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Abstract. Assessing the structure and function of the right ventricle
(RV) is important in the diagnosis of several cardiac pathologies. How-
ever, it remains more challenging to segment the RV than the left ventri-
cle (LV). In this paper, we focus on segmenting the RV in both short (SA)
and long-axis (LA) cardiac MR images simultaneously. For this task, we
propose a new multi-input/output architecture, hybrid 2D/3D geomet-
ric spatial TransformEr Multi-Pass fEature pyRAmid (Tempera). Our
feature pyramid extends current designs by allowing not only a multi-
scale feature output but multi-scale SA and LA input images as well.
Tempera transfers learned features between SA and LA images via layer
weight sharing and incorporates a geometric target transformer to map
the predicted SA segmentation to LA space. Our model achieves an av-
erage Dice score of 0.836 and 0.798 for the SA and LA, respectively, and
26.31mm and 31.19mm Hausdorff distances. This opens up the potential
for the incorporation of RV segmentation models into clinical workflows.

Keywords: Cardiac MRI · Right Ventricle · Segmentation · Multi-View
· 2D/3D Network · Spatial Transformer · Feature Pyramid.

1 Introduction

Cardiac Magnetic Resonance Imaging (MRI) is the most widely used imaging
technique to quantify the structure and function of the heart [1]. As such, it
can be used to assess the right ventricle (RV) and contribute to the diagnosis
and monitoring of cardiac pathologies such as coronary heart disease, pulmonary
hypertension, dysplasia and cardiomyopathies [5, 6].

Despite the RV’s importance, the left ventricle (LV) has traditionally been
analysed in greater detail due to its pivotal role in a wider range of patholo-
gies [17]. The RV is more challenging to accurately segment for both clinicians
and (semi-)automated algorithms [3, 17]. This is due to the RV’s more complex
crescent shape, thinner ventricular wall and heavier presence of wall trabecula-
tions compared to the LV [8,17].
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In this paper, we focus on RV automatic segmentation as part of the ”Multi-
Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac
MRI ” (M&Ms2) challenge [16]. We propose a novel hybrid 2D/3D deep neural
network that takes both short-axis (SA) and long-axis (LA) images as inputs.
It includes a novel multi-input/output feature pyramid that facilitates weight
sharing across SA in-plane slices and between the SA and LA views. Additionally,
we include a geometric target spatial transformer that utilizes the known spatial
relationship between the different cardiac views.

2 Methods

Data The end-diastolic (ED) and end-systolic (ES) cardiac MRI image phases
used for the experiments come from a 360-subject bSSFP CINE MRI dataset
publicly available through the M&Ms-2 challenge [16]. The dataset is obtained
across different sites, different vendors and has pathologies in the test set not
included in the training. The available ground truth has manual segmentations
of the LV and RV blood pool and the LV myocardium. From this set, 160 cases
are dedicated for training. The remaining 40 and 160 cases are the development
and test sets used for their respective phases in the competition. We further split
the 160-case training set to 150 for model training and 10 for validation.

Preprocessing As the images were acquired across different centers and
vendors, they need to be standardized before being passed to the model. The
resolution of both SA and LA images was resampled to 1.25 × 1.25 mm in-plane
using b-spline interpolation. The through-plane spacing was left unchanged at 10
mm. We first automatically identify a region of interest (ROI) containing the RV
and LV by applying Canny edge detection on the ED and ES image difference,
then using the circular Hough transform to identify the heart. This allows us
to identify the regions in the image that have the largest movement across the
cardiac cycle, which we assume to be the heart. The image size was standardized
to 192 × 192 × 17 through center ROI cropping. Finally, we standardize the
cropped image such that it has a mean of zero and unit variance.

Additionally, we identify the affine transformation between the SA and LA
images, which will subsequently be used in the segmentation network. The LA
is treated as a 3D image (by adding a depth axis of size 1), thus allowing for a
3D/3D registration to take place. We pre-align the images based on the avail-
able file metadata of the images. For the registration, we follow a coarse-to-fine
blurring approach to initially align with global features before finer ones. The
registration is optimized to maximize the mutual information score. This is done
using the SimpleITK package.

Model:Architecture To simultaneously segment the SA and LA images, we
propose a new hybrid 2D/3D geometric spatial TransformEr Multi-Pass fEature
pyRAmid (Tempera) network, as shown in detail in Figure 1. Our architecture
consists of 2D SA/LA hard-weight sharing layers, independent 3D (SA) and 2D
(LA) branches and finally a geometric spatial transformer.
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Fig. 1. An overview of the architecture of the hybrid 2D/3D Tempera network. It
receives the individual 2D in-plane slices for both the SA and LA as inputs to the
feature pyramid component. Then, the short-axis slices are used to reconstruct the 3D
representation and each image view is passed to their respective 2D/3D convolutional
branch. Finally, the predicted SA segmentation is transformed to the LA space to
improve its prediction.

