
fpgaHART: A toolflow for throughput-oriented
acceleration of 3D CNNs for HAR onto FPGAs

Petros Toupas1,2 Christos-Savvas Bouganis1 Dimitrios Tzovaras2

1 Dpt. of Electrical and Electronic Engineering
Imperial College London

Email: {p.toupas21,christos-savvas.bouganis}@imperial.ac.uk

2 Information Technologies Institute
Centre of Research and Technology Hellas
Email: {ptoupas,dimitrios.tzovaras}@iti.gr

Abstract—Surveillance systems, autonomous vehicles, human
monitoring systems, and video retrieval are just few of the many
applications in which 3D Convolutional Neural Networks are
exploited. However, their extensive use is restricted by their high
computational and memory requirements, especially when inte-
grated into systems with limited resources. This study proposes
a toolflow that optimises the mapping of 3D CNN models for
Human Action Recognition onto FPGA devices, taking into ac-
count FPGA resources and off-chip memory characteristics. The
proposed system employs Synchronous Dataflow (SDF) graphs to
model the designs and introduces transformations to expand and
explore the design space, resulting in high-throughput designs.
A variety of 3D CNN models were evaluated using the proposed
toolflow on multiple FPGA devices, demonstrating its potential to
deliver competitive performance compared to earlier hand-tuned
and model-specific designs.

Index Terms—FPGA, Toolflow, 3D CNNs, Human Action
Recognition

I. INTRODUCTION

Two-dimensional CNNs have excelled in image-related
tasks in recent years. The increasing importance and amount
of applications arising from video-related tasks, such as video
surveillance, autonomous driving, and elderly monitoring, has
demanded the development of algorithms that incorporate and
account for the temporal domain. Three-dimensional CNNs are
one of the most common approaches used to deal with video
and volumetric data. With the addition of a new dimension,
such as time or depth, 3D CNNs augment their capability to
learn by extracting information related to the newly added
dimension.

3D CNNs have exhibited outstanding performance, partic-
ularly in the task of Human Action Recognition (HAR). The
use of 3D CNNs allows the interpretation of human motion
across video frames, allowing the detection of a wide range
of human actions without the requirement for specific time
domain approaches like LSTMs. As can be seen in Figure
1, 3D CNNs dominate the pareto front in one of the most
widely used HAR benchmarks, Kinetics-400, while the recent
emergence of vision transformers has also begun to drive some
designs to the pareto front, however such networks require
orders of magnitude additional GFLOPs to operate.

While 3D CNNs are capable of capturing time or depth-
related features, the additional dimension of the input fre-

101 102

Parameters (M)

65

70

75

80

85

90

A
cc

ur
ac

y
(%

)

MoViNet-A0

MoViNet-A4

X3D-XS

X3D-S

X3D-M
X3D-L

X3D-XL

ir-CSN-152

VoV3D-M

Swin-L

Swin-L-384

MViTv2-B

MViTv2-L

MTV-H

3D-CNN
2D-CNN
2D-CNN + 3D-CNN
Transformer

Fig. 1: Kinetics-400 pareto is dominated by 3D-CNNs for
small number of parameters. Demonstrating the deployability
of 3D-CNNs on edge devices with limited resources.

quently results in greater workloads, computational and mem-
ory requirements compared to 2D CNNs. Numerous hardware
devices, including GPUs, FPGAs, and ASICs, have been used
to mitigate for the 3D CNNs’ high processing requirements
and provide high performing systems. The current work aims
to design systems that can be deployed to FPGA devices, due
to their flexibility in adapting to the requirements of such
evolving field as well as with their potential for achieving
high performance and low power consumption.

In HAR, given a single input video clip, N new clips
are generated by shifting a (fixed) time window throughout
the original clip’s duration, and M new clips are generated
by cropping an area (for each image in the clip). The final
evaluation of the original clip is acquired by passing each
of the N × M generated clips through the HAR model and
averaging their predictions. As such, upon deployment of such
models, it is necessary to process the input video segment
multiple times to maintain the desired performance. Therefore,
throughput-oriented designs and solutions are of high interest.
The key contributions of this paper are the following:

• Introduction of fpgaHART. A throughput-oriented
toolflow for optimising and mapping 3D CNNs to
FPGAs, supporting a variety of models and devices,

ar
X

iv
:2

30
5.

