
  

 

Abstract—Robotic tactile sensing provides a method of 
recognizing objects and their properties where vision fails. Prior 
work on tactile perception in robotic manipulation has 
frequently focused on exploratory procedures (EPs). However, 
the also-human-inspired technique of in-hand-manipulation can 
glean rich data in a fraction of the time of EPs. We propose a 
simple 3-DOF robotic hand design, optimized for object rolling 
tasks via a variable-width palm and associated control system. 
This system dynamically adjusts the distance between the finger 
bases in response to object behavior. Compared to fixed finger 
bases, this technique significantly increases the area of the object 
that is exposed to finger-mounted tactile arrays during a single 
rolling motion (an increase of over 60% was observed for a 
cylinder with a 30-millimeter diameter). In addition, this paper 
presents a feature extraction algorithm for the collected 
spatiotemporal dataset, which focuses on object corner 
identification, analysis, and compact representation. This 
technique drastically reduces the dimensionality of each data 
sample from 10×1500 time series data to 80 features, which was 
further reduced by Principal Component Analysis (PCA) to 22 
components. An ensemble subspace k-nearest neighbors (KNN) 
classification model was trained with 90 observations on rolling 
three different geometric objects, resulting in a three-fold cross-
validation accuracy of 95.6% for object shape recognition. 

I. INTRODUCTION  

Although humans substantially depend on vision to 
perform everyday tasks, the sense of touch also plays an 
essential role. Not only do we rely on touch when vision is not 
an option, such as when we are looking for house keys in 
trouser pockets or locating the light switch in a dark room, we 
also use touch to sense finer shapes and material properties that 
are often difficult or impossible to determine through the 
naked eye [1]. The field of robotics has long recognized the 
practicality of our somatosensory system, and in recent 
decades has been rapidly developing tactile sensors based on a 
wide range of technologies [2]–[4], to perform tasks such as 
texture recognition [5], [6] stiffness measurement [6], slip 
detection [7], [8], and grasping force feedback [8].  

A less-commonly researched haptic property is 
determining features of object contour or shape. One approach 
to this problem is to utilize a high-density tactile array to 
consecutively extract the local shape of small areas of an 
object’s surface. This approach of using exploratory 
procedures (EPs) was taken in 1993 [9] as well as in recent 
years [10], [11]. Two fallbacks are noticeable in those pieces 
of work: Firstly, the need for the object to be immovable. 
Physical contact often impacts the position and orientation of 
an object, which increases the difficulty of recognizing the 
object’s overall shape [12]. Although tactile data processing 
methods have been proposed to compensate for this issue [12], 
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researchers often still simply use glue or clamps to fix the 
object to a desk or other supports [10]. Secondly, this approach 
requires precise and repeated contact, which is time-
consuming. For example, in [11], a full object exploration 
consisting of 5 EPs takes around 85 seconds. 

These two issues give rise to a different approach for tactile 
data gathering – robotic In-Hand Manipulation (IHM).  IHM 
refers to “the task of changing the grasp on a hand-held object 
without placing it back and picking it up again” [13]. In our 
daily life, these tasks are performed frequently and usually 
without much thought, such as aligning a key with its lock or 
writing a letter with a pen.  When we attempt to gauge the 
shape of an object through touch, we often pick it up and use 
IHM to expose the surface contour of the object to the 
mechanoreceptors of the fingertips [1].  

The tactile data collection method used by our robotic hand 
also follows an IHM approach. A low-cost ($300) tactile array 
is mounted on one of the two fingers. Through rolling the 
object between the two fingers, the tactile array is exposed to 
a larger portion of the object’s surface than would be achieved 
by grasping alone. This is similar to rolling a small object 
between the thumb and the index finger on a human hand to 
estimate its shape. This approach of tactile rolling was recently 
explored by Mohtasham et al. [14], showing promising results 
for object recognition. In that work, the robot hand had a 
similar design, consisting of two rotary fingers but with a fixed 
palm width. We made two main improvements to this previous 
approach:  
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Figure 1: The robotic hand consists of a prismatic variable-width palm, 
two fingers with rotary joints, and a barometric tactile sensor array. 
 



