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When we look at an object, we simultaneously see how
glossy or matte it is, how light or dark, and what color.
Yet, at each point on the object’s surface, both diffuse
and specular reflections are mixed in different
proportions, resulting in substantial spatial chromatic
and luminance variations. To further complicate matters,
this pattern changes radically when the object is viewed
under different lighting conditions. The purpose of this
study was to simultaneously measure our ability to
judge color and gloss using an image set capturing
diverse object and illuminant properties. Participants
adjusted the hue, lightness, chroma, and specular
reflectance of a reference object so that it appeared to
be made of the same material as a test object. Critically,
the two objects were presented under different lighting
environments. We found that hue matches were highly
accurate, except for under a chromatically atypical
illuminant. Chroma and lightness constancy were
generally poor, but these failures correlated well with
simple image statistics. Gloss constancy was particularly
poor, and these failures were only partially explained by
reflection contrast. Importantly, across all measures,
participants were highly consistent with one another in

their deviations from constancy. Although color and
gloss constancy hold well in simple conditions, the
variety of lighting and shape in the real world presents
significant challenges to our visual system’s ability to
judge intrinsic material properties.

Introduction

In our everyday lives, we often identify and interact
with objects across major changes in lighting—for
example, returning at sunset to a car we parked in
the morning or carrying a familiar coffee mug from
the kitchen to the balcony. In such circumstances,
we are not usually struck by the impression that the
color of the car’s paint or the gloss of the mug’s
glaze have changed. Yet judging the color and gloss
of a surface—especially across different lighting
conditions—poses hard computational challenges.
First, these perceptual quantities result from two
physically distinct aspects of the surface’s reflectance,
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which are confounded in the retinal image. Surface
color typically depends primarily on diffuse reflection
in which the incident illumination is modified through
interaction with pigments, whereas gloss stems from
specular reflection, which is a direct reflection of the
illuminant. At each point on the object’s surface,
diffuse and specular reflections are mixed in different
proportions, resulting in substantial spatial chromatic
and luminance variations. In the demonstration
in Figure 1a, pixel colors vary dramatically among
three selected points on the surface of the object,
showing that there is no simple mapping between the
cone excitations at a single pixel and the color of the
object. Furthermore, when we created this image (using
computer graphics rendering techniques), we placed an
object under a specific lighting environment, applied
specific diffuse and specular reflectance properties
to the object, and fixed the camera at a specific
viewpoint (Figure 1a, top right). Changing any of these
underlying scene parameters would alter the color
distribution across the same object’s surface in the
resultant image. As shown in Figure 1b, pixel colors
of the same three surface points change substantially
when the same object is viewed in the same pose, but in
different lighting environments. The reader may also
have the impression that the color and glossiness of the
object appear to be somewhat different, even though
the material properties are identical across the three
objects.

Color constancy has been a core domain of human
color vision research (Foster, 2011; Hurlbert, 2007;
Smithson, 2005). Many early studies used simplistic
visual stimuli that were flat, matte, and uniformly
illuminated, but more recent studies have begun to
use more complex stimuli that better represent natural
visual environments (Brainard & Maloney, 2004;
Mizokami, 2019; Witzel & Gegenfurtner, 2018). One
common research question is whether the use of real
three-dimensional objects increases the degree of color
constancy, compared to flat and uniformly colored
surfaces or images presented on a computer monitor
(de Almeida, Fiadeiro & Nascimento, 2010; Hedrich,
Bloj & Ruppertsberg 2009; Morimoto, Mizokami,
Yaguchi, & Buck, 2017). Color and lightness constancy
in the presence of specular reflection have also been
well-studied, and several studies have found that the
presence of specular reflections can improve color
constancy (Hurlbert, Cumming, & Parker, 1991; Lee
& Smithson, 2016; Granzier, Vergne & Gegenfurtner,
2014; Nagai, Kaneko, Kawashima, & Yamauchi,
2017; Snyder, Doerschner & Maloney, 2005; Yang &
Maloney, 2001; Yang & Shevell, 2003), whereas other
works found the effect only in limited conditions (Xiao,
Hurst, MacIntyre, Brainard, 2012; Wedge-Roberts et
al., 2020).

The effect of object and lighting properties on
perceived gloss has also been the subject of several
studies, although the term “constancy” is not always

Figure 1. Graphical illustration of challenges to judging the color
and gloss of a three-dimensional object placed under a complex
lighting environment. (a) As shown to the upper right, we
placed an object under an environmental illumination, applied
a diffuse reflectance, which has a fixed hue, chroma, and
lightness (denoted as h, C*ab and L*, respectively), and a
specular reflectance, set a view-point and rendered the object
image using computer graphics techniques. The rendered
image is shown on the left side. The hue, chroma, and lightness
vary largely across the three selected pixels at different regions
on the object’s surface. (b) Effects of lighting environments
(overcast environment on the left and indoor environment on
the right) on the color variation at the same three locations.
Note that the objects in (a) and (b) have identical material
properties though their appearance may differ across lighting
environments.

explicitly stated. Many factors that can alter perceived
gloss have been identified: for example, object motion
(Doerschner et al., 2011), body color (Wendt, Faul,
Ekroll, & Mausfeld, 2010), surface curvature (Ho,
Landy, & Maloney, 2008), and lighting environment
statistics (Adams, Kucukoglu, Landy, & Mantiuk,
2018; Fleming, Dror & Adelson, 2003; Obein,
Knoblauch, & Viéot, 2004; Pont & te Pas, 2006).
Furthermore, systematic perturbation of lighting and

Downloaded from jov.arvojournals.org on 07/14/2023



Journal of Vision (2023) 23(7):8, 1–25 Morimoto et al. 3

material properties have been used to quantify their
influences on perceived gloss level (Zhang, Ridder,
& Pont, 2018; Zhang, de Ridder, Barla, & Pont,
2019, 2020). Motoyoshi and Matoba (2012) used
scenes containing a statue along with other objects.
They showed failures of gloss constancy and that
surrounding context information had virtually no effect
on matching results, implying that participants do not
use contextual information to discount the influence of
illumination.

In addition to these constancy perspectives, specific
visual computations that may underlie gloss perception
have been proposed in recent decades (Chadwick &
Kentridge, 2015; Landy, 2007). One primary discussion
point is whether the visual system makes use of
summary statistics extracted from a given image,
rather than reconstructing the entire optical input
(Fleming, 2014, 2017; Nishida, 2019). Candidate cues
to gloss include skewness of the luminance histogram
(Anderson & Kim, 2009; Kim & Anderson, 2010;
Motoyoshi, Nishida, Sharan, & Adelson, 2007; Sharan,
Motoyoshi, Nishida, & Adelson, 2008), its standard
deviation (Wiebel, Toscani & Gegenfurtner, 2015),
the magnitude of luminance gradients in an image
(Sawayama & Nishida, 2018), and more complex
image metrics computed from specular reflection
patterns (Marlow & Anderson, 2013; Marlow, Kim,
& Anderson 2012). Perceived gloss is nonlinearly
related to underlying physical quantities such as the
proportion of light reflected in a specular manner, and
the discriminability of gloss as a function of specular
reflectance has been recently investigated (Cheeseman,
Ferwerda, Maile, & Fleming, 2021).