19
89

6v
1 

 [
cs

.A
R

] 
 3

1 
M

ay
 2

02
3



while taking into account the model characteristics,
available platform resources, and memory bandwidth
characteristics.

• The expansion of the SDF graph model used for capturing
performance requirements in CNN mapping to streaming
architectures to explicitly handle irregular blocks with
branching, which are commonly utilised in modern 3D
CNN HAR models.

• A comprehensive evaluation, utilising various devices and
models, including cutting-edge 3D CNN HAR models
that have yet to be explored. The findings lay the ground-
work for the computation of HAR models on FPGAs for
throughput-oriented applications.

II. BACKGROUND

Although 3D CNNs have been around for a while, there
have only been a few papers aimed at their acceleration on
FPGAs. The majority of these works focus on relatively old
3D CNNs, such as the C3D [1] model, whose performance
falls short of state-of-the-art models. Fan et al. introduced a
series of works on 3D CNN acceleration for HAR on FPGA
systems, [2]–[4]. In their initial work [2], they proposed the
F-C3D hardware architecture for the acceleration of C3D [1],
which is capable of supporting multiple 3D convolutional
layers and design strategies for overcoming the challenges
associated with 3D CNNs while also allowing their design
to be ported to other FPGA devices. In their subsequent
work [3], they proposed an analytical model and a tool for
optimising the hardware architecture based on the device
specification and accuracy requirements, as well as the use
of block floating point (BFP) arithmetic precision to minimise
accuracy loss and the need for retraining the model. In their
most recent work, [4], they proposed E3DNet, an efficient 3D
CNN based on their proposed 3D-1 bottleneck building block.
Their hardware implementation of E3DNet, named F-E3D, is
capable of real-time performance at the execution time of 35.3
ms per clip1, while achieving an accuracy of 85.1%2 on the
UCF101 benchmark.

Liu et al. [6] proposed a unified hardware architecture for
2D and 3D CNN acceleration based on the observation that
the computing patterns of 2D and 3D CNNs are similar.
They convert CNN convolutions to matrix multiplication op-
erations, paying close attention to memory optimizations in
order to overcome the difficulties of feature map replications.
Additionally, they employed an analytical model to configure
the accelerators for optimal resource use. They have targeted
and evaluated their design on C3D model. Shen et al. [7]
followed a similar approach, developing a unified template-
based architecture based on the Winograd algorithm capable of
handling both 2D and 3D CNNs. Additionally, they developed
an analytical technique for efficiently exploring the design
space for mapping 2D and 3D CNNs on FPGA accelerators.

1A clip is defined as a stacked sequence of frames that are meant to be the
input of the 3D CNN

2H. Duan et. al. [5] currently holds the SoA results on UCF101 achieving
98.6% accuracy

The authors have targeted the C3D model for the evaluation
of their proposed design. Sun et al. [8] used a blockwise
pruning approach to apply weight pruning to two distinct
3D CNN architectures, namely C3D and R(2+1) [9]. Their
hardware design, which is based on the Alternating Direction
Method of Multipliers (ADMM), together with the suggested
pruning approach, enables the acceleration of 3D CNNs with
low accuracy loss compared to the unpruned version. Toupas
et al. [10] recently proposed a throughput-oriented hardware
design for X3D, a modern and state-of-the-art 3D CNN,
with an emphasis on automating model branches manage-
ment. Additionally, they have recently introduced a toolflow
named HARFLOW3D [11] that simplifies the mapping and
optimisation of 3D CNN models on FPGA devices, delivering
promising results on latency-focused applications.

The majority of research has been focused on the C3D [1]
model for HAR, which was introduced in 2013. The model’s
architecture is rather simplistic, consisting of only sixteen
consecutive layers, and it performs poorly in terms of accuracy
when compared to the modern SoA models in HAR (85.2%
in UCF101 compared to 98.6% which is the current SoA).
In terms of design complexity, it is comparable to the LeNet
or AlexNet in the three-dimensional space. Due to the fact
that the aforementioned approaches are essentially dedicated
to the design of the target model, it is unclear how they may
be extended, evaluated or perform in the more complicated
architectures of modern state-of-the-art HAR models. This
study focuses on supporting more recent 3D CNNs as well,
which have a significantly larger number of layers and deviate
from the sequential approach of early networks by containing
branching within Resnet-like blocks.

