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ABSTRACT: The ability to assess the environmental performance of
early-stage technologies at production scale is critical for sustainable
process development. This paper presents a systematic methodology
for uncertainty quantification in life-cycle assessment (LCA) of such
technologies using global sensitivity analysis (GSA) coupled with a
detailed process simulator and LCA database. This methodology
accounts for uncertainty in both the background and foreground life-
cycle inventories, and is enabled by lumping multiple background
flows, either downstream or upstream of the foreground processes, in
order to reduce the number of factors in the sensitivity analysis. A
case study comparing the life-cycle impacts of two dialkylimidazolium
ionic liquids is conducted to illustrate the methodology. Failure to
account for the foreground process uncertainty alongside the
background uncertainty is shown to underestimate the predicted variance of the end-point environmental impacts by a factor of
two. Variance-based GSA furthermore reveals that only few foreground and background uncertain parameters contribute
significantly to the total variance in the end-point environmental impacts. As well as emphasizing the need to account for foreground
uncertainties in LCA of early-stage technologies, these results illustrate how GSA can empower more reliable decision-making in
LCA.
KEYWORDS: uncertainty quantification, global sensitivity analysis, life-cycle assessment, environmental sustainability,
ionic liquid production

■ INTRODUCTION
The life-cycle assessment (LCA) methodology enables the
environmental impact assessment of products and processes
throughout their entire life cycle,1 covering resource extraction
(cradle), production, use, and disposal (grave). LCA follows
the ISO 14040 standards and is a prominent environmental
assessment method nowadays. It has been applied extensively
to support decision-making in both public and private
organizations through identifying major hotspots and improve-
ment opportunities. A key strength of LCA lies in the
translation of environmental impacts into high-level damage
areas, such as human health and ecosystem quality, facilitating
the interpretation and communication of the results to
stakeholders and decision-makers.
The life-cycle inventory stage of LCA entails the collection

of data on mass and energy flows from raw material extraction
to process emissions and wastes. For existing processes, such
inventory data may be collected directly on-site or retrieved
from environmental databases, such as ecoinvent.2 In many
cases, however, inventory data may be lacking due to low
technology readiness of processes or be inaccessible because of
confidentiality.3−5 These inventory gaps can impede the

environmental assessment of chemicals in early development
stages, including ionic liquids.6,7

Various approaches have been proposed to bridge the gap in
inventory data. Streamlined LCA methods aim to predict the
life-cycle impacts of a product from readily available
information. Calvo-Serrano et al.8 developed a streamlined
method that relies on linear regression for predicting the life-
cycle impacts of chemicals based on their molecular structure,
and later refined their approach by including thermodynamic
properties and information on the sigma-profile of the
molecule.9 These regression models were shown to provide
accurate predictions for a range of chemicals, including
petrochemicals and their derivatives. However, they can lead
to large errors with other chemicals and may fail to accurately
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predict certain life-cycle impacts too, especially impacts that
are not directly linked to the descriptors used in the regression
models.
Short-cut methods based on stoichiometric yields or

simplified models10,11 provide an alternative to these simple
regression models. Precursor work by Kralisch et al.12 led to a
simplified LCA method combining lab-scale experiment data
with proxy data of similar chemicals as necessary. More
recently, Cueĺlar-Franca et al.10 developed an approach for
constructing the life-cycle synthesis tree of a chemical by going
all the way back to where data for the most basic precursors are
available, or using stoichiometric and basic thermodynamic
calculations where data are unavailable. Although convenient
to quickly obtain a preliminary estimate, the previous methods
may not be suitable for a detailed assessment, especially when
comparing products and processes with similar performance
indicators. Part of the reason for this is that they omit key
process parameters such as heating and cooling duties, process
waste, and emissions and process efficiencies.
A more reliable environmental assessment can be supported

by detailed process models in order to predict the performance
at scale of processes at a low technology-readiness level (TRL),
for which industrial process data are yet unavailable.13

Commercial process simulators such as Aspen-HYSYS
encompass a wide range of unit operations, provide access to
accurate thermodynamic property packages, and facilitate mass
and heat integration in order to model real-life processes.
However, these process models can themselves be subject to
large uncertainty.14−16 It is of paramount importance,
therefore, to quantify these uncertainties and propagate them
to the predicted inventories and ultimately the predicted
environmental impacts.
The ISO 14044 standard stipulates that a sensitivity analysis

should be conducted as part of the LCA framework to identify
the most important sources of uncertainty but does not
recommend a specific technique. A large body of research has
thus been devoted to characterizing, propagating, and
analyzing various sources of uncertainty in LCA, using a
range of techniques, over the past few decades.17−20 Despite
this, many LCA studies that build on detailed process
simulation simply omit the effect of inventory uncertainties;
while many others solely consider uncertainty in the
background inventory data,21−23 often formulating probability
distributions for the inventories using data quality indicators
such as a pedigree matrix.24,25 A more thorough uncertainty
analysis calls for including foreground inventory uncertainties,
such as process operating conditions and thermophysical
properties, alongside the background inventory uncertainties.26

This is especially relevant in comparing processes with similar
performance indicators where the corresponding uncertainty
ranges might overlap significantly. Moreover, sensitivity
analysis could help better understand the effect of key model
or process parameters on the predicted foreground inventories,
ultimately guiding future experimental work to help reduce this
uncertainty.
A popular approach to sensitivity analysis in techno-

economic and environmental assessment is one-at-a-time
sensitivity analysis, which varies the values of the uncertain
input parameters one at a time while keeping the remaining
parameters constant at a given reference point and results in a
ranking of the uncertain parameters.27 This approach works
well for models that are mostly separable in their inputs, but
the ranking results could be misleading when the level of

interactions between the input parameters is more pro-
nounced, a problem that is exacerbated by larger input
domains. These limitations can be overcome by applying
global sensitivity analysis (GSA),28 which accounts for output
variations over the entire input domain and has the ability to
capture interactions between two or more input parameters.
GSA methods do not merely rank the uncertain parameters,
but also quantify how much each input parameter contributes
to the overall output variance.
Nevertheless, the application of GSA as part of LCA has

