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Abstract

Recently, Wong et al. [35] showed that adversarial training with single-step FGSM
leads to a characteristic failure mode named Catastrophic Overfitting (CO), in
which a model becomes suddenly vulnerable to multi-step attacks. Experimentally
they showed that simply adding a random perturbation prior to FGSM (RS-FGSM)
could prevent CO. However, Andriushchenko and Flammarion [[1] observed that
RS-FGSM still leads to CO for larger perturbations, and proposed a computationally
expensive regularizer (GradAlign) to avoid it. In this work, we methodically revisit
the role of noise and clipping in single-step adversarial training. Contrary to
previous intuitions, we find that using a stronger noise around the clean sample
combined with not clipping is highly effective in avoiding CO for large perturbation
radii. We then propose Noise-FGSM (N-FGSM) that, while providing the benefits
of single-step adversarial training, does not suffer from CO. Empirical analyses
on a large suite of experiments show that N-FGSM is able to match or surpass the
performance of previous state-of-the-art GradAlign, while achieving 3 x speed-up.
Code can be found inhttps://github.com/pdejorge/N-FGSM

1 Introduction

Deep neural networks have achieved remarkable performance on a variety of tasks [12, 27, [7]].
However, it is well known that they are vulnerable to small worst-case perturbations around the input
data — commonly referred to as adversarial examples [31]. The existence of such adversarial examples
poses a security threat to deploying models in sensitive environments [2}/4]. This has motivated a large
body of work towards improving the adversarial robustness of neural networks [[11} 122} 32, |25} 5]].

The most popular family of methods for learning robust neural networks is based on the concept
of adversarial training (11}, 20]. In a nutshell, adversarial training can be posed as a min-max
problem where instead of minimizing some loss over a dataset of clean samples, we augment the
inputs with worst-case perturbations that are generated online during training. However, obtaining
such perturbations is NP-hard [34]] and hence, different adversarial attacks have been suggested
that approximate them. In their seminal work, Goodfellow et al. [[11] proposed the Fast Gradient
Sign Method (FGSM), that generates adversarial attacks by performing a gradient ascent step on the
loss function. Yet, while FGSM-based adversarial training provides robustness against single-step
FGSM adversaries, Tramer et al. [32]] showed that these models are still vulnerable to multi-step
attacks, namely those allowed to perform multiple gradient ascent steps. Given their better (robust)
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Figure 1: Left: Visualization of FGSM [[11]], RS-FGSM [33]] and N-FGSM (ours) attacks. While
RS-FGSM is limited to noise in the € — [, ball, N-FGSM draws noise from an arbitrary k — [, ball.
Moreover, N-FGSM does not clip the perturbation around the clean sample. Middle: Comparison of
single-step methods on CIFAR-10 with PreactResNet18 over different perturbation radii (e is divided
by 255). Our method, N-FGSM, can match or surpass state-of-the-art results while reducing the cost
by a 3x factor. Adversarial accuracy is based on PGD-50-10 and experiments are averaged over
3 seeds. Right: Comparison of training costs relative to FGSM baseline based on the number of
Forward-Backward passes, see Appendix |§|f0r details.

performance, multi-step attacks such as Projected Gradient Descent (PGD) [20] have now become
the de facto standard for adversarial training.

The main downside of multi-step adversarial training is that the cost of these attacks increases linearly
with the number of steps, making their applicability often computationally prohibitive. For this
reason, several works have focused on reducing the cost of adversarial training by approximating the
worst-case perturbations with single-step attacks [35, 26/ 33]]. In particular, Wong et al. [35]] studied
FGSM adversarial training and discovered that it suffers from a characteristic failure mode, in which
a model suddenly becomes vulnerable to multi-step attacks despite remaining robust to single-step
attacks. This phenomenon is referred to as Catastrophic Overfitting (CO). As a solution, they argued
that adding a random perturbation prior to FGSM (RS-FGSM) seemed sufficient to prevent CO and
produce robust models. Yet, Andriushchenko and Flammarion [1]] recently observed that RS-FGSM
still leads to CO as one increases the perturbation radii of the attacks. They suggested a regularizer
(GradAlign) that can avoid CO in the settings they considered, but at the expense of computing a
double derivative — significantly increasing the computational cost with respect to RS-FGSM.

In this paper, we revisit the idea of including noise in single-step attacks. Differently from previous
methods that consider the noise as part of the attack, we propose an adversarial training procedure
where the noise is used as a form of data augmentation. As we detail in Section[d] this motivates us to
introduce two main changes with respect to previous methods: 1) We center adversarial perturbations
with respect to noise-augmented samples and therefore, unlike previous RS-FGSM, we do not clip
around the clean samples. 2) We use noise perturbations larger than the e—ball, since they are
not restricted by the strength of the attack anymore. Our experiments show that performing data
augmentation with sufficiently strong noise and removing the clipping step improves model robustness
and prevents CO, even against large perturbation radii. Our new method, termed N-FGSM, matches,
or even surpasses, the robust accuracy of the regularized FGSM introduced by Andriushchenko and
Flammarion [1]] (GradAlign), while providing a 3x speed-up.

To corroborate the effectiveness of our solution, we present an experimental survey of recently
proposed single-step attacks and empirically demonstrate that N-FGSM trades-off robustness and
computational cost better than any other single-step approach, evaluated over a large spectrum of
perturbation radii (see Figure[I] middle and right panels), over several datasets (CIFAR-10, CIFAR-
100, and SVHN) and architectures (PreActResNet18 and WideResNet28-10). We will release our
code to reproduce the experiments.

2 Related Work

Since the discovery of adversarial examples, many defense mechanisms have been proposed, adver-
sarial training being one of the most popular and empirically validated. We can categorise adversarial



training methods based on how they approximate the perturbations applied to training samples. Multi-
step approaches approximate an inner maximization problem to find the worst-case perturbation with
several gradient ascent steps [37, 18} 120]. While this provides a better approximation, it is also more
expensive. At the other end of the spectrum, single-step methods only use one gradient step to approx-
imate the worst case perturbation. Goodfellow et al. [11] first proposed FGSM; Tramer et al. [32] pro-
posed a new variant with an additional random step (R+FGSM), but observed that both methods were
vulnerable to multi-step attacks. Shafahi et al. [26] proposed Free Adversarial Training (Free-AT),
which successfully reduced the computational cost of training by using a single backward pass to com-
pute both weight update and attack. Motivated by this, Wong et al. [35]] explored a variant of R+FGSM,
namely RS-FGSM, that uses a less restrictive form of noise and showed this can improve robustness
for moderate perturbation radii at the same cost as FGSM. Recently, Andriushchenko and Flammarion
[1]] proposed the GradAlign regularizer. Combining FGSM with GradAlign results in robust models
at even larger perturbation radii. However, GradAlign suffers from a threefold increase in the training
cost to as compared to FGSM. The need for more efficient solutions has motivated a growing body
of work whose goal is the design of computationally lighter single-step methods [[10} [15} 33 23/{19].

In this work, we revisit the idea of combining noise with the FGSM attack. Our method builds
upon FGSM and intuitions from R+FGSM and RS-FGSM to combine it with random perturbations,
however, we consider the noise step as data augmentation rather than part of the attack. This
motivates us to use a stronger noise without clipping. As opposed to [14], our thorough study leads to
a practically effective approach that yields robustness also against large perturbation radii.

3 Preliminaries on Single-Step Adversarial Training

Given a classifier fy : X — ) parameterized by 6 and a perturbation set S, fy is defined as robust at
x € X onthe set S if for all § € S we have fp(z + §) = fp(x). One of the most popular definitions
for Sis the € — £ ball, ie., S = {J : ||d||oc < €}. This is known as the /o, threat model which
we adopt throughout this work.

To train networks that are robust against /. threat models, adversarial training modifies the classical
training procedure of minimizing a loss function over a dataset D = {(x;,y;)}i=1.n of images
x; € X and labels y; € ). In particular, adversarial training instead minimizes the worst-case loss
over the perturbation set S, i.e., training is on the adversarially perturbed samples {(x; +d;, ¥;) }i=1:N-
Under the [, threat model, we can formalize adversarial training as solving the following problem:
N

mein;m?xﬁ(fg(xi—i—éLyJ st ][0l <6 (1)
where L is typically the cross-entropy loss. Due to the difficulty of finding the exact inner maximizer,
the most common procedure for adversarial training is to approximate the worst-case perturbation
through several PGD steps [[20]. While PGD has been shown to yield robust models, its cost increases
linearly with the number of steps. As a result, several works have focused on reducing the cost of
adversarial training by approximating the inner maximization with a single-step.