III. HARDWARE-LEVEL INTERPRETATION

This section discusses hardware-level 3D CNN model inter-
pretation and modelling. The work is inspired by fpgaConvNet
[12], a framework that automatically maps 2D CNN models to
FPGA platforms, and extends it in significant ways, as outlined
below. The proposed framework extracts the parameters of
each layer in a Directed Acyclic Graph (DAG) and the
connections between layers from a high-level description of a
3D CNN model. The network’s supported layers are mapped
to parametrisable hardware building blocks that implement
their functionality. Subsequently, the framework generates the
network’s Synchronous Data-Flow Graph (SDFG) by mapping
the DAG nodes to their hardware equivalent blocks and adding
them as nodes and arcs in the SDFG. Finally, using the SDF
computation model, a network configuration’s SDFG node
performance is estimated. The sections below describe the
proposed tool’s components.

A. 3D CNN layers as DAG nodes

The description of a neural network model supplied by high-
level frameworks such as pytorch and onnx is comprised by
three main parts. First, the layers and their connections that
define the model’s structure and flow. Second, each layer’s
special attributes and configuration, and finally the actual



values of the learnable parameters associated with their layers
(if any). A dedicated model parser is developed, parsing the
above descriptions to build a DAG containing all of the rele-
vant information of the neural network. The DAG structure is
faithful to the original, retaining just the essential information
from the layers’ specific attributes and configuration. Addi-
tionally, the parser stores the model parameters/weights for
future use during inference. Table I summarises the symbols
used to denote the parameters of DAG nodes that represent
and characterise the layers of the models.

TABLE I: DAG nodes parameters symbols.

Symbols Definitions

Szi size dimensions of the input feature map
Szo size dimensions of the output feature map
Kh,Kw,Kd height, width and depth of convolution kernel
Sth, Stw, Std stride value on height, width and depth dimensions
Pdh, Pdw, Pdd padding value on height, width and depth dimensions
Gp number of groups in which the input is split

along the channel axis on convolution layers
T type of activation or element-wise function
M mode of element-wise operation (normal/broadcasting)

The following data structures are utilised by the tool to
capture the layers of the 3D CNN models:

• 3D Convolutional and Pooling Layers The follow-
ing types of convolutional/pooling layers are supported:
(a) spatial convolution/pooling Kh×Kw×1, (b) temporal
convolution/pooling 1 × 1 × Kd, (c) depth-wise convo-
lution/pooling, (d) point-wise convolution/pooling. The
configuration of the layer as stored in a DAG node is
as follows, < Szi, Szo,K,St,Pd, Gp >, where:
◦ K is a 3-value vector [Kh,Kw,Kd] specifying the

depth, height and width of the 3D conv window.
◦ St is a 3-value vector [Sth, Stw, Std] specifying the

strides of the convolution along each dimension.
◦ Pd is a 3-value vector [Pdh, Pdw, Pdd] denoting the

amount of padding applied to each dimension.
• 3D Activation Layers The activation functions supported

are the following: (a) ReLu activation, (b) Sigmoid
activation, (c) Swish activation which is expressed as
y = x ∗ sigmoid(x):, with its DAG’s layer structure,
< Szi, Szo, T >.

• 3D Element-wise Layers Element-wise operations are
layers that combine (add, mul) data from several
branches. These layers combine several inputs into a
single output, where the shapes of the inputs may or
may not be identical, resulting in different functionality
(normal vs broadcasting). The layers configuration as a
DAG node, < Spi1, ..., SpiN , Szo, T,M >.

• 3D Global Average Pooling Layer While the standard
pooling operation samples patches of the input feature
map to decrease its size, GAP samples the whole feature
map into a single value, creating an output vector with the
same shape as the channels. DAG’s layer configuration:
< Szi, Szo >.

B. SDFG representation with branch support

To take advantage of the SDF model’s capabilities, the
tool maps DAG nodes into their associated hardware building
blocks, which implement the functionality of each layer in the
underlying hardware. Using SDF theory, the SDFG may be
represented as a topology matrix Γ. The nodes are represented
by the columns of this matrix, while the arcs that link the nodes
are represented by the rows. The data consumption/production
rates for each node in each arc can be inferred by looking
the element at (node, arc) position in the Γ matrix. Positive
values, by convention, drive data production, whereas negative
ones drive data consumption. The element Γ(n, a) = −1, for
example, indicates that node n consumes data at arc a at a rate
of one.