remained scarce to date.19,25 Cucurachi et al.29 proposed a
protocol for conducting GSA in LCA with a focus on the life-
cycle impact assessment (LCIA) stage and in particular on
uncertainties in the characterization factors and weighting
methods. By contrast, Groen et al.19 focused on the life-cycle
inventory stage and compared various GSA methods in terms
of their effectiveness. A number of recent applications of GSA
in LCA include biodiesel production,30 building design,31

geothermal heating networks,32 and advanced photovoltaic
cells.33 A key challenge in these GSA applications remains the
very large number of uncertain input factors, especially when
dealing with inventory data.34−36 This may require a huge
number of samples to compute reliable sensitivity indices and
result in high computational burden or even become
intractable when a detailed process simulator is used to fill in
inventory data gaps, for instance in early-stage technological
assessments. It could also explain why the particular
combination between GSA and detailed process simulators
has not yet been investigated in the LCA literature.
The main objective of this paper, therefore, is to investigate

the combination between GSA techniques, LCA databases, and
detailed process simulators in the environmental assessment of
low TRL technologies. The focus is on analyzing the combined
effect of background and foreground inventory uncertainties. A
new methodology is introduced, whereby the uncertain
background inventories flows, either downstream or upstream
of the foreground processes, are lumped in order to reduce the
number of factors in the sensitivity analysis and improve
computational tractability. A practical implementation of this
methodology that takes advantage of existing software is also
discussed. The methodology is demonstrated on a case study
comparing the life-cycle impacts of two dialkylimidazolium-
based ionic liquids,37 namely 1-butyl-3-methylimidazolium
tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazo-
lium hexafluorophosphate [BMIM][PF6]. While [BMIM]-
[BF4] and [BMIM][PF6] are not the most sustainable of
ionic liquids available and their fluorine-based anions can
hydrolyze under certain conditions,38 they have been used
extensively for a range of applications39−41 and are thus of
significant practical relevance. Since ionic liquid production
processes are still at a low TRL, detailed process simulation
becomes essential to assess their production at scale, and it
becomes important to account for the foreground data
uncertainty as a result.

■ METHODOLOGY
The adopted LCA framework follows the four phases defined
in the ISO 14040 standards: (i) goal and scope, (ii) inventory
analysis, (iii) impact assessment, and (iv) interpretation.
Choices about the system, including the scope, the boundaries
of the foreground system, and the functional unit, are made in
the goal and scope phase. Environmental flows for all inputs
and outputs of each process in the complete process tree are
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collected during the life-cycle inventory (LCI) phase, including
raw materials, energy streams, emissions, and wastes. Both the
foreground and background inventories are then translated
into environmental impacts during the life-cycle impact
assessment (LCIA) phase through a characterization method,
which is based on scientifically agreed environmental
mechanisms with cause-effect pathways through which
substances in emissions released or resources used can cause
environmental damages. Lastly, the interpretation phase checks
that the conclusions from the impact assessment are well-

substantiated prior to making recommendations, and this is
where uncertainty quantification and sensitivity analysis are
applied.
Uncertainties in LCA stem from two main sources:36 (i)

uncertain inventory flows into and out of processes within the
technosphere or between processes and the ecosphere and (ii)
uncertain characterization factors linking the ecosphere flows
to environmental damages. Given the emphasis on emerging
technologies, the main focus is on those uncertainties arising
through the life-cycle inventories, which are further distin-

Figure 1. Methodology conceptual framework.

Figure 2. Conceptual diagram of a cradle-to-gate inventory illustrating the flows linking the foreground and background processes within the
technosphere and with the ecosphere. The green arrow indicates the main product’s flow out of the foreground process, here assuming a single
product. The red arrows show elementary flows EFf,e exchanged between the foreground process and the ecosphere, while the orange arrows
indicate elementary flows EFp,e between the background process and the ecosphere. The intermediate flows shown with gray arrows are those
exchanged between the foreground process and background processes located immediately upstream in the technosphere, and those with blue
arrow are the intermediate flows between background processes in the technosphere. A cradle-to-grave LCA could be depicted similarly by
including the background processes downstream of the foreground process.
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guished as foreground and background uncertainties sub-
sequently. The former refer to uncertainties affecting the low
TRL processes in the foreground system, where detailed
process models are used to circumvent the gap in inventory
data from state-of-the-art environmental databases, such as
ecoinvent.2 These uncertain parameters include operating
conditions, thermodynamic and physical properties, separation
yields, and reaction rates, which translate to uncertainties on
the flows exchanged between the foreground system and the
rest of the technosphere or with the ecosphere. By contrast,
background uncertainties are linked to the background
processes and the supply chain activities, translating to further
uncertainties on the flows between processes in the techno-
sphere and with the ecosphere.
The proposed methodology for uncertainty propagation and

analysis in LCA is summarized in Figure 1. Given the emphasis
on emerging technology, a key novelty entails the combination
of both background and foreground inventory uncertainties on
the predicted environmental impacts. The framework starts
with a nominal environmental assessment (Step I) combining
LCA database information where available (e.g., background
processes) with detailed process modeling to bridge inventory
gaps (e.g., foreground processes). The next two steps entail
characterizing and modeling the background and foreground
uncertainties (Step II) before discretizing and propagating
these uncertainties using (quasi) Monte Carlo sampling
techniques (Step III), where each uncertainty realization is
propagated through both the background and foreground
inventories, and ultimately to the environmental impacts. The
resulting impact uncertainty ranges are apportioned back to
individual background and foreground uncertain factors as
sensitivity indices (Step IV), using surrogate models trained on
the sampled uncertainty scenarios to drive a variance-based
GSA. Another key novelty here entails lumping multiple
background inventories to reduce the dimensionality and
improve the tractability of GSA in this context. The following
subsections provide further details about the main steps.
Modeling of Foreground and Background Life-Cycle

Inventories. The overall environmental impact EIz in a
category z ∈ Z is determined using eq 1, expressed in units of
impact per functional unit (FU). LCIetot denoftes the total life-
cycle inventory of an elementary flow e ∈ E that is either
consumed by a process within the technosphere or released by
a process to the ecosphere, with units of elementary flow per
FU. CFe,z is the characterization factor of the elementary flow e
in impact category z, with units of impact per elementary flow.

