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Abstract— Automated inspection of energy infrastructure
with Unmanned Aerial Vehicles (UAVs) is becoming increas-
ingly important, exhibiting significant advantages over manual
inspection, including improved scalability, cost/time effective-
ness, and risks reduction. Although recent technological ad-
vancements enabled the collection of an abundance of vision
data from UAVs’ sensors, significant efforts are still required
from experts to interpret manually the collected data and
assess the condition of energy infrastructure. Thus, semantic
understanding of vision data collected from UAVs during
inspection is a critical prerequisite for performing autonomous
robotic tasks. However, the lack of labeled data introduces
challenges and limitations in evaluating the performance of
semantic prediction algorithms. To this end, we release two
novel semantic datasets (WTA and TLA) of aerial images
captured from power transmission networks and wind tur-
bine farms, collected during real inspection scenarios with
UAVs. We also propose modifications to existing state-of-the-
art semantic segmentation CNNs to achieve improved trade-off
between accuracy and computational complexity. Qualitative
and quantitative experiments demonstrate both the challenging
properties of the provided dataset and the effectiveness of the
proposed networks in this domain.

The dataset is available at: https://github.com/
gzamps/wta_tla_dataset.

I. INTRODUCTION

The high voltage power cable network is responsible for
transferring electricity and spans across the ground globally.
Meanwhile, considering the fact that wind energy met 16%
of European electricity demand in 2020, and is projected to
increase to 20% by 2022 and 25% by 2025, according to
the European Commission [1], the number of wind turbines
and their size are increasing. Thus, there is an immense need
for the inspection automation of such facilities, to allow the
smooth and efficient operation of infrastructure such as wind
turbine farms, power transmission networks and solar panel
installations, which usually extend to large areas and demon-
strate a sparse structure. Moreover, such facilities are often
located in distant areas, hard to be reached, with adverse
weather and environmental conditions. Thus, they introduce
challenges in maintenance and inspection, especially when
it is performed by human workers. Aerial supervision and
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Fig. 1. Sample images from TLA and WTA datasets in the left column
along with corresponding semantic ground truth maps in the right column.

surveillance with UAVs is becoming more popular, due to its
flexibility, safety and cost-effectiveness, compared with hu-
man supervision [25]. There is set of tasks that often included
in the inspections of large targets with UAVs, such as object
detection, navigation over specified target and close range
inspection. This requires some sort of semantic knowledge,
which can be provided a-priori or extracted during flight. In
order to facilitate a methodology and serve as a reference
point for similar problems, this work focuses on the delivery
of a dataset with aerial visual instances captured during real
inspection of transmission lines and wind turbines to enable
the automated extraction of useful semantic information
from visual feedback. More specifically, in the transmission
towers domain, the inspection tasks are 1) navigation over
power cables, 2) detection of transmission towers as points
of interest, 3) detection of vegetation around transmission
towers which may be hazardous for their regular operation
and 4) detection of insulators and acquisition of close-up
views for further inspection from experts or base station.

https://github.com/gzamps/wta_tla_dataset
https://github.com/gzamps/wta_tla_dataset


Similar tasks are defined for wind turbines including: 1)
detection of wind turbine towers from range and 2) detection
of wind turbine blades and acquisition of close-up views for
further inspection.

In order to deal with the above-mentioned inspection tasks,
it is essential for UAVs to be integrated with software mod-
ules that will facilitate their autonomous navigation through
context-aware path planning on information-rich semantic
maps. Integration of UAVs with RGB cameras and LiDAR
sensors, and their joint calibration with semantic annotations
allows a 3D semantic representation [26]. This enhanced
perception system enables UAVs to conduct automated close
proximity inspection in wind turbines, power towers and their
components, register defects and components in a 3D map
and finally transform it into a semantic map that can be
apprehended by human operators. The resulting reckoning
of the 3D position of targets leads towards optimal path
planning and automated inspection in energy infrastructures.
To create and process visual feedback with respect to the
discussed scenarios, we gather video sequences from flights
of manually operated drones that were performing the above
tasks.

