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A B S T R A C T

Data-driven machine learning techniques have been increasingly utilized for accelerating nonlinear dynamic system
prediction. However, machine learning-based models for long lead-time forecasts remain a significant challenge due to the
accumulation of uncertainty along the time dimension in online deployment. To tackle this issue, the ensemble Kalman
filter (EnKF) has been introduced to machine learning-based long-term forecast models to reduce the uncertainty of long
lead-time forecasts of chaotic dynamic systems. Both the deep convolutional generative adversarial network (DCGAN)
and convolutional long short term memory (ConvLSTM) are used for learning the complex nonlinear relationships
between the past and future states of dynamic systems. Using an iterative Multi-Input Multi-Output (MIMO) algorithm,
the two-hybrid forecast models (DCGAN-EnKF and ConvLSTM-EnKF) are able to yield long lead-time forecasts of
dynamic states. The performance of the hybrid models has been demonstrated by one-level and two-level Lorenz 96
models. Our results show that the use of EnKF in ConvLSTM and DCGAN models successfully corrects online model
errors and significantly improves the real-time forecasting of dynamic systems for a long lead-time.
1. Introduction

Machine learning (ML) has been widely applied in many fields
including environment sciences [1], ocean modeling [2,3], engineering
nd physics [4]. In particular, ML models are extensively used as a
ata-driven predictive tool to better understand complex and nonlinear
hysical systems yielding high computational efficiency [5]. However,
ue to the complex nonlinearity and uncertainties of a nonlinear dy-
amic system, it is still challenging to perform accurate forecasts of the
uture evolution of many dynamical systems [6,7]. Therefore, a reliable
nd efficient technique for long lead-time forecasts of dynamic systems
s highly desirable.

Recent progress in ML models has shown how to learn the dynam-
cs of a model from its historical datasets and forecast beyond the
raining period, to some extent [8–10]. For example, Chen et al. [6]

proposed an Auto-Reservoir Neural Network to perform the multi-step-
ahead prediction based on a short-term time series. Similarly, da Silva
et al. [11] combined a Complete Ensemble Empirical Mode Decomposi-
tion (CEEMD) with Stacking-ensemble learning (STACK) to 30-minute-
ahead forecasts of wind turbine power generation. Zhang et al. [12]
proposed a deep learning algorithm, which integrated a bidirectional
gated recurrent unit with attention mechanism (BiAGRU) for 24 h
ahead air pollution prediction. Kow et al. [13] carried out 10-step-
ahead PM2.5 forecasts for multiple stations by combining a CNN and a
Back Propagation Neural Network (BPNN). Zhou et al. [14] proposed

Deep Multi-output LSTM neural network model for 4-step-ahead air
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quality forecasting in Taipei City, Taiwan. These results demonstrate
that ML models possess enormous potential in learning various compli-
cated functions between past and future events and providing accurate
multi-step-ahead forecasts. Nevertheless, it can be noticed that due to
the instabilities and biases in forecasting subgrid-scale processes, the
performance of ML-based models generally decays as the forecasting
horizon extends beyond the training period [15,16]. There is a general
consensus that data assimilation is a suitable approach to address this
issue [17,18].

Data assimilation techniques are used to integrate observations into
the state of the dynamic system at a given time in an optimal way, thus
reducing the error and uncertainty in numerical modeling [19–22]. In
particular, the Kalman filter originally proposed by Kalman [23], is
a widely used optimal sequential data assimilation method for linear
state–space systems and measurement processes with Gaussian error
statistics. Ensemble Kalman filter (EnKF) as a special Kalman filter [24],
has been extensively utilized in many fields, such as geosciences [25],
hydrology [26,27] and physics [28–31], to correct background predic-
tion based on a combination of heterogeneous ground measurements,
experiments and remote sensing [32]. Furthermore, a hybrid EnKF
and variational analysis scheme can be used for producing a superior
ensemble of forecasts at longer lead times [33].

Recent works have also drawn attention to combining data assimi-
lation with ML models in dynamic systems. Considering the evolution
vailable online 8 April 2023
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Fig. 1. Illustration of a hybrid model combining ensemble data assimilation and ConvLSTM and DCGAN models for long lead-time forecasting. (a) Spatiotemporal dynamic features are used
or Multi-Input Multi-Output (MIMO) forecast. (b) Architectures of the ConvLSTM and DCGAN models for MIMO forecast. (c) Extension of forecasting horizon integrating ConvLSTM and
CGAN with EnKF in a recursively MIMO strategy.
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f a dynamic system:

(𝑡𝑠+𝛿𝑡) = ((𝑡𝑠)) + (𝑡𝑠), (1)

here  represents the dynamic model, (𝑡𝑠) is the state variable at
ime 𝑡𝑠, and (𝑡𝑠) is the model noise. Data assimilation methods are
sed for reducing the error  by the inclusion of observational data
2

nto the dynamic model , thus improving forecast accuracy (referred
o as 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 +𝐷𝐴 mode). While it is fairly new and limited, a hybrid
ata assimilation (DA) and ML model can be generally classified as:

(a) (𝑡𝑠+𝛿𝑡) = 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙((𝑡𝑠)) + 𝐷𝐴+𝑀𝐿(𝑡𝑠): The dynamic model is

physics-informed modeling, where the dynamic processes are



Journal of Computational Science 69 (2023) 102024M. Cheng et al.
Fig. 2. Discriminator scores between real and fake in the DCGAN model during the training process.
Fig. 3. One step MIMO forecasts of 𝑋2 , 𝑋8 , 𝑋16 and 𝑋32 state variables conducted by the ConvLSTM and DCGAN models, where the length of the known time series (for inputs) 𝑀 = 60
(0.06 MTU) and the predicted time series 𝐻 = 30 (0.03 MTU), i.e., 30-time-step-ahead forecasts.
represented by the governing equations. The physical models
can thus be used for complex nonlinear dynamic simulations,
but require a high computational cost. ML techniques are used
for efficient data assimilation in real-time forecasts. ML models
learn the assimilation process (error term ) and improve the
predictive accuracy of physical models [18,27,31,34–37].