EI LCI CFz
e E

e e z
tot

,=
(1)

In particular, LCIetot encompasses all the elementary flows in
a reference product’s life cycle, including those exchanged
between the foreground processes and the ecosphere and
between the background processes and the ecosphere. For
illustration, the diagram on Figure 2 depicts a cradle-to-gate
LCI, where the foreground process exchanges elementary flows
both with the ecosphere and with several background
processes in the technosphere. This distinction between
foreground and background processes is reflected in eq 2.
There, EFf,e denotes the elementary flow e exchanged between
the foreground processes (indexed with f) and the ecosphere,
in the same units as LCIetot. f and f are the sets of processes
immediately upstream and downstream of the foreground
process, respectively. LCIp,eup denotes the total inventory of

elementary flow e from an immediate upstream process
p f and all the processes upstream of p in the process
tree, with units of elementary flow per reference flow of mass
or energy in process p, while using the factor ρp→f to rescale the
elementary flow LCIp,eup in terms of FU. Likewise, LCIp,edown
denotes the total inventory of elementary flow e from an
immediate downstream process p f , with the factor ρf←p′

rescaling LCI p e,
down per FU.

LCI EF LCI LCIe e
p

p p e
p

p e
tot

f, f ,
up

f p ,
down

f f

= + +

(2)

In turn, the total upstream inventory LCIp,eup depends on the
elementary flows EFp,e from process p and EFp′,e from all the
processes p′ upstream of p within the technosphere, as well as
all intermediate flows between any two background processes
upstream of p. The total downstream inventory LCI p e,

down has
similar dependencies.
Foreground and Background Uncertainty Quantifi-

cation. For those background processes in which inventories
are available in state-of-the-art LCI databases such as
ecoinvent, the uncertainty quantification follows the Pedigree
matrix approach,24,42 where the data sources are assessed
according to the six characteristics of reliability, completeness,
temporal correlation, geographic correlation, further techno-
logical correlation, and sample size, in addition to relying on
expert judgments. For each uncertain elementary or
intermediate flow (reference product flow excepted), a set of
six indicator scores Uc is considered. These scores are
combined with a basic uncertainty factor U0 to determine
the standard deviation of a log-normal distribution for the
corresponding flow. For instance, the case of an uncertain
elementary flow EFp,e is reported in eqs 3−4, where EFp,enom is
the nominal value of the elementary flow (determined in Step I
of the methodology, see Figure 1).

ln(EF ) (EF , )p e p e p e, ,
nom

,
EF 2[ ] (3)

i

k

jjjjjjj
y

{

zzzzzzzU Uwith: exp ln ( ) ln( )p e p e
c

p e
c

,
EF

,
0 2

1

6

,
2+

= (4)

By contrast, for both the foreground processes and those
background processes that are unavailable in state-of-the-art
LCI databases, the main sources of uncertainty need to be
characterized on a case-by-case basis. Detailed process models
are developed to bridge such inventory gaps, and a key
assumption henceforth is that the uncertainty can be described
as uncertain parameter values in those models. These uncertain
model parameters may either be linked to experimental errors
in lab-scale procedures or inferred from expert opinions, e.g.,
when process scale-up is involved. Such knowledge informs the
choice of a probability distribution for each parameter,
including their shape, mean value, variance, and support set.
One can further distinguish uncertain parameters correspond-
ing to operating conditions that may be adjusted to mitigate
impacts using process optimization (such as temperatures and
pressures in unit operations), from uncertain physical
parameters whose variation ranges may be refined through
dedicated experiments or predictive ab initio simulations
(including thermophysical properties, separation yields,
reaction rates, and conversions).
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The uncertain background flows are collectively denoted
with the vector φ below, and the uncertain foreground
parameters with the vector ω. In reference to eq 2, all of the
elementary flows EFf,e exchanged between the foreground
processes and the ecosphere as well as the scaling factors ρp→f
and ρf←p′ directly depend on the foreground uncertainty
realization ω, whereas the total upstream and downstream
inventories LCIp,eup and LCI p e,

down depend on the background
uncertainty realization φ.
The uncertainty scenario generation and propagation are

coordinated from Matlab. They rely on a discretization of the
foreground and background uncertainty (ω, φ) into a set of
uncertainty scenarios through quasi-random (Sobol) sampling
of their probability distributions. The proposed implementa-
tion proceeds by first simulating the foreground process
flowsheets using Aspen-HYSYS interfaced with Matlab for each
realization of ω, resulting in the foreground elementary flows
EFf,e(ω) and the scaling factors ρp→f(ω) and ρf←p′(ω). Next,
the elementary and intermediate flows in the background
system are computed for the corresponding uncertainty
realizations of φ using the database ecoinvent also interfaced
with Matlab. This may entail simulating other process
flowsheets developed for bridging gaps in the background
inventories as well. All these flows are then combined into the
total upstream and downstream inventories LCIp,eup(φ) and
LCIp,edown(φ). Finally, these background inventories are rescaled
and combined with the corresponding elementary flows EFf,e
from the foreground processes (eq 2), before applying a
characterization method in Matlab to determine the predicted
impacts EIz in the mid-point or end-point categories of interest
for each uncertainty scenario (eq 1). The relative error ϵ on
the sample mean EIz

for a sample size N at a given confidence
level (1 − α)100% is estimated using eq 5, where EIz

is the
corresponding sample standard deviation.43 This estimate
could also be used as a termination condition inside a loop that
would increase the number of uncertainty scenarios
incrementally.

t

N
NEI /2, 1

EI

z

z (5)

