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Abstract  

Levodopa has remained the mainstay of medical therapy for Parkinson’s disease since its 

development in the 1980s. However, long-term medication use is associated with declining 

clinical efficacy and the emergence of motor complications. Unveiling the effects of levodopa 

on brain functional reorganisation at a relatively early treatment phase is therefore imperative 

to inform the optimisation of Parkinson’s therapeutics. In this study, we comprehensively 

investigated levodopa’s modulation on the resting-state functional connectivity in the cortico-

basal ganglia-cerebellum system at regional and network levels, with dual cross-sectional and 

longitudinal designs. The data was extracted from the Parkinson’s Progression Marker 

Initiative (PPMI) dataset. The cross-sectional patient groups comprised 17 Parkinson’s patients 

on stable levodopa medication and 15 drug-naïve patients, while the longitudinal set included 

14 Parkinson’s patients measured at both drug-naïve and levodopa-medicated conditions. With 

nodes defined across cortical, basal ganglia, and cerebellar networks, we conducted univariate 

comparisons of the internodal connectivity strength between the medication conditions using 

nonparametric permutation. At the network level, we computed multivariate combinations of 

individual connections within and between the networks, followed by an assessment of their 

discriminative capabilities on patients’ medication classes using supervised machine learning. 

The univariate seed-based approach showed no statistically significant effect of levodopa in 

either dataset. However, the network connectivity pattern between basal ganglia and the 

cerebellum displayed a robust classification power in the longitudinal dataset and a similar 

trend was observed in the cross-sectional. The role of the cerebellum is often overlooked in 

previous functional integration investigations of Parkinson’s disease and levodopa effects. 

Considering the recent evidence suggesting the bidirectional communications between the 

cerebellum and basal ganglia networks, our study provides further insight into the importance 

of inter-network functional connectivity in Parkinson’s, as well as in the functional and plastic 

processes following levodopa medication. 
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Introduction  

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder affecting 1-

2% of the population over 50 years of age (Shastry, 2001). Clinically, PD is a movement 

disorder characterised by bradykinesia, resting tremor, rigidity, and postural instability 

(Haddad et al., 2018; Shastry, 2001). The cardinal pathology of PD is the depletion of 

nigrostriatal dopaminergic (DA) neurons with consequent dysfunction of cortico-striatal-

thalamic-cortical circuits(Braak et al., 2004; Hacker et al., 2012) (CSTC). Since its 

development in the late 1960s, levodopa (L-3,4-dihydroxyphenylalanine), as a direct precursor 

to DA, has remained the most efficacious symptomatic therapy for PD (Poewe and Espay, 

2020). With prolonged treatment, however, the clinical response to levodopa progressively 

declines (i.e., wearing-off phenomenon) and leads to the occurrence of motor complications, 

including fluctuations, dyskinesia, and dystonia (Mueller et al., 2019; Thanvi and Lo, 2004). 

Hence, it is crucial to uncover levodopa-induced neural effects and functional brain 

reorganisation to provide new insights into optimising PD therapeutics.    

 

Resting-state functional connectivity (rs-FC) has been increasingly examined in PD brains and 

their modulations following levodopa medication, in accordance with the nexopathy 

framework conceptualising neurodegenerative diseases as disconnection syndromes (Warren 

et al., 2013). Aberrant functional integration between cortical sensorimotor areas and striatum 

was consistently detected and deemed a fundamental pathological remapping in PD (Helmich 

et al., 2010; Luo et al., 2014; Tahmasian et al., 2015). Levodopa has been shown to modulate 

the functional coherence in the basal ganglia (BG)-thalamic-motor cortical system, including 

conflicting down- and up-regulated connectivity changes, potentially due to heterogeneity in 

methodology, clinical states of patients, and seed selections (Tahmasian et al., 2015). Past 

reports were often based on the acute levodopa responses, and longitudinal rs-FC changes 

following stable levodopa medication in drug-naïve patients are yet to be extensively 

investigated.   

 

Apart from the conventional CSTC circuit dysfunction in PD, the role of the cerebellum has 

been emphasised. The cerebellum is likely to exert both crucial pathological and compensatory 

effects in PD (Wu and Hallett, 2013). Relative to healthy controls, PD patients displayed 

weakened striatum-cerebellum connectivity, significantly greater activations of the bilateral 

cerebellum, and strengthened functional coupling between the cerebellum and the cortical 
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motor network (Bagarinao et al., 2022; Jahanshahi et al., 2010; Wu et al., 2011). The 

diminished FC might reflect the aberrant BG signalling over the cerebellum in PD, whereas 

the cerebellar-thalamic-cortical circuit was thought to be increasingly strengthened as the 

pathology progresses to preserve motor functions (Bostan and Strick, 2010; Wu and Hallett, 

2013). Acute levodopa administration was shown to substantially elevate the cerebellum 

connectivity to subcortical regions of the motor system, including the thalamus, putamen, 

globus pallidus (GP), and brainstem (Mueller et al., 2019). A recent consensus paper 

emphasised the role of the cerebellum within the integrated cortico-BG (-thalamo)-cerebellum 

system where functional and plasticity processes of the networks were interactive (Caligiore et 

al., 2016). A system-level mechanism of cerebellum, cortex, and BG in Parkinson’s and its 

plastic changes following levodopa medication is yet to be further examined.  

 

In this project, we adopted both cross-cohort and longitudinal designs to investigate the effect 

of levodopa on motor-functional reorganisation in PD under stable levodopa treatment. The 

former entailed two independent groups of de novo and levodopa-medicated patients with 

matching disease durations, whereas the latter included a single PD cohort who transitioned 

from drug-naïve to levodopa-medicated states. We investigated regional and network 

connectivity in the motor cortex, BG, and cerebellum employing respective seed- and network-

level analyses. Our approach enabled the assessment of levodopa modulation at varying neural 

levels and the comparisons of which under different research designs. 
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Results  

3.1 Sample selection 

The longitudinal cohort consisted of 14 patients who had resting-state scans at both de novo 

and levodopa-medicated states (Table 2). Given that 10 patients had multiple scans while on 

levodopa medication, we determined a combination of levodopa scans that produced the least 

variance in treatment duration (Figure 1A). To derive cross-sectional de novo and levodopa 

groups with comparable disease spans, we first inspected the distribution of disease durations 

at all 184 resting-state (rs)-functional Magnetic Resonance Imaging (fMRI) visits (73 de novo 

and 111 levodopa scans; Figure 1B). A cut-off of 15-40 months was then applied, and the 

disease duration more proximal to the group mean was selected if the subject attended multiple 

scanning sessions. For chosen levodopa patients, medication duration was further filtered with 

a threshold of 12-24 months. The procedure resulted in 15 de novo and 17 levodopa patients 

(Table 2), with the de novo group manifesting a relatively more diffused and multimodal 

distribution of disease duration (Figure 1C). Patients were ON-medication at all levodopa 

scans, with median time elapsed since the last intake of 3.34 hours [Interquartile Range (IQR) 

= 2.91 hours] and 2.99 hours (IQR = 2.01 hours) for longitudinal and cross-sectional datasets, 

respectively.    

 

Table 2 provides the demographic and clinical descriptors of the selected patients. In the 

longitudinal dataset (Table 2A), the median interval between two visits was 34.50 months (IQR 

= 11 months). At time point two, ON-levodopa patients (within 6 hours after the last levodopa 

intake) experienced a significant attenuation of motor symptoms measured by part three of the 

Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (UPDRS-III; Goetz et 

al., 2008) (median of paired difference = 6.50, IQR = 8.50, p < 0.01). The decreased score was 

driven by bradykinesia/rigidity (median = 2.50, IQR = 6.50, p = 0.02) and tremor (median = 3, 

IQR = 5, p = 0.02) measures. At the same time, when tested as the medication wears off (over 

6 hours after the last levodopa intake) there was no significant change in motor symptoms from 

the de novo measures taken about three years earlier. In the cross-cohort set (Table 2B), De 

novo and medicated patients were matched for demographic variables. The medicated patients 

displayed reduced UPDRS-III scores (difference between medians = 10; p < 0.01) and 

ameliorated severity of bradykinesia/rigidity (difference between medians = 4; p = 0.04) while 

on medication (within 6 hours after the last levodopa intake). UPDRS-III scores after the 
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medication wears off (over 6 hours after the last levodopa intake) were not recorded for this 

group. 