(b) (𝑡𝑠+𝛿𝑡) = 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙+𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑𝐷𝐴∕𝑀𝐿
((𝑡𝑠)) + (𝑡𝑠): Data assimi-

lation and ML techniques can be used for parameterization in
physical models [32,38,39]. For example, Pawar and San [32]
used a set of neural network architectures to learn the correla-
tion between resolved flow variables and the parameterizations
of unresolved flow dynamics, where data assimilation was used
to correct the error in the physical model.

(c) (𝑡𝑠+𝛿𝑡) = 𝑀𝐿+𝐷𝐴((𝑡𝑠)) + (𝑡𝑠): Instead of physical models,
3

a ML model is used as a forward surrogate dynamic model ,
where the computational cost is significantly reduced in com-
parison to physical models. Here data assimilation techniques
are used for training the ML models. For example, the data was
assimilated for training the parameters (weights) within the net-
work’s hidden layers [18,40,41]. ML models (e.g. autoencoders)
can be used to exploit the latent structure while data assimilation
is employed for correcting the model errors in the latent space.
Note that in their work, data assimilation techniques were used
only during the training period. As discussed above, the issue
of decay of predictive accuracy in ML modeling persists for the
long lead-time forecast.

(d) (𝑡𝑠+𝛿𝑡) = 𝑀𝐿((𝑡𝑠)) + 𝐷𝐴+𝑀𝐿(𝑡𝑠): ML models are used for
both rapid forecasting (𝑀𝑀𝐿) and efficient data assimilation
correcting the error term  from ML models as the forecasting
horizon extends beyond the training period, thus improving pre-

dictive accuracy. In current works, e.g. Gottwald and Reich [42],
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Fig. 4. Comparison of the trajectories (top panel) and residuals (bottom panel) of all state variables between the physical modeling-L96, the ConvLSTM and DCGAN models for the lead-times
180.6 − 180.9 MTU, where the results from the physical modeling-L96 are considered as ‘references’.
data assimilation techniques were used for updating the outputs
in ML modeling just once, not for long-term forecasting. Our aim
in this work is to introduce data assimilation into operational
ML-based real-time forecasting.

Generally speaking, the hybrid DA and ML frameworks have im-
mense potential in physical sciences [43]. Despite these advanced
trends, most of the existing hybrid DA and ML frameworks either rely
on the physical models as a forward model with a high computation
burden or use ML models with a limited forecasting capability, to
perform short-term forecasts. Thus, they are not applicable to efficiently
carry out long lead-time forecasts of nonlinear dynamic systems. To
the best of our knowledge, the topic of real-time ML-based operational
frameworks in fluid mechanics remains relatively unexplored.

In this work, we propose a hybrid data assimilation and ML-based
long lead-time forecast framework (𝑀𝐿+𝐷𝐴+𝑀𝐿 mode). The convo-
lutional LSTM (ConvLSTM, Xingjian et al. [44]) and deep convolutional

AN (DCGAN, Goodfellow et al. [45]), acting as the dynamic surrogate
model 𝑀𝐿, are used for efficient calculation of ensembles as well
as long term forecasts. The EnKF will be introduced for reducing the
model error 𝐷𝐴+𝑀𝐿. The main contributions of the present work can
be summarized as follows:

• A Multi-Input Multi-Output (MIMO) forecasting architecture is
built in the DCGAN-ConvLSTM framework, which can make
multi-step forecasts of temporal/dynamic information or predic-
tion of any target variable.

• ConvLSTM and DCGAN both consist of convolutional LSTM lay-
ers, which can learn long-term dependency by LSTM and extract
time-invariant features using convolutional layers. Thus, the two
algorithms are powerful enough to efficiently and accurately
4

exploit the intrinsic dynamics of the high-dimensional dynamic
system.

• A recursively MIMO forecasting strategy is developed to perform
long lead-time forecasts of any target variable.

• Importantly, the EnKF-based DCGAN-ConvLSTM framework en-
ables real-time assimilation of observations into the ML-based
forecast models, which allows us to minimize model errors and
determine uncertainties, thus improving the accuracy of forecasts.

This paper is organized as follows. In Section 2, the details of
an EnKF are briefly introduced, followed by the ConvLSTM model
and DCGAN models in Section 3. The EnKF-based DCGAN-ConvLSTM
forecasting architecture for long lead-time forecasting is presented in
detail in Section 4. Detailed comparisons between the above-mentioned
models appear in Section 5. Finally, the summary and conclusions are
provided in Section 6.

2. Ensemble Kalman filter

EnKF is a Monte Carlo implementation of the Bayesian update
problem, which uses ensembles of stochastic realizations (state vectors)
for approximating the states of a dynamic system. The state matrix
consists of all the state vectors in the ensemble as:

(𝑡) = (1(𝑡),… ,𝑘(𝑡),… ,𝑁𝑒
(𝑡)) ∈ R𝑁𝑥×𝑁𝑒 , (2)

where 𝑘(𝑡) is the state vector of the dynamic system, the subscript
𝑘 is the number of the state vector in the ensemble, the subscript 𝑁𝑥
represents the length of the state vector, the subscript 𝑁𝑒 is the size of
the ensemble.

EnKF-based data assimilation consists of two steps, prediction and
update. In the prediction step, according to Eq. (1), the forecast model
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Fig. 5. Residuals of all states from the ConvLSTM and DCGAN models in comparison to those from the physical modeling-L96. Left column: full state trajectory from the physical modeling-L96;
the difference of results between the ML model and physical modeling-L96: middle column-ConvLSTM and right column-DCGAN, where the data at the last-60-step time instances (shown in
the left) as inputs while the corresponding forecast periods are 181.2 − 181.5 MTU, 181.8 − 182.1 MTU, and 182.4 − 182.7 MTU.
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is performed on each ensemble member independently:

𝑓
𝑘 (𝑡𝑠) = (𝑏

𝑘 (𝑡𝑠−1)) + 𝑘(𝑡𝑠−1), (3)

here  is a forecast model, representing the dynamic system pre-
ented in Section 1, 𝑏