For the shared layers, we extend the Multi-scale Feature Pyramid network
[14] to an architecture that we call Multi-Pass Feature Pyramid (MPFP). In the
MPFP, the weight sharing, and thus internal (3x3) feature transfer, is achieved
across the SA and LA in-plane slices and between the SA slices themselves. We
are thus able to share features across all slices that relate to the RV shape,
texture and contrast relative to the surroundings. The (partial) scale-invariant
input/output of MPFP is designed to help Tempera generalize to unseen patholo-
gies, such as dilated RV. An example is shown in Figure 3 in which we base our
assumption. The specific implementation details of our pyramid can be viewed
in Figure 2.

Our second component is the Geometric target Spatial Transformer (GST),
depicted in Figure 4. This is a differentiable non-trainable component, that we
have built upon the spatial transformer from [2]. It applies transformations be-
tween different domain and target spaces, such as 3D to 2D and vice versa.
The GST takes as input the pre-computed affine matrix to perform relevant
coordinate transformations from the SA to LA. Specifically, we utilise it on the
predicted SA segmentation to localize the RV in the LA.

Model:Optimizer We use the Adam optimizer [11] with: exponential decay
rates for first moment estimates β1 = 0.9 , second moment estimates β2 = 0.999
and ε = 10−8 to avoid division with 0. Additionally, we use an empirically-chosen
initial learning rate of 5×10−4, accompanied by a learning rate decay of 0.9 every
30 epochs.
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Fig. 2. Architecture of our proposed Multi-Pass and multi-scale input/output Feature
Pyramid (MPFP). The downsampling component in block A consists of two 2D con-
volutional layers, followed by a pooling and padding layer. Similarly, the upsampling
layer, block B, has two 2D convolutional layers, a cropping operation and finally bilin-
ear upsampling. The skip connection in C contains a 2D convolutional layer followed
by a summing operation and a squeeze-and-excitation component [10] to scale features.
Finally, D illustrates how the components interact to form the MPFP. 2D convolutional
layers are used to generate consistent feature sizes for the inputs and also to merge
the outputs. After every layer we use a Scaled Exponential Linear Unit (SELU) [12]
activation function, with exception the last layer of the skip connection uses a sig-
moid. The input data to the pyramid is passed n times and generates n outputs, where
n = 3 is the number of pyramid levels. Each subsequent pass goes through one less
downsampling and upsampling layer.

Fig. 3. Illustrative examples of how the feature pyramid may allow a hypothetical
feature transfer to an unknown pathology for the network (dilated RV). Image A depicts
SA basal slice of a patient with dilated RV. Image B is the downsampled version of
image A by the MPFP in the first block. Finally, image C shows the SA basal slice of
a healthy subject. The RV in images B and C are roughly of equal size. This allows
feature transfer to untrained dilated RV cases.
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Fig. 4. The Geometric target Spatial Transformer (GST) affine transforms and resam-
ples using linear interpolation the predicted segmentation from the SA to LA space,
given an affine matrix as input. Their spatial relationship is stored in the image’s
metadata, in which we further correct with an affine registration algorithm.

Model:Loss Function We minimized the combined [18] equal weighted
Dice and focal loss (multiplicative weighted cross-entropy) [15] functions. We
set the focal loss class weights α = 0.25 and relaxation term γ = 2.0. Through
our experimentation, we found that including the Dice loss improves the learn-
ing during initial epochs. The focal loss contributes during the later stages by
dealing with class imbalance, in which background pixels outweigh foreground
ones. Additionally, it helps with difficult to classify areas regardless if they are
foreground or background. We set a λ of 75 for the SA loss and 1 for the LA.
The equation is formed as bellow, where p is the probability of the ground truth
label:

LDice(pt) = 1 − 2 × true positivept
2 × true positivept + false positivept + false negativept

(1)

LFocal(pt) = −at × (1 − pt)
γ × log(pt) (2)

LTotal(pSAt, pLAt) =λSA × (LDice(pSAt) + LFocal(pSAt)+

λLA × LDice(pLAt + LFocal(pLAt)
(3)

Model:Hyperparameters We use LeCun weight initialization [12,13] from
a normal distribution and set the biases to zero. This is done to maintain the
self-normalizing property when using Scaled Exponential Linear Units (SELUs)
[12]. Also, we set the batch size to 1 due to memory limits and train for 300
epochs, which took nearly 16 hours to complete. The source code is available at
https://github.com/cgalaz01/mnms2_challenge.