Despite these extensive investigations into color
constancy and gloss constancy as separate domains,
very few studies have simultaneously measured
color and gloss constancy (lightness and gloss
[Hansmann-Roth & Mamassian, 2017; Olkkonen
& Brainard, 2010], gloss and hue variation between
green and blue [Brainard, Cottaris & Radonjić, 2018;
Radonjić, Cottaris, & Brainard, 2018, 2019]). No study
has measured all dimensions of perceived color (hue,
chroma, and lightness) and gloss at the same time. Yet,
in daily life, when we look at an object, both percepts
naturally occur together, and we do not judge each
separately unless asked to do so explicitly. The purpose
of this study was to directly measure our ability to
judge color and gloss using a synthetic image set
produced using physically based ray-tracing techniques
from computer graphics that captures large variations
of object properties and illuminant properties. For
this, we used a well-established asymmetric matching
task in which two images were presented side by side
on a computer screen. Participants were asked to
adjust the color and gloss of a right reference object
so that it appears to be made of the same material as
a left test object. The critical manipulation is that the
two objects were presented under different lighting

environments; thus, participants needed to take this
difference into account to achieve accurate matching
of physical reflectance parameters. This methodology
has been extensively used in perceptual constancy
studies and shown to be an effective constancy task
(Arend & Reeves 1986; Brainard & Wandell, 1992).
For instance, Olkkonen and Brainard (2010) jointly
measured perceived lightness and gloss of smooth
spheres placed under real-world lighting environments.
They showed that participants accurately judged
lightness, but perceived gloss varied substantially across
lighting environments. There are a few other studies
using the asymmetric matching task that did not
consider the influence of illuminant changes, but that
are nonetheless relevant to the present study. Xiao and
Brainard (2008) showed that humans do not simply use
the mean color across the whole object to determine the
overall color impression of a three-dimensional glossy
object. Strong interactions between specular reflection,
chroma and lightness were found (Honson et al. 2020;
Isherwood et al., 2021). Color matching using different
types of materials (papers, sponges, wool, candles, and
porcelain) revealed that hue perception is highly stable,
while chroma and lightness were influenced by material
types (Giesel & Gegenfurtner 2010).

This study built on these past efforts in two ways: i)
participants were asked to judge three color dimensions
(hue, lightness, and chroma) and gloss at the same
time, and ii) we used a substantially greater variety of
lighting environments and object shapes to capture the
complex behavior of constancy mechanisms (including
successes and errors) in a large stimulus space. Two
psychophysical experiments were performed. The first
experiment measured perceived color and gloss from
single objects, under different lighting environments,
where each object was assigned a unique color and
gloss level randomly. The second experiment followed
up the failure of gloss constancy observed in the first
experiment by systematically exploring the effects of
object shape and lighting environment on perceived
gloss.

General methods

Apparatus

Both experiments were computer-controlled and
all images were displayed on a 24-inch LCD monitor
(ColorEdge CG2420, 1920 × 1200 pixels, frame
rate 60 Hz; EIZO, Ishikawa, Japan) in 10 bits per
color channel (red, green, and blue). We performed
gamma correction and spectral calibration using a
spectroradiometer (CS-2000; KONICA MINOLTA,
Inc., Tokyo, Japan). Experimental code was written
in MATLAB using custom-built functions as well as
functions provided in PsychToolbox-3 (Brainard, 1997).
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Figure 2. Stimulus configuration for asymmetric matching in this
study. The task of participants was to adjust an underlying
diffuse reflectance to change the color and an underlying
specular reflectance to change the gloss of the reference object
presented in the right reference image until it appear to be
made of the same material as the test object presented in the
left test image. Test images changed from one trial to another,
but the reference image stayed the same throughout the
experiment. White text and arrows were not presented during
the actual experiment.

Participants

Ten naive participants were recruited for
Experiments 1 and 2. The ratio of female to male was
2.33 for Experiment 1 and 1.50 for Experiment 2. The
age of participants ranged from 21 to 32 years, with
a mean of 25.6 ± 2.83 years for Experiment 1 and
24.0 ± 3.33 years for Experiment 2. Four participants
completed both experiments. The experiments were
approved by a local ethics committee at Justus Liebig
University Giessen in accordance with the Helsinki
Declaration (sixth revision, 2008). All participants
had normal or corrected-to-normal visual acuity
(self-report). Before the experiments, all participants
were screened for normal color vision using Ishihara
pseudoisochromatic testing plates (Ishihara, 1973). All
participants were undergraduate students at Justus
Liebig University Giessen, Germany, and were paid for
their time.

Task

We used an asymmetric matching task. As shown
in Figure 2, a test image and a reference image were
presented side by side, separated by 7.1° of visual
angle. Participants were asked to adjust the color and
gloss of the right reference object until it appeared to
be made of the same material as the left test object.
The adjustment of color and gloss were done in the
object space rather than the image space. In other
words, for the color setting, participants changed an
underlying diffuse reflectance of the reference object

by adjusting hue, lightness (L*) and chroma (C*ab) (as
defined in the L*a*b* color space, for the reflectance
under equal energy white) which updated the weights
of reflectance basis functions (described elsewhere in
this article) to produce a composite reflectance with
the desired color properties. For the gloss setting,
participants changed an underlying specular reflectance
by adjusting a parameter c, a perceptually linear
gloss scale developed by Pellacini, Ferwerda, and
Greenberg (2000) (Pellacini’s c hereafter). We used these
approximately perceptually linear scales for color and
gloss adjustment because we predicted that participants
might find it easier if increasing or decreasing a single
step would have approximately equal perceptual effect
at any point on each parameter range. Participants
used eight buttons, each corresponding with increasing
or decreasing values of one of the four parameters.
A beep was provided when the value reached the
limit of the prepared range for lightness, chroma,
and Pellacini’s c. Hue is a circular variable, and thus
there was no range limit. Participants binocularly
viewed stimuli presented on a flat screen. During the
matching task, participants were allowed to move their
eyes freely between the test image and the reference
image. There was no time limit for each trial. In this
study, the right reference object served as a scale to
quantify participants’ subjective experiences, and
thus the shape and the lighting environment in the
reference image stayed the same during the whole
experiment, and only the left test image changed from
one trial to the next. A key feature of this task was that
the two objects were placed under different lighting
environments. Thus, participants needed to discount
the effect of lighting on appearance to make accurate
color and gloss matches. Pixel colors have a complex
relationship with the physical parameters applied to
the test object because they are influenced by the
lighting environment, as shown in Figure 1. However, a
perfectly color- and gloss-constant observer should be
able to estimate physical parameters from the test image
regardless of the lighting environment and assign the
same parameters to the reference image. Details of test
images and reference images will be explained elsewhere
in this article.

Experimental stimuli

Rendering
All images used in this study were generated using

the physically based renderer Mitsuba (Jakob, 2010).
A single image contained one floating object shape, to
which we applied a diffuse reflectance and a specular
reflectance using the balanced Ward reflectance model
(Ward, 1992) that conserves energy at grazing angles
(Geisler-Moroder & Dür, 2010). For the illumination,
we used image-based lighting (as shown in Figure 1),
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which we call environmental illumination in this study,
where each pixel in the environmental illumination map
conveys information about a light ray that reaches a
single point in the scene from a particular direction.
The map thereby depicts light coming from every
possible direction in the environment. Environmental
illuminations used in this study were all originally
RGB images, and Mitsuba was used to convert these
to hyperspectral images during the rendering process
(Smits, 1999). To maximize the accuracy of the
rendering process, all images were spectrally rendered
from 400 to 720 nm in 10-nm steps (31 spectral
channels). All images were rendered in 512 × 512
pixel resolution. Rendered hyperspectral images were
converted to the XYZ color space to calculate image
statistics, and to the calibrated RGB color space, such
that displayed images reproduced the XYZ values from
the rendered images.

Reference images
Measuring perceived color and gloss using the

asymmetric matching task required a reference scene in
which participants can adjust the physical reflectance
parameters of the reference object in a continuous
fashion. To construct the reference scene, we selected the
i) environmental illumination, ii) shape of the reference
object, and iii) diffuse and specular reflectances as
follows. In selecting the reference environment, we
wanted an environment in which chromatic variation
is low and a sufficient amount of light hits the objects
embedded in this environment directly, producing highly
visible specular reflections, which we expected could
help participants to judge easily both the color and
gloss of the reference object. We also wanted to choose
an environment in which the reference object appears
to be highly glossy, because otherwise participants
may not find a satisfactory match with a test object,
even at the highest gloss level allowed for the reference
object. To establish this circumstance, we plotted
diagnostic metrics, for publicly available maps, as shown
in Figure 3. Figure 3a shows the selected environmental
illumination map (Uffizi Gallery, Italy) downloaded
from a publicly available database (Debevec, 1998;
https://vgl.ict.usc.edu/Data/HighResProbes/; accessed
March 15, 2022) along with statistical characterization
of the illumination. The top right plot shows a
luminance histogram of all pixels together with some
basic statistics: mean, standard deviation, skewness,
kurtosis, and Xia’s diffuseness metric (Xia, Pont, &
Heynderickx, 2017), which quantifies how much the
lighting environment is directionally uniform from 0
(point light source) to 1 (fully uniform). This lighting
environment has low diffuseness because the upper
and lower hemifields have largely different directional
lighting patterns. The bottom left plot shows 10%
pixel distribution on a*b* chromatic plane where
equal energy white is set to the origin. The bottom

right shows a power spectrum, analyzed by spherical
harmonic decomposition, with a negative slope of the
regression line about –2 that was shown to be typical for
outdoor environmental illuminations (Dror, Wikksky,
& Adelson, 2004).