3.2 Functional connectivity strength mapping 

The general connectivity patterns (Figure 2) across the subregions of cortical motor areas, BG, 

and cerebellum were similar between de novo and levodopa states across the two datasets. 

Strong interconnectedness within the cortical motor network and cerebellum, moderate 

connections within BG and thalamus, and limited cross-network coherence were commonly 

manifested. 

3.3 Within- and between-group comparison of connectivity 

strength 

We first statistically assessed the univariate effect of levodopa on each interregional functional 

coupling across the three networks. In the longitudinal group, the distribution of p-values in 

within-subject comparisons of connectivity strength was right-skewed (Figure 3A) and 

displayed a meaningful trend towards significance. Before correcting for the multiple 

comparisons, the univariate tests showed higher cerebellum-motor cortex, within-BG, and 

within-motor cortex functional synchrony at the drug-naïve state and stronger putamen-

cerebellum and GP-motor cortex connectivity following the levodopa medication (Figure 3C) 

under a significance cut-off of 0.05. Nevertheless, no region-of-interest (ROI)-level 

comparisons survived false discovery rate (FDR) correction. In the cross-sectional dataset, we 

found no evidence showing differences in interregional connectivity between de novo and 

levodopa patients. The permutation testing yielded a uniform distribution of p-values (Figure 

3A), suggesting that all univariate null hypotheses were true. Hence, the significant tests 

(before multiple comparisons correction) which showed heightened thalamic-cortical and 

bilateral thalamic connectivity in the levodopa group and more intense interhemispheric 

connectivity of areas in the primary motor cortex (Figure 3B) in the de novo group were most 

likely type I errors. 

3.4 Network level differences in functional connectivity 

To test the potential effect of levodopa medication on functional connectivity on a network 

level, i.e., beyond individual ROI-to-ROI connections, we used a support vector machine 

(SVM) to classify the patterns of connectivity in the network. We considered three subnetworks 
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of the motor CSTC circuitry (cortical motor areas, BG, and cerebellum) and classified the 

connections within them and between each pair. 

 

The linear SVM implemented with the BG-cerebellum feature set yielded the highest 

discriminating efficacy in both datasets. In the longitudinal group, the model accurately 

performed 11 out of 13 classifications of levodopa cases (sensitivity = 0.85) and 12 out of 15 

predictions of a drug-naïve state (specificity = 0.80). The classifier reached an overall accuracy 

of 82.14% and an area under the receiver operating characteristic curve (AUC) of 0.80 

(Figures 4 & 5). The permutation test showed that the accuracy is significantly higher than 

chance (p = 0.003), and the significance was retained after adjusting for multiple testing (p = 

0.014). The model fitted with within-BG features had a moderate accuracy of 60.71% with a 

sensitivity of 0.59 and a specificity of 0.64; however, the accuracy level was not higher than 

chance (Figure 4; uncorrected p = 0.162; FDR-adjusted p = 0.350). There was no evidence 

suggesting the discriminative capacity of the cerebellum-motor cortex (accuracy = 0.54; 

uncorrected p = 0.350; FDR-adjusted p = 0.350), BG-motor cortical (accuracy = 0.57; 

uncorrected p = 0.220; FDR-adjusted p = 0.350), or within-motor cortical (accuracy = 0.54; 

uncorrected p = 0.315; FDR-adjusted p = 0.350) feature sets on patients’ medication class. In 

the cross-sectional group, the SVM model trained with BG-cerebellum features achieved an 

accuracy of 0.75 and an AUC of 0.69 (Figures 4 & 5), where 12 out of 15 patients that were 

classified into the levodopa group were true positives (sensitivity = 0.80) and 12 out of 17 de 

novo predictions were true negatives (specificity = 0.71). Although the observed accuracy value 

exceeded the 97.5th percentile of the null distribution (uncorrected p = 0.012), the statistical 

significance did not remain after the multiple testing adjustment (adjusted p = 0.062). Similar 

to the longitudinal set, within-BG (Figure 4; accuracy = 0.53; uncorrected p = 0.317; FDR-

adjusted p = 0.396), cerebellum-motor cortex (accuracy = 0.59; uncorrected p = 0.189; FDR-

adjusted p = 0.339), BG-motor cortical (accuracy = 0.47; uncorrected p = 0.464; FDR-adjusted 

p = 0. 464), and within-motor cortical (accuracy = 0.56; uncorrected p = 0.203; FDR-adjusted 

p = 0. 339) feature sets did not manifest significant discriminative power.  

 

To ensure that the classification of medication status based on BG-cerebellum features was not 

driven by disease severity, we conducted additional analyses to examine the correlation 

between clinical scores and SVM classification scores (distance to the decision boundary in 

the feature space) in each dataset. Our results indicate that there was no statistically significant 

correlation between these measures. In the longitudinal group, we observed correlation 
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coefficients of -0.14 (p = 0.45), -0.16 (p = 0.38), -0.19 (p = 0.30), 0.09 (p = 0.64), and 0.01 (p 

= 0.94) for UPDRS-III scores (ON score in medicated state), tremor, bradykinesia/rigidity, gait 

subscores, and Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005) scores, 

respectively. In the cross-sectional patients, we found correlation coefficients of -0.25 (p = 

0.21) for UPDRS-III, -0.21 (p = 0.30) for tremor, -0.21 for bradykinesia/rigidity, 0.07 (p = 

0.74) for gait, and -0.40 (p = 0.08) for MoCA. These results suggest that our classification 

approach based on BG-cerebellum features was not influenced by disease severity. 
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Discussion 

This study aimed to examine the long-term effect of levodopa medication in PD on neural 

synchrony within the motor CSTC circuitry through cross-sectional and longitudinal datasets. 

Our result suggests a significant modulatory effect on BG-cerebellum connectivity. 

Importantly, this effect was evident on network-level functional connectivity and not a single 

connection. A standard seed-based inter-regional (ROI-to-ROI) functional connectivity 

analysis, yields no statistically significant effect of the long-term medication on either of the 

datasets. Yet, in the longitudinal cohort, we observed trends of attenuated FC between 

cerebellum-motor cortex and within-BG connectivity and elevated GP-motor cortex coherence 

following levodopa medication. At the network level, the compressed feature set of BG-

cerebellum connectivity was significantly different following medication in the longitudinal 

dataset and exhibited a similar trend in the cross-sectional dataset.   

4.1 Medication effect on symptom severity 

The magnitude of motor response to levodopa is driven by both short-duration response (SDR) 

and long-duration response (LDR). While SDR is closely related to levodopa plasmatic 

pharmacokinetics, LDR is a sustained motor improvement induced by chronic levodopa 

therapy that slowly develops after treatment initiation and lasts days if discontinued (Nutt and 

Holford, 1996; Wider et al., 2006). Compared to the drug-naïve state, we found less severe 

overall motor symptoms and bradykinesia in both datasets and additionally milder tremor in 

the longitudinal analysis at the ON-levodopa state. This result is largely masked by the SDR, 

where the immediate symptom alleviation roughly parallels the plasma levodopa level. In the 

longitudinal group, we also observed that clinical measures at drug-naïve and OFF-levodopa 

states were not statistically distinct, with a median interval of 34.5 (IQR = 11 months) months 

between the two timepoints and a median treatment duration of 22 (IQR = 10 months) months. 

This aligns with the notion that the symptomatic effects of levodopa may delay the natural 

progression of motor disability through complex mechanisms of LDR (Cilia et al., 2020). Cilia 

et al. (2020) showed a 31% lower annual decline of UPDRS-III scores in the OFF-levodopa 

state over a 24-month treatment duration relative to the natural progression (consecutive drug-

naïve) of motor symptoms. 
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4.2 Network-level changes in functional connectivity 

The SVM-based classification analysis pointed to the relevance of cerebellum-BG network 

connectivity in discriminating PD medication status (de novo versus levodopa-medicated). The 

interaction between the cerebellum and BG has traditionally been thought to occur at the 

cortical level, as both areas form loops with the cortex (for a review see Haar and Donchin, 

2020). However, recent anatomical tracing studies have demonstrated bidirectional pathways 

facilitating a direct cerebellum-BG interplay, which could lead to the formation of an integrated 

functional network (Bostan and Strick, 2010; Hoshi et al., 2005; Pelzer et al., 2013). 