𝑘 (𝑡𝑠−1) ∈ R𝑁𝑥 is the background vectors of all
odel states for the 𝑘th ensemble member, and 𝑘(𝑡𝑠) denotes the white

noises for the forecast model at time 𝑡𝑠. The introduction of noises 𝑘(𝑡𝑠)
enables EnKF to correctly propagate the uncertainty engaged in the
system, which avoids a divergence of the systems due to a low variance
with observation in propagation process [46]. The ensemble mean of
orecasting vectors of all model states at time 𝑡𝑠 is defined as:


𝑓
𝑘 (𝑡𝑠) =

1
𝑁𝑒

𝑁𝑒
∑

𝑘=1
𝑓
𝑘 (𝑡𝑠). (4)

n estimate of the model error covariance 𝑃 𝑓 is then computed as:

𝑓 (𝑡𝑠) =
1

𝑁𝑒
∑

[𝑓
𝑘 (𝑡𝑠) − 

𝑓
(𝑡𝑠)][

𝑓
𝑘 (𝑡𝑠) − 

𝑓
(𝑡𝑠)]𝑇 . (5)
5

𝑁𝑒 − 1 𝑘=1
𝑃

In the update step, given the observation (𝑡𝑠) each ensemble is then
updated by:

𝑎
𝑘 (𝑡𝑠) = 𝑓

𝑘 (𝑡𝑠) +𝐾(𝑡𝑠)[(𝑡𝑠) −𝑓
𝑘 (𝑡𝑠)], (6)

here  is the operator that converts the model states to observation
pace [26], and the Kalman gain is calculated by:

(𝑡𝑠) = (𝜌𝑠◦𝑃 𝑓 (𝑡𝑠))𝑇 [(𝜌𝑠◦𝑃 𝑓 (𝑡𝑠))𝑇 +(𝑡𝑠)]−1, (7)

here  = 𝜎𝑜 is the observation error covariance matrix, and ◦

enotes a Schur product (an element-by-element multiplication). Here,
he localization techniques are applied to ensemble assimilations [47–
0]. The operation 𝜌𝑠 is the correlation coefficient based on distance
the localization radius which is space and time-dependent) so that
emote observations are removed. The (posterior) error covariance
atrix 𝑃 𝑎(𝑡𝑠) is estimated by:

𝑎 𝑓
(𝑡𝑠) = [1 −𝐾(𝑡𝑠)]𝑃 (𝑡𝑠). (8)
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Fig. 6. The RMSE of predicted all states from the ConvLSTM and DCGAN models for the lead-time periods, 180.6 − 180.9 MTU, 181.2 − 181.5 MTU, 181.8 − 182.1 MTU, and 182.4 − 182.7
MTU.
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3. Machine learning methods

3.1. ConvLSTM

The ConvLSTM model combines the advantages of CNN and LSTM,
which can learn long-term dependency and extract time-invariant fea-
tures [44].

The ConvLSTM architecture is similar to traditional LSTM architec-
ture, consisting of a series of memory blocks. The key to the memory
block is the cell state and three gates. The cell state 𝑠 is the path of
information transmission, which enables information to be transmitted
in sequence. The gates are responsible for updating or discarding
historical information. The cell contains three gates, which are input
gate 𝐼𝑠, forget gate 𝑓𝑠, and output gate 𝑂𝑠. The input gate 𝐼𝑠 processes
the new data, the forget gate 𝑓𝑠 is used to eliminate redundant or
useless data and finally the output gate 𝑂𝑠 processes the input data
with the cell state. All the inputs, cell states, hidden states, and gates
in the ConvLSTM are 3D tensors.

The following equations characterize the ConvLSTM model as:

𝑓𝑠 = 𝜎(𝑊𝑥𝑓 ∗ 𝑠 +𝑊ℎ𝑓 ∗ ℎ𝑠−1 +𝑊𝑐𝑓◦𝑠−1 + 𝑏𝑓 ), (9)

𝐼𝑠 = 𝜎(𝑊𝑥𝑖 ∗ 𝑠 +𝑊ℎ𝑖 ∗ ℎ𝑠−1 +𝑊𝑐𝑖◦𝑠−1 + 𝑏𝑖), (10)

̃𝑠 = tanh(𝑊𝑥𝑐 ∗ 𝑠 +𝑊ℎ𝑐 ∗ ℎ𝑠−1 + 𝑏𝑐 ), (11)

𝑠 = 𝑓𝑠◦𝑠−1 + 𝐼𝑠◦̃𝑠, (12)

𝑂𝑠 = 𝜎(𝑊𝑥𝑜 ∗ 𝑠 +𝑊ℎ𝑜 ∗ ℎ𝑠−1 +𝑊𝑐𝑜◦𝑠 + 𝑏𝑜), (13)

ℎ𝑠 = 𝑂𝑠◦ tanh(𝑠), (14)

where 𝑊𝑖, 𝑊𝑜, 𝑊𝑓 and 𝑊𝑐 represent the weights for each gate, 𝑏𝑖, 𝑏𝑜, 𝑏𝑓
and 𝑏𝑐 are the bias terms, 𝜎 denotes the logistic sigmoid function, 𝑡𝑎𝑛ℎ
is the hyperbolic tangent function, 𝑠 represents the cell state, ̃𝑠 is the
updated cell state, 𝑠 and ℎ𝑠 are the cell input and output respectively.
In addition, the operator ‘∗’ stays instead of the vector multiplication.
‘∗’ is the convolution operation and ‘◦’ denotes the Hadamard product.

3.2. DCGAN

The DCGAN consists of two modules, a generator  and a discrim-
inator  [45]. The discriminator , is fed with samples from ‘‘real’’
data 𝑑 and ‘‘fake’’ data (the reconstructed samples) ̂ created by the
generator : ̂ = (). The discriminator  tries to distinguish the ̂
from  by making a binary decision. In contrast, the generator  aims
6

𝑑 f
at fooling the discriminator  into labeling ̂ as a sample 𝑑 . Mathe-
matically, this translates into the following minimization–maximization
loss function 𝐷𝐶𝐺𝐴𝑁 :

min


max


𝐸𝑑∼𝑝𝑑𝑎𝑡𝑎(𝑑 )[log(𝑑 )] + 𝐸∼𝑝 ()[log(1 −(()))], (15)

where 𝑝 () is a prior distribution for the input dataset  , and 𝑝𝑑𝑎𝑡𝑎(𝑑 )
is the corresponding probability data distribution for the targeted out-
puts 𝑑 .

