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Abstract—The post-training compression of a Convolutional
Neural Network (CNN) aims to produce Pareto-optimal de-
signs on the accuracy-performance frontier when the access
to training data is not possible. Low-rank approximation is
one of the methods that is often utilised in such cases. How-
ever, existing work considers the low-rank approximation of
the network and the optimisation of the hardware accelerator
separately, leading to systems with sub-optimal performance.
This work focuses on the efficient mapping of a CNN into an
FPGA device, and presents StreamSVD, a model-accelerator co-
design framework 1. The framework considers simultaneously
the compression of a CNN model through a hardware-aware
low-rank approximation scheme, and the optimisation of the
hardware accelerator’s architecture by taking into account the
approximation scheme’s compute structure. Our results show
that the co-designed StreamSVD outperforms existing work that
utilises similar low-rank approximation schemes by providing
better accuracy-throughput trade-off. The proposed framework
also achieves competitive performance compared with other post-
training compression methods, even outperforming them under
certain cases.

I. INTRODUCTION

CNNs are widely utilised in image processing and computer
vision fields as they outperform their counter-parts and achieve
state-of-the-art accuracy in many tasks [1]. In real world, a
high-performance image processing system is often required to
maximise accuracy with other performance metrics including
throughput, latency and energy. As such, growing interest has
risen in the deployment of CNNs on specialised hardware
and the design of CNN accelerators. Within the accelerator
landscape, FPGAs are often targeted as a possible accelerator
platform as they can offer advantages in power-sensitive and
resource-constrained applications [2], [3].

Redundant CNN models, which are designed for general-
purpose GPUs, cannot be efficiently deployed on FPGAs [4].
As such, recent research focuses on the design of tailored light-
weight models [5] and the derivation of compressed models
to push the accuracy-performance trade-off frontier. In cases
where training data are not available due to privacy or security
reasons, training-free compression methods, also known as
post-training compression, have attracted the attention of the
research community.

This work focuses on the topic of post-training compression
and accelerator co-design for producing Pareto-optimal design
points on the accuracy-throughput frontier. The problem that

1https://github.com/Yu-Zhewen/StreamSVD

is addressed here can be formulated as follows: Given a pre-
trained CNN model M , the objective is to identify a set of
compressed models M ′ and their corresponding hardware
accelerators H ′ which belong on the Pareto-optimal accuracy-
throughput trade-off (A, T ) for a target FPGA device D
without the possibility of a model retraining step.

Popular post-training compression methods mainly include
pruning, quantisation and low-rank approximation [4]. Pruning
compresses a pre-trained model by removing unimportant
connections between neurons, where quantisation reduces the
wordlength of the variables that store the weights and activa-
tions in the model. Low-rank approximation decomposes the
weight matrices in the model through matrix factorisation and
replaces decomposed matrices with their low-rank versions,
reducing the number of operations and memory storage. This
work focuses on low-rank approximation, more specifically
on Singular Value Decomposition (SVD), for addressing the
post-training compression problem.

So far, existing work that utilises SVD low-rank approxi-
mation develops the compression algorithms and the hardware
accelerators separately [6], [7]. As the existing compression
algorithms are driven solely by reducing the number of op-
erations and the number of parameters in the model, their
solutions lead to sub-optimal designs [8]. Furthermore, a
number of them aim to design a general-purpose accelerator
instead of customising the hardware for the compute structure
and memory requirement of the low-rank approximated model.
To address these two issues, we propose StreamSVD, a
framework that considers the SVD low-rank approximation
algorithm and the accelerator’s architecture simultaneously
with a focus on a streaming accelerator architecture suitable
for throughput maximisation. Our main contributions are:
• A novel fine-grained low-rank approximation algorithm

that is tailored for a streaming architecture accelera-
tor, producing design points on the accuracy-throughput
frontier for a given set of FPGA resources. Key to our
approach is that utilises accelerator information including
the latency and folding factor to guide the decisions on
the low-rank approximation, leading to a hardware-aware
compression.

