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Abstract—3D Convolutional Neural Networks are gaining
increasing attention from researchers and practitioners and
have found applications in many domains, such as surveillance
systems, autonomous vehicles, human monitoring systems, and
video retrieval. However, their widespread adoption is hindered
by their high computational and memory requirements, especially
when resource-constrained systems are targeted. This paper
addresses the problem of mapping X3D, a state-of-the-art model
in Human Action Recognition that achieves accuracy of 95.5% in
the UCF101 benchmark, onto any FPGA device. The proposed
toolflow generates an optimised stream-based hardware system,
taking into account the available resources and off-chip memory
characteristics of the FPGA device. The generated designs push
further the current performance-accuracy pareto front, and
enable for the first time the targeting of such complex model
architectures for the Human Action Recognition task.

I. INTRODUCTION

In recent years, two-dimensional CNNs have excelled at
image-related tasks. The growing focus and number of ap-
plications arising from video-related tasks, such as video
surveillance, autonomous driving, and elderly/patient monitor-
ing, have necessitated the development of algorithms that in-
clude and account for the temporal domain. Three-dimensional
CNNs are one of the most frequently applied techniques for
dealing with video and volumetric data. With the addition of
an extra dimension, such as time or depth, over 2D CNNs, 3D
CNNs improve their learning capacity by extracting features
relevant to the newly added dimension of the input as well.

Especially in the task of human action recognition, 3D
CNNs have demonstrated exceptional performance. The use of
3D CNNs enables the interpretation of human motion across
the frames of a video, enabling the detection of a variety of
human actions without the need for dedicated time-domain
techniques (e.g., LSTMs). As can be seen in Figure 1, 3D
CNNs dominate the pareto front in one of the most widely
used HAR benchmarks, Kinetics-400 [8], while the recent
emergence of vision transformers has also begun to drive some
designs to the pareto front; however, such networks require
orders of magnitude more GFLOPs to operate.

While 3D CNNs are capable of capturing time- or depth-
related features, the additional dimension in the input fre-
quently results in greater workloads and computational and
memory requirements as compared to 2D CNNs. Numerous
hardware devices, including GPUs, FPGAs, and ASICs, have

Fig. 1: Kinetics-400 pareto over the years
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been used to mitigate the 3D CNNs’ high processing require-
ments and provide high performing systems. FPGAs are an
attractive candidate as an acceleration platform since they offer
greater flexibility than ASICs and are more energy efficient
than GPUs. Furthermore, the rapid evolution of 3D CNN
model designs necessitates the need for a platform that can
quickly adapt to any new model requirements.

Previously, FPGA-based acceleration of 3D CNN models
focused on C3D and R(2+1)D, whose performance falls short
of the pareto front in recent benchmarks such as the Kinetics.
In contrast, this work proposes an FPGA architecture for X3D
[5], a 3D CNN model that lies in the pareto front of accuracy
vs. number of parameters, as shown in Figure 1. Using an auto-
mated optimization approach and by applying transformations
to the SDF graph, the design space of X3D is explored based
on a streaming architecture and the Synchronous Data Flow
(SDF) [9] computation model, taking into account the target
FPGA platform’s requirements.

The target FPGA platform or resource constraints may
change depending on the application or system requirements.
As can be seen in Figure 2, the proposed hardware design
may adapt to different devices as well as varied restrictions
regarding the FPGA utilisation percentage, resulting in pareto
front solutions in each circumstance. The key contributions of
this paper are the following:
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Fig. 2: Model performance over different
FPGA devices and resource constraints

• The extension of the SDF graph model that is employed
for capturing the performance requirements in CNN
mapping to streaming architectures to explicitly address
irregular blocks with branching, which are widely used
in modern CNN models.

• The automation and optimisation of the mapping of
the X3D model, a state of the art model for Human
Action Recognition, to different FPGA devices, taking
into account the available FPGA resources and memory
bandwidth characteristics.

• Two streaming-centric optimizations to improve the X3D
network’s dataflow characteristics. The use of prior batch
statistics for GAP layers, and the quantization of the
model weights and feature maps to 16-bit fixed-point
arithmetic.