For the reference shape, we chose a simple,
bumpy sphere whose surface roughness was fixed
at 0.05 as defined in Mitsuba. We chose this shape
as a standard shape again because some degree of
bumpiness increases the spatial contrast of specular
reflection between concave and convex regions, helping
participants to detect where the specular reflections
are, and high spatial-frequency geometries have been
associated with better material recognition accuracy
(Lagunas, Serrano, Gutierrez, & Masia, 2021).

For a continuous adjustment of color and gloss, we
needed to systematically control the underlying physical
reflectances, separately for diffuse reflectance and
specular reflectance. Our approach was to separately
render diffuse and specular images which were linearly
summed to produce a colored glossy object, which
provided a good enough approximation for the
geometry considered here.

We first generated a specular image that has only a
specular reflection component by setting the specular
reflectance to 1.0 and diffuse reflectance to zero across
all wavelengths. To modulate the gloss level of test
images, this specular image was multiplicatively scaled
up and down by a single factor. As already elsewhere
in this article, participants adjusted the gloss level by
changing Pellacini’s c, and this parameter was directly
converted to specularity ps, a parameter defined in the
Ward reflectance model. The scalar quantity ps was
used to scale the specular image at each wavelength. We
sampled Pellacini’s c from 0 (matte) to 0.149 (highly
glossy), which corresponded with 0 and 0.0999 in
specularity ps, respectively. Pellacini’s c captures the
lightness-dependent nature of perceived gloss and,
thus, requires a lightness value for the conversion
between Ward’s specularity and Pellacini’s c. For this,
we used a value of 50, which is roughly equivalent to
the mid value of the prepared lightness range (detailed
elsewhere in this article). Although fixing the assumed
lightness level to the single value was a necessary choice
to keep the lightness and Pellacini’s c to be independent
during the adjustment, this practice meant that the
scale we prepared may not be perfectly linear especially
when the actual lightness level is far from 50 (e.g.,
28 or 74). However, in pilot work, we confirmed that
Pellacini’s c was still better than Ward’s specularity
in terms of perceptual linearity even considering this
limitation.

Our approach to defining diffuse reflectances was
to first specify colors in terms of hue, lightness,
and chroma in L*a*b* color space and to find a
spectral reflectance by combining basis reflectance
functions extracted from the Munsell color system,
that produces the desired hue, lightness and chroma
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Figure 3. (a) Reference environmental illumination used for the reference image and its statistical characterization. The upper right
plot shows the luminance histogram of all pixels, along with some image statistics (mean, standard deviation, skewness, kurtosis, and
Xia’s diffuseness metric). The lower left plot shows the a*b* chromatic distribution of 10% pixel colors that were sampled randomly.
The lower right plot shows the power spectrum analyzed by spherical harmonic decomposition. (b) Six basis reflectance functions
extracted from 1,269 matte Munsell color chips using non-negative matrix factorization. Subset of surface colors assigned to the
object in the reference images at example lightness planes (L* = 30, 50, and 70). There were in total 21,600 colors, allowing
participants to explore the stimulus space using a method of adjustment. (c) Some example reference images, drawn from the four
dimensional stimulus space of color and gloss adjustments.

when placed under an equal energy white light
(X = Y = Z = 100).

We first applied non-negative matrix factorization
to 1,269 matte Munsell color chips (https://sites.uef.
fi/spectral/munsell-colors-matt-spectrofotometer-
measured/, accessed March 15, 2022) to obtain six
basis spectral reflectance functions as shown on the
left in Figure 3b. Then, we sampled 21,600 colors in
L*a*b* color space (subset is shown in the right plot
of Figure 3b): 90 hue values from 0° to 356° in 4° steps;
24 lightness values from 28 to 74 in 2 steps; and 10
chroma values from 8 to 26 in 2 steps. Then, for each
color, we searched for the optimal weights for six basis
reflectances so that the weighted summation of the
basis functions produced the desired L*a*b* values
under equal energy white light (X = Y = Z = 100). For
the optimization, we set a condition that the resultant
diffuse reflectance value should be between zero and
0.90 at any wavelength to meet physical constraints,
even when being combined with the specular reflectance

(0.0999 at maximum). This process generated 21,600
spectral diffuse reflectances; using these, we rendered
21,600 matte reference images. We used 36 of these
reflectances to generate test images in Experiment 1 as
described elsewhere in this article. These diffuse images,
along with the aforementioned single specular image,
enabled continuous adjustment of the color and gloss
of the objects in such a way as to achieve approximately
uniform coverage of the perceptual space, at least as
expected under reference viewing conditions. Figure 3c
shows some example reference images.

When we rendered scenes in the Mitsuba renderer,
the object was placed at the center of the scene and
environmental illumination was applied to the scene.
Then, the camera was set at the same height as the
object and pointed directly at the object. Environmental
illumination generally had high dynamic range, and
had we selected the viewpoint (i.e., camera position)
at random it would have often created an image in
which the object region was too dark to see. Thus, we
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rendered a mirrored sphere from different viewpoints
(0° to 330° in 30° steps) and picked the viewpoint at
which the mean luminance over the sphere was the
highest. We also made sure that there were no pixels
with particularly intense lights in the surrounding
non-object region of the image. Pixel values in the
raw hyperspectral images from Mitsuba were defined
arbitrarily because pixel values in the environmental
illumination have no units. Thus, after converting
the raw hyperspectral image to a linear monitor
RGB image, we scaled the whole image by the 99th
percentile pixel value across all reference images. We
applied the same scaling value to all reference images
to equate the light level across images. Because of
these selection processes, no tone mapping was applied
to any of the reference images. These scaled linear
RGB images were gamma corrected and used for the
experiment.

Test images
We first gathered environmental illuminations from

multiple online databases (including Adams et al., 2016;
Debevec, 1998; and https://hdrmaps.com/freebies/),
from which we selected 12 lighting environments that
cover a diverse variation of natural lighting. Figure 4
shows the selected lighting environments along with
the luminance histogram of all pixels and 10% pixel
chromatic distributions on a*b* plane for six outdoor
scenes (Figure 4a) including sunny days (left four
scenes) and cloudy days (right two scenes) and six
indoor scenes (Figure 4b).

To expand the diversity of the selected lighting
environments to unnatural domains, we applied
two independent manipulations to each lighting
environment. First, we rotated the a*b* chromatic
distribution of the original lighting environment by
+90° while keeping the L* distribution the same,
producing a gamut-rotated lighting environment.
Chromaticities in natural lighting environments tend
to cluster along a blue–yellow axis known as the
CIE daylight locus (Hernández-Andrés, Romero,
Nieves, & Lee, 2001; Judd et al., 1964), and this
manipulation made the distribution run along an
orthogonal red–green axis. If our visual system
uses a prior about a typical illuminant to achieve
perceptual constancy (Delahunt & Brainard, 2004;
Pearce, Crichton, Mackiewicz, Finlayson, & Hurlbert,
2014; Weiss, Witzel, & Gegenfurtner, 2017), we may
observe higher errors in participants’ settings under
these chromatically atypical environments. After the
rotation, some pixels in the map went outside the
chromatic gamut of the experimental monitor and
were thus likely to produce out-of-gamut pixels in
the rendered images. For those pixels, the chroma
value was decreased until the colors came inside the
chromatic gamut. When selecting the original lighting

environments, we made sure that such pixels were
always less than 5%. The second manipulation was
to distort the directional structure of each lighting
environment using a phase scrambling technique via
spherical harmonic decomposition. This manipulation
normally changes the color distribution of the image,
but we kept the distribution of chromaticity and
luminance by histogram matching the phase-scrambled
environment maps to the originals. Again, if our visual
system uses a prior about the directional structure,
such as light from above (e.g., Morgenstern, Murray, &
Harris, 2011; Ramachandran, 1988), we might observe
poor perceptual constancy under these environments
because intense lights could hit the object from every
direction. The resultant 36 lighting environments (12
natural, 12 gamut-rotated, and 12 phase-scrambled)
were used in Experiment 1. Twelve natural lighting
environments were used in Experiment 2.

