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A B S T R A C T

Geometric deep learning models, like Convolutional Neural Networks (CNNs), show promise as surrogate
models for predicting sheet stamping manufacturability but lack design variables essential for inverse problems
like geometric optimisation. Recent developments in deep learning have enabled geometry generation from
compact latent spaces that are suitable for optimisation. However, current methods do not accurately model
small-scale geometric features that are crucial for stamping performance. This study proposes a new deep
learning-based method to address this limitation and generate detailed stamping geometries for optimisation.
Specifically, neural networks are trained to generate Signed Distance Fields (SDFs) for stamping geometries,
where the zero-level-set of each SDF implicitly represents the generated geometry. A new training approach
is proposed for generating SDFs of stamping geometries, which involves supervising geometric properties of
the SDFs. A novel loss function is introduced that directly acts on the zero-level-set and places high emphasis
on learning small-scale features. This approach is compared with the state-of-the-art approach DeepSDF by
Park et al. (2019), which explicitly supervises SDF values using ground truth data. The geometry generation
performance of networks trained using both approaches is evaluated quantitatively and qualitatively. The
results demonstrate significantly greater geometric accuracy with the proposed approach, which can faithfully
generate small-scale features. Further analysis of the new approach reveals an organised learned latent
space and varying the network input generates high-quality geometries from this space. By integrating with
CNN-based manufacturability surrogate models by Attar et al. (2021), this work could enable the first-
ever manufacturability-constrained optimisation of arbitrary sheet stamping geometries, potentially reducing
geometry design time and cost.
. Introduction

.1. Industrial drive and research motivation

The design of stamping geometries is of central importance to their
unctional performance and manufacturability. For example, consider
he stamping of a deep drawn electric vehicle battery container as
resented in Attar et al. (2021a). Tight designed corner radii allow for
reduction of unusable internal volume but may impose large thinning
efects and fractures during stamping (Zhou et al., 2014). In addition,
he latest stamping processes, such as Hot Form Quench (HFQ®) for
ot stamping high strength aluminium alloys (Lin et al., 2008), have
he potential to widen the scope of manufacturability and therefore
reate structures with superior functional performance. These benefits
re realised through enabling complex components with challenging
eometric features to be produced from high specific strength and
tiffness alloys. For example, Politis et al. (2016) successfully stamped a
oor inner component with a 200 mm draw depth feature from AA6082
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using the HFQ process. Thus optimising stamping geometries is vital
for leveraging the design capabilities of these stamping processes while
meeting stringent manufacturability criteria.

The design of geometric features such as fillet radii is highly influ-
ential in dictating manufacturing performance of stamping geometries.
For example, Attar et al. (2021a) showed that a small change in
die and punch fillet radii produces a large change in sheet thinning
during stamping. Despite their strong influence, fillet radii are small-
scale geometric features when considered in the context of the global
component scale. For example, automotive door inner components
could be as wide as 1500 mm (Politis et al., 2016) and the latest
stamping processes (Mohamed et al., 2012) can enable fillet radii of
10 mm or smaller. Therefore, representing stamping geometries to
allow accurate manufacturing performance evaluation and thus enable
effective optimisation demands high quality representations of small-
scale features. State-of-the-art approaches for predicting and optimising
stamping performance and representing geometry are now reviewed.
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1.2. Advancements in predicting manufacturability and optimising sheet
stamping geometries

Physics-based Finite Element (FE) simulations in conjunction with
advanced material models have been shown capable of predicting the
stamping performance of designed geometries with high accuracy (Poli-
tis et al., 2016; El Fakir et al., 2014; Mohamed et al., 2015), and
are widely used in industry. For example, Politis et al. (2016) used
a temperature and strain rate dependent material model accurately
predict the thinning behaviour of a hot stamped aluminium alloy door
panel. However, the computational cost of these simulations limits
extensive design explorations. To this end, the simulator would have to
be run by a process expert each time a design engineer wishes to make
a geometry change and this makes the design development process slow
and costly.

To reduce computational effort, Surrogate-Based Optimisation
(SBO) techniques can be used (Naceur et al., 2008; Hu et al., 2017;
Zhou et al., 2013). These techniques employ surrogate models which
are efficient, data-driven numerical approximates of expensive simula-
tions. The development of these models requires first collecting input–
output observations from offline simulation runs and then training a
model to fit these observations. Once sufficiently trained, numerical
optimisation can be performed on the efficient surrogate model as
opposed to the expensive simulator. Xiao et al. (2016) used SBO
to optimise stamping speed, blank holder force, friction and blank
temperature to reduce thinning defects induced by stamping an auto-
motive floor component under HFQ conditions. Similarly, Zhou et al.
(2013) used SBO to optimise blank holder force and stamping speed to
reduce thinning and minimise springback in a anti-collision side beam
component under HFQ conditions.

However, available literature for SBO for stamping processes focuses
on optimisation of processing parameters while changes to the geome-
try are rarely considered, as identified by Zimmerling et al. (2020) and
Attar et al. (2021b). This focus means that existing surrogate models
are inherently geometry specific and therefore even slight geometric
changes made by a designer invalidates their output predictions. Once
invalidated, an entirely new surrogate model construction campaign is
required, which consists of discarding old data, collecting new data and
model retraining.

In contrast to processing parameters, stamping geometries comprise
of significantly more parameters, particularly for complex geometries
with many Computer-Aided Design (CAD) dimensions. In addition,
they are frequently evolving during design phases and are defined
according to uncommon parameterisation schemes. These challenges
have recently brought to light advanced surrogate models that borrow
deep-learning-based modelling techniques to accept non-parametric
geometrical inputs. For example, Pfaff et al. (2021) use graph neural
networks in conjunction with mesh-based data representations to pre-
dict the dynamics of different physical systems, such as deformable
plates and fluid flows. Zimmerling et al. (2019) developed a Convo-
lutional Neural Network (CNN) to predict textile draping results for
variable doubly curved geometries. Attar et al. (2021b,c) and Zhou
et al. (2022) developed CNNs to predict thinning distributions after
stamping variable deep drawn geometries. Therefore, these surrogate
models appear promising for SBO of stamping geometries and thus cap-
italising on stamping process capabilities and reductions in geometry
design development time.

However, surrogate models with geometric inputs (e.g., meshes or
images) are only capable of forward predictions for variable geome-
tries. This limitation means that designers would need to implement
a trial-and-error approach since there is no backward feedback or
guidance towards optimum geometric designs. Moreover, since these
models take non-parametric representations of geometries as inputs,
there are no parameters available to serve as design variables for
optimisation of stamping geometries. This drawback currently prevents
surrogate models with geometric inputs from being used in numerical
2

optimisation settings. Therefore, there is a need for an optimisation-
friendly representation of stamping geometries which, when combined
with these surrogate models, enables optimisation of arbitrary sheet
stamping geometries.

1.3. Computer methods for geometric representation

In CAD modelling software, e.g., SolidWorks, geometric represen-
tations such as curves and surfaces are used to create 3D models of
objects. These geometric representations are constructed using math-
ematical equations and algorithms that define the shape, size, and
orientation of the object being modelled. Curves are used to define
the shape of an object in 3D space. Examples of curves include lines,
circles, ellipses, and splines. Surfaces are created by combining multiple
curves, and they define the outer boundary of an object. These curves
are modelled as explicit functions and the parameters of these functions
can be manipulated in an optimisation setting. For example, Li et al.
(2020) constructed and optimised addendum surfaces for sheet metal
stamping using parametric curves. However, since explicit functions de-
fine parametric splines, this representation is significantly restricted to
pre-defined topologies. Further, these functions lack expressivity, may
be difficult to mathematically formulate for complicated geometries
and do not allow for optimisation between different parameterisation
schemes.

Modern techniques are available for generating realistic images-
based representations of geometries from compact, optimisation-
friendly representations. A popular approach is to use generative mod-
els such as Variational Auto-Encoders (VAEs) (Wang et al., 2020a;
Higgins et al., 2017) and Generative Adversarial Networks (GANs) and
their variants (Goodfellow et al., 2014; Mirza and Osindero, 2014;
Radford et al., 2016). VAEs are trained to replicate variants of the
original input but are prone to blurred reconstructed images. On the
other hand, GANs learn deep embeddings of target data by training
image generating decoders adversarially against discriminators. Once
trained, these networks can generate realistic images of objects and
scenes which are visually indistinguishable from their training data
distributions (Gayon-Lombardo et al., 2020). However, the training of
GANs is notoriously unstable (Arjovsky et al., 2017; Gulrajani et al.,
2017) and difficult to extend to 3D geometric representations (Wu
et al., 2016), e.g., high resolution 3D CAD geometries for designers.
These major limitations make both VAEs and GANs unsuitable for
practical stamping applications in industrial settings.

Several other computer methods for 3D geometric representation
are commonly used in computer graphics and scientific visualisation
applications. These methods can be broadly categorised into explicit
nd implicit representations, as shown in Fig. 1. Explicit representations
re defined by a set of geometric primitives, such as vertices, edges,
nd faces, which describe the boundaries of objects in space. Explicit
epresentations can include voxels, which divide space into a regular
rid and assign values to each cell to represent the presence or absence
f material, as well as point clouds, which represent a collection of
oints in space that approximate the shape of an object. These explicit
epresentations have been state-of-the-art approaches for 3D geometry
odelling in computer graphics, engineering simulations, and related

ields for many years (Druc et al., 2022; Kohar et al., 2021). However,
hey have certain limitations that can make them less than ideal for
ertain tasks. For example, point clouds can suffer from noise and ir-
egular sampling, while voxel grids offer a more regular representation
ut can suffer from high memory requirements and limited resolution.
mportantly, voxel-based or point cloud-based representations may not
e suitable for modelling key small-scale features in stamping geome-
ries, such as fillet radii, since they require a high voxel or point
ensity to accurately capture fine details while increasing the voxel or
oint density may lead to large datasets and computationally expensive
rocessing times.