Sensitivity Analysis of Foreground and Background
Uncertainties. Analyzing the sensitivity of each environ-
mental impact EIz with respect to both the uncertain
foreground parameters ω and background parameters φ
entails quantifying the contribution of each of these parameters
to the total variance of EIz. A key challenge in doing so is the
presence of interactions between multiple uncertain parame-
ters, so the total variance of EIz may not be explained by simply
adding up separate contributions from each parameter. Such
interactions are evident from eq 2, where LCIp,eup(φ) and
LCIp′,e

down(φ) are respectively multiplied by ρp→f(ω) and
ρf←p′(ω). Additional interactions may occur between the
uncertain foreground parameters as well. Clearly, one-at-a-time
sensitivity analysis is inappropriate in this context as it ignores
such interactions, so one needs to resort to global sensitivity
analysis (GSA) instead. The focus herein is on variance-based
GSA techniques, which compute so-called Sobol indices that
can be directly interpreted as measures of sensitivity. This class
of GSA techniques are attractive because they measure
sensitivity across the whole input space and compare favorably

to other GSA approaches,44 yet they have not been widely
applied in LCA applications thus far.19

A second challenge with analyzing the sensitivity of the
environmental impacts EIz is the high-dimensionality of the
uncertain parameters φ in the background system. Herein, we
propose to reduce this high-dimensionality by lumping
multiple background parameters, as shown in eq 6. The new
parameters BEIp,zup (eq 7) represent the background environ-
mental impact in category z generated by the immediate
upstream process p f , either directly or via the processes
upstream of p in the technosphere; the new parameters BEIp′,z

down

(eq 8) have a similar interpretation for the immediate
downstream process p f . For each impact category z,
the size of these two sets of lumped parameters thus
corresponds to the number of processes immediately upstream
or downstream of the foreground processes times, a much
smaller number compared to all the elementary and
intermediate flows in the background system. Naturally, a
follow-up sensitivity analysis can be conducted for any lumped
parameter BEIp,zup or BEIp′,z

down to identify its main contributing
factors, and so on.

EI EF ( )CF ( )BEI ( )

( )BEI ( )

z
e E

e e z
p

p p z

p
p p z

f, , f ,
up

f ,
down

f

f

= +

+
(6)

with: BEI ( ) LCI ( )CFp z
e E

p e e z,
up

,
up

,
(7)

BEI ( ) LCI ( )CFp z
e E

p e e z,
down

,
down

,
(8)

The implementation of variance-based GSA leverages the
results of the joint foreground-background uncertainty
propagation (Step III). The computation of the Sobol indices
is conducted using the software SobolGSA,45,46 where the
following indirect approach is selected. In the first step,
metamodels are regressed for each impact EIz with respect to
the foreground uncertainties ω and the lumped background
uncertainties BEIp,zup, BEIp′,z

down, by leveraging the available
samples from the foreground-background uncertainty prop-
agation (Step III). The metamodel representation of choice is
the random-sampling high-dimensional model representation
(RS-HDMR).47,48 This representation is truncated to second-
order interaction terms herein, which is sufficient to describe
any binary interactions between a foreground and a back-
ground parameter, as well as binary interactions between two
foreground parameters; only higher-order interactions between
three or more parameters are thus neglected. In the second
step, the coefficients of the RS-HDMR metamodel are used to
compute the Sobol sensitivity indices49 at no additional cost.
These sensitivity indices measure how much of the total
variance of EIz is attributable to the uncertain parameters,
either separately (first-order effects) or to parameter pairs
(second-order effects). It is worth noting that SobolGSA
implements other metamodeling techniques and GSA
approaches, which is convenient for verification and compar-
ison purposes.

■ CASE STUDY DEFINITION AND IMPLEMENTATION
The proposed case study compares the environmental impacts
associated with the production at scale of two dialkyl-

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.3c00547
ACS Sustainable Chem. Eng. 2023, 11, 7157−7169

7161

pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.3c00547?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


imidazolium ionic liquids: 1-butyl-3-methylimidazolium tetra-
fluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium
hexafluorophosphate [BMIM][PF6]. Process flowsheeting in
Aspen-HYSYS (version 9) is used to scale-up experimental
synthesis procedures for [BMIM][BF4] and [BMIM][PF6],

50

which comprise the foreground system. Process flowsheeting is
also used to bridge inventory gaps for two of their precursors
in ecoinvent as part of the background system, namely, 1-butyl-
3-methylimidazolium chloride [BMIM][Cl] and 1-chlorobu-
tane. The relevant process models and the methods and tools
used to conduct the LCA are described in the following
subsections, after which the main steps of the uncertainty
quantification are summarized.
Modeling of Ionic Liquid Production Processes.

[BMIM][BF4] and [BMIM][PF6] Production. The syntheses of
[BMIM][BF4] and [BMIM][PF6] follow the metathesis
procedure by Chen et al.51 (Figure 3). The paper by Chen
et al.51 is among the few to provide sufficient details to enable
modeling of the production of dialkylimidazolium-based ionic
liquids at scale in order to predict the foreground inventories.
For [BMIM][BF4], the synthesis proceeds via anion exchange
between [BMIM][Cl] and sodium tetrafluoroborate NaBF4,
producing solid sodium chloride NaCl as a byproduct�
reaction R1 with X ≔ BF4 and Y ≔ Na. For [BMIM][PF6], the
anion exchange is between [BMIM][Cl] and lithium
hexafluorophosphate LiPF6�reaction R1 with X ≔ PF6 and
Y ≔ Li.

BMIM Cl YX BMIM X YCl[ ][ ] + [ ][ ] + (R1)

[BMIM][Cl] is mixed with an excess of YX under atmospheric
conditions. The reaction mixture is separated into an upper
phase, which contains the main aqueous product with
impurities, and a lower phase containing solid YCl and
undissolved YX. The upper phase is sent to a 3-stage washer
using YX solution to remove impurities. In the final step,

[BMIM][Y] is separated from water in a vacuum flash vessel,
resulting in aqueous [BMIM][X] with 25 wt % water content.

[BMIM][Cl] Production. The production process of the
[BMIM][Cl] precursor (Figure S1) is based on the
experimental procedure reported by Baba et al.52 It starts by
mixing 1-methylimidazole (NMIz) in toluene with excess 1-
chlorobutane and running the reaction at 112 °C and under
atmospheric pressure. [BMIM][Cl] is separated in a vacuum
flash vessel from toluene and other unreacted materials which
are returned to the reactor.

