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Abstract
Objective: Deceleration area (DA) and capacity (DC) of the fetal heart rate can 
help predict risk of intrapartum fetal compromise. However, their predictive value 
in higher risk pregnancies is unclear. We investigated whether they can predict the 
onset of hypotension during brief hypoxaemia repeated at a rate consistent with early 
labour in fetal sheep with pre-existing hypoxaemia.
Design: Prospective, controlled study.
Setting: Laboratory.
Sample: Chronically instrumented, unanaesthetised near-term fetal sheep.
Methods: One-minute complete umbilical cord occlusions (UCOs) were performed 
every 5 minutes in fetal sheep with baseline paO2 <17 mmHg (hypoxaemic, n = 8) and 
>17 mmHg (normoxic, n = 11) for 4 hours or until arterial pressure fell <20 mmHg.
Main outcome measures: DA, DC and arterial pressure.
Results: Normoxic fetuses showed effective cardiovascular adaptation without 
hypotension and mild acidaemia (lowest arterial pressure 40.7 ± 2.8 mmHg, pH 
7.35 ± 0.03). Hypoxaemic fetuses developed hypotension (lowest arterial pressure 
20.8 ± 1.9 mmHg, P < 0.001) and acidaemia (final pH 7.07 ± 0.05). In hypoxaemic fe-
tuses, decelerations showed faster falls in FHR over the first 40 seconds of UCOs but 
the final deceleration depth was not different to normoxic fetuses. DC was modestly 
higher in hypoxaemic fetuses during the penultimate (P = 0.04) and final (P = 0.012) 
20 minutes of UCOs. DA was not different between groups.
Conclusion: Chronically hypoxaemic fetuses had early onset of cardiovascular com-
promise during labour-like brief repeated UCOs. DA was unable to identify develop-
ing hypotension in this setting, while DC only showed modest differences between 
groups. These findings highlight that DA and DC thresholds need to be adjusted for 
antenatal risk factors, potentially limiting their clinical utility.
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1  |   I N TRODUC TION

Cardiotocography (CTG) monitoring during labour shows 
poor ability to predict fetal acidaemia or hypoxia-ischaemia, 
and reliable indices of fetal wellbeing are needed.1–7 Recent 
studies suggest that deceleration area (DA) and deceleration-
related metrics such as deceleration capacity (DC) may be 
more effective predictors than standard clinical assess-
ment.8–17 These indices quantify the total burden of deceler-
ations including depth, duration and frequency.

Deceleration area predicted neonatal acidaemia in large 
retrospective8 and prospective cohorts.9 Further, DA was more 
predictive of acidaemia than fetal heart rate (FHR) variability 
or numbers of late decelerations,14 and of neonatal encepha-
lopathy in recent retrospective cohort studies.16 The computa-
tional index DC predicted both fetal acidaemia and neonatal 
compromise in a cohort of 22 790 births10 and predicted aci-
daemia better than short-term variation.13 DC is derived from 
a modern signal processing technique called phase rectified 
signal averaging, which was originally described in the set-
ting of myocardial infarction in adults18 but is easily adapted 
to quantify FHR decelerations.10,13,19 The reader should note 
that the term ‘capacity’ should not be taken literally. DC is sim-
ply a measure of the mean fall in FHR over a given period and 
provides a combined measure of the frequency and speed of 
decelerations, and time spent at or away from FHR baseline.

In recent animal studies, DA and DC predicted fetal hy-
potension19 and acidemia.19–21 Hypotension is the key deter-
minant of neural injury22–24 and therefore its relation with 
hypotension19 provides physiological support for the utility 
of DA and DC. Their practical implementation requires de-
fined thresholds for intervention. Georgieva and colleagues 
found that risk factors including pre-eclampsia and thick 
meconium reduced the DC threshold associated with intra-
partum compromise,10 emphasising that computerised met-
rics should be adapted to the clinical context, similarly to 
visual CTG interpretation.25,26

In the present study we examined the FHR response of 
near-term fetal sheep with pre-existing (chronic) hypox-
aemia exposed to acute hypoxaemia induced by complete, 
brief umbilical cord occlusions (UCOs)27–31 repeated at a 
frequency consistent with contractions in early labour.32 
We assessed the morphology of decelerations including the 
amplitude of decelerations and the ability of DA and DC to 
detect the development of arterial hypotension, to test the 
hypothesis that fetuses with pre-existing hypoxaemia would 
develop hypotension at lower values of DA and DC com-
pared with normoxic fetal sheep.