Meshes are a promising type of explicit representation, which define
he shape of an object by connecting vertices with edges to form
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Fig. 1. Common geometric representations applied to the Stanford bunny. Voxels, points and meshes are examples of explicit representations while signed distance fields are
implicit.
polygons that define the surface. By using fine mesh resolutions, high
frequency geometric details on single shapes can be well represented,
as seen from the examples provided by Sorkine et al. (2003). In at-
tempts to extend these mesh-based representations to multiple arbitrary
shapes, various works proposed representing meshes using data-driven
3D learning approaches, such as neural networks (Gupta and Chan-
draker, 2020; Jiang et al., 2020; Wang et al., 2018). These networks
represent classes of similar shapes by optimising/deforming initial tem-
plate meshes. In this context, Wang et al. (2018) proposed a network
that generates a mesh from an image of an object by deforming the
vertices of an initial spherical template mesh. Similarly, Baque et al.
(2018) deformed mesh vertices via a poly-cube mapping algorithm for
shape optimisation. However, although meshes are capable of repre-
senting high frequency details, the results of mesh-based optimisations
lose these details and often result in poorly deformed meshes. This
phenomenon arises because the optimisation is based on deforming an
initial predefined topology and therefore cannot handle large topology
changes well, as mentioned by Peng et al. (2021) and Park et al. (2019).

In contrast, implicit representations define shapes as level sets of
3D functions defined over voxelised grids (Peng et al., 2021; Liao
et al., 2018; Osher and Paragios, 1999), and these level sets are then
extracted or rendered into explicit meshes or images (Liao et al., 2018;
Lorensen and Cline, 1987). These representations easily allow large
changes in topology as they remove the need to deform initial meshes.
For example, Remelli et al. (2020) changed the topology of genus
0 shapes into genus 1 by manipulating the underlying 3D function.
However, operating on voxelised grids leads to large memory require-
ments and is therefore limited to low resolutions only. This limitation
has been removed in recent years with the introduction of implicit
neural representations which represent shapes as level sets of occupancy
fields (Mescheder et al., 2019) or Signed Distance Fields (SDFs) (Park
et al., 2019; Liu et al., 2020; Yang et al., 2021) that are generated from
neural networks. These networks learn compact latent representations
which are then decoded into their underlying 3D fields and these
compact representations are suitable for numerical optimisation.

Implicit neural representations have gained tremendous popularity
in the computer graphics and vision communities for modelling 3D
shapes due to their expressiveness and flexibility that is not limited by
resolution (Park et al., 2019). These representations appear promising
as they enable large topology changes in an optimisation setting (Peng
et al., 2021). Despite their advantages, current research on implicit
neural representations has been focused on scenarios where only the
visual shape quality on a global scale is important. For instance, they
have been successfully used for modelling sofas, chairs in 3D scenes
3

for computer games and virtual reality (Park et al., 2019; Chabra
et al., 2020), and for modelling 3D human poses (Atzmon and Lipman,
2020; Gropp et al., 2020). However, these representations have not
been utilised to model geometries for a scenario like sheet stamping
of 3D components, where small-scale features play a critical role in
determining functional performance. Thus, there is a clear research gap
in exploring the use of implicit neural representations for modelling
small-scale features in stamping geometries.

1.4. Novelty and main contribution of this paper

In summary, while the latest surrogate models have shown promise
in efficiently assessing the manufacturability of stamping geometries
without the need for costly FE simulations, they lack a geometric
representation that is suitable for numerical optimisation. This draw-
back limits their use in numerical optimisation of stamping geome-
tries. Meanwhile, powerful implicit neural representations have re-
cently emerged and enable expressive geometry changes during op-
timisation. However, despite the success of these representations in
computer vision applications, their effectiveness in representing stamp-
ing geometries has not yet been explored. This is a crucial gap in the
literature since small-scale details often dictate the manufacturing per-
formance of stamped components. Therefore, it is important to inves-
tigate the potential of these representations for stamping applications.
The main contributions of this study are listed below:

• Development of a deep learning-based method for generating 3D
stamping geometries using SDF-based implicit neural representa-
tions, providing a novel and flexible approach for representing
such geometries.

• Design of a new loss function to encourage high geometric ac-
curacy of small-scale features, addressing a crucial challenge in
accurately representing stamping geometries.

• Proposal of systematic quantitative and qualitative evaluation
methods to assess the accuracy of the generated stamping ge-
ometries, providing a comprehensive and rigorous analysis of the
method’s effectiveness.

• Evaluation of the new method’s effectiveness at training neu-
ral networks to learn SDFs of stamping geometries with small-
scale features compared with the state-of-the-art DeepSDF method
(Park et al., 2019).

• Analysis of the learned continuous geometric latent space and
smooth interpolation between geometries from different param-

eterisation schemes achievable for the first time. This analysis
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Fig. 2. 2D examples of SDFs for a circle, a square and an arbitrary shape. Black solid lines illustrate shape boundaries which are implicitly represented by the zero-level-set of
the SDF.
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demonstrates the new possibilities that have been opened up
for exploring and designing complex stamping geometries in an
optimisation-friendly way.

2. Overview of the proposed geometry generator

An overview of the proposed platform geometry generator is pre-
sented in this section. The concept of Signed Distance Fields (SDFs) are
first introduced since SDFs are an important part of the non-parametric
modelling strategy proposed in this paper. Details on a neural network
model proposed for modelling these SDFs is then given.

2.1. Introduction to Signed Distance Fields (SDFs)

SDFs are widely used in the computer vision and graphics commu-
nities to model a variety of shapes. Some examples of shapes modelled
by SDFs include complex shaped 3D objects, and scenery in computer
game environments. This work proposes using SDF to model stamping
die geometries.

2.1.1. Definition of SDFs
An SDF for a shape with internal domain 𝛺 is defined as a scalar

field 𝒔 where the magnitude of a point anywhere in the field represents
the distance 𝑑 to the shape boundary 𝜕𝛺. 𝑑 is defined here as the
Euclidian distance to the closest point that is sampled on the continuous
shape boundary 𝜕𝛺. The sign denotes whether the point is inside or
outside 𝛺; by convention, points inside take a negative sign (−) and
points outside take a positive sign (+) (Park et al., 2019), as expressed
in Eq. (1)

𝑠 (𝒙) =
⎧

⎪

⎨

⎪

⎩

0, 𝒙 ∈ 𝜕𝛺

−𝑑 (𝒙) , 𝒙 ∈ 𝛺 and 𝒙 ∉ 𝜕𝛺

𝑑 (𝒙) , 𝒙 ∉ 𝛺 and 𝒙 ∉ 𝜕𝛺

(1)

where 𝑠 (𝒙) ∈ R is a scalar signed distance value of a point 𝒙 ∈ R𝑛 for an
𝑛-dimensional SDF. The shape boundary 𝜕𝛺 is implicitly represented by
the zero-level-set of the continuous SDF. The classification space ((−)
or (+)) is explicitly represented by all other non-zero-level-sets.

Fig. 2 shows 2D examples of SDFs for three different shapes: a circle,
a square and an arbitrary shape. The zero-level-set of these SDFs are
highlighted by the black solid lines and these would be surfaces in
the 3D case. The figure illustrates that SDFs can be used to implicitly
represent a range of shapes irrespective of their geometric complexity.

2.1.2. Geometric properties of SDFs
The shape representative nature of SDFs leads to two noteworthy

geometric properties. Property 1: if the shape domain 𝛺 is a subset of
an 𝑛-dimensional Euclidian space R𝑛 with shape boundary 𝜕𝛺, then the
SDF is differentiable everywhere and its gradient satisfies the solution
to the Eikonal partial differential equation, expressed in Eq. (2)

‖∇ 𝑠 𝒙 ‖ = 1 (2)

‖ 𝒙 ( )

‖

4

Fig. 3. An illustration of a 2D SDF for a circle with labelled characteristic features
for the SDF. Although the field is continuous, the colourmap is shown as discrete to
highlight equidistant contour lines. Black solid line illustrates the shape boundary 𝜕𝛺
which is implicitly represented by the zero-level-set of the SDF.

where the ∇𝒙 operator denotes the spatial gradient of 𝑠 (𝒙) with respect
o the coordinates of point 𝒙. To interpret this property, Fig. 3 shows

2D SDF for a circle shape but plotted with a discrete colourmap.
he equidistant contour lines can be seen as a visualisation of constant
patial gradient. Property 2: the spatial gradients of the SDF at the
hape boundary 𝜕𝛺 align with the outward normal vector field N.
his property arises since the gradient vector points in the direction of
teepest descent (i.e., normal to each contour line). Furthermore, since
roperty 1 holds true everywhere (including at the shape boundary
𝛺), these surface normal vectors have unit magnitude. Property 2 can
e mathematically expressed as in Eq. (3).

∇𝒙𝑠 (𝒙)||𝜕𝛺 = N (𝒙) (3)

ig. 3 shows the outward unit normal vectors at the shape bound-
ry, where only a limited number are drawn for illustration. When
ombining Properties 1 and 2, the continuous SDF can be interpreted
s a differentiable extension of the unit normal vector field. These
roperties will be used later in this paper to effectively train a neural
etwork to learn a range of SDFs for a class of stamping geometries and
ith high accuracy.

.2. Modelling SDFs of stamping geometries

As mentioned previously, SDFs were used in this work to model
tamping die geometries to enable geometry optimisation. However
nalytically pre-computing and storing a large library of SDFs for
arious candidate geometries is neither feasible nor useful for optimi-
ation. Instead, a model that can represent a wide range of geometries,
iscover similarities between them and store these similarities into a
atent (i.e., characteristic) space is required.

To achieve this requirement, a neural network model for generating
olumetric SDFs of different 3D geometries within entire geometry
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Fig. 4. CAD geometries are first converted into low dimensional latent vectors using the decoder inference process.
Fig. 5. Definition of the three box corner subclasses used in this study: standard corners, chamfer corners and stepped sidewalls. Figure highlights (a) parameterisation of CAD
eometries with section views and (b) the two step process used to create chamfer corners.
lasses is proposed. This concept was first introduced by Park et al.
2019) for generic shapes. For stamping applications, the trained net-
ork can be considered as a compact function that generates SDFs
f common classes of components, while only explicitly storing the
arameters of the neural network. For example, a network can be
rained to generate SDFs for thousands of variants of A-Pillars, B-Pillars,
attery Boxes, or similar broad classes of component geometries. In
his work, box corner geometries were considered for demonstration.
etwork training details are given in Section 3.