Accordingly, resting state striatum-cerebellum functional coupling has been indicated in 

healthy adults, where the connections are segregated based on functional topography and 

decline in advanced age, where dopamine has a normative decline (Bernard et al., 2012; 

Hausman et al., 2020). Further, levodopa was shown to enhance the connectivity in motor 

pathways joining putamen with the cerebellum and brainstem in healthy individuals (Kelly et 

al., 2009). These findings led to the speculation that dopamine may be particularly important 

in modulating the functional interaction between the cerebellum and BG.  

 

In PD, heterogenous results were reported. A recent study by Bagarinao et al. (2022) 

demonstrated significantly impaired connectivity between cerebellar connector hubs and BG 

in PD, with altered connectivity correlating with clinical manifestations. Hacker et al. (2012) 

found markedly lower connectivity between the cerebellum with caudate and putamen in 

advanced, medicated patients relative to matched controls. In contrast, Helmich et al. (2010) 

found no difference in striatum-cerebellum connectivity between de novo or off-medication 

patients and healthy controls. Gao et al. (2017) reported decreased cerebellar connectivity with 

putamen and GP in off-levodopa patients and subsequent normalisation following levodopa 

administration. Simioni et al. (2016) described a contrasting pattern of increased coherence 

between putamen and motor cerebellum in the off- medication mild-moderate patients and the 

normalising effect of levodopa. The inconsistent results could be due to the differential role of 

cerebellum-BG interaction at different disease stages and the variations in ROI choice and 

localisation. It is also possible that the variations originated from a focus on individual 

connections, and a potentially more coherent network modulation of levodopa might have been 

missed.   
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In our study, while pure univariate effects were absent from interregional cerebellum-BG 

connectivity in differentiating de novo and levodopa conditions, the multivariate combination 

of individual connections demonstrated robust discriminative power. This indicates a contrast 

in a distributed pattern of neural synchrony between the medication conditions. Specifically, a 

network of intra- and cross-hemispheric connectivity between cerebellar and BG nodes acted 

synergistically to manifest a difference that was not accessible to univariate comparisons. 

Although we could not rule out the effect of disease progression in the longitudinal dataset, the 

effectiveness (to a weaker extent) of the feature set in cross-sectional analysis reaffirmed the 

role of levodopa in altering cerebellum-BG network connectivity patterns in PD. 

Complementing the previous work investigating connectivity between specific brain regions 

(Hausman et al., 2020; Kelly et al., 2009), our finding provides new insight into dopamine’s 

potentially wider, system-level modulation of the reciprocally connected cerebellum-BG 

network. In PD, increased striatal dopamine following levodopa medication could prevent 

transmitting aberrant BG signals to the cerebellum that could evoke cerebellar hyperactivity 

and disrupt cerebello-thalamo-cortical pathways (Bostan and Strick, 2010; Caligiore et al., 

2016; Milardi et al., 2019). A refined cerebellum-BG interaction could also facilitate the 

combination of supervised learning and reinforcement learning (specialised by cerebellum and 

BG, respectively) and consequently lead to better motor learning and adaptation in PD 

(Caligiore et al., 2016).  

 

Finally, the levodopa-induced modification of cerebellar-BG connectivity found here concurs 

with previous works that found a similar effect on this pathway following effective deep brain 

stimulation (DBS) therapy in PD. deep brain stimulation (DBS). Kahan et al. (2019) conducted 

dynamic causal modelling in DBS patients and showed that only during a motor task (but not 

during rest) did the DBS modulate the cerebellum-BG connectivity. A more recent 

investigation of STN DBS in PD highlighted the importance of cerebellum and cerebellum-BG 

interaction in PD symptom alleviation (Chu et al., 2023). This study found that DBS modulate 

the functional architecture of large-scale brain networks, including the restoration of lowered 

dynamic FC between the cerebellum and BG and motor thalamus (Chu et al., 2023).    
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4.3 ROI-level changes in functional connectivity 

The longitudinal trends of ROI-level functional reorganisation were likely confounded by the 

pathological progression, which was only partially controlled by age and time elapsed between 

the two measurements. Three main trends were observed. 

 

First, de novo patients were inclined to exhibit higher cerebellum-motor cortex connectivity. 

Cerebellar hyperactivations in PD were consistently reported during the execution of various 

upper limb movements and motor learning (Rascol et al., 1997; Wu et al., 2010). In a PET 

study, early PD patients showed additional activations of the bilateral cerebellum while 

achieving equal performance in motor sequence learning as the control subjects (Mentis et al., 

2003). In accordance with our results, Wu et al. (2009) showed that levodopa normalises the 

heightened rs-FC in the cerebellum and primary motor cortex in PD. The physiological 

significance of strengthened connectivity and hyperactivity of the cerebellum might be 

interpreted as compensatory mechanisms in response to impaired subcortical-cortical loops. It 

was suggested that by restoring the motor circuits with levodopa, patients might become less 

reliant on the compensatory effects (Wu et al., 2009). 

 

Second, we observed a trend of attenuated rs-FC among the thalamus, putamen, and GP in 

longitudinal patients at the second time point. Contrary to our observation, previous studies 

have shown an acute levodopa effect on improving the deficient rs-FC among BG and thalamus 

nodes (Gao et al., 2017; Szewczyk-Krolikowski et al., 2014). In a longitudinal investigation, 

Li et al. (2020) reported a time-related decline in BG connectivity focused on putamen in PD, 

which was associated with changes in nigrostriatal dopaminergic integrity. Hence, our results 

could represent the net effect of medication and progressing dopaminergic dysfunction that 

cannot be effectively disentangled. 

 

Third, longitudinal patients tend to exhibit elevated connectivity between GP and motor areas, 

including supplementary motor area, premotor, and primary motor cortices. A leading 

hypothesis of PD pathophysiology is the imbalance between direct and indirect BG pathways 

due to DA deficiency. Suppression of GP interna (GPi; BG output nucleus) and stimulation of 

GP externa (GPe) firings in PD were shown to alleviate the motor symptoms, which was 

presumably due to selective inhibition of the indirect pathway (Assaf and Schiller, 2019; 

Mastro et al., 2017). Studies in pallidotomy and GPi deep brain stimulation (DBS) patients 
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have shown that metabolic activities in frontal motor areas were reinstated after the procedures, 

indicating the excessive pallidal inhibition of the thalamocortical system in PD (Fukuda et al., 

2001; Grafton et al., 1995; Samuel et al., 1997). Considering the above, our findings might 

reflect a modulatory effect of levodopa on BG pathways, resulting in enhanced GPe-motor 

cortex connectivity and attenuated GPi-cortex anti-coherence. Nevertheless, a clear inference 

cannot be drawn as we did not differentiate GPi and GPe despite their distinctive roles in the 

BG circuitry. 

4.4 Limitations 

This study has several limitations. First, the causal influence of levodopa on clinical and 

connectivity characteristics cannot be established with an observational design. Second, no rs-

FC contrasts survived after implementing the FDR approach to prevent the occurrence of type 

I errors. This could be due to the inadequate sample size and, therefore, a lower statistical 

power. In cross-sectional analysis, the disease duration was relatively more heterogeneous 

among de novo patients; this within-group heterogeneity might have diluted the evidence for 

group-level inferences. Third, given that levodopa patients were ON medication during fMRI 

scans, our results reflected a mixture of short- and long-duration medication effects on 

functional reorganisation in the brain that can not be disentangled. Fourth, although global 

signal (GS) reduction during the rs-fMRI pre-processing efficiently excludes the non-neural 

confounds, it could also remove meaningful neuronal fluctuations and introduce artefacts, 

which might vary for individual datasets (Chen et al., 2012; Murphy and Fox, 2017). Finally, 

the SVMs models were not validated through out-of-sample (unseen data) predictions; 

therefore, the full generalisability of the models cannot be evaluated.  