II. BACKGROUND

A. fpgaConvNet

This work is inspired by the fpgaConvNet [17], a framework
that automatically maps 2D CNN models to FPGA platforms.
The framework accepts a high-level description of a 2D CNN
model and the FPGA platform’s characteristics. The structure
and parameters of the network are captured in a Directed
Acyclic Graph (DAG), which is translated into an SDF graph.
Synchronous Data-Flow (SDF) [9] is a computation model for
both parallel and sequential systems developed by Lee et. al.
in 1987. The dataflow model represents the system’s behaviour
as a graph, named SDFG. The SDFG nodes represent the
operations, while the arcs represent the data streams that
connect them. SDF’s key idea is that every node fires whenever
data is available at its input arcs, resulting in a data-driven
execution paradigm. The SDFG is represented as a topology
matrix Γ and is subjected to a series of transformations that
vary the folding factors and reconfiguration points, therefore
broadening the design space (a more detailed explanation
of how Γ matrix is constructed is given in Section III-B).
After that, an optimization technique is employed to determine
the optimal folding factors and reconfiguration points for
optimising the throughput, that result in the final design choice.
The tool concludes by providing a synthesizable Vivado HLS
hardware design.

B. Related Work

Although 3D CNNs have been around for a while, there
have only been a few papers aimed at their acceleration on
FPGAs. The majority of these works focus on relatively old
3D CNNs, such as the C3D [7] model, whose performance
falls short of state-of-the-art models, due to simple underlying
CNN model. Fan et al. introduced a series of works on 3D
CNN acceleration for HAR on FPGA systems, [2]–[4]. In
their initial work [4], they proposed the F-C3D hardware
architecture for the acceleration of C3D [7], which is capable
of supporting multiple 3D convolutional layers and design
strategies for overcoming the challenges associated with 3D
CNNs, such as increased computation and memory require-
ments, while also allowing their design to be ported to other
FPGA devices. In their subsequent work [3], they proposed
an analytical model and a tool for optimising the hardware
architecture based on the device specification and accuracy
requirements, as well as the use of block floating point (BFP)
arithmetic precision to minimise accuracy loss and the need for
retraining the model. Their design evaluation was conducted
on C3D model as well. In their most recent publication in
this series, [2], they proposed E3DNet, an efficient 3D CNN
based on their proposed 3D-1 bottleneck building block. Their
hardware implementation of E3DNet, called F-E3D, is capable
of real-time performance at the execution time of 35.3 ms per
clip1, while achieving 85.1%2 in terms of accuracy on the
UCF101 benchmark.

Liu et al. [10] proposed a unified hardware architecture
for 2D and 3D CNN acceleration based on their observation
that the computing patterns of 2D and 3D CNNs are similar.
Their aim was to convert the CNN convolutions to matrix
multiplication operations, paying close attention to memory
optimizations in order to overcome the difficulties of feature
map replications. Additionally, they employed an analytical
model to configure the accelerators for optimal resource use.
They have targeted and evaluated their design on C3D model.
Shen et al. [12] followed a similar approach, developing a
unified template-based architecture based on the Winograd
[18] algorithm capable of handling both 2D and 3D CNNs.
Additionally, they developed an analytical technique for effi-
ciently exploring the design space for mapping 2D and 3D
CNNs on FPGA accelerators. The authors have targeted the
C3D model for the evaluation of their proposed design. Sun
et al. [14] used a blockwise pruning approach to apply weight
pruning to two distinct 3D CNN architectures, namely C3D
and R(2+1) [16]. Their hardware design, which is based on
the Alternating Direction Method of Multipliers (ADMM),
together with the suggested pruning approach, enables the ac-
celeration of 3D CNNs with low accuracy loss when compared
to their unpruned form. Recently, Toupas et al. [15] introduced
a toolflow that automates the mapping and optimization of 3D

1A clip is defined as a stacked sequence of frames that are meant to be the
input of the 3D CNN

2H. Duan et. al. [1] currently holds the SoA results on UCF101 achieving
98.6% accuracy



CNN models on FPGA devices achieving promising results
on latency-oriented applications.