• We demonstrate that low-rank approximation and quan-
tisation approaches can be efficiently combined through
an iterative methodology. Our proposed approach exposes
the quantisation error in the decomposition stage itera-



Fig. 1: The overview of proposed StreamSVD framework

tively, reducing the overall impact of quantisation.
• We analyse the advantages on using a streaming archi-

tecture for mapping the low-rank approximated CNN as
opposed to other architectures, and we demonstrate that
the streaming architecture introduces less overhead.

II. RELATED WORK

A. Pruning

Pruning aims to remove unimportant connections between
neurons. In order to evaluate the importance of a connec-
tion, a common method is to compare the magnitude of
the weights corresponding to the connection [9], [10]. Alter-
natively, Molchanov et al. has proposed a Taylor-expansion
importance criterion which compares the gradient of the loss
function with respect to weights [11]. The importance evalu-
ation and the pruning can be carried out on each connection
individually, which creates an unstructured sparsity. As such,
the acceleration of such sparse CNN models requires customis-
ing the data transfers [12]. To reduce the effort of hardware
customisation, pruning approaches have been proposed that
are more coarse-grained and structured [13], [14]. For exam-
ple, channel pruning has been widely supported for various
accelerators [15]. We refer readers to [4] for further details
on pruning algorithms and the impact on hardware accelerator
designs.

In this work, we analyse the similarity between channel
pruning and low-rank approximation, and demonstrate how the
Taylor-expansion channel pruning algorithm can be adapted
for low-rank approximation.

B. Quantisation

Early work on fixed-point quantisation utilised the same
wordlength and the same scaling factor across the whole
network [16], [17], leading to simple and efficient hardware
implementations. As the dynamic range of weights and activa-
tions varies between different parts of the network, per-layer
and per-channel quantisation have been proposed, also known
as Block Floating Point (BFP) quantisation approaches, which
allow each layer and each channel to have a corresponding
scaling factor [18], [19]. Wang et al. [20] applied mixed
precision quantisation to solve the dynamic range problem,
where the mixed precision quantisation has been implemented

through bit-serial computations [21]. We refer readers to [4],
[22] for the state-of-the-art quantisation methods and their
hardware designs.

Previous work claimed the quantisation and SVD low-rank
approximation are orthogonal without providing further insight
on how they can be combined [23]–[27]. We revisit this
claim and an iterative combination of quantisation and SVD
is proposed that utilises SVD to compensate the quantisation
error in a retraining-free way.

C. SVD Low-rank Approximation

Qiu et al. [18] utilised SVD to decompose the 2-d weight
matrix of a fully connected layer. For the convolutional layer,
the 4-d convolution weight matrix is unfolded into 2-d so
that SVD can be applied to the unfolded matrix [28], [29].
Alternatively, Jaderberg et al. [30] and Wang et al. [31] sliced
the 4-d convolution weight matrix to obtain a group of 3-
d matrices. Afterwards, each 3-d matrix was independently
unfolded to 2-d and then decomposed by SVD. In this paper,
these different methods of applying SVD to the convolutional
layer are referred to as “decomposition schemes”.

Although previous work has explored various decomposi-
tion schemes, they do not explore the possibility of tailoring
each convolutional layer to a specific scheme, but rather
impose all layers to adopt the same scheme. By contrast, this
work allows each convolutional layer to be mapped to the most
appropriate decomposition scheme.

In terms of selecting the decomposition rank across the
layers in a model, Tai et al. proposed a trial-and-error method
[29]. They selected the smallest decomposition ranks for which
accuracy degradation was smaller than 1%. To address the
long execution time of the trial-and-error approach, Zhang
et al. [32] proposed a one-shot method which compares the
magnitude of eigenvalues. This eigenvalue method simplified
the rank selection problem and has been widely used in recent
research [7], [33]. This work proposes a novel rank selection
method based on Taylor-expansion, which outperforms the
eigenvalue method.