  

1) Extended rolling range 
The manipulability of a large range of two-finger robotic 

hands were extensively investigated and compared by Bircher 
et al. in 2021 [15]. Their work inspired us to add the prismatic 
palm to Mohtasham et al.’s 2DOF hand design of fixed rotary 
joints at the finger bases. We found that by utilizing a 1DOF 
prismatic palm, the object contact area during a single rolling 
exploration can be significantly increased (Fig. 2). This is 
achieved by dynamically varying the distance between the two 
finger bases with the goal of keeping the fingers parallel to 
each other throughout manipulation. 

2) Generalizable data processing approach 
Mohtasham et al.’s shape recognition algorithm was 

prepared as a proof of concept for the available object rolling 
data and is highly fitted for that work’s choice of objects. The 
algorithm mainly consists of hand-designed conditional-
statements that do not generalize well. In this paper, we have 
designed the basis of a tactile feature extraction algorithm 
intended to be applicable to all rollable objects with faces and 
corners, which the algorithm is able to distinguish. Though this 
is currently only tested with geometric primitives, our 
intention is to extend this algorithm in the near future to also 
deal with irregular objects. Currently, an ensemble of Random 
Subspace and K-Nearest Neighbors is used to recognize object 
shapes based on these features. 

Two more pieces of work are noteworthy in the context of 
fast tactile object recognition via robotic hands. Firstly, 
variable-friction fingers mounted on rotary joints have 
previously been used to achieve object identification via 
rolling and sliding IHM [16]. Their work did not require 
tactile sensors, solely using proprioceptive information from 
the servo motors to successfully classify objects via an Extra 
Trees classifier [17]. Our work provides a simpler mechanical 
finger design using fewer actuators and a faster IHM 
procedure, due to the eliminated need to switch between 
rolling and sliding finger surfaces. Secondly, Spiers et al. 

previously used underactuated two-link fingers mounted with 
tactile sensors to identify objects through a single grasp [18]. 
Prior to machine learning, both works decompose time-series 
data into a compact set of numerical features. However, those 
features were not directly related to real-world object 
properties, as in our new approach, in which they are linked 
to faces and corners. We feel that this identification of 
tangible characteristics provides a more generalizable and 
scalable framework.  

II. System Overview 

We have developed a robotic hand optimized for collecting 
tactile data whilst rolling prismatic objects. We have named 
this hand E-TRoll (Extended Tactile Rolling) due to its 
capability of extending the rolling range via the dynamically 
controlled prismatic palm. This section provides details on the 
mechanical design and control systems that make up the 
robotic hand shown in Fig. 1. 

A.  Mechanical Design 
The gripper consists of two 1DOF fingers of length 132 

millimeters, with a prismatic palm that can adjust the distance 
between the two finger joints from 50 to 150 millimeters. The 
dual rack and pinion design of the adjustable palm is inspired 
by Elangovan et al.’s adaptive gripper [19] and Spiers’ ‘Haptic 
Taco’ shape changing haptic interface [20]. Fig. 3 presents a 
3D rendered view of the adjustable palm mechanism. Most 
structural elements of the gripper are 3D printed in polylactic 
acid (PLA) on a Raise3D E2 printer, with the exception of the 
two MGN9H linear guide rails manufactured by Yanmis. The 
rails are of size 100mm × 9mm and are used to ensure a stable 
prismatic movement, free of the binding effects of 3D printed 
guide structures.  