Extracting semantic information from visual feedback
is important for ensuring safe and correct navigation by
providing the basic knowledge behind the mapped environ-
ment, defining targets, and avoiding collisions and dangerous
locations. Semantic segmentation is recent computer vision
task with the goal of assigning a class to every pixel in the
input image. Within the context of energy facility inspection,
pixel locations of critical objects such as transmission towers,
cables, insulators and wind turbine blades can be predicted
yielding semantically rich visual scene representations.

We summarize our contributions within the context of vi-
sual inspection of wind turbine farms and power transmission
networks:

• A new semantic segmentation dataset with images from
various locations of installed transmission towers and
wind turbines, along with carefully annotated relevant
classes.

• Adaptation of state-of-the-art semantic segmentation
network for real-time optimal operation in this semantic
domain using embedded GPU hardware.

II. RELATED WORK
A. Visual Inspection of Energy Facilities

Recent work has mainly focused on visual inspection
of defects from close range images. Qiu [2] proposed an
autonomous visual inspection system for wind turbine blade
inspection, which combines YOLO model [3] with an ad-
ditional CNN into a deep learning pipeline. Shihavuddin
[4] used the R-CNN object detection framework, with an
Inception-ResNet-V2 architecture backbone, to classify loca-
tions on turbine blades in four defect types which often ap-
pear in blades. Shihavuddin [5] suggested a holistic approach
for inspection of various targets including wind turbine
blades and solar panels, using a YOLO and EfficientDet
variants as detectors.

Fig. 2. Different types of wind turbine models included in the Wind Turbine
dataset.

Fig. 3. Transmission towers and power cable views from the 4 different
locations included in the Power Cable dataset.

The previous approaches consider the problem of process-
ing images captured from UAVs, however efficient scene un-
derstanding requires semantic information about the depicted
scene. Towards that direction, Moolan-Feroze [6] studied the
problem of simultaneous drone localisation and model fitting
for accurately mapping the target wind turbine object. A
skeleton parameterisation model of the wind turbine is used
and optimized, along with a pose graph representation of the
drone’s 3-D trajectory. Abdelfattah [7] proposed an instance
segmentation approach for aerial images containing trans-
mission towers and power lines, also arguing the importance
of semantic knowledge in such scenarios.

B. Semantic Segmentation

The effectiveness of most current semantic segmentation
algorithms depends on capturing long-range dependencies
between picture pixels and contextual interactions. [8],[9]
achieve that using dilated convolutions, effectively increasing
the receptive field of the network. The latter employs a
decoder to recover high resolution features lost in down-
sampling. Spatial Pyramid Pooling [10] is another technique
to expand the receptive field of a network by fusing fea-
tures from different strides. Aforementioned methods are



TABLE I
ENERGY FACILITY RELEVANT DATASET SPECIFICATIONS AND ATTRIBUTES

DTU-Nordtank TTPLA WTA TLA
Image Resolution 5280x2970 3840×2160 1920x1080 4000x3000
Training Samples 459 830 187 306

Validation Samples 100 270 37 43
Total Samples 559 1100 224 349

Classes Blade, Tower Cable, Lattice Tower Blade, Tower Tower, Insulator
Concrete Tower, Wooden Tower Cable, Vegetation

Capture Environments 2 80 3 4
Capture Distance (m) 5-40 N/A 5-100 40-60

Semantic Ground Truth No Yes Yes Yes

performance oriented. However, when targeting real-time
inference, a balance between accuracy and computational
complexity needs to be established. SegNet [11] proposed
an encoder-decoder architecture with skip connections and
transposed convolutions to handle upsampling, while GUNet
[12] fuses information from multi-scale input images using
a guided upsampling module. More recently, dual branch
approaches have gained ground due to their ability to split in-
formation flow in two complementary paths. BiSeNetV1 [13]
and BiSeNetV2 [14] increase the receptive field by introduc-
ing a deep path with strided convolutions, while a second
parallel path extracts high-resolution information. DDRNets
[15] propose an efficient architecture with two branches and
introduce information flow between them by using multiple
bilateral fusions. Multi-scale and global context extraction is
handled by a Deep Aggregation Pyramid Pooling Module
(DAPPM). In this work, we use a lightweight DDRNet
variant as baseline for our experimental evaluation.