To effectively work with CAD models of stamping die geometries in
deep learning environment, these geometries must first be mapped

nto a suitable form. Here, each CAD geometry was represented as
latent vector 𝒛 ∈ R𝐿 as illustrated in Fig. 4. These vectors were

obtained using a process introduced as decoder inference, which will be
detailed in Section 3. In essence, these latent vectors became compact
characteristic representations of CAD geometries and were agnostic to
geometric complexities.

2.3. Creating datasets of geometries

2.3.1. Geometry definitions
Deep drawn box corners were considered as the high level geometry

class of interest in this study. These corners are common limiting design
features and are found on a range of rectangular or square component

designs, e.g., door inners or battery boxes (Politis et al., 2016; Zhu

5

et al., 2021). Due to their symmetry, quarter boxes were modelled.
Half-lengths of 500 mm and 6◦ draft angles were used. Blank shapes
were defined in accordance with Attar et al. (2021b).

To showcase the non-parametric advantage of the SDF based ge-
ometric modelling approach proposed in this study (see Section 2.1),
a mix of three geometry subclasses were considered. These subclasses
were named standard corners, chamfer corners and stepped sidewalls
and could only be described by adopting three different CAD parame-
terisation schemes. These parameterisations are shown in Fig. 5(a) and
further clarification for how chamfer corners were defined is shown
in Fig. 5(b). Here, the tool geometries were determined by surface
offsets from designed components, and a constant offset of 1.15× blank
thickness was used.

2.3.2. Design of experiments
To create datasets of geometries, a Design of Experiments (DoE)

was conducted, and variants of the geometries introduced in above
were generated. The Latin Hypercube (LHC) DoE technique was used
since it is a popular sampling strategy for deterministic computer
simulations (Bonte et al., 2007). Using this technique, an approximately
uniform distribution of samples within the design space was obtained
while reoccurrences were avoided.

Independent datasets for neural network training and testing were
created. Three different LHC runs were conducted for each dataset type,

one for each geometry subclass. The training data consisted of 400
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Table 1
Considered parameters, ranges, and DoE constraints for each parameterisation scheme for the different geometry subclasses.

Parameterisation scheme 1: Standard corners

Symbol Description Bounds (mm) DoE constraints

𝑟𝑑𝑖𝑒 Die radius 5–25

None𝑟𝑝𝑢𝑛𝑐ℎ Punch radius 7.3–27.3
𝑟𝑝𝑙𝑎𝑛 Plan view radius 60–120
𝐻 Height 60–120

Parameterisation scheme 2: Chamfer corners

Symbol Description Bounds (mm) DoE constraints

𝑟𝑑𝑖𝑒 Die radius 5–25

1.7𝐶 − 𝑅𝑝𝑙𝑎𝑛 + 5.4 > 0
𝑟𝑝𝑢𝑛𝑐ℎ Punch radius 7.3–27.3
𝑟𝑝𝑙𝑎𝑛 Plan view radius 60–250
𝐶 Chamfer length 60–140
𝐻 Height 60–120

Parameterisation scheme 3: Stepped sidewalls

Symbol Description Bounds (mm) DoE constraints

𝑟𝑑𝑖𝑒,1 Die radius 1 5–20
𝑆𝑊 − 𝑟𝑝𝑢𝑛𝑐ℎ,1 − 𝑟𝑑𝑖𝑒,2 − 𝜖 > 0

𝐻1 − 𝑟𝑑𝑖𝑒,1 − 𝑟𝑝𝑢𝑛𝑐ℎ,1 − 𝜖 > 0

𝐻2 − 𝑟𝑑𝑖𝑒,2 − 𝑟𝑝𝑢𝑛𝑐ℎ,2 − 𝜖 > 0

120 −𝐻1 −𝐻2 ≥ 0

𝜖 = 5 mm, arbitrary compensation for draft angle

𝑟𝑑𝑖𝑒,2 Die radius 2 5–20
𝑟𝑝𝑢𝑛𝑐ℎ,1 Punch radius 1 7.3–22.3
𝑟𝑝𝑢𝑛𝑐ℎ,2 Punch radius 2 7.3–22.3
𝑟𝑝𝑙𝑎𝑛 Plan view radius 60–120
𝐻1 Height 1 30–100
𝐻2 Height 2 30–100
𝑆𝑊 Step width 10–50
a
3
c
v
f

samples for each subclass, and the testing data consisted of 100 samples
for each subclass. Since three geometry subclasses were considered,
the collocated training dataset consisted of 1200 samples and the
collocated testing dataset consisted of 300 samples.

The LHC sampling criterion followed the optimisation technique of
maximising the minimum distance between points (MathWorks, 2021).
During this maximisation process, empirically determined linear in-
equality constraints were imposed. The purpose of these constraints was
to preserve geometric integrity during CAD model generation (Ram-
nath et al., 2020, 2019). These constraints, along with the considered
parameters and ranges for the LHC uniform distributions, are listed in
Table 1. The parameters here correspond to those labelled in Fig. 5.
The CAD model generation was automated due to the relatively large
number of samples in the datasets. The automation was achieved using
parametric CAD models along with the Visual Basic for Applications
(VBA) programming language in SolidWorks.

The data generation process was relatively cheap since the proposed
model was trained using data from CAD software only. This is unlike
other machine learning tasks such as surrogate modelling (Attar et al.,
2021b) where data labels are often generated from simulations or
physical experiments which could be expensive and thus the dataset can
be prone to imbalance due to data scarcity. Consequently, the issue of
dataset imbalance could be avoided here by generating plenty of CAD
models, using a simple design of experiments scheme, such as LHC. As
long as a sufficient number of samples are generated, this approach can
ensure that the training dataset is balanced, enabling the model to learn
from a representative, efficiently curated, range of examples.

2.4. Neural network architectures

An Auto-Decoder (Park et al., 2019) network 𝑓𝜃1 with network
parameters 𝜃1, was required to approximate an SDF 𝒔𝑖 for a stamping
geometry indexed by 𝑖, given its latent vector (i.e., for its CAD geome-
ry) 𝒛𝑖. This formulation is denoted in Eq. (4) for a query point 𝒙 ∈ R3,
nd is valid for all points within the considered SDF volume.

𝜃1

(

𝒛𝑖,𝒙
)

≈ 𝑠𝑖 (𝒙) ,∀𝒙 (4)

hree potential Auto-Decoder architectures for 𝑓𝜃1 were trialled in this
tudy, and these are shown in Fig. 6. These architectures were inspired
y the result presented by Park et al. in that increasing the number of
kip connections and network depth improved regression accuracy on

heir dataset (Park et al., 2019).

6

The Auto-Decoders used here were based on multi-layer perception
rchitectures. The spatial coordinates of a query point 𝒙 in ambient
D space were first concatenated with a given latent vector. This
oncatenated vector was decoded by an Auto-Decoder into a scalar SDF
alue at the input 3D query point. Performing this forward pass on a
ull grid of points 𝑿 would generate the entire SDF 𝑓𝜃1

(

𝒛𝑖,𝑿
)

over that
grid. This generated SDF would be conditioned on the latent vector for
the geometry indexed by 𝑖. Therefore, changing the latent vector (i.e., in
an optimisation setting) would change the generated SDF, and this
phenomenon can be exploited for optimisation of stamping geometries.

Based on the three architectures in Fig. 6, five different variants
of Auto-Decoders were designed and these are summarised in Table 2.
The models were trained and their performances were compared and
presented in Section 5.

The advantage of adopting an Auto-Decoder is that its formulation
is valid for input point clouds of an arbitrary size and distribution.
This means that network training and inference can occur with a large
number of points densely sampled near to the geometry surface while
sparsely sampled far from the surface to allow for better learning
performance (see Sections 3.1.2 and 3.2.2). In addition, a uniform grid
can also be accepted as input to produce a continuous volumetric SDF,
which encompasses the entire stamping die geometry. Further, this grid
can be sampled at arbitrary resolution, which is useful if a particular
geometry contains small local features which demand high resolutions.
These are major advantages over more traditional Auto-Encoders and
variants thereof Wang et al. (2020b), since their encoders would expect
inputs that are similar to the training data.

2.5. Explicit geometry surface extraction

It was discussed how signed distance fields (SDFs) can be effec-
tive at implicitly modelling arbitrary shape boundaries and surfaces as
their zero-level-sets. However, several stamping applications demand
explicit surface representations, such as meshes for CAD modelling or
FE stamping simulations (El Fakir et al., 2014), and images as inputs
to image-based surrogate models (Attar et al., 2021b). Combining the
benefits of SDFs with explicit representations requires the use of March-
ing Cubes (Lorensen and Cline, 1987). Marching Cubes is an algorithm
for creating a triangle mesh based representation of a level-set from
an implicit field. Since the zero-level-set of SDFs here are designed to

implicitly represent the surface geometry, running Marching Cubes on
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v

Fig. 6. Three Auto-Decoder architectures considered in this study. Input latent vectors were concatenated with the (x, y, z) coordinates of a 3D query point and the concatenated
ector was decoded into an SDF value at the query point by the network. The SDF value was conditioned on the latent vector. L and the numbers denote vector lengths.
Table 2
Variants of Auto-Decoders used in this study, based on the architectures from Fig. 6 and training approaches introduced in Section 3.

Network name Architecture Latent vector length L Activation function Training approach

Explicit Net 1 A 128 ReLU

ExplicitExplicit Net 2 A 32 ReLU
Explicit Net 3 B 128 ReLU
Explicit Net 4 C 128 ReLU

Implicit Net A 128 SoftPlus Implicit
the SDF would extract the implicit surface by converting it to an explicit
triangular mesh. The process of generating a volumetric SDF from
a latent vector and then extracting its zero-level-set using Marching
Cubes is illustrated in Fig. 7. Further details of Marching Cubes can
be found in Appendix.

3. Training approaches for learning SDFs of stamping geometries

Inspired by recent computer vision literature on implicit neural
representations (Park et al., 2019; Remelli et al., 2020; Gropp et al.,
2020; Guillard et al., 2021; Sitzmann et al., 2020), two different
approaches for learning SDFs of stamping geometries using neural
networks were developed. The first approach focuses on explicitly su-
pervising the network predictions using ground truth SDFs of stamping
geometries, which follows the state-of-the-art approach DeepSDF (Park
et al., 2019). The second approach exploits key geometric properties
of SDFs to learn these SDFs implicitly. The latter approach does not
require ground truths and promotes increased accuracy about the zero

level-set, which includes around small-scale geometric features.