One of the fingers acts as the sensing finger and holds two 
TakkStrip 2 barometric tactile sensor arrays previously 
manufactured by RightHand Robotics [21] based upon the 
work described in [2]. These sensor arrays are no longer 
supported or manufactured. Each of the two TakkStrips 
consists of six Bosch MEMs barometric sensors, arranged in a 
single line on a PCB, adding up to twelve barometric sensors 
on the sensing finger. The other finger provides a high friction 
surface (a section of a rubber mouse pad) to aid the rolling task 

 

 
Figure 3: The prismatic palm is implemented through a dual rack and 
pinion mechanism. Both the sensor finger and the high friction finger 
are directly connected to the servo horns, forming rotary joints. 

 
Figure 2: Rolling a cylinder with 30 mm diameter with a dynamic palm 
versus a fixed palm width of 68.5 mm. An increase in object rotation of 
137.9% is observed. 
 



  

(Fig. 4). Three Dynamixel XM430-W350-R servo motors are 
used for the prismatic and rotary joints.  

The advantage of using the prismatic palm mechanism is 
significant. To demonstrate, a 30-millimeter diameter cylinder 
was rolled between the fingers with and without dynamic palm 
width (Fig. 2). The right finger was instructed to start 
perpendicular to the base and stop after rotating 44°. With a 
fixed palm width (as in Mohtasham’s work [15]) of 68.5 mm, 
the object only rotated by 36.4°. Using the prismatic palm to 
keep the two fingers parallel, an object rotation of 86.6° was 
achieved. This translates to 34.2 mm of the cylinder’s base 
circumference touching the tactile array using a dynamic palm, 
compared to only 21.0 mm with a fixed palm—an increase of 
62.9%.  

B. Control Systems 
1) Rotary Joint Control 
Our control approach is based upon the technique 

previously discussed in [16]. Note that compared to [16], our 
torque controller is subject to less noise and disturbance, due 
to a direct mechanical coupling between the actuator and 
finger via an aluminum bracket, manufactured by Robotis 
(Fig. 4). The variable friction gripper on the other hand utilized 
an OpenHand base, whose transmission relied on tendon 

routing across multiple (metal and 3D-printed) surfaces and a 
return spring which opposed inwards motion.  

The Dynamixel model-XM servos were set to operate in 
position control and current control modes. The latter attempts 
to keeps the current (and thus torque) of the servo to a specified 
value. To ensure a firm grasp of the object during in-hand-
manipulation, the finger joint actuators follow a “push and 
pull” approach: The pulling finger is in position control mode 
and slowly rotates away from the pushing finger, whilst the 
pushing finger is in current control mode to apply a controlled 
force on the object to press it against the pulling finger. In the 
example provided in Fig. 5, the right finger is the pulling 
finger, and the left finger is the pushing finger. When the 
object is rolled in the opposite direction, the roles of the fingers 
are reversed. 

2) Prismatic Palm Controller 
The goal of the palm controller is to ensure that the two 

fingers are parallel to each other throughout the rolling 
motions. Fig. 5 demonstrates the rolling of a cylindrical 
object—note the changing distance between the two finger 
bases at different steps of the rolling task. 

 Fig. 6 shows the block diagram for the implemented 
prismatic palm control system. A controller with negative 
feedback is chosen for this task, with the goal to minimize the 
difference between the two finger joint angles. 

 After testing a simple control system with a gain 
proportional to the angle error between the two fingers, we 
found that the system tends to oscillate when the fingers are 
near perpendicular to the base. This is caused by the palm 
width error not being proportional to the finger angle error—
at different pulling finger angles and object positions, the palm 
needs to adjust for a significantly different amount to 
compensate for the same angle error. This raises the need for 
the ‘Error Converter’ block to calculate the palm width error. 