Here an additional loss function, 𝐿2 function, has been introduced
in the generator :

𝐺 = 𝐸∼𝑝 ()[log(1 −(()))] + 𝜆𝐸𝑑∼𝑝𝑑𝑎𝑡𝑎(𝑑 )‖() − 𝑑‖
2
2, (16)

where the hyperparameter 𝜆 is the 𝐿2 objective weight.
The final objective of the proposed DCGAN is:

min


max


𝐷𝐶𝐺𝐴𝑁 + 𝜆𝐸𝑑∼𝑝𝑑𝑎𝑡𝑎(𝑑 )‖() − 𝑑‖
2
2. (17)

. Long lead-time forecasting using hybrid machine learning mod-
ls and EnKF

In this study, we aim at developing a ML-based model for the long
ead-time forecast. In current ML models, it is still challenging to keep
he predictive accuracy beyond the training period, not to mention
ong lead-time forecasts. Here a hybrid ML-based EnKF (ML-EnKF)
ramework is introduced to reduce the cumulative error in a long-term
orecast. The main procedures are described below:

(a) The DCGAN and ConvLSTM models are first trained for efficient
nonlinear dynamical prediction (Section 4.1, 𝑀𝐿 mode);

(b) The trained DCGAN and ConvLSTM models are then used for
long lead-time forecasts in a recursive way, where the last
ensemble multiple-time step-ahead forecasts/outputs are used as
new inputs for the next time step-ahead ensemble forecasts (in
Section 4.2, 𝑀𝐿 mode);

(c) The EnKF data assimilation approach is further incorporated into
the DCGAN and ConvLSTM models for reducing forecast uncer-
tainty of dynamic features at future time instants (in Section 4.3,
𝑀𝐿 + 𝐷𝐴+𝑀𝐿 mode).

.1. Multi-Input Multi-Output (MIMO) forecast using ConvLSTM and DC-
AN

In this sub-section, the DCGAN and ConvLSTM models are trained
or representing the physical dynamics shown in Eq. (3) ( mode).
𝑀𝐿
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Fig. 7. The trajectories of 𝑋2 , 𝑋8 , 𝑋16 and 𝑋32 predicted using the ConvLSTM-EnKF1 and DCGAN-EnKF1, where the length of the known series is 𝑀 = 60 (0.06 MTU) and the predicted
series is 𝛷 ×𝐻 = 300 (3 MTU), i.e., 300-steps-ahead forecasts.
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These ML models have replaced the physic models (𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙) as a
forward surrogate model. For long lead-time forecasting, we adopt a
Multi-Input Multi-Output (MIMO) strategy [51] as shown in Fig. 1(a).

he MIMO forecasting is an estimation of future time series:

̂(𝑡𝑠+1),… , ̂(𝑡𝑠+𝐻 )] = 𝑀𝐿[(𝑡𝑠−𝑀+1),… ,(𝑡𝑠)], (18)

here 𝑀𝐿 is a ML forecasting model, ̂ represents the state vari-
bles, the inputs are the state values from the previous time steps
𝑡 ,… , 𝑡 ), 𝑀 is the length of time lag while the outputs are
7

𝑠−𝑀+1 𝑠 
he forecasts at the lead-time steps ((𝑡𝑠+1,… , 𝑡𝑠+𝐻 ) ∈ (𝑡0, 𝑡𝑁𝑡
)), 𝐻

enotes the total predictive time steps. Here the ConvLSTM and DCGAN
odels acting as forecasting model 𝑀𝐿 are used for learning the

nput–output relationship.
Given 𝑁𝑤 pairs of multi-inputs and multi-outputs (𝐼 ,𝑂) ∈ (𝑡𝑟,

𝑡𝑟) used for ConvLSTM and DCGAN training purpose, the training
nputs 𝐼 are :

𝑁𝑥×𝑀×𝑁𝑤

𝑡𝑟 ∶ 𝐼 ∈ R , (19)



Journal of Computational Science 69 (2023) 102024M. Cheng et al.



i
l
e
m

p

w
𝑘

𝑡



r
2

while the corresponding output datasets 𝑂 are:

𝑡𝑟 ∶ 𝑂 ∈ R𝑁𝑥×𝐻×𝑁𝑤 . (20)

In this study, the ConvLSTM forecasting model consists of one
nput layer, two convolutional LSTM layers and two convolutional
ayers. The rectified linear unit (Leaky ReLU) activation function is
mployed between the layers. With respect to the DCGAN forecasting
odel, the generator  has one input layer, one convolutional LSTM

layer and two convolutional layers. The discriminator  uses three
hidden convolutional layers, each using a densely connected layer. The
output layer is densely connected to the final hidden layer with a
sigmoid activation function. Specifically, both ConvLSTM and DCGAN
models are trained using the Adam optimizer [52]. Adam stands for
adaptive moment estimation, a method of calculating current gradients
using prior gradients. The Adam optimization approach is a stochastic
gradient descent extension that has lately gained traction in computer
vision and natural language processing applications. The weights in the
networks are updated after computing the combined loss of each batch.

4.2. Long lead-time forecasts using ConvLSTM and DCGAN

In this sub-section, the long lead-time forecasts are obtained from
the trained ConvLSTM and DCGAN in a recursively MIMO strategy
(𝑀𝐿 mode). Once the ConvLSTM and DCGAN training processes are
completed, one can find the relationship between the input–output
pairs (𝐼 ,𝑂). By using the trained ConvLSTM and DCGAN models as
shown in Fig. 1(b), the 𝐻-step predictive solutions beyond the training
eriod [𝑡0, 𝑡𝑁𝑡𝑟

] for any input data 𝐼 ∈ (∕𝑡𝑟) can be obtained in
Eq. (18).

A recursively MIMO forecasting strategy [16] is here developed to
make long lead-time forecasts, as shown in Fig. 1(c). The forecasts are
given in Algorithm 1: where ̂𝑀𝐿 represents the trained forecasting
model, 𝜙(𝜙 ∈ (1, 𝛷)) is the length of steps using the MIMO strategy.