C. Traditional Semantic Segmentation Datasets

With the advent of deep learning technologies for the
semantic segmentation task the need for densely annotated
data has emerged. Several datasets have been introduced that
enabled research in various traditional computer and robotic
vision fields ranging from generic scene understanding
(PASCAL VOC 2012) to autonomous driving (Cityscapes,
CamVid).

PASCAL VOC 2012 [16] contains images of varying res-
olutions, up to 500 × 500, representing 21 classes (including
a class for the background). This set originally contained
1,464 training, 1,449 validation, and 1,456 test images. Its
training set was later extended by others to a total of 10,582
images.

Cityscapes [17] is one of the most popular urban street
scene segmentation datasets, with 19 classes relevant to
urban driving, such as roads, sidewalk, pedestrians etc. It
consists of 2975 training, 500 validation and 1525 test
samples.

CamVid [18] is a similar street scene dataset to
Cityscapes, containing densely annotated frames of 960x720
resolution. More specifically, it includes 367 photos for
training, 101 images for validation, and 233 images for
testing.

D. Aerial Semantic Segmentation Datasets

Proliferation of autonomous aerial vehicles introduced a
new branch of computer vision that focuses on automated
processing of aerial images. Traditional computer vision
tasks, including semantic segmentation, play an integral role
within this new branch. However, they need to be applied on
a domain substantially shifted compared to the operational
domain of terrain-based agents. Visual appearance of same
classes of interest (e.g. human, car, street, vegetation, build-
ing) in aerial and traditional images significantly changes.
Additionally, it is common for objects to appear at multiple
scales within the same scene. Aforementioned challenges are
attributed to the combination of the following factors: New
viewpoints of objects of interest (top-down views in contrast
to side views in traditional computer vision), variations in the
altitude of the camera (from a few meters to a few hundred
meters) and a wide field of view. What is more, modern
UAVs are equipped with HD cameras able to capture high
resolution images. As a result new performance to efficiency
trade-offs need to be sought, especially for agents that
require real-time visual feedback. Following datasets have
been lately introduced targeting the semantic segmentation
task within the aerial image domain:

Aeroscapes [27] consists of 3269 images at the 1280x720
resolution, extracted from 149 separate video sequences.
They were captured by a fleet of drones operating at altitudes
varying from 5 to 50 meters. Annotated labels are separated
in the ”stuff” (vegetation, roads, sky, construction) and the
”things” (person, bike, car, drone, boat, obstacle, animal)
groups.

UAVid [8] contains 300 images at the 4096x2160 and the
3840x2160 resolutions, from 30 separate video sequences.
Camera viewpoint is set to oblique and flying height is at
around 50 meters. Captured scenes depict complex urban
environments and 8 labels are annotated (building, tree,
clutter, road, vegetation, static car, moving car, human).

Semantic Drone Dataset [6] focuses on safe drone au-
tonomous flying and landing procedures. It provides scenes
of domestic/urban environments with 20 annotated labels.
400 train set images are captured at more than 20 different
locations, with a nadir view, at varying (3-30 meters) heights,
at the 6000x4000 resolution.



TABLE II
PERCENTAGE OF PIXELS OF BELONGING IN CLASSES FOR TLA DATASET

Label location 1 location 2 location 3 location 4
background 83.43% 59.34% 94.28% 29.88%
vegetation 12.55% 36.79% - 63.74%

transmission tower 2.03% 2.41 % 4.79% 5.45 %
insulator 0.14% 0.04% 0.13% 0.05%

power line cable 1.86% 1.41% 0.79% 0.86%

TABLE III
PERCENTAGE OF PIXELS FOR BELONGING IN CLASSES OF WTA DATASET

Label location 1 location 2 location 3
background 90.79% 93.48% 96.73%

blade 6.51% 4.51% 1.65%
tower 2.69% 2.04 % 1.62%

E. Energy Facility Inspection Datasets

The aforementioned datasets are aimed for semantic seg-
mentation problems, however their content is quite different
from our target domain. Focusing on data captured at energy
facilities, the DTU-Nordtank [22] dataset contains images
from Nordtank wind turbines, captured by a UAV at wind
facilities in Roskilde, Denmark. It contains data captured at
two subsequent years, 2017 (161 samples) and 2018 (398
samples), resulting in 559 total samples. The image content
is mostly close-up views of wind turbine towers and blades
with image resolution is 5280x2970 pixels. This dataset
is aimed for wind turbine inspection for faults or defects,
however it does not include any sort of ground truth. Since
the dataset provides multiple views of wind turbines, we use
it for our semantic segmentation task. To achieve that, within
the context of this work, we manually annotate the relevant
classes for all the samples in the dataset and divide it into
458 train and 100 test samples.

