
1.  Introduction
The presence of ozone at the ground level has detrimental effects on the health of humans and the ecological 
environment (H. Wang, Li, et  al.,  2020; Ezimand & Kakroodi,  2019). Ozone concentration involves tremen-
dous spatio-temporal variability based on photochemical interactions between nitrogen oxides (NOx) and volatile 
organic compounds under certain meteorological circumstances (Jenkin & Clemitshaw, 2000). In recent years, 
the tropospheric ozone has turned into a primary atmospheric pollutant due to rapid growth of industrialization 
and urbanization, which results in approximately 80 thousand premature deaths every year (Feng et al., 2019). 
Therefore, it is necessary to make accurate and efficient ozone concentration forecasts in spatial and temporal 
spaces, thus providing guides for early warning management and control.

Abstract  Efficient and accurate real-time forecasting of national spatial ozone distribution is critical to 
the provision of effective early warning. Traditional numerical air quality models require a high computational 
cost associated with running large-scale numerical simulations. In this work, we introduce a hybrid model 
(VAE-GAN) combining a generative adversarial network (GAN) with a variational autoencoder (VAE) to learn 
the dynamic ozone distributions in spatial and temporal spaces. The VAE-GAN model can not only decipher 
the complex nonlinear relationship between the inputs (the past states/ozone and meteorological factors) 
and outputs (ozone), but also provide ozone forecasts for a long lead-time beyond the training period. The 
performance of VAE-GAN is demonstrated in hourly and daily spatio-temporal ozone forecasts over China. 
The training datasets from 2013 to 2017 and validation datasets from 2018 to 2019 are the collection of data 
from the air quality reanalysis datasets. With the use of VAE, large dataset sizes are decreased by three orders 
of magnitude, enabling hourly and daily forecasts to be computed in seconds. Results show that the VAE-GAN 
achieves a reasonable accuracy in the prediction of both the spatial and temporal evolution patterns of hourly 
and daily ozone fields, as compared to the Nested Air Quality Prediction Modeling System (commonly used 
in China), the reanalysis data and observations during the validation period. Thus, the VAE-GAN is a cost-
effective tool for large data-driven predictions, which can potentially reinforce air pollution prediction efforts in 
providing risk assessment and management in a timely manner.

Plain Language Summary  This work presents a hybrid machine learning model for hourly and 
daily ozone forecasting in spatial and temporal spaces. Our goal is to use the machine learning model for 
exploring the complex nonlinear relationship between the meteorological factors and ozone concentration, and 
to perform long lead-time ozone forecasts accurately and efficiently. The reanalysis ozone datasets from 2013 
to 2019 over China are used for processing different training and prediction scenarios. Our results show that 
the proposed machine learning model can predict the spatio-temporal evolution patterns of the hourly and daily 
ozone concentration accurately and much more efficiently in comparison to the Nested Air Quality Prediction 
Modeling System. Such a data-driven model is promising in different applications, for example, providing early 
warnings of high ozone concentrations in densely populated areas.
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Traditional chemistry transport models (CTMs) for ozone concentration forecasts consider the physical and 
chemical properties of an atmosphere in the processes of diffusion, transfer and air pollution (Ezimand & 
Kakroodi, 2019; Hu et al., 2016; Kumar et al., 2012). They are able to predict the spatio-temporal distributions 
of ambient ozone on a large scale (Mo et al., 2020). For example, Wang et al. (2013) used a global CTM (GEOS-
Chem) to investigate the effects of 2000–2050 global changes in climate and anthropogenic emissions on surface 
ozone over China. However, the ozone concentration forecast involves nonlinear, strong coupling and multivar-
iate problems, thus increasing the difficulty of long lead-time prediction (Stern et al., 2008; Su et al., 2020). 
In addition, the accuracy of CTMs is often limited by relatively coarse resolution, high uncertainty in emis-
sion inventory, model assumptions and parameters, as well as high computational cost (R. Liu, Ma, et al., 2020; 
Sharma et al., 2017).

These challenges have motivated researchers to exploit hybrid efficient and accurate models, for example, a 
variety of machine learning algorithms (Chattopadhyay et al., 2020; Weyn et al., 2020). Machine learning models 
are capable of efficiently handling big data and easily identifying trends and patterns (Hoshyaripour et al., 2016; 
Jia et al., 2020; Kumar et al., 2017). Several previous works have utilized different machine learning models 
to predict ambient ozone concentrations directly from observations and post-processing dynamical modeling 
outputs (Watson, 2019). For example, the MultiLayer Perceptron (MLP) was utilized by Dutot et al. (2007) to 
carry out hourly maximum ozone forecast in the next day in the center of France. Similarly, Eslami et al. (2019) 
employed a deep convolutional neural network (CNN) to predict the hourly ozone concentration by using atmos-
pheric data at the previous day along with in-situ ozone and NO2 concentrations as inputs. In the work of AlOmar 
et al. (2020), the hybrid model (W-ANN) combining an artificial neural network (ANN) with a wavelet transform 
(WT) approach, could provide ozone concentration forecast at multiple time scales (2-, 3-, 4 and 5-ahead hours). 
While these models can predict the future behavior of ozone concentration given knowledge of its past and 
present states at meteorological stations, they rarely explore spatio-temporal dependencies exhaustively. It was 
also found that the model performance was more severely degraded with a long lead-time (Weyn et al., 2019). 
Recently, H. Wang, Li, et al. (2020) presented the spatial and temporal (monthly) correlation in the monitoring 
network for regional ozone prediction. Furthermore, Zhan et al. (2018) used the random forest (RF) and Kriging 
approaches to interpolate the monitoring data on uniform grids and then investigated the spatial and tempo-
ral (daily) relationship of ozone concentrations. These models presented in (H. Wang, Li, et  al.,  2020; Zhan 
et al., 2018) are strongly dependent on the availability (locations and period) of monitoring data. The predictive 
accuracy is usually restricted due to a lack of sufficiently dense observations.

In this study, a hybrid physical-informed deep learning model is proposed for real-time ozone forecasting with a 
high spatial resolution. In hybrid deep learning modelling, the training and validation datasets originate from the 
reanalysis data which optimally combines the numerical solutions from the physical air quality model (here, the 
Nested Air Quality Prediction Modelling System - NAQPMS) and observed data in monitoring stations. Physical 
modelling results from the governing equations can be used to improve understanding of complex ozone transport 
processes and provide the details of the spatial distribution of ozone concentrations, while monitoring data can be 
used for correcting physical modelling results, thus improving predictive accuracy.

A newly developed generative adversarial network (GAN) model (Cheng et  al.,  2020) is introduced for 
spatial-temporal (hourly/daily) ozone forecasting in this work. GANs proposed by Goodfellow et al. (2014), have 
been attractive for producing high-resolution samples (e.g., images). Various versions of GANs have been applied 
for generating different types of high-dimensional data, such as geostatistical maps (Laloy et al., 2018), seismic 
waves (Li et al., 2018), weather maps (Gagne et al., 2020), total electron content map (Chen et al., 2019). GANs 
have the capability of learning hierarchical feature representations in various image analysis problems (Zhong 
et al., 2019). Recently, Cheng et al. (2020) first introduced a variational autoencoder (VAE) into GAN to explore 
spatial and temporal flow dynamics with a reduction of the computational cost. The original GAN consists of a 
generative model (generator) and a discriminative model (discriminator). The generator and discriminator contest 
through an adversarial process to optimize the generative model. Here, the VAE-GAN is a game theoretic frame-
work that involves three modules, an encoder, a decoder and a discriminator (Makhzani et al., 2015). The role 
of the encoder is to transform real and fake samples in a high-dimensional space into a low-dimensional latent 
space. The low-dimensional representations, several orders of magnitude smaller than the dimensional size of the 
original datasets, are then applied to the adversarial network for representation learning and parameter optimiza-
tion, thus alleviating computational burdens (Cheng et al., 2020). After that, the decoder continues to transfer the 
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latent states to high-dimensional samples. In essence, the VAE-GAN model includes a self-training generative 
and discriminative mechanism, providing an attractive way for learning the real sample data distribution in the 
absence of any prior physical or extensive statistical knowledge.