Algorithm 1 Multi-step MIMO forecasts using ConvLSTM and DCGAN.

(1) One MIMO step forecasting process.
• Set the length of time lags 𝑀 and forecasting time steps 𝐻 .
• Obtain the optimal parameters in the training process.
• Sample 𝑀 steps datasets from the initial time 𝑡𝑠 during the test period
(𝑡𝑁𝑡𝑟

, 𝑡𝑁𝑡
).

• Make 𝐻-step ensemble forecasts in one MIMO step strategy by
ConvLSTM and DCGAN models.

(2) Long lead-time forecast process.
• Select the iteration length 𝛷.
for 𝜙 = 1 to 𝛷 do

if 𝜙 = 1 then
• The next multi-steps-ahead is obtained by the trained model ̂𝑀𝐿
as:

̂𝑀𝐿[(𝑡𝑠−𝑀+1),… ,(𝑡𝑠)].

else if (𝐻 × 𝜙) ≤ 𝑀 then
• The next multi-steps-ahead is obtained by the trained model ̂𝑀𝐿
as:

̂𝑀𝐿[(𝑡𝑠−𝑀−2+𝐻(𝜙−1)),… ,(𝑡𝑠), ̂(𝑡𝑠+1),… , ̂(𝑡𝑠+𝐻(𝜙−1))].

else
• The next multi-steps-ahead is obtained by the model ̂𝑀𝐿 as:

̂𝑀𝐿[̂(𝑡𝑠−𝑀+1+𝐻(𝜙−1)),… , ̂(𝑡𝑠+𝐻(𝜙−1))].

end if
end for
• Obtain the long length-𝛷 ×𝐻 multi-steps of forecasts ̂ .
8

4.3. Extension of forecasting horizon integrating ConvLSTM and DCGAN
with EnKF

In the sections above, the DCGAN and ConvLSTM models have
been developed for efficient forecasts. However, the performance of
the trained ML forecasting models decays as the predictive horizon 𝛷
extends beyond a few time steps. To reduce the cumulative error in long
lead-time forecasts, we introduce here the data assimilation technique
(the EnKF approach) to the ConvLSTM and DCGAN models in the online
forecasting process (𝑀𝐿 + 𝐷𝐴+𝑀𝐿 mode), as shown in Fig. 1(c).

As stated in Section 2, the EnKF is a sequential ensemble data assim-
ilation technique. Given the background state 𝑏 (𝑏 = [(𝑡𝑠−𝑀+1),… ,
(𝑡𝑠)]), the initial ensembles at time 𝑡𝑠 (𝑡𝑠 ∈ (𝑡𝑁𝑡𝑟

, 𝑡𝑁𝑡
)) are generated

by:

𝑏
𝑘 (𝑡𝑠) = 𝑏(𝑡𝑠) + 𝜖, (21)

here 𝜖 is randomly obtained from a Gaussian distribution  (𝑏, 𝜎2),
∈ (1, 𝑁𝑒) and 𝑁𝑒 is the size of the ensemble.

The forecast matrix in Eq. (3) from trained ML-based models at time
𝑠 is defined by

̂𝑓
𝑘 (𝑡𝑠) = [̂𝑓

𝑘,1(𝑡𝑠),… , ̂𝑓
𝑘,𝑠(𝑡𝑠),… , ̂𝑓

𝑘,𝑁𝑥
(𝑡𝑠)] ∈ R𝑁𝑥×𝑁𝑒 . (22)

Given the observations  and the forecast ensemble ̂𝑓
𝑘 , the forecast

esults ̂𝑎
𝑘 can be updated by following the steps shown in Algorithm

:

Algorithm 2 Multi-step MIMO forecasts using the hybrid ConvLSTM-EnKF
and DCGAN-EnKF.

Set the iteration length 𝛷.
Set the length of the time lag 𝑀 and forecasting time step 𝐻 in one MIMO
step.
Set the ensemble sample size 𝑁𝑒.
(1) Inputs:
• Generate the ensembles 𝑏 at the initial forecast time 𝑡𝑠.
• Set observations .
• Set ̂𝑓 (𝑡𝑠) = 𝑏(𝑡𝑠)

for 𝜙 = 1 to 𝛷 do
(2) Prediction step:
• Get the dynamic features from the trained models in Eq. (3):
̂𝑓 (𝑡𝑁𝜙

) = ̂𝑀𝐿(̂𝑓 (𝑡𝑁𝜙−1
)).

• Obtain the model error covariance 𝑃 𝑓 in Eq. (5).
for 𝑖 = 1 to 𝐻 do

(3) Update step:
• Calculate the Kalman gain 𝐾(𝑡𝑖) in Eq. (7).
• Update the ensemble of states ̂𝑎(𝑡𝑖) in Eq. (6).
• Update the error covariance matrix 𝑃 𝑎(𝑡𝑖) in Eq. (8).

end for
end for
• Obtain the updated length-𝛷 ×𝐻 multi-steps of forecasts ̂𝑎.

5. Numerical examples

In this section, our two-hybrid ConvLSTM-EnKF and DCGAN-EnKF
models are tested with one-level and two-level variants of the Lorenz
96 models, which have been commonly used as a prototypical test case
in data assimilation [10,31,36,53].

5.1. One-level Lorenz 96

The one-level Lorenz 96 model is defined on a periodic one-
dimensional domain by the following set of ordinary differential equa-
tions:
𝑑𝑟 = ( −  ) −  + 𝐹 (23)

𝑑𝑡 𝑟+1 𝑟−2 𝑟−1 𝑟
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here 𝑟 is the scalar state variable measured along a circle of constant
atitude of the earth divided into 𝑁𝑥 equal-sized sectors, 𝑟 ∈ [0, 𝑁𝑥],
𝑁𝑥

= 0, 𝑁𝑥−1 = 1, 𝑁𝑥−2 = 2, 𝑁𝑥 = 40. The external forcing
= 12 is chosen as a strongly supercritical value to render the system

ufficiently chaotic.