1-Chlorobutane Production. The production process of 1-
chlorobutane (Figure S2) starts by reacting 1-butanol with an
excess of hydrogen chloride at 120 °C.53 The product mixture
is cooled to 25 °C and sent to a first flash vessel tank, where
the vapor phase containing mainly hydrogen chloride is
separated. The liquid phase is then reheated to 69 °C and sent
to a second flash vessel, where 1-chlorobutane is isolated from
the residual 1-butanol and excess water.

Physical Property Estimation. UNIQUAQ is used as the
thermodynamic package in Aspen-HYSYS. Since [BMIM]-
[BF4], [BMIM][PF6], [BMIM][Cl], NaBF4, LiPF6, LiCl, and
NMIz are currently unavailable in the Aspen-HYSYS database,
pseudocomponents are created to estimate their properties.
The methodology is described in Appendix A of the ESI, while
the complete set of properties are reported in Tables S1−S7.
Physical properties such as densities are retrieved from the
literature.54 Critical properties and normal boiling points of the
ionic liquids are estimated using the group contribution
method by Valderrama and Rojas.55 Properties of other pseudo
components are estimated from their molecular structure using
the Aspen-HYSYS built-in property constant estimation system
(PCES). Heat of formations are determined through quantum
calculations.
Environmental Assessment. The LCA follows the four

phases of the ISO 14040 standards, as detailed below. The
nominal LCA (phases ii and iii) is conducted using the

Figure 3. Process flow diagram of scale-up ionic liquid production. The dotted blue box indicates the unit operations with uncertain parameters.
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software SimaPro (version 9) interfaced with ecoinvent 3.5.2

By contrast, the uncertainty analyze (phase (iv) is coordinated
from Matlab in order to enable joint foreground and
background uncertainty quantification, which is currently not
possible with SimaPro.

i. Goal and Scope. The goal of the environmental
assessment is to compare the production of the dialkyl-
imidazolium ionic liquids [BMIM][BF4] and [BMIM][PF6]. A
cradle-to-gate scope is adopted, which includes all processes
from raw material extraction to the ionic liquid production, but
excludes any further processing, use or waste management after
the production. Since ionic liquids are commonly sold by
weight, the functional units is defined as “1 kg of ionic liquid”.
It is furthermore assumed that [BMIM][BF4] and [BMIM]-
[PF6] are the single products of each process alternatives, so no
allocation is needed, and the geographical location is chosen as
Europe.

ii. Life-Cycle Inventory (LCI). Mass and energy flows for the
production processes of [BMIM][BF4] and [BMIM][PF6] and
both precursors [BMIM][Cl] and 1-chlorobutane are
predicted using process flowsheeting in Aspen-HYSYS. These
inventories are combined with data gathered from ecoinvent
for the rest of the background processes in order to quantify
the life-cycle inventories of [BMIM][BF4] and [BMIM][BF6].
A complete list of the foreground inventory flows, expressed
for the functional unit, can be found in Tables S9−S12. The
methods used to quantify the air and water emissions are
reported in Table S8. They follow the guidelines by Hischier et
al.,56 which are used for many processes in ecoinvent and
ensure consistency.

iii. Life-Cycle Impact Assessment (LCIA). The LCI entries
are converted into environmental impacts using the ReCiPe
2016 methodology.57 These impacts are first categorized into
18 mid-point indicators, including global warming, toxicity,
ozone depletion and land use, and then further aggregated into
three end-point categories: the damage areas of resources,
human health, and ecosystems quality. The assessment follows
the hierarchist perspective, which is based on the cultural
theory of scientific agreement and adopts a medium time frame
of 100 years for the environmental impacts. The complete
ReCiPe mid-point and end-point results are given in Tables
S13 and S14, respectively, for the functional unit.

iv. Interpretation and Uncertainty Analysis. The quanti-
fication of both foreground and background uncertainties
follows the proposed methodology (Steps II to IV in Figure 1).
In the foreground system, nine uncertain parameters are
considered in the process models of [BMIM][BF4] and
[BMIM][PF6] production (cf., Tables 1 and S15). Five of
them correspond to uncertain operating conditions, namely,
the pressure drops in the reactor (ΔPR) and in the washer
(ΔPW), the temperature (TVF) and pressure (PVF) in the
vacuum flash vessel, and the purge split ratio (PUR); cf., Figure
3 where the corresponding units are identified. Most of these
operating conditions (ΔPR, ΔPW, PVF, PUR) are highly
uncertain since the process models are scale-up from
experimental synthesis procedures and thus described by a
triangular distribution with a range of wide ±50% around their
nominal values; a smaller uncertainty range of ±20% is
considered for the operating temperature TVF in the vacuum
flash unit as the nominal temperature corresponds to the
maximal product yield and temperature can easily be
controlled around this value in practice. The remaining four
uncertain parameters correspond to thermophysical properties,

namely the heats of formation and densities of [BMIM][BF4],
[BMIM][PF6], and [BMIM][Cl]. These uncertainties are also
modeled using triangular distributions, with nominal values
and uncertainty ranges based on experimental errors from the
literature. Concerning the background system, parametric
uncertainties are considered in the process models of
[BMIM][Cl] and 1-chlorobutane production in the same
way. These uncertain parameters are reported in Tables S16
and S17 with their corresponding nominal values and
uncertainty ranges for completeness. Sample generation for
all these uncertain parameters is coordinated from Matlab
using quasi Monte Carlo sampling based on low-discrepancy
Sobol sequences58 and interfaced with Aspen-HYSYS for
simulating the process flowsheets in each uncertainty scenario.
As explained in the methodology section, these are combined
with uncertainty scenarios of the elementary and intermediate
background flows in order to predict the distribution of each
environmental impact EIz. A total of 10,000 uncertainty
scenarios are used for the various cases discussed in the
following section. The relative error ϵ on the mean of each
environmental impact, estimated using eq 5 at a 95%
confidence level, is in the range between 0.04−0.05. Further
details about the implementation can be found in Appendix E
of the ESI.
In the sensitivity analysis following the uncertainty

propagation (Step IV), the following seven lumped back-
ground impacts are considered alongside the nine uncertain
foreground parameters: production of [BMIM][Cl]
(BEIz[BMIM][Cl]), production of sodium tetrafluoroborate
(BEIz