4.5 Conclusions 

To conclude, we demonstrated the modulatory effect of levodopa on resting-state functional 

connectivity between the cerebellum and BG networks. This effect was absent in the univariate 

comparisons of individual inter-ROI connectivity, indicating that levodopa modulated 

collective patterns of BG-cerebellum neural synchrony. Following the recent evidence 

suggesting the bidirectional linkage between the cerebellum and BG networks, our results 

provide further insight into the relevance of the inter-network functional connectivity in 

Parkinson’s, as well as in the brain functional reorganisation processes  
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Materials and methods 

5.1 Participants 

The clinical and rs-fMRI data were extracted from the Parkinson’s Progression Marker 

Initiative (PPMI; see https://www.ppmi-info.org/), a muti-centre observational study of clinical 

and neuroimaging progression markers of PD conducted since 2010. The PPMI study recruited 

PD subjects who (1) had at least two of the cardinal motor symptoms (resting tremor, 

bradykinesia, and rigidity); (2) had a Hoehn and Yahr progression score of 1 or 2; (3) were not 

expected to initiate PD medication within 6 months from baseline; (4) were diagnosed within 

2 years before the entry and aged at least 30 years at the time of diagnoses. Patients were 

excluded if they (1) had taken levodopa, dopamine agonists, monoamine oxidase-B inhibitors, 

or amantadine within 60 days to baseline; and (2) have taken levodopa or dopamine agonists 

for longer than 60 days prior to baseline. 

 

At the time we downloaded the data, a total of 113 patients had had at least one rs-fMRI scan. 

Here, we aimed to derive a cross-sectional cohort comprising two independent arms of de novo 

and levodopa-medicated patients. Pertinent thresholds were set for disease and treatment 

durations (at the time of the scan) based on overall distributions to ensure the former was 

comparable between the groups and the latter was distributed with a low deviation value in the 

levodopa group (de novo group: N = 15; levodopa group: N = 17). Moreover, we extracted a 

longitudinal group where the patients had had at least two rs-fMRI scans, first during the drug-

naïve phase and second after transitioning into the levodopa-medicated state (co-administered 

with a dopa-decarboxylase inhibitor; not on other PD medications), with a moderately 

concentrated distribution of treatment durations at the second visit across the samples (N = 14).  

5.2 Clinical measurements 

All subjects underwent motor and neuropsychological examinations at the time of selected 

visits. The presence of motor signs was evaluated using Movement Disorder Society-Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS; Goetz et al., 2008). We subdivided the 

UPDRS scale into a tremor score (items 2.10 and 3.15-3.18), a bradykinesia and rigidity score 

(items 3.3-3.8), as well as a gait disturbance score (items 2.12, 2.13, 3.10, 3.11, and 3.12) based 

on previous studies (Aleksovski et al., 2018; Ng et al., 2017). For the non-motor dimension, 
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we included the Geriatric Depression Scale (GDS; Sheikh and Yesavage, 1986) and Montreal 

Cognitive Assessment (MoCA; Nasreddine et al., 2005). 

5.3 Imaging acquisition, pre-processing, and region-of-interest 

selection 

5.3.1 MRI acquisition 

Whole-brain T1-weighted anatomical MRI and rs-fMRI scans using Siemens Trio Tim 3 Tesla 

magnets (Siemens Medical Solutions, Erlangen, Germany) were acquired from the PPMI 

database. Imaging parameters were identical across the clinical sites. Briefly, T1-weighted 

high-resolution anatomical image (voxel size: 1×1×1 mm3) was obtained for each patient with 

repetition time (TR) = 2,300 ms, echo time (TE) = 2.98 ms, flip angle (FA) = 9 °. rs-fMRI 

echo-planer scans were conducted in 8.5 minutes with 210 time points, TR = 2,400 ms, TE = 

25 ms, FA = 80 °, voxel size = 3.25×3.25×3.25 mm3. 

5.3.2 Anatomical and functional pre-processing 

For the cross-sectional dataset, anatomical reconstruction (cortical) and segmentation 

(subcortical) were performed using FreeSurfer (version 7.1.1; 

https://surfer.nmr.mgh.harvard.edu/). The processes included motion correction, removal of 

non-brain tissues, intensity normalisation, and classification of voxels into white matter (WM) 

and grey matter (GM) based on intensity and neighbour constraints. In the surface-based 

stream, the WM and pial surfaces were constructed and refined to follow the intensity gradients 

between WM and GM and between GM and cerebrospinal fluid, respectively (Fischl and Dale, 

2000). Individual surfaces were then aligned to the spherical Destrieux atlas through a non-

linear registration algorithm, which fitted cortical folding patterns to an average cortical 

geometry with each hemispheric cortex parcellated into 74 regions (Destrieux et al., 2010; 

Fischl et al., 2001). In the volume-based stream, the subcortical regions were segmented and 

labelled in the native space (Fischl et al., 2004, 2002). For the longitudinal dataset, FreeSurfer 

longitudinal pipeline was used to construct an unbiased subject-specific template through an 

inverse consistent registration between the two scans (Reuter and Fischl, 2011). The common 

information on within-subject templates then initialised the image processing steps (see above) 

for scans at each visit (Reuter et al., 2012). 
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Rs-fMRI pre-processing was conducted using FreeSurfer FS-FAST 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FsFastTutorialV6.0/FsFastPreProc/). The procedure 

entailed normalizing intensity and generating a mean global waveform (subsequently used as 

a nuisance regressor), motion correction, and slice timing correction. Pre-processed anatomical 

volumes were resampled into native rs-fMRI space using mri_vol2vol and bbregister to extract 

the corresponding time courses of segmented regions. 

5.3.3 ROI selection 

We defined subcortical and cortical ROIs comprising the motor cortico-striatal-thalamic-

cortical (CSTC) circuitry, along with cerebellar ROIs (Table 1). The motor ROI cluster 

included bilateral precentral gyri (PreCG), inferior precentral sulci (InfPreCS), superior 

precentral sulci (SupPreCS), caudal superior frontal gyri (SFGcau; posterior 1/3 of superior 

frontal gyrus), and caudal middle frontal gyri (MFGcau; posterior 1/3 of middle frontal gyrus) 

based on the Destrieux atlas parcellation (Destrieux et al., 2010). PreCG, InfPreCS, and 

SupPreCS were localised in the main body, anteroinferior, and anterosuperior subsections of 

the primary motor cortex, respectively. SFGcau corresponded to the anatomical location of the 

supplementary motor area, and MFGcau was functionally mapped to premotor cortices. At the 

subcortical level, we focused on the bilateral thalamus, caudate nucleus, putamen, globus 

pallidus, and cerebellar cortex. 

5.4 Statistical analysis 

5.4.1 First-level analysis of rs-fMRI data 

All analyses were conducted using MATLAB R2021a 

(https://uk.mathworks.com/products/matlab.html). Voxel- (volume space) and vertex-level 

(surface space) time-series data for each ROI, cerebrospinal fluid (CSF), and WM were 

extracted, along with the whole-brain average time course. The first four images of the fMRI 

time-series were discarded. To exclude spurious signal confounds, we implemented a stepwise 

noise attenuation procedure. First, a high-pass filter with a threshold of 0.01 Hz was used, and 

the six head motion parameters estimated by FreeSurfer were regressed out of all raw fMRI 

data through linear regression. The voxel-level time courses were averaged for CSF and WM, 

then regressed out from the global time course and all voxels and vertices that constitute each 

ROI. Next, nuisance regressions of the global wave to voxel/vertex-level time series were 
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conducted, and the cleaned residuals from the fits were averaged to create ROI time traces. 

Lastly, before mean-centring and standardisation, we further denoised the ROI time series with 

a low-pass filter retaining frequencies below 0.20 Hz to remove the potential high-frequency 

fluctuations injected in partialling-out processes. The pairwise Pearson correlation coefficients 

between the filtered time-series of each ROI were computed and stored in a 20*20 symmetric 

FC matrix.  