For Experiment 1, for each of the 36 lighting
environments, we placed in the scene a randomly
selected object from a dataset of three-dimensional
meshes of everyday objects (purchased from
Evermotion, https://evermotion.org/), and physical
reflectance parameters (hue, chroma, lightness, and
Pellacini’s c), and selected the viewpoint in the same way
we selected the viewpoint for the reference image. The
viewpoint was shared between natural environments
and gamut-rotated environments, but different camera
angles were used for phase-scrambled environments
(because the scene geometry was different). No tone
mapping was applied to any of the test images. Figure 5
shows 36 example test images together with an
example lighting environment and its a*b* chromatic
distribution. Mean luminance over the object region
was 22.6 ± 3.44 cd/m2 (mean ± 1.0 standard error
across 36 objects). For each test image, the underlying
physical reflectance parameters were defined as
ground-truth values in the analysis.

For Experiment 2, we generated 216 test images,
a factorial combination of 12 natural lighting
environments and 18 shapes sampled from shapes used
in Experiment 1.

Procedure

Before the experiment, participants were given
instructions both orally and by written text on the
screen: “Your task is to adjust glossiness and color
of the right ‘reference’ object in terms of specularity,
lightness, chroma, and hue until the reference object
appears to be made of the same material as the left
‘target’ object. Each parameter changes the appearance
of the reference object as shown here.” Regarding the
final sentence, we presented some example reference
images similar to Figure 3c to explain how changing
each parameter influences the appearance of the
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Figure 4. (a) Six outdoor lighting environments (left four environments are sunny days and the right two environments are overcast
days) and (b) six indoor lighting environments, together with the luminance histogram of all pixels and the a*b* chromatic
distribution of 10% of pixel colors sampled at random. The numbers in the histograms are mean, standard deviation (SD), skewness
(skew.), kurtosis, Xia’s diffuseness metric (diffuse.), and slope of the power spectrum computed by spherical harmonic decomposition.
Maximum luminance in each image was normalized to 1.0 (zero on a logarithmic scale) to allow the comparison across environments
in this figure, but note that for actual test images each environment was scaled differently from this figure (detailed in main text). The
intersection of horizontal and vertical thin gray lines denotes the white point (X = Y = Z = 100) of the color space. The black cross
symbol depicts mean a*b* chromaticity across the plotted 10% of pixels. The black solid line shows the CIE daylight locus.

reference object. Our instructions were phrased to
encourage participants to judge the intrinsic properties
of the material. We chose this criterion over matching
in terms of ‘appearance’ (see discussion on the two
criteria; e.g., Radonjic & Brainard, 2016; Reeves,
Amano, & Foster, 2008), mainly because it better served
the primary purpose of this study, which was to measure
the extent to which participants can infer underlying
material properties under diverse lighting environments.
Given that this was an asymmetric matching task,
with large spatial chromatic and luminance variation
over the surfaces (Figure 1), it is questionable whether

instructions focused on local appearance would have
been as easy and consistent; depending on where
observers look, the matching result would presumably
change (Xiao & Brainard, 2008; Toscani, Valsecchi, &
Gegenfurtner, 2013a, 2013b). Alternatively, if observers
interpreted the appearance instructions to mean a
spatial summary of the appearance across the surface,
the resulting matches would likely closely resemble those
resulting from our instructions. Three practice trials
immediately followed the instructions, using example
test images that were not used in the actual experiment.
During the practice trials, participants were asked to
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Figure 5. Thirty-six test images (a, c, and e) and an example lighting environment along with its a*b* chromatic distribution (b, d,
and f) in Experiment 1. (a, b) natural lighting environment, (c, d) +90° gamut-rotated lighting environment and (e, f) phase-scrambled
lighting environment. Each test image contains a single object whose shape (and orientation), color, and gloss level were randomly
assigned.

explore the full range of each parameter to familiarize
themselves with the range of each parameter. After
the practice trials, participants adapted for one minute
to 20-Hz random-dot dynamic color noise whose
mean chromaticity was equal to the chromaticity of
equal energy white, then the experiment began. Initial
physical reflectance parameters for the reference object
were randomized for each trial. The viewing distance
was kept constant at 49 cm from the LCD monitor.
Participants signaled when the matching was completed
by a button press and the selected underlying physical
reflectance parameters of the reference object were
recorded as the participant’s response.

In Experiment 1, there were 36 test images and 2
control images that contained the same bumpy sphere
as the reference objects presented under the reference

lighting environment (symmetric matching). The
reflectance parameter in control images was fixed at hue
120, chroma 22, lightness 40, and Pellacini’s c 0.1305 for
the control image 1, and hue 320, chroma 14, lightness
60, Pellacini’s c 0.0152 for the control image 2. One
session thus consisted of 38 settings, and all participants
completed three sessions in total. One setting took 66.4
± 15.5, 53.5 ± 13.0, and 41.1 ± 7.9 seconds (mean ± 1.0
standard deviation across 10 participants) for sessions
1, 2 and 3, respectively. In Experiment 2, one session
consisted of 216 trials (216 test images), and 2 sessions
were completed. One setting lasted 11.5 ± 3.23 and
8.42 ± 2.18 seconds (mean ± 1.0 standard deviation
across 10 participants) for sessions 1 and 2, respectively.
For both experiments, there was a break between
sessions.
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Experiment 1

Results

Control condition
We first show participants’ settings for the control

image 1 (symmetric matching) in Figure 6. It is
clear that participants can highly accurately set the
reflectance parameters close to ground-truth values
when the shape and lighting environment are identical
between test and reference images. The accuracy of
the setting was similar for the control image 2. This
finding is not surprising, but these error values can be
usefully taken as a measure of matching precision for
each parameter.

Main conditions
Figure 7 shows the main results for Experiment 1.

Each data point shows the averaged setting across
10 participants for 1 test image. From left to right,
each subplot shows results for hue, lightness, chroma,
and Pellacini’s c, respectively. Black numbers at the
upper left corner of each subpanel show the correlation
coefficient between ground-truth value and participants’
settings, calculated separately for each observer first
and averaged across 10 participants.

Note that, in an asymmetric matching experiment,
participants’ settings should be interpreted relative
to the reference image used in this study. Taking the

Figure 6. Results for the control condition (control image 1),
where the test image and reference image had identical shapes
and lighting environments to measure the precision of
participants’ settings along each parameter. The settings were
first averaged across 3 sessions for each observer and then
averaged across 10 participants. The image on the x-axis shows
control image 1. The blue horizontal line depicts the
ground-truth values assigned for the test object. The error bars
show ±1.0 standard deviation across 10 participants.

Pellacini’s c as an example, data points falling exactly
on the diagonal unity line shows that participants set
the Pellacini’s c of the reference object so that it is the
same as the test object. This means that the perceived
gloss level of the test object and reference objects are
the same when both objects have the same Pellacini’s
c. In an alternative case, data points located below the
diagonal line mean that those test objects would appear
to be less glossy than the reference object if the test
objects’ Pellacini’s c (ground-truth) were applied to
the reference object (which is why participants needed
to decrease the Pellacini’s c of the reference object
to achieve matching). For this reason, absolute error
values are likely to vary by the choice of reference
image, and thus we evaluated the accuracy of the
settings using correlation coefficients between human
settings and ground-truth values, which are not affected
by additive shift or multiplicative scaling of the data
points, which might have been introduced by the choice
of the reference image. This relative measure also allows
comparisons across different parameters.