For hardware implementations, existing work has deployed
low-rank approximated CNNs on accelerators with the single
computation engine architecture [6], [7]. Single computation
engine only has one set of processing elements (PEs) which
is time-shared among all the layers. Weights and activations
are usually stored on the off-chip memory [2]. As a result,
existing work is more likely to be memory-bound because
low-rank approximation increases the depth of a CNN. In
addition, single computation engine cannot tailor the hardware
to the computation of every layer, which restricts the choice
of decomposition schemes. This work considers the low-rank
approximation algorithm and the streaming architecture jointly
to solve these problems. Streaming architecture allocates ded-
icated PEs to each layer in order to construct a layer-wise
pipeline [2]. Most streaming architecture designs store weights
on-chip and buffer activations with FIFOs to reduce off-chip
memory accesses [34].



TABLE I: Decomposition schemes considered in StreamSVD. “->” indicates two low-rank layers are sequentially connected.

scheme (S) original weight matrix unfolded matrix two low-rank layers
s0 [35]

MF×C×K×K

F groups of WKK×C Conv(1× 1, C,RF, 1) -> Conv(K ×K,RF, F, F )
s1 [28] WF×CKK Conv(K ×K,C,R, 1) -> Conv(1× 1, R, F, 1)
s2 [29] WFK×CK Conv(1×K,C,R, 1) -> Conv(K × 1, R, F, 1)
s3 [31] C groups of WF×KK Conv(K ×K,C,CR,C) -> Conv(1× 1, CR, F, 1)

III. SVD LOW-RANK APPROXIMATION ALGORITHM

A. SVD on Convolution

Consider a convolutional layer Conv(K × K,C, F,G),
where K, C, F , G denote the spatial kernel size, the number
of input feature maps, the number of output feature maps and
the number of groups. Its 4-d weight matrix MF×C×K×K

is firstly unfolded into the 2-d matrix W , following the
decomposition scheme S. Afterwards, W is decomposed into
two full-rank matrices W1, W2 by SVD. The process of
decomposition is equivalent to splitting Conv(K×K,C, F,G)
into two sequential-connected convolutional layers, which are
referred to as full-rank layers in the rest of this paper.

W = UΣV ∗ = (UΣ
1
2 )(Σ

1
2V ∗) = W2W1 (1)

After the decomposition, only the R largest singular values
are kept in Σ while the rest are truncated. Therefore, W1,
W2 are approximated by rank-R matrices Ŵ1, Ŵ2, which is
equivalent to replacing two full-rank layers with two low-rank
layers.

To obtain optimal compression results, the key is to deter-
mine the decomposition scheme S and the decomposition rank
R for every convolutional layer in the given model M .

B. Select Decomposition Scheme

Table I summarises four different decomposition schemes
considered in StreamSVD. For every convolutional layer, our
framework is able to select the most appropriate scheme from
the table. As (2), StreamSVD defines the most appropriate
scheme as the one which introduces the smallest l2 error under
the same number of operations.

min
S′∈{s0,s1,s2,s3}

||W − Ŵ2Ŵ1||2

s.t. OPs(Ŵ1) + OPs(Ŵ2) ≤ OPsavail (2)

OPs(Ŵ1) and OPs(Ŵ2) denote the number of operations in
two low-rank layers, while OPsavail specifies the operations
budget allocated to these two low-rank layers. StreamSVD
uses a majority vote to decide the best scheme after a sweep
of OPsavail, as Algorithm 1, where OPs(MF×C×K×K) rep-
resents the number of operations in the original convolutional
layer before low-rank approximation.

Our scheme selection algorithm is based on the following
assumptions:
• The per-layer choice of the best scheme is independent

with each other. In addition, the optimal scheme is
irrelevant to the value of OPsavail.

Algorithm 1 Scheme selection

Input: the original weight matrix MF×C×K×K

Output: selected scheme S
1: for OPsavail ∈ (0, OPs(MF×C×K×K)) do
2: calculate (2) to determine S′

3: end for
4: return S = majority(S′)

Fig. 2: The relationship between channel pruning and low-rank
approximation

• The l2 distance between the unfolded weight matrix W
and the product of low-rank weight matrices Ŵ1, Ŵ2

can indicate the level of accuracy degradation caused by
low-rank approximation.

C. Select Rank

After determining the decomposition scheme, the next step
is selecting the decomposition rank. Our method is interpreting
the rank selection problem as a special form of pruning. As
Fig. 2 shows, reducing ranks of W1, W2 is equivalent to
removing feature maps between two full-rank layers [36].