5.4.2 Second level within- and between-group comparison  

Nonparametric permutation testing was used to extract significant differences in the 

connectivity maps of patients in de novo and levodopa-medicated states in both cross-sectional 

(between-group) and longitudinal (within-group) datasets. The permutation inferences assume 

that data can be arbitrarily exchanged without affecting the joint probability distribution 

(Winkler et al., 2014). Nevertheless, given the presence of nuisance covariates, such as disease 

duration, age, and gender, the data cannot be considered exchangeable even under the null 

hypothesis. In this respect, the Freedman-Lane procedure was followed to compute the 

estimates of null distribution to ascribe p-values for each rs-FC (Freedman and Lane, 1983; 

Winkler et al., 2014; Zalesky et al., 2010). First, we fitted a full general linear model (GLM): 

 

𝑌 = 𝑋𝛽 + 𝑁𝛾 +  𝜀  (1) 

 

For the cross-sectional dataset, 𝑌 included the pairwise Pearson’s 𝑟, regressor 𝑋 contained 

group identity, and 𝑁 incorporated disease duration, age, and gender. For the longitudinal 

dataset, 𝑌 included the within-subject contrast of each connectivity (levodopa – de novo), 𝑋 

was a vector of ones (the overall mean effect), and 𝑁 contained the difference in disease 

duration between two timepoints, baseline age, and gender. Parameters 𝛽 and 𝛾 were, 

respectively, for factors of interest and nuisance variables, and 𝜀 represented the residual. We 

then created a reduced GLM by regressing 𝑌 only with nuisance variables and obtained 

estimated regression parameters 𝛾𝑁 and nuisance-only residuals 𝜀�̂� [variance of the null model 

(Equation 2)]. Here, the observed F-statistic 𝐹0 (based on sums of squares in unpermuted 

GLMs) in the cross-sectional dataset and the mean connectivity difference �̅�0 in the 

longitudinal dataset were derived as test-statistics 𝑇0. 

 

𝑌 = 𝑁𝛾𝑁 +  𝜀�̂�  (2) 
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Next, we shuffled the residual vector through multiplying by a permutation matrix 𝑃𝑗. The 

nuisance signal estimated in the earlier step, 𝑁𝛾𝑁, was then added back to the permuted 

residuals, 𝑃𝑗𝜀�̂�, to produce the permuted estimations of connectivity strengths (cross-sectional) 

and contrasts (longitudinal) 𝑌𝑗: 

 

𝑌𝑗 = 𝑁𝛾𝑁 +  𝑃𝑗𝜀�̂�  (3) 

 

Finally, the permuted estimates were regressed against the full model (Equation 4), including 

both primary and nuisance factors, and the test-statistics 𝑇𝑗 were computed. 

 

𝑌𝑗 = 𝑋𝛽 + 𝑁𝛾 +  𝜀  (4) 

 

The permutation was repeated 10,000 times to generate the null distribution of test statistics. 

Each FC was deemed significantly different (uncorrected) between the medication states if the 

absolute observed 𝑇0 was greater than 95% of the absolute values of distributed 𝑇𝑗. Finally, the 

false discovery rate (FDR)-based multiple comparison procedure was adopted to adjust the 

derived p-values (Benjamini and Hochberg, 1995; Yekutieli and Benjamini, 1999). 

5.4.3 Network level testing of medication effect on functional connectivity 

To evaluate the discriminating power of neural synchrony at the network level, we consider 

three subnetworks of the motor CSTC circuitry: cortical motor areas, sub-cortical motor areas 

(BG and thalamus), and cerebellum. For all three subnetworks, we integrated the hemispheres. 

We then constructed support vector machines (SVM) implemented on within- and cross-

network features to classify patients with respect to medication status. Both the feature and 

classifier constructions were conducted for the two datasets separately. We first took all 

pairwise combinations of the networks (discarding the within-cerebellum coupling due to only 

one ROI-level feature) as masks, and subject connectivity values in each mask were collapsed 

into a feature vector. To this end, five feature vectors (one for each of the within and between 

networks connections) with varying lengths (according to the number of ROIs in each network) 

were retrieved, with the numbers of FC values in most vectors outnumbering the number of 

observations. 
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5.4.3.1 Dimensionality reduction  

To attenuate the risk of overfitting and ensure the predictive algorithms based on different 

network-level feature sets are comparable, we used principal component analysis (PCA) to 

linearly transform correlated FC values into a reduced number of orthogonal variables, i.e., 

principal components (PC), to derive new vector sets with the same dimensionality (Jolliffe, 

2002). In specific, eigen decomposition of the covariance matrices from each standardised 

feature set was performed to compute eigenvalues and eigenvectors. The eigenvalues were then 

ranked in a descending order effectively representing decreasing variance in the data carried 

by the corresponding PCs, whose directions were represented by the associated eigenvectors 

(Jolliffe, 2002; Mwangi et al., 2014). For each group of FC values, the number of PCs was 

determined using a 99.5% threshold on the cumulative percentage of total variance.  

5.4.3.2 Support vector machine and cross-validation 

Binary classifications of de novo and levodopa-medicated patients were performed using 

SVMs with the linear kernel through the fitcsvm route in MATLAB. Detailed documentation 

of SVM and the optimisation problem can be found in Cortes et al. (1995). Briefly, a linear 

SVM projects the training data points into a high-dimensional feature space and seeks an 

optimal hyperplane with the maximal margin separating the two classes (Cortes et al., 1995). 

The optimal hyperplane is defined as: 

 

𝑓(𝑥) = 𝑤𝑇𝑥𝑖 + 𝑏 = 0  (5) 

  

where 𝑤 is the weight vector perpendicular to the hyperplane, 𝑏 is the bias term, 𝑥𝑖 is 𝑖-th input 

vector in the dataset, and 𝑓(𝑥) is the linear discriminant function whose sign represents the 

class of training inputs (Cortes et al., 1995). The objective of maximising the geometric margin 

in the feature space corresponds to the primal optimisation problem (which is then reformulated 

into the Lagrangian dual function), min
𝑤

1

2
𝑤𝑇𝑤, subject to, 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1.  

 

The SVM models were evaluated with leave-one-out cross-validation (LOOCV) for both 

longitudinal and cross-sectional analyses. In the former, a subsample contained data of the 

same patient measured at two medication conditions. Permutation testing was applied to assess 

whether each classifier captured a real class structure in the data. Here, we permuted the class 
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labels and refitted each SVM 10,000 times to estimate the corresponding null distribution of 

accuracy values. The accuracy was considered significantly higher than chance if it exceeded 

the 97.5th percentile of the null distribution. For the classifiers with above-chance accuracy, 

we computed the area under the receiver operating characteristic curve (AUC) that aggregates 

the classifying efficacy under all possible decision thresholds.    

Data availability  

All data used are fully available in the Parkinson’s Progression Markers Initiative (PPMI) 

database (https://www.ppmi-info.org/) 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.01.16.524229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.16.524229
http://creativecommons.org/licenses/by-nc/4.0/


Acknowledgements 

S.H. is supported by the Edmond and Lily Safra Fellowship. S.A and S.H. are supported by the 

UK Dementia Research Institute, Care Research & Technology Centre. The data used in the 

preparation of this article were obtained from the Parkinson’s Progression Markers Initiative 

(PPMI) database (https://www.ppmi-info.org/). PPMI – a public-private partnership – is 

funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners listed 

here https://www.ppmi-info.org/about-ppmi/who-we-are/studysponsors. 

Funding  

No funding was received towards this work. 

Competing interests  

The authors report no competing interests. 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.01.16.524229doi: bioRxiv preprint 

https://www.ppmi-info.org/about-ppmi/who-we-are/studysponsors
https://doi.org/10.1101/2023.01.16.524229
http://creativecommons.org/licenses/by-nc/4.0/


References  

Aleksovski D, Miljkovic D, Bravi D, Antonini A. 2018. Disease progression in Parkinson subtypes: the 

PPMI dataset. Neurol Sci 39:1971–1976. doi:10.1007/S10072-018-3522-Z 

Assaf F, Schiller Y. 2019. A chemogenetic approach for treating experimental Parkinson’s disease. 