Until recently, the majority of research has been focused on
the C3D [7] model for HAR, which was introduced in 2013.
The model’s architecture is rather simplistic, consisting of only
six consecutive layers, and it performs poorly in terms of
accuracy when compared to the modern SoA models in HAR
(85.2% in UCF101 compared to 98.6% which is the current
SoA). In terms of design complexity, it is comparable to the
LeNet or AlexNet in the three-dimensional space. Because
the methodologies described above are primarily tailored to
the design of the target model, they cannot be extended or
evaluated in the more complex architectures of today’s state-
of-the-art HAR models. As a result, it is unclear how well
they would perform and how they could map the most recent
SoA models. This study focuses on X3D [5], which has over
200 layers and deviates from the sequential model of early
networks by introducing branching.

C. X3D Model Family

C. Feichtenhofer proposed the X3D family [5] of efficient
3D CNN models in 2020. The model designs in the family
range from X-Small (X3D-XS) to XX-Large (X3D-XXL),
depending on the computational complexity, number of layers,
input volume size, and number of parameters. Indicative, the
computational complexity of the X3D-XS is 0.6 GFLOPs,
whereas the computational complexity of the X3D-XXL is
143.5 GFLOPs. The number of model parameters ranges from
3.76 M to 20.3 M. Until 2021, the X3D series had the
best performance in many HAR benchmarks, including the
Kinetics-400 (80.4%), Kinetics-600 (81.9%), and Charades
(47.1%). This paper focuses on the X3D-M, which has a
computational complexity of 6.2 GFLOPs, 3.76 M parameters,
and receives as input a sequence of 16 RGB frames with
spatial dimensions of 256 × 256, attaining an accuracy of
76.0% in Kinetics-400 and 78.8% in Kinetics-600. X3D-M
has a total of 244 distinct layers, which include depth-wise
and point-wise 3D convolutional layers, various activation
functions such as relu, sigmoid, and swish, 3D global average
pooling layers, and fully connected layers.

III. HARDWARE-LEVEL INTERPRETATION OF X3D

This section discusses the hardware-level interpretation and
modelling of the X3D model. The proposed framework takes
as input the high-level description file of the X3D model, and
captures the parameters of each layer in a DAG along with
the connections between the layers. Each of the network’s
supported layer is mapped to a hardware building block
equivalent that implements its functionality. Subsequently the
framework generates the SDFG for the network, which is
created by mapping the DAG nodes to their hardware equiv-
alents and adding them as nodes in the SDFG, as well as by
adding the connections between the DAG nodes as arcs in
the SDFG. Finally, the estimated performance of a particular
configuration of the SDFG nodes of the network is calculated
using the SDF computation model. The following sections

provide detailed descriptions for each stage of the proposed
framework’s workflow.

A. X3D layers as DAG nodes

Three main parts comprise the description of a neural
network model supplied by high-level frameworks such as
pytorch and onnx. First, the layers and their connections
that define the model’s structure and flow. Second, each
layer’s special attributes and configuration, and finally the
actual values of the learnable parameters associated with their
layers (if any). A dedicated model parser is provided, that
parses the above descriptions to build a DAG containing all
of the relevant information about the target neural network.
The DAG structure is faithful to the original, retaining just
the essential information from the layers’ specific attributes
and configuration. Additionally, the parser stores the model
parameters/weights for future use during inference.

All the layers of the X3D model comprise of the Spi, and
Spo parameters describing the input and output shapes. In
addition to these, each layer has layer-specific parameters, as
shown in the configurations below:

• 3D Convolutional Layer There are four different types
of convolutional layers that X3D model incorporates: 3D
convolutions with kernel omitting (a) the temporal dimen-
sion 1×Kh×Kw, (b) the spatial dimensions Kd×1×1,
(c) 3D depth-wise convolutions, (d) 3D point-wise con-
volutions. Even though the are different types of convo-
lutions, the discrimination between them can be achieved
by looking at the layer’s configuration that is stored in
the DAG nodes, < Spi,Spo,Ks,Sr,Pad,Gp >:
◦ Ks is a 3-value vector [Kd,Kh,Kw] specifying the

depth, height and width of the 3D convolution window
(also known as kernel).

◦ Sr is a 3-value vector specifying the strides of the
convolution along each dimension.

◦ Pad is a 3-value vector denoting the amount of
padding applied to each dimension of the input

◦ Gp a value that specifies the number of groups in
which the input is split along the channel axis

• 3D Activation Layers The activation functions used in
X3D are the following: (a) ReLu activation, (b) Sigmoid
activation, (c) Swish activation which is expressed as
y = x ∗ sigmoid(x).. The layer’s configuration is as
follows, < Spi,Spo,T >:
◦ T denotes the type of activation function.