Our method firstly evaluates the importance of a feature map
f between two full-rank layers by the Taylor pruning criterion
[11], which is

If =
∑
w∈f

(w
∂L

∂w
)2, (3)

In (3), w is the element of W1. L is the loss function of the
decomposed CNN, whose value is computed on the validation
dataset.

StreamSVD then obtains the importance of the rank by
summing the corresponding feature maps’ importance, which
is shown in (4). Specifically, in s1 and s2, each rank corre-
sponds to one feature map, while for s0 and s3, each rank
corresponds F and C feature maps respectively because these
two decomposition schemes contain group convolutions.



(a) quantisation after SVD

(b) quantisation before SVD

Fig. 3: Exchange the order of quantiation and SVD

Ir =
∑
f∈r

If (4)

After determining the per-rank importance, the rest of our
rank selection algorithm can be described as follows:
• For each pair of low-rank layers, their rank is initialised

as Rlim which ensures the number of operations will not
increase after low-rank approximation, i.e., OPs(Ŵ1) +
OPs(Ŵ2) ≤ OPs(MF×C×K×K).

• The per-rank importance Ir is sorted globally in the
whole network.

• Keep removing the rank with the smallest importance
until the targeted compression ratio is met, which reduces
Rlim to the selected rank R.

D. Quantisation

Apart from SVD low-rank approximation, StreamSVD also
compresses the network through quantisation. This section
investigates how to combine low-rank approximation with
quantisation. Through a qualitative analysis, we demonstrate
quantisation and low-rank approximation are not orthogonal in
terms of the errors that they introduce. Therefore, StreamSVD
adopts an iterative approach to efficiently combine these two
compression methods.

1) Sequential Compression: Fig. 3 compares two flows
which sequentially compress a CNN with both of quantisation
and low-rank approximation.

In flow (a), W is firstly approximated by low-rank matrices
Ŵ1, Ŵ2, which injects the low-rank approximation error
Esvd into the convolution operation. This error is related to
singular values and singular vectors of W . Therefore, it can be
represented as a function of the unfolded weight matrix f(W ).
Afterwards, low-rank matrices Ŵ1 and Ŵ2 are quantised into
Ŵ1
′

and Ŵ2
′
. The quantisation error is related to the dynamic

range of parameters in Ŵ1, Ŵ2. Overall, the superposition of
the low-rank approximation error and the quantisation error is

Ea = f(W ) + g(Ŵ1, Ŵ2) (5)

In contrast, flow (b) swaps the order of low-rank ap-
proximation and quantisation. W is firstly quantised to W ′

Fig. 4: The proposed iterative combination of quantisation and
SVD

before being low-rank approximated. However, this is not the
only place that involves quantisation. The decomposition of
fixed-point numbers introduces a second quantisation error. In
addition, the low-rank approximation error Esvd in flow (b) is
a function of the quantised weight Wq rather than the original
weight W . The overall compression error of flow (b) can be
represented as

Eb = g(W ) + f(Wq) + g(Ŵq1, Ŵq2) (6)

Our experiment in section VI-B reveals Ea is evidently
smaller than Eb. Quantisation and low-rank approximation
are not completely orthogonal in terms of the error they
introduce. Therefore, the sequential combination of these two
compression methods is sub-optimal.

2) SVD Iterative Quantisation: Motivated by the previous
analysis, StreamSVD iteratively combines the SVD low-rank
approximation and quantisation, which is demonstrated in
Fig. 4. This iterative combination is inspired by the refinement
mechanism of SVD [37], [38].

As Fig. 4, our method converts the process of SVD into a
refinement loop containing R iterations. Each iteration aims
to approximate the “refinement target” W̃ by producing two
quantised rank-1 matrices. In the first iteration, W̃ is initialised
as the unfolded convolution weight W . Afterwards, the resid-
ual between the current “refinement target” and the product of
two quantised rank-1 matrices becomes the “refinement target”
in the next iteration. At the end of the loop, all quantised rank-
1 matrices are concatenated to constitute two quantised rank-R
matrices which are used as the weights of two low-rank layers.