The block labelled ‘Object Position Estimator’ uses the 
palm width and pulling finger angle to approximate the object 
position. The result, in conjunction with the pulling finger 
angle, converts the errors via the Error Converter. Both the 
Error Convertor and Object Position Estimator will now be 
explained further. 

a) Error Converter 
In Fig. 7, 𝑤𝑤 denotes the current palm width and 𝑑𝑑𝑤𝑤 denotes 

the palm width error. The angles of the pushing and pulling 
finger are 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝ℎ and 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , whilst 𝑙𝑙 and 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 refer to the 
distances along the pushing finger, from base to contact point 

 
Figure 5: An example rolling manipulation with the prismatic palm 
controller enabled. Whilst the fingers rotate from an angled position (step 
1) to a straight position (step 3), the controller adjusts the distance between 
the finger bases to keep the fingers parallel.  

 
Figure 6: Block diagram for the Prismatic Palm Controller.  

 
Figure 4: A high-friction finger (left) and one sensing finger (right) are 
used by E-TRoll. 



  

and finger midpoint respectively. 𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 refers to the angle of 
the target pushing finger and the angle between pushing finger 
and its target is labelled as −𝑑𝑑𝜃𝜃. The negative sign is due to 
the larger pushing finger angle compared to the target angle. 
The target pushing finger is parallel to the pulling finger, 
resulting in an equal angle (𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜃𝜃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝). According to the 
sine rule: 

𝑙𝑙
sin (𝜃𝜃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝)

=  
𝑑𝑑𝑤𝑤

sin(−𝑑𝑑𝜃𝜃)  . (1) 

Since 𝑑𝑑𝜃𝜃 is sufficiently small, we can approximate 
sin(−𝑑𝑑𝜃𝜃) =  −𝑑𝑑𝜃𝜃, allowing us to rearrange (1) as follows: 

𝑑𝑑𝑤𝑤
𝑑𝑑𝜃𝜃

=  −
𝑙𝑙

sin(𝜃𝜃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝)
  .  (2) 

This relationship expresses the ratio between palm width 
error and angle error. Multiplying the right-hand side with the 
angle error gives us the desired palm width error. 

b) Object Position Estimator 
We specify that the object rolling procedure begins with 

both fingers at a 90-degree angle relative to the base. We 
approximate the shape of convex objects as cylinders and 
presume the two fingers to be parallel throughout rolling.  This 
enables us to visually fix the center of the object and constrain 
the fingers to be horizontal, resulting in the configuration 
shown in Fig. 8. The thicker pale red lines indicate the initial 
positions of the fingers and palm, and the thinner black lines 
show the current positions. Similar to a double rack and pinion 
mechanism, the two fingers have been displaced by the same 
distance 𝑙𝑙𝑇𝑇𝑟𝑟𝑝𝑝𝑝𝑝 in opposite directions compared to the initial 
positions. As a result, the initial and current palms cross each 
other at their midpoints. Observing the small, shaded triangle 
in the bottom left corner of the image, we can calculate 𝑙𝑙𝑇𝑇𝑟𝑟𝑝𝑝𝑝𝑝: 

𝑙𝑙𝑇𝑇𝑟𝑟𝑝𝑝𝑝𝑝 =
𝑤𝑤
2

cos(𝜃𝜃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝) . (3) 

Initially, the object is always placed within a 20-millimeter 
range centered at the midpoint. Thus, we approximate the 

initial contact point to overlap with the pulling finger 
midpoint. Thus, the final object position 𝑙𝑙 is expressed as: 

𝑙𝑙 = 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 −
𝑤𝑤
2

cos(𝜃𝜃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝) . (4) 

In practice, the Error Converter and Object Position 
Estimator are calculated as a single, more elegant equation 
combining (2) and (4):  

𝑑𝑑𝑤𝑤
𝑑𝑑𝜃𝜃

=  −
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 −

𝑤𝑤
2 cos(𝜃𝜃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝)

sin(𝜃𝜃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝)
   ,   

𝑑𝑑𝑤𝑤
𝑑𝑑𝜃𝜃

=  
𝑤𝑤
2

cot(𝜃𝜃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝) − 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 csc(𝜃𝜃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝) , (5) 

where  𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 is measured to be 85mm. Despite the fact that 
multiple approximations were made whilst deriving the final 
equation, its implementation successfully eliminated the 
previously observed oscillations. 