In this work, we have developed a spatio-temporal VAE-GAN for hourly and daily ozone forecasting. We use 
convolutional networks in the VAE-GAN model to improve its scalability for large data-driven modelling and 
implement a recursively forecasting strategy in the model architecture for achieving the long lead-time forecast. 
Overall, the VAE-GAN model developed in this study can: (a) learn and classify the dynamic ozone features 
using high-dimensional datasets; (b) decipher the complex nonlinear relationship between the present states and 
future events among all training samples; (c) provide accurate hourly and daily ozone forecast in a long lead-time 
beyond the training period. By using high-resolution reanalysis data, we show that the VAE-GAN can represent 
both the spatial and temporal variability of ozone concentration. To our best knowledge, this is the first proposal 
of the VAE-GAN for hourly and daily ozone forecasting using a combination of dynamic learning and real-time 
forecasting strategy.

In this work, the VAE-GAN model has been applied to hourly and daily forecasting of ozone concentrations with 
a high spatial resolution (15 × 15 km) across China. The datasets are collected from the air quality reanalysis 
datasets during 2013–2019. The accuracy of the VAE-GAN model has been evaluated by comparing the results 
with those obtained from both the physical air quality model (NAQPMS) and observations at monitoring stations. 
The remainder of this paper is organized as follows. Section 2 provides the details of datasets and methods used in 
this study, the VAE-GAN architecture and forecasting workflow. This is followed by Section 3 with model perfor-
mance analysis of ozone forecasting capabilities in spatial and temporal spaces. Finally in Section 4, conclusions 
are presented.

2.  Data and Methods
Ozone forecasting involves nonlinear, strong coupling and heterogeneous problems (Su et al., 2020). As investi-
gated by Zhan et al. (2018), the key ozone-related meteorological variables are the temperature, relative humidity, 
wind speed, evaporation and sunshine duration. Among these meteorological conditions, the daytime surface 
temperature is an important driver of ozone episodes. A high temperature can accelerate the chemical kinetic 
reaction and emissions of the natural components of ozone increase (Bloomer et al., 2009; Gu et al., 2020; Yin 
et al., 2019). This work thus focuses on developing an ozone forecasting model depending on temperature. The 
impact of other meteorological factors (such as humidity and wind speed) is also explored in Section 3.4.

Given a series of ozone observations {Ot−p, …, Ot} (where p is the length of historical time steps) and the 
temperature data Tt+1 at the predictive time level (t + 1), an one-step-ahead ozone forecast can be expressed 
mathematically as:

𝑂𝑂𝑡𝑡+1 =  (𝑂𝑂𝑡𝑡−𝑝𝑝,… , 𝑂𝑂𝑡𝑡, 𝑇𝑇𝑡𝑡+1) ,� (1)

where 𝐴𝐴 𝑂𝑂𝑡𝑡+1 =

(

𝑂𝑂1

𝑡𝑡+1
,… , 𝑂𝑂𝑘𝑘

𝑡𝑡+1
,… , 𝑂𝑂

𝑀𝑀𝑘𝑘

𝑡𝑡+1

)

 (k ∈ (1, Mk), Mk is the number of points in the study area) represents 
the predictive zone concentration at time level (t + 1) and 𝐴𝐴  is a forecasting model. In this work, the VAE-GAN-
based ozone forecasting model is selected as the forecasting model 𝐴𝐴  . A schematic diagram of the proposed 
VAE-GAN framework is presented in Figure 1.

2.1.  Data

2.1.1.  Reanalysis Data

Ground-level ozone has become a severe pollutant in major urban areas of China (Zhan et al., 2018). Our objec-
tive is to develop an efficient and accurate machine learning tool for providing an interactive ozone map over 
China, which shows real-time (hourly/daily) ozone concentrations with a high spatial resolution across China. 
However, there are only 1436 monitoring stations over China, which are sparse and heterogeneous. It is obvi-
ous that the monitoring data is not enough to represent the spatial distribution of ozone on a high spatial scale. 
Therefore, we select the 7-year Chinese air quality reanalysis (CAQRA) data set for our training and validation 
purposes (Kong et al., 2021). The CAQRA dataset from 2013 to 2019 was produced by assimilating surface 
observations at 1436 monitoring stations into the Nested Air Quality Prediction Modeling System (NAQPMS). 
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Such combination could be the optimal way by which physical modeling results from the NAQPMS can provide 
dynamic understanding from the governing equations, while monitoring data may find unexpected patterns not 
provided by physical modeling.

The CAQRA dataset contains six pollutants (PM2.5, PM10, SO2, NO2, CO and ozone) and meteorological factors 
(temperature, humidity and wind speed) at the high spatial (15 × 15 km) and temporal (hourly) resolution, which 
are publicly accessible at Science Data Bank (ScienceDB). Each ozone map or meteorological map across China 
has a high spatial resolution with a total node number of 47,232. The ozone concentration over China varies in 
both spatial and temporal spaces. For example, as shown in Figure 2, it can be noted that the distributions of aver-
age hourly ozone concentration in June and December of 2018 are heterogeneous, exhibiting significant seasonal 
variations. This can be explained by the fact that ozone production is tightly correlated with meteorological 

Figure 1.  Schematic of real-time ozone forecasting. The architecture consists of two processes: Dynamic learning and real-
time forecasting. In real-time forecasting process, one-step ozone forecast can be obtained by a direct prediction for one-step 
(hourly/daily) lead-time. To get forecasts for a long lead-time, a recursive strategy is adopted, which uses the last one-step 
ozone forecast as a new input to predict the next-step ozone concentration.
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conditions, such as ambient temperature, sunshine radiation and humidity, causing the variation of emitted inten-
sity of atmospheric pollutants in different seasons (Bloomer et al., 2010). The high ozone concentration in June 
is closely related to the enhanced photochemistry reaction due to high temperature and strong solar radiance 
in Summer (Kong et al., 2021). To demonstrate the performance of our proposed model with seasonal varia-
tions, we choose the months of June and December as representing Summer and Winter while exhibiting hourly 
spatio-temporal ozone forecasts in the following Section 3.1.

2.1.2.  Monitoring and Physical Modeling Data

The objective of this study is to develop a machine learning-based ozone forecasting model, which will be accu-
rate and more efficient than existing air quality models. For comparison purposes, the NAQPMS (commonly 
used for real-time pollution forecasting in China, here referred to as the physical model) is chosen. The NAQPMS 
model is driven by the hourly meteorological fields produced by the Weather Research and Forecasting (WRF) 
model, and the aqueous-phase chemistry and wet deposition are simulated based on the Regional Acid Deposi-
tion Model (RADM) mechanism in the Community Multi-scale Air Quality (CMAQ) model. The emissions of 
air pollutants considered in the NAQPMS model include the monthly anthropogenic, biomass burning, biogenic 
volatile organic compound (BVOC), marine VOC, soil NOx and lightning NOx emissions. More details of the 
NAQPMS configuration are introduced in Kong et al. (2021). The hourly physical modeling dataset at the high 
spatial (15 × 15 km) and temporal (hourly) resolutions is generated from the NAQPMS in June of 2018, which has 
the same spatial and temporal resolutions as the reanalysis data (CAQRA data set). We compare the VAE-GAN 
results with those from the NAQPMS, where the monitoring measurements are used as the reference data. Hourly 
monitoring of ozone data is published by the China National Environmental Monitoring Centre (CNEMC). The 
hourly ozone observations are collected from 1436 stations in June of 2018 (Kong et al., 2021).