At first glance, the data points in Figure 7 show
large scatter, except for hue settings, and the data seem
noisy. However, we emphasize that these settings were
highly consistent across participants as illustrated
in Figure 8, meaning that all participants systematically
showed similar deviations from ground-truth. The left
bars show the averaged correlation coefficient between
human settings and ground-truth (the same as the black
numbers in the upper left corners of plots in Figure 7),
and the small circles show individual participants.
The right bars show the averaged correlation among
participants (interparticipant correlation). To compute
this, for each participant, we calculated the correlation
coefficient between the participant’s settings and
settings averaged across all participants (Nili et al.,
2014). This reveals that human-human correlations
are generally high regardless of human–groundtruth
correlation, making it clear that the scattered data
patterns in Figure 7 are not due to noise.

Returning to Figure 7, hue settings in natural
environments (Figure 7a) show a significant correlation
with ground-truth values, indicating that hue judgment
is stable regardless of test lighting environments.
This observation holds well for phase-scrambled
environments (Figure 7c) and less so for gamut-rotated
environments (Figure 7b). This generally high degree
of hue constancy may not be very surprising because
the circular correlation between mean hue value over
the object region and ground-truth values across
36 test images was 0.92. This means that basing a
judgment on the mean hue value over the object
region (Milojevic, Ennis, Toscani, & Gegenfurtner,
2018) in each trial would lead to high correlation with
ground-truth, but this might also suggest that hue is
physically a relatively stable quantity, at least for the
environmental illuminations we tested here. To evaluate

Downloaded from jov.arvojournals.org on 07/14/2023



Journal of Vision (2023) 23(7):8, 1–25 Morimoto et al. 11

Figure 7. Results in Experiment 1 for (a) natural lighting environments, (b) gamut-rotated lighting environments, and (c) phase-
scrambled lighting environments. Each setting was averaged across 10 participants. Error bars show ±1.0 standard error (SE) of the
mean over 10 participants, which is smaller than the data point for most cases. Upper images in each panel show test images, with
numbers showing the correspondence to data points. The number at the left upper corner in each subpanel shows the correlation
coefficient (mean ± 1.0 SE) between ground-truth values and participants’ settings calculated separately for each participant and
averaged across 10 participants. The blue line represents the precision computed from the mean absolute error in the symmetric
matching data. Small colored arrows show test images whose gloss level was judged to be particularly high (red arrows), low (blue
arrows), and the same level as the reference image (green arrows).
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Figure 8. Left bars and data points show correlation coefficients
between each human participant and the ground-truth and
right bars and data points show interparticipant correlation
(correlation between each participant and the average across
all participants) for (a) natural, (b) gamut-rotated, and
(c) phase-scrambled lighting environments. Each dot shows an
individual participant and each bar shows the average across 10
participants.

the influence of the type of lighting environment
(natural, gamut-rotated, and phase-scrambled) on the
correlation coefficient between human settings and
ground-truth, we performed one-way repeated measures
analysis of variance, which confirmed a significant effect
of illuminant type, F(2,18) = 11.9, p = 5.14 × 10−4.
Post hoc multiple comparisons (Bonferroni’s corrected
p = 0.05) showed significantly higher correlation for
natural environments (Figure 7a) than gamut-rotated
environments (Figure 7b) and phase-scrambled
(Figure 7c) than gamut-rotated environments
(Figure 7b), suggesting worse hue constancy in
chromatically atypical lighting environments ,which
implies the role of a daylight prior in judging the
illuminant influence (Pearce et al. 2014; Weiss, Witzel &
Gegenfurtner, 2017).

In contrast, lightness and chroma settings are
scattered in a disorderly way, leading to generally lower
correlation with ground-truth than for hue settings.

The correlation coefficient was statistically significant
only for the chroma setting in (c) phase-scrambled
lighting environments. Similarly, settings of Pellacini’s
c were not highly correlated with ground-truth though
the correlation is significant for (c) phase-scrambled
environments. Here, most data points fall below the
diagonal unit line, meaning that the perceived gloss level
of test objects was generally lower than the reference
object. This might reflect either the more even sampling
of surface normals for the reference geometry, or a
tendency of the Uffizi probe to make objects appear to
be particularly glossy.

To check the presence of a learning effect over
three sessions, we computed the correlation coefficient
between human settings and ground-truth values. We
found that for hue setting the correlation coefficient
over 36 images significantly increased from session 1 to
session 2 (Bonferroni’s corrected p < 0.05). However,
no learning effect was observed for chroma, lightness
and Pellacini’s c, which is unsurprising as there was no
feedback on how close each setting was to ground-truth
value.

Discussion

Subsequent subsections discuss potential underlying
reasons for highly consistent error patterns for chroma,
lightness, and gloss judgments.

Interaction between diffuse reflectance and specular
reflectance

First, we considered the possibility that specular
reflections may have contaminated the perception of
body color. If so, we should observe that deviations
between lightness and chroma settings by participants
and ground-truth values become larger as a function
of physical (or perceived) gloss level. Accordingly, we
computed correlation coefficients between the ground-
truth Pellacini’s c and lightness error (human setting
minus ground-truth) and between the ground-truth
Pellacini’s c and chroma error across 12 test images,
separately for each type of lighting environment.
However, we found no significant correlation under
any type of lighting environment. We repeated this
analysis using Pellacini’s c set by participants instead
of the ground-truth Pellacini’s c, but again there was
no significant correlation under any type of lighting
environment. Thus, large errors in chroma and lightness
observed in Figure 7 are unlikely to be due to masking
or intrusion by the specular reflection.

Similarly, we next asked whether diffuse reflection
contaminated the perception of gloss. In other words,
were participants more likely to make errors in gloss
settings for a certain range of body colors? Figure 9
visualizes the magnitude of errors (Pellacini’s c set
by participants minus ground-truth Pellacini’s c) as
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Figure 9. Analysis of interaction between body color (diffuse reflectance) and perceived gloss level for (a) natural, (b) gamut-rotated,
and (c) phase-scrambled lighting environments in Experiment 1. Each data point corresponds to one test image and its color shows the
body color (in sRGB format). The size of each data point represents the error of gloss setting (human setting minus ground-truth). Red
and blue edge colors show positive and negative errors, respectively. Left plot shows representation in a*b* chromatic plane while
the right plot shows lightness axis. There was no systematic trend found between the body color and the magnitude of gloss errors.

a function of body color. However, we found no
significant correlation between errors in gloss settings
and each of the color parameters (i.e., hue, chroma and
lightness) under any type of lighting environment after
the correction of significance level (by Bonferroni’s
correction), showing that there are no noteworthy
interactions between failures of gloss constancy and
body color.

Overall, these analyses confirmed that error patterns
in color settings were independent from specular
reflectance. Similarly, errors in gloss judgements were
not systematically affected by diffuse reflectance.
Evidently judgments of the components of reflectance
are based on distinct image information or internal
representations, not a single composite representation
of the entire bidirectional reflectance distribution
function (Nicodemus, Richmond, Hsia, Ginsburg, &
Limperis, 1997).

Interaction between lightness and chroma
We wondered whether there might be an interaction

between parameters related to color, which affected
participants’ perceptual judgment and matching. One
such candidate was the interaction between chroma and
lightness as a past observation suggested that perceived
saturation is relatively well predicted by C*ab/L*
(Fairchild, 2013; Schiller, Valsecchi, & Gegenfurtner,
2018). In other words, it is possible that participants
judged the chroma and lightness match by simply
judging the match in perceived saturation between test
and reference objects. If that’s the case, ground-truth
values and participants’ settings when represented in
C*ab/L* should correlate well. As shown in Figure 10,
we found significant correlations for all three types of
lighting environment. This explains at least partially
the scattered setting patterns for chroma and lightness

in Figure 7, especially for the phase-scrambled
environments (Figure 7c), although a substantial
portion of the variance remains unaccounted for with
the natural (Figure 7a) and gamut-rotated environments
(Figure 7b).

Image statistics
Another candidate account would be that

participants based their judgements on various
summary statistics directly accessible from test images.
Indeed, since there is no direct way for participants
to access the ground-truth values of gloss and
body color, such a strategy could be a reasonable
alternative approach to performing the task. To
predict participants’ lightness and chroma settings, we
calculated mean, median, standard deviation, skewness,
kurtosis, first quartile (Q1), third quantile (Q3), and
minimum andmaximum values of lightness and chroma
across the object region in each test image. Surrounding
context was excluded from the computation.