NaBF4) or lithium hexafluorophosphate (BEIz
LiPF6), produc-

tion of construction materials (BEIzmat), production of thermal
energy (BEIzth), production of electricity (BEIzel), production of
water (BEIzwat), and wastewater treatment (BEIzwwt). Recall that
the uncertainty realizations for all these lumped background
impacts can be computed using the elementary and
intermediate background flow samples that are already
available from the uncertain propagation (Step III, eqs 7 and
8). But since the lumped background impacts are specific to a

Table 1. Uncertain Model Parameters, Uncertainty Sources,
and Ranges in Flowsheet Simulation of [BMIM][BF4]
Productiona

Type Parameter Range Units

Operating condition ΔPRb 10 ± 50% kPa
ΔPWb 10 ± 50% kPa
TVF

c 80 ± 20% °C
PVF

b 10 ± 50% kPa
PURb 0.1 ± 50% -

Thermophysical
property

ρ[BMIM][BFd4]
d 1208 ± 19% kg m−3

ρ[BMIM][Cl]d 1080 ± 19% kg m−3

ΔHf

[BMIM][BFd4]
e

−6.50 ± 1.59 × 105 kJ kmol−1

ΔHf

[BMIM][Cl]
e

−2.37 ± 1.59 × 105 kJ kmol−1

aEach uncertain parameter is assumed to follow a triangular
distribution. bEstimate based on heuristics. cMean value based on
an optimized base case. dEstimate based on the group contribution
methods developed by Valderrama and Rojas55 with maximum
standard deviation of 19%. eEstimate based on the lattice energy and
computational chemistry methods proposed by Gao et al.59 with
maximum deviation of −159 kJ mol−1.
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particular impact category, a separate GSA needs to be
conducted for each impact category z. Of the 10,000 samples
available from the uncertainty propagation, 9,000 are used to
construct the RS-HDMR metamodels in SobolGSA and the
remaining 1,000 samples are used for testing. The coefficients
of the RS-HDMR metamodels are estimated via regression.
The statistical fitness measure for the metamodels of different
end-point impact categories for both ionic liquids is R2 > 0.90.
Finally, the Sobol indices derived from the RS-HDMR model
coefficients are normalized by the sample variance of the
corresponding impact EIz (rather than the sum of the first- and
second-order indices) in order to detect the presence of
higher-order interactions.

■ CASE STUDY RESULTS AND DISCUSSIONS
Nominal Environmental Assessment. The bar charts in

Figure 4 summarize the nominal LCA results for all three end-
point damage categories�human health, ecosystems quality

and resources�on a per-weight basis of ionic liquid. The
complete set of mid-point and end-point indicators can be
found in Tables S13 and S14 of the ESI. This nominal
comparison suggests that the production of [BMIM][BF4]
presents lower environmental impacts than [BMIM][PF6] in
all damage areas. Damages on human health are reduced by
21%, on ecosystems quality damage by 16%, and on resources
by 10%. Since both ionic liquids are produced using the same
process and share the same cation, these differences are
attributed to the different anions used and their respective
production trees.
Under the damage area of human health, producing the

precursor [BMIM][Cl] contributes, respectively, 32% and 20%
of the life-cycle impacts of [BMIM][BF4] and [BMIM][PF6].
This is significantly less than the production of their anionic
counterparts NaBF4 and LiPF6, which contribute 65% and
79%, respectively. The largest mid-point contributions to this
end-point damage area for both ionic liquids are global

Figure 4. Nominal LCA comparison of end-point indicators for the production of [BMIM][BF4] and [BMIM][PF6].

Figure 5. LCA comparison of end-point indicators for the production of [BMIM][BF4] and [BMIM][PF6] under combined foreground/
background uncertainty (A), foreground uncertainty only (B), and background uncertainty only (C). A total of 10,000 uncertainty scenarios are
used in each case. The black points represent the mean scenario; the central line inside each box represents the median scenario; the lower and
upper ends of the box represent the first and third quartiles, respectively; and the lower and upper extended lines of the box represent the minimum
and maximum values, respectively.
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warming, mostly due to carbon dioxide emissions; and fine
particulate formation, mainly due to emissions of sulfur dioxide
and <2.5 μm particulate matter.
Under the area of ecosystems quality, [BMIM][Cl]

production is responsible for, respectively, 45% and 29% of
the impacts of [BMIM][BF4] and [BMIM][PF6], while their
anionic counterparts NaBF4 and LiPF6 again contribute a
larger share of 51% and 69%. The main mid-point
contributions to this end-point damage area for both ionic
liquids are global warming (>50%), acidification, terrestrial
ozone formation, and water consumption. Acidification is
mainly due to sulfur dioxide emissions, ozone formation to
toluene emissions, and water consumption to hydropower
electricity production.
Under the resources area, the production of [BMIM][Cl] is

responsible for a majority (56%) of the impacts of [BMIM]-
[BF4] followed by the production of NaBF4 (42%). These
contributions are flipped for [BMIM][PF6] with the
production of LiPF6 causing a majority of the impacts (61%)
compared to the production of [BMIM][Cl] (38%). Part of
this difference is explained by the fact that PF6 is heavier than
BF4, making 51% of molecular weight of [BMIM][PF6], while
BF4 only makes 38% of the molecular weight of [BMIM][BF4].
Nearly all of these end-point damages are caused by fossil
resource scarcity (>99%) at the mid-point level, mainly due to
natural gas (>45%) and crude oil (>45%) used by the various
processes or for the transportation of intermediates.
At this point, it is worth noting that the values of several