III. METHODS 

A. Objects 
Three objects were 3D printed with PLA on a Raise3D E2 

with 25% infill: a hexagonal prism, a circular prism (cylinder), 
and a square prism (cuboid). Each of these prisms have a 
height of 50 mm and a base with an inner diameter of 30 
millimeters (Fig. 9). 

B. Sensor Calibration  
Around room temperature, each barometric sensor outputs 

highly linear pressure values with regards to applied normal 
force, until saturation [2]. A calibration rig designed by 

 Figure 9: The three objects used in the experiments. From left to right: 
a square prism (cuboid), a cylinder, and a hexagonal prism.   

 
Figure 7: The palm width error (𝑑𝑑𝑤𝑤) depends on pulling finger angle 
(𝜃𝜃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝) and the object’s distance to the palm along the pushing finger (𝑙𝑙).   

 
Figure 8: The object’s position can be estimated by calculating the 
distance it has rolled from the initial position.   



  

Mohtasham et al. [14] was used to align weights of 7.75 grams, 
19.04 grams, and 29.70 grams with the center of each sensor. 
The readings were linearly fitted to calculate the calibration 
parameters for each sensor. 

C. Rolling Experiments 
A pre-defined manipulation procedure was implemented 

for this experiment as outlined in Table 1. 

During this procedure, the measurements of the barometric 
sensors were collected at a rate of 45 Hz. Due to a faulty sensor 

at the base of the tactile array, only the middle ten sensors were 
utilized. The starting positions and orientations of the objects 
are deliberately varied, by placing the object randomly within 
a range of 20 millimeters centered at the sensor array’s 
midpoint, and at a random angle. This variation captures more 
information on how the sensors reacts when a corner of an 
object is pushed directly onto a barometric sensor versus 
somewhere between two sensors. This is highly necessary due 
to each sensor’s asymmetric design, whose effect is explained 
later in this section.  

The procedure was repeated 30 times for the cylinder, 
hexagonal prism, and for the cuboid, resulting in 90 
spatiotemporal samples. No object sliding was noticeable 
during all rolling experiments. The duration of each data 
collection run is slightly different due to object shape and 
initial condition, varying from 32.6 seconds to 33.8 seconds. 
1500 ± 50 data samples for each of the ten sensors were 
collected for each run, resulting in a dataset of dimensions 90 
by 10 by 1500 ± 50.  

Fig. 10 presents one collected spatiotemporal data sample 
each for rolling the square, circle, and hexagon shaped objects, 
following sensor calibration and processing the data via a 
moving average filter with a window size of 20 samples. The 
plots are presented both as temporal heatmaps (where brighter 

 
Figure 10: Heatmaps for the tactile data collected through rolling (left) and line plots for selected sensor channels between 18 and 32 seconds (right).  

TABLE I.   PREDEFINED ROLLING PROCEDURE 

Step  Description 

1 

Both fingers start perpendicular to the base with the object 
between tactile sensors 6 and 7. This arrangement is illustrated 
in Fig.5, image 3. The sensor finger is assigned as the pushing 
finger. 

2 Rotate the pulling finger clockwise by 44 degrees. The pushing 
finger ensures a firm grasp of the object. 

3 Swap pushing and pulling finger and rotate the new pulling 
finger counterclockwise by 88 degrees. 

4 Swap pushing and pulling finger again and rotate the pulling 
finger back until perpendicular to the base. 

 



  

colours relate to higher sensor readings at that time instance) 
and line plots of the individual amplitudes of two selected 
sensors over time.  