IV. STREAMING ARCHITECTURE ACCELERATOR

A. Extension of fpgaConvNet

StreamSVD utilises fpgaConvNet [39] as the back-end tool
to deploy the compressed CNN onto the FPGA. fpgaConvNet
takes the compressed CNN as the input and constructs a layer-
wise pipeline, where the computation is performed in a stream-
ing manner. In order to maximise the pipeline’s throughput
under the resource constraints, fpgaConvNet applies a set of
transformations to the network.

The transformation defines the level of parallelism and
resource re-use. One important transformation technique in
fpgaConvNet is coarse-grained folding, which time-shares
PEs between feature maps of a layer. Each PE contains the
local memory for storing weights and the dedicated multiply-
accumulate unit for computing the corresponding feature map
[40]. Coarse-grained folding can be applied to both input
feature maps and output feature maps of a convolutional layer.



Fig. 5: Complete flow of StreamSVD

The level of the folding is defined by the transformation
parameter “coarse-grained folding factor”, which is the ratio
between the number of PEs and the total number of feature
maps F to compute.

fcoarse =
NPE

F
(7)

StreamSVD extends the idea of coarse-grained folding to
support the parallelism inside the group convolution, which
is required by s0 and s3 in Table I. Take s3 as an example,
the decomposition scheme contains a low-rank layer which
is Conv(K ×K,C,CR,C). This layer has C groups where
each group contains one input feature map and R output
feature map. StreamSVD is able to not only fold between
different feature maps but also fold between different groups.
By folding the groups, StreamSVD efficiently accelerates the
group convolution using the streaming architecture.

Apart from introducing a new dimension of folding,
StreamSVD also extends fpgaConvNet to provide accelera-
tor performance feedback, which makes the SVD low-rank
approximation hardware-aware. StreamSVD introduces two
hardware-aware techniques: folding factor padding and layer
reverting.

B. Folding Factor Padding

The inverse of coarse-grained folding factor is proportional
to the latency of computing all F feature maps. If this inverse
is integer and there is no pipeline stall, all PEs allocated to the
layer will be fully utilised in every clock cycle. However, since
the number of feature maps in the low-rank layer is related to
the rank R, the inverse of coarse-grained folding factor will
not be integer unless R is divisible by NPE .

As such, StreamSVD deploys the compressed CNN onto
the FPGA and gathers the folding factors of low-rank layers.
Using these folding factors, StreamSVD adjusts the SVD low-
rank approximation by padding the rank R to Rpad,

Rpad =

⌈
R

lcm(R · f1,out,R
coarse , R · f2,in,R

coarse)

⌉
(8)

“lcm” stands for Least Common Multiple. For each pair
of low-rank layers, f1,out,R

coarse is the folding factor for output
feature maps of the first low-rank layer and f2,in,R

coarse is the
folding factor for input feature maps of the second low-rank
layers.

The purpose of folding factor padding is using the accel-
erator feedback to constrain the choice of the rank, which
further encourages the PE utilisation on hardware. From
another perspective, the padding reduces the compression error

while maintains the throughput of the design. Compared with
heuristic padding method such as simply padding R to the
nearest power of two, our padding method is more device-
dependent and model-dependent because of folding factors.

C. Layer Reverting

StreamSVD also collects the latency feedback from the
accelerator. When the latency sum of two low-rank layers is
larger than the latency of the original convolutional layer, it
implies SVD does not bring throughput speed-up on hardware.
In such cases, the low-rank approximation on that layer will
be reverted.

Although low-rank approximation reduces the number of
operations and the number of parameters in the CNN, it
also introduces the overhead by making the CNN deeper.
SVD splits each convolutional layer of M into two low-
rank layers. The streaming architecture avoids extra off-chip
accesses between two low-rank layers. However, the overhead
remains in the extra accumulation units and extra buffers for
handling the intermediate data between two low-rank layers.
In addition, the reduction in weight parameters does not
necessarily lead to the reduction in the BRAM utilisation on
FPGA. Therefore, layer reverting helps StreamSVD to identify
the layers which do not benefit from SVD.