mid-point indicators for [BMIM][BF4] production differ
widely from those predicted by Zhang et al.11 For instance,
the predicted global warming impact (27.3 kġCO2-eq
kg−1̇[BMIM][BF4], cf., Table S13) is an order of magnitude
higher than the impact reported by Zhang et al.11 (3.5 kġCO2-
eq kg−1̇[BMIM][BF4]). This is mainly due to the latter relying
on stoichiometric calculations and other simplifying modeling
assumption for the production of both the ionic liquids and
their precursors, which do not account for reaction yields,
heating and cooling requirements, separation efficiency, and
waste and emissions. Hence, the LCA results presented herein
can be considered more reliable.
Effect of the Foreground and Background Uncer-

tainties. Comparing both ionic liquids in terms of their
nominal LCA performance could lead to believing that the
production of [BMIM][BF4] presents lower environmental
impacts than [BMIM][PF6] in all damage areas and therefore
discard the latter. However, the box plots in Figure 5 depict a
different reality, whereby the range of impacts of both ionic
liquids overlap significantly.
When all the foreground and background uncertainties are

considered simultaneously (scenario A), the damages caused
by [BMIM][BF4] on human health (left plot), ecosystems
quality (middle plot), and resources (right plot) are higher
than those caused by [BMIM][PF6] in 21%, 15%, and 29% of
the uncertainty scenarios, respectively (cf., top plot of Figure
S3). This overlap is significantly larger than under the
traditional approach of considering solely the background
uncertainties (scenario C), where the damages caused by
[BMIM][BF4] on human health, ecosystems quality, and
resources are higher than those of [BMIM][PF6] in 8%, 5%,
and 20% of the scenarios only (cf., middle plot of Figure S3).
Clearly, adding the foreground uncertainty to the background
uncertainty (scenario A) is necessary for a more reliable
comparative assessment of these two ionic liquids.

When considering the foreground uncertainties alone
(scenario B), notice that [BMIM][BF4] presents lower impacts
on human health, ecosystems quality and resources in nearly all
of the uncertainty scenarios. But even though the effect of the
foreground uncertainties appears to be modest in comparison
to that of the background uncertainties, the combined effect of
the foreground and background uncertainties is significantly
larger, with interquartile ranges about twice greater for the
environmental impacts in scenario A compared to scenario C.
This is mainly due to the multiplicative effect between
foreground and background uncertainties, as illustrated in eq 6.
Global Sensitivity Analysis of the Impact Assessment.

The bar charts in Figure 6 show a breakdown of the sampled

variance of each end-point impact EIz in terms of their first-
and second-order Sobol indices, for both ionic liquid
production processes and under combined foreground/back-
ground uncertainty. The complete set of Sobol indices can be
found in Tables S18 and S19 of the ESI. It is found that a
majority of the end-point impact variance is attributable to the
background uncertainties, which is in agreement with the
comparison between scenarios B and C in Figure 5. In the case
of the ecosystems quality impact of [BMIM][PF6] for instance,
the first-order effects of the background uncertainty add up to
62%, while the combined first-order effects of the foreground
uncertainty are only 9%. Specifically, the most sensitive
background lumped parameters correspond to the production
of the metal salt precursors NaBF4 and LiPF6 used,
respectively, for synthesizing [BMIM][BF4] and [BMIM]-
[PF6], and to a lower extend the precursor ionic liquid
[BMIM][Cl]. This is not surprising insofar as the production
of these precursors involves a number of complex synthesis
steps, some of which featuring highly uncertain parameters, in
comparison to other established background activities such as
thermal energy and electricity production. With regards to the
foreground uncertainty, by far the most sensitive process

Figure 6. Breakdown of the sampled variance of each end-point
impact EIz in terms of their first- and second-order Sobol indices for
[BMIM][BF4] (top) and [BMIM][PF6] (bottom).
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parameters correspond to the temperature TVF and pressure
PVF in the vacuum flash vessel. The former impacts the
evaporative (trace) losses of ionic liquid, whereas the latter
modifies the phase equilibrium of the ionic liquid-water
mixture, which are both impacting the final yields of ionic
liquid. On top of these first-order effects, second-order
interactions between the foreground and background param-
eters also contribute significantly (around 30%) to the variance
of the environmental impacts while higher-order interactions
are negligible in this case. Such second-order effects were
indeed expected given that the variance in scenario A of Figure
5 is much larger than those of scenarios B and C combined.
The largest interactions are between the lumped background
parameters BEIz[BMIM][Cl], BEIz

NaBF4, or BEIz
LiPF6 and the vacuum

flash temperature TVF and pressure PVF in the foreground
processes. A small interaction is also observed between the two
foreground parameters TVF and PVF due to their joint effect on
the phase equilibrium of the ionic liquid-water mixture,
whereas no interaction between the lumped background
parameters is permitted here due to their additive structure
in eq 6. At this stage, it is worth noting that since the
foreground uncertainty parameters correspond to the same
operational uncertainties in both production processes of
[BMIM][BF4] and [BMIM][PF6], they would likely be set in a
consistent way in industrial processes. Therefore, it might be
conservative to treat these uncertainties as independent.
Given the prominent role of the ionic liquid precursors on

the variance of the environmental impacts, a follow-up GSA is
worth conducting to further apportion the uncertainty between
the lumped background parameters BEIz[BMIM][Cl], BEIz

NaBF4, and
BEIz

LiPF6, now acting as outputs, in terms of their upstream
process activities. To exemplify this process, the bar charts in
Figure 7 show a breakdown of the sampled variance of BEIz

NaBF4

in each end-point impact category z, where the corresponding
lumped background activities are production of boron
trifluoride (BEIz

BF3), production of sodium fluoride (BEIzNaF),
production of dethyl ether (BEIz

Et2O), production of con-
struction materials (BEIzmat), production of thermal energy
(BEIzth), and production of electricity (BEIzel) . The production
of the main reagents BF3 and NaF, both required in large
quantities, accounts for most of the variance in this background
parameter, namely, BEIz

BF3 (58−60%) and BEIzNaF (25−30%)�
cf., Table S20 for the complete sensitivity results. In the
resources damage area, diethly ether also contributes a non-
negligible share (8%) of the variance of BEIz

NaBF4 as this solvent

is fossil-based and subject to large evaporative losses. By
construction, the contributions of lumped background
parameters BEIz