2  |   M ETHODS

2.1  |  Ethics and surgery

All procedures were approved by the Animal Ethics Committee 
of the University of Auckland (number 22069) following 
the New Zealand Animal Welfare Act and comply with the 

ARRIVE guidelines.33 A total of 19 Romney/Suffolk fetal sheep 
were surgically instrumented at 116–122 days’ gestation.34,35 
Ewes received oxytetracycline (20 mg/kg; Phoenix Pharm 
Distributors) intramuscularly for antibiotic prophylaxis. 
Anaesthesia was induced with propofol (5 mg/kg; AstraZeneca) 
and maintained using 2–3% isoflurane in oxygen. Fetuses 
were partially exteriorised via a midline abdominal incision 
and uterotomy. Catheters were placed in the femoral artery to 
measure mean arterial pressure (MAP), brachial artery for pre-
ductal blood sampling and amniotic sac to correct for maternal 
position. Electrodes (AS633-5SSF; Cooner Wire) were placed 
across the fetal chest to measure the electrocardiogram. An in-
flatable umbilical cord occluder was placed (In Vivo Metric).

Fetuses were returned to the uterus, gentamicin was ad-
ministered into the amniotic sac (80 mg; Pfizer), and uterot-
omy and abdominal incisions were closed. The maternal 
midline skin incision was infiltrated with long-acting local 
analgesic (0.5% bupivacaine plus adrenaline, AstraZeneca). 
Fetal leads were exteriorised through the maternal flank and 
a maternal long saphenous vein was catheterised.

2.2  |  Postoperative care and signal 
acquisition

After recovering from anaesthesia, ewes were housed to-
gether in metabolic cages with ad libitum access to food 
and water, in environmentally controlled rooms (16 ± 1°C, 
humidity 50 ± 10%, 12-hour light/dark cycle). Ewes received 
intravenous antibiotics for 4 days (80 mg gentamicin, 600 mg 
benzylpenicillin-sodium; Novartis). Fetal leads were con-
nected to signal acquisition hardware and all signals were 
recorded continuously using LabVIEW-based software 
(National Instruments).34 Fetal blood pressures were recorded 
using Novatrans III, MX860 Gold transducers (Medex).

2.3  |  Experimental protocol

Experiments were conducted 4–5 days after surgical instru-
mentation to allow fetuses to completely recover from anaes-
thetics. Fetuses with stable PaO2 <17 mmHg for ≥3 days were 
assigned to the pre-existing hypoxaemia group (n = 8), rep-
resenting the 5th percentile in healthy term singleton fetuses. 
Fetuses with PaO2 ≥17 mmHg were assigned to the normoxic 
group (n = 11).

Umbilical cord occlusions were performed at 
124.8 ± 0.7 days’ gestation (term gestation 147 days), when 
sheep neural development approximates term humans.36 
Umbilical cord occluders were rapidly inflated with a vol-
ume of saline known to cause complete UCO for 1 minute 
before the occluder was deflated for 4 minutes of reperfu-
sion. UCOs were repeated at this rate for 4 hours (total 49 
UCOs) or until MAP reached <20 mmHg on two successive 
UCOs. This occlusion frequency is consistent with the fre-
quency of uterine contractions during early first stage of la-
bour (2 per 10 minutes).28,31,37
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Arterial samples (0.3 ml) were collected before experiments, 
after every 12th UCO and the final UCO to measure pH, blood 
gases, oximetry (ABL800-Basic; Radiometer), glucose and lac-
tate concentrations (YSI-2300). Animals were killed 72 hours 
after experiments by pentobarbital-sodium overdose intrave-
nously to the ewe (9 g; Chemstock International).