V. SYSTEM WORKFLOW

After introducing our compression algorithm and acceler-
ator design, the complete workflow of StreamSVD can be
described as follows:

• The given CNN model M is firstly compressed by
our low-rank approximation algorithm, which involves
selecting the proper decomposition scheme and decompo-
sition rank for every convolutional layer. Afterwards, the
quantised weight parameters are generated through our
iterative approach. As such, a set of compressed models
M ′

op with different compression ratios are generated.
• For each compressed model, it is deployed on the target

FPGA D by fpgaConvNet. This deployment outputs
the accelerator design H ′

op alongside the performance
information including the latency and folding factors.

• The accelerator performance information is used to adjust
M ′

op according to our hardware compression techniques
including folding factor padding and layer reverting. This
adjustment converts M ′

op to hardware-aware compressed
models M ′

hw.
• M ′

hw are mapped to the FPGA, which generates the final
accelerator designs H ′

hw.



(a) VGG11-BN (b) ResNet-18

Fig. 6: Majority voting results of the scheme selection

The objective of our framework is M ′
hw and H ′

hw can
optimise the accuracy-throughput trade-off.

arg max
M ′

hw,H′
hw

[A(M ′
hw), T (M ′

hw,H ′
hw)] (9)

VI. EVALUATION

The performance of StreamSVD is evaluated on pre-trained
VGG11-BN, VGG16 and ResNet-18 which come from Py-
Torch. The accuracy numbers are gathered on the ImageNet
validation set. The throughput numbers are generated by
fpgaConveNet targeting a Xilinx ZC706 board. 2

A. Select Schemes and Ranks

We firstly demonstrate the proposed scheme selection and
rank selection methods are superior to the existing SVD
algorithm.

According to Algorithm 1, we iterated over 65 different
values of OPsavail and the results of the majority voting
are demonstrated in Fig. 6. Our method is able to directly
determine the best decomposition scheme for most convolu-
tional layers. However, for those layers (conv5, conv6, conv7
in VGG11-BN and conv7, conv8, conv10, conv11 in ResNet-
18) which do not have an evident winner from the majority
voting, top-2 schemes are implemented on hardware and the
one that shows the best performance is finally picked.

Fig. 9 demonstrates the performance gain of our per-
layer scheme selection compared with “uniform scheme”.
The “uniform scheme” forces all the layers in the network
to adopt the same scheme. As this paper considers four
different schemes, we obtained four different trade-off curves
of “uniform scheme” and only demonstrate the best one in
Fig. 9. Our results imply there is no such a decomposition
scheme that is globally optimal for all the layers in a CNN.
Therefore, it is beneficial to select schemes in a fine-grained
and per-layer way.

In terms of the rank selection, our Taylor-expansion method
is compared against four other methods:

global singular: Proposed by Zhang et al. [32], the impor-
tance of rank R is estimated by ∆ε/ε

∆C . ∆ε is the R-th largest

2fpgaConveNet is responsible for mapping each compressed model to
hardware. During this mapping, fpgaConvnet searches the accelerator design
space to find the throughput-optimal solution. For VGG11-BN and ResNet-
18, the searching takes about 0.3 and 0.5 hour respectively using the single
core of Intel i7-9700 @3.00GHz. After the searching, fpgaConvnet invokes
the HLS tools to generate actual hardware, which can take up to days.

(a) VGG11-BN (b) ResNet-18

Fig. 7: Selecting ranks with different criteria

TABLE II: Comparison with Quantisation Only. (BitOPs =
OPs × weight wordlength × activation wordlength)

model method
parameter

size
(×109 bit)

BitOPs
(×1012)

Top-1
Accuracy

(%)

VGG11-BN

f32 4.251 - 70.41
w8a16 1.063 1.954 67.69
w6a16 0.797 1.465 0.12

StreamSVD
(w8a16) 1.048 1.465 67.60

ResNet-18

f32 0.374 - 69.64
w8a16 0.094 0.466 69.05
w6a16 0.070 0.349 53.41

StreamSVD
(w8a16) 0.066 0.349 67.51

eigenvalue of WTW and ε is the sum of all eigenvalues of
WTW . ∆C represents the OPs reduction after decreasing the
rank by one.

reconstructed l1: Estimate the importance of rank R by l1
reconstruction error ||W − Ŵ2Ŵ1||1

reconstructed l2: Estimate the importance of rank R by l2
reconstruction error ||W − Ŵ2Ŵ1||2

random search: Randomly choose the rank R in each layer.
Theoretically, this method can find the optimal rank as long
as enough searching time is given. However, it is usually
impractical to use this method as the searching time grows
exponentially with the depth of the network. Fig. 7 contains
200 data points for this method.