If the loss function is linear with respect to the input, the inner maximization of Equation[(T)]will enjoy
a closed form solution. Goodfellow et al. [[L1] leveraged this to propose FGSM, where the adversarial
perturbation follows the direction of the sign of the gradient. Tramer et al. [32] proposed adding
a random initialization prior to FGSM. However, both methods were later shown to be vulnerable
against multi-step attacks, such as PGD. Contrary to prior intuition, recent work from Wong et al.
[35] observed that combining a random step with FGSM can actually lead to a promising robustness
performance. In particular, most recent single-step methods approximate the worst-case perturbation
solving the inner maximization problem in Equation[(T)] with the following general form:

5:¢(n+a-sign(vmﬁ(fe(:w+n),yi)))7 (2)

where 7 is drawn from a distribution €2. For example, when ) is the projection operator onto the
ls ball and () is the uniform distribution [—e, e}d, where d is the dimension of X, this recovers
RS-FGSM. Under a different noise setting where 2 = (e — «) - sign (N (04, I4)) and by choosing
the step size « to be in [0, €], we recover R+FGSM by Tramer et al. [32]]. This was among the first
works to explore the application of noise to FGSM, but did not report improvements over it. If we
consider 2 to be deterministically 0 and 1) to be the identity map, we recover FGSM. Finally, if we
take FGSM and add a gradient alignment regularizer, this recovers GradAlign.
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Figure 2: Left: Ablation of clipping vs not clipping around the clean sample x for ¢ = 8/255. Clipping
leads to a significant drop in robustness which increases with the strength of the noise augmentations.
Middle: Analysis of the effective FGSM step size after clipping. We observe that clipping leads to
a decrease in the effective FGSM step size, thus, adversarial perturbations will be more similar to
random noise. Right: N-FGSM (ours) when varying the noise magnitude k (e is divided by 255).
Increasing the amount of noise is key to avoiding CO. For (left) and (right) plots, adversarial accuracy
is based on PGD-50-10 and experiments are averaged over 3 seeds.

4 Noise and FGSM

Previous methods that combined noise with FGSM, e.g., R+FGSM [32] and RS-FGSM [335], have
considered the noise as a random step integrated within the attack. Since it is a common practice
to restrict adversarial perturbations to the e—ball, we argue that this introduces a trade-off between
the magnitude of the random step and that of the attack. For illustration, consider the purple lines
corresponding to RS-FGSM in Figure[T] (left). If the initial random step is significantly larger than
the e—ball, then the final clipping step will have a noticeable impact on the perturbation, possibly
removing a considerable portion of the FGSM step (middle arrow). To prevent this from happening,
R+FGSM and RS-FGSM restrict the random step to lie within the e—ball, thereof implicitly
entangling the noise magnitude and the attack strength.

Contrary to previous methods, we note that adding noise to the clean sample can be considered as a
form of data augmentation to be applied independently from the attack. We make two considerations
from this perspective 1) When one performs data augmentation during adversarial training, the input
after the corresponding transformation is the starting point to compute the adversarial perturbations,
therefore, we argue that adversarial attacks should be centered around the noise-augmented samples.
This motivates us to avoid clipping around the clean sample. 2) We do not need to restrict the noise
augmentation to lie inside an e—ball, since its strength is disentangled from that of the attack. Thus,
we can use stronger noise-augmentations than previous methods.

These modifications lead to a novel adversarial training method that combines noise-based data
augmentations with FGSM. We denote it as Noise-FGSM (N-FGSM). Following the notation in-
troduced in Section@ we define the noise augmented sample as x,, = x + 1 where 7 is sampled
from a uniform distribution on [k, k]¢ (where we can have k > ¢). Then the adversarially perturbed
samples have the following form:

IN-FGSM = Zaug T Q' - Sign(vxaugﬁ(fé (maug)v y)) 3)

This construction corresponds to augmenting the clean sample = with the perturbation defined
in Equation where 1) is the identity map and (2 is the uniform ditribution spanning [k, k9.
We detail our full adversarial training procedure in Algorithm[I] In what follows, we analyse the
effect of treating the noise as data augmentation as opposed to treating it as a random step within
the attack. In particular, we show that clipping around the clean sample x (as done in RS-FGSM)
can strongly degrade the robustness of the network. Moreover, we show that as we increase the ¢
radii of adversarial attacks, we need stronger noise perturbations than previously used to prevent CO.

Clipping around clean sample = hinders the effectiveness of perturbations. We analyse two
variants, one where perturbations are clipped around the clean sample x (as done in previous methods)
and another where no clipping is applied. In Figure 2] (left), we report the robust accuracy using PGD-
50-10 (i.e., PGD attack with 50 iterations and 10 restarts) with ¢ = 8/255 and observe that clipping
significantly degrades the effectiveness of FGSM training. To understand this drop, consider the fol-
lowing perturbations; (1) a baseline perturbation where we only use noise dyungom = (1) and (2) a per-



Algorithm 1 N-FGSM adversarial training

1: Inputs: epochs T', batches M, radius e, step-size « (default: €), noise magnitude k (default: 2e¢).
2: fort=1,...,7do

3: fori=1,...,M do

n ~ Uniform[—k, k]¢

Thie =

aug x + 1/l Augment sample with additive noise.
TXoposm = Thag + 0 sign(Vas L(fo(xhyg),y")) / N-FGSM augmented sample.
Vo = VoL(fo(xirgsm)s ") I/ Compute gradients of model’s weights

0 = optimizer(6, Vy) // Standard weight update, (e.g., SGD)

® &k

turbation that combines noise with FGSM 6y = 1(n+ - sign(V,L(fo(z+1n),y))). Moreover, we
consider two cases in which we either define i as a clipping operator or as the identity. We define the
effective FGSM step size as the magnitude corresponding to the rati(ﬂ Oeffective = 10 —drandomll2/|| ||
which measures the contribution of the FGSM step in the final perturbation compared to simply
following the noise direction 7). In Figure 2] (middle), we observe that the clipping operator reduces
the effective magnitude of FGSM, thus, perturbations become more similar to only using random
noise. On the other hand, without clipping we always take the full step in the FGSM direction. This
highlights the trade-off between noise magnitude and attack strength discussed above.

Larger noise is also necessary to prevent CO. As discussed above, previous work did not investi-
gate the effects of using noise perturbations potentially larger than the attack strength. However, we
empirically find that increasing the noise magnitude is key to avoiding CO. In particular, as seen in Fig-
ure 2] (right), when no clipping is performed, it is crucial that we augment with larger noise magnitude
in order to prevent CO in all settings. We find the noise magnitude of k£ = 2¢ to work well in most of
our experiments, however, a more extensive hyperparameter tuning might improve our results further.

Note that these results are contrary to previous intuitions: Andriushchenko and Flammarion [1]]
suggested that the random step in RS-FGSM is not important per se, arguing that its main role
is reducing the /5 norm of the perturbations, so that the loss remains to be approximately locally
linear. In contrast, N-FGSM perturbations are larger on expectation than those of RS-FGSM, while
they do not suffer from CO (refer Appendix [N). We believe that our findings will lead to a better
understanding of the role of noise in avoiding CO in future work. Moreover, in Section [6| we conduct
extensive analyses to show that, despite N-FGSM obtains larger perturbations, clean accuracy does
not degrade and other methods do not benefit from simply increasing the strength of their attacks.

Why does noise augmentation avoid CO? Andriushchenko and Flammarion [1] found that after CO,
the gradients of the loss with respect to the input around clean samples became strongly misaligned,
which is a sign of non-linearity. Moreover, Kim et al. [15] showed that the loss surface of models
suffering from CO appears distorted, i.e., there is a sharp peak in the loss surface along the FGSM
direction, which seems to render FGSM ineffective (observe from Figure E] how after after CO,
visually, FGSM perturbations change drastically). In order to prevent CO, GradAlign explicitly
regularizes the loss surface so it remains linear. To investigate further, we plot the loss surface at
the end of training for different methods (see Figure [14]|in Appendix) and find that, while FGSM
or RS-FGSM lead to a distorted loss, N-FGSM obtains a non-distorted loss surface similar to that
obtained by GradAlign regularizer. Thus, it seems that adding strong noise-augmentations implicitly
regularizes the loss landscape, leading to more effective single-step attacks. This aligns with previous
work that theoretically link noise augmentations with a regularizer that encourages Lipschitzness [3].