2.4  |  Data extraction and time-points

Continuous 1-second means of FHR and MAP were extracted 
(LabVIEW, National Instruments). Baseline was defined as 
the 60 minutes before UCOs. Four 20-minute epochs each 
containing four UCOs were examined (the first, middle, pe-
nultimate and final 20 minutes of UCOs) in order to account 
for the unequal duration of individual experiments in the hy-
poxaemic group, as endpoints were reached at different times. 
During each epoch, we assessed the change in FHR and MAP 
during and between UCOs and the morphology of decelera-
tions by calculating changes in FHR relative to the immedi-
ate baseline (i.e. interocclusion FHR immediately before each 
UCO). For display purposes, changes relative to interocclusion 
FHR were averaged across the four UCOs in each epoch.

2.5  |  Deceleration area and capacity

DA and DC were calculated using the Oxford System for 
Intrapartum FHR Analysis.38–40 The algorithms to detect 
baseline and decelerations are based on signal processing 
methods optimised to fit expert evaluation of intrapartum 
CTGs.41,42 DA and DC were calculated as the average of two 
overlapping 15-minute epochs, separated by a 5-minute step. 
Windows therefore overlap by 10 minutes, spanning 20 min-
utes. DC was calculated as previously described,10,38 from 
the phase-rectified signal averaging algorithm (T = 1, L = 11 
for data sampled at 1 Hz),18 which interrogates repeating 
fluctuations between successive heart rate measurements.

DA was calculated as the sum of deceleration areas in 
each epoch, estimated as (duration × depth)/2.9 DA was also 
calculated over 120 minutes. The maximum DC reached 
during the UCO series was calculated to mirror clinical 
studies.9,18 A more precise measure of DA was also calcu-
lated as the sum of the relative fall in FHR during UCOs. 
Additionally, we calculated the absolute FHR at 30 seconds 
of UCO, the maximal relative fall in FHR during UCO (de-
celeration amplitude), the lowest FHR during UCO (deceler-
ation nadir) and the maximal absolute FHR reached within 
the first 90 seconds after UCO (overshoot tachycardia).

2.6  |  Statistics

Data were analysed using SPSSv28 (IBM). Changes dur-
ing UCOs were evaluated by repeated measures analy-
sis of variance (ANOVA), with group, epoch and the four 
UCOs within each epoch treated as independent factors and 

time as a repeated factor. Six time epochs were investigated 
separately: the first, middle and last 20 seconds during UCOs 
and four reperfusion minutes between UCOs. If interactions 
between epoch and group were found, repeated measures 
ANOVA on each epoch was performed. Changes in FHR met-
rics were assessed by two-way ANOVA, with epochs treated as 
repeated measures. Individual epochs were compared by one-
way ANOVA if an overall effect was observed. Biochemical 
data were compared between groups by two-way ANOVA, with 
time treated as a repeated measure. Data are means ± SEM. 
Statistical significance was accepted when P < 0.05.

3  |   R E SU LTS

3.1  |  Group characteristics

The normoxic group included six females, four males, one 
unrecorded sex, seven singletons and four twins (postmor-
tem body weight 4.03 ± 0.14 kg). The hypoxaemic group 
included three females, five males, one singleton, five 
twins, two triplets (postmortem bodyweight 3.27 ± 0.23 kg, 
P = 0.005 versus normoxic). Mild metabolic acidaemia de-
veloped in the normoxic group compared with severe meta-
bolic acidaemia in the hypoxaemic group (Table 1).

3.2  |  Arterial pressure

All fetuses in the normoxic group received the full 49 UCOs 
over 4 hours while maintaining cardiovascular stability. The 
lowest MAP recorded was 40.7 ± 2.8 mmHg at the end of ex-
periment (Figure 1). All fetuses in the hypoxaemic group de-
veloped severe hypotension. On average, hypoxaemic fetuses 
received 44.8 ± 2.0 UCOs (lowest MAP 20.8 ± 1.9 mmHg). 
Experiments were ended early in 4/8 fetuses (40.5 ± 2.5 
UCOs, lowest MAP 17.1 ± 1.6 mmHg) and 4/8 fetuses com-
pleted 49 UCOs (lowest MAP 24.5 ± 2.4 mmHg).