The Γ matrix is decomposed into several matrices (as
show in Eq. 1), allowing a more in-depth examination of
each one separately and more fine control overall. The initial
decomposition of the Γ matrix yielded three distinct matrices:

i) The stream matrix S. This matrix element stores the
number of incoming and outgoing parallel streams that
arrive to each node’s input and output.

ii) The rate matrix R. The rate matrix elements include
the normalised data production and consumption rates
of each node at each arc (number of elements pro-
duced/consumed per cycle). The values in this matrix
range from 0 to 1.

iii) The data matrix C. The width of each individual stream
from the S matrix is stored in this matrix elements. Since
all of the streams are assumed to have the same bit width
of 16, the above matrix is not taken into consideration in
this study.

Γ = S ×R (1)

The upper bi-diagonal structure of the Γ matrix prevents
the modelling of branching behaviours, i.e. graphs with nodes
receiving multiple incoming arcs and nodes with many out-
going arcs. This work proposes and implements modifications
to the SDFG structure to ease the building of graphs with
several incoming or outgoing arcs at nodes, hence supporting
branching models without the need to explicitly define them
with static predefined layers. The depth of each side of a
branch is computed to incorporate some extra buffering for
the streams that are combined at the merge points in order to
ensure the flow of data across the design’s streams as well as
to equalise the rates at the merge points.

C. 3D CNN layers as hardware building blocks

The hardware building blocks are the major components
utilised to construct the SDFG, which will be used subse-
quently to estimate the network’s performance. The config-
uration of these blocks, in conjunction with the network’s
topology, is utilised to automatically generate and construct
the design’s synthesisable Vitis HLS code. The representation
of the supported hardware building blocks comprises of the
following:



i) DAG parameters. A set of parameters that originated
from the layer’s settings as a DAG node. These settings
are the layers’ structural configuration that cannot be
changed.

ii) SDFG parameters. An additional set of parameters
which have an impact on the layer’s performance and
are the ones that the optimisation algorithm searches for
during the design space exploration phase.

TABLE II: SDFG nodes parameters symbols.

Symbols Definitions

si number of streams at the layer’s input channels
so number of streams at the layer’s output filters
ri consumption rate of the layer
ro production rate of the layer
pmac number of parallel multiply and accumulate (MAC)

operations in a convolution layer

The hardware building block representation of the 3D CNN
layers is described below:

• 3D Convolutional/Pooling Layers:

< DAGparams, si, so, ri, ro, pmac >

The si,so, and pmac are altered during the DSE and affect
the final performance of the layer. Meanwhile the ri and
ro depend on the pmac which means they are implicitly
altered during the DSE as well. A mode detailed analysis
of the convolution layer and its sub-modules is provided
in fpgaConvNet [12].

• 3D Activation, 3D Global Average Pooling Layers:

< DAGparams, si, so, ri, ro >

These layers’ ri and ro can achieve consump-
tion/production rates of 1 (if not constraint from previous
layers or the memory rates), due to their element-wise
functionality and the simplicity of their operations. The
only exception here is the 3D Global Average Pooling, in
which ro = 1

H×W×D , where H is the height, W is the
width, and D is the depth dimension of the input feature
map.

• 3D Element-wise Layers:

< DAGparams, si1, si2, so, ri1, ri2, ro >

This layer’s ri1, ri2 and ro can achieve consump-
tion/production rates of 1 (if not constraint from previous
layers or the memory rates), due to their element-wise
functionality and the simplicity of their operations. It
should be noted that in cases when the rates in either
of the inputs are restricted owing to a lower production
rate of a previous layer or due to memory constraints, the
layer’s input rates are equalised to the lower consumption
rate among them.

IV. DESIGN SPACE EXPLORATION

The hardware mapping of the SDFG assumes a final
streaming architecture to be inferred. Each design point in the

design space has a specific combination of the involved layers’
tunable parameters as they were described in section III-C.
Essentially using a set of transformations operating on the
SDFG, the aforementioned parameters are being altered while
the design space is being explored by simulated annealing, the
heuristic optimisation algorithm used in this study.