S Robustness Evaluations and Comparisons

We compare N-FGSM against several adversarial training methods, on a broad range of € — [
radii. Following Wong et al. [35], we evaluate adversarial robustness on CIFAR-10/100 [16] and
SVHN [21] with PGD-50-10 attacks, using both PreactResNet18 [13]] and WideResNet28-10 [36].
Evaluations with AutoAttack[6] are also in Appendix [G]

The denominator ||z||2 is simply to normalize the £2—norm and be comparable to the FGSM step size a.
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Figure 3: Comparison of single-step methods on CIFAR-100 (left) and SVHN (right) with PreactRes-
Net18 over different perturbation radius (e is divided by 255). Our method, N-FGSM, can match or
surpass prior art results while reducing the cost by a 3x factor. Adversarial accuracy is based on
PGD-50-10 and experiments are averaged over 3 seeds. Legend is shared among plots.

5.1 Comparison against Single-Step Methods

We start by comparing N-FGSM against other single-step methods. Note that not all single-step
methods are equally expensive, since they may involve more or less computationally demanding
operations. For instance, GradAlign uses a regularizer that is considerably expensive, while MultiGrad
requires evaluating input gradients on multiple random points. For a comparison of training costs of
different single-step methods, we refer the reader to Figure|[T] (right). We use RS-FGSM and Free-AT
with the settings recommended by Wong et al. [35]. We apply GradAlign with hyperparameters
reported in the official repositoryﬂ ZeroGrad and Kim et al. [[15] do not have a recommended set of
hyperparameters; for a fair comparison we ablate them and select the ones with highest adversarial
accuracy (for every e and dataset). We train on CIFAR-10/100 for 30 epochs and on SVHN for 15
epochs with a cyclic learning rate. Only for Free-AT, we use 96 and 48 epochs for CIFAR-10/100
and SVHN, respectively, to obtain comparable results following Wong et al. [35)]. CIFAR-10 results
are in Figure[T](middle), whereas CIFAR-100 and SVHN are in Figure 3]

As observed in Figure[T]and Figure 5] FGSM and RS-FGSM suffer from CO for larger € attacks on
all reported datasets. For instance, RS-FGSM fails against attacks with ¢ = 8/255 on CIFAR-10 and
CIFAR-100 and against € = 6/255 on SVHN. With appropriate hyperparameters, ZeroGrad is able to
consistently avoid CO. However, it obtains sub-par robustness compared to N-FGSM and GradAlign,
especially against large e attacks. Neither MultiGrad nor Kim et al. [15] avoid CO in all settings
despite being more expensive. Free-AT also suffers from CO on all three datasets as also observed
by Andriushchenko and Flammarion [1]]. In contrast, N-FGSM avoids CO on all datasets, achieving
comparable or superior robustness to GradAlign while being 3 times faster.

5.2 Comparison against Multi-Step Attacks

In Section[5.1} we compared the performance of single-step methods and observed that N-FGSM is
able to match or surpass the state-of-the-art method, i.e., GradAlign, while reducing the computational
cost by a factor of 3. In this section, we compare the performance of N-FGSM against multi-step
attacks. In particular, we compare against PGD-2 with o = ¢/2 and PGD-10 with « = 2/255, keeping
the same training settings as described in Section[5.1} PGD-x denotes x iterations and no restarts.

In Figure [l we observe that PGD-2, despite being a multi-step method, still suffers from CO for
larger € as opposed to our proposed N-FGSM. On the other hand, despite achieving comparable
clean accuracies, there is a gap in adversarial accuracies between PGD-10, and other single-step
methods that grows with perturbation size. This can be partially expected since the search space
for adversaries grows exponentially with ¢; and PGD, with more iterations, can explore it more
thoroughly. Nevertheless, computing a PGD-10 attack is 10x more expensive to N-FGSM. An
important direction for future work would be addressing this gap and analysing, both theoretically and
empirically, whether single-step methods can match the performance of their multi-step counterparts.

*https://github.com/tml-epfl/understanding-fast-adv-training/
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Figure 4: Comparison of N-FGSM and GradAlign with multi-step methods on CIFAR-10 (Left) and
SVHN (Right) with PreactResNet18 over different perturbation radii (e is divided by 255). Despite
all methods achieving comparable clean accuracy (dashed lines), there is a gap in robust accuracy
between PGD-10 and single-step methods. However, note that PGD-10 is 10x more expensive than
N-FGSM. Adversarial accuracy is based on PGD-50-10 and experiments are averaged over 3 seeds.

5.3 Analysis of Gradients and Adversarial Perturbations

To gain further insights into CO, we visually explore the perturbations generated with FGSM, RS-
FGSM, N-FGSM, and PGD-10 attacks. We show that N-FGSM generates perturbations that exhibit
behavior similar to PGD-10. In particular, for a given test sample, we average the adversarial
perturbations () and gradients across several epochs at the beginning of training (Epoch 2 to 8) and
at the end (Epoch 24 to 30) and visualise them in Figure [5 (see also Figure[I2]in Appendix for more
examples). We observe that, during early stages in training all, methods generate consistent and
interpretable 5. However, after CO, FGSM and RS-FGSM generate § that are harder to interpret,
similarly to their gradients. On the other hand, we observe that N-FGSM provides consistent and
interpretable d throughout training, similar to those generated by PGD-10. This provides further
evidence that N-FGSM enjoys similar properties to the more expensive PGD-10 training.

Figure [5| analyzes the gradients and ¢ throughout the test set. Aside from loosing interpretability,
post-CO the gradient norm increases by several orders of magnitude for FGSM and RS-FGSM while
it remains low for N-FGSM and PGD-10. We also compute the effective rankﬂ of § for each example
before and after CO to measure the consistency of § before and after CO. We consider three training
intervals, (Epoch 2 to 8): before CO for all methods; (Epoch 16 to 22): after FGSM suffers CO but
not RS-FGSM; (Epoch 24 to 30): after both FGSM and RS-FGSM suffer CO. Prior to CO, PGD-10
has a larger effective rank (i.e., the perturbations span a larger subspace) than FGSM and RS-FGSM.
N-FGSM has the highest effective rank, arguably due to the higher noise magnitude. Note that
RS-FGSM, which has a smaller noise magnitude and clipping, also has a larger effective rank than
FGSM, however, the difference is much lower. When either FGSM or RS-FGSM suffer from CO,
the effective rank of their  increases significantly above that of PGD-10 and N-FGSM. This would
suggest that ¢ loose consistency after CO and is aligned with our visualizations in Figure[5} All of
these show properties of § and gradients that are consistent across methods (N-FGSM and PGD) that
avoid CO and different from methods like RS-FGSM and FGSM, which suffer from CO.

6 Increasing Adversarial Perturbations

In Section f] we observed that removing clipping and increasing the noise magnitude were both
necessary for the improved performance of N-FGSM. However, as discussed in Theorem [N.2]this will
result in an increase of the squared norm of the training perturbation éN_rgsym as compared to FGSM.
In this section, we perform further ablations to corroborate that it is indeed the increase in noise mag-
nitude — and not the mere increase of the perturbation’s magnitude — that helps to stabilize N-FGSM.

Increasing « alone is not sufficient. N-FGSM combines a noise perturbation with an FGSM step.
Thus, we can increase the perturbation magnitude by increasing any of the two. This begs the question:
Is it sufficient to increase the N-FGSM step-size « to avoid CO without adding any noise? We observe
in Figure[6](A) that training without noise (essentially, FGSM) leads to CO, with robust accuracy

“We compute effective rank as the number of singular vectors required to explain 90% of the variance.
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after FGSM presents CO but not RS-FGSM; Ep 24-30: after both FGSM and RS-FGSM had CO.
Right: Visualization of § and gradients averaged across several epochs at the beginning (top) and end
(bottom) of training. After CO, FGSM and RS-FGSM obtain ¢ and gradients that are hard to interpret.

equal to zero, even for large values of . This indicates that it is not an increase in the perturbation
norm, but the combination with noise which plays an essential role in circumventing CO for N-FGSM.

Increasing o requires adjusting the noise magnitude. As observed in Figure [6] (A), increasing
a for N-FGSM leads to CO if the noise magnitude is not large enough. For example, while
a noise magnitude £ = le and an adversarial step size a = 1.25¢ yield a robust accuracy of
49.68%, increasing « to 1.5¢ while keeping the same noise magnitude results in CO — with robust
accuracy equal to zero. This further suggests that an increase in the adversarial step-size « requires
a commensurate increase in the noise magnitude. We find that setting the noise magnitude k = 2¢
works well for most settings.