• 3D Element-wise Layers In X3D, element-wise opera-
tions refer to the layers that combine data from several
branches via addition or multiplication. In comparison to
the other layer types, these layers combine several inputs
into a single output. The shapes of the layer’s inputs may
or may not be identical, resulting in different functionality
of the layer (normal vs broadcasting). The layer’s config-
uration is as follows, < Spi1, ...,SpiN,Spo,T,M >:
◦ T denotes the type of element-wise operation, e.g.

addition, multiplication, division, and so on.



◦ M denotes the mode of element-wise operation, nor-
mal or broadcasting.

• 3D Global Average Pooling Layer While the standard
pooling operation samples patches of the input feature
map to decrease its size, this extreme case samples the
whole feature map into a single value, creating an output
vector with the same shape as the channels, with the
configuration being like, < Spi,Spo,T >.

B. SDFG representation with branch support
To take advantage of the SDF model’s capabilities, DAG

nodes are mapped into their associated hardware building
blocks, which implement the functionality of the respective
network layer in the underlying hardware. Using SDF theory,
the SDFG may be represented as a topology matrix Γ. The
nodes are represented by the columns of this matrix, while the
arcs that link the nodes are represented by the rows. The data
consumption/production rates for each node in each arc can be
inferred by looking the element at (node, arc) position in the
Γ matrix. Positive values, by convention, drive data production,
whereas negative ones drive data consumption. The element
Γ(n, a) = −1, for example, indicates that node n consumes
data at arc a at a rate of one.

The Γ matrix is decomposed into several matrices, allowing
a more in-depth examination of each one separately and more
fine control overall. The initial decomposition of the Γ matrix
yielded three distinct matrices, which are as follows:

i) The stream matrix S. This matrix element stores the
number of incoming and outgoing parallel streams that
arrive to each node’s input and output.

ii) The rate matrix R. The rate matrix elements include
the normalised data production and consumption rates of
each node at each arc (defined as the number of elements
produced/consumed per cycle). The values in this matrix
range from 0 to 1.

iii) The data matrix C. The width of each individual stream
from the S matrix is stored in this matrix elements. Since
all of the streams are assumed to have the same bit width
of 16, the above matrix will not be used in this study.

The Γ matrix decomposition can be derived from the
following Equation: Γ = S×R.

Γ =



M
em

In

Relu Con
v1

Swish
Con

v2
Add M

em
Out

BW
2

−RinRL 0 0 0 0 0
0 RoutRL −RinC1 0 0 −Rin1AD 0
0 0 RoutC1 −RinSW 0 0 0
0 0 0 RoutSW −RinC2 0 0
0 0 0 0 RoutC2 −Rin2AD 0
0 0 0 0 0 RoutAD

BW
2



The upper bi-diagonal structure of the Γ matrix precludes
modelling of branching behaviours, i.e. of graphs with nodes
having multiple outgoing arcs as well as nodes accepting
multiple incoming arcs. The suggested SDFG modification
facilitates the creation of graphs with numerous incoming

or outgoing arcs at nodes. The matrix below illustrates an
example of the proposed SDFG. BW is the available memory
bandwidth to the device off-chip memory, which is given in
the device specs that are provided as input to the system along
with the high level network description file. The rest of the
matrix elements indicates values that have emerged from the
result of the matrix multiplication in the Γ matrix.

The depth of each side of a branch is computed to incor-
porate some extra buffering for the streams that are combined
at the merge points in order to ensure the right flow of data
across the design’s streams as well as to equalise the rates at
the merge points.

C. X3D layers as hardware building blocks
The hardware building blocks are the major components

utilised to construct the SDFG, which will be used subse-
quently to estimate the network’s performance. The config-
uration of these blocks, in conjunction with the network’s
topology, is utilised to automatically generate and construct
the design’s synthesisable Vitis HLS code. The representation
of the supported hardware building blocks comprises of the
following:

i) DAG parameters. A set of parameters that originated
from the layer’s settings as a DAG node. These settings
are the layers’ structural configuration that cannot be
changed.

ii) SDFG parameters. An additional set of parameters that
go along with the layer’s hardware building block. These
parameters have an impact on the layer’s performance
and are the ones that the optimization algorithm searches
for during the design space exploration phase.