MAP was lower in hypoxaemic fetuses during the last 
40 seconds of UCOs in the middle (21–40 seconds, P = 0.014; 
41–60 seconds, P < 0.001), penultimate (P < 0.001, P < 0.001) 
and final 20-minute epochs (P < 0.001, P < 0.001). Between 
occlusions, MAP was initially higher in hypoxaemic fetuses 
during the first reperfusion minute in the first 20-minute 
epoch (P  =  0.002) but subsequently was lower during the 
first reperfusion minute in the penultimate 20-minute 
epoch (P = 0.002) and first and second reperfusion minutes 
in the final 20-minute epoch (P < 0.001, P = 0.007). In one 
normoxic fetus, continuous MAP was partially lost, but on 
1-minute mean data, final MAP was 58.7 mmHg.

3.3  |  Fetal heart rate

UCOs were associated with rapid FHR decelerations in both 
groups (Figure 1). During the first 40 sconds of UCOs, FHR 
was lower in hypoxaemic fetuses in the middle (P = 0.022, 
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P  =  0.002), penultimate (P  =  0.026, P  =  0.002) and final 
20-minute epochs (P  =  0.024, P  =  0.001). During the final 
20 seconds of UCOs, FHR was lower in hypoxaemic fetuses 
during the middle 20 minutes compared with the normoxic 
group (P = 0.019). During reperfusion, interocclusion FHR 
was higher in hypoxaemic fetuses for the first minute after 
UCO in the first (P = 0.014) and middle 20-minute epochs 
(P = 0.013). The evolution of changes in the FHR response is 
shown in Figure 2A.

3.4  |  Deceleration morphology

The rate fall in FHR was greater in hypoxaemic fetuses in the 
first 40 seconds of UCOs in all 20-minute epochs (P < 0.001, 
P = 0.001, Figure 2B), but not in the final 20 seconds of UCOs. 
Relative to the same interocclusion FHR, there was a greater 
relative increase in FHR between 15 and 35 seconds during 
the reperfusion period in the hypoxaemic group across all 

epochs (P = 0.041). The evolution of deceleration morphol-
ogy is shown in Figure 2C.

There was no difference between groups in either the ampli-
tude (P = 0.296) or nadir of decelerations across the experiment 
(P = 0.466, Figure 3). The maximal absolute FHR reached during 
the first 90 seconds of reperfusion (overshoot tachycardia) was 
greater in hypoxaemic fetuses during the first (P = 0.004), mid-
dle (P < 0.001) and penultimate epochs (P = 0.03).

3.5  |  Deceleration area and capacity

There was an overall effect of group on DC across all epochs 
(P = 0.029, Figure 3), such that DC was borderline higher in hy-
poxaemic fetuses in the first (P = 0.051) and significantly higher 
in the penultimate (P = 0.04) and final epochs (P = 0.012). There 
was an effect of group on max-DC (P = 0.023), such that max-
DC was borderline higher in hypoxaemic fetuses in the first 
(P = 0.053), and significantly higher in the middle (P = 0.021), 
penultimate (P  =  0.019) and final epochs (P  =  0.016). There 
was no difference between groups in DA when calculated over 
20 minutes (P = 0.512, Figure 3) or 120 minutes (P = 0.313, data 
not shown), or as the sum of the relative falls in FHR during 
decelerations (P = 0.478, data not shown).

3.6  |  Correlations with deceleration 
capacity and hypotension

Changes in DC were associated with the magnitude of over-
shoot tachycardia after decelerations in the first (P < 0.001, 
R2 = 0.61, n = 19), penultimate (P < 0.001, R2 = 0.49, n = 19) 
and final epochs (P < 0.001, R2 = 0.51, n = 19). DC was not as-
sociated with the fall in FHR at 20, 30 or 40 seconds during 
UCOs, nor the final amplitude or nadir of the decelerations 
(data not shown).

DC was associated with min-MAP during the pen-
ultimate (P  =  0.002, R2  =  0.44, n  =  19) and final epochs 
(P  =  0.009, R2  =  0.34, n  =  19, Figure  3C). Min-MAP was 
associated with the magnitude of overshoot tachycardia 
during the middle (P = 0.007, R2 = 0.49, n = 19, Figure 1B) 
and penultimate epochs (P = 0.02, R2 = 0.28, n = 19), and sta-
tistically borderline in the final epoch (P = 0.051). Min-MAP 
was associated with FHR at 30 seconds of UCOs during the 
middle (P < 0.001, R2 = 0.36, n = 19, Figure 1B), penultimate 
(P = 0.015, R2 = 0.31, n = 19) and final epochs (P = 0.006, 
R2 = 0.36, n = 19). There was no relation between min-MAP 
and either deceleration amplitude or nadir (data not shown).