A. 3D CNN Model Partitioning

CNN hardware architecture design incorporates two distinct
approaches. Single computation engines implement a time-
shared processing unit and a scheduler, while streaming ar-
chitectures like the one presented employ a hardware block
for each CNN layer to better exploit per layer parallelism.
When trying to fit all the layers into a single design without
reconfiguring the FPGA, the more layers a CNN has or the
larger the input, the more FPGA resources are used, limiting
each layer’s parallelism.

Through utilising the FPGA’s reconfiguration capabilities,
network execution can be split into smaller partitions to
solve this problem. By producing a unique architecture and
delivering a bitstream for each partition, it allows the design
of more finely tuned architectures that better fit each layer.
This approach also drastically reduces off-chip memory access
to only the design’s input and output streams, allowing on-
chip memory to be used for data reuse. This strategy requires
reconfiguration every time a new partition is loaded, however
increasing the batch size can amortise this cost.

Beginning with a random partitioning of the model’s layers
by introducing L initial reconfiguration points, the optimisa-
tion process gradually modifies these partitions. The alterations
to the partitions are focused on two key concepts:

• The optimizer detects partitions that limit the perfor-
mance of the model because they are memory con-
strained, have fully exploited the parallelism of their
layers, or do not have sufficient resources to exploit
enough parallelism from their layers.

• Out of the candidate partitions to be modified, the opti-
miser selects the partitions with the lowest performance
and moves layers from or to adjacent partitions with a
goal of improving their performance.

Between stages that modify existing partitions, the optimiser
independently executes a series of partition-specific optimisa-
tion steps based on coarse and fine transformations as detailed
below.

B. Partition-Specific Optimisations

Each partition layer’s configurable parameters leverage its
parallelism based on two factors:

• The number of parallel executions of coarse operations
in each layer, which depends on the input feature map’s
channels. The primary operations of each layer can be
performed in parallel by deploying multiple processing
blocks up to the number of channels. 3D convolutional
layers can exploit both input channels and output filters
coarse-level parallelism. The si and so parameters of
the hardware building block configuration are updated



and searched for optimal values throughout the DSE to
realise this parallelism. These variables affect the stream
matrix S, which affects the topology matrix Γ, which
determines design performance.

• The dot product operation’s parallelism during the ker-
nel’s convolution with a given input volume piece on
3D convolutional layers. This parallelism determines the
number of parallel multipliers and the depth of the adder
tree for additions. A completely unrolled design uses N
multipliers and N − 1 adders, yielding 1 dot product
per cycle, but restricting the setup to a single multiplier
and adder yields 1/N dot products per cycle, where
N is the input and kernel shape. There is a trade-off
between performance and resource utilisation. The DSE
optimises the pmac parameters of the 3D convolutional
layer hardware building block configuration to accom-
plish this parallelism. These variables affect the rate
matrix R, which affects the topology matrix Γ, which
estimates design performance.

C. Performance Modelling

To describe the performance of a given design based on
the topology matrix Γ, an additional matrix reflecting the
workload of each layer is included. As the topology matrix
provides the throughput of each layer at its input in con-
sumptions/cycle and output in productions/cycle, constructing
a matrix with the total workload of each layer, i.e. the total
number of elements to be consumed and produced, allows the
generation of a new matrix that provides the number of cycles
each layer requires to consume its workload. More specifically
a workload matrix W has the same structure as the topology
matrix Γ. By element-wise dividing the W matrix with the Γ
matrix, the final II matrix is being calculated as shown below:

II = W/Γ (2)

The II is the initiation interval matrix, and its entries represent
the total number of cycles required by each layer to consume
its workload completely. The maximum value of the II matrix,
denoted by IImax determines the initiation interval of the
whole SDFG. The total execution time of a partition with batch
size B is given by the following equation:

t(B,Γ) =
1

clock rate
· (D + IImax · (B − 1)) (3)

where D is the total number of cycles needed to fill the
pipeline depth of the whole design, and its calculated by
adding the depths of each layer and the depth added due to
the extra buffering to deal with the branches in the design.