7

Previous work has been focused on learning SDFs for watertight
surfaces, for example in Park et al. (2019) and Yang et al. (2021).
However, stamping die geometries are not watertight since they have
bounding edges, and this creates a barrier in representing these geome-
tries using SDFs. To overcome this barrier, a new data pre-treatment
method is first introduced here. Given a die geometry, which contains
geometric features of a component to be stamped, its top surface
was first extracted and exported as an STL mesh file, as shown in
Fig. 8(a). The mesh vertices were scaled such that the die edge was
of unit length. The scaled mesh was then subsampled into a point
cloud and the subsampling was done using the Trimesh Python li-
brary (Dawson-Haggerty, 2021). The configuration of the 3D points for
training data depended on the approaches used for learning SDFs, and
these approaches are detailed in the following subsections.

Since SDF values on the surface are expected to be zero, the sur-
rounding volume was also sampled in order to learn a metric SDF. An
example sampled point set is shown in Fig. 8(b), and each point is given

an SDF value for demonstration. In what follows, neural networks were
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Fig. 7. Illustration of using an Auto-Decoder to generate an SDF for the geometry encoded in 𝒛 and then extracting that geometry using Marching Cubes.
Fig. 8. Example data-pre-treatment (a) the top surface of a die solid body is extracted and exported as an STL mesh and (b) points are sampled on this surface and within the
surrounding cubic volume. Crucially, die edge length equals the cubic volume edge length.
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employed to predict the SDF values of these points within the cubic
volume of unit edge length for different geometries.

Because the surface had zero thickness, points above the surface had
positive values and points below the surface had negative values. To
make this formulation possible, the surrounding volume was dimen-
sioned such that its side length was equal to a selected characteristic
die edge length, as seen in Fig. 8(b). The geometry was positioned in
the centre of the volume. This positioning allowed approximately equal
amounts of positive and negative SDF values to be predicted by the net-
works, which has been reported to support training performance (Park
et al., 2019).

3.1. Explicit learning approach: regression of SDF values

3.1.1. Approach description
The state-of-the-art approach to modelling 3D SDFs using neural

networks is based on learning regressors via explicit supervision of
predicted SDF values using ground truths at training time (Park et al.,
2019; Remelli et al., 2020; Guillard et al., 2021). This commonly
accepted approach was adopted here to understand to what extent it
could be used to model SDFs of geometries for sheet stamping applica-
tions. The approach involved a two-step data preparation process; first
sampling points and then computing ground truth SDF values for each
of these points. This process is now detailed below.

3.1.2. Data preparation
The first step was to discretise each geometry sample and its sur-

rounding volume into a point set 𝑲 which contained points in R3.
breakdown of the adopted point sampling strategy is demonstrated

n Fig. 9 for one geometry. Points were sampled more aggressively in
he space near the surface to capture a more detailed SDF around the
urface. To do this effectively, 3000 points were first sampled exactly
n the geometry surface, where an SDF value of zero is expected. Then,
wo noisy point sets were further generated, one with low noise and
he other with high noise. These sets were generated by perturbing
8

he positions of the surface points by zero mean Gaussian distributions
ith low and high standard deviations respectively, as shown in Fig. 9.
o cover the remainder of the domain, a uniform unit cube with 3000
oints was generated. These point sets were collated which resulted in
𝑲| = 12 000 total points for one geometry sample. This point sampling

process was repeated for all geometries in the training and testing
datasets.

The second step was to analytically compute the SDF values at
each of the subsampled points for all geometry samples. For each
geometry, the surface points were assigned an SDF value of zero, and
their position vectors were stored in a K-dimensional tree (KD-tree). For
each off surface point 𝒙𝑜, its nearest surface point 𝒙𝑠 was identified by
uerying the KD-tree, and the distance between them was computed by
aking the Euclidian norm of their difference. The sign was determined
y the sign of the dot product between the normal vector of the surface
oint 𝒏𝑠 and their difference, i.e., sign

(

𝒏𝑠 ⋅
(

𝒙𝑜 − 𝒙𝑠
))

.
The positions of the 3D points were taken as network inputs and

heir analytical SDF values were taken as ground truth targets for this
earning approach. The dataset 𝐷𝑖 for the 𝑖th geometry is summarised
y the set shown in Eq. (5).

𝑖 =
{(

𝒙𝑗 , 𝑠𝑗
)

∶ 𝑠𝑗 = SDF𝑖
(

𝒙𝑗
)}

(5)

here for each point 𝒙𝑗 there was a corresponding 𝑠𝑗 . The complete
ataset 𝐷𝑖𝑁

𝑖=1 consisted of 𝑁 geometry samples represented with ana-
ytical signed distance functions SDF𝑖

𝑁

𝑖=1 evaluated at each subsampled
oint 𝒙𝑗 .

.1.3. Training and inference
To supervise the SDF predictions explicitly, the clamped 𝐿1 loss

function was used as suggested by Park et al. (2019) and is shown
in Eq. (6).

L
(

𝑓 (𝒛,𝒙) , 𝑠
)

=
|

|clamp
(

𝑓 (𝒛,𝒙) , 𝛿
)

− clamp (𝑠, 𝛿)
|

| (6)
𝜃1 |

|

𝜃1 |

|
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Fig. 9. Breakdown of point subsampling strategy used for explicit learning of SDFs. A total point set is collected, which consists of both points on and off the surface. Here, 𝜎
denotes the standard deviation of a zero mean Gaussian distribution added as noise.
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In this equation, 𝑠 and 𝑓𝜃1 (𝒛,𝒙) are the ground truth and predicted
SDF values at point 𝒙 respectively. The function clamp (𝜀, 𝛿) ∶ =
min (𝛿,max (−𝛿, 𝜀)) introduces the parameter 𝛿 > 0, known as the
truncation distance, to control the distance from the surface over which
the network is expected to learn the SDF. In this study, 𝛿 = 0.05
was used, and this value was inspired from ablation studies performed
by Park et al. (2019). This loss function concentrated the networks
learning capability on details close to the zero-level set of the SDF.

Using this loss function, an objective function to be minimised at
training time was formulated in terms of all geometry samples in a
training batch with batch size 𝐵, show in Eq. (7).

arg min
𝜃1 ,{𝒛𝑖}𝐵𝑖=1

1
𝐵

𝐵
∑

𝑖=1
L𝐸
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

(

𝜃1, 𝒛𝑖
)

= arg min
𝜃1 ,{𝒛𝑖}𝐵𝑖=1

1
𝐵

𝐵
∑

𝑖=1

⎛

⎜

⎜

⎝

1
|𝑲|

∑

𝒙𝑗∈𝑲
L
(

𝑓𝜃1
(

𝒛𝑖,𝒙𝑗
)

, 𝑠𝑗
)

+ 𝜆 ‖
‖

𝒛𝑖‖‖2
⎞

⎟

⎟

⎠

(7)

where the superscript 𝐸 denotes this explicit learning approach de-
cribed. The minimisation was performed with respect to both the
etwork parameters 𝜃1 and the latent vectors for geometries in the
raining batch

{

𝒛𝑖
}𝐵
𝑖=1. The addition of the regularisation term weighted

by 𝜆 ensured that the latent vector magnitudes were concentrated near
the origin. This concentration, which has been reported to help training
and inference convergence (Park et al., 2019), enabled similar shapes to
have similar latent vectors. As recommended by Park et al. (2019), all
latent vectors were initialised from a zero mean Gaussian distribution
with low standard deviation 𝑁

(

0, 0.012
)

to further ensure that similar
shapes were represented by similar latent vectors.

Eq. (7) was used to train 𝑓𝜃1 to determine the network parameters
𝜃1 using the explicit learning approach. Minimising Eq. (7) with respect
to both 𝜃1 and

{

𝒛𝑖
}𝐵
𝑖=1 at training time enabled the latent vector of

an unseen geometry to be inferred using the trained decoder 𝑓𝜃1 . At
inference time, the network parameters 𝜃1 were fixed and an optimum
latent vector for an unseen geometry was inferred through an iterative
optimisation process. This decoder inference process involved minimis-
ing the expression shown in Eq. (8) and was conducted iteratively by
backpropagating through the trained decoder at each iteration.

arg min
𝒛

L𝐸
𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝒛) = arg min

𝒛

1
|𝑲|

∑

𝒙𝑗∈𝑲
L
(

𝑓𝜃1
(

𝒛,𝒙𝑗
)

, 𝑠𝑗
)

+ 𝜆 ‖𝒛‖2 (8)

A graphical representation for the iterative decoder inference process
using this explicit learning approach is shown in Fig. 10. Given an un-
seen geometry, a point set 𝐾 which contained points in R3 was sampled
nd ground truth SDF values at these points were pre-computed in the
ame way as was done for the training data. Next, a random vector
0 ∼ 𝑁

(

0, 0.012
)

of length 𝐿 was sampled from a zero mean Gaussian
istribution and this was the initial latent vector to be optimised. For
ach iteration, the latent vector 𝒛 was repeated for |𝑲| instances, and
he coordinates of each 3D point were concatenated to each instance
o form a tensor of size 𝐿 + 3 × 𝑲 . This tensor was passed through
( ) | | e

9

he trained decoder 𝑓𝜃1 to predict SDF values at each of the points.
comparison with ground truth SDF values was performed and the

oss L𝐸
𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝒛) was computed following Eq. (8). Using the gradient

f this loss, the latent vector 𝒛 was iteratively updated by the Adam
ptimiser to minimise the loss until convergence. At convergence, an
ptimum latent vector 𝒛∗ was obtained, which best described the
nseen geometry using this approach.

.2. Implicit learning approach: supervising geometric properties of SDFs

.2.1. Approach description
The implicit learning approach did not require explicit supervision

f SDF values at training time. Instead, the key idea was to learn SDFs
mplicitly by exploiting and supervising their geometric properties. By
earning the intrinsic relationship between the coordinates of points in
3 and the geometric properties that all ground truth SDFs obey by
efinition, this approach was expected to provide superior performance
ver learning a naive regressor (i.e., explicit approach). This approach
as inspired by recent work in learning high quality scene and 3D
bjects reconstruction, such as rooms, tables and chairs with thin
eatures, for computer vision applications (Yang et al., 2021; Gropp
t al., 2020; Sitzmann et al., 2020).