.1.1. Model setup
A long ‘‘truth’’ run of the physical Lorenz 96 model (referred to

s physical modeling-L96) is performed to generate the datasets for
raining and validating the ConvLSTM-EnKF and DCGAN-EnKF models.
he ‘‘truth’’ run is integrated for 200 model time units (MTUs) using a
ime step 𝛿𝑡= 0.01 MTU. Outputs from the first 180 MTUs are used for
raining (90%) and validation (10%), and the remaining 20 MTUs are
sed for testing. Therefore, we assess the performance of the trained
odels for temporal integration during the period [180, 200] MTUs.
he training process of the DCGAN, consisting of a generator and
discriminator, is more complex than ConvLSTM. Fig. 2 shows the

discriminator scores on real (blue) and fake (orange predicted values)
variable values vary during the DCGAN training. It can be noticed
that the DCGAN model stabilizes between epochs 150 and 500. After
epoch=150, the discriminator scores for real and fake samples remain
stable and are slightly beyond or around 0.5 with increased epochs.

The performances of two trained ML models developed in this study
are assessed using the root mean squared error (RMSE), and correlation
coefficient (R) which are defined as follows:

𝑅𝑀𝑆𝐸 =

√

√

√

√

∑𝑁
𝑗=1 (̂𝑗 − 𝑑,𝑗 )

2

, (24)
9

𝑁 w
𝑅 =

∑𝑁
𝑗=1 (̂𝑗 − ̂)(𝑑,𝑗 − 𝑑 )

√

∑𝑁
𝑗=1 (̂𝑗 − ̂)

2
√

∑𝑁
𝑗=1 (𝑑,𝑗 − 𝑑 )

2
, (25)

here the subscript 𝑗 represents the pairing of 𝑁 targeted states 𝑑 and
orecasts ̂ by points ([0, 𝑁𝑥]) and predictive period ([𝑡𝑁𝑡𝑟

, 𝑡𝑁𝑡
]), and the

verbars signify means over points and/or time.

.1.2. One step MIMO forecast
Fig. 3 illustrates a series of forecasts from the trained ConvLSTM

nd DCGAN models in one-step MIMO modeling. Here we use the last
0-time-step variable values as known inputs and obtain a 30-time-
tep-ahead forecast of all state variables (𝑁𝑥 = 40). The "true" results
r references are computed using the physical modeling-L96. It can
e seen that the ConvLSTM model performs better than the DCGAN
odel in one-step MIMO forecasting where the correlation coefficients

f ConvLSTM results are higher than 0.97 except for 𝑋32. This can
e further confirmed in Fig. 4, which compares the forecasts of all
tate variables from both the trained ML models during the lead-times
180.6 − 180.9 MTUs). It can be noticed that the residuals (bottom
anel) in Fig. 4 of the ConvLSTM are smaller than those of the DCGAN
odel. In general, the predictive results from the ConvLSTM model
ave achieved a better match with the ground true values at the lead-
imes (180.6 − 180.9 MTUs) than that of the DCGAN model. The main
eason for this is that the loss function in the GAN mainly measures
he distance between the probability distributions unlike ConvLSTM

here the loss function measures the misfit between the predicted and
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rue values. Therefore, the trained DCGAN helps us to analyze, forecast
nd compute the probability of variable values, based the past datasets
ith respect to changing time. The capability of the DCGAN in real-

ime prediction varies from one case to another. In the study case of
ultiple time-step predictions in physical modeling-L96, compared to

he DCGAN, the ConvLSTM is more powerful in forecasting.
The accuracy of results from the ConvLSTM and DCGAN models has

urther been estimated during different predictive periods (shown in
igs. 5 and 6), where the references are computed using the physical

modeling-L96. In Fig. 5, we can see that the residuals from both
he ConvLSTM and DCGAN models are mostly smaller during these
redictive periods. Fig. 6 shows the RMSEs of results from both the
onvLSTM and DCGAN models for four predictive periods. The box
lots depict the median, the 25th and 75th percentiles and the mini-
um and maximum computed over four predictive periods. The bias

f mean values is less than −0.16 and −0.56 for the ConvLSTM and
CGAN models respectively at different predictive periods. Again, the
onvLSTM model attains a closer agreement with the results from the
hysical modeling-L96 than that of the DCGAN model. The ConvLSTM
odel can better detect the underlying functional mapping through
attern extraction and long-term dependency learning.

.1.3. Long lead-time forecasts with ML-EnKF
In this section, we further demonstrate the forecasting performance

f the ConvLSTM and DCGAN models combined with EnKF in multi-
tep-MIMO forecasting. The EnKF is introduced for improving the
ccuracy of long-term forecasting. The forecast period is [180.6, 183.6]
TU. In MIMO forecast (in Eq. (18)), the total forecasting time steps

n one iteration/step are set to 𝐻 = 30 while the length of previous
ime steps for inputs is 𝑀 = 60 (where the time step size is 0.01 MTU).
10

t

he iteration number 𝛷 of multi-step MIMO is 10, i.e. the long-term
orecast period (300-steps-ahead) is 10 × (0.01 × 30) = 3 MTUs. The
nitial conditions 𝑏 are the state variable values from 180 MTU (in
lgorithm 2). Given a perturbation (randomly drawn from a Gaussian
istribution with a zero mean) to the initial variable 𝑏 (in Eq. (21)),
he initial ensembles are generated, where the ensemble sample size is
0 (𝑁𝑒 = 50). Each ensemble member is integrated in time using the
rained ConvLSTM and DCGAN models.

In ML-EnKF models, the forecasts at the lead-time steps
i.e., ̂𝑓 (𝑡𝑠+1,… , 𝑡𝑠+𝐻 ) in Algorithm 2) are obtained from the trained
onvLSTM and DCGAN models. For the next-MIMO-step forecast-

ng, the inputs are the forecasts ̂𝑓 (𝑡𝑠) at the previous time steps
𝑡𝑠−𝑀+1,… , 𝑡𝑠), which are updated using the EnKF whenever an ongoing
equence of observations are available. In comparison to the true values
from physical modeling-L96), the performance of the ConvLSTM-EnKF
nd DCGAN-EnKF are evaluated through:

(a) the forecast state variables during the lead-time period using the
ConvLSTM and DCGAN, where the inputs are the updated fore-
cast results using EnKF (hereafter referred to ConvLSTM-EnKF1
and DCGAN-EnKF1);

(b) the updated forecast results during the lead-time period, where
both outputs and inputs in the ConvLSTM and DCGAN models
are updated using EnKF (hereafter referred to ConvLSTM-EnKF2
and DCGAN-EnKF2). At this step, the outputs (forecast states)
from ConvLSTM-EnKF1 and DCGAN-EnKF1 are further updated
using EnKF.