In order to capture the model’s overall execution time, the
execution times of each individual partition are summed up
with the addition of the total reconfiguration time:

ttotal(B,Γ) =

Np∑
n=0

tn(B,Γi) + (Np − 1) · treconfig (4)

where Np is the total number of the partitions of the model,
and treconfig is the reconfiguration time for loading a partition
to the FPGA. As can be noticed from Eq. 4, the extra overhead

TABLE III: 3D CNN models characteristics
C3D Slowonly R(2+1)D-18 R(2+1)D-34 X3D

FLOPs (G)† 38.61 54.81 8.52 12.91 6.97
Parameters (M) 78.41 32.51 33.41 63.72 3.82
Num. of Layers 27 174 82 154 396

Num. of Conv Layers 8 53 37 69 115
Spatial dimensions 112× 112 256× 256 112× 112 112× 112 256× 256
Num. of Frames 16 8 16 16 16

UCF101
Accuracy (%) 83.2 94.54 88.66 92.27 96.52

† FLOPs are reported as MAC operations.

caused by the device reconfiguration is proportional to the
number of partitions of the final solution and is independent of
the batch size. By increasing the number of batches processed
by the model, the first term dominates the execution time and
the cost of reconfiguration is amortised.

Finally the overall throughput of the proposed architecture
is inferred by dividing the total workload of the model in
GOps (Giga Operations) times the batch size, with the total
execution time:

Throughput(B) =
Workloadmodel ∗B

ttotal(B,Γ)
(5)

The design space exploration for each partition is described
as an optimization problem with the following objective:
max(t(B,Γ)), s.t.rsc(Γ) ≤ rscavail. As this is a non-convex
optimisation problem, its optimisation is based on the simu-
lated annealing heuristic algorithm algorithm that attempts to
maximise the design’s throughput while ensuring that FPGA
resource use does not exceed the available resources.

V. EVALUATION

To evaluate the performance of the tool, four state of the
art 3D CNN HAR models have been selected, Slowonly,
R(2+1)D-18, R(2+1)D-34, and X3D (as shown in Table III),
alongside two FPGA platforms ZCU104 and ZCU102 to
demonstrate the ability of the tool to target multiple 3D CNN
with different workloads and network parameters on a variety
of platforms. C3D model was also included to provide direct
comparisons with existing works, the majority of which are
hand-tuned, model-specific architectures and not toolflows.
Vitis HLS and Vivado Design Suite (v21.2) were used, while
the reported resource results are after place and route at 160
MHz clock frequency. The arithmetic precision used was 16-
bit fixed point arithmetic with Q8.8 format. The accuracy of
the HAR models is evaluated on the UCF-101, following the
same strategy as prior studies [9], [13].

A. Modeling Accuracy Evaluation

To evaluate the quality of the performance predictor a series
of experiments was conducted. Four partitions were chosen to
cover the variety of produced graph structures (i.e. branch,
sequential, multi-inputs, multi-outputs). The relative error was
used to measure the difference between the predicted and
actual latency. The relative errors for the four aforementioned
types are 12.89%, 5.03%, 11.92%, and 17.32% respectively,
giving a geometric mean relative error of 10.75%3. We found

3geometric mean was used as these structures can be found simultaneously
in a single 3D CNN



TABLE IV: Comparison with existing works on 3D CNN HAR models

H. Fan [2] H. Fan [3] Z. Liu [6] J. Shen [7]‡ M. Sun [8] H. Fan [4] Ours

Model C3D C3D C3D C3D C3D R(2+)D-18 E3D C3D Slowonly R(2+1)D-18 R(2+1)D-34 X3D
GFLOPs∗ 38.61 38.61 38.61 - 38.61 8.52 6.1 38.61 54.9 8.52 12.91 6.97

Accuracy (%) 79.87 81.99 83.2 83.2 83.2 88.66 85.17 83.2 94.54 88.66 92.27 96.52
FPGA ZC706 ZC706 VC709 VC709 VUS440 ZCU102 ZCU102 Intel SX660 ZCU102 ZCU102 ZCU102 ZCU102 ZCU102
clips/s† 1.84 2.09 8.65 11.18 20.36 2.05 4.11 28.32 3.38 2.54 4.62 2.63 13.44
GOps/s† 70.41 80.12 330.74 427.29 778 78.44 111.71 172.8 130.84 144.44 39.59 34.26 85.96