Larger noise perturbations preserve clean accuracy. Increasing the norm of training perturbations
by increasing « results in a drop in the clean accuracy (discussed later in Section[7). This has also
been observed in prior works [35]. However, we show in Figure[dthat the clean accuracy for N-FGSM
is similar to that of GradAlign, despite the magnitude of the perturbations being larger. We ablate the
effects of adversarial and noise perturbations on the clean accuracy in Figure[6](B): we observe that
augmenting training samples with noise alone (i.e., & = 0) has a much milder effect on the clean
accuracy than augmenting in an adversarial direction. In general, increasing noise is more forgiving
on the clean accuracy than increasing the adversarial step size. This is not surprising, considering
that moving in random directions along the input space has a significantly lower impact on the loss
than moving along the FGSM direction (see Figure [[4]in the Appendix) and that training with noise
alone does not provide any significant robustness against larger attacks (for a more detailed ablation,
see Appendix Figure[T6).

Other methods do not benefit from larger training e. As previously mentioned, N-FGSM
perturbations have ¢.,—norm larger than e. We have seen that the benefits of N-FGSM can not
be reproduced by simply increasing « without increasing the noise. However, for the sake of
completeness, we also ablate other single-step baselines by using a larger € during training, while
testing with a fixed ¢ = 8/255 on CIFAR10. We observe that increasing e, seems to lead to a
decrease in robustness for most methods; for instance, PGD-50-10 accuracy for RS-FGSM drops
from 46.08 & 0.18 when training with € = 8/255 to 0.0 £0.0 with € = 12/255. In two cases (GradAlign
and MultiGrad), we observe a small increase, with the highest increase being for GradAlign, which
improves from 48.14 &+ 0.15 to 50.6 & 0.45; yet, the clean accuracy drops from 81.9 4 0.22 to
73.29 £ 0.23. This is similar to increasing o for N-FGSM (see Figure|§|(C)). However, this is tied
to a significant degradation of clean accuracy. All in all, taking into account both clean and robust
accuracy, we conclude that all single-step baselines suffer from either CO or a severe degradation in
their clean accuracy when increasing the training e. Full results are presented in Table[2]in Appendix.

7 Additional Ablations

Hyperparameter selection. While FGSM relies on a fixed step-size (i.e., « = ¢), Wong et al. [35]
explored different values of o for RS-FGSM, finding that an increase of the step-size improves the ad-
versarial accuracy — up to a point where CO occurs. We also ablate the value of o for N-FGSM in Fig-
ure[6](C). We find that by increasing the noise magnitude, N-FGSM can use larger « values than RS-
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Figure 6: Different ablations on N-FGSM parameters and training schedule. From left to right:
A: Adversarial accuracy when varying step-size « and noise magnitude k (¢ = 8). Increasing o
does not suffice to prevent CO, we must also increase the noise magnitude. B: Clean accuracy after
training with random or adversarial perturbations. With comparable radius, random perturbations
have a much milder effect than adversarial. C: Ablation of step size « in N-FGSM € = 8, k = 2¢. As
we increase the magnitude of the FGSM perturbation we observe an increase in robustness coupled
with a drop on the clean accuracy. D: Comparison of the “fast” training schedule from [35] and “long"
training schedule described in [24]. N-FGSM shows robust oberfitting but not CO with the long
schedule. Adversarial accuracy is based on PGD-50-10 and experiments are averaged over 3 seeds.

FGSM, without suffering from CO. This leads to an increase in the adversarial accuracy at the expense
of a decrease in the clean accuracy. In light of this trade-off, we also use o = € for N-FGSM. Regard-
ing the noise hyperparameter k, we find that k¥ = 2¢ works in all but one SVHN experiment (¢ = 12,
in which we set k¥ = 3¢). In comparison, GradAlign regularizer hyperparameter or ZeroGrad quantile
value need to be modified for every radius with a noticeable shift between CIFAR-10 and SVHN
hyperparameters, suggesting they may require additional tuning when applied to novel datasets.

Long vs fast training schedules. Throughout our experiments, we used the RS-FGSM training
setting introduced in [35]. However, Rice et al. [24] suggest that a longer training schedule coupled
with early stopping may lead to a boost in performance. Kim et al. [15] and Li et al. [19] report
that longer training schedules increase the chances of CO for RS-FGSM and that this limits its
performance. We test the longer training schedule with N-FGSM and find that it does not suffer from
CO. However, it does suffer from robust overfitting, i.e., adversarial accuracy on the training set is
larger than on the test set as described in [24] for PGD-10. Notice the difference between the robust
accuracy of the final and best models in Figure [6] (D). Interestingly, although we observe a slight
increase in performance when using the long training schedule, we find the fast training schedule to
be remarkably competitive. See more results in Appendix [D] including a comparison to GradAlign.

Experiments with WideResNet28-10. We also compare the performance of all methods on
WideResNet28-10 [36] architecture in Figure [§and Figure [0]in Appendix. As in the experiments
with PreActResNet18, N-FGSM obtains the best performance/cost trade-off. We had to increase the
regularizer hyperparameter for GradAlign (compared to the settings for PreActResNet18) in order
to prevent CO on CIFAR-100 and, to our surprise, we could not find a competitive hyperparameter
setting for GradAlign on the SVHN dataset for ¢ > 6. We tried both increasing the regularizer
hyperparameter and decreasing the step size «, but some or all runs led to models close to a constant
classifier for each setting. We do not claim that GradAlign will not work, but finding a good
configuration might require further tuning. The default configuration for N-FGSM (a = €, k = 2¢)
works well in all settings except for e = 16 on CIFAR-10 and € = 10, 12 on SVHN. For CIFAR-10,
we increase the noise magnitude to & = 4e. For SVHN, we find that decreasing o works better than
increasing the noise. In both cases, N-FGSM yields nontrivial adversarial accuracy.

Experiments on Imagenet. We present results on the Imagenet dataset [[17] in Table[I] Due to
the high computational demands of Imagenet training and testing we focus on the main baselines
of comparable cost to FGSM. Namely FGSM, RS-FGSM and N-FGSM. We observe that FGSM
presents CO for ¢ = 6/255 while neither RS-FGSM nor N-FGSM present CO. However, N-FGSM has
better robustness. For instance, at e = 6/255 N-FGSM obtains PGD50-10 accuracy of 17.12% while
RS-FGSM yields 16.5% and FGSM 0.08% (due to CO). Thus, N-FGSM also avoids CO in ImageNet,
improving robustness over same-cost baselines. For experimental details refer to Appendix [[]

Combining N-FGSM with additional regularizers. Recent works [29, 30] have been proposed
to improve performance of single step methods at moderate perturbation radii e = 8/255. However,
we observe that with the default settings (which use a version of RS-FGSM with Bernoulli noise)
they lead to CO for larger e. Then we compare them with N-FGSM + Regularizer where we apply



Table 1: Clean accuracy (top) and PGD50-10 accuracy (bottom) of N-FGSM and other same-cost
baselines on Imagenet dataset. We observe that FGSM presents CO for e = 6/255 while both
RS-FGSM and N-FGSM avoid CO. N-FGSM has consistently better robustness than baselines.

‘ € =2/255 ‘ € =4/255 ‘ € = 6/255

54.72 48.50 48.55
FGSM

38.21 25.86 0.08

56.29 50.81 47.67
RS-FGSM

36.86 25.12 16.49

54.39 47.56 47.70
N-FGSM

38.07 26.28 17.12

their proposed regularizers to N-FGSM. If we apply GAT or NuAT regularizers to N-FGSM then
we do not observe CO and usually a boost in performance. For instance, at ¢ = 10/255, GAT has
a robust acc (with PGD50-10) of 43.34 £ 0.23 while N-FGSM+GAT regularizer obtains 44.97 +
0.07, in comparison plain N-FGSM has 41.56 £ 0.16. This is extremely compelling as it suggests
N-FGSM can be combined with other regularizers designed to improve FGSM performance and
mutually benefit each other. Full results of the comparison are presented in Table[6]in Appendix [K]

8 Conclusion

In this work, we explore the role of noise and clipping in single-step adversarial training. Contrary to
previous intuitions, we show that increasing the noise magnitude and removing the € — ¢, constraint
leads to an improvement in adversarial robustness while maintaining a competitive clean accuracy.
These findings led us to propose N-FGSM, a simple and effective approach that can match or surpass
the performance of GradAlign [1]], while achieving a 3x speed-up.