As shown in Fig. 7, the trajectories of 𝑋2, 𝑋8, 𝑋16 and 𝑋32 predicted
sing the ConvLSTM-EnKF1 and DCGAN-EnKF1 follow the trend of the
rue ones during the whole lead-times (180.6 − 183.6 MTU). It can be
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Fig. 10. Tylor diagrams representing correlation coefficient together with the standard deviation difference for proposed ConvLSTM, ConvLSTM+EnKF1, ConvLSTM+EnKF2, DCGAN,
DCGAN+EnKF1, DCGAN+EnKF2 for (a) 𝑋2 (b) 𝑋8 (c) 𝑋16 , and (d) 𝑋32 state variables during the forecasting period of 180.6 − 183.6 MTU.
observed that a relatively good agreement exists between the forecasts
and true values and small differences can be noticed at forecasting
steps. In general, the underlying dynamic pattern is captured well by
the predictive ConvLSTM-EnKF1 and DCGAN-EnKF1. During the 300-
steps-ahead forecasting period, the correlation coefficients of four state
variables are between 0.79 and 0.98 for the ConvLSTM and between
0.8 and 0.95 for the DCGAN respectively.

To further demonstrate the forecasting capability of the hybrid
models, the error analysis is carried out by the RMSE and correlation
coefficient of predicted state variables. As shown in Fig. 8, it can be
noticed that the RMSEs of forecasting states are reduced when the
inputs for the ConvLSTM and DCGAN models are updated with EnKF.
For example, the RMSEs of the ConvLSTM and DCGAN models have a
rising trend (with a maximum value of 8) during the predictive period
[180.6, 183.6] MTU in Fig. 8(a), while for the ConvLSTM-EnKF1 and
DCGAN-EnKF1 the values fluctuate between 0 and 4 except for the
initial 30-step forecasts (180.6−180.9 MTU). The correlation coefficients
of ConvLSTM-EnKF1 and DCGAN-EnKF1 are around 0.75 − 0.9, while
without EnKF, the correlation coefficients are down to 0.2. The intro-
duction of EnKF to the ConvLSTM and DCGAN models has mitigated
the cumulated forecast error problem in recursively MIMO forecasting.
This can be seen in Fig. 8(b) that the mean RMSE of the ConvLSTM
model decreases from 5.88 to 1.82 after the observations are assimi-
lated using EnKF, while that from the DCGAN model declines from 6.35
11
to 2.36. The mean correlation coefficients of the ConvLSTM-EnKF1 and
DCGAN-EnKF1 models are 0.92 and 0.86 respectively.

The accuracy of forecast states during the lead-times can further
be enhanced by updating the outputs from the ConvLSTM-EnKF1 and
DCGAN-EnKF1 using EnKF. Fig. 9 depicts the forecasts of 𝑋2, 𝑋8, 𝑋16
and 𝑋32 from the ConvLSTM-EnKF2 and DCGAN-EnKF2 during the
whole lead-time (180.6 − 183.6 MTU). Visually, very little difference
between the true values and results from the ConvLSTM-EnKF2 and
DCGAN-EnKF2 can be noticed. The results demonstrate that the two-
hybrid ConvLSTM-EnKF and DCGAN-EnKF models have successfully
captured dynamic features and provide accurate long lead-time fore-
casts. This can serve as a promising tool by using the hybrid ML-EnKF
model to efficiently forecast complex dynamic systems for realistic
applications.

A Taylor diagram in Fig. 10 is employed for further assessment of re-
sults between the ConvLSTM, ConvLSTM+EnKF1, ConvLSTM+EnKF2,
DCGAN, DCGAN+EnKF1, DCGAN+EnKF2 and physical modeling-L96
for 𝑋2, 𝑋8, 𝑋16, and 𝑋32 state variables during the forecasting period
of 180.6−183.6 MTU. It can be noticed that the results from the hybrid
models (i.e., ConvLSTM+EnKF1, ConvLSTM+EnKF2, DCGAN+EnKF1,
DCGAN+EnKF2) display a higher correlation coefficient than that of
the ConvLSTM and DCGAN models (orange and cyan points), for exam-
ple, close to 1.0 for the ConvLSTM+EnKF2 and DCGAN+EnKF2 (green
and yellow points).
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Fig. 11. Comparison of 300-step-ahead forecast trajectories of full states between the ConvLSTM-EnKF1, ConvLSTM-EnKF2, DCGAN-EnKF1 and DCGAN-EnKF2 models with physical
modeling-L96 during the forecasting period of 180.6 − 183.6 MTU.
To further compare the performance of the hybrid ML-EnKF mod-
ls, the trajectories of full states from ConvLSTM-EnKF1, ConvLSTM-
nKF2, DCGAN-EnKF1 and DCGAN-EnKF2 models are presented in
ig. 11(a). It can be seen that the predictive maps from the four models
ttain a closer agreement to that of the physical modeling-L96. The
ifferences in forecast states between the ML models and physical
12
modeling-L96 are illustrated in Fig. 11(b)–(e). It can be noticed that
the differences are quite small over the whole domain, especially for
ConvLSTM-EnKF2 and DCGAN-EnKF2 models. The bias of ConvLSTM-
EnKF2 and DCGAN-EnKF2 models is hardly visible, which suggests the
ConvLSTM-EnKF2 and DCGAN-EnKF2 models are capable to obtain
accurate long lead-time forecasts for complex physical dynamics.
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Fig. 12. The trajectories of 𝑋2 , 𝑋8 , 𝑋16 and 𝑋32 predicted using the ConvLSTM-EnKF and DCGAN-EnKF, where the length of the known series is 𝑀 = 200 (1 MTU) and the predicted series
is 𝛷 ×𝐻 = 400 (2 MTU), i.e., 400-steps-ahead forecasts.
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5.2. Two-level Lorenz 96