Additionally, to understand why gloss constancy
was poor in our task, we selectively looked at
test images that were rated particularly high gloss
(discrepancy from ground-truth, +0.0411, +0.0469)
and low gloss (discrepancy, −0.129, −0.136), as well
as images where ground-truth and human settings well
matched. Figure 11a shows example images (these
images are labeled by colored arrows in Figure 7). It
is evident that specular reflection patterns are visibly
different across images. Objects in high-gloss images
(surrounded by red squares) seem to receive strong
directional lights in the environment and consequently
have a readily visible specular reflection pattern though
physically the specularity is around the middle of the
range (Figure 7). In contrast, objects in low gloss
images (surrounded by blue squares) are placed under a
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Figure 10. Scatter plot to see whether interaction between
chroma and lightness (saturation defined as C*ab/L*) can
explain the observed chroma and lightness constancy failures.
The x-axis shows ground-truth saturation while the y-axis
shows saturation computed from matching results. Significant
correlations between ground-truth and human settings suggest
that participants might have used the perceived saturation to
help determine whether the color was matched between
reference object and test object.

dim and cloudy lighting environment or indoor scene.
Specular reflection is present in these cases too, but it
spreads across the surface and that is why, when mixed
with diffuse images, the specular reflection patterns are
hard to detect even though both objects have nearly the
highest possible specular reflectance. Finally, for the
images where human settings and ground-truth were
well-correlated, specular reflections are moderately
visible. In sum, it visually makes sense that these
images were rated by participants in these ways, which
encouraged us to compute image metrics based on
patterns of specular reflection.

Thus, in addition to basic descriptive statistics,
we used metrics computed from the structure of the
specular reflection image (Marlow, Kim, & Anderson,
2012; Schmid, Barla, & Doerschner, 2021) to predict
participants’ gloss settings. As shown in Figure 11b, we
first converted the original image to a luminance image
in which each pixel has the unit of candela per square
meter, masked out the object region, and subtracted
the diffuse component from the image, which resulted
in test images with specular reflection alone. Then,
we extracted pixels whose intensity is higher than

k% value of the highest intensity across this specular
image, where k took the following values 0, 1, 3, 5,
10, 20, and 40 to get rid of the region of specular
reflection that stems from secondary and higher-order
inter-reflections. Using this thresholded highlight image
we calculated the following three metrics. The first
metric is coverage, corresponding with the proportion
of area covered by the highlight relative to the whole
object area as depicted in the top left part of Figure 11c.
Second, we calculated the sharpness. Using a spatial
convolution, this metric emphasizes the region where
luminance rapidly changes and sharpness is defined as
a mean value of the convoluted sharpness map (Vu,
Phan, & Chandler, 2012) as shown in top right part
of Figure 11c. For coverage and sharpness, model
predictions were affected by the cut-off percentage to
threshold the highlight regions and thus we selected
an optimal value of k that produced the highest
correlation value with human settings. We note that,
by searching for the optimal cut-off threshold in this
way, we considered a possibility that a “low-light”
region of the specular image could contribute to human
gloss percept (Kim, Marlow, & Anderson, 2012).
Finally, the third metric was contrast, which essentially
measures the spatial luminance variation over the
surface. The standard way would be to calculate a
contrast from the raw highlight image directly. However,
considering a previous observation that perceived gloss
is affected by the modulation of a specific frequency
channel (Boyadzhiev, Bala, Paris, & Adelson, 2015), we
first decomposed the raw highlight image into eight
sub-band images using a Gaussian band-pass filter
(upper and lower cut-off frequencies: 1.5 to 3.0, 3.0
to 6.0, 6.0 to 12.0, 12.0 to 24.0, 24.0 to 48.0, 48.0 to
96.0, 96.0 to 192, and 192 to 384 cycles/image) and
a subset of sub-band images are shown in the lower
part of Figure 11c. Here, the highest center frequency
was 18.2 cpd, which would be comfortably resolved for
participants with the visual acuity 20/20. We calculated
the RMS contrast, equivalent to the standard deviation
of the pixel intensities, for each sub-band image as well
as for an aggregated image across all frequencies. This
means that, unlike coverage and sharpness, which has
one parameter, the sub-band contrast metric has two
free parameters (i.e., the cut-off pixel intensity and the
cut-off spatial frequency band), and optimal values
producing the highest correlation with human settings
were selected. For all three metrics, searching for the
best parameters was performed separately for each
type of lighting environment (natural, gamut-rotated,
phase-scrambled).

Each bar in Figure 12 shows the absolute values
of correlation coefficient between image statistics and
human settings for a natural lighting environment
(Figure 12a), gamut-rotated lighting environment
(Figure 12b), and phase-scrambled lighting environment
(Figure 12c). Higher values indicate that the models
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Figure 11. (a) Example images where humans perceived high gloss (left column), low gloss (center column), and where ground-truth
gloss level and human settings matched well (right column). The top six images show original images where diffuse and specular
reflections are both included. The bottom six images show objects without diffuse reflection and surrounding context to visualize the
spatial structure of specular reflection on which participants might have based their gloss judgements. (b) Process to convert original
test image to thresholded highlight image. (c) Calculation of three metrics to predict human gloss percepts: coverage, sharpness and
sub-band contrast (see the main text for details).

capture participants’ settings better. The magenta
shaded region shows the interparticipant noise ceiling,
between upper bounds (same as the magenta values
in Figure 7) and lower bounds, computed by a similar
procedure as the upper bound, but by calculating the
correlation coefficient between the left-out participant’s
settings and settings averaged across all other
participants. This range effectively defines a bound on
how well any image-computable model could perform.
These image statistics were computed from test objects
that include both diffuse and specular reflections.
For lightness and chroma, we also considered image
statistics computed directly from the diffuse component
only (without specular reflection) to test the idea that
humans might have effectively discounted the specular
reflection from the test image. The red diamonds show
the correlation between image statistics calculated
directly from the diffuse image and participants’
settings. If participants took such a strategy, the red
diamonds should come higher than the green bars.

For lightness and chroma, it is clear that, although
the correlation between human settings and ground
truth are remarkably low (as shown in Figure 7),
participant settings are highly correlated with simple

statistics, such as mean lightness and mean chroma over
the object region, nearly touching the noise ceiling level
in some cases. Interestingly, for lightness, the maximum
luminance of diffuse components (red diamonds)
predicts human settings better than maximum
luminance of the original image (bars), consistent with
a past observation (Giesel & Gegenfurtner, 2010).

Looking at Pellacini’s c, overall image statistics
correlate with human settings less than for chroma
and lightness, and rather surprisingly the maximum
luminance values are generally good predictors for
any type of lighting environment. Yet, there are still
significant disparities between the predictors and
human performance. Thus, these models explain
the failure of gloss constancy to some extent, but
not enough to capture the complexity of gloss
perception. Furthermore, we also checked whether
any of the light map statistics shown in the luminance
histogram diagram in Figure 4 could predict the
gloss percept. However, we found no significant
correlation between any of the statistics and human
gloss settings. Importantly, these light map statistics
are computed for the whole light map, whereas the
object in each test image receives lights from only
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Figure 12. Correlation coefficients between image statistics (calculated over the object regions in test images) and human settings.
(a) Natural environment, (b) gamut-rotated environment, and (c) phase-scrambled environment. The magenta shaded areas show an
interparticipant noise ceiling, equivalent to the correlation across participants, which correspond to magenta numbers in Figure 8.
Red diamonds show the correlation between image statistics calculated over the object region in test images that had only diffuse
reflection (no specular reflection).

a limited part of the light map. Thus, if instead we
widely changed the viewpoint and measured perceived
gloss for each viewpoint, we might have seen a higher
correlation.

To summarize the results from Experiment 1,
both success and failures of color constancy were
well-captured. Hue constancy holds remarkably well.
Failures of chroma and lightness constancy were
systematic and largely predicted by simple metrics such
as mean chroma or mean lightness over the object
surface. Gloss constancy was very poor for our stimuli,
but matches were highly consistent across participants,
and the simple image statistics we investigated explained
human behavior to a limited extent.