All of the layers share a common set of parameters describing
their hardware building blocks. These parameters are the
number of streams accepted at the layer’s input and provided
at the layer’s output, namely sin and sout, the consumption
rate of the layer, defined as number of elements consumed
per cycle rin, and the production rate of the layer, defined
as number of elements produced per cycle rout. The detailed
description of the parametrisation of all the layers is given
below:

• 3D Convolutional Layer,
< DAGparams, sin, sout, rin, rout,pmac >

◦ pmac is the number of multiply and accumulate
(MAC) operations that take place inside the convo-
lution in parallel.

The sin,sout, and pmac are altered during the DSE and
affect the final performance of the layer. Meanwhile the
rin and rout depend on the pmac which means they
are implicitly altered during the DSE as well. A mode
detailed analysis of the convolution layer and its sub-
modules is provided in fpgaConvNet [17].

• 3D Activation Layers, 3D Global Average Pooiling
Layer, < DAGparams, sin, sout, rin, rout >
These layers’ rin and rout can achieve consump-
tion/production rates of 1 without constraints from pre-
vious layers or the memory, due to their element-wise



functionality and the simplicity of their operations. The
only exception here is the 3D Global Average Pooiling,
in which rout = 1

D×H×W , where D is the depth, H is
the height, and W is the width dimension of the input
feature map.

• 3D Element-wise Layers,
< DAGparams, sin1, sin2, sout, rin1, rin2, rout >
This layer’s rin1, rin2 and rout can achieve
consumption/production rates of 1 without constraints
from previous layers or the memory, due to their
element-wise functionality and the simplicity of their
operations. It should be noted that in cases when the
rates in either of the inputs are restricted owing to a
lower production rate of a previous layer or due to
memory constraints, the layer’s input rates are equalised
to the lower consumption rate among them.

D. Streaming-Centric Optimizations

During the development of the proposed design, the squeeze
and excitation modules was found to hinder the throughput.
Due to its averaging over the whole feature map, the 3D Global
Average Pooling layer delays the design pipeline and demands
increased branch stream buffering. The interdependence be-
tween these layers’ output and the input of the ones that follow
(the layer after GAP is always a point-wise convolution that
requires all input channels to begin producing its output) and
the shortage of on-chip memory due to the buffers’ larger size
limit performance. An approximation was introduced to solve
this. GAP re-uses the results of its previous execution saved
on the on-chip memory for each subsequent volume of data
(i.e., every subsequent batch) and forwards them immediately
to the next layer in the pipeline. Thus, the pipeline never stalls
and buffering is greatly reduced. The GAP now calculates
and saves the current batch’s results on the on-chip memory
without affecting the pipeline’s other stages.

Because the authors of the original publication did not
publish the model’s performance in that specific benchmark,
the model was first trained/fine-tuned before being evaluated
on the UCF101 benchmark. Following the model’s fine-tuning,
the evaluation was carried out utilising the widely accepted
strategy used on HAR benchmarks, which results in a total
of 30 predictions that are averaged from a uniform sampling
of 10 temporal clips for each video and spacial sampling of 3
crops in each frame. Furthermore, to be equivalent and directly
comparable to previous studies, the impact of employing fixed-
point precision has been investigated, by converting the model
weights and all intermediate feature mappings from 32-bit
floating point to 16-bit fixed-point arithmetic.

Figure 3 depicts the results of quantization of both the
weights and feature maps over different combinations of word
lengths. The experiments were conducted on the first split
of UCF101 with a single clip evaluation (compared to 30
clip evaluation as described above). The accuracy achieved
for this split with floating point feature maps and weights is
95.71%. On a 16-bit fixed point precision for both the weights
and feature maps we observe a drop in accuracy of 0.28%.

Fig. 3: Quantization results on UCF101 over different word
lengths. W X denotes the word length of the fixed point

representation of the weights, while FM X for the feature
maps

Moving to a 16-bit precision this drop increases to 0.66%,
while at 14-bits the accuracy drop is equal to 1.19%. An
interesting insight emerged from this evaluation is that the
feature maps are less sensitive to reduction of the word length
used to represent them compared to the weights of the model.
For all the experiments we have explored and kept the best
combination of the number of integer and fractional bits for
each word length both for weights and feature maps. Finally
we have evaluated the model on all three splits of UCF101
with a 30 clip evaluation using 16-bit fixed point for weights
(Q6.10) and for feature maps (Q7.9). The accuracy drop was
negligible dropping from 96.56% to 96.43%.

