coefficients of water depth solutions between the DCGAN and the original high fidelity model at different time levels: (a) t¼ 5, (b) t¼ 8, (c) t¼ 14, and
(d) t¼ 18 h.

TABLE II. Statistical metrics for water depth solutions between the DCGAN and the
original high fidelity model at t ¼ 5; 8; 14; 18h.

Time (h) CC MMRE NSER PAP

t¼ 5 0.97 0.06 0.24 82.5
t¼ 8 0.97 0.14 0.05 89.4
t¼ 14 0.98 0.09 0.04 93
t¼ 18 0.99 0.21 0.01 85.1
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may exist an arrival time lag at detectors if the impact of buildings is
taken into account in the flooding simulations.43 The promising
results obtained show that the proposed DCGAN can predict the time
series of floods reasonably well in comparison with the high fidelity
model.

To depict the spatial distribution of nonlinear fluid fields during
the forecasting period (from 15.01 to 23 h), the areas marked with rec-
tangles in Fig. 7 are selected to show the visible changes as the flood
propagates over the urban area. The spatial distribution of the pre-
dicted water depth at time t ¼ 15:5; 17:9; 22:8 h is shown in Fig. 10.
Again, very little difference between the results from the DCGAN and
the original high fidelity model can be visually noticed at these time
steps. The underlying flow pattern is captured well by the predictive
DCGAN, especially in complex topographic features, including build-
ings and channels. The absolute error of the water depth predicted by
the DCGAN is also illustrated in Fig. 10, in which the high fidelity
model is taken as the reference solution. It can be noticed that most of

absolute errors are smaller than 0.01m over the whole domain area at
time steps t ¼ 15:5; 17:9; 22:8 h. The influence of buildings is
observed that the absolute errors increase around buildings when the
incoming wave rises from t¼ 15.5 to 17.9 h. However, it relieves when
the water depth declines from t¼ 17.9 to 22.8 h.

To further demonstrate the forecasting capability of the
DCGAN, the error analysis is carried out by four indicators, i.e., root
mean squared error (RMSE), Nash–Sutcliffe efficiency coefficient
(NSE), coefficient of correlation (R), and mean absolute error (MAE),
for a long lead-time forecast. The corresponding evaluation of fore-
casting nonlinear flow results during the lead-times from 15.01 to 23 h
is illustrated in Fig. 11. It can be seen that the values of RMSE and
MAE range from 0 to 0.15 and 0 to 0.08, respectively [in Figs. 11(a)
and 11(c)]. It is worth to mention that values of NSE and R are beyond
0.97 and 0.98, respectively [in Figs. 11(b) and 11(d)]. The maximum
values of RMSE and MAE, as well as the minimum values of NSE and
R, occur when the water level of incoming wave attains its peak around

FIG. 9. Comparison of the temporal distribution of predictive water depth obtained from the DCGAN and the original high fidelity model at eight observed points, where the
water depth from the high fidelity model is taken as the real (original) depth while the predictive depth is referred to as the results from the DCGAN.
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t¼ 18h. This suggests the flood forecasting accuracy is highly corre-
lated with the incoming waves, which exhibits a descending trend
when the water level of the incoming wave increases. It is also noted
that the forecast reliability diminishes after t¼ 21h. The reason for
this is that the forecasting results have a smaller inundation as the
incoming wave decays after t¼ 21h, and the water depth in most parts
of study area decreases to some extent, and may even reach dry condi-
tions. Again, it proves that the flood forecasting accuracy is sensitive to
the boundary conditions, i.e., the incoming sea level.43

In Fig. 11, we can see that there is no obvious trend of increasing
forecast error with rising the lead-time while the statistical error analy-
sis exhibits a close connection with incoming waves. One of the rea-
sons for this is the inclusion of boundary conditions in the inputs at
each predictive time step. The use of the boundary conditions (acting
as the flood event driver) in the DCGAN, could improve the flood

predictions at long lead-time series and mitigate the cumulated fore-
cast error problem. This finding is similar to that of Ref. 47, where
authors found that the driven variables included in weather forecast
patterns could achieve higher accuracies and longer lead-time predic-
tion with use of deep learning methods. While the inclusion of bound-
ary conditions in deep learning leads to a better model performance,48

there is often a lack of information on boundary conditions in a realis-
tic application. To tackle this issue, inverse uncertainty quantification
techniques can be used for estimation and calibration of boundary
conditions. The boundary conditions for limited area simulations
(LAS) are usually obtained from a global model or a large-scale model
containing the area of LAS.

Overall, the results obtained suggest that the DCGAN is a power-
ful tool in flow pattern generalization and in nonlinear flow forecasting
beyond the training period. In future research work, the trained

FIG. 10. Comparison of the spatial distribution of predictive water depth obtained from the DCGAN and the original high fidelity model at time steps t ¼ 15:5; 17:9; 22:8 h.
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DCGAN could also be incorporated into data assimilation techniques,
which can effectively improve the predictive accuracy along with the
real-time driving forcing.49

V. CONCLUSION

Real-time forecasting is of great significance for better decision-
making in flood disasters. In this work, a real-time DCGAN predictive
modeling tool for flood forecasting has been developed. This tool has
the capabilities of dynamic learning and real-time forecast. The
DCGAN can be used to compress the high-dimensional flood fields
into the low-dimensional features, and then recover these latent states
into the original ones. This process extracts the fluid flow features and
learns the dynamic flow patterns.

The proposed approach is assessed with two scenarios, one
focuses on uncertainty quantification of inflow boundary conditions
and the other on evaluation of long lead-time predictive performance
of the DCGAN tool. It has been applied to flood events within Greve,
Denmark. The results show that the DCGAN is able to capture the
complex flow features and explore the flood propagation process over

the urban area. It exhibits an overall good agreement with the original
high fidelity model in simulations of spatiotemporal flow distribution
for a lead-900 time step forecast.

Overall, the proposed tool enables rapid and accurate long lead-
time forecast of dynamic flows and has great potential for real-time
forecasting and management, e.g., flood hazard mitigation and
advanced management of policy responses to flood disaster, effective
water resource management, and irrigation management decisions. In
future work, the DCGAN performance for a long lead-time forecast
will be further evaluated in other real applications (e.g., pollution fore-
cast). The capability of other advanced deep learning methods (e.g.,
convolutional-LSTM22) for real-time forecasting will be also explored.
Data assimilation techniques will be introduced to deep learning for
improving the model accuracy.
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