Recall the definition and geometric properties of SDFs from Sec-
ion 2.1. By definition, the SDF values of points that lie exactly on the
eometry surface are zero. The magnitude of spatial gradient vectors
f SDFs are equal to one and these vectors at the geometry surface
lign with the surface normals. Together, the definition and properties
escribe attributes of SDFs that can be classified into two categories: off
he geometry surface and on the surface. The dataset and loss function
or this approach were prepared by considering these two attribute
ategories.

.2.2. Data preparation
To prepare the dataset for this approach, points in R3 were sub-

ampled on and around all geometry samples and this step was similar
o the one used for the explicit learning approach. However, here
he off surface and on surface points were kept separate and stored
s two point sets to facilitate learning SDF attributes for these two
ategories. A breakdown of this point subsampling strategy is shown
n Fig. 11 for one geometry sample. 9000 total off surface points were
ubsampled according to the figure, and an additional 9000 surface
oints were subsampled and stored separately. The surface points also
ame with normal vectors as part of the subsampling process. This point
ubsampling process was repeated for all geometries in the training
nd testing datasets. The deviation from the attributes of SDFs was
enalised solely based on the predicted SDF values. Therefore, this
pproach did not need ground truth SDF samples and can be considered
s self-supervised. Details on how this self-supervised approach was

mployed are provided in the following.
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Fig. 10. Decoder inference process to obtain a latent vector representation of an unseen geometry using a trained network 𝑓𝜃1 which was trained using the explicit learning
approach. Red arrows occur once per inference iteration.
Fig. 11. Breakdown of point subsampling strategy used for implicit learning of SDFs. Two point sets were sampled: off surface points, and surface points with surface normal
vectors. Here, 𝜎 denotes the standard deviation of a zero mean Gaussian distribution added as noise for off surface points close to the surface.
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3.2.3. Training and inference
To effectively learn the attributes of SDFs, a new loss function to be

minimised was cast in terms of the aforementioned point categories,
surface, and off surface points, as shown in Eq. (9). As before, the loss
was formulated in terms of all geometry samples in a training set batch
with batch size 𝐵. The minimisation was performed with respect to
both the network parameters 𝜃1 and the latent vectors for geometries
in the training batch

{

𝒛𝑖
}𝐵
𝑖=1. The three terms in Eq. (9) are separately

xplained in detail in the following paragraphs.

arg min
1 ,{𝒛𝑖}𝐵𝑖=1

1
𝐵

𝐵
∑

𝑖=1
L𝐼
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

(

𝜃1, 𝒛𝑖
)

= arg min
𝜃1 ,{𝒛𝑖}𝐵𝑖=1

1
𝐵

𝐵
∑

𝑖=1

(

L𝑠𝑢𝑟𝑓𝑎𝑐𝑒
(

𝜃1, 𝒛𝑖
)

+ L𝑜𝑓𝑓𝑠𝑢𝑟𝑓𝑎𝑐𝑒
(

𝜃1, 𝒛𝑖
)

+ L𝑟𝑒𝑔
(

𝒛𝑖
))

(9)

he first term in Eq. (9) contained a loss concerned with the behaviour
f the predicted SDF at the geometry surface L𝑠𝑢𝑟𝑓𝑎𝑐𝑒

(

𝜃1, 𝒛𝑖
)

, and this
erm is shown in Eq. (10).

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
(

𝜃1, 𝒛𝒊
)

= 1
|𝑷 |

∑

𝒙𝑗∈𝑷

(

𝜆1
|

|

|

𝑓𝜃1
(

𝒛𝑖,𝒙𝑗
)

|

|

|

+𝜆2𝛼𝑗
‖

‖

‖

∇𝒙𝑗𝑓𝜃1
(

𝒛𝑖,𝒙𝑗
)

− 𝒏𝑗
‖

‖

‖2

)

(10)

his surface loss ensured supervision of surface attributes by penalising
eviations from them. This loss was formulated on the surface point
et 𝑷 and contained two terms, weighted by the scalars 𝜆1 and 𝜆2
espectively. Minimising the first term ensured that the magnitude of an
DF prediction 𝑓𝜃1

(

𝒛𝑖,𝒙𝑗
)

for point 𝒙𝑗 ∈ 𝑷 on the surface of the geom-
etry encoded in 𝒛𝑖 tended toward zero, which satisfies the definition of
DFs. The second term ensured that the spatial gradient vector of the
 t

10
predicted SDF at point 𝒙𝑗 ∈ 𝑷 on the surface ∇𝒙𝑗𝑓𝜃1
(

𝒛𝑖,𝒙𝑗
)

aligned
with the unit normal vector at that point 𝒏𝑗 . The 𝐿2 norm ‖⋅‖2 was
taken between the two to allow alignment in both vector direction and
magnitude.

So far, the importance of certain geometric features on manufac-
turing performance has not been considered during network training.
For stamping applications, fillet radii are geometric features which
are highly influential in determining manufacturing performance, as
explained in the introduction. These features are small in scale when
considered in the context of the global component geometry. This
means that a surface subsampled with an oriented point cloud as shown
in Point set 2 in Fig. 11 would have relatively few points on these small
radii regions.

To address the imbalance and consider small local geometric fea-
tures in Eq. (10), an additional scaling factor 𝛼𝑗 was introduced to
operate pointwise. This scaling factor was designed to provide greater
weight to small-scale regions on the geometry surface where accurate
reconstructions are essential, such as fillet radii. The value of 𝛼𝑗 was
set to a scalar 𝛽 > 1 if the conditions in Eq. (11) were met for point 𝒙𝑗 .

𝛼𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛽, 1
𝑛𝑝

𝑛𝑝
∑

𝑘=1
cos−1

(

𝒏𝑗 ⋅ 𝒏𝑘
)

≥ 𝜏

1, 1
𝑛𝑝

𝑛𝑝
∑

𝑘=1
cos−1

(

𝒏𝑗 ⋅ 𝒏𝑘
)

< 𝜏

(11)

n this expression, 𝒏𝑗 is the unit normal vector of point 𝒙𝑗 and
(

𝒏𝑗 ⋅ 𝒏𝑘
)

epresents the dot product between this vector and the unit normal
ector of the 𝑘th nearest point to 𝒙𝑗 . This dot product represents the
osine of the angle between the two vectors. Using the dot product,
he angle between the normal of every point and the normals of 𝑛𝑝
earest points was calculated. The average of these angles was taken
o compute a single angle that represented the overall ‘‘sharpness’’ of
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Fig. 12. Cone plots showing surface unit normal vectors pointing away from the surface. Cones are stemming from every subsampled surface point. Normals on flat surfaces in
reen, aligning with a uniform direction. Normals on fillet radii and sidewall regions in red, corresponding to small-scale features.
m
o
l

he area surrounding each point. This value was then compared with
threshold angle 𝜏, and if greater than the threshold, the point was

onsidered to belong to a small-scale feature. In this study, 𝜏 = 2◦

nd 𝛽 = 3 were used. These settings meant that the second term
n Eq. (10) was scaled by a factor of 3 for points 𝒙𝑗 ∈ 𝑷 that belonged to
mall-scale features. Fig. 12 graphically illustrates the regions detected
or scaling. The cones represent the surface normal vectors at each
ubsampled point on the geometry surface. The red zones show the
dentified fillet and sidewall regions that are scaled by Eq. (11), while
he green zones indicate unscaled surfaces with uniformly aligned
ormals. This scaling strategy emphasises the alignment of normals on
ocally curved areas, such as radii and sidewalls.

The second term in Eq. (9) contained a loss concerned with the be-
aviour of the predicted SDF away from the geometry surface
𝑜𝑓𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

(

𝜃1, 𝒛𝑖
)

, shown in Eq. (12).

𝑜𝑓𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
(

𝜃1, 𝒛𝑖
)

=
𝜆3
|𝑸|

∑

𝒙𝑘∈𝑸

(

‖

‖

‖

∇𝒙𝑘𝑓𝜃1
(

𝒛𝑖,𝒙𝑘
)

‖

‖

‖2
− 1

)2
(12)

inimising this term ensured that the spatial gradient vector of the
redicted SDF at point 𝒙𝑘 ∈ 𝑸 away from the surface ∇𝒙𝑘𝑓𝜃1

(

𝒛𝑖,𝒙𝑘
)

had a unit magnitude, which satisfied the solution to the Eikonal
equation (see Eq. (2)). The magnitude of the spatial gradient vector
was computed by taking the 𝐿2 norm ‖⋅‖2.

The final term in Eq. (9) was a regularisation term that was added
for the same reasons mentioned in Section 3.1.3, shown in Eq. (13). The
𝜆 terms in the presented equations denoted scalar weights that were
manually tuned to balance the magnitudes of each of the terms that
make up Eq. (9).

L𝑟𝑒𝑔
(

𝒛𝑖
)

= 𝜆4 ‖‖𝒛𝑖‖‖2 (13)

Eq. (9) was used to train 𝑓𝜃1 to determine the network parameters
𝜃1 using the implicit learning approach. At inference time, similar to
the explicit learning approach, the network parameters 𝜃1 were fixed
nd an optimum latent vector for an unseen geometry was inferred
hrough an iterative optimisation process. This decoder inference pro-
ess involved minimising the expression shown in Eq. (14) and was
onducted iteratively by backpropagating through the trained decoder
t each iteration.
rg min

𝒛
L𝐼
𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝒛) = arg min

𝒛

1
|𝑷 |

∑

𝒙𝑗∈𝑷

(

𝜆1
|

|

|

𝑓𝜃1
(

𝒛,𝒙𝑗
)

|

|

|

+𝜆2𝛼𝑗
‖

‖

‖

∇𝒙𝑗𝑓𝜃1
(

𝒛,𝒙𝑗
)

− 𝒏𝑗
‖

‖

‖2

)

+
𝜆3
|𝑸|

∑

𝒙𝑘∈𝑸

(

‖

‖

‖

∇𝒙𝑘𝑓𝜃1
(

𝒛,𝒙𝑘
)

‖

‖

‖2
− 1

)2
+ 𝜆4 ‖𝒛‖2

(14)

graphical representation for the iterative decoder inference process
sing this implicit learning approach is shown in Fig. 13. An unseen
eometry was first sampled into the two point sets, as explained above
or the training data. Similar to the explicit learning approach, a
andom vector 𝒛 ∼ 𝑁

(

0, 0.012
)

of length 𝐿 was sampled from a zero
0

11
ean Gaussian distribution and this was the initial latent vector to be
ptimised. For each iteration, and for each of the two point sets, the
atent vector 𝒛 was repeated for as many instances as there were points

in each point set. The coordinates of each 3D point were concatenated
to each instance to form tensors of size (𝐿 + 3)×|𝑷 | and (𝐿 + 3)×|𝑸| for
the surface and off surface point sets respectively. These tensors were
passed through the trained decoder 𝑓𝜃1 and SDF values were predicted
at each point in the two point sets. The spatial gradients of these pre-
dictions were then taken as necessary and the loss function L𝐼

𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝒛)
in Eq. (14) was computed. Using the gradient of this loss, the latent
vector 𝒛 was iteratively updated by the Adam optimiser to minimise
the loss until convergence. At convergence, an optimum latent vector
𝒛∗ was obtained, which best described the unseen geometry using this
approach.