Mov Disord 34:469–479. doi:10.1002/MDS.27554 

Bagarinao E, Kawabata K, Watanabe H, Hara K, Ohdake R, Ogura A, Masuda M, Kato T, Maesawa S, 

Katsuno M, Sobue G. 2022. Connectivity impairment of cerebellar and sensorimotor connector 

hubs in Parkinson’s disease. Brain Commun 4. doi:10.1093/BRAINCOMMS/FCAC214 

Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and Powerful 

Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological) 

57:289–300. doi:10.1111/J.2517-6161.1995.TB02031.X 

Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Lee Wiggins J, Jaeggi SM, Buschkuehl 

M, Monk CS, Jonides J, Peltier SJ. 2012. Resting state cortico-cerebellar functional connectivity 

networks: A comparison of anatomical and self-organizing map approaches. Front Neuroanat 

0:31. doi:10.3389/FNANA.2012.00031/XML/NLM 

Bostan AC, Strick PL. 2010. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 

20:261–270. doi:10.1007/S11065-010-9143-9/FIGURES/3 

Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. 2004. Stages in the development of 

Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134. doi:10.1007/S00441-004-

0956-9 

Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, Helmich RC, Dirkx M, Houk J, 

Jörntell H, Lago-Rodriguez A, Galea JM, Miall RC, Popa T, Kishore A, Verschure PFMJ, Zucca R, 

Herreros I. 2016. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the 

Interplay Between Cerebellum, Basal Ganglia, and Cortex. The Cerebellum 2016 16:1 16:203–

229. doi:10.1007/S12311-016-0763-3 

Chen Gang, Chen Guangyu, Xie C, Ward BD, Li W, Antuono P, Li SJ. 2012. A method to determine the 

necessity for global signal regression in resting-state fMRI studies. Magn Reson Med 68:1828–

1835. doi:10.1002/MRM.24201 

Chu C, Liu S, He N, Zeng Z, Wang J, Zhang Z, Zeljic K, van der Stelt O, Sun B, Yan F, Liu C, Li D, Zhang C. 

2023. Subthalamic stimulation modulates motor network in Parkinson’s disease: recover, 

relieve and remodel. Brain. doi:10.1093/BRAIN/AWAD004 

Cilia R, Cereda E, Akpalu A, Sarfo FS, Cham M, Laryea R, Obese V, Oppon K, Del Sorbo F, Bonvegna S, 

Zecchinelli AL, Pezzoli G. 2020. Natural history of motor symptoms in Parkinson’s disease and 

the long-duration response to levodopa. Brain 143:2490–2501. doi:10.1093/BRAIN/AWAA181 

Cortes C, Vapnik V, Saitta L. 1995. Support-vector networks. Machine Learning 1995 20:3 20:273–

297. doi:10.1007/BF00994018 

Destrieux C, Fischl B, Dale A, Halgren E. 2010. Automatic parcellation of human cortical gyri and sulci 

using standard anatomical nomenclature. Neuroimage 53:1–15. 

doi:10.1016/J.NEUROIMAGE.2010.06.010 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.01.16.524229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.16.524229
http://creativecommons.org/licenses/by-nc/4.0/


Fischl B, Dale AM. 2000. Measuring the thickness of the human cerebral cortex from  magnetic 

resonance images. Proceedings of the National Academy of Sciences 97:11050–11055. 

doi:10.1073/PNAS.200033797 

Fischl B, Liu A, Dale AM. 2001. Automated manifold surgery: Constructing geometrically accurate 

and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–

80. doi:10.1109/42.906426 

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy 

D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. 2002. Whole brain segmentation: 

Automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355. 

doi:10.1016/S0896-6273(02)00569-X 

Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, 

Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM. 2004. Automatically 

parcellating the human cerebral cortex. Cereb Cortex 14:11–22. doi:10.1093/CERCOR/BHG087 

Freedman D, Lane D. 1983. A Nonstochastic Interpretation of Reported Significance Levels. Journal 

of Business & Economic Statistics 1:292. doi:10.2307/1391660 

FreeSurfer. Accessed January 13, 2023. https://surfer.nmr.mgh.harvard.edu 

FreeSurfer FS-FAST Preprocessing. Accessed January 13, 2023. 

https://surfer.nmr.mgh.harvard.edu/fswiki/FsFastTutorialV6.0/FsFastPreProc/  

Fukuda M, Mentis M, Ghilardi MF, Dhawan V, Antonini A, Hammerstad J, Lozano AM, Lang A, Lyons 

K, Koller W, Ghez C, Eidelberg D. 2001. Functional Correlates of Pallidal Stimulation for 

Parkinson’s Disease. Ann Neurol 49:155–164. doi:10.1002/1531-8249 

Gao LL, Zhang JR, Chan P, Wu T. 2017. Levodopa Effect on Basal Ganglia Motor Circuit in Parkinson’s 

Disease. CNS Neurosci Ther 23:76–86. doi:10.1111/CNS.12634 

Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, 

Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, 

LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N. 2008. 

Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale 

(MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders 23:2129–

2170. doi:10.1002/MDS.22340 

Grafton ST, Waters C, Sutton J, Lew MF, Couldwell W. 1995. Pallidotomy increases activity of motor 

association cortex in parkinson’s disease: A positron emission tomographic study. Ann Neurol 

37:776–783. doi:10.1002/ANA.410370611 

Haar S, Donchin O. 2020. A Revised Computational Neuroanatomy for Motor Control. J Cogn 

Neurosci 32:1823–1836. doi:10.1162/jocn_a_01602 

Hacker CD, Perlmutter JS, Criswell SR, Ances BM, Snyder AZ. 2012. Resting state functional 

connectivity of the striatum in Parkinson’s disease. Brain 135:3699–3711. 

doi:10.1093/BRAIN/AWS281 

Haddad F, Sawalha M, Khawaja Y, Najjar A, Karaman R. 2018. Dopamine and Levodopa Prodrugs for 

the Treatment of Parkinson’s Disease. Molecules : A Journal of Synthetic Chemistry and Natural 

Product Chemistry 23. doi:10.3390/MOLECULES23010040 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.01.16.524229doi: bioRxiv preprint 

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/fswiki/FsFastTutorialV6.0/FsFastPreProc/
https://doi.org/10.1101/2023.01.16.524229
http://creativecommons.org/licenses/by-nc/4.0/


Hausman HK, Jackson TB, Goen JRM, Bernard JA. 2020. From Synchrony to Asynchrony: Cerebellar–

Basal Ganglia Functional Circuits in Young and Older Adults. Cerebral Cortex 30:718–729. 

doi:10.1093/CERCOR/BHZ121 

Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I. 2010. Spatial remapping of cortico-

striatal connectivity in Parkinson’s disease. Cereb Cortex 20:1175–1186. 

doi:10.1093/CERCOR/BHP178 

Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. 2005. The cerebellum communicates with the basal 

ganglia. Nat Neurosci 8:1491–1493. doi:10.1038/NN1544 

Jahanshahi M, Jones CRG, Zijlmans J, Katzenschlager R, Lee L, Quinn N, Frith CD, Lees AJ. 2010. 

Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s 

disease. Brain 133:727–745. doi:10.1093/BRAIN/AWQ012 

Jolliffe I. 2002. Principal Component Analysis, Second Edition. New York, NY: Springer-Verlag. 

Kahan J, Mancini L, Flandin G, White M, Papadaki A, Thornton J, Yousry T, Zrinzo L, Hariz M, Limousin 

P, Friston K, Foltynie T. 2019. Deep brain stimulation has state-dependent effects on motor 

connectivity in Parkinson’s disease. Brain 142:2417–2431. doi:10.1093/BRAIN/AWZ164 

Kelly C, De Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, 

McMahon K. 2009. l-Dopa Modulates Functional Connectivity in Striatal Cognitive and Motor 

Networks: A Double-Blind Placebo-Controlled Study. The Journal of Neuroscience 29:7364. 

doi:10.1523/JNEUROSCI.0810-09.2009 

Li W, Lao-Kaim NP, Roussakis A-A, Martín-Bastida A, Valle-Guzman N, Paul G, Soreq E, Daws RE, 

Foltynie T, Barker RA, Hampshire A, Piccini P. 2020. Longitudinal functional connectivity 

changes related to dopaminergic decline in Parkinson’s disease. Neuroimage Clin 28:102409. 

doi:10.1016/j.nicl.2020.102409 

Luo CY, Song W, Chen Q, Zheng ZZ, Chen K, Cao B, Yang J, Li JP, Huang XQ, Gong QY, Shang HF. 2014. 