D. Feature Extraction Algorithm 
From the temporal heat plots in Fig. 10, it is clear that most 

of the values for each sensor channel at a specific time are zero. 
Further inspecting the line plots for the selected channels and 
time frames, we observe that the contact between the objects 
and the tactile array result in differently shaped peaks on each 
sensor channel. The goal of our feature extraction algorithm is 
to describe those peaks.  

Fig. 11 attempts to give some insight into the structure of 
the rolling data collected by the barometric sensors when it 
encounters object corners (edges) compared to flat surfaces 
(faces). When rolling a polygonal prism over the tactile array, 
the flat surfaces only briefly meet the sensing finger, whilst the 
object is pivoting over an edge most of the time. Hence, an 
edge creates a much wider peak (sensors channel 3 in Fig. 11) 
compared to a flat surface (sensor channel 4 in Fig. 11). Thus, 
the width of a peak is an important feature to excerpt. 

Flat surfaces also create less pressure when meeting a 
sensor as the force (provided by pressure from the opposing 
finger) is distributed across a larger surface area, resulting in a 
lower amplitude. Consequently, the amplitude of a peak is 
another important feature. 

Comparing the peaks at sensor 3 and 5 in the same figure, 
it may be seen that the shapes are different, albeit both being 
created by an edge. Sensor 3’s peak has a distinct negative 
skew, whereas sensor 5’s peak is more symmetric. The 
negative skew is possibly explained by the positioning of the 
edge relative to the barometric sensors underneath—an edge 
slightly left to a sensor’s center (assuming the object is rolled 
towards the right) would have the highest sensor reading when 
the next flat surface is almost reached, at which point the 
object briefly presses against the center of the underlying 
sensor. However, a symmetric peak does not necessarily entail 
that the edge is directly placed above the sensor center. Each 

Bosch barometric sensor in the TakkStrip 2 array has an 
asymmetric design, with the sensor hole placed closer to one 
end of the sensor. This means that the same force applied at 
the same distance to the sensor center, but on opposite sides, 
would result in different readings. Nevertheless, although not 
straightforward, the skewness of a peak (i.e. its degree of 
asymmetry) likely holds information on the position of edges. 

 Finally, the time instance of each peak’s center (measured 
from the start of the rolling manipulation) is stored as another 
feature.   

Table 2 summarizes the features extracted from each peak 
and explains how they are calculated. As our predefined 
rolling procedure rolls an object over each sensor twice, each 
sensor usually picks up a maximum of two peaks. Hence, we 
decided to allocate two sets of these four features to each of 
the ten sensors, resulting in 80 features in total. Fig. 12 
presents an example of marked peak features for rolling a 
hexagon. 

E. Machine Learning Model 
The goal of the model is to classify the tactile data into the 

three object categories, using the extracted features as inputs. 
The Classification Learner tool, part of MATLAB’s Machine 
Learning and Deep Learning toolbox, was used to train and 
compare various classification models. 

Principal component analysis (PCA) is applied to the 
feature set before training, generating 22 components with a 
95% variance.  Table 3 presents the accuracies for a selection 
of classification models using three-fold cross validation. An 
ensemble of Random Subspace and K-Nearest Neighbors 

 
Figure 11: Pressure data as a hexagonal object rolls directly over the 
sensors. Sensor channel 3 is in contact with the object’s edge, whereas 
channel 4 is in contact with a flat surface. A black dot on each barometric 
sensor indicates the sensor hole, which is the most sensitive region. Note 
that this hole is not centered, causing asymmetric sensor behavior. 

TABLE II.   EXTRACTED FEATURES FOR EACH SPIKE 

Feature Description 

Amplitude The maximum measured pressure during a peak. 

Time-to-peak (TTP) The time at the peak value, measured from the 
start of the predefined rolling procedure.  

Peak width 
Duration from when the value first rises above 
the thresholda (startpoint), to when it first drops 
below the threshold again (endpoint). 