IV. DESIGN SPACE EXPLORATION

The hardware mapping of the SDFG assumes a final
streaming architecture to be inferred. Each design point in the
design space has a specific combination of the involved layers’
tunable parameters as they were described in section III-C.
Essentially using a set of transformations to the SDFG the
aforementioned parameters are being altered while the design
space is being explored by simulated annealing, the heuristic
optimization algorithm used in this study.

A. X3D Model Partitioning
There are primarily two techniques for designing CNN

hardware architectures. (a) Single computation engines rely
on a more general and powerful processing unit that is
time-shared across the network’s layers, as well as a scheduler,
to execute operations in the right sequence. (b) Streaming
architectures, such as the one presented, consist of a unique
hardware block for each CNN layer that is optimised and
exploits the parallelism of that layer independently of the
others. In such designs, the more layers a CNN has or the
larger the network’s input gets, the greater the FPGA resource
utilisation becomes, which may limit the achieved parallelism
of each layer in order to fit all layers into a single design.

Splitting the network execution into smaller partitions can
solve this kind of problem while at the same time exploiting
the reconfiguration capabilities of the FPGA. Furthermore,
by producing a unique architecture and delivering a separate
bitstream for each partition, it allows the design of more
finely tuned architectures that are better tailored to each layer’s
characteristics. This approach also drastically reduces off-chip



(a) (b)

(c)

Fig. 4: X3D model main partitions types:
(a) Type 1 (b) Type 2 (c) Type 3

memory access to only the design’s input and output streams,
allowing the on-chip memory to be used for data reuse.
Following this strategy, the cost of reconfiguration must be
considered whenever a new partition is loaded onto the board,
although this cost may be mitigated by increasing the amount
of data each partition have to process (i.e. by increasing the
batch size).

The partitions in this work are determined based on three
primary layer types identified in the X3D model. Figure 4
depicts the structure of the suggested layer types.

The X3D model comprise of 26 such layers, 4 of which are
of layer type 1, 11 of which are of layer type 2, and 11 of
which are of layer type 3. Each layer type, as can be observed
from their structure, displays branching behaviour, with type
1 and 2 exhibiting double branching owing to the squeeze and
excitation module [6].

B. DSE Within X3D Partitions
Two factors determine the parallelism of each X3D partition

layer’s tunable parameters. The first is the number of parallel
coarse operations in each layer, which depends on the input
feature map’s channels. The primary operations of each layer
can be executed in parallel by deploying several instances of
the processing block up to the number of channels because
the operations in each channel dimension are independent.
Both input channels and output filters can use coarse-level
parallelism in 3D convolutional layers. The sin and sout
parameters of the hardware building block configuration are
updated and searched for optimal values throughout the DSE
to achieve this parallelism, affecting the stream matrix S, the
topology matrix Γ, and therefore the design performance.

The second parallelism factor affects the 3D convolutional
layers and determines the dot product operation’s parallelism
during the kernel’s convolution with an input volume. This
parallelism specifies how many multipliers will be parallel
for multiplications and how many levels on the adder tree
for additions. A completely unrolled configuration uses N
multipliers and N-1 adders, producing 1 dot product per

cycle. Limiting the setup to a single multiplier and adder
produces 1/N dot products per cycle, where N is the shape
of the flattened input and kernel. As can be evident, a trade-
off exists between throughput and resource utilisation. The
DSE optimises the pmac parameters of the 3D convolutional
layer hardware building block configuration to achieve this
parallelism, altering the rate matrix R, the topology matrix Γ,
and defining the design performance.