We perform an extensive comparison with other relevant single-step methods, observing that all of
them achieve sub-optimal performance and most of them are not able to avoid CO for larger € attacks.
Moreover, we also analyze gradients and adversarial perturbations during training and observe that
they have a similar behaviour for N-FGSM and PGD-10 as opposed to other methods that present CO
such as FGSM and RS-FGSM. However, despite impressive improvements of single-step adversarial
training methods, there is still a gap between single-step and multi-step methods such as PGD-10 as
we increase the e radius. Therefore, future work should put an emphasis on formally understanding
the limitations of single-step adversarial training and explore how, if possible, this gap can be reduced.
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A Additional plots for PreActResNet18 experiments

In the main paper we compare N-FGSM with other single-step methods and multi-step methods
separately and remove clean accuracies for better visualization. In this section we present the curves
for all methods with both the clean and robust accuracy. The tendency in the three datasets is for
N-FGSM PGD-50-10 accuracy to be slightly above that of GradAlign, while the opposite happens to
the clean accuracy. We also observe that clean accuracy becomes significantly more noisy when CO
happens. Exact numbers for all the curves are in Appendix [S}
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Figure 7: Comparison of all methods on CIFAR-10, CIFAR-100 and SVHN with PreactResNet18
over different perturbation radius (e is divided by 255). We plot both the robust (solid line) and the
clean (dashed line) accuracy for each method. Our method, N-FGSM, is able to match or surpass the
state-of-the-art single-step method GradAlign while reducing the cost by a 3x factor. Adversarial
accuracy is based on PGD-50-10 and experiments are averaged over 3 seeds. Legend is shared among
all plots.

B Experiments with WideResNet28-10 architecture

In this section we present the plots of our experiments with WideResNet28-10. We report the results
in two figures. In Figure[8]we compare all single-step methods and we do not plot the clean accuracy
for better visualization. In Figure 0] we plot all methods, including multi-step methods, and report
the clean accuracy as well with dashed lines. Since we observed that our baseline, RandAlpha,
outperformed in all settings for PreActResNet18, we only report RandAlpha for WideResNet.
As mentioned in the main paper, we observe that CO seems to be more difficult to prevent for
WideResNet. In particular, for GradAlign we observed the regularizer hyperparameter settings
proposed by for CIFAR-10 (searched for a PreActResNet18) worked well. However, those
parameters led to CO for 6 < e < 12 in CIFAR-100. Since ¢ = 14, 16 did not show CO, we
increased the GradAlign regularizer hyperparameter A for CIFAR-100 so that each 6 < ¢ < 12 would
have the default value corresponding to € + 2, for instance, A for ¢ = 6 would be the default A in [1]
fore = 8.
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Figure 8: Comparison of single-step methods on CIFAR-10, CIFAR-100 and SVHN with
WideResNet28-10 over different perturbation radius (e is divided by 255). Our method, N-FGSM, is
able to match or surpass the state-of-the-art single-step method GradAlign while reducing the cost by
a 3x factor. Moreover, we could not find any competitive hyperparameter setting for GradAlign for
€ > 6 in SVHN dataset. Adversarial accuracy is based on PGD-50-10 and experiments are averaged
over 3 seeds. Legend is shared among all plots.

For SVHN we observed that the default values for \ led to models close to a constant classifier for
€ > 6. We tried to increase the lambda for those € values to 1.25\ but observed the same result. Since
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the model did not show typical CO but rather it seemed as it was underfitting, we tried to reduce the
step-size to o = 0.75¢ and also both decreasing « and increasing A. When reducing the step size
we obtain accuracies above those of a constant classifier for some radii, however, some or all seeds
converge to a constant classifier for each setting, hence the large standard deviations. For N-FGSM,
the default configuration of N-FGSM (« = €, k = 2¢) works well in all settings except for e = 16 on
CIFAR-10 and € = 10, 12 on SVHN. For CIFAR-10, we increase the noise magnitude to k = 4e.
For SVHN we find that decreasing « as we tried for GradAlign works better than increasing the noise.
We use a = 8 for both e radii. Exact numbers for all the curves are in Appendix 5]
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Figure 9: Comparison of all methods on CIFAR-10, CIFAR-100 and SVHN with WideResNet28-10
over different perturbation radius (e is divided by 255). We plot both the robust (solid line) and the
clean (dashed line) accuracy for each method. Legend is shared among all plots.
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C Increasing adversarial perturbations during training

As mentioned in the main paper, N-FGSM perturbations have /. —norm larger than ¢, see Appendix[N}
In Section[6] we have seen that the benefits of N-FGSM can not be reproduced by simply increasing o
without increasing the noise. However, for the sake of completeness, we also ablate other single-step
baselines by using a larger € during training i.e., {¢ = 8/255,¢ = 12/255, ¢ = 16/255} while testing
with a fixed e = 8/255 on CIFAR-10. Results are presented in Table We observe that increasing
€wrain S€€MS to lead to a decrease in robustness for most methods, e.g., PGD-50-10 accuracy for
RS-FGSM goes from 46.08 & 0.18 when training with ¢ = 8/255 to 0.0 £ 0.0 with e = 12/255. In
two cases (GradAlign and MultiGrad) we observe a small increase, highest increase is for GradAlign
which goes from 48.14 4 0.15 to 50.6 & 0.45, however, the clean accuracy drops from 81.9 £ 0.22
to 73.29 % 0.23. This is similar to increasing o for N-FGSM (see Figure|§| (C)). However, this is tied
to a significant degradation of clean accuracy. All in all, taking into account both clean and robust
accuracy we conclude all baselines perform best without increasing the training e. All ablation results
are presented in Table 2]

Table 2: Ablation of the PGD-50-10 accuracy for single-step methods when increasing the €q,;,. All
models are evaluated with PGD-50-10 attack and €.y = 8/255. Note that considering the trade-off
between clean and robust accuracy, all methods perform best when training with the same epsilon to
be applied at test time.

€train = L€est €train = 1.D€est €train = 2€test

Method Clean acc. PGD acc. Clean acc. PGD acc. Clean acc. PGD acc. Rel. Cost
GradAlign  81.9+0.22 48.14+0.15 7329 +0.23 50.6 = 0.45 61.3+0.15 46.67+0.29 3
MultiGrad 82.33 £0.14 47.29 & 0.07 7528 £0.2 50.0 £0.79 71.42 £5.63 0.0 £0.0 2

AT Free 78.41 £0.18 46.03 £0.36 7391 +4.19 324 +2291 71.64 +3.89 0.0 £ 0.0 1.6
Kim et. al. 89.02 + 0.1 33.01 &+ 0.09 88.35 + 0.31 27.36+£0.31 90.45 + 0.08 9.28 +£0.12 1.5

FGSM 86.41 + 0.7 0.0+ 0.0 80.6 £ 2.59 0.0£+0.0 77.14 £2.46 0.0+ 0.0 1
RS-FGSM  84.054+0.13 46.08 0.18 65.22 £ 23.23 0.0+ 0.0 76.66 + 0.38 0.0+ 0.0 1
ZeroGrad 82.62 + 0.05 47.08 £0.1 78.11 £0.2 46.43 £ 037 7542+ 0.13 45.63 £0.39 1
N-FGSM  80.58 +£0.22 48.124+0.07 7146+0.14 5023 4+0.31 63.18+049 46.46+0.1 1
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D Longer training schedule

In our experiments, we have followed the “fast” training schedule introduced by [35]. However,
[24] suggest that a longer training schedule coupled with early stopping may lead to a boost in
performance. We also use the long training schedule for N-FGSM and observe that it does not lead
to CO. In Table 3] we compare the performance of N-FGSM and GradAlign for the long training
schedule. We observe that GradAlign does not seem to benefit from the long training schedule.
On the other hand, although N-FGSM seems to obtain a slight increase in performance, the “fast”
schedule provides comparable performance. It is worth mentioning that for GradAlign, the default
regularizer hyperparameter for ¢ = 8/255 and CIFAR-10 (A = 0.2) does not prevent CO. We do a
hyperparameter search and keep the value with the largest final robust accuracy (A = 0.632).

Table 3: Comparison of “long” [24] and “fast” [35] training schedules for N-FGSM and GradAlign.
GradAlign does not seem to benefit from the long training schedule. Although N-FGSM seems to
obtain a slight increase in performance, the “fast” schedule provides comparable performance.

N-FGSM Grad Align

Clean Acc Robust Acc Clean Acc Robust Acc

Long schedule: Final model

8318 +£0.11 36.56 £0.26 84.13+0.24 36.17£0.19

Long schedule: Best model

80.8 2036 48.48 £0.27 81.57+0.44 47.86=+0.1

fast schedule: Final model

80.58 £0.22 48.124+0.07 81.9+0.22 48.14 + 0.15

In Table 3| we observe that the performance of the final model is lower than that of an early stopped
method. This could be expected due to the phenomena of robust overfitting described in [24].
However, as a sanity check to make sure that this is not due to a hidden CO during the long schedule
which somehow the model recovers from we plot the full training history in Figure[T0] There we can
observe that for N-FGSM there is no CO during training.We also show FGSM (which is well known
has CO for € = 8/255) for comparison.