4  |   DISCUSSION

4.1  |  Main findings

We examined the FHR response in fetal sheep with chronic 
spontaneous hypoxaemia subjected to brief repeated hypox-
aemia at a rate consistent with early labour (2 per 10 minutes). 

T A B L E  1   Fetal pH, blood gases and metabolites.

Baseline
First 
30 minutes

Middle 
30 minutes

Final 
30 minutes

pH
Normoxic 7.42 ± 0.01 7.36 ± 0.02 7.34 ± 0.02 7.35 ± 0.03
Hypoxaemic 7.37 ± 0.01* 7.19 ± 0.02* 7.09 ± 0.04* 7.07 ± 0.05*

PaCO2 (mmHg)
Normoxic 46.0 ± 1.1 48.2 ± 3.1 45.3 ± 3.0 46.8 ± 1.9
Hypoxaemic 50.2 ± 1.3* 58.9 ± 2.2* 53.9 ± 2.1* 54.2 ± 3.4

PaO2 (mmHg)
Normoxic 22.1 ± 0.6 18.8 ± 0.8 20.0 ± 0.6 16.7 ± 0.6
Hypoxaemic 11.4 ± 0.9* 13.8 ± 0.7* 15.3 ± 0.7* 14.4 ± 1.2

Hb (g/dl)
Normoxic 11.0 ± 0.5 11.4 ± 0.5 11.0 ± 0.5 11.1 ± 0.5
Hypoxaemic 10.9 ± 0.7 11.7 ± 0.8 10.8 ± 0.7 11.2 ± 0.6

Hct (%)
Normoxic 32.4 ± 1.5 33.3 ± 1.3 33.6 ± 1.5 32.6 ± 1.4
Hypoxaemic 32.3 ± 2.0 34.5 ± 2.3 31.9 ± 2.0 33.0 ± 1.9

ctO2 (mmol/l)
Normoxic 4.5 ± 0.3 3.4 ± 0.2 3.4 ± 0.3 3.0 ± 0.2
Hypoxaemic 1.8 ± 0.3* 2.0 ± 0.3* 1.6 ± 0.2* 1.5 ± 0.2*

SaO2 (%)
Normoxic 67.6 ± 1.3 49.0 ± 3.8 51.0 ± 3.5 43.0 ± 1.7
Hypoxaemic 27.5 ± 3.6* 28.8 ± 3.9* 24.9 ± 2.3* 22.4 ± 2.2*

BE (mmol/l)
Normoxic 4.0 ± 0.9 −0.4 ± 1.4 −2.0 ± 1.6 −0.5 ± 1.3
Hypoxaemic 2.4 ± 0.7 −6.2 ± 1.2* −13.2 ± 1.4* −14.5 ± 1.7*

Lactate (mmol/l)
Normoxic 1.2 ± 0.2 2.7 ± 0.7 4.0 ± 1.3 4.7 ± 1.6
Hypoxaemic 2.5 ± 0.6 6.3 ± 1.1* 11.2 ± 1.7* 12.2 ± 2.3*

Glucose (mmol/l)
Normoxic 0.8 ± 0.2 1.1 ± 0.2 1.0 ± 0.2 1.0 ± 0.2
Hypoxaemic 0.7 ± 0.1 1.3 ± 0.2 1.2 ± 0.1 1.1 ± 0.2

Abbreviations: BE, base excess; ctO2, arterial oxygen content; Hb, haemoglobin 
concentration; Hct, haematocrit; PaCO2, arterial pressure of carbon dioxide; PaO2, 
arterial pressure of oxygen; SaO2, arterial oxygen saturation.
*P < 0.05 normoxic versus hypoxaemic.
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This study shows that higher DC but not DA was associated 
with lower MAP during the penultimate and final epochs, 
but these changes were modest, with substantial overlap be-
tween groups. Overall, DA and DC showed limited ability 
to identify evolving hypotension in the present study. This 
contrasts with healthy normoxic foetuses, which showed a 
progressive increase in DA and DC after the onset of cardio-
vascular compromise.19