To grasp the complex nature of gloss perception
better, we felt that the 36 test images used in
Experiment 1 may not be enough. Thus we conducted
a follow-up Experiment 2 with 216 test images using a
factorial combination between 12 lighting environments

and 18 shapes, and the perceived gloss was again
measured using the asymmetric matching task.

Experiment 2

Test images and procedure

We generated 216 images using 18 shapes sampled
from those used in Experiment 1, and 12 lighting
environments (Figure 13). The hue, lightness, and
chroma of test objects and matching objects were fixed
at 188.2°, 33.9, and 11.9, respectively. We picked this
greenish color because we speculated that the visibility
of the specular reflection would be higher when the
body color falls on the axis orthogonal to daylight locus
(i.e., red–green axis); as seen in Figure 4, the colors
of the specular reflection are distributed mainly along
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Figure 13. The 216 test images used in Experiment 2. Images were generated by the factorial combination between 12 natural lighting
environments in Experiment 1 and 18 shapes that were randomly sampled from the 36 shapes in Experiment 1. Body color was fixed
as a greenish color, which we found useful to increase the visibility of specular reflection on the objects’ surface.

the blue–yellow axis. The task of participants and
procedure were identical to Experiment 1, except that
participants’ adjusted only Pellacini’s c in Experiment 2
and the color of the reference object was fixed to the
same green as the test object. For each test image,
we applied a random Pellacini’s c ranging from 0 to
0.224, which corresponds with the range from 0 to
0.0999 in Ward’s specularity. The maximum value of
Pellacini’s c here differs from the value in Experiment 1
(0.149) because the lightness value of the object for the
conversion between Pellacini’s c and Ward’s specularity
was 33.9 instead of 50. One session consisted of 216
trials, and all participants completed two sessions in
total.

Results and discussion

Figure 14a shows participants’ settings (averaged
across 10 participants) in Experiment 2 grouped by the
test lighting environment. Each data point corresponds
to one shape, and thus there are 18 data points in
each subplot. Globally, looking through subplots, it

is evident that data points deviate substantially from
the unity line (diagonal dotted line), showing that
human settings and ground-truth strongly disagree. It
is also noticeable that the slope of the red regression
line differs from one lighting environment to another
(minimum of 0.34 and maximum of 0.90). A higher
slope means that on average under that lighting
environment objects appear to be more glossy. Also,
the correlation coefficients between human settings and
ground-truth values (black numbers at the top left)
were significant in all lighting environments, unlike in
Experiment 1, but the values vary from 0.46 to 0.78
showing that the variability owing to the objects’ shape
also differs from one lighting environment to another.
Thus, simple transformations are unlikely to equate
the perceived gloss level in one lighting environment
to another environment. This finding is inconsistent
with past research using smooth spheres (Doerschner
et al. 2010; Fleming, Dror, & Adelson 2003), and the
use of a variety of shapes in this study is likely to be
a reason. Overall, these results suggest that perceived
gloss somewhat correlates with the underlying physical
specular reflectance, but also differs owing to the change
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Figure 14. (a) Average setting across 10 participants in Experiment 2, where settings were grouped by lighting environment. Each data
point denotes one shape, and thus there are 18 data points in each scatter plot. Error bars show ±1.0 standard error (SE) across 10
participants. Regression lines fitted to the 18 data points are shown by a solid red line. Black numbers in the upper left corners of the
plots show the correlation coefficient (±1.0 SE) between human settings and ground-truth, computed for each participant first and
then averaged across 10 participants. Red numbers show the slope of the regression line. Higher slope means that, on average, that
lighting environment produced a high degree of perceived gloss. (b) Lefthand bar plot shows correlation coefficient between image
statistics and human settings. The dark green bars show image statistics computed from specular reflection images, and the light
green bars show simple luminance image statistics. Error bars show ±1.0 standard deviation across 10 participants. The blue line
shows the correlation coefficient between participants’ settings and ground-truth values, averaged over 12 lighting environments
(average over 12 black numbers in panel (a)). The pink shaded areas show an interparticipant noise ceiling computed in the same way
as for Experiment 1 (Figure 12), which no model can exceed. The gray filled circles show the partial correlations between each image
statistic and human settings, removing the influence of the correlation between image statistics and ground-truth. The red line shows
the correlation coefficient between human settings and a weighted sum of 12 statistics where weights were optimized through
multiple regression. The right-hand bar plot shows a standardized regression coefficient (Borgonovo & Plischke, 2016) for each
statistic averaged across 10 cross-validations, and error bars show ±1.0 standard deviation.
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of lighting environment, showing failures of gloss
constancy.

We next asked whether image statistics explain
these human behaviors. The lefthand bar graph
in Figure 14b shows the absolute values of correlation
coefficient (averaged over 10 participants) between
each statistic and human settings over 216 images.
Unlike the results of Experiment 1 (Figure 12), basic
image statistics showed a fairly low correlation. The
maximum luminance shows lower correlation than
Experiment 1, and thus the high effectiveness of the
maximum luminance in Experiment 1 was presumably
because of the small number and limited variation
of images used in Experiment 1. In contrast, the
sub-band contrast metric showed a relatively high
correlation. However, this correlation was significantly
lower than the correlation between human settings
and ground-truth shown by the blue line (two-tailed
paired t test), t(18) = 3.25, p = 0.0045. Moreover, it
is worth noting that this contrast metric (and others)
also correlates with the ground-truth value to some
extent, and this factor may be a part of the reason
why these metrics correlated with human settings.
Thus, to remove the influence of ground-truth, we
additionally computed a partial correlation coefficient
between the image statistics and human settings (gray
filled circles), removing the correlation between image
statistics and ground-truth values. We found that they
are lower than the original correlation coefficient,
especially for image metrics computed from specular
reflections (left three gray points). This result suggests
that these models correlate well with human settings
mainly simply because they correlate with ground-truth,
not necessarily capturing systematic failures of gloss
constancy consistently exhibited by participants. For
other simple image statistics, partial correlation and
original correlation coefficients are similar to each other,
likely because those simple metrics do not correlate with
the ground-truth values well. Finally, we tested what
happens if we assume observers combined multiple
statistics instead of using a single cue independently.
To test this idea, we ran multiple regression analyses
using all 12 metrics as independent variables to
explain the participants’ settings. When we did this, we
trained a regressor using the averaged settings across 9
participants to find optimized weights for 12 metrics,
and then using these optimized weights we calculated
the correlation between the regressor’s prediction and
the settings by the left-out participant. We repeated
this 10 times (leave-one-out cross-validation), and the
average across the 10 correlation coefficients is shown by
the horizontal dashed red line. The right-hand bar plot
shows standardized weights for each statistic, averaged
across 10 validations. However, the improvement owing
to the integration of multiple cues was marginal, and
consequently there is still much room between this
level and the noise ceiling level. We also looked at the

correlation between human settings and each of the
statistics of lighting environments shown in Figure 4,
but the correlation coefficients were overall low, and
the highest value was 0.11 for skewness. Thus, these
statistics are not predictive of human gloss perception
in Experiment 2, being consistent with the observation
in Experiment 1.

General discussion

How do we overcome huge variations in the
proximal image to create a stable percept of the color
and gloss of objects? To address this question, we
measured color and gloss constancy together using an
asymmetric matching task under a diverse set of lighting
environments. Our results revealed a strong asymmetry
across hue, chroma, and lightness constancy; the
degree of hue constancy was generally high, although
it slightly decreased when the lighting environment
had atypical chromatic properties, whereas lightness
and chroma constancy were in general severely limited
(except for chroma settings under phase-scrambled
environments). These failures of chroma and lightness
constancy were well-captured by the saturation metric
(chroma/lightness) and simple image statistics over the
object region in the image. In contrast, gloss constancy
was generally poor (i.e., gloss ratings depended on
lighting environment and shape), but phase-scrambling
directional lighting geometry did not impair gloss
constancy additionally. Image statistics explained those
failures of gloss constancy only to a limited extent. One
major finding in this study is that, although there have
been observations that simplistic image metrics can
account for large variations in human gloss perception,
when the diversity of shape and lighting approaches
that seen in real-world environments a significant
amount of consistent variance in gloss judgments
remains unexplained.