2.1.3.  Data Processing

During the training and validation processes, the input and output datasets are pre-processed by a Standard Scaler 
normalization method (Buitinck et al., 2013). The ozone concentration and meteorological factors are scaled to a 

Figure 2.  Spatial distribution of the average hourly temperature and ozone concentration in China. (a) and (b) June; (c) and 
(d) December in 2018.
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specific interval prior to training the VAE-GAN model. In this study, the description of the training and validation 
datasets in hourly and daily ozone forecasting is provided in Table 1.

As shown in Table 1, we select the reanalysis datasets in 2017 for model training and 2018 for validation in 
hourly ozone forecasting (in Section 3.1 and Section 3.2). During the validation period, the reanalysis data is 
used for initializing ozone forecasting. We compare the forecasting results with the reanalysis data, monitoring 
observations and results from the physical model-NAQPMS in the six regions of whole China (North, Northeast, 
Southwest, Southeast, Northwest, and Central) as well as highly populated regions (Jing-Jin-Ji (JJJ) Yangtze 
River Delta (YRD) and Pearl River Delta; in Section 3.1 and Section 3.2). In daily ozone forecasting, we use the 
reanalysis data from the year 2013–2017 for model training and the reanalysis data from the year 2018–2019 for 
model validation (in Section 3.3 and Section 3.4).

2.2.  Dynamic Learning Algorithm: VAE-GAN

Given a large historical dataset 𝐴𝐴 𝐴𝐴 = {𝑂𝑂𝑡𝑡−𝑝𝑝,… , 𝑂𝑂𝑡𝑡} ∈ ℜ(𝑝𝑝+1)×𝑀𝑀𝑘𝑘 (where p + 1 is the historical time length and Mk 
is the number of nodes) over the whole China area, it is challenging to efficiently predict the ozone concentration 
in spatial and temporal spaces. Here the VAE machine learning technique, used in a wide variety of applications 
(Gonzalez & Balajewicz, 2018), is introduced with the scope of dimensionality reduction. The architecture of 
VAE (including an encoder 𝐴𝐴  and a decoder 𝐴𝐴  ) in the VAE-GAN model is used to identify low-dimensional 
representations of ozone concentration maps as they evolve in time. In comparison to traditional reduced order 
models (ROMs) using proper orthogonal decomposition (POD; Xiao et  al.,  2019), the VAE has a nonlinear 
activation function for its nonlinearly weighted input, thus better representing the nonlinear physical processes 
(Cheng et al., 2020).

A GAN consists of two modules: a generator 𝐴𝐴  and a discriminator 𝐴𝐴  . The generator is designed to produce solu-
tions from a random dataset while the discriminator is tasked to discriminate the real samples from the generated 
solutions. The VAE-GAN is a probabilistic autoencoder that uses the GAN framework as a variational infer-
ence algorithm (Makhzani et al., 2015). In the hybrid VAE-GAN (as shown in the middle column of Figure 1), 
the inputs μ and the real solutions Od (the targeted outputs) are fed into the encoder 𝐴𝐴  , which transforms the 
high-dimensional datasets into low-dimensional representations ζ and ζd respectively. The discriminator 𝐴𝐴  then 
discriminates the low-dimensional representations ζ and ζd in an efficient way. The latent states ζd and ζ are then 
transformed into the reconstructed samples 𝐴𝐴 𝑂𝑂𝑑𝑑 (the reconstructed outputs) and real solutions 𝐴𝐴 𝑂𝑂 (the predicted 
outputs) respectively in the decoder 𝐴𝐴  .

For the encoder, we use a deep CNN where the model inputs are the meteorological conditions (temperature Tt+1 
at the predictive time level) and historical ozone dataset O while the targeted outputs are the ozone concentrations 
Ot+1 at the predictive time level. The CNNs exhibit superior performance in extracting the high nonlinearity and 
chaotic nature from the inputs with a two-dimensional structure (Bolton & Zanna, 2019). The encoder has four 
convolutional layers followed by one densely connected layer. Each hidden layer is followed by a Leaky rectified 
linear unit (Leaky ReLU) activation function to extract feature maps from inputs. To avoid dimensionality loss 
of the edges of images, the padding operation is applied in convolutional layers. After the hidden layers, the 
fully connected layer is applied to further reduce the dimension of features from its previous layer and find the 
most task-relevant features for inference. This hierarchical convolutional feature learning acts as nonlinear model 
reduction, which finally transfers the inputs μ and targeted output Od into the low dimensional latent states ζ 

Scale Training dataset Validation dataset

Hourly forecasting Reanalysis data (June and December of 2017) Reanalysis data (June and December of 2018)

Monitoring data (June of 2018)

Physical modeling data (June of 2018)

Daily forecasting Reanalysis data (2013–2017) Reanalysis data (2018–2019)

Table 1 
Summary of Training and Validation Datasets Used in Hourly and Daily Ozone Forecasting (Where the Model Inputs are 
the Meteorological Conditions (Temperature, Humidity and Wind Speed) and the Ozone Concentrations at the Last Time 
Level While the Targeted Outputs are the Ozone Concentrations at the Predictive Time Level)
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and ζd respectively. It is shown in Table 2 that the size of datasets on ozone 
spatial distributions is reduced from 47,232 to 264 in the latent space, that is, 
a decrease of three orders of magnitude.

The discriminator is then used for distinguishing the real latent state ζd from 
the generated latent state ζ at the reduced space. The latent states ζ and ζd are 
processed using five hidden layers, each using a densely connected layer with 
a Leaky ReLU activation function. The output layer is densely connected to 
the final hidden layer with a sigmoid activation function (Lee & You, 2019; 
Mosser et  al.,  2017), to yield a number between 0 and 1 representing the 
probability that the ζ is a fake sample created from inputs μ (as opposed to a 
targeted output Od).

For the decoder, it is a reverse process for reconstructing the latent states ζ 
and ζd to the high-dimensional states 𝐴𝐴 𝑂𝑂 and 𝐴𝐴 𝑂𝑂𝑑𝑑 . The decoder has four hidden 
layers including one densely connected layer and three convolutional layers, 
each layer followed by a Leaky ReLU activation function. The final layer 
uses a tanh activation (Lee & You, 2019; Mosser et al., 2017) with outputs 𝐴𝐴 𝑂𝑂 
and 𝐴𝐴 𝑂𝑂𝑑𝑑 shown in Table 2.

Now the question is how can we train a forecasting model? The VAE-GAN 
is intuitively similar to VAEs, with the key difference that the VAE-GAN 
replaces the Kullback-Leibler divergence penalty of VAEs with the adver-
sarial loss described below (Makhzani et  al.,  2015). The training process 
involves the minimization of reconstruction loss between the reconstructed 
outputs 𝐴𝐴 𝑂𝑂 and targeted ones Od, as well as the maximization of adversarial 
loss in distinguishing between the latent states ζ and ζd. The reconstruction 
loss jointing the encoder and the decoder is expressed as:

𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝜃 𝜃𝜃) = ‖𝑂𝑂𝑑𝑑 −  ( (𝑂𝑂𝑑𝑑, 𝜃𝜃) ,𝜙𝜙 ) ‖,� (2)

and the adversarial loss jointing the encoder, decoder and discriminator is 
calculated as:

𝑎𝑎𝑎𝑎𝑎𝑎(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃) = 𝐸𝐸𝜁𝜁∼𝑝𝑝𝜁𝜁 (𝜁𝜁 )(log((𝜇𝜇))) + 𝐸𝐸𝜁𝜁𝑑𝑑∼𝑝𝑝𝜁𝜁𝑑𝑑 (𝜁𝜁𝑑𝑑)
(log (1 − ( (𝑂𝑂𝑑𝑑)))) ,� (3)

where θ, ψ, ϕ represent the parameters in the encoder 𝐴𝐴  , discriminator 𝐴𝐴  and decoder 𝐴𝐴  , respectively.