4. Design considerations for training and training history

4.1. Training settings

The Auto-Decoders 𝑓𝜃1 introduced in Section 2.4 were trained using
both training approaches introduced in Section 3. For the explicit
learning approach, the ReLU activation function was used as recom-
mended by Park et al. (2019). For the implicit learning approach, the
SoftPlus activation function was used since it is more differentiable
than the commonly used ReLU function. This enhanced differentiability
was conjectured to be useful for the implicit learning approach since
computing the loss function first involved computing gradients of the
predicted SDFs. These gradients were computed via backpropagation
through 𝑓𝜃1 using automatic differentiation (Pytorch, 2021).

For both approaches, the network parameters 𝜃1 and latent vectors
{

𝒛𝑖
}𝐵
𝑖=1 were iteratively updated during training and these updates

occurred after each training batch. During this iterative process, the
optimiser sought to find the combinations of 𝜃1 and

{

𝒛𝑖
}𝐵
𝑖=1 that best

minimised the loss function for each training approach. In this way,
the networks were able to learn compact functions that could predict
SDFs of families of box corner geometries. The networks were trained
in the PyTorch framework using the commonly recommended Adam
optimiser (Kingma and Ba, 2015) with default beta parameters of 𝛽1 =
0.9 and 𝛽2 = 0.999. An initial learning rate of 1 × 10−4 was used
and this was halved every 500 epochs up to a minimum of 5 × 10−6.
These learning rates were the same for both 𝜃1 and

{

𝒛𝑖
}𝐵
𝑖=1 updates. All

parameters in the loss functions for both approaches were determined
empirically and are summarised in Table 3.

4.2. Dataset ordering

Gradient updates by the Adam optimiser at training time occurred
after each training batch, and each training batch was presented to the
networks sequentially during training. Since geometries from different
subclasses were considered (see Section 2.3.1), careful attention was



H.R. Attar, A. Foster and N. Li Engineering Applications of Artificial Intelligence 123 (2023) 106482
Fig. 13. Decoder inference process to obtain a latent vector representation of an unseen geometry using a network 𝑓𝜃1 using the implicit learning approach. Red arrows occur
once per inference iteration.
Table 3
Empirically determined loss function parameters for explicit and implicit training approaches.

Training approach Parameter Symbol Value

Explicit SDF truncation distance 𝛿 0.05
Latent vector regularisation loss term weight 𝜆 1 × 10−4

Implicit

Surface SDF loss term weight 𝜆1 3
Normals loss term weight 𝜆2 0.7
Eikonal loss term weight 𝜆3 0.9
Latent vector regularisation loss term weight 𝜆4 1 × 10−4

Point weight for normals loss term 𝛽 3
Threshold angle between normals (◦) 𝜏 2
b
e

5

m
a
m
t
w
a

5

o
𝑷
M

paid to ordering the data samples in the training dataset. The training
data was ordered such that each batch contained an equal number
of geometry samples from each geometry subclass. This was achieved
by periodically arranging samples from each geometry subclass in the
dataset, as shown in Fig. 14. Further, since there were 3 subclasses in
total, the batch size which chosen to be a multiple of 3. Here, a batch
size of 𝐵 = 21 geometries was selected. This selection ensured gradient
updates contained information on 7 random (random because of Latin
Hypercube sampling) samples from each of the 3 subclasses. This batch
size allowed learning SDFs from all subclasses uniformly while being
small enough to efficiently fit in GPU memory.

4.3. Training history

Fig. 15 shows the training loss histories for both the explicit and
implicit learning training approaches. The curve in Fig. 15(a) belongs
to Explicit Net 1 (see Table 2) and is representative of all networks
trained using the explicit learning approach. The steady declines in
the loss values provide evidence of good training stability for both
approaches. Training for both approaches was left to run for 24 h
and was run on an NVIDIA P100 GPU in the Google Colab environ-
ment. In this timeframe, the explicit learning approach completed 8000
epochs (i.e., 8000 complete iterations of the training dataset), while
the implicit approach completed 3800 epochs. The implicit approach
completed less epochs in the same 24 h training timeframe because
spatial gradients of the SDF predictions had to be calculated before
assembling the loss function at each batch iteration, as explained
earlier. However, convergence was seen to occur at approximately 1500
epochs for the implicit approach, while the explicit approach took
 m

12
approximately 7000 epochs. A further study on the effect of the number
of subsampling points and number of geometries in the training dataset
on the SDF generation accuracy and training time was outside the
scope of this work. Nevertheless, it is expected that significant training
speeds ups could be achieved by using fewer subsampling points and
geometries but may compromise performance accuracy.

5. Evaluation of shape representation performance

After successfully training the Auto-Decoder networks 𝑓𝜃1 using
oth of the introduced training approaches, their performances were
valuated quantitatively and qualitatively.

.1. Quantitative evaluation

For the quantitative evaluation, similarity metrics were used to
easure the difference between geometries reconstructed from 𝑓𝜃1

nd the ground truth geometries exported from CAD software. These
etrics were inspired by recent literature on implicit neural represen-

ations (Park et al., 2019; Peng et al., 2021; Gropp et al., 2020) and
ere Chamfer Distance, Hausdorff Distance and Mesh Similarity, and
re defined below.

.1.1. Performance metrics definition
The distance metrics, Chamfer and Hausdorff, required the continu-

us geometry surfaces to be first discretised into point sets 𝑷𝐺𝑇 and
𝑅 for ground truth and reconstructed geometries respectively. The
esh Similarity metric required 𝑷𝐺𝑇 and the reconstructed surface
esh M. To generate 𝑷 , points were sampled on the surface of
𝐺𝑇
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Fig. 14. Ordering of geometries in the training dataset; random geometries from all 3 geometry subclasses were arranged periodically. Note that CAD geometries are shown here
or clarity whereas the training dataset contained point clouds sampled from these geometries.
Fig. 15. Loss histories for the proposed neural networks trained using the two learning approaches. The plots show (a) the history of Eq. (7) and (b) the history of Eq. (9). Since
he loss of the implicit learning approach is more complex, histories of each loss term that made up the total loss are also presented. To better visualise meaningful decreases in
he loss function terms, the Log10 of the losses were computed and plotted.
he STL mesh file that was exported from CAD software. To generate
𝑅, a forward pass was first required through 𝑓𝜃1 to generate the

continuous SDF. Then, the marching cubes algorithm was used to
extract the reconstructed surface mesh M. Finally, points were sampled
on M. A generous 30,000 points were sampled for both |

|

𝑷𝐺𝑇
|

|

and
𝑷𝑅

|

|

to effectively approximate the continuous surfaces. The point set
enerating process is depicted in the black rectangles in Fig. 16, and
hat is needed for computing each similarity metric is shown in the
reen rectangle.

. Chamfer distance
The Chamfer Distance measured the difference between reconstruc-

ion and ground truth surfaces by considering the distances of all
ampled points. Given the two pre-computed point sets 𝑷𝐺𝑇 and 𝑷𝑅,
his metric was computed by taking the sum of the squared dis-
ances between each point in one set and its nearest in the other set
sing Eq. (15).

𝐶
(

𝑷𝐺𝑇 ,𝑷𝑅
)

=
∑

𝒙𝑖∈𝑷𝐺𝑇

min
𝒙𝑗∈𝑷𝑅

‖

‖

‖

𝒙𝑖 − 𝒙𝑗
‖

‖

‖

2

2
+

∑

𝒙𝑗∈𝑷𝑅

min
𝒙𝑖∈𝑷𝐺𝑇

‖

‖

‖

𝒙𝑖 − 𝒙𝑗
‖

‖

‖

2

2
(15)

he two terms being summed are each the one sided chamfer dis-
ances and summing ensures the distance is symmetric 𝑑𝐶

(

𝑷𝐺𝑇 ,𝑷𝑅
)

=
𝑑𝐶

(

𝑷𝑅,𝑷𝐺𝑇
)

. The nearest distances were computed efficiently by the
use of a KD-tree. The lower the Chamfer Distance, the better the

reconstruction performance.

13
b. Hausdorff distance
The Hausdorff Distance measured the maximum distance between

reconstructions and ground truth surfaces. Given the two pre-computed
point sets 𝑷𝐺𝑇 and 𝑷𝑅, this metric was computed by taking the
maximum distance between any point in one set and its nearest in the
other set using Eq. (16).

𝑑𝐻
(

𝑷𝐺𝑇 ,𝑷𝑅
)

= max
(

max
𝒙𝑖∈𝑷𝐺𝑇

min
𝒙𝑗∈𝑷𝑅

‖

‖

‖

𝒙𝑖 − 𝒙𝑗
‖

‖

‖2
, max
𝒙𝑗∈𝑷𝑅

min
𝒙𝑖∈𝑷𝐺𝑇

‖

‖

‖

𝒙𝑖 − 𝒙𝑗
‖

‖

‖2

)

(16)

The two terms in the bracket are each the one sided Hausdorff dis-
tances and taking the max (⋅) of both ensures the distance is symmet-
ric 𝑑𝐻

(

𝑷𝐺𝑇 ,𝑷𝑅
)

= 𝑑𝐻
(

𝑷𝑅,𝑷𝐺𝑇
)

. This metric was computed using
functionality from the Scipy Python library. The lower the Hausdorff
Distance, the better the reconstruction performance.

c. Mesh similarity
The Mesh Similarity measured the accuracy of normals from the

reconstructed mesh M. It was defined as the mean dot product between
the normals of points in 𝑷𝐺𝑇 , which were treated as references, and
the normals of the nearest faces of M. This metric was computed
by Eq. (17)

Mesh. sim
(

𝑷𝐺𝑇 ,M
)

= 1
|𝑷 |

∑

max
(

𝒏𝐹𝑖 ⋅ 𝒏𝒙𝑖 ,−𝒏𝐹𝑖 ⋅ 𝒏𝒙𝑖
)

(17)

| 𝐺𝑇 | 𝒙𝑖∈𝑷𝐺𝑇
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p

Fig. 16. Generating data (black rectangles) to compute similarity metrics (green rectangle). This process was repeated for all geometries in the training and testing datasets.
Table 4
Mean values ± standard deviations of selected values from Fig. 18.