From Fig. 7, the proposed rank selection method is signif-
icantly better than others and its advantage is more obvious
when the compression ratio is high.

B. Quantisation

This section evaluates the iterative combination of quantisa-
tion and low-rank approximation in StreamSVD. The quanti-
sation in our framework utilises the fixed-point representation
which is linear asymmetric and without clipping.

We firstly demonstrate our method achieves higher accuracy
than using quantisaion only under the same BitOPs. From
Table II, both VGG11-BN and ResNet-18 suffer significant
accuracy degradation after quantising weights to 6 bits. How-
ever, with the same BitOPs, StreamSVD achieves 67.60% and
67.51% accuracy on VGG11-BN and ResNet-18 respectively.

In addition, comparing “w8a16 after SVD” and “w8a16
before SVD” which correspond to flow (a) and flow (b) in
Fig. 4, we find the order of applying quantisation and low-
rank approximation matters. A model which is firstly low-rank



(a) VGG11-BN (b) ResNet-18

Fig. 8: Combing SVD and quantisation. “w8a16” stands for
8-bit weights and 16-bit activations

(a) VGG11-BN (b) ResNet-18

Fig. 9: Accuracy-Throughput trade-off achieved by M ′
op and

M ′
hw. Top-right points are preferred. “uniform scheme” forces

all the layers to have the same decomposition scheme

approximated and then quantised achieves higher accuracy
than the other way around.

Finally, we confirm our iterative approach, which is anno-
tated as “w8a16 after SVD-Iterative” in Fig. 8, is superior
to other attempts of combining quantisation and low-rank ap-
proximation. Our iterative approach utilises SVD to regenerate
weights and compensate the quantisation error through the
residual operation in the refinement loop.

We notice the performance gain of our iterative approach
decreases, as the compression ratio of the network increases.
When the compression ratio becomes higher, the rank of SVD
is smaller, which leads to fewer iterations in the refinement
loop. We also observe our iterative approach is more beneficial
on VGG11-BN because VGG11-BN has a larger quantisation
error than ResNet-18.

C. Hardware-aware Compression

In this section, we evaluate the effect of hardware-aware
compression by comparing the performance of M ′

op and
M ′

hw.
From Fig. 9, although M ′

op always have smaller OPs than
the baseline, some of compressed models actually become
slower after the low-rank approximation. As M ′

op have no
knowledge on hardware, it is possible that the overhead over-
whelms the benefit of low-rank approximation. By contrast,
with the help of hardware-aware techniques, M ′

hw always
have higher throughput than the baseline and they achieve
better performance trade-off than M ′

op.

D. Channel Pruning versus Low-rank Approximation

We also compare our method with channel pruning in
Fig. 10. Without retraining, channel pruning causes evident

(a) VGG11-BN (b) ResNet-18

Fig. 10: Channel pruning without fine-tuning. Each data point
on the pruning curve removes 64 filters from the network.

(a) VGG11-BN (b) ResNet-18

Fig. 11: The contribution of OPs reduction to throughput
speed-up

accuracy degradation and brings limited speed-up on fpga-
ConvNet. Instead, StreamSVD provides up to 1.94x speed-up
with 4.10pp accuracy loss on VGG11-BN and 1.25x speed-up
with 3.57pp accuracy loss on ResNet-18.

As discussed before, low-rank approximation can be viewed
as a special type of channel pruning on the decomposed
network. Our results show pruning the decomposed network is
better than directly pruning the original network, when training
data are not available. This finding indicates the decomposition
makes the network potentially easier to be compressed.