Typically, the VAE-GAN uses the hybrid loss 𝐴𝐴 (𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑎𝑎𝑎𝑎𝑎𝑎) as the objective minimization-maximization function 
as follows:

min
𝜃𝜃𝜃𝜃𝜃

max
𝜓𝜓

𝐸𝐸𝜁𝜁∼𝑝𝑝𝜁𝜁 (𝜁𝜁 )(log((𝜇𝜇))) + 𝐸𝐸𝜁𝜁𝑑𝑑∼𝑝𝑝𝜁𝜁𝑑𝑑 (𝜁𝜁𝑑𝑑)
(log (1 − ( (𝑂𝑂𝑑𝑑)))) + ‖𝑂𝑂𝑑𝑑 −  ( (𝑂𝑂𝑑𝑑, 𝜃𝜃) ,𝜙𝜙 ) ‖.� (4)

the model can be minimized and maximized by stochastic gradient descent with backpropagation. This means 
that the loss function derivation is propagated throughout the network using the chain rule to update the model 
parameters θ, ϕ, ψ. In this work, we choose the adaptive moment estimation (Adam) as an adaptive stochastic 
gradient descent (SGD) algorithm, which has been proven to be efficient for different types of deep networks 
(Kingma & Ba, 2014). Once the training process is completed, the model parameters (including weights and bias) 
are saved for real-time forecasting.

2.3.  Real-Time Forecasting

The multi-step-ahead time series forecasting can be described as an estimation of future time series {Ot+1, …, 
Ot + H}. Referring to the work of Cheng et  al.  (2021), the multi-step-ahead ozone forecasting process can be 
summarized as consisting of the following algorithmic steps:

1.	 �The forecasting model of VAE-GAN is trained to perform a new one-step-ahead forecast 𝐴𝐴 𝑂𝑂𝑡𝑡+1 during the 
predictive period (t + 1 ∈ (tf, tN)).

Module Layer

Encoder 𝐴𝐴  Input (47,232)

Conv2D, leaky ReLU (α = 1)

Conv2D, leaky ReLU (α = 1)

Conv2D, leaky ReLU (α = 1)

Full connected

Output (64)

Decoder 𝐴𝐴  Input (64)

Full connected, leaky ReLU (α = 1)

Conv2D, leaky ReLU (α = 1)

Conv2D, leaky ReLU (α = 1)

Conv2D, leaky ReLU (α = 1)

Conv2D, Tanh

Output (47,232)

Discriminator 𝐴𝐴  Input (64)

Full connected, leaky ReLU (α = 1)

Full connected, leaky ReLU (α = 1)

Full connected, leaky ReLU (α = 1)

Full connected, leaky ReLU (α = 1)

Full connected, leaky ReLU (α = 1)

Full connected, Sigmoid

Output (1)

Table 2 
Architecture of Encoder, Decoder and Discriminator in the VAE-GAN
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2.	 �Selecting the new input temperature Tt+2 at predictive time level (t + 2).
3.	 �Using the one-step predicted 𝐴𝐴 𝑂𝑂𝑡𝑡+1 and temperature Tt+2 as new inputs, to forecast the next-step-ahead ozone 

concentration at predictive time level (t + 2) by the trained model.
4.	 �Repeating steps (1–3) for H times at the multi-step forecasting strategy as shown in Figure 1.
5.	 �Finally, the length-H timesteps of forecasts at point k (k ∈ [0, Mk]) are obtained as:

𝑂𝑂𝑘𝑘
𝑡𝑡+ℎ =

⎧

⎪

⎨

⎪

⎩

{,}

(

𝑂𝑂𝑘𝑘
𝑡𝑡−𝑝𝑝+ℎ−1

,… , 𝑂𝑂𝑘𝑘
𝑡𝑡+1

,… , 𝑂𝑂𝑘𝑘
𝑡𝑡+ℎ−1

, 𝑇𝑇 𝑘𝑘
𝑡𝑡+ℎ

)

, (ℎ ∈ {2,… , 𝑝𝑝 + 1})

{,}

(

𝑂𝑂𝑘𝑘
𝑡𝑡−𝑝𝑝+ℎ−1

,… , 𝑂𝑂𝑘𝑘
𝑡𝑡+ℎ−1

, 𝑇𝑇 𝑘𝑘
𝑡𝑡+ℎ

)

, (ℎ ∈ {𝑝𝑝 + 2,… ,𝐻𝐻})

.�

we use the Python library Keras (Gulli & Pal, 2017) with the TensorFlow 1.1.0 (Abadi, 2016) backend for all 
experiments of the proposed model. The performance of the VAE-GAN model developed in this study is assessed 
using the root mean squared error (RMSE), coefficient of correlation R, normalized mean bias (NMB) and 
normalized mean error (NME) (Emery et al., 2017) which are defined as follows:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√

√

√

√

√

√

𝑁𝑁
∑

𝑗𝑗=1

(

𝑂𝑂𝑗𝑗 − 𝑂𝑂𝑑𝑑𝑑𝑑𝑑

)2

𝑁𝑁
,

� (5)

𝑅𝑅 =

𝑁𝑁
∑

𝑗𝑗=1

(

𝑂𝑂𝑗𝑗 − 𝑂𝑂

)

(

𝑂𝑂𝑑𝑑𝑑𝑑𝑑 − 𝑂𝑂𝑑𝑑

)

√

𝑁𝑁
∑

𝑗𝑗=1

(

𝑂𝑂𝑗𝑗 − 𝑂𝑂

)2
√

𝑁𝑁
∑

𝑗𝑗=1

(

𝑂𝑂𝑑𝑑𝑑𝑑𝑑 − 𝑂𝑂𝑑𝑑

)2

,� (6)

𝑁𝑁𝑁𝑁𝑁𝑁 =

𝑁𝑁
∑

𝑗𝑗=1

(

𝑂𝑂𝑗𝑗 − 𝑂𝑂𝑑𝑑𝑑𝑑𝑑

)

𝑁𝑁
∑

𝑗𝑗=1

𝑂𝑂𝑑𝑑𝑑𝑑𝑑

× 100,� (7)

𝑁𝑁𝑁𝑁𝑁𝑁 =

𝑁𝑁
∑

𝑗𝑗=1

|𝑂𝑂𝑗𝑗 − 𝑂𝑂𝑑𝑑𝑑𝑑𝑑|

𝑁𝑁
∑

𝑗𝑗=1

𝑂𝑂𝑑𝑑𝑑𝑑𝑑

× 100,� (8)

where the subscript j represents the pairing of N targeted ozone concentration Od and predictions 𝐴𝐴 𝑂𝑂 by points ([0, 
Mk]) and time ([tf, tN]), and the overbars signify means over points and/or time.

3.  Results and Discussion
3.1.  Hourly Ozone Forecasting Analysis Over China in Summer and Winter

In this section, we demonstrate the trained VAE-GAN model has the capability of capturing the details of the 
spatial distribution of ozone concentrations over China. For this purpose, the post-processed reanalysis dataset 
with a high spatial resolution (15 × 15 km) is thus chosen as the ’true’ reference during the validation period (see 
Table 1). The trained VAE-GAN is used for hourly ozone forecasting in June and December 2018. A comparison 
between the predicted ozone concentrations and reanalysis data is provided in Section 3.1.1, as well as the corre-
sponding error estimation is carried out in Section 3.1.2.