TTPLA [7] is a public image dataset for instance segmen-
tation, which includes power lines and transmission towers
from USA. It consists of 1,100 aerial images of 3840×2160
resolution, captured with a Parrot-ANAFI UAV, ensuring
variety in terms of view angles, scales, backgrounds, lighting
conditions and zooming levels.

III. DATASETS

To harness the power of end-to-end trainable CNNs,
ground truth data is essential to train and evaluate their per-
formance. When focusing on real applications, it is important
to train on data with similar properties and conditions with
the actual application. This reduces the domain-shift when
transferring knowledge from trained models to deployment
scenarios, ensuring more robust performance. Thus, we in-
troduce two new datasets for semantic segmentation, Wind
Turbine Aerial-image dataset (WTA) and Transmision Line
Aerial-image (TLA) dataset relevant to inspection of the
respective energy infrastructure facilities.

A. Data Capture

Our data recording and annotation methodology was de-
signed to capture variability of environment conditions and
actual targets. Hundreds of frames are captured from a
moving UAV in three different wind turbine farms in the
region of Attica, Greece. A DJI Matrice 600 Pro drone was
used for the data acquisition, recording videos at 1920x1080
pixel resolution. The minimum flight altitude is 3 meters
and can reach up to 40 meters, which is the highest part of
the wind turbines. In WTA dataset, the drone starts from a
long distance and gradually moves towards the wind turbine
targets, ensuring capturing of various scales.

In TLA dataset, we provide images extracted from video
sequences at 4000x3000 resolution, recorded from manual
drone flights at 4 different locations in the region of Attica,
Greece. Flight scheduling was designed to resemble an au-
tomated electrical grid inspection. Consecutive transmission
towers were defined as target waypoints and navigation was
performed over the power line cables. The camera view was
set to oblique (∼ 45◦) and the flight altitude was about
50 meters (keeping a minimum 12 meters distance from
the towers for safety reasons). For one of the locations we
provide dense annotation of the whole flight while for the rest
of them we extract frames around the transmission towers.

We attempt to increase the descriptiveness of the datasets
while keeping the count of the samples relatively small, by
minimizing redundancy of samples and keeping the most
diverse ones. We manually annotate the contents of image
samples by hand, using VIA Annotator tool [24] with the
guidance of field experts, generating class ground truth maps
of pixel granularity for each image sample.

B. Technical details/structure

Both datasets contain a set of RGB images accompanied
by their corresponding semantic ground truth maps, which
are generated by pixel-level annotations from humans. Im-
ages and ground truth maps of the WTA datasets have a
resolution of 1920x1080 pixels and those of the TLA dataset



4000x3000 pixels. Each dataset contains classes relevant to
the energy facility infrastructure it includes. We calculate
the frequency of the classes within the samples, and Table
II compares the distribution of annotations across individual
classes for both datasets. In TLA dataset, background classes
and often vegetation (location 2 and 4) usually occupy the
almost 95% of the images, whereas the rest 5% contains
the relatively small objects of interest (transmission towers,
insulators and power line cables). Similarly in WTA, over
90% of the pixels belong to background class, while blade
class is more frequent than tower, since the dataset contains
frames from close-range inspection of blades. Overall, both
datasets are background heavy, with small percentage of pix-
els accounting for objects of interest. Even though percent-
ages are low for relatively small objects, there are some basic
structural differences between blades and cables/insulators.
The former are generally thicker objects which occupy a
specific spatial location in an image, whereas the latter are
much thinner and can extend to multiple locations. Due to
costly annotations, we omit including a validation test and
simply divide the datasets in train and test splits, using 85:15
train to test ratio.