This study presented constancy errors that were
remarkably consistent across tested participants,
but there have been reports that the degree of
color constancy could vary substantially from one
experimental condition and paradigm to another
(Foster, 2011). Our findings on the limited gloss
constancy are in fact largely in line with findings from
several past studies. Pont and te Pas (2006) reported that
participants showed significant failures of constancy
in a task where two presented spheres illuminated
differently have either the same reflectance properties
or not. Nishida and Shinya (1998) used a reflectance
matching paradigm using both albedo and specular
reflectance and showed that participants’ lightness
and glossiness judgment were heavily influenced by
object shape. Olkkonen and Brainard (2010) showed
systematic failures of gloss constancy due to changes
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of lighting environment. We note that all of the
computational gloss models we implemented in this
study ignored the surrounding context. It is possible
that a model that incorporates the surrounding context
into gloss computation might account better for human
behaviors. Also, our stimuli were all static, but adding
movement to the stimuli would likely increase the degree
of gloss constancy (Dovencioglu, Ben-Shahar, & Barla,
Doerschner 2017; Doerschner, Boyaci, & Maloney,
2011; Gigilashvili, Thomas, Pedersen, & Hardeberg,
2021; Scheller Lichtenauer, Schuetz, & Zolliker,
2013; Wendt et al., 2010). In addition, it is worth
noting that all these experiments reporting constancy
failures—including our own—were conducted using
computer monitors, and whether this finding applies
to real-world scenarios needs careful investigation. For
example, one challenge associated with performing the
asymmetric matching paradigm on monitors is limited
adaptation to test lighting environments, which is a key
contributor in human color constancy (Smithson &
Zaidi, 2004). Although the participants were allowed
to move their eyes freely during a trial, it is reasonable
to assume that the participant looked at the reference
image for most of the time during the trial to complete
the task. Moreover, images presented on the monitor
only occupied a small part of the visual field, and the
surrounding region in test images that provides cues to
the lighting environments was even smaller (on average,
26.3% of the whole image for Experiment 1 and 18.3%
for Experiment 2), which would have made it harder for
observers to infer the illuminant influence. However, it
is worth noting that the conditions in our experiment
were sufficient to enable relatively good hue matches.
Finally, we presented only one object in each test image,
and presenting multiple objects with various colors in
the same scene may have increased the degree of color
constancy.

We observed that changing the lighting environment
had different effects on different color dimensions.
One reason for the superior hue stability could be that
the lighting environments we selected did not produce
extreme chromatic shifts in the proximal image and
consequently pixel hue values did not change severely
enough to cause poor constancy. In fact, as shown
in Figure 4, although we tried to select environmental
illuminations whose color distributions are different
from each other, the mean color (shown by a black
cross symbol) is still located relatively close to the white
point. In contrast, chroma and lightness values shifted
enough that mean chroma and lightness values were
decorrelated from ground-truth values. However, it is
generally true that in natural environments extreme
chromatic shifts are rare (Morimoto, Zhang, Fukuda,
& Uchikawa, 2022). It is thus interesting to ask how
much our selection of lighting environments reflects
the true variation of actual lighting environments.
If the physical hue values of an object do not vary

substantially across scenes in the real world, hue serves
as a useful perceptual anchor for object identification
under different environments (Ennis, Schiller, Toscani,
& Gegenfurtner, 2018; Milojevic et al. 2018).

In this study, we used Pellacini’s c to provide
the observers with an approximately perceptually
uniform scale when adjusting the reference image.
This strategy helps to keep precision approximately
constant throughout the matching scale. The metric was
originally derived from experiments using a grayscale
sphere under an area light source and thus naturally
shows limited performance outside this context
(Gigilashvili & Islam, 2022) as Pellacini, Ferwerda, and
Greenberg (2000) themselves acknowledged in their
original study. Thus, it could be that the matching scale
was not as uniform in our experiment as in Fleming
et al. (2003), for example, which—like Pellacini et al
(2000)—used spheres. Indeed, we do find a substantial
effect of shape on perceived gloss, as has been reported
previously (Vangorp, Laurijssen, & Dutré, 2007). It
might be argued that the low correlation between
human settings and ground-truth for gloss could in
some way be influenced by the limited generalizability
of the metric to different lighting environments, object
shapes, and body color that we manipulated in this
study. It is important to note, however, that the design
of our experiment does not involve interpreting the
settings as absolute perceptual gloss estimates. We
are investigating gloss constancy, and thus matches
simply provide a measure of the relative apparent
gloss between the test and reference. We expect that
observers would navigate to very similar points of
subjective equality, even if we asked them to adjust
a different parameterization of specular reflectance.
Changing the parameterization can only shift the points
in Figures 7 and 14 along lines parallel to the diagonal
in the plots. Yet there is no straightforward remapping
that would improve the correlation across all conditions
simultaneously radically (only highly implausible
nonmonotonic functions of specular reflectance would
do this), and thus, at least at a qualitatively level, we do
not think that our results depend substantially on the
use of Pellacini’s c.

An alternative source of error might be that
participants could not adjust the surface roughness
of the reference object, which is another dimension
in Pellacini’s model (distinctness, d), which affects
perceived gloss. Because the physical roughness was
fixed at 0.05 for all reference images and test images
in this study, we did not ask participants to adjust the
roughness of the reference image. However, we note that
it might be possible that surface geometry could have
affected the perceived roughness of some surfaces, and
for such images the adjustment of roughness dimension
might have improved the matching performance.

We showed that a contrast metric computed
directly from the specular images showed highest
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correlation with human settings in Experiment 2,
but this model implicitly assumes that humans are
capable of separating diffuse and specular reflections
from a given image. Such a separation is an ill-posed
problem and it is an empirical question how accurately
humans can perform the decomposition (e.g., Lee &
Smithson, 2017). A complete model of human gloss
perception should predict the perceived gloss level from
a raw image where diffuse and specular reflections
are confounded. A recent effort used deep neural
networks trained to output a specular image from a raw
image and showed that such a network outperformed
a simple alternative highlight detection model based
on thresholding and showed relatively high overall
similarity to human judgements (Prokott & Fleming,
2022). Another investigation trained unsupervised
deep neural networks to model the high-level statistics
of images of glossy and matte surfaces, and found
that these predicted human gloss judgments better
than supervised networks or a range of simpler
image statistics (Storrs, Anderson, & Fleming,
2021).

A good perceptual model should reproduce both the
successes and error patterns that humans make on an
image-by-image basis beyond predicting the overall
performance level (Geirhos, Meding, & Wichmann,
2020; Storrs et al., 2021). In this sense, systematic
error patterns in Experiment 2 are a potentially useful
feature of the dataset as a window into underlying
constancy mechanisms. However, we found that our
hand-selected features accounted for a limited extent
for gloss percepts, and it is a common shortcoming that
researchers must select in advance or hand-engineer
candidate features. In recent years, big data approaches
(often coupled with deep neural networks) have been
opening a new avenue to overcome such limitations as
networks can learn to extract useful image features by
themselves (Liao, Sawayama, & Xiao, 2022; Tamura,
Prokott, & Fleming, 2022; Prokott, Tamura, & Fleming,
2021; Sawayama et al., 2022), and this study might also
benefit from such approaches. The fact that human
judgments can deviate substantially but consistently
from ground truth—as we found here—suggests that
training a neural network with human responses would
potentially yield quite different internal representations
than training with ground-truth specular reflectance
values. Interpreting the internal representation of the
network is a major open challenge, but recent studies
have been already tackling the issue (Montavon, Samek,
& Müller, 2018). By analyzing the activation of units in
the intermediate layers, we might be able to get a hint on
specific image features that units in the network highly
respond to (e.g., Flachot & Gegenfurtner 2018, 2021).
The complexity of the network and interpretability is in
a trade-off relationship, and thus using a very shallow
network would give a capacity to analyze characteristics
of individual units in detail, allowing us to understand

extracted features in a meaningful way (Goncalves, &
Welchman, 2017; Rideaux & Welchman, 2021).

Keywords: color, gloss, perceptual constancy,
directional lighting environments, asymmetric matching
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