3.1.1.  Spatio-Temporal Hourly Forecasting of Ozone Concentration

The spatial distribution of hourly ozone concentrations in June and December in 2018 is shown in Figure 3. It can 
be seen that the VAE-GAN model captures a large part of the spatial distribution of ozone concentration at lead-
times t = 30, 60 hr in June and December, respectively. It is noted that the ozone concentration in June is higher 
than that in December. This can be explained by the fact that a high temperature leads to increased convection, 
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unstable atmosphere stratification, and increased precipitation, which are beneficial to the diffusion and depo-
sition of ozone (Yan et al., 2021). By contrast, the low temperature in December causes a surface inversion, and 
the height of the atmospheric mixed layer is low, which is not conductive to vertical convection. Compared to the 
reanalysis data, in June, the predicted ozone concentration is somewhat underestimated over the central of China 
at different lead-times, while slightly overestimated over the North-east and South-east area close to the North 
Pacific Ocean.

The last column of Figure 3 shows the residual maps between the ozone distributions predicted by the VAE-GAN 
and reanalysis data. Table 3 indicates that the mean residual varies from −12.4 μg/m 3 (June) and −6.91 μg/m 3 
(December) at the lead-time of t = 30 hr to −5.88 μg/m 3 (June) and −1.34 μg/m 3 (December) at the lead-time 
of t = 60 hr respectively. It is found that 10% and 90% residuals in June are higher than those in December, that 
is, the predicted results using the VAE-GAN have lower accuracy in June in comparison to that in December. 
This may be caused by the complex and high ozone heterogeneity in the spatial distribution in June. Overall, 

Figure 3.  Comparison of the spatial distribution of ozone fields obtained from the VAE-GAN model (left) and the reanalysis 
data (middle) at lead-times of 30 and 60 hr in June and December in 2018.
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the trained VAE-GAN has captured the spatial characteristics of ozone concentrations for given new inputs at 
a lead-time beyond the training period. Although a discrepancy between the predicted ozone concentrations 
and reanalysis data, the VAE-GAN is able to provide the same level of accuracy as that of the physical model-
NAQPMS (see Section 3.2). To improve the predicted accuracy during the high ozone episode (≥160 μg/m 3), 
the convolutional long short-term memory (ConvLSTM) approach is introduced to the VAE-GAN model. For 
details, see Appendix A.

3.1.2.  Error Analysis of Hourly Ozone Forecasting

Further error analysis of hourly ozone forecasting is carried out through the RMSE and correlation coefficient. 
The temporal variations of spatial-averaged RMSEs and correlation coefficient of hourly predictive results from 
the VAE-GAN are shown in Figure 4. It can be noticed that the spatial-averaged RMSE values in June and Decem-
ber in 2018 are generally around 22 μg/m 3 and 13 μg/m 3 during the entire forecasting period. The corresponding 
correlation coefficient values are shown in Figure 4b. We can see that the ozone concentration predicted by the 
VAE-GAN model shows a good correlation with the reanalysis data over a long lead-time. Most of correlation 

Indicators

June December

Lead-time = 30hr Lead-time = 60hr Lead-time = 30hr Lead-time = 60hr

Mean residual (ug/m 3) −12.4 −5.88 −6.91 −1.34

90th percentile (ug/m 3) 13.95 23.44 8.92 15.09

10th percentile (ug/m 3) −40.81 −32.30 −24.58 −18.39

Table 3 
Residuals of Ozone Fields Between the VAE-GAN Model and the Reanalysis Data at the Lead-Times t = 30, 60 hr in June 
and December in 2018

Figure 4.  The spatial-averaged RMSEs and correlation coefficients of ozone concentration between the VAE-GAN and the reanalysis data in June and December in 
2018.
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coefficients are around or beyond 0.6 during the forecasting period in June. In addition, it is worth noting that the 
magnitude of correlation coefficients in December is close to 0.9. This indicates that the VAE-GAN performs 
better in hourly ozone forecasting in December.

Figure 5 illustrates the spatial distribution of temporal-averaged RMSEs. It can be noted that most of the tempo-
ral-averaged RMSEs are below 20 μg/m 3 in June and 16 μg/m 3 in December, except for the North-east areas 
where the largest errors exist due to complex factors including human activities, meteorology and industries 
influencing the ozone concentration. From the cumulative distribution of temporal-averaged RMSEs in both 
months (Figure 5c), it is shown that the temporal-averaged RMSEs of 80% points are smaller than 25 μg/m 3. In 
addition, it is clear that the mean values of temporal-averaged RMSEs are 17.23 μg/m 3 and 9.88 μg/m 3 for June 
and December respectively.

3.2.  Comparison of Hourly Ozone Forecasting Between VAE-GAN and the Physical Model-NAQPMS

In this section, to further demonstrate the forecasting performance of the VAE-GAN, the predictive accuracy 
of the VAE-GAN is evaluated with an existing air quality physical model-NAQPMS. The comparison of ozone 
results obtained from the VAE-GAN and NAQPMS has been undertaken through (a) the spatial distribution and 
temporal variation of ozone concentrations over China (Section 3.2.1), where the reanalysis data is considered 
as the ‘true’ reference; and (b) ozone concentration at monitoring stations (Section 3.2.2), where the monitoring 
measurement is used as the ‘true’ reference.

3.2.1.  Spatio-Temporal Distribution of Ozone Forecasting Compared to Physical Modeling

The spatial distribution of hourly ozone forecasting results obtained from the VAE-GAN and physical model-
NAQPMS at lead-times t = 40, 60 hr is plotted in Figure 6. We can see that the VAE-GAN and physical model-
NAQPMS exhibit almost the same level of acceptable performance for hourly ozone forecasting. Compared 
with the physical model-NAQPMS, the VAE-GAN can better capture the spatial characteristics of high ozone 
concentrations in densely populated areas in China.

From Figure 6, we note that the spatio-temporal distributions of ozone concentrations have a high spatial heter-
ogeneity across China. For further analysis of temporal variation, the whole country is thus divided into six 

Figure 5.  The spatial distribution of temporal-averaged RMSEs and the comparison of the cumulative density functions for 
the temporal-averaged RMSEs in June and December in 2018.
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regions: the North China Plain (NCP), Northeast China (NE), Southwest China (SW), Southeast China (SE), 
Northwest China (NW), and Central China (shown in Figure 7). Figure 7 shows the spatial-averaged RMSEs of 
predicted results in six regions during the predictive period of June in 2018. It is noted that the predicted results 
from both the physical model and VAE-GAN have a low value of RMSE (below 30 μg/m 3) in the NW region. 
The highest RMSE of predicted ozone concentration occurs in the NCP region (Figure 7c), which is consistent 
with the findings in Zhan et al. (2018). The spatial heterogeneity of ozone concentrations in summer is associ-
ated with the spatial pattern of humidity conditions. The drier condition in the NCP region leads to a high-level 
accumulation of ambient ozone. The predicted ozone concentrations from both the physical model-NAQPMS and 
VAE-GAN are underestimated in the NCP, thus resulting in the highest RMSE. However, the VAE-GAN model 
generally performs better than the physical model-NAQPMS in the NCP region, which can be seen in Figure 6. 
In other regions (including NE, Central, SE and SW regions), the performance of the VAE-GAN model is compa-
rable with the physical model-NAQPMS.