Reduced functional connectivity in early-stage drug-naive Parkinson’s disease: a resting-state 

fMRI study. Neurobiol Aging 35:431–441. doi:10.1016/J.NEUROBIOLAGING.2013.08.018 

Mastro KJ, Zitelli KT, Willard AM, Leblanc KH, Kravitz A V., Gittis AH. 2017. Cell-specific pallidal 

intervention induces long-lasting motor recovery in dopamine-depleted mice. Nat Neurosci 

20:815–823. doi:10.1038/NN.4559 

Mentis MJ, Dhawan V, Feigin A, Delalot D, Zgaljardic D, Edwards C, Eidelberg D. 2003. Early stage 

Parkinson’s disease patients and normal volunteers: Comparative mechanisms of sequence 

learning. Hum Brain Mapp 20:246. doi:10.1002/HBM.10142 

Milardi D, Quartarone A, Bramanti A, Anastasi G, Bertino S, Basile GA, Buonasera P, Pilone G, Celeste 

G, Rizzo G, Bruschetta D, Cacciola A. 2019. The Cortico-Basal Ganglia-Cerebellar Network: Past, 

Present and Future Perspectives. Front Syst Neurosci 13:61. 

doi:10.3389/FNSYS.2019.00061/XML/NLM 

Mueller K, Jech R, Ballarini T, Holiga Š, Růžička F, Piecha FA, Möller HE, Vymazal J, Růžička E, 

Schroeter ML. 2019. Modulatory Effects of Levodopa on Cerebellar Connectivity in Parkinson’s 

Disease. Cerebellum 18:212–224. doi:10.1007/S12311-018-0981-Y/FIGURES/5 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.01.16.524229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.16.524229
http://creativecommons.org/licenses/by-nc/4.0/


Murphy K, Fox MD. 2017. Towards a consensus regarding global signal regression for resting state 

functional connectivity MRI. Neuroimage 154:169–173. 

doi:10.1016/J.NEUROIMAGE.2016.11.052 

Mwangi B, Tian TS, Soares JC. 2014. A review of feature reduction techniques in neuroimaging. 

Neuroinformatics 12:229. doi:10.1007/S12021-013-9204-3 

Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, 

Chertkow H. 2005. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild 

Cognitive Impairment. J Am Geriatr Soc 53:695–699. doi:10.1111/J.1532-5415.2005.53221.X 

Ng B, Varoquaux G, Poline JB, Thirion B, Greicius MD, Poston KL. 2017. Distinct alterations in 

Parkinson’s medication-state and disease-state connectivity. Neuroimage Clin 16:575–585. 

doi:10.1016/J.NICL.2017.09.004 

Nutt JG, Holford NHG. 1996. The response to levodopa in parkinson’s disease: Imposing 

pharmacological law and order. Ann Neurol 39:561–573. doi:10.1002/ANA.410390504 

Parkinson’s Progression Marker Initiative. Accessed January 13, 2023. https://www.ppmi-info.org/ 

Pelzer C, Cabalzar K, Wolf A, Gonzalez M, Lenz G, Thome M. 2013. The protease activity of the 

paracaspase MALT1 is controlled by monoubiquitination. Nat Immunol 14:337–345. 

doi:10.1038/NI.2540 

Poewe W, Espay AJ. 2020. Long duration response in Parkinson’s disease: levodopa revisited. Brain 

143:2332–2335. doi:10.1093/BRAIN/AWAA226 

Rascol O, Sabatini U, Fabre N, Brefel C, Loubinoux I, Celsis P, Senard JM, Montastruc JL, Chollet F. 

1997. The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic 

parkinsonian patients. Brain 120 ( Pt 1):103–110. doi:10.1093/BRAIN/120.1.103 

Reuter M, Fischl B. 2011. Avoiding asymmetry-induced bias in longitudinal image processing. 

Neuroimage 57:19. doi:10.1016/J.NEUROIMAGE.2011.02.076 

Reuter M, Schmansky NJ, Rosas HD, Fischl B. 2012. Within-subject template estimation for unbiased 

longitudinal image analysis. Neuroimage 61:1402. doi:10.1016/J.NEUROIMAGE.2012.02.084 

Samuel M, Ceballos-Baumann AO, Turjanski N, Boecker H, Gorospe A, Linazasoro G, Holmes AP, 

DeLong MR, Vitek JL, Thomas DGT, Quinn NP, Obeso JA, Brooks DJ. 1997. Pallidotomy in 

Parkinson’s disease increases supplementary motor area and prefrontal activation during 

performance of volitional movements an H2(15)O PET study. Brain 120:1301–1313. 

doi:10.1093/BRAIN/120.8.1301 

Shastry BS. 2001. Parkinson disease: etiology, pathogenesis and future of gene therapy. Neurosci Res 

41:5–12. doi:10.1016/S0168-0102(01)00254-1 

Sheikh JI, Yesavage JA. 1986. 9/geriatric depression scale (Gds) recent evidence and development of 

a shorter version. Clin Gerontol 5:165–173. doi:10.1300/J018V05N01_09 

Simioni AC, Dagher A, Fellows LK. 2016. Compensatory striatal–cerebellar connectivity in mild–

moderate Parkinson’s disease. Neuroimage Clin 10:54–62. doi:10.1016/J.NICL.2015.11.005 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.01.16.524229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.16.524229
http://creativecommons.org/licenses/by-nc/4.0/


Szewczyk-Krolikowski K, Menke RAL, Rolinski M, Duff E, Salimi-Khorshidi G, Filippini N, Zamboni G, 

Hu MTM, Mackay CE. 2014. Functional connectivity in the basal ganglia network differentiates 

PD patients from controls. Neurology 83:208–214. doi:10.1212/WNL.0000000000000592 

Tahmasian M, Bettray LM, van Eimeren T, Drzezga A, Timmermann L, Eickhoff CR, Eickhoff SB, Eggers 

C. 2015. A systematic review on the applications of resting-state fMRI in Parkinson’s disease: 

Does dopamine replacement therapy play a role? Cortex 73:80–105. 

doi:10.1016/J.CORTEX.2015.08.005 

Thanvi BR, Lo TCN. 2004. Long term motor complications of levodopa: clinical features, mechanisms, 

and management strategies. Postgrad Med J 80:452–458. doi:10.1136/PGMJ.2003.013912 

The MathWorks Inc Version R2021a. Accessed January 13, 2023. 

https://uk.mathworks.com/products/matlab.html 

Warren JD, Rohrer JD, Schott JM, Fox NC, Hardy J, Rossor MN. 2013. Molecular nexopathies: a new 

paradigm of neurodegenerative disease. Trends Neurosci 36:561. 

doi:10.1016/J.TINS.2013.06.007 

Wider C, Russmann H, Villemure JG, Robert B, Bogousslavsky J, Burkhard PR, Vingerhoets FJG. 2006. 