Long training schedule with N-FGSM Long training schedule with FGSM
1.0
/
0.8 f 0.8
QO 6 —— FGSM train acc gO.G —— FGSM train acc
5 Clean test acc 5 Clean test acc
3 —— PGD test acc 50.4 —— PGD test acc
<04 T —— < 02
0.2 0.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs

Figure 10: Training and test accuracy during the long training schedule proposed in [24]. We observe
that N-FGSM (left) does not present CO at any point during training, however suffers from robust
overfitting as described in [24]] which suggested selecting the best validated model as a simple and
yet effective way to improve robustness. On the other hand FGSM (right) suffers from CO where the
robustness drops suddenly to 0 and does not recover.

E Randomized Alpha

Kim et al. [15] evaluate intermediate points along the RS-FGSM direction in order to pick the
“optimal” perturbation size. However, we find that increasing the number of intermediate evaluated
points does not necessarily lead to increased adversarial accuracy. Moreover, for large perturbations
we could not prevent CO even with twice the number of evaluations tested by [[15]. This motivates
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us to test a very simple baseline where instead of evaluating intermediate steps, the RS-FGSM
perturbation size is randomly selected as: § = t - drs.rgsm Where t ~ 1[0, 1]%. Interestingly, as
reported in Figure[TT] we find that this very simple baseline, dubbed RandAlpha, is able to avoid CO
for all values of € and outperforms [15] on CIFAR-10, CIFAR-100 and SVHN. This is aligned with
our main finding that combining noise with adversarial attacks is indeed a powerful tool that should
be explored more thoroughly before developing more expensive solutions.

80
> —e— N-FGSM 530 —e— N-FGSM 280 —o— N-FGSM
gGO —e— RandAlpha 240 —e— RandAlpha g —e— RandAlpha
9 —e— Kim et. al. 3 —e— Kim et. al. 560 —e— Kim et. al.
< <30 <
&40 e Ta0
© © 20 5
4 4 4
q>)20 210 gZO
g g g
0 0 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12
¢ for trainining and evaluation € for trainining and evaluation € for trainining and evaluation

Figure 11: Comparison of [13] with RandomAlpha, our baseline where we multiply the RS-FGSM
perturbation by a scalar uniformly sampled in [0, 1]. We present results on CIFAR-10 (Left), CIFAR-
100 (Middle) and SVHN (Right) with PreActResNet18.
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F Further visualizations of adversarial perturbations and gradients

In this section we present an extension of Figure 5| with further examples. As observed in the main
paper, early in training adversarial perturbations (§) and gradients are consistent across epochs,
however, after CO they become hard to interpret. Note that although we label rows as either pre-CO
or post-CO we only observe CO for FGSM and RS-FGSM. Both PGD-10 and N-FGSM obtain robust
models as shown in detail in the paper.

S-FGSM V N-FGSM V PGD-10 V

Pre-CO

Post-CO

Pre-CO

o]
]
i
I
o
[« 8

Pre-CO

Post-CO

Figure 12: Visualization of adversarial perturbations (0’s) and gradients averaged across several
epochs before CO (pre-CO) and after (post-CO). Note that only FGSM and RS-FGSM present CO,
PGD-10 and N-FGSM do not. Post-CO, FGSM and RS-FGSM obtain 4’s that are hard to interpret,
idem for their gradients.

G Robust evaluations with autoattack

Table 4: Clean (top) and robust accuracy (bottom) for CIFAR-10 and PreacResNet18 evaluated with
autoattack (AA) [6]. We find the same trend as with PGD50-10.

| € = 2/255 | € = 4/255 | € = 6/255 | € = 8/255 | e = 10/255 | € = 12/255 | € = 14/255 | € = 16/255
FGSM 9152 £0.08 | 8859 £0.08 | 85.17+£0.03 | 86.62+0.08 | 83.35+203 | 785133 7731+£19 | 7588 +£1.49
7899 £0.19 | 6599 £0.24 | 54.0+£0.32 0.0 £0.0 0.0 £0.0 0.0 £0.0 0.0 £0.0 0.0£0.0
GradAlign 91.48 £ 0.08 88.55 £ 0.18 85.23 £0.22 81.69 £ 0.1 7773 £0.18 | 73.46 £ 0.16 67.87 £0.5 61.66 £ 0.32
79.09 £0.21 | 65.65+0.13 | 5399 +0.2 4411 £034 | 35724+0.34 | 28.66+0.15 | 2293 +0.33 | 184 +£0.28
N-FGSM 91.44 4+ 0.09 88.36 £0.04 | 84.56 +0.12 80.36 £ 0.03 7581 £022 | 71.03+£0.16 | 66.49 £0.36 | 62.86 4 0.88
78.99 £+ 0.17 66.06 £ 0.25 53.94 £0.3 44.36 +0.26 36.73 £0.27 3045 £0.2 25.08 £ 0.15 19.0 = 1.08

Following previous work, [1},[11]] we have evaluated robustness with PGD50-10, i.e. PGD with 50
iterations and 10 restarts. However, for the sake of completeness, we also present results of robust
accuracy evaluated with autoattack [6]. In Table[d] we evaluate models adversarially trained with our
proposed method N-FGSM, the baseline FGSM and GradAlign. We observe the same pattern as with
the PGD50-10 attack, therefore we are conviced that our results are general.
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H Catastrophic Overfitting outside the ResNet family

Previous work focusing on CO has only used architectures from the ResNet family. In Table 5] we
present results for adversarial training with a VGG-16 architecture [28]]. Similarly to other studied
models we observe that FGSM leads to CO while N-FGSM is able to prevent it. However, it seems
that FGSM presents CO for slighly larger e radii, indicating that the architecture might play a role in
CO. We consider investigating this further a promising direction of future work.

Table 5: Clean (top) and robust accuracy (bottom) for CIFAR-10 and VGG-16 [28] evaluated with
PGD50-10. We also observe CO for VGG architecture when trained with FGSM, moreover, N-FGSM
is able to prevent CO. Interestingly, for VGG CO happens for slighly large € values indicating that
the architecture might play a role in CO.

€ = 4/255 € = 6/255 € = 8/255 € =10/255 € =12/255 | €= 14/255 € = 16/255
FGSM 85.04 £ 0.1 79.34 £ 0.11 73.39 £ 0.0 82.6 £ 0.0 83.04 £ 0.0 814 £0.0 80.41 £0.21
62.94 £ 0.07 5272 £0.12 44.0 £ 0.02 0.07 + 0.0 0.8 + 0.0 0.25 4+ 0.0 0.31 £ 0.15
N-FGSM 84.53 £ 0.0 79.42 £ 0.0 72.01 £0.28 66.81 £0.54 | 61.19+0.0 | 5697 £0.0 | 53.1 £1.19
63.32 £ 0.0 53.0 £ 0.0 44.3 £+ 0.09 38.25 £ 0.1 3336+£00 | 29234+0.0 | 25.72+£0.22

I Further increasing the attack radii

Following previous work [[I]] we have studied e attack radii up to epsilon = 16/255. Indeed, the
performance at these radius is already significantly degraded and thus it would not be very practical
for most applications. However, to show that N-FGSM can prevent CO at even larger radii we test
two additional radii, e = 20/255 and € = 24/255. In both cases N-FGSM is able to prevent CO. For
€ = 20/255 we obtain a clean accuracy of 51.63 £ 0.38 and robust of 20.62 + 0.37 while for e = 24/255
we obtain a clean accuracy of 40.16 & 0.96 and robust of 15.3 £ 1.49. We argue that it is of little
interest to try even larger perturbations unless more effective methods to improve both the clean and
robust performance are found.

J Testing other norms

Following previous work, we have focused on the /. threat model. Although this is where works
studying CO have mainly focused, we observe that CO is also present in other norms such as ¢; and
£5. Moreover, in both cases we observe that N-FGSM is able to prevent CO. Interestingly, the range
of norms in which we observe CO is usually much higher than normally tested for these norms which
would explain why the £, norm has been the main focus of study in related works.