IV. SEMANTIC SEGMENTATION

Recent deep learning approaches have demonstrated suc-
cessful results in popular benchmark datasets presented in
Section II-C. We attempt to provide a similar baseline for
evaluating semantic segmentation performance in the chal-
lenging scenarios of energy facility infrastructure inspection.
Therefore, we evaluate the performance of the recently
proposed DDRNet [15] semantic segmentation approach on
our datasets, and explore if its success is transferred to this
narrower semantic domain.

There are two important issues which need to be consid-
ered in actual deployment of semantic segmentation in real
scenarios using hardware mounted on UAVs. First, our target
data contains structures with different properties and most
importantly various sizes and scales. For example, power
cables are very thin structures, which typically resemble
lines, while insulators and wind turbines are also small sized
when depicted from distance, which introduces the need for
high resolution in both input and output of the semantic
segmentation process. This is typically solved by using more
complex segmentation CNNs, able to operate at higher res-
olutions at the cost of increased complexity. However, when
aiming at real-time execution, the complexity of the network
is limited by the capabilities of the target device. Targeting
deployment on UAVs, introduces an additional limitation on
the target device, from an energy and weight perspective,
resulting in the use of embedded GPUs. Therefore, the
need for accurate segmentation and real-time execution on
relatively small hardware, casts this task highly challenging
and introduces the need to strike a balance between accuracy
and computational complexity.

Fig. 4. Deep Dual-resolution Network (DDRNet) Architecture. Fractions
denote tensor size with respect to input resolution.

Fig. 5. Decoders on top of DDRNet architecture: (a) hix2 decoder upsam-
pling to 1/4 of input resolution and (b) hix4 decoding to 1/2 input resolution.
Bold numbers indicate feature size with respect to input resolution.

A. Baseline Model

We utilize DDRNet, depicted in 4, as our baseline model.
Its building block is a simple Residual Block that applies the
Convolution-Batch Normalization-ReLU activation sequence
twice to the input feature maps. DDRNet architecture fol-
lows the multiple pathway approach. Specifically, the main
trunk applies two fast convolutions to the input image to
downsample it by 4. Subsequently, two Residual Blocks
reduce the output stride to 1/8. At this point the main
trunk branches out to two separate paths. The low-resolution
path applies 3 Residual Blocks to the 1/8 feature maps. At
each stage strided convolutions are utilized and as a result
feature maps are downsampled by 2, while at the same
time their dimensionality is doubled. The final output of the
low-resolution branch has an 1/64 output stride. The high-
resolution path is built with a one to one correspondence
to low-resolution’s blocks. However, it preserves the 1/8
resolution of the feature maps since no striding is involved
in its convolutions. High resolution path remains shallow
producing feature maps with a constant number of channels.
Features from the high and the low resolution branches
are fused after every processing stage with connections



that involve downsampling/upsampling and reprojection op-
erations. At the end of the low-resolution path a Deep
Aggregation Pyramid Pooling Module (DAPPM) is applied
that performs multiple parallel convolutions with large kernel
sizes and global pooling. Output is upsampled to the 1/8
resolution of the high-resolution and a segmentation head is
responsible for transforming the sum of the two branches
and producing the final probability map for each class of the
segmentation task.

Low-resolution branch with the subsequent DAPPM op-
erate as the context path, increasing the receptive field of
the final output and guaranteeing global reasoning. High-
resolution branch preserves all the spatial information nec-
essary to produce accurate results. Finally, bilateral fusion
achieves mixing spatial with semantic information.

B. DDRNet-Hi Model

DDRnets have demonstrated good performance when it
comes to popular benchmark datasets, like Cityscapes and
CamVid which are targeted to urban driving scenarios. Con-
sidering the domain of the proposed dataset, there are two
important differences from the urban driving scenarios. First,
according to the data from II and III our dataset has a large
sparsity factor since the largest part of the images is occupied
by the background class, while the important contents of
images are thin details which require large resolutions for
good visibility. This leads to contradictory requirements that
need to be met by suitable design choices when applying
semantic segmentation CNNs on the specific dataset. The
sparsity of the images along with the hardware capabilities
of target devices, point towards using efficient networks with
multiple downsamplings, to avoid redundant calculations in
the unimportant background regions. However, accurately
classifying small image contents requires processing in high
resolutions, since such detail is lost in lower resolutions.