C. Performance Modeling
To describe the performance of a given design based on

the topology matrix Γ, an additional matrix reflecting the
workload of each layer must be included. Because the topology
matrix provides the throughput of each layer at its input in con-
sumptions/cycle and output in productions/cycle, constructing
a matrix with the total workload of each layer, i.e. the total
number of elements to be consumed and produced, will allow
the generation of a new matrix that provides the number of
cycles each layer requires to consume its workload. More
specifically a workload matrix W has the same structure as the
topology matrix Γ in terms of nodes and arcs of the SDFG.
The values of this matrix indicate the total number of elements
to be consumed at the input of each layer as well as the total
number of elements to be produced at the output of each layer.
By element-wise dividing the W matrix with the Γ matrix, the
final II matrix is being calculated as shown below:

II = W/Γ (1)

The II is the initiation interval matrix, and its entries represent
the total number of cycles required by each layer to consume
its workload completely. The maximum value of the II matrix,
denoted by IImax determines the initiation interval of the
whole SDFG. The total execution time of a partition with batch
size B is given by the following equation:

t(B,Γ) =
1

clock rate
· (D + IImax · (B − 1)) (2)

where D is the total number of cycles needed to fill the
pipeline depth of the whole design, and its calculated by
adding the individual depths of each layer and the extra depth
added due to the extra buffering to deal with the branches in
the design.

In order to capture the model’s overall execution time, the
execution times of each individual partition are summed up
with the addition of the total reconfiguration time, as shown
below:

ttotal(B,Γ) =

Np∑
n=0

tn(B,Γi) + (Np − 1) · treconfig (3)

where Np is the total number of the partitions of the model,
and treconfig is the reconfiguration time needed before loading
each partition to the FPGA. As can be noticed from Eq. 3,
the extra overhead caused by the device reconfiguration is
proportional to the number of partitions of the final solution
and is independent of the batch size. By increasing the number
of batches processed by the model, the first term dominates the
execution time and the cost of reconfiguration is amortised.
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Finally the overall throughput of the proposed architecture
is inferred by dividing the total workload of the model in
GOPs (Giga Operations) times the batch size, with the total
execution time:

Throughput(B) =
Workloadmodel ∗B

ttotal(B,Γ)
(4)

The design space exploration on each partition is de-
scribed as an optimization problem with the following ob-
jective: max(t(B,Γ)), s.t.rsc(Γ) ≤ rscavail. The simulated
annealing [11] algorithm, a heuristic approach used to tackle
this optimization problem, attempts to optimise the design’s
throughput while ensuring that FPGA resource use does not
exceed the available resources (as these provided in the device
specifications)

V. EVALUATION

For evaluation purposes, the ZCU102 has been used as the
target platform. In all of the experiments the target frequency
was set to 142 MHz. Vitis HLS and Vivado Design Suite
(v21.2) were used, while the reported resource results are after
place and route. In all the designs the arithmetic precision used
was 16-bit fixed point arithmetic as describen in Section III-D.
The UCF-101 [13] HAR benchmark was used to assess the
correctness of the X3D model and position it in relation to
prior studies. Along with the baseline architecture, a second
one is proposed that uses statistics from previous batches of
GAP layers.

A. Model Prediction Accuracy Evaluation
To ensure that the performance of X3D predicted by the

modelling is representative of the actual performance provided
by co-simulation results, a series of experiments has been
conducted for each supported layer type with different config-
urations for the layer input and output shapes, as well as the
coarse in and coarse out factors. The metric of Mean Absolute
Percentage Error (MAPE) was used to measure the error on
the predicted vs co-simulation latency for all the experiments.
As can be seen from Figure 5, the errors vary depending on the
coarse in and coarse out factors; the bigger the coarse factors
get the smaller the error becomes. On average, layer type 1
has an MAPE of 11.92%, layer type 2 has 17.32%, and layer
type 3 has 5.03%.

B. Performance Evaluation
To the best of our knowledge, no previous works have

targeted the acceleration of X3D onto FPGA as of the date of
authoring this study. To position within the previous works,
and because most current works focus on the C3D model
targeting different FPGA platforms, the assessment is being
undertaken on a number of different metrics: Clips per second
(Clips/s). This metric is the total number of clips processed
over a second. The values on this metric on Table I are
measured and repodted for a batch size of 100 as denoted in
the Table’s footnotes. The positioning of the FFM-X3D related
to the existing works can be seen in Figure 6. The proposed
architecture is positioned in the pareto front of accuracy
over clips/s compared to the existing works in the field.
Throughput (GOp/s). To be fully aligned with the results of
the existing works, GOp/s are accounted as the MAC (multiply
and accumulate) operations per second. For batch size 100,
FFM-X3D achieves better throughput compared to [3], [4],
[14] while at the same time achieves the better accuracy among
all the existing works. DSP efficiency (GOp/s/DSP). This
metric is the normalized throughput over the DSPs used. In
this work, the DPSs used are averaged over all the 26 pre-
defined partitions. A positioning of FFM-X3D in relation to
the existing works for a favorable batch size of 100, shows that
FFM-X3D does provide comparable DSP efficiency to most
of the works.
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Fig. 6: Clips per second, positioning of
FFM-X3D within the test of the existing works