The hypoxaemic group had an average paO2 of 
11.4 ± 0.9 mmHg and SaO2 of 27.5 ± 3.6% before UCOs (ver-
sus 22.1 ± 0.1 mmHg and SaO2 67.6 ± 1.3% in normoxic fe-
tuses), and reduced bodyweight, consistent with fetal growth 
restriction.31,43,44 Normoxic fetuses tolerated repeated UCOs 
without hypotension and only mild acidaemia. Hypoxaemic 
fetuses maintained arterial pressure during the first epoch 
but thereafter showed impaired cardiovascular adaptation 
with progressively worse hypotension during UCOs.45–47 
This likely reflects failing ventricular output48 secondary to 
depletion of myocardial glycogen stores, intracellular acido-
sis and potentially evolving myocardial injury.30,49,50

Throughout the experiment, FHR fell faster during de-
celerations in the hypoxaemic group, with a greater relative 
fall in FHR during the first 40 seconds of UCOs, but no dif-
ference in the maximal depth of decelerations in the final 
20 seconds. This initial fall in FHR during decelerations is 
mediated by the peripheral chemoreflex,34 followed by an 
increasing contribution of the negative chronotropic effects 
of myocardial hypoxia that sustains decelerations.48 The 
greater initial fall in FHR therefore likely reflects augmented 
peripheral chemoreflex activation.34 Itskovitz and colleagues 
reported a very similar pattern of faster and deeper deceler-
ations during nearly complete 20-second uterine artery oc-
clusion in hypoxaemic near-term fetal sheep.51 In the present 
study, the fall in FHR was greater in hypoxaemic fetuses 
from 20 to 40 seconds during UCOs, and thus it is likely 
that decelerations would have been deeper during similarly 
short UCOs. Thus, these studies strongly suggest that pre-
existing hypoxaemia will be associated with faster (and po-
tentially deeper) decelerations during human intrapartum 
contractions whether hypoxaemia was secondary to UCO 

F I G U R E  1   Fetal heart rate and mean arterial pressure during repeated umbilical cord occlusions. (A) Time course of changes in fetal heart rate (first 
column) and arterial pressure (second column) across the four epochs assessed (shown sequentially down the columns). The normoxic group is shown in 
black (n = 11), the hypoxaemic group in blue (n = 8) and the periods of UCOs in grey shading. *P < 0.05 normoxic versus hypoxaemic. Data are 1-second 
means ± SEM, dotted lines represent SEM. (B) Relation between minimum mean arterial pressure recorded in each epoch and either fetal heart rate at 
30 seconds of occlusion (third column) or the maximum magnitude of overshoot tachycardia after occlusion (fourth column). The four epochs assessed 
are shown sequentially down the columns. Overshoot tachycardia was calculated as the highest absolute fetal heart rate during the first 90 seconds after 
the end of occlusions. Each datapoint represents the average of the four occlusions included in each epoch from individual fetuses.
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or utero-placental compression. In contrast, a recent report 
found slowing of FHR decelerations in fetal sheep with mild 
chronic hypoxaemia.21 This difference likely in part reflects 
the use of initial partial rather than complete UCOs and 
milder pre-existing hypoxaemia (defined as baseline SaO2 
<55%, versus mean 27.5 ± 3.6% in the present study).21

In the present study, the morphology of decelerations in the 
hypoxaemic group visually appear to be more ‘U-shaped’ than 
the ‘V-shape’ in the normoxic group. Of interest, lower FHR 
at 30 seonds of UCO correlated with min-MAP (Figure 1B), 

suggesting that cardiovascular compromise is associated with 
faster decelerations even if the final nadir is not different.44 
Despite the apparent greater area of individual decelerations, 
there were only modest differences in DC between the groups 
and no difference in DA. There was also no difference be-
tween groups for DA calculated over 120 minutes,9 or as the 
sum of the relative falls in FHR throughout each deceleration.