3.2.2.  VAE-GAN-Based Ozone Forecasting Compared to Physical Modeling and Observations at 
Monitoring Stations

The performance of the VAE-GAN in spatio-temporal forecasting is further evaluated by comparing the predicted 
ozone concentrations with those from the physical model-NAQPMS and the observations at monitoring stations. 
Here we choose three study regions in China: JJJ, YRD and Pearl River Delta region (PRD; shown in Figure 8), 
which are densely populated regions in China. Figure 8 shows the time series of hourly predicted and monitoring 
ozone concentrations during 22–30 June of 2018 in the major cities located in the three regions. It is noted that 
the ozone concentration is gradually increasing in the morning and reaches a peak at noon, and has a low value 
during the night time. This can be explained as follows. The formation of ozone is involved in the processes of 
photochemical reactions, advection, entrainment, and deposition. The entrainment of ozone into the atmospheric 
boundary layer greatly contributes to the increase of ozone concentration at day time (Freire et al., 2017), while 

Figure 6.  Comparison of the spatial distribution of ozone fields obtained from the VAE-GAN model (right), physical model-NAQPMS (middle) and the reanalysis 
data (left) at lead-times t = 40, 60 hr in June of 2018 respectively.
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due to the stable nocturnal boundary layer caused by radiative cooling at night time, the surface ozone concentra-
tions typically reach a minimum level by nitrogen oxide titration and dry deposition (H. Liu, J. Liu, et al., 2020).

We can see that the predicted ozone by the VAE-GAN model is largely in good agreement with observations 
during the predictive period (22-30 June in 2018). It is noticed the VAE-GAN performs better than the physi-
cal model-NAQPMS in Shanghai, Nanjing, Hangzhou, Hefei in the YRD region. The discrepancy between the 
VAE-GAN predicted results and observations occurs when the peak values of ozone drastically increase at day 
time due to large uncertainties in traffic, emission inventory and meteorological conditions. To better capture 
the peak, the VAE-GAN-LSTM model is introduced in Appendix A. In Figure A1, the predicted ozone shows 
a reduction of underestimation in the ozone peaks compared to that using the VAE-GAN model, and exhibits a 
good match with the observations in cities with high ozone concentrations, such as Beijing, Tianjin, Shijiazhuang, 
Nanjing and Hefei.

The performance of the machine learning-based modeling and the physical model has further been evaluated 
using the statistical error indicators in Equation 5 (Emery et al., 2017) and the corresponding results are shown 
in Table 4. The ozone concentrations predicted by the VAE-based models mostly have a smaller value of RMSE, 

Figure 7.  The spatial-averaged RMSE of predictive results from the VAE-GAN and physical model-NAQPMS during predictive period of June in 2018. There are six 
regions: The North China Plain, Northeast China, Southwest China, Southeast China, Northwest China, and Central China (refer to Kong et al. (2021)). The reanalysis 
data is used as ’true’ reference.
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NMB and NME than that from the physical model-NAQPMS in most of regions in China. The NMB and NME 
values of predicted results in the JJJ and YRD regions largely lie within ±22% and 25% respectively for the 
VAE-GAN and VAE-GAN-LSTM models, while those are beyond ±35% (NMB) and 35% (NME) for the 
physical model-NAQPMS. The performance of the VAE-GAN model is thus comparable or better than that of 
the physical model-NAQPMS in the JJJ and YRD regions. In the PRD region, the zone concentration mostly 

Figure 8.  Ozone time series at the cities in three densely populated regions (Jing-Jin-Ji, Yangtze River Delta, and Pearl River Delta) using the observations, reanalysis 
data, physical model-NAQPMS, VAE-GAN and VAE-GAN-LSTM models.
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has a low value of <100 μg/m 3 compared to that in the JJJ and YRD regions. The variation of ozone in the PRD 
region is linked to summer monsoon (Shao et al., 2009) which has not currently been considered in the machine 
learning-based models, but in physical modeling. This can explain why the performance of the physical model is 
better than the VAN-based models in the PRD region.

Generally speaking, the VAE-GAN model developed in this study is relatively reliable when used for ozone fore-
casting during a long lead-time. Our results suggest that the well-trained VAE-GAN has captured the spatio-tem-
poral characteristics of the ozone concentration variation. In comparison to the physical model-NAQPMS, the 
VAE-GAN model can provide a high efficient ozone forecast while the same level of accuracy is achieved. This 
highlights the potential of the VAE-GAN model to be applied in conjunction with many real-time applications, 
for example, early warning for air pollution emergencies.

3.3.  Daily Ozone Forecasting Analysis Over China

In this section, the capability of the VAE-GAN is further demonstrated in daily ozone forecasting of the year 2018 
in JJJ, YRD and PRD regions. The reanalysis datasets are split into the training dataset from the year 2013–2017 
and the predictive dataset in 2018.

Zone

Correlation Coefficient RMSE (ug/m 3)

Reanalysis
Physical model 

(NAQPMS) VAE-GAN
VAE-GAN-

LSTM Reanalysis
Physical model 

(NAQPMS) VAE-GAN
VAE-GAN-

LSTM

Jing-Jin-Ji Beijing 0.98 0.83 0.52 0.57 20.02 63.38 43.34 57.98

Tianjin 0.97 0.91 0.68 0.76 18.62 72.33 56.93 53.55

Shijiazhuang 0.97 0.75 0.50 0.34 13.09 50.39 40.81 46.28

Yangtze River 
Delta

Shanghai 0.97 0.83 0.55 0.56 9.68 38.56 34.97 39.52

Nanjing 0.95 0.74 0.58 0.37 22.12 29.64 35.89 42.68

Hangzhou 0.95 0.79 0.54 0.58 13.24 32.41 33.05 40.29

Hefei 0.99 0.83 0.58 0.48 6.98 30.21 42.25 46.38

Pearl River 
Delta

Guangzhou 0.98 0.82 0.42 0.36 10.90 18.18 18.66 18.64

Shenzhen 0.68 0.46 0.27 0.23 11.82 17.73 17.05 17.54

Zhuhai 0.49 0.37 0.33 0.52 42.13 52.11 21.59 19.31

Zone

NMB (%) NME (%)

Reanalysis
Physical model 

(NAQPMS) VAE-GAN
VAE-GAN-

LSTM Reanalysis
Physical model 

(NAQPMS) VAE-GAN
VAE-GAN-

LSTM

Jing-Jin-Ji Beijing −12.18 −45.58 −18.30 23.29 12.88 45.58 23.95 29.23

Tianjin −5.65 −46.85 −22.62 0.87 9.38 46.85 28.29 22.76

Shijiazhuang −6.23 −44.04 −18.88 −11.96 8.69 44.04 21.96 19.25

Yangtze River 
Delta

Shanghai −3.70 −34.30 −18.68 −3.07 6.94 34.69 23.86 19.60

Nanjing −26.95 −29.85 −37.45 −22.40 26.95 30.44 37.78 25.66

Hangzhou −3.75 −24.21 −14.98 7.24 10.09 26.27 21.77 24.10

Hefei −4.87 −42.93 −48.18 −46.01 5.45 42.93 48.18 46.01

Pearl River 
Delta

Guangzhou 21.88 −4.26 −59.48 −60.34 21.88 14.50 59.48 60.34

Shenzhen −2.91 0.52 −56.91 −63.20 2.91 2.42 56.91 63.20

Zhuhai 22.42 27.09 −13.13 −7.46 23.99 28.83 14.63 11.82

Table 4 
Error Analysis of Results From the Reanalysis Data, the Physical Model-NAQPMS, VAE-GAN and VAE-GAN-LSTM Models Where the Observations in June of 2018 
are Taken as References (True Values)
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Figure  9 shows the temporal variation of spatial-average daily ozone concentrations over the JJJ, YRD, and 
PRD regions during the 2018 predictive period. As shown in Figure 9, it can be noticed that the predicted ozone 
concentration exhibits good agreement with the reanalysis data in the JJJ and YPR regions. In the PRD region, 
the VAE-GAN model captures the daily variability, but overestimates the ozone in the summer. This could be 
explained by the responses between the meteorological conditions and ozone. In the regions of JJJ and YRD, 
the daily variation of ozone concentration shows the seasonal variation (an inverse U-shaped trend, which is 
highly related to the temperature; Yang et al., 2020), where the highest and lowest ozone concentrations occur 
in Summer and Winter respectively. However, the trend of the ozone seasonal variation is weak in South China, 
including the PRD region. This is due to the warmer temperatures throughout the year and the Asian Summer 
monsoon, which brings cloudy and raining weather, marine air and strong deep convection and other unfavora-
ble factors for ozone formation and accumulation (Lu et al., 2018; Ma & Yin, 2021; Yang et al., 2020). It is a 
challenge in existing air quality models when taking into account these complex meteorological factors. This can 

Figure 9.  A comparison of the temporal variation of spatial-average daily ozone concentrations from the VAE-GAN model 
and the reanalysis data in 2018.
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be seen in Table 4 that a poor correlation-prevails (average 40%) between the predicted results and monitoring 
data in the PRD exists for both the proposed VAE-GAN and physical model-NAQPMS models. Coupling of 
the complex meteorological conditions (e.g., monsoon) into the VAE-GAN training process will be explored to 
improve predictive accuracy in future studies.