80 80

—o= FGSM =8 FGSM
—e— N-FGSM —o= N-FGSM
560 560
1) 1%}
< <
2 s
540 5 40
0 0
[ [
> >
220 220
0 0
2 4 6 8 10 12 14 16 2 4 6 @8 10 12 14 16

€ for train and eval (x / 255) € for train and eval (x / 255)

Figure 13: Robust accuracy after training with FGSM or N-FGSM using ¢; (left) and /5 (right)
perturbations. As observed for /., perturbations FGSM leads to CO, while N-FGSM is able to
prevent it. Note that the strength of the perturbations is indicated to be equivalent to £, perturbations
where all pixels have maximum magnitude i.e. ¢ = 8/255 indicates perturbations were restricted
to an £, norm of a vector where all components are in {—¢, +¢}. Which would correspond to an ¢4
norm of ne and an ¢5 norm of ey/n where n indicates the dimensionality of the input.
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K Combining N-FGSM with additional regularizers

In this section we present the results from Section [/|where we combine N-FGSM with additional
regularizers [29} 30] that were proposed for single-step adversarial training to boost the performance.
First, we try the proposed methods with the default settings (which use a version of RS-FGSM with
Bernoulli noise) and observe they lead to CO for larger e. Then we compare them with N-FGSM
+ Regularizer where we apply their proposed regularizers to N-FGSM. If we apply GAT or NuAT
regularizers to N-FGSM then we do not observe CO and usually a boost in performance. Results are
presented in Table[6]

Table 6: Clean accuracy (top) and PGD50-10 accuracy (bottom) of N-FGSM with additional
regularizers introduced in GAT [29] and NuAT [30]]. Both GAT and NuAT present CO with their
default training method. If we apply their proposed regularizers to N-FGSM we can avoid CO while
achieving a boost in performance.

€ = 2/255 ‘ € = 4/255 ‘ € = 6/255 ‘ € = 8/255 € = 10/255 € = 12/255 € = 14/255 € = 16/255
GAT 88.79 £ 0.15 84.35 £ 0.11 80.16 £ 0.15 76.75 +£0.38 | 73.71 £0.12 80.44 £ 5.08 839+ 1.0 82.17 £ 2.47
80.04 £0.06 | 68.51 +0.08 59.16 £0.24 | 5098 +0.12 | 43.34 £0.23 14.93 £9.26 2.33 +£0.58 1.25 £ 0.51

89.1 £ 0.08 84.84 £ 0.05 81.38 £ 0.07 78.28 £0.04 | 75.66 +0.35 73.56 £0.23 70.84 £ 0.51 65.48 £+ 0.96

N-FGSM+GAT
79.96 £ 0.21 69.5 £ 0.18 60.06 £ 0.09 | 51.8+0.34 44.97 +0.07 38.71 £0.16 | 32.71 £0.11 27.87 £+ 0.35
NUAT 87.81 £0.24 82.9+£0.18 78.06 £ 0.2 73.22 +£0.34 71.08 £ 4.87 74.38 £7.32 78.5 £ 1.54 80.1 £ 1.08

u.

79.49 £ 0.03 67.77 £ 0.13 57.93 £0.17 50.1 £0.33 3435 £9.0 17.54 £8.82 6.6 +0.77 3.29 £0.87
87.92 £ 0.0 83.54 £ 0.0 78.86 £ 0.25 74.61 £0.34 | 70.37 £ 0.12 65.56 £ 0.19 60.76 £ 0.74 | 52.79 &+ 0.66

NGFSM+NuAT
79.52 £ 0.0 68.36 £ 0.0 58.88 £0.16 | 51.12+0.2 44.62 +0.38 38.24 £0.38 32.85 £ 0.58 29.19 £ 0.35
N-FGSM 91.48 £0.17 88.44 + 0.09 84.72 £+ 0.04 80.58 £+ 0.22 75.98 £ 0.1 7146 £0.14 | 67.11 +£0.37 63.18 £ 0.49
79.43 £0.21 67.09 £ 0.31 56.62 +0.26 | 48.124+0.07 | 41.56 £0.16 36.43 £ 0.16 32.11£02 27.67 £+ 0.93

L. Imagenet experimental details

For our experiments on Imagenet we mainly follow the settings from [35]]. However, for simplicity we
did not do image resizing which requires storing two additional Imagenet datasets. More importantly,
we found that the learning rate schedule suggested in [35] was not optimal for N-FGSM. The schedule
suggested in [35] follows three different stages in which the learning increases or decreases linearly
for some iterations. In particular in the first stage, the learning rate has an initial warm-up where it
increases linearly from 0.0 to 0.4 during the first epoch and then decreases linearly to 0.04 during the
next 5 epochs. As a lucky coincidence when debugging, we modified this initial stage such that we
preserved the initial increase to 0.4 for the first epoch, but then we directly jumped to a learning rate
of 0.04 which remained constant for the next 5 epochs. For phase 2 and 3 both schedules remained
the same. First decreasing from 0.04 to 0.004 for epoch 6 to 12 and finally from 0.004 to 0.0004 for
epoch 12 to 15. This small change made N-FGSM improve both in clean and robust accuracy for
€ = 4/255, 6/255 and these are the numbers reported. This indicates that further tuning the learning
rate schedule might be an effective way to improve performance and even help prevent CO, however,
due to the computational demands of ImageNet adversarial training we leave it for future work. To
be thorough we also trained RS-FGSM and FGSM with the modified schedule and found that neither
of them benefit from it. Regarding N-FGSM hyperparameters, for ¢ = 2/255 we used v = 2/255 and
k = 1; for e = 4/255 we used o = 4/255 and k = 1; and for e = 6/255 we also used o = 4/255 and
k=1

M Visualization of the loss surface

In this section we present a visualization of the loss surface. We adapted the code from [15] to
analyse the shape of the loss surface at the end of training for different methods. [15]] reported that
after adversarial training CO, the loss surface would become non-linear. In particular, they found that
the FGSM perturbation seems to be misguided by local maxima very close to the clean image that
result in ineffective attacks. We note this was already reported by [32] which proposed to perform a
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random step to escape those maxima. We argue that adding noise to the random step, when properly
implemented, actually prevents those maxima to appear in the first place.

N-FGSM AT model GradAlign AT model

correct
correct

wrong

RS-FGSM AT model FGSM AT model

correct correct

Loss
Loss

wrong wrong

Figure 14: Visualization of the loss surface for models trained using different methods. Given a clean
sample from the test set in coordinate (0, 0), we compute the FGSM perturbation and evaluate the
loss on the subspace generated by the FGSM perturbation direction and a random direction. That is,
we evaluate Zejean + t1 - SrgsM + t2 * Orandom, Where t1, to € [0, 1]. Note that FGSM and RS-FGSM
both have CO and the final models present a highly non-linear loss surface, on the other hand, both
N-FGSM and GradAlign produce final models with a very linear loss surface which is key to obtain
meaningful perturbations.
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N Magnitude of N-FGSM perturbations

Lemma N.1 (Expected perturbation). Consider the N-FGSM perturbation as defined in Equation[(3)|
On-rasm = 1 + - sign (VoL (f(x +1),y)), where 7~ Q.

Let the distribution ) be the uniform distribution U ([—k:e, ke]d) and o > 0. Then,

k2e?
3

k22
E, [||5N.FGSMIII§]_d( +a2> and B, [||0n.resulll2] < d( . +a2)

Proof. By Jensen’s inequality, we have

E, [[|0x-rasmll2] < \/Ey [l|onrasmll3]

Then let us consider the term E,, [||0n.rasm|3] and use the shorthand V(n); = (Vo 4(f(z +1),y));.

E, [lIonrasmll3] =Eqlln + a - sign (VL(f (x4 n),y)) |13

d
=E, Z (i + sign(V(n)i))Q]

|
(]~
=
=
S
_|_
Q
A
aq
=
—
g
=
=

d ke
= T /_k (i + @) dn; - P, [sign(V(n);) = 1]
1 4 ke 2
+ — Z » (771‘ — Oé) dn; - Pn [Sign(v<77)i) = _1]
d Z a+tke
= ke /_k Zdz - Py [sign(V(n);) = 1]

d —a+ke
L b Z/ 2*dz - P, [sign(V(n);) = —1]
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Therefore,

k‘2€2
E,, [l|on-rasmll2] < d( 2 +a2) .

O

Theorem N.2. Let dy.rgsm be our proposed single-step method defined by Equation|(3)| dpgsm be the
FGSM method [[11|] and Ogs.pGsy be the RS-FGSM method [35)]. Then, with default hyperparameter
values and for any € > 0, we have that

E, [||6n-resmll3] > Ey [6resull3] > Ey [|10rs-rosmll3) -

Proof. From Lemma [N.T| we have that

k%e?
E, [|6nrasml| 3] = d <3 + 0‘2> .

On the other hand, [[1]] showed that

1 1 1
E, [|I6rs-rasmll3) = d (—66043 + 5(12 + 362> ]

Finally, we note that
Ey, [II6rasmll3] = IIorasmll3 = de®.