Long-Duration Response to Levodopa in Patients With Advanced Parkinson Disease Treated 

With Subthalamic Deep Brain Stimulation. Arch Neurol 63:951–955. 

doi:10.1001/ARCHNEUR.63.7.951 

Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. 2014. Permutation inference for the 

general linear model. Neuroimage 92:381–397. doi:10.1016/J.NEUROIMAGE.2014.01.060 

Wu T, Hallett M. 2013. The cerebellum in Parkinson’s disease. Brain 136:696–709. 

doi:10.1093/BRAIN/AWS360 

Wu T, Wang L, Chen Y, Zhao C, Li K, Chan P. 2009. Changes of functional connectivity of the motor 

network in the resting state in Parkinson’s disease. Neurosci Lett 460:6–10. 

doi:10.1016/J.NEULET.2009.05.046 

Wu T, Wang L, Hallett M, Chen Y, Li K, Chan P. 2011. Effective connectivity of brain networks during 

self-initiated movement in Parkinson’s disease. Neuroimage 55:204–215. 

doi:10.1016/J.NEUROIMAGE.2010.11.074 

Wu T, Wang L, Hallett M, Li K, Chan P. 2010. Neural correlates of bimanual anti-phase and in-phase 

movements in Parkinson’s disease. Brain 133:2394–2409. doi:10.1093/BRAIN/AWQ151 

Yekutieli D, Benjamini Y. 1999. Resampling-based false discovery rate controlling multiple test 

procedures for correlated test statistics. J Stat Plan Inference 82:171–196. doi:10.1016/S0378-

3758(99)00041-5 

Zalesky A, Fornito A, Bullmore ET. 2010. Network-based statistic: identifying differences in brain 

networks. Neuroimage 53:1197–1207. doi:10.1016/J.NEUROIMAGE.2010.06.041 

  

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.01.16.524229doi: bioRxiv preprint 

https://uk.mathworks.com/products/matlab.html
https://doi.org/10.1101/2023.01.16.524229
http://creativecommons.org/licenses/by-nc/4.0/


Figures 

Figure 1 Sample selection based on treatment and disease durations. (A) Longitudinal 

cohort: treatment durations at selected levodopa scans (median = 22 months; IQR = 6.75 

months; maximum = 35 months; minimum = 13 months). (B) The distribution of disease 

durations at all rs-fMRI visits (de novo: median = 14 months; IQR = 25 months; maximum = 

74 months; minimum = 1 months; levodopa: median = 47 months; IQR = 25 months; maximum 

= 83 months; minimum = 13 months). The dashed lines represent the threshold applied for the 

selection of the cross-sectional cohort. (C) Cross-sectional cohort: the spreading of disease 

durations after the filtering and the removal of missing scans (de novo: median = 29 months; 

IQR = 5 months; maximum = 34 months; minimum = 15 months; levodopa: median = 28 

months; IQR = 3 months; maximum = 35 months; minimum = 25 months). 
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Figure 2 Median interregional functional connectivity strength. The columns show de novo 

and levodopa medication states and rows include longitudinal and cross-sectional datasets. 

Within each connectivity matrix, median strength of each interregional rs-FC within each 

medication condition are represented. Regions within each matrix are organised in the order of 

cerebellar, basal ganglia (and thalamus), and motor cortical regions.  

LH = left hemisphere; RH = right hemisphere; MFG = middle frontal gyrus; SFG = superior 

frontal gyrus. 
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Figure 3 Within- and between-group comparisons in region-of-interest analysis. (A) 

Frequency histograms of p-values in region-of-interest analyses in cross-sectional (cream) and 

longitudinal (blue) datasets. (B) Upper triangle: Median differences of connectivity 

magnitude between levodopa and de novo states in longitudinal analysis; size of the circles is 

proportional to the absolute values. Lower triangle: Significant within-subject connectivity 

contrasts at p < 0.05 prior to false discovery rate correction (yellow circles represent the 

levodopa connections greater than de novo, and green circles depict more intense de novo 

connections relative to levodopa). (C) Upper triangle: Contrasts of median connectivity 

strength between levodopa and de novo patients in cross-sectional analysis.  Lower triangle: 

Significant between-group connectivity comparisons at p < 0.05 before false discovery rate 

correction. 
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Figure 4 Classification accuracies and statistical significance of support vector machine 

classifiers. (A) Classification accuracies of linear support vector machine implemented with 

patterns of connectivity within and across cortical motor, basal ganglia, and cerebellum 

networks; size of the circles is proportional to the accuracy. (B) Uncorrected p-values of each 
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network-level classifier. (C) FDR-adjusted p-values of each network-level classifier 

(significance cut-off = 0.025).   

 

Figure 5 Receiver operating characteristic curve and area under the curve. Receiver 

operating characteristic curve was constructed for support vector machine using the 

cerebellum-basal ganglia feature set in both within-subject (blue) and between-group (cream) 

analyses.   
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Tables 

Table 1 Selected ROIs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time courses of subcortical ROIs are voxel-based, whereas the fMRI data of motor cortical ROIs are vertex-
based.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subcortical ROIs (voxels) 

Cerebellum cortex (CB) 

Thalamus (Tha) 

Caudate nucleus (Cdn) 

Putamen (Pu) 

Globus pallidum (GP) 

 

Motor cortical ROIs (vertices) 

Precentral gyrus (PreCG) 

Inferior precentral sulcus (InfPreCS) 

Superior precentral sulcus (SupPreCS) 

Caudal superior frontal gyrus (SFGcau) 

Caudal middle frontal gyrus (MFGcau) 
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Table 2A Demographics and clinical measures of patients in the longitudinal dataset.  

 

Table 2B Demographics and clinical measures of patients in the cross-sectional dataset.   

 

Table 2 Demographics and clinical measures of study participants. A: Longitudinal cohort. B: Cross-sectional 

cohort. Values are medians (interquartile range). For gender, values are numbers of males [% of males]. For 
patients who initiated levodopa treatment, the OFF levodopa was defined as not having taken medication for at 

 De novo Levodopa P-Values 

Longitudinal (N = 14) 

Age (years) 56.50 (20) 59 (19) < 0.001*** 

Gender (number of males, %) 8 [57%] 8 [57%] - 

Disease duration (months) 15.50 (15) 50.50 (18) < 0.001*** 

Treatment duration (months) - 22 (10) - 

Levodopa equivalent daily 
dose (mg) 

 700 (500)  

Clinical measures  
ON-levodopa: N = 12  
OFF-levodopa: N = 7 

Hoehn and Yahr scale 2 (1; all 14 patients) - - 

 

2 (0.50; paired with 

12 ON-levodopa 
patients) 

On: 1 (0) < 0.01** 

 

2 (1; paired with 7 

OFF-levodopa 
patients) 

Off: 2 (0) 0.17 

UPDRS-III 21.50 (16) - - 

 21.50 (15.50) On: 13.50 (17) < 0.01** 

 24 (13.50) Off: 22 (7) 0.12 

Tremor subscale 6.50 (9) - - 

 6.50 (10) On: 1 (7.5) 0.02* 

 5 (7) Off: 2 (5.25) 0.28 

Bradykinesia/rigidity subscale 11.50 (8) - - 

 11.50 (8) On: 8.50 (12.50) 0.02*  

 15 (8.25) Off: 14 (12.50) 0.09 

Gait subscale 1 (1)   

 1 (1) On: 1 (1) 0.83 

 1 (0) Off: 1 (0) 0.75 

MoCA 28 (0.75, N = 7) 28 (4, N = 7) 1.00 

GDS 1 (1) 2 (2) 0.63 

 

 De novo Levodopa P-Values 

Cross-sectional (de novo: N = 15; levodopa N = 17) 

Age (years) 66 (18) 72 (12) 0.09 

Gender (number of males, %) 12 [80%] 14 [82%] 0.89 

Disease duration (months) 29 (5.50) 28 (3.25) 0.68 

Treatment duration (months) - 18 (2.25) - 

Levodopa equivalent daily 
dose (mg) 

 500 (151.25)  

Clinical measures ON-levodopa: N = 16 

Hoehn and Yahr scale 2 (0.40) On: 2 (0.47) 0.76 

UPDRS-III 24 (14.50) On: 14 (7.50) < 0.01** 

Tremor subscale 5 (9.75) On: 3 (4.50) 0.17 

Bradykinesia/rigidity subscale 13 (14) On: 9 (7) 0.04* 

Gait subscale 1 (1.50) On: 1 (1.50) 0.97 

MoCA 28 (3, N = 13) 28 (3.50)  0.75 

GDS 2 (5.50) 2 (2.50) 0.92 
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least 6 hours. We performed paired-sample comparisons of the UPDRS measures between the de novo state 
with ON (N = 12) and OFF (N = 7) levodopa states for the longitudinal dataset. However, only ON (N = 16) 

scores were included for the cross-cohort comparison, as only 4 levodopa-medicated patients had OFF scores. 
Moreover, the ON/OFF levodopa were not distinguished for MoCA and GDS. MoCA scores of 7 patients in the 
longitudinal dataset and 2 patients in the de novo group of the cross-sectional dataset were missing. Due to the 

non-Gaussian distributions of the variables, we conducted non-parametric Wilcoxon signed-rank and rank-sum 
tests for within- and between-group comparisons, respectively.     
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