The late, modest increase in DC in the penultimate and 
final 20 minutes developed after fetuses had already developed 
severe hypotension. We have previously reported that seizure 

F I G U R E  2   Evolution of fetal heart rate changes during repeated umbilical cord occlusions. (A) Fetal heart rate from the four epochs superimposed 
on each group to allow assessment of the changes over time. The data displayed are 1-second means from each epoch. The data is the same as displayed 
in Figure 1 without SEM. (B) Morphology of decelerations assessed relative to the immediate baseline before the start of each occlusion in the normoxic 
(black, n = 11) and hypoxaemic groups (blue, n = 8). Data displayed are the average of the four occlusions in each epoch. *P < 0.05 normoxic versus 
hypoxaemic. Data are 1-second means ± SEM, dotted lines represent SEM. (C) The data displayed in (B) has been superimposed without SEM on each 
group to allow assessment of the evolution of deceleration morphology throughout the experiment.
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activity (on electroencephalographic monitoring) developed 
in chronically hypoxaemic fetuses during repeated UCOs, at 
a mean of 148 ± 45 minutes after the start of UCOs,45 support-
ing that injury was already present at this time. Expedited 
delivery at this late stage is therefore unlikely to completely 
prevent injury, although potentially it might mitigate further 
injury and allow earlier recruitment for neuroprotective ther-
apy if appropriate.52 This represents an important limitation 

of these metrics and emphasises that lower thresholds for ei-
ther DA or DC would need to be adopted when antenatal risk 
factors are present. The mean DC at these times were 4.7 and 
5.0 bpm, compared with the DC threshold of 4.0 bpm sug-
gested in human labours with risk factors such as thick meco-
nium and pre-eclampsia.10 Previous studies strongly support 
the concept that including clinical risk factors can improve 
the predictive value of FHR patterns.25,26

F I G U R E  3   Fetal heart rate metrics and associations with hypotension during repeated umbilical cord occlusion. (A) Fetal heart rate (FHR) 
metrics in the normoxic (white, n = 11) and hypoxaemic groups (blue, n = 8). Maximum deceleration capacity represents the maximal value identified. 
Deceleration amplitude was calculated as the maximal relative fall from baseline immediately before each occlusion. Deceleration nadir represents the 
lowest FHR reached during occlusion. Overshoot tachycardia was calculated as the highest absolute fetal heart rate during the first 90 seconds after 
the end of occlusions. Data are mean ± SEM. *P < 0.05 normoxic versus hypoxaemic. (B) Relation between deceleration capacity and the magnitude of 
overshoot tachycardia after each occlusion across the four epochs. (C) Relation between deceleration capacity and minimum mean arterial pressure 
identified during occlusions across the four epochs. (B,C) Each datapoint represents the average of the four occlusions included in each epoch from 
individual fetuses.
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Overall, the poor performance of DA and DC is disap-
pointing considering that both measures progressively in-
creased with worsening hypotension in well-grown normoxic 
fetuses exposed to more frequent UCOs (4 per 10 minutes), 
reflecting deepening decelerations.19 In the present study, 
decelerations did not deepen with progressive hypotension, 
suggesting that fetuses with chronic antenatal hypoxaemia 
can become compromised without significant change in 
their FHR pattern, although their decelerations were faster 
throughout the experiment. This difference may reflect lon-
ger reperfusion between UCOs allowing greater resolution 
of myocardial hypoxia.48,53 If this was the case, it was insuf-
ficient to help sustain combined ventricular output. Further 
studies are needed to determine whether frequent UCOs in 
fetuses with pre-existing hypoxaemia are associated with 
greater differences in responses to normoxic fetuses.

Nonetheless, DC was still correlated with MAP across 
both groups in the penultimate and final epochs in the 
present study. This phase of increased DC appeared to be 
predominantly mediated by overshoot tachycardia after de-
celerations.54,55 Overshoot tachycardia also correlated with 
MAP, whereas the nadir of decelerations did not. Overshoot 
tachycardia is mediated by the combination of impaired para-
sympathetic tone and high circulating catecholamines,54,55 
suggesting that hypoxaemic fetuses developed earlier loss of 
parasympathetic tone during UCOs. Thus, DC is sensitive to 
multiple features of the FHR trace and in some settings may 
be superior to DA in predicting fetal compromise.