Figure 10 shows the spatial distribution of temporal-average daily ozone concentrations over the predictive period 
(the whole year of 2018). The predicted results from the VAE-GAN are generally comparable to the reanalysis 
data in JJJ, YRD and PRD regions. It can be seen that the VAE-GAN model captures a large part of the spatial 
distribution of ozone concentrations. To further evaluate the VAE-GAN results, the relative errors of the predicted 
results over the three regions are presented in Figure 11. Reasonable predictive accuracy is largely achieved with 
a low relative error of around ±10%. Overall, the VAE-GAN model skilfully captures the spatial and temporal 
variation of ozone concentration during the predictive period.

Figure 10.  A comparison of the spatial distribution of temporal-average daily ozone concentrations from the VAE-GAN 
model and the reanalysis data in the Jing-Jin-Ji, Yangtze River Delta and Pearl River Delta regions.
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3.4.  Impact of Meteorological Factors

In our study cases described above, the temperature is considered as one of model inputs since it is the top 
ozone-related meteorological condition. As known, other meteorological factors (relative humidity and wind 
speed) are also important in ozone formation and accumulation. For example, low humidity causes a reduction of 
cloud cover which contributes to photochemical reaction (Chen et al., 2020). A high wind speed has a negative 
impact on ozone concentration by transporting and cleaning air pollutants out of the study areas (Z. B. Wang, 
Li, 2020). In this section, two deep learning models (the VAE-GAN and the deep convolutional GAN (DCGAN)) 
are used for quantifying the impact of the meteorological factors on daily ozone forecasting during the validation 
period of 2018 and 2019. The model inputs are the meteorological conditions (temperature, relative humidity and 
wind speed) at the predictive time level and historical ozone concentrations while the targeted output is the ozone 
concentration at the predictive time level. The reanalysis datasets are used for training and validation purposes: 
the training datasets compassing the time period between years 2013 and 2017 and validation datasets from 2018 
to 2019. The densely populated JJJ region in China is selected as the study area. We estimate the performance of 
the VAE-GAN and DCGAN models in daily forecasting with consideration of: (a) no meteorological factors (no 
met); (b) temperature (temp); (c) temp + relative humidity (rh), and (d) temp + rh + wind).

Figure 11.  A relative error histograms of the temporal-average daily ozone concentrations between the VAE-GAN model and the reanalysis data over the whole year 
of 2018. The blue bins aggregate the respective grid points over three regions. Numbers on top of the bins are percentage values with respect to the total number of grid 
points. Yellow numbers indicate the area proportion of the globe, where values of relative error are within the ±10% interval.
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The spatial-averaged RMSEs of predicted ozone concentrations are plotted 
in Figure 12a while the predicted daily ozone concentrations are shown in 
Figure 12b. It is shown in Figure 12b that without the introduction of the 
meteorological factors, both of the VAE-GAN and DCGAN models fail to 
capture the temporal variation of daily ozone concentrations from the year 
2018 and 2019.

In DCGAN modeling, it is clearly seen in Figure 12a that the more meteor-
ological factors are included in the model inputs, the smaller the spatial-av-
eraged RMSEs of daily ozone results. The DCGAN reaches its best perfor-
mance when the impact of temperature, relative humidity and wind speed is 
considered.

In VAE-GAN modeling, the introduction of temperature plays a crucial 
role in improving the accuracy of ozone forecasting. The VAE-GAN with 
the consideration of temperature performs best among all the study cases. 
The VAE-GAN achieves the lowest RMSE value of 23 μg/m 3 in daily ozone 
concentration prediction in the JJJ region from the year 2018–2019. In 
Figure 12b, it can be noted that by comparing with the reanalysis data, the 
VAE-GAN model can better represent the peaks of ozone concentrations than 
the DCGAN model. However, it is also noticed that in contrast to the DCGAN 
model, the RMSE of predicted results is decreased when more meteorolog-
ical factors (relative humidity and wind speed) are considered in the model 
inputs. This is due to the limitation of the VAE-GAN model. For multiple 
variable inputs, the quality of generated outputs suffers from the generator 
(decoder 𝐴𝐴  ) attempting to cover all data manifolds in the data space, thus 
leading to a poor model performance (Pandeva & Schubert, 2019). Coupling 
of multiple meteorological inputs with the VAE-GAN will be investigated in 
our future work.

Overall, the temperature or other meteorological factors play a dominant role 
in improving the accuracy of ozone forecasting, for example, reducing uncer-
tainties and accumulative error with every step of ozone forecasting.

4.  Conclusions
In this study, a machine learning-based forecasting framework is imple-
mented for efficient and accurate real-time (hourly and daily) ozone fore-
casting in China. A hybrid deep learning VAE-GAN approach is proposed 
to better explore the spatial and temporal features of ozone concentrations, 
where GAN has the capability of learning hierarchical feature representations 

of ozone concentrations while VAE is used for dimensionality reduction and avoiding model collapse. The hybrid 
VAE-GAN model consists of both adversarial training and real-time forecasting processes, which narrow the 
gaps between the generative and targeted ozone fields from the past to future states and provide accurate ozone 
forecasts for a long lead-time beyond the training period in a recursive way.

In our hybrid VAE-GAN ozone modeling, the training and validation datasets consist of hourly reanalysis datasets 
at a high spatial resolution of 15 × 15 km across China from 2013 to 2019. By using VAE, the high-dimensional 
size of input datasets on ozone and temperature spatial distributions is reduced by three orders of magnitude. 
It is evident that the VAE-GAN is an efficient tool for large data-driven predictions. Our results illustrate that 
the VAE-GAN model has captured the spatial and temporal evolution patterns of ozone concentrations during 
the predictive period of 2018 and 2019 in comparison to the reanalysis data, observations and physical model-
NAQPMS. The VAE-GAN model can provide a high efficient ozone forecast while the same level of accuracy is 
achieved compared to the physical model-NAQPMS. However, it is also noticed that a low predictive accuracy 
of ozone concentrations occurs in some local regions where the daily variation of ozone concentrations exhibits 

Figure 12.  Predictive daily results from the cases of VAE-GAN and deep 
convolutional GAN model with/without the introduction of the meteorological 
factors into the model inputs, where the densely populated Jing-Jin-Ji region 
in China is selected as the study area and the predictive period is from the year 
2018–2019. Note. That in the case of no meteorological factors the models 
only take the last-timestep ozone as the model input.
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volatility. In future studies, it will be necessary to develop a more comprehensive forecasting scheme to improve 
the predictive accuracy by combining the VAE-GAN with data assimilation techniques for uncertainty reduction.