BF3, BEIzNaF, BEIz
Et2O, BEIzmat, BEIzth ,and BEIzel

to BEIz
NaBF4 are separable, so this apportionment only

comprises first-order Sobol indices, no second-order effects.
Similar conclusions can be drawn on apportioning the variance
of BEIz

LiPF6 between their upstream activities (cf., Tables S21).
Instead of applying variance-based GSA, other approaches

such as a one-at-a-time sensitivity analysis (OTSA) could be
pursued to analyze the LCA results. Applied to the foreground
system, OTSA allows ranking of the uncertain foreground
parameter in order of importance. One caveat with OTSA,
however, is that it keeps all the parameters except one constant
at their nominal values, thereby neglecting cross-interactions
among parameters as well as nonlinearity effects for the set
parameters. Using the same uncertainty ranges as in Table 1, it
is found that OTSA dramatically underestimates the sensitivity
of the temperature TVF and pressure PVF in the vacuum flash
vessel compared to the other foreground parameters, in
particular the purge split ratio whose sensitivity is greatly
overestimated (cf., Table S18). This is because these two
parameters present a strong mutual interaction and cause large
variations when their values are low compared to the nominal
temperature and pressure. Regarding the background system,
one could apply a similar parameter lumping as in eq 6 to
reduce the dimensionality of the sensitivity analysis. Never-
theless, the main limitation remains that OTSA cannot account
for any of the interactions between the foreground and
background parameters, which are known to contribute
significantly to the variance of the environmental impacts
(cf., Figures 5 and 6). This is in contrast to variance-based
GSA methods that evaluate the effect of a parameter while also
varying all the other parameters, thereby accounting for cross-
interactions between parameters and being independent of the
choice of a nominal point. The interpretation of the Sobol
indices is furthermore unambiguous in terms of apportioning
the variance of the environmental impacts to the foreground
and background parameters. All this leads us to argue for
variance-based GSA to become the method of choice in LCA
of early-stage technology.

■ CONCLUSIONS
This paper has presented a methodology for reliable life-cycle
assessment of emerging technologies that relies on detailed
process simulation to bridge the gaps in foreground or
background inventory data. This methodology builds upon
nominal LCA to quantify the environmental impacts in
different damage areas and identify the activities contributing
the most to these impacts. One main novelty herein entails
quantifying the variance of the environmental impacts via joint
uncertainty propagation in the foreground and background
inventories, including for the first time uncertain physical
parameters and uncertain design or operating parameters in
the process models used to predict the performance of early-
stage technology at scale. A second key contribution is a
tailored GSA approach to apportioning the variance of each
environmental impact in terms of the foreground and
background uncertainties, whereby a reduced set of lumped
background parameters corresponding to the immediate
upstream and downstream processes is considered rather
than the whole lot of uncertain background flows. This
lumping facilitates the sensitivity results interpretation, while
not impairing the generality of the analysis since a follow-up

Figure 7. Breakdown of the sampled variance of the lumped
background parameters BEIzNaBF4 in all three end-point impact
categories in terms of Sobol indices, under combined foreground/
background uncertainty.
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GSA may be conducted for the most sensitive lumped
parameters if necessary. And unlike traditional approaches
such as one-at-a-time sensitivity analysis for ranking the
uncertain parameters in order of importance, variance-based
GSA measures sensitivity across the whole parameter space,
including cross-interactions between parameters and making it
intuitive to interpret the resulting Sobol indices in terms of
variance contributions.
Another strong point of this methodology is that its

implementation leverages state-of-the-art software, such as
the process simulator Aspen-HYSYS with the database
ecoinvent interfaced with Matlab and GSA toolkit SobolGSA,
and may be conveniently orchestrated from a platform, such as
Matlab. Although this may also be seen as a drawback of the
methodology since it requires searching the database ecoinvent
to trace the background processes, a step that is normally
hidden from the user in LCA software such as SimaPro or
OpenLCA. Nevertheless, once the interface between Aspen-
HYSYS and ecoinvent has been built in Matlab, setting up a
new case study would only entail assembling a flowsheet for
the foreground processes and specifying the foreground
uncertainties. Another challenge may be of computational
nature as the foreground inventories need to be recomputed
for each foreground uncertainty scenario, then propagated
through the background system, which may prove time-
consuming for a complex flowsheet.
Ionic liquid production, which remains at a low technology-

readiness level, has provided the case study for demonstrating
the methodology. A nominal LCA comparison between the
dialkyl-imidazolium ionic liquids [BMIM][BF4] and [BMIM]-
[PF6] showed that the former has lower environmental impacts
by 10−20% in all three end-point damage areas and nearly all
of these impacts are associated with the production of the
precursors [BMIM][Cl], BF4, and PF6. However, a different
reality emerged after quantifying the effect of both foreground
and background uncertainties on the environmental impact
predictions due to significant overlaps between the impact
ranges of [BMIM][BF4] and [BMIM][PF6]. This analysis also
revealed that the consideration of foreground uncertainty
alongside the background uncertainty could about double the
impact ranges compared to the effect of background
uncertainty alone. The results of the variance-based GSA
could then establish that a majority of the impact ranges are
caused by only four uncertain parameters: the lumped
background parameters representing the production impacts
of the precursors [BMIM][Cl] and either BF4 or PF6�the
variations of which are themselves attributed mainly to the
production of solvents and reagents; and the vacuum flash
temperature and pressure in the foreground processes.
Significant interactions were also exposed between the
foreground and background parameters, in agreement with
the uncertainty quantification results. Overall, these findings
illustrate how foreground uncertainties in early-stage technol-
ogy assessment can exacerbate the variability of environmental
impacts and therefore the need to quantify them.
Finally, this methodology could provide useful insight in

guiding the selection and production of more sustainable ionic
liquids, where the identification of key foreground uncertain-
ties early on might help refocus research efforts. It could also
be used in the assessment of early-stage technology beyond
ionic liquids. Some of our current investigations there include
CO2 utilization technology and other feedstock recycling
technologies for certain types of plastics waste.
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