Model:Data Augmentation To prevent the model from overfitting and
to expand the dataset, we perform data augmentations. These include: in-plane
rotations, in-plane anisotropic scalings, blurring, Gaussian noise addition, mean
intensity shift and removing square segments of the image (in-painting). We use
randomly selected parameters at each data iteration for each epoch.

Model:Data Postprocessing We found that our model will occasionally
identify surrounding tissues as the RV. To circumvent this, we added a post-
processing step, in which only the largest connected region will be considered

https://github.com/cgalaz01/mnms2_challenge
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as a valid prediction. Additionally, we apply a median filter to correct some of
the interpolation errors caused by transforming back to the domain space using
nearest neighbor interpolation.

3 Results

Tempera is able to accurately segment both the SA and LA views. On the
test set we obtain 0.836 ± 0.23 Dice score and 26.31 ± 52.68 mm Hausdorff
distance for the SA. The LA has a lower performance with 0.798 ± 0.28 Dice
score and 31.19 ± 31.19 mm Hausdorff distance. From the predicted tests cases,
there were a total of 11 SA and 20 LA that most likely failed during the ROI
detection process, thus returning empty segmentations. Full details of the results
are shown in Table 1.

A representative segmentation of the SA and LA images can be seen in Figure
5. Tempera’s segmentations closely match the ground truth labels, except in the
LA basal slices, where Tempera occasionally under-segments the RV.

Dataset
Dice Score Hausdorff Distance (mm)

SA LA SA LA

Validation 0.895 ± n/a 0.829 ± n/a 11.8 ± n/a 15.118 ± n/a

Testing 0.836 ± 0.23 0.798 ± 0.28 26.31 ± 52.68 31.19 ± 71.29

Testing (no
failures)

0.896 ± 0.05 0.899 ± 0.06 18.384 ± 24.99 14.186 ± 26.86

Table 1. Summary of Tempera’s performance on the (competition) validation and test
sets using Dice score and Hausdorff distance. The test set’s evaluation was repeated
(no failures), in which we removed cases where the preprocessing step failed.

Fig. 5. A representative example from the development set of RV segmentation on the
LA and SA images, showing how Tempera is able to delineate the RV successfully.

4 Discussion

Tempera network can perform RV segmentation well on a challenging dataset.
By designing a model that interchanges between 2D and 3D space, we can reap
several benefits. Using the SA as 2D slices rather than just a 3D volume, we are
able to effectively increase the number of available training data. On the other
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hand, when using 3D operations the network has the option to utilize structural
information between slices to improve its performance. Finally, we exploit these
geometric redundancies to improve the LA segmentations by using the GST.

The preprocessing ROI detection and standardization is an important step
when dealing with data variation from different scan vendors. By detecting a
small ROI which contains the RV, we can minimize erroneous segmentations,
minimize the network learning irrelevant background features and allow for a
smaller model. However, the detection may fail in the presence of pathology,
artefacted or low SNR images and, in future work, we plan to improve this heart
detection step. Short-term it can benefit from restricting the detection within a
central region of the image. Additionally, we can take advantage of the spatial
alignment of the LA and SA to project the centres from one image space to the
other. In the long term, it can be improved by using a neural network-based
detector.

There has been limited work done on incorporating the multiple views of
cardiac MRI to improve the segmentation of cardiac chambers. [7] et al use
the long axis views as shape priors for their short-axis cardiac segmentation.
However, they restricted their investigations to the left myocardium, whose shape
is much more regular than the RV’s. Thus, their approach cannot be directly
applied to the RV. Furthermore, the authors of [9] focus on preprocessing and
data augmentation techniques to solve the data domain shift presented between
different scan vendors and clinics, as part of the first M&Ms challenge [4]. For
the RV segmentation, they obtained an average Dice score of 0.88.

5 Conclusions

For the M&Ms2 challenge, we propose the Tempera network to segment the
right ventricle in the SA and LA cardiac MRI. Tempera uses both views and
shares the learned features between them through hard-weight layer sharing in
2D space. A non-trainable spatial transformer, GST, allows for efficient sharing
of information between the cardiac views.

Our Tempera network can seamlessly be extended to also segment the LV and
the myocardium. Additionally, it can be updated to incorporate other chamber
views, such as 2-Chamber and 3-Chamber. The only modification needed for this
is the inclusion of additional convolutional branches.

Furthermore, we can improve the robustness of the network by utilising the
temporal information (ED and ES). We can compute the deformation matrix
across the cardiac cycle. Then, we can pass the deformation matrix to the GST
to associate the temporal information between the ED and ES phases.
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