Towards adapting DDRNets for our target tasks, we pro-
pose the addition of a decoder module on top of the output
of DDRNet, which is responsible for recovering the semantic
details lost in the backbone due to multiple downsampling
layers. We propose two decoder architectures, one for each
dataset, which can be seen in Figure 5. The first decoder
hix2, contains simply a skip connection from features of 1/4
resolution to the upsampled output of DDRNet, which is then
processed by a 3x3 Conv-BN-ReLU layer of 32 channels
before entering the segmentation head module. The final
output is at the 1/4 of image input resolution. The second
decoder hix4, introduces 2 skip connections with redirection
layers from 1/2 and 1/4 initial feature layers, which gradually
upsample and refine DDRNet output, resulting in a final
prediction with 1/2 of input resolution. We focus on keeping
a small number of channels while increasing resolution to
avoid increasing computational complexity compared to the
base network.

TABLE IV
DECODER ABLATION FOR WTA AND TLA DATASETS, FOR

DDRNET23-SLIM BASE ARCHITECTURE, NOTING MIOU% FOR THE

RELATIVELY SMALL OBJECT CLASSES

TLA Dataset

Decoder GFLOPs mIOU%
total insulator cable

- 14.06 72.27 53.76 47.01
RegSeg 19.10 77.38 54.06 60.52

hix2 15.88 75.52 45.66 59.3
hix4 15.59 76.80 62.50 67.28

WTA Dataset

Decoder GFLOPs mIOU%
total blade tower

- 9.07 91.91 87.1 89.13
RegSeg 12.79 91.82 87.34 88.60

hix2 10.28 92.17 88.09 88.90

TABLE V
RESOLUTION ABLATION FOR WTA AND TLA DATASETS, USING THE

DDRNET23-SLIM-HI ARCHITECTURE WITH VARIOUS INPUT

RESOLUTIONS

TLA Dataset
Input GFLOPs mIOU%

Resolution total insulator cable
384x512 3.85 66.53 28.07 34.85

768x1024 15.88 75.52 45.66 59.3
WTA Dataset

Input GFLOPs mIOU%
Resolution total blade tower
256x512 2.57 89.27 84.04 84.38

512x1024 10.28 92.17 88.09 88.90

V. EXPERIMENTAL RESULTS

A. Training Setting

We choose the lightest model from the family of DDR-
Nets, namely the DDRNet23-slim model for our experimen-
tal base. Our model is trained with the WTA and DTU-
Nordtank datasets for the wind turbine segmentation task
and the TLA dataset for the tower and cable segmentation
task. We train our model minimizing the Cross Entropy
Loss for 300 epochs and batch size of 8 and use the Adam
optimizer an initial learning rate of 0.01 which decreases
every epoch according to poly learning policy as with 0.9
exponent. Finally for the TLA dataset, we propose a class
loss weighting scheme of 0.8, 1, 1, 3, 3 for background,
vegetation, tower, insulator and cable classes. Experiments
have proven that it helps the network focus on relevant small
classes (insulator, cable) which offer important semantic
content.

B. Decoder Ablation

The decoder module is evaluated to measure it’s impact in
both segmentation accuracy and computational complexity.
We examine the two decoder modules presented in Section
IV-B plus the decoder proposed in [23]. Adding an extra



TABLE VI
QUANTITATIVE RESULTS OF OF DDRNET23-SLIM BASELINE AND PROPOSED MODEL FOR WIND TURBINE AERIAL (WTA) AND DTU-NORDTANK

DATASETS

Model Input GFLOPs Params (M) Wind Turbine Aerial mIOU% DTU-Nordtank mIOU%
Resolution total bg blade tower total bg blade tower

DDRNet23-slim 512x1024 9.07 5.67 91.91 99.51 87.10 89.13 94.04 99.21 94.55 88.37
DDRNet23-slim-hix2 512x1024 10.27 5.67 92.17 99.52 88.09 88.90 94.32 99.25 94.62 89.09