Auto-Decoder
name

Chamfer distance ≤ 1.5e−4 (Black
dashed line in Fig. 18(a))

Chamfer distance ≤ 2.5e−4 (Black
dotted line in Fig. 18(a))

Normals similarity ≥ 0.9 (Black
dotted line in Fig. 18(b))

Explicit Net 1 0.19 ± 0.19 0.69 ± 0.20 0.93 ± 0.03
Explicit Net 2 0.40 ± 0.16 0.84 ± 0.07 0.93 ± 0.05
Explicit Net 3 0.11 ± 0.16 0.44 ± 0.32 0.94 ± 0.03
Explicit Net 4 0.25 ± 0.18 0.74 ± 0.21 0.95 ± 0.04
Implicit Net 0.85 ± 0.03 1.00 ± 0.02 1.00 ± 0.01
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where 𝐹𝑖 is the nearest face of M to point 𝒙𝑖 ∈ 𝑷𝐺𝑇 , and each 𝒏 ∈ R3

is a unit normal vector. The nearest faces were efficiently computed
using functionality from the Trimesh Python library (Dawson-Haggerty,
2021). Further, recall that M was extracted from the generated SDF
using the Marching Cubes algorithm (see Fig. 16). This algorithm
does not guarantee oriented normals (Park et al., 2019) on M faces.
To allow for misorientations due to Marching Cubes, the max (⋅) dot
roduct using the normal generated from Marching Cubes 𝒏𝐹𝑖 and its

flipped counterpart −𝒏𝐹𝑖 was computed prior to the summation, as seen
in Eq. (17). The mesh similarity metric ranged from 0 to 1, where 1
meant perfectly matching normals.

5.1.2. Quantitative evaluation results
The aforementioned metrics were computed across all geometries

in the training and testing datasets, and for all Auto-Decoder configu-
rations. This computation resulted in metric values for each geometry
and these values were collected as distributions and are visualised the
violin plots in Fig. 17.

Several noteworthy conclusions can be drawn from Fig. 17. Excel-
lent agreement between performance on training and testing datasets
for all Auto-Decoder configurations can be seen when comparing Fig-
ures (a) and (b). This agreement provides evidence for the inexistence
of overfitting and suggests the Auto-Decoders did indeed correctly learn
the geometry space. No clear gain in performances can be seen between
Auto-Decoders trained using the explicit learning approach (Explicit
Nets 1–4). Although, Explicit Net 2 performed marginally better in
terms of Chamfer Distance but was on par with its counterparts for
the other two metrics. On the other hand, Implicit Net performed
significantly better than all Explicit Nets across all metrics. This vast
improvement in performance suggests the implicit learning approach
was highly effective at learning stamping geometries when compared
to the explicit learning approach. This result is further unpacked in the
following.

Fig. 18 quantifies the fraction of surface coverage that meets per-
formance metrics 𝜌 between reconstructions and ground truths across
all geometry samples in the testing dataset. In Figure (a), 𝜌 represents
14
unsummed Chamfer Distance and is plotted on the 𝑋-axis. Plotted on
the 𝑌 -axis is the fraction of points 𝒙 ∈ 𝑷𝑅 that satisfy ⃖⃖⃖⃖⃗𝑑𝐶

(

𝒙,𝑷𝐺𝑇
)

≤ 𝜌,
where ⃖⃖⃖⃖⃗𝑑𝐶

(

𝒙,𝑷𝐺𝑇
)

is the one sided Chamfer Distance from a point
𝒙 ∈ 𝑷𝑅 to 𝑷𝐺𝑇 , i.e., the elements being summed in the second term
of Eq. (15). In Figure (b) 𝜌 represents unsummed Normals Similarity
and is plotted on the 𝑋-axis. Plotted on the 𝑌 -axis is the fraction of
faces 𝐹 ∈ M that satisfy max

(

𝒏𝐹 ⋅ 𝒏𝒙,−𝒏𝐹 ⋅ 𝒏𝒙
)

≥ 𝜌 and here 𝒙 is the
losest point in 𝑷𝐺𝑇 to face 𝐹 .

Once again, Implicit Net significantly outperformed all Explicit Net
ariants in both performance metrics. The plots in Fig. 18 show that
mplicit Net had higher mean values and tighter standard deviation
ands across all 𝑋-axis values. These outcomes suggest consistently
igh performance across all unseen geometries in the testing dataset.
esults at the black dashed and dotted lines in Fig. 18 are reported in
able 4 for further quantitative evaluation.

The excellent performance of Implicit Net on the testing dataset and
cross all metrics suggests that this network could generate realistic
eometries. A qualitative evaluation was next performed to further
nvestigate this suggestion.

.2. Qualitative evaluation

To interpret the results of the quantitative evaluation, a qualitative
valuation was performed by visualising reconstructed surface meshes

obtained from the trained Auto-Decoder networks. Fig. 19 compares
urface meshes M reconstructed from Explicit Net 1 and Implicit Net
ith points sampled from the ground truth CAD surfaces 𝑷𝐺𝑇 . The

igure shows that although the surfaces from Explicit Net were mostly
n agreement with the ground truth points, there were differences
n local areas, such as radii. Some of these differences are indicated
y the arrows in Fig. 19(a). On the other hand, excellent qualitative
orrespondence was found between the surfaces from Implicit Net and
he ground truth points, seen in Fig. 19(b).

For further qualitative evaluation, Fig. 20 compares 2D image pro-
ections of three surfaces which were reconstructed from Explicit Nets
–2 and Implicit Net with 2D projections of their CAD ground truth
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Fig. 17. Distributions of Chamfer Distance (top row), Hausdorff Distance (middle row) and Mesh Similarity (bottom row) for networks trained using the explicit learning approach
(Explicit Nets 1–4) and implicit learning approach (Implicit Net).
counterparts. It was found that all the networks did indeed recon-
struct geometries well on the global scale. The height values agreed
between reconstructions and ground truths, and the reconstructions did
replicate box corner geometries. However, this figure further confirms
that reconstructions from Explicit Nets 1–2 failed to capture local
radii features, as seen from their difference images. In contrast, near
indistinguishable images are seen when comparing the reconstructions
of Implicit Net with ground truths.

The impressive performance achieved by Implicit Net can be at-
tributed to its implicit learning approach, as described in Section 3.2,
which supervises the geometric properties of the generated SDFs in-
stead of the SDF value itself. In particular, the loss function used in the
training of the model contains a term that operates on the zero-level-
set of the SDF directly, as shown in Eq. (10), which corresponds to the
surface geometry of the shape. By supervising the surface geometry,
the model is able to capture local geometric features more accurately,
resulting in more structurally sound geometries. Additionally, the sur-
face normal scaling factor 𝛼𝑗 in Eq. (10) further promotes the accurate
reconstruction of local geometric features on the surface.

One the other hand, the conventional approach for training a model
for shape generation using SDFs is to supervise the SDF value at
each point in space with respect to the ground truth SDF, as used by
DeepSDF (Park et al., 2019) and DeepMesh (Guillard et al., 2021) to
name a few. This training technique is a form of explicit learning be-
cause the model explicitly learns a function that maps an input point to
15
its corresponding SDF value, as described in Section 3.1. However, this
approach has limitations when it comes to capturing local geometric
features of the surface, such as sharp edges, corners, and ridges. This
is because the SDF value alone does not contain sufficient information
about the local geometry of the surface. Therefore, explicit learning can
only promote SDF regression in the vicinity of the surface, rather than
directly on it.

Further, Attar et al. (2021b) and Attar et al. (2021a) have demon-
strated that local radii features play a crucial role in determining the
manufacturability of sheet stamping. Optimising these features to meet
manufacturing constraints (Attar et al., 2021a; Horton et al., 2020) is
essential and requires high-quality representations. As the Explicit Nets
were unable to reconstruct these critical features, this approach was
found unsuitable for representing sheet stamping geometries for geom-
etry optimisation. In contrast, the Implicit Nets provided high-quality
reconstructions of local features and are recommended for representing
sheet stamping geometries for geometry optimisation, especially in
situations where small-scale features are important.

6. Continuity of the learnt geometric latent space

The latent space refers to the learnt low dimensional space that
contained the inferred latent vectors 𝒛 ∈ R128 for the considered stamp-
ing geometries. The term low dimensionality here is used in relation to
high dimensional data representations, such as images or meshes. In
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Fig. 18. Testing dataset surface coverage versus performance metrics for various Auto-Decoder networks: Explicit Nets 1–2 and Implicit Net (top row), and Explicit Nets 3–4 and
mplicit Net (bottom row). Solid curves represent means and shaded bands represent standard deviations across all samples in the testing dataset.
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he case of an image, the dimensionality is equal to the total number
f pixels (e.g., 256 × 256 = 65,536 pixels). In the case of a mesh, the
imensionality is equal to the total degrees of freedom of mesh vertices
e.g., 10,000 vertices ×3 orthogonal directions = 30, 000 degrees of
reedom).

In this section, the continuity of the latent space learnt by Im-
licit Net is presented. As mentioned by Wang et al. (2020a), when
ontinuity is combined with low dimensionality, different vectorised
irections in the latent space encode geometrically meaningful embed-
ings. These embeddings could be leveraged for explorative geometric
ptimisations.