E. Comparison with Other Frameworks

Finally, we compare our framework with other FPGA
accelerators in Table III. As the target device and resource
utilisation vary in different work, we define an efficiency met-
ric which normalises the throughput by the number of DSPs
and the clock frequency. Our framework outperforms existing
designs that exploit low-rank approximation by achieving
higher efficiency and better accuracy-throughput trade-off.
Furthermore, our method is competitive with other compres-
sion methods such as Block Floating Point (BFP) [43], [45]
and unstructured pruning [12], [41].

Our framework couples the SVD low-rank approximation
algorithm with the streaming architecture accelerator. To eval-
uate the effect of the architecture in more details, we also test
our low-rank approximation algorithm on SCALE-Sim [46],
a single computation engine design based on systolic arrays.
Ideally, halving the number of operations in a model should
bring 2x speed-up in throughput. StreamSVD achieves more
than 1.67x speed-up on VGG11-BN. By contrast, the speed-
up on SCALE-Sim is only 1.38x because DRAM accesses
increase by 29.9% after low-rank approximation. A similar



TABLE III: Comparison with other FPGA accelerators

Model Compression
method

Post
-training Device Clock

(MHz) DSP FPS Accuracy
(%)

Efficiency
(FPS/DSP/Clock)

(×10−9)
[12]

VGG-16

w16a16, pruning no XCZU9EG 200 1144 31 - 0.135
[41] w16a16, pruning no XCZU9EG 200 1352 46 - 0.170
[42] f16, low-rank no XC7VX690T 200 1728 6.58 70.46 0.019
[43] w8a16-BFP yes XC7VX690T 200 1027 24.73 68.26 0.120
[18] w16a16, low-rank yes XC7Z045 150 780 4.45 64.64 0.038
[44] w16a16, low-rank yes XC7Z045 140 864 5.5 - 0.045

fpgaConvNet [39] w16a16 yes XC7Z045 125 855 5.07 - 0.047
StreamSVD w8a16, low-rank yes XC7Z045 125 603 5.61 70.20 0.074
StreamSVD w8a16, low-rank yes XC7Z045 125 576 7.45 65.20 0.103

[45]
ResNet-18

w2a8-BFP, low-rank no XC7Z020 250 202 20.48 68.23 0.406
[44] w16a16 yes XC7Z045 140 864 6.6 - 0.055

StreamSVD w8a16, low-rank yes XC7Z045 125 576 33.77 1 68.39 0.469
1 Skip connection and elementwise addition are not taken into account

conclusion is also drawn for ResNet-18, where our hardware-
aware StreamSVD outperforms the systolic array architecture.

Streaming architecture avoids offloading the intermediate
data between two low-rank layers to the off-chip memory
and reading the data back with im2col. In addition, the
streaming architecture tailors the hardware to the computation
of every layer, which efficiently supports our fine-grained per-
layer scheme selection. Therefore, we conclude the streaming
architecture has evident advantages in mapping the low-rank
approximated CNN.

F. Limitation

The 1×1 convolution, also known as pointwise convolution,
has been widely used in light-weight CNN models. For exam-
ple, pointwise convolutions contribute roughly 92% OPs in
MobileNetV2 [47]. According to (2), pointwise convolutions
in MobileNetV2 evidently favour s0 and s3. Unfortunately,
one limitation of these two schemes is that they cannot
compress convolutions with small kernel sizes. From Table
I, the maximum rank (full-rank) of s0 and s3 is min(KK,C)
and min(F,KK) respectively. When K is one, the maximum
rank of both schemes is equal to one which leaves no space
for compression. Therefore, decomposition schemes in Table
I do not provide any speed-up for pointwise convolutions.

VII. CONCLUSION

This paper proposes a model-accelerator co-design frame-
work StreamSVD. The framework considers the SVD low-
rank approximation algorithm and the streaming architecture
accelerator simultaneously. As a result, StreamSVD outper-
forms existing work on low-rank approximation by present-
ing the best accuracy-throughput trade-off. Future work will
support more decomposition schemes such as “split-wise”
[48] to compress pointwise convolutions. Apart from SVD,
high-order decomposition methods including Tucker and CP
decomposition will also be explored on the state-of-the-art
CNN models. In addition, we will extend our work to other
tasks of computer vision especially in object detection and
semantic segmentation for more generality.
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