TABLE VII
QUANTITATIVE RESULTS OF DDRNET23-SLIM BASELINE AND PROPOSED MODEL FOR TRANSMISSION LINE AERIAL (TLA) DATASET

Model Input GFLOPs Params (M) Transmission Line Aerial mIOU%
Resolution total bg vegetation tower insulator cable

DDRNet23-slim 768x1024 14.06 5.67 68.48 93.91 76.18 82.52 52.32 33.98
DDRNet23-slim-hix4 768x1024 15.59 5.67 80.35 93.76 79.22 90.72 62.50 67.80

Fig. 6. TLA Line risky vegetation detection scenario: The UAV navigates over the power lines, and gathers semantic information on vegetation around
towers, which can be risky for their operation. Top row contains RGB images, middle row contains ground truth data and bottom row contains DDRNet23-
slim-hix4 segmentation maps



Fig. 7. TLA Line navigation scenario: The UAV navigates over the power lines. Top row contains RGB images, middle row contains ground truth data
and bottom row contains DDRNet23-slim-hix4 segmentation maps.

Fig. 8. TLA insulator inspection scenario: The UAV detects insulators in transmission towers and moves closer to get a better view of them. Top row
contains RGB images, middle row contains ground truth data and bottom row contains DDRNet23-slim-hix4 segmentation maps.

decoder module on top of the existing DDRNet architecture
yields important accuracy gains in all classes and datasets,

however it is especially impactful in small classes such as
cables (Table IV).



Fig. 9. WTA Wind turbine navigation scenario: The UAV detects a wind turbine target and moves closer to it. Top row contains RGB images, middle
row contains ground truth data and bottom row contains DDRNet23-slim-hix2 segmentation maps.

Fig. 10. WTA Wind turbine inspection scenario: The UAV detects a wind turbine blade and reaches for closer inspection. Top row contains RGB images,
middle row contains ground truth data and bottom row contains DDRNet23-slim-hix2 segmentation maps.

C. Resolution Ablation

Since our semantic targets involve thin structures and
shapes, operating at high resolution is key for accurately
recovering them. We perform experiments at different reso-
lutions to measure the impact of increasing or decreasing the
base image resolution, as seen in Table V. Smaller resolution
in TLA dataset demonstrate a large performance drop in
both total miou% and especially in small object classes, as
expected. However, the case is different in WTA dataset
where the model with reduced input resolution performs
comparably to its higher input resolution counterpart. This
is an important finding regarding, since it also comes with
mobile-level computational complexity, making it suitable

for applications with very limited available computational
resources.

D. Discussion

We perform a full quantitative evaluation of the baseline
DDRNet23-slim and our variants with the added decoder
modules. Overall performance of DDRNet23-slim-hix4 is
much improved from the baseline in TLA dataset VII,
showing important accuracy gains across all classes, due
to the larger output resolution of the model. This increases
the achieved mIOU around 17% while adding 1.50 extra
GFLOP in computational complexity. The addition of the
decoding module is less impactful in WTA and DTU-
Nordtank datasets, demonstrating a mere performance gain



of around 0.27% for both datasets.
Qualitative evaluation is also performed by providing RGB

images, semantic predictions and ground truth for frame
sequences resembling actual robotic tasks performed by the
drone. The model retrieves most of the critical semantic
content of the images, allowing satisfying perception of the
environment during flight.

Overall, the contributed datasets pose interesting chal-
lenges for the semantic segmentation task, such as distinction
between grass and taller vegetation and the introduction of
small object views (wind turbines viewed from a large dis-
tance and insulators and thin cables). Additionally, semantic
ground truth is provided for scenes which are rarely found
annotated, providing a starting point for developing scene
understanding aimed at facility inspection applications.

VI. CONCLUSIONS

In this work, a new semantic segmentation dataset with
images from real inspection of wind turbine farms and
transmission towers and lines has been introduced. Data are
gathered from multiple locations and under various condi-
tions and challenging views, aiming to serve as a training
and evaluation benchmark towards automating inspection
application. A set of modifications to adapt a state-of-the-art
semantic segmentation CNN to these datasets is also pro-
posed, accompanied with quantitative and qualitative analysis
and experiments.
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