GOps/s/DSP† 0.087 0.103 0.092 0.281 0.511 0.065 0.092 0.109 0.052 0.057 0.015 0.013 0.034
Op/DSP/cycle† 0.511 0.519 0.774 1.874 2.559 0.435 0.613 0.727 0.325 0.358 0.098 0.084 0.213

Frequency (MHz) 172 200 120 150 200 150 150 150 160 160 160 160 160
Precision fp-16 BFP fp-16 fp-16 fp-16 fp-16 fp-16 float-32 fp-16 fp-16 fp-16 fp-16 fp-16
DSP (%) 90 86.6 99.8 42 53 48 48 93.3 51.49 63.77 66.21 66.46 84.43

BRAM (%) 86.6 88.1 26.6 52 30 100 100 - 91.49 78.22 78.09 84.07 52.71
∗ FLOPs are reported as MAC operations. † Favorable batch size 100. ‡ The C3D model used is different/smaller version from the original one [1].

C3D Slowonly R(2+1)D-18 R(2+1)D-34 X3D
3D CNN models

0

25

50

75

100

125

150

175

200

G
O

Ps
/s

ZC706
ZCU104
ZCU102
VC709
VUS440

Fig. 2: Throughput (GOPs/s) of fpgaHART-generated designs
on 3D CNN HAR models delivering high-throughput results

on a variety of FPGA devices

that the above errors are small enough to lead to meaningful
design space exploration.

B. Performance Comparison

The fpgaHART has been evaluated on a number of different
FPGA platforms, such as the ZC706, the ZCU102, the VC706,
and the VUS440. Figure 2 displays the performance in GOPs/s
(with a favourable batch size of 100) of the fpgaHART-
generated designs for the 3D CNN models of Table III, which
details their unique characteristics, on a variety of FPGA
devices. Such batch sizes are frequently encountered in prac-
tise when generating multiple views and clips over time and
averaging them to improve the performance of the predictions.
Even larger batch sizes may be required for multi-person HAR
systems that evaluate each person’s actions independently, as
well as for large-scale systems that simultaneously analyse
several videos.

The placement of fpgaHART in comparison to the rest of the
existing works is outlined in Table IV, where the fpgaHART
results are reported using ZCU102 as the FPGA platform. A
conclusion readily apparent from Table IV is that fpgaHART
is capable of delivering competitive performance on several
3D CNNs that have not been previously addressed and have
a broad set of workloads and network parameters.

Figure 3 presents the current state of the Pareto front
expressed in terms of accuracy over throughput (clips/s), where

the fpgaHART generated designs were derived targeting the
VC709 FPGA platform. The results show that the fpgaHART
models have pushed the Pareto front, delivering solutions with
both high throughput and high accuracy, as shown in the graph.

5 10 15 20 25
Clips/s

80.0

82.5

85.0

87.5

90.0

92.5

95.0

A
cc

ur
ac

y
(%

)

Fan
[2]Fan
[3] Liu[6]

Shen
[7]

Shen
[7]

Sun[8]

Sun[8]

Fan
[4]

fpgaH
ART

fpgaH
ART

fpgaH
ART

fpgaH
ART

fpgaH
ART

C3D
R(2+1)D-18
E3D
Slowonly
R(2+1)D-34
X3D

Fig. 3: Pareto front on 3D CNNs: Clips/s over Accuracy.
The fpgaHART results were taken using the VC709 FPGA

platform, delivering solutions on the Pareto front.

Comparing the results on C3D (batch size 30 and targeting
the ZCU102) to Nvidia RTX 3090, a server-grade GPU with
10496 CUDA cores and 1.7 GHz clock speed, the proposed
architecture achieves a throughput of 4.42 clips/s compared
to 281.87 clips/s that the GPU delivers. Yet, the proposed
solution consumes only 26 W compared to the GPU’s 298.6
W (excluding the CPU power consumption that a GPU system
requires), offering 0.17 clips/s/watt compared to the GPU’s
0.94 clips/s/watt.

VI. CONCLUSION

This paper proposes an automated toolflow for the de-
ployment and mapping of 3D CNN models for HAR onto
FPGA devices. The proposed method employs SDF theory to
describe and map 3D CNNs to hardware architectures. We
demonstrate that the tool supports a pool of 3D CNNs for
HAR on a variety of FPGA devices, while exhibiting compara-
ble throughput performance to hand-tuned techniques. Future
work may involve expanding the design space with additional
SDFG transformations and improving the tool to support and
provide latency-driven optimisation-focused designs.