Given that the proposed design focuses on throughput, the
related works are also evaluated based on this metric. A batch
size 100 was chosen for FFM-X3D architecture to amortise
the reconfiguration cost. These batch size values can be used
in systems that analyse multiple videos in parallel, or in
evaluation processes that use multiple clips from a single
video. In comparison to M. Sun et. al. [14], the sole effort
targeting the same FPGA platform, FFM-X3D outperforms
its C3D and R(2+1)D counterparts by 1.07× and 1.52×,
respectively, while latency is 4.54× and 9.11× lower. Table
I summarizes the positioning of FFM-X3D in relation to the
rest of the existing works.



TABLE I: Positioning of FFM-X3D in the space of 3D CNN HAR models
H. Fan [4] H. Fan [3] H. Fan [2] Z. Liu [10] J. Shen [12]‡ M. Sun [14] FFM-X3D (Ours)

VC709 VUS440 C3D R(2+1)D-18 Baseline GAP-approx
FPGA ZC706 ZC706 Intel SX660 VC709 VC709 VUS440 ZCU102 ZCU102 ZCU102 ZCU102
Model C3D C3D E3D C3D C3D C3D C3D R(2+1)D-18 X3D-M X3D-M

GFLOPS ∗ 38.61 38.61 6.1 38.61 - - 38.61 26.14 6.4 6.4
Accuracy 79.87 % 81.99 % 85.17 % 82.3 % 82.3 % 82.3 % 82.3 % 88.66 % 96.5 % 96.5 %
Clips/s † 1.84 2.09 28.32 8.65 11.18 20.36 2.05 4.11 17.58 18.72
GOp/s † 70.41 80.12 172.8 330.74 427.29 778 78.44 111.71 112.41 119.83

GOp/s/DSP † 0.087 0.103 0.109 0.092 0.281 0.511 0.065 0.092 0.052 0.055
Clock (MHz) 172 200 150 120 150 200 150 150 142 142

Precision 16-bit fixed BFP 32-bit float 16-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed
DSP % 90 % 86.6 % 93.3 % 99.8 % 42 % 53 % 48 % 48 % 86 % 85 %

∗ GFLOPS are calculated as MACs. † Favorable batch size 100. ‡ The C3D model used is different/smaller version from the original one [7].

TABLE II: Performance comparison versus GPU

GPU FFM-X3D (Ours)
Platform GeForce RTX 3090 ZCU102

Frequency 1.7 GHz 142 MHz
Power (W) 257.9 26
Batch Size 1 1
Precision 32-bit float 16-bit fixed

Clips/s/Watt (cps/W) 0.254 0.0177

Table II shows a performance comparison of the final FFM-
X3D design on a ZCU102 FPGA platform versus a state of
the art server graded GPU platform. A GeForce RTX 3090
with 10496 CUDA cores is the target GPU utilizing CUDA
and CuDNN libraries to optimise its solution. The proposed
solution has 4.5x longer latency, but with a significant reduced
clock rate.

VI. CONCLUSION

This paper introduces FFM-X3D, a hardware architecture
for X3D, a 3D CNN model for HAR that provides state
of the art performance. The proposed methodology follows
the fpgaConvNet paradigm making use of the SDF theory to
describe and map X3D into hardware designs. The revised
Γ matrix construction allows the SDF modelling approach to
deal with CNN topologies that contain branches, something
that is being taken into account throughout the design space
exploration . Experiment results reveal that the FFM-X3D
provides competitive throughput and DSP efficiency while at-
taining up to 16.63% better prediction accuracy on the selected
HAR benchmark. Future work might involve expanding the
design space with extra SDFG transformations like automated
partition generation, as well as generalising to enable the
support of a broader collection of 3D CNN models, expanding
to other video or volume related tasks beyond the HAR.
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