Skewness 

Defined as the time difference between the 
temporal mid-point and the TTP of a peak, 
divided by the peak width and multiplied by a 
factor of 100. 

a. The threshold is defined as a measured pressure of 0.05 units, or 20% of the 
maximum reading within a sensor channel, whichever is larger. 

 

 
Figure 12: Sensor channels 3 to 5 of rolling a hexagon with the 
following peak features marked for each peak: startpoint (green right-
pointing triangle ►), endpoint (red left-pointing triangle ◄), time-to-
peak and amplitude (purple down-pointing triangle ▼), and temporal 
mid-point (black diamond ◆). 



  

(Subspace KNN) stands out with a validation accuracy of 
95.6% and is our model of choice. 

IV. RESULTS 
Fig. 13 shows the cross-validation confusion matrix of the 

trained Subspace KNN model. Three squares and one hexagon 
were wrongly predicted to be hexagons and a circle 
respectively. The validation accuracy of 95.6% indicates that 
our feature extraction method can retain enough information 
to recognize objects via a machine learning approach. 

Comparing the surface plots of a wrongly predicted square 
against an example of a correctly predicted one (Fig. 14), the 
reason for the misclassifications is not obvious. Visually, the 
wrongly predicted surface plot is identifiable as a square and 
is similarly or even less noisy compared to the example of a 
correct one. However, inspecting the extracted peak features 
from the whole dataset, a small number of peaks are 
incorrectly identified for both correctly and incorrectly 
classified shapes. For example, the bottom sample in Fig. 14 
only marked a small portion of the wide, negatively skewed 
peak as a peak. The top sample on the other hand, identified a 
wide peak as two separate peaks. The incorrectly identified 
peaks likely have negatively impacted the prediction as well 
as training of the model, making them a possible reason for the 
small observed validation error.  

 

 

V. CONCLUSIONS 
The work presented has demonstrated a novel robotic 

gripper designed for tactile rolling tasks with extended surface 
object contact. In addition, a novel feature extraction algorithm 
was designed to capture information on object’s local shapes 
at contacts with the tactile sensing surface (e.g., corners and 
flat surfaces). 

The robotic hand maximizes the contact area between 
object and tactile array by dynamically adjusting the distance 
between the rotary joints at the two finger bases.  

The feature extraction algorithm significantly decreases 
the data dimensions of the collected tactile data. The extracted 
features retain enough information to successfully perform 
object shape classification via an ensemble of Random 
Subspace and K-Nearest Neighbors machine learning models. 

This work acts as a proof-of-concept for the proposed 
robotic hand and feature extraction algorithm, and 
consequently has a large scope for improvement. Firstly, the 
peak detection algorithm occasionally misidentifies start- and 
endpoints and needs to be improved upon. Secondly, the pre-
defined rolling procedure currently rolls an object across the 
tactile array twice. It should be investigated if a single rolling 
motion can achieve similar results, which would more than 
half the rolling time and half the required feature set.  

Finally, the extremely high classification accuracy 
indicates that more difficult machine learning tasks are 
possible. Such tasks include increasing the number of possible 
shape categories, and dealing with irregular objects and object 
pose estimation. Furthermore, we believe that extensions of 
this algorithm would allow further determination of corner and 
face characteristics, such as angle and spacing. This could pave 
the way for our longer-term goal of tactile shape reconstruction 
via IHM. 

 
Figure 13: The validation confusion matrix of the trained Subspace 
KNN model via three-fold cross-validation. 

 
Figure 14: Comparison of a wrongly predicted and a correctly predicted 
square. 

TABLE III.  THREE-FOLD CROSS VALIDATION ACCURACIES 

Model Validation 
Accuracy 

Linear Discriminant 62.2% 

Gaussian Support Vector Machine (SVM) 82.2% 

K-Nearest Neighbors (KNN) 70% 

Ensemble: Bagged Trees  75.6% 

Ensemble: Random Subspace with KNN 95.6% 

SVM Kernel 76.7% 
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