REFERENCES

[1] S. Ji, W. Xu, M. Yang, and K. Yu, “3D Convolutional neural networks
for human action recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[2] H. Fan, X. Niu, Q. Liu, and W. Luk, “F-C3D: FPGA-based 3-
dimensional convolutional neural network,” in 2017 27th International
Conference on Field Programmable Logic and Applications, FPL 2017,
2017, pp. 2–5.

[3] H. Fan, H. C. Ng, S. Liu, Z. Que, X. Niu, and W. Luk, “Recon-
figurable acceleration of 3D-CNNs for human action recognition with
block floating-point representation,” in Proceedings - 2018 International
Conference on Field-Programmable Logic and Applications, FPL 2018,
no. Section III, 2018, pp. 287–294.

[4] H. Fan, C. Luo, C. Zeng, M. Ferianc, Z. Que, S. Liu, X. Niu, and W. Luk,
“F-E3D: FPGA-based acceleration of an efficient 3D convolutional
neural network for human action recognition,” in Proceedings of the
International Conference on Application-Specific Systems, Architectures
and Processors, vol. 2019-July, 2019, pp. 1–8.

[5] H. Duan, Y. Zhao, Y. Xiong, W. Liu, and D. Lin, “Omni-sourced
Webly-supervised Learning for Video Recognition,” 2020. [Online].
Available: http://arxiv.org/abs/2003.13042

[6] Z. Liu, P. Chow, J. Xu, J. Jiang, Y. Dou, and J. Zhou, “A uniform
architecture design for accelerating 2d and 3d cnns on fpgas,” Electronics
(Switzerland), vol. 8, no. 1, 1 2019.

[7] J. Shen, Y. Huang, Z. Wang, Y. Qiao, M. Wen, and C. Zhang, “Towards
a uniform template-based architecture for accelerating 2d and 3D CNNs
on FPGA,” in FPGA 2018 - Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, vol.
2018-Febru, 2018, pp. 97–106.

[8] M. Sun, P. Zhao, M. Gungor, M. Pedram, M. Leeser, and X. Lin,
“3D CNN acceleration on FPGA using hardware-aware pruning,” in
Proceedings - Design Automation Conference, vol. 2020-July. IEEE,
2020.

[9] D. Tran, H. Wang, L. Torresani, J. Ray, Y. Lecun, and M. Paluri, “A
Closer Look at Spatiotemporal Convolutions for Action Recognition,”
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 6450–6459, 2018.

[10] P. Toupas, C.-S. Bouganis, and D. Tzovaras, “FMM-X3D: FPGA-based
modeling and mapping of X3D for Human Action Recognition,” in
IEEE 34th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), 5 2023. [Online]. Available:
http://arxiv.org/abs/2305.18479

[11] P. Toupas, A. Montgomerie-Corcoran, C.-S. Bouganis, and D. Tzovaras,
“HARFLOW3D: A Latency-Oriented 3D-CNN Accelerator Toolflow
for HAR on FPGA Devices,” in Proceedings - 2023 International
Symposium on Field-Programmable Custom Computing Machines,
FCCM 2023, 3. [Online]. Available: http://arxiv.org/abs/2303.17218

[12] S. I. Venieris and C. S. Bouganis, “FpgaConvNet: Mapping Regular
and Irregular Convolutional Neural Networks on FPGAs,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 30, no. 2, pp.
326–342, 2019.

[13] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset of 101
Human Actions Classes From Videos in The Wild,” Tech. Rep., 12
2012. [Online]. Available: http://arxiv.org/abs/1212.0402

http://arxiv.org/abs/2003.13042
http://arxiv.org/abs/2305.18479
http://arxiv.org/abs/2303.17218
http://arxiv.org/abs/1212.0402

	Introduction
	Background
	Hardware-Level Interpretation
	3D CNN layers as DAG nodes
	SDFG representation with branch support
	3D CNN layers as hardware building blocks

	Design Space Exploration
	3D CNN Model Partitioning
	Partition-Specific Optimisations
	Performance Modelling

	Evaluation
	Modeling Accuracy Evaluation
	Performance Comparison

	Conclusion
	References