.1. Organisation of the latent space

The learnt latent space was found to be organised according to the
atural similarity between different geometries. To visualise this organ-
sed space, three-dimensional Principal Component Analysis (PCA) was
erformed on latent vectors inferred from geometries in the training
nd testing datasets. Following PCA, the principal components of the
atent vectors were obtained, and this reduced the space from R128 to
3. These principal components are plotted in Fig. 21, where it was

ound that geometries from the same subclass cluster together in the
atent space. This clustering can be interpreted as the latent space being
rganised in terms of global geometric features. A mild overlap was
ound between red and green points, which correspond to geometries
hat were similar to both standard and chamfer corners (e.g., chamfer
orners with small chamfer lengths). In contrast, the blue points, which
orresponded to stepped sidewalls, were further away because their
tepped feature made them dissimilar to the other geometries.

To further show the organisation of the latent space, the three
oloured clusters in Fig. 21 are plotted separately in Fig. 22. In each
lot, selected local geometric features (i.e., height, radius, or similar)
efined in Fig. 5(a) are superimposed as colours. The smooth transitions
etween different colours show that the latent space was further or-
anised in terms of these local geometric features in addition to global
eatures.
 T

16
In summary, it was found that the latent space encoded meaningful
nd well organised geometric information on a global and local scale.
onsequently, the proximity of two points in the latent space provided
measure of similarity between two geometries represented by these

oints. This organisation suggests that smooth geometric changes are
ossible by travelling along vectorised directions in the latent space.
hese smooth changes are demonstrated by latent space interpolation

n the following subsection.

.2. Interpolation in the latent space

To evaluate the learnt latent space further, geometries generated by
nterpolating between latent vectors are presented in Fig. 23. In Figure
a) the geometries shown in blue were generated from latent vectors
hat were averaged from those of the adjacent grey test set geome-
ries. It is evident that these generated geometries naturally combine
ommon geometric features of their adjacent test set constituents. In
igure (b), the geometries shown in blue were generated from latent
ectors that were linear combinations of those of the two grey test set
eometries, 𝒛𝐴 and 𝒛𝐵 , according to Eq. (18).

𝛼 = (1 − 𝛼) 𝒛𝐴 + 𝛼𝒛𝐵 (18)

ere, 𝒛𝛼 is the latent vector at the value of the scalar 𝛼 ∈ [0, 1]. The
mooth changes between the geometries in Figure (b) demonstrate that
obust free morphing of sheet stamping geometries was possible by
xploring the learnt latent space. As a separate note, notice the well
aptured sharp fillet radii in all geometries shown.

. Limitations and potential solutions

The proposed model for generating sheet stamping geometries with
mall-scale features has shown promise, but it is important to ac-
nowledge potential limitations and ways to address them. One major
imitation is the lack of generalisability to unseen geometry classes due
o the model being trained on a specific class of stamping geometries.

o increase the practicality of the proposed approach for manufacturing
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Fig. 19. Comparison between reconstructed surface meshes M (purple surfaces) and ground truth surface points 𝑷 𝐺𝑇 (orange points) for three representative geometries from the
testing dataset. Reconstructions generated using (a) Explicit Net 1 and (b) Implicit Net. Arrows in (a) indicate zones of misalignment between M and 𝑷 𝐺𝑇 . All images taken with
he perspective camera projection type for best figure clarity.
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pplications, researchers and engineers can wisely utilise the approach
y training separate geometry models on different broad geometry
lasses, such as boxes, door panels, pillars, and beams. Specifically,
or sheet stamping applications, there are only a limited number of
ommon geometry classes typically used in the industry, making it
easible to train separate models for each class. By using this strategy,

single model does not need to learn a latent space shared across
astly different geometry classes, e.g., between boxes and beams. Con-
equently, the requirement for a universally generalisable model can
e removed, leading to generating higher quality stamping geometries
f a specific class, thereby increasing its practicality for manufacturing
pplications. The proposed approach also requires significant computa-
ional resources, which can limit accessibility for some researchers and
ngineers. This limitation can be mitigated by investing in GPU-enabled
orkstations or utilising online cloud-based resources. Additionally, the
ethod generates geometries without considering manufacturing con-

traints, which limits their practicality. This limitation can be addressed
17
y incorporating manufacturing-specific constraints, such as stamping
rocess feasibility to guide the geometry generation. The integration
f manufacturability criteria will be explored in future work by using
ecently developed manufacturability surrogate models (Attar et al.,
021b) to generate manufacturable geometries, as detailed in Section 8.

. Conclusion and broader impact

A novel deep learning method has been introduced for creating
igh-quality implicit neural representations of 3D sheet stamping ge-
metries using Signed Distance Fields (SDFs). The research conclusions
an be summarised as follows:

• An innovative implicit learning approach to generate SDFs of
sheet stamping geometries was proposed, based on supervising
the geometric properties of SDFs. Additionally, the state-of-the-
art DeepSDF (Park et al., 2019) approach in literature, which
involves explicit learning and supervision of SDF values, was
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a

Fig. 20. Comparison between 2D projected height maps of reconstructed surfaces from Explicit Nets 1–2 (dashed line rectangles) and Implicit Net (solid line rectangle) with CAD
ground truths for three representative geometries from the testing dataset. Colourbar limits set equal across columns for comparison between reconstruction methods.
Fig. 21. Three dimensional PCA of the learnt latent space. Coloured clusters denote points belonging to different geometry subclasses, and therefore global geometric features,
nd are labelled in the colours key. Views selected for best figure clarity.
investigated for its ability to accurately reconstruct small-scale
geometric features.

• Using the two approaches, neural network models were trained
as compact, differentiable functions capable of generating a range
of sheet stamping geometries, which were captured in the trained
model parameters.

• Comprehensive evaluations were conducted on models trained us-
ing both approaches, including quantitative and qualitative anal-
yses. Results showed that the implicit approach outperformed the
explicit approach in terms of geometric accuracy, as demonstrated
by the Chamfer distance, Hausdorff distance, and mesh similarity
metrics. The explicit approach failed to capture small-scale fea-
tures critical to the manufacturing performance of sheet stamping
geometries, while the implicit approach performed well in this re-
gard. Therefore, adopting the implicit approach is recommended
for generating stamping geometries.
18
• The continuity of the geometric latent space learnt from the
implicit approach was analysed, revealing that similar geome-
tries formed distinct clusters within the latent space representing
global features, such as stepped sidewalls and chamfer corners.
It was found that each cluster was further organised based on
local geometric features, such as height or radius, indicating the
possibility of smooth and detailed geometric changes by explor-
ing this space. This organised and meaningful latent space was
demonstrated through latent space interpolation, which resulted
in smooth transitions between geometry subclasses.

Future work will leverage the continuity of the latent space, as well
as the differentiable nature of the trained networks, to perform op-
timisation of 3D stamping geometries that is agnostic to CAD pa-
rameterisation scheme. Integrating the proposed model as a geometry
generator with the previously developed manufacturability surrogate
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Fig. 22. Three dimensional PCA of the learnt latent space where each cluster in Fig. 21 is plotted here individually. The colour bars represent values of a local geometric feature.
The geometric features follow those defined in Fig. 5(a). Views selected for best figure clarity.
Fig. 23. Reconstructions of test set samples (in grey) and generated geometries (in blue). In (a), the generated geometries were decoded from latent vectors that were averaged
from those of adjacent grey geometries. In (b), the generated geometries were decoded from latent vectors that were obtained by linearly interpolating between those of the grey
geometries.
models (Attar et al., 2021b) could enable the creation of a closed-
loop optimisation platform for sheet stamping processes. The generator
model can be used to create virtual geometries, which can be evaluated
for their manufacturing performance using the surrogate models. The
surrogate models provide predictions of the performance of the virtual
geometries, which can be used to iteratively update the inputs into the
generator model to optimise the geometry for better manufacturability.
The integration of the generator model and the surrogate models in a
closed loop can create a digital twin for real-time virtual optimisation
of geometries for sheet stamping processes. The use of such a digital
twin can eliminate the need for costly FE simulation iterations or
physical stamping trials, making the optimisation process faster and
more efficient.

Furthermore, the implicit neural representations and methodologies
developed in this study can be extended to other application scenarios
in the manufacturing sector. For example, the proposed approach could
be used to represent the design of arbitrary blank shapes for optimisa-
tion, which is critical in many sheet forming processes. Additionally,
the model could be adapted to combine material properties and process
parameters as system inputs for holistic process optimisation. Finally,
the approach could be applied to other sheet forming processes (Zheng
et al., 2018), including various fixed die forming (e.g., deep drawing,
hydroforming, superplastic forming) and incremental sheet forming
19
with flexible dies where 3D shape optimisation may be applicable in
real-time.

In addition to manufacturing scenarios, the methodology proposed
here can be applied to any scenarios requiring design of 3D surfaces
with critical small-scale features. For example, the framework can be
used in concurrently optimising both global design and small-scale local
features that are critical to certain performance indicators, such as local
stiffeners in safety-critical components (e.g., car B-Pillars) or small-
scale surface design features affecting the aerodynamic performance of
car exteriors, aircraft panels, or boat hull surfaces.
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ppendix. Brief explanation of marching cubes

Combining the benefits of SDFs with explicit representations re-
uires the use of Marching Cubes (Lorensen and Cline, 1987) as men-
ioned in Section 2.5. Marching Cubes is an algorithm for creating a
riangle mesh based representation of a level-set from an implicit field.
ince the zero-level-set of SDFs here are designed to implicitly represent
he surface geometry, running Marching Cubes on the SDF would ex-
ract the implicit surface by converting it to an explicit triangular mesh.
his application of Marching Cubes works by iterating over a uniform
D grid of cubes imposed over a region of the SDF and searching for
ts zero-level-set. For each cube in the 3D grid, the algorithm evaluates
he sign of the SDF points at the cube vertices. If all 8 cube vertices of
he cube have the same sign, then the cube is entirely above or below
he zero-level-set and no triangles are created. Otherwise, triangles
re created which make up mesh faces. There are 15 unique cases of
riangle and mesh vertex combinations and these are determined by a
ookup table shown in Fig. A.1, where a search is performed using the
DF sign at each of the 8 cube vertices. The final extracted mesh is a
ombination of the triangles and mesh vertices from each cube in the
D grid. For more details on Marching Cubes, the reader is referred to
he original paper (Lorensen and Cline, 1987).

Fig. A.1. A graphical representation of the triangulated cubes lookup table used by
he Marching Cubes algorithm. Yellow highlighted cube vertices have an opposite sign
o non-highlighted cube vertices. There are 15 unique combinations in total.
ource: Figure adapted from Liao et al. (2018).
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