Appendix A:  Model Comparison
In the section, the performance of our VAE-GAN model is evaluated against a VAE-GAN-LSTM model, which 
introduces the convolutional long short-term memory (ConvLSTM) layer (Xingjian et al., 2015) into the encoder 
and decoder of the VAE-GAN. The comparative plots of hourly ozone forecasting results obtained from the 
VAE-GAN and VAE-GAN-LSTM models during the predictive period of June in 2018 are shown in Figure A1. 
It can be observed in Figure A1(a) that a relatively good agreement between the observed and forecasting hourly 
ozone concentration is achieved, while the arrival time of forecasting ozone peaks is slightly delayed. We can see 
that during the validation period of days 22–26 in June 2018, the VAE-GAN-LSTM model can better predict the 
ozone peaks than the VAE-GAN model, where the reanalysis data is considered as the reference. However, the 
VAE-GAN-LSTM model fails to capture the low ozone concentration at night, thus having higher the RMSEs 
than that of the VAE-GAN model in Figure A1(b). This situation also reflects on the spatial distribution of ozone 
forecasts as shown in Figure A2. Generally speaking, the use of LSTM in the VAE-GAN can well capture the 
high ozone concentration although the RMSE of results from the VAE-GAN-LSTM is slightly higher than that 
of the VAE-GAN. It is thus suggested that the VAE-GAN-LSTM model has the potential for hourly high ozone 
forecasting in China.

Figure A1.  Spatial-averaged ozone concentration variation during predictive period of June in 2018. The VAE-GAN and 
VAE-GAN-LSTM models take both the temperature and last-step predictive ozone as the model inputs. The VAE-GAN-LSTM 
model adopts the convolutional long short-term memory (ConvLSTM) layer into the encoder and decoder of the VAE-GAN.
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Appendix B:  Ozone Forecasting Using NO2

NO2 is the primary element involved in the process of forming ozone. When sunlight interacts with NO2, the 
gas molecules break down and release monoatomic oxygen (O) atoms which then react to diatomic oxygen (O2) 
molecules and form the trioxygen molecule known as ozone (Ezimand & Kakroodi, 2019). Here the impacts of 
the precursors (here, NO2) on ozone concentrations have been explored using the proposed VAE-GAN model.

B1.  Hourly Ozone Forecasting Using NO2 From Reanalysis Datasets

In real-time ozone forecasting in realistic scenarios, both NO2 and ozone are the unknown variables (outputs) 
to be predicted/solved using either the air quality model or the AI-based model (here VAE-GAN). Thus it is not 
suitable to consider NO2 as the model input in real-time ozone forecasting. Even so, it is worth exploring the 

Figure A2.  Comparison of the spatial distribution of ozone fields obtained from the VAE-GAN model and the VAE-GAN-LSTM at the lead-time of 60 hr in June 
of 2018.
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relationship between NO2 and ozone using the VAE-GAN model based on history ozone and NO2 datasets, where 
the NOx concentration is the model input while the ozone concentration is the model output.

As introduced in Section 2.1.1, the hourly NO2 and ozone datasets are collected from the reanalysis CAQRA 
datasets. We used the hourly datasets in 2017 for training, and 2018 for validation. The spatial performance 
of the VAE-GAN model for hourly ozone forecasting in June and December of 2018 is shown in Figure B1. It 
can be seen that the VAE-GAN model captures a large part of the spatial distribution of ozone concentration at 
lead-times t = 30, 60hr in December. The last row of Figure B1 shows the residual maps between ozone maps 
predicted by the VAE-GAN and reanalysis data. In June, the predicted ozone concentration is slightly overesti-
mated over the south of China at different lead-times, while slightly underestimated over the NCP region.

The RMSE and correlation coefficient of predictive results from the VAE-GAN are shown in Figure B2. It can 
be noticed that the RMSE values in June and December in 2018 are generally below 17 μg/m 3 during the whole 

Figure B1.  Comparison of the spatial distribution of ozone fields obtained from the VAE-GAN model (left) and the 
reanalysis data (middle) at the lead-times of 30 and 60 hr in June and December in 2018 respectively.
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forecasting period. The average RMSE values are 14.56 μg/m 3 and 8.17 μg/m 3 for June and December respec-
tively. The corresponding correlation coefficient values are shown in Figure B2(b). We note that in particular, 
models which accurately capture the regime behavior will also show good correlation statistics when averaged 
over a long lead-time. Most of the correlation coefficients are around or beyond 0.8 during the forecasting period. 
It is worth noting that the magnitude of the correlation coefficient in December is close to 0.9. This means the 
VAE-GAN performs better in hourly ozone forecasting in December.

B2.  Impact of NO2 Emissions on Ozone Forecasting

In realistic scenarios, the local NOx emission from massive anthropogenic emissions, industries, or transporta-
tion is another factor impacting ozone forecasting. In this work, the NOx and VOC emissions were considered as 
inputs, but removed during the selection of driving variables. There are two reasons for this. First, the available 
NOx emission data (source) are averaged monthly or daily. The daily variation of NOx emission remains the same 
during the same month. The NOx emissions are constant at a daily temporal scale. Thus, the hourly temporal 
variation of ozone concentrations will not be affected by a constant NOx emission during the training process. 
However, the emission of NOx varies over space, for example, a high emission in densely populated cities. The 
impact of the spatial variation of NOx emission is implicitly considered during the training process. The reason 
for this is that the training datasets (the reanalysis datasets) combine the physical modeling results, where NOx 
and VOC emissions have been considered in NAQPMS model (Kong et al., 2021) and observations. We specu-
late the predictive results can reflect the contribution of other driven factors (including NOx and VOC) on ozone 
concentration. To validate this hypothesis, we have undertaken one modeling experiment, where the average 
temperature (27°C ± 3°C) in June is used as inputs everywhere over China. Can we expect the VAE-GAN models 
are able to predict the spatial distribution of ozone concentrations over China? The right column in Figure B3 
shows the ozone concentration variation where the input temperature is around 300K (27°C ± 3°C). We can see 
that the predictive ozone varies in space with the same temperature as model inputs. It is noted that the ozone 
variation over the regions can match well with the NO2 emission (right column in Figure B3) in June, a high 
ozone concentration in the densely populated cities, mainly in the east of China. Therefore, the predictive ozone 

Figure B2.  The RMSE and correlation coefficients of ozone concentration obtained from the VAE-GAN and the reanalysis 
data in two months in 2018.
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in space has indicated the patterns of ozone formation with emission intensities associated with industrial and 
agricultural activities.

Second, in ozone forecasting, the importance of NOx and NMVOC emissions is lower than expected although the 
ozone formation is associated with NOx emissions. Zhan et al. (2018) pointed out that this may be due to regional 
transport or titration effects. NOx and NMVOC may be transported from urban to rural areas via advection, caus-
ing the location of ozone formation to occur some distance away from the emission source. NOx titration tends 
to counteract the importance of NOx emissions to ozone levels. In the work of Ma et al. (2021), they also found 
that ozone precursors such as NO2 and satellite-based formaldehyde (HCHO) observations were found to play 
relatively weak roles in modulating ozone variations, though these factors were crucial to the ozone formation. In 
addition, Zhan et al. (2018) found that the inclusion of NOx and NMVOC into the machine learning model can 
introduce a noise which tends to be higher than the gained information, which is consistent with what occurred 
in our study.

Finally, we would like to further discuss the importance of the choice of driving variables in ozone forecast-
ing. For machine learning-based ozone forecasting at stations, the model performance may be improved with 
increasing inputs (Su et al., 2020; Yafouz et al., 2021). In contrast, for spatio-temporal ozone forecasting, with 
the increase of the number of driving factors, the number of modeling parameters to be optimially estimated will 
significantly increase, especially on a large spatial scale. It would thus compromise all the drivers during the 
training process, thus weakening the relationship between the most important driver (e.g., temperature) and ozone 
concentrations. It is therefore suggested that only key-driven variables should be chosen for model prediction.
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Figure B3.  The predictive ozone (left) and emission of NO2 (right) distribution of China in June of 2018.
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