A limitation of the present study is that hypoxaemic fe-
tuses had a high rate of cardiovascular instability after UCOs, 
with early mortality, consistent with substantial multi-organ 
injury, and so we could not assess histological brain injury. 
Nonetheless, hypotension is highly associated with the sever-
ity of hypoxic–ischaemic injury across multiple experimental 
paradigms.22–24 We have previously reported that a similar de-
gree of hypotension to the present study was associated with 
cytotoxic cerebral oedema, cortical and subcortical neuronal 
death27 and subendocardial injury.30 Further, chronic hypox-
aemia was associated with early onset of seizures and delayed 
recovery of sleep state cycling during repeated UCOs,45 con-
sistent with neural injury.27 Of interest, the ultimate severity 
of acidaemia in the present study (7.09 ± 0.04) was less than in 
our previous study of more frequent occlusions in normoxic 
fetuses (6.84 ± 0.11).27 This emphasises that fetuses with ante-
natal risk factors may become hypotensive and develop signif-
icant neural injury despite relatively modest acidaemia.

In the present study, there was a trend to increased DC in 
the hypoxaemic group during the first epoch that appeared 
to be related to marked overshoot tachycardia in a subset of 
the hypoxemic fetuses (Figure 3C). The sustained increase 
in max-DC throughout the experiment mainly reflected this 
early increase. A clinical study has reported that an early 
increase in DC that resolved in later labour was still asso-
ciated with increased risk of fetal compromise.10 Moreover, 
in a case–control study of 220 singleton births, labour aug-
mentation with syntocinon was associated with an early, 
transient increase in DC among fetuses who later developed 

acidaemia, despite no increase in the number of decelera-
tions.56 Overall, these clinical and preclinical findings raise 
the possibility that an increase in DC in early labour may 
offer an early warning of greater risk of compromise.

4.2  |  Strengths and limitations

The strength of present study is the ability to simultaneous 
assess the relation between FHR metrics and arterial blood 
pressure, whereas clinical studies need to use surrogate 
measures such as pH, or rare outcomes such as hypoxic-
ischaemic encephalopathy. We allowed full recovery from 
anaesthesia, which impairs the cardiovascular responses 
to hypoxaemia.57 This study utilised a highly structured 
protocol of complete UCOs, consistent with the frequency 
of contractions in first stage labour of approximately 2 per 
10 minutes,32 but this of course cannot capture the heteroge-
neity of human labour. The pattern of progressively evolving 
hypoxaemia examined in the present study represents only 
one pathway leading to hypoxic-ischaemic encephalopathy. 
Nevertheless, the present findings are likely to be relevant to 
evolving intrapartum hypoxia-ischaemia in humans.

5  |   CONCLUSIONS

This study suggests that lower DA and DC thresholds in la-
bours will be needed when there are antenatal risk factors,10 
emphasising that even computerised assessment needs to in-
corporate the clinical context. This likely reflects that both 
DA and DC predominantly provide an index of the cumula-
tive exposure to hypoxaemia, rather than direct information 
on fetal adaptation at any one time.19 Nonetheless, DA and 
DC remain promising, objective predictors for intrapartum 
compromise.8–10,14,16,17,58 Additional biomarkers may help 
improve their utility. For example, we have previously shown 
that hypoxaemic fetuses developed a significantly greater 
rise in T/QRS ratio during repeated UCOs,47 suggesting that 
it may be complementary to DA and/or DC.

Finally, the clinical application of DA or DC relies on real-
time computerised FHR analysis. DA has been studied for 
decades.9,59,60 Although less intuitive, DC has the advantage 
that it can be easily incorporated into automated computer-
ised systems. First, the underlying algorithm is very tolerant 
of noise within the CTG signal. Secondly, DC is a standalone 
algorithm, whereas DA needs to be measured as part of a 
complex system that accurately identifies baseline FHR and 
both the start and end of decelerations. Thirdly, DC is sen-
sitive to multiple aspects of the FHR trace that may indicate 
risk. In a previous study DC was sensitive to deeper deceler-
ations,19 and in the present study to overshoot tachycardia. 
Thus, DC may have somewhat greater pragmatic utility.
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