To further demonstrate the model forecasting capability, a two-level
Lorenz 96 model is adopted as a test case. The two-level Lorenz 96
model has two scales of variables,  and  with low and high frequency
respectively. Each of 𝑟 are associated with 𝑟,𝑘 variables representing
unresolved subgrid processes:

𝑑𝑟
𝑑𝑡

= −(𝑟+1 − 𝑟−2)𝑟−1 − 𝑟 + 𝐹 − ℎ𝑐
𝑏

𝐾
∑

𝑘=1
𝑘,𝑟, (26)

𝑑𝑘,𝑟

𝑑𝑡
= −𝑐𝑏𝑘+1,𝑟(𝑘+2,𝑟 − 𝑘−1,𝑟) − 𝑐𝑘,𝑟 −

ℎ𝑐
𝑏
𝑟, (27)

here the number of  variables is 𝑁𝑥 = 36, and the number of 𝑘,𝑟
variables per 𝑟 is 𝐾 = 10. The value of the constants is set to ℎ = 1,
𝑏 = 10 and 𝑐 = 10. The forcing is set at 𝐹 = 20.

The solutions in the two-level Lorenz 96 are treated as the ‘‘true
values’’. The high-frequency  variables in Eq. (27) can be calculated
using the subgrid parameterization modeling in weather and climate
prediction [10]. Our goal is to train the machine learning model for
the prediction of the low-frequency variable  . Therefore, the Eq. (18)
is rewritten as:

[̂(𝑡𝑠+1),… , ̂(𝑡𝑠+𝐻 )] = 𝑀𝐿[(𝑡𝑠−𝑀+1), (𝑡𝑠−𝑀+1),… ,(𝑡𝑠), (𝑡𝑠)],

(28)

where

 = ℎ𝑐
𝑏

𝐾
∑

𝑘=1
𝑘. (29)

The model training and validation period is [0, 50] MTU, and the
forecast period is [51, 53] MTU. In MIMO forecast (in Eq. (18)), the total
forecasting time steps in one iteration/step are set to 𝐻 = 50 while the
length of previous time steps for inputs is 𝑀 = 200 (where the time step
13
size is 0.005 MTU). The iteration number 𝛷 of multi-step MIMO is 8,
i.e. the long-term forecast period (400-steps-ahead) is 8×(0.005×50) = 2
MTUs. The initial conditions 𝑏 are the state variable values from 50
MTU (in Algorithm 2). The ensemble sample size is 50 (𝑁𝑒 = 50). Each
nsemble member is integrated in time using the trained ConvLSTM
odel.

As shown in Fig. 12, the trajectories of 𝑋2, 𝑋8, 𝑋16 and 𝑋32
predicted using the ConvLSTM-EnKF and DCGAN-EnKF follow the trend
of the true ones during the whole lead-times (51−53 MTU). It is noticed
that the forecasts from both ConvLSTM-EnKF and DCGAN-EnKF have
good agreement with true values and very small differences can be
observed at forecasting steps.

To further compare the performance of the hybrid ML-EnKF models,
the trajectories of full states from ConvLSTM-EnKF and DCGAN-EnKF
models are presented in Fig. 13. It can be seen that the predictive maps
from both models attain a closer agreement to that of the two-level
Lorenz 96 model (physical modeling-L96), and very little difference
between the true values and results from the ConvLSTM-EnKF and
DCGAN-EnKF can be ascertained visually. According to the bias in
Fig. 13, it can be seen that the biases are quite small over the whole
domain, especially for the ConvLSTM-EnKF model. The results demon-
strate that the ConvLSTM-EnKF and DCGAN-EnKF models are capable
to perform accurate long lead-time forecasts for complex dynamic
systems. Using ConvLSTM-EnKF and DCGAN-EnKF models for realistic
applications will be the subject of our future work.

6. Conclusions

In this work, a hybrid ML-EnKF framework has first been developed
for long lead-time forecasts of nonlinear dynamic systems (𝑀𝐿 +
𝐷𝐴+𝑀𝐿 mode). The ConvLSTM and DCGAN have been trained for
learning the complex nonlinear relationships between the past and
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Fig. 13. Comparison of 400-step-ahead forecast trajectories of full states between the ConvLSTM-EnKF and DCGAN-EnKF models with physical modeling-L96 during the forecasting period of
51.005 − 53 MTU.
future states, and then used as the dynamic surrogate model in long-
term forecasts based on an iterative MIMO algorithm. During each
iteration MIMO forecast stage, the trained ML models are used for mul-
tiple time-step-ahead forecasts while the forecast results are updated
using EnKF whenever the observations are available during the online
forecast process. In comparison to traditional EnKF approaches, the
trained ConvLSTM and DCGAN models are used for efficient calculation
of ensembles, rather than a physics-informed model which requires a
high computational cost.

The performance of the hybrid ConvLSTM-EnKF and DCGAN-EnKF
models has been demonstrated by one-level and two-level Lorenz 96
models. To evaluate the model forecasting capability, a detailed accu-
racy assessment has been performed through the correlation coefficient
and RMSE. Our results illustrate that the ConvLSTM model can better
capture temporal dynamics in a high-dimensional nonlinear system and
predict accurate dynamics than the DCGAN model. In addition, the use
of EnKF in ConvLSTM and DCGAN models significantly reduces forecast
errors along with lead-times.

Overall, the hybrid ML-EnKF (𝑀𝐿 + 𝐷𝐴+𝑀𝐿 mode) is an efficient
and reliable tool for real-time forecasting of dynamic systems. Com-
pared to physical models, the use of ML approaches can reduce the
computational cost by several orders of magnitude, thus speeding up
forecast and data assimilation processes significantly. It has a promis-
ing potential for a wide range of applications, for instance, flooding
and real-time air pollution forecasting. We remark that our hybrid
forecasting ML-EnKF model of sequentially updating the forecasts with
the incoming observations is not restricted to EnKFs. One may instead
employ other nonlinear filtering methods such as variational data
assimilation approaches. The accuracy and efficiency of the proposed
ML-DA forecasting model applied to realistic and complex applications
will be the subject of our future work.
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