The default hyperparameters for N-FGSM are k = 2, « = ¢ and RS-FGSM uses o = 5¢/4. With
these hyperparameters and any € > 0 we have

7 101
E, [|[6n-rosml[3] = gdﬁg > E, [[Iorasmll3] = de® > E, [||ors-rasmll3] = @dg

O

In Lemma|N.T|we compute the expected value of the squared ¢, norm of N-FGSM perturbations and
by Jensen’s inequality we obtain an upper bound for the expected ¢ norm of N-FGSM perturbations.
However, obtaining the exact expected magnitude is more complex. To compliment our analytic
results, we approximate the > norm of FGSM, RS-FGSM and N-FGSM via Monte Carlo sampling.
Results are presented in Figure[T5] We observe that the empirical estimations are very close to the
analytical upper bounds and that indeed, N-FGSM has a magnitude significantly above that of FGSM
or RS-FGSM.

O N-FGSM with Gaussian noise

In the main paper we have only explored noise sources coming from a Uniform distribution. Since we
are measuring robustness against [, — attacks, the Uniform distribution is a natural choice because
the random perturbations will be bounded to the [, ball defined by the span of the distribution.
However, for the sake of completeness, we also explore the performance of augmenting the samples
from a Gaussian distribution where we choose its standard deviation to match that of the uniform
distribution. In Table [/|we present a comparison of the clean (top) and PGD-50-10 (bottom) accuracy
for different values of o and noise magnitude with e = 8/255. Recall that by default we use Uniform
distribution U[—k, k|, therefore hyperparameter k sets the noise magnitude.

Increasing the FGSM step size without increasing the amount of noise leads to CO. Note results for
k = 0.5e. More importantly, results are very similar when the two noise distributions share the same
standard deviation. Thus, using Gaussian instead of Uniform noise does not seem to alter the results.
Although this might be expected, we remark that the Gaussian is an unbounded noise distribution and
the common practice in adversarial training is to always restrict the norm of the perturbations.
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Figure 15: Monte Carlo estimations of the expected [ —norm of perturbations from different methods
and corresponding analytical upper bounds. As mentioned in [1], we observe that RS-FGSM
perturbations have lower [ norm than FGSM. However, N-FGSM perturbations have a significantly
higher lo —norm than both RS-FGSM and FGSM. This seems to indicate that the role of random step
is not simply to lower the [ norm as previously suggested [[1]].

Table 7: Comparison of the clean (top) and PGD-50-10 (bottom) accuracy across different values of
step-size « and noise magnitude for the Uniform and Gaussian distributions with ¢ = 8/255. For
every value of k, we use a Gaussian with matching standard deviation. We observe that when we
match the standard deviation, both distribution perform similarly.

Uniform Noise Gaussian Noise
a = 6/255(0.75¢) | o = 8/255(le) | a = 10/255(1.25¢) a = 6/255(0.75¢) | o = 8/255(le) | a = 10/255(1.25¢)
k= 0.5¢ 85.52 +£0.23 81.54 £ 0.19 82.81 £ 1.11 85.27 £ 0.11 81.71 £ 0.27 83.34 £+ 1.48
44.14 £ 0.24 4793 +0.11 0.0 £0.0 4423 £0.17 47.98 +0.14 0.0 £ 0.0
k1 85.03 £ 0.09 81.57 £+ 0.07 7732 £0.14 85.01 £ 0.17 81.35+0.14 77.22 £0.32
44.44 4+ 0.13 48.16 +0.21 49.68 4 0.25 44.41 £ 0.04 48.21 +0.11 49.83 £ 0.1
& — 2 84.49 + 0.1 80.58 £+ 0.22 76.49 £ 0.14 84.35 £ 0.24 80.44 £+ 0.31 76.33 £ 0.37
4444 £0.15 48.12 +0.07 49.77 + 0.37 44.59 £0.22 48.34 £0.1 49.77 £ 0.23

P Training with noise augmented samples

Gilmer et al. [9]] and Fawzi et al. [8] report a close link between robustness to adversarial attacks
and robustness to random noise. Actually, [9] report that training with noise-augmented samples
can improve adversarial accuracy and vice-versa. We note that N-FGSM can actually be seen as
a combination of noise-augmentation and adversarial attacks. Here we perform an ablation where
we train models with samples augmented with uniform noise U[—k, k] and then test the PGD-
50-10 accuracy. We observe, that indeed random noise can increase the robustness to worst-case
perturbations for small € — [, balls. However, as we increase €, noise augmentation is no longer very
effective. With N-FGSM, we apply a weak attack to these noise-augmented samples and this seems
to be enough to make them effective for adversarial training.

Q Comparison of adversarial training cost

In this section we describe how we compute the relative training cost for single-step methods shown
in Figure[T] (right). We approximate the cost based on the number of forward/backward passes each
method uses, disregarding the cost of other additional operations such as adding a random step for
RS-FGSM or N-FGSM. We understand these operations have a negligible cost compared to a full
forward or backward pass.

FGSM: FGSM is the cheapest of all methods since it only uses one forward/backward to compute
the attack and an additional forward/backward to compute the weight update. Hence, Cost FGSM = 2
F/B.
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Figure 16: Training with uniform noise augmented samples improves adversarial accuracy for small

perturbations but is not effective to protect against larger [, radius e. This motivates us to further
augment the noisy samples with FGSM. All experiments are averaged over 3 runs.

RS-FGSM: As previously mentioned, we do not take into account the cost of random steps or
clipping, hence we consider RS-FGSM to have the same cost as standard FGSM. Cost RS-FGSM = 2
F/B.

N-FGSM: Idem as before, cost of N-FGSM = 2 F/B.

ZeroGrad: For ZeroGrad they need to do an additional sorting operation to find the smallest gradient
components. This could be potentially expensive, however, since the size of the input image is several
orders of magnitude smaller than that of the network, we also ignore this cost. Cost ZeroGrad = 2
F/B.

MultiGrad: MultiGrad computes 3 random steps and evaluates the gradient in all of them. Therefore,
it needs to do 3 F/B to compute the attack and an additional one to update the weights. Cost MultiGrad
=4 F/B.

[15]]: [[15] compute the RS-FGSM perturbation and evaluate the model on ¢ points along this direction.
Therefore, they will spend 1F/B on the RS-FGSM attack, ¢ — 1 F on the evaluations since the clean
image has already been evaluated; and 1 F/B for the weight update. In our plot, we used ¢ = 3 since
it was the most chosen setting. [15] assume the cost of a forward is similar to that of a backward pass,
following this assumption, cost of [[15]is 1 F/B + 2F + 1 F/B =3 F/B

Free-AT: [26] re-use the gradient from the previous backward pass to compute the FGSM perturbation
of the current iteration. Hence, the cost of their training is only 1 F/B per iteration. However, [35]
observed they needed a longer training schedule to produce comparable results. Therefore, the total
training cost per iteration (1 F/B) is scaled by 96 in the case of Free-AT, while it is only scaled by 30
for other methods. Relative cost Free = (96 - 1 F/B) / (30 - 2 F/B).

GradAlign: Finally, GradAlign uses FGSM with a regularizer. However, this regularizer needs to
compute second-order derivatives via double backpropagation, which does not have the same cost as
regular backpropagation. [1] report that the cost of using GradAlign regularizer increased the cost of
FGSM by 3.

R Infrastructure details and GPU hours

All our training runs have been conducted on either NVIDIA GPU V-100 or P-100 from an internal
cluster. The total compute for the results presented in this work is roughly 2500 hours.

S Detailed results for Section 5.1l and Section [7]

In this section we present the tables with the exact numbers used in plots comparing adversarial
training methods. For each method and € — [, radius, the top number is the clean accuracy while the
bottom number is the PGD-50-10 accuracy. We separate single-step from multi-step methods with a
double line.
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PreActResNet18 — CIFAR-10 Dataset

‘ €=2/255 ‘ e=4/255 ‘ €=6/255 ‘ €=8/255 ‘ €=10/255 ‘ €=12/255 ‘ €=14/255 ‘ €=16/255
N-FGSM 91.48 £0.17 88.44 £ 0.09 84.72 £ 0.04 80.58 £ 0.22 75.98 £ 0.1 71.46 £ 0.14 67.11 £ 0.37 63.18 £ 0.49
79.43 £+ 0.21 67.09 £ 0.31 56.62 + 0.26 | 48.12 + 0.07 | 41.56 £ 0.16 36.43 £+ 0.16 3211+0.2 27.67 £ 0.93
Grad Align 91.73 £ 0.04 88.76 £ 0.0 85.67 £ 0.02 81.9 £0.22 77.54 £ 0.06 73.29 £0.23 68.01 £ 0.32 61.3 £0.15
79.16 £ 0.03 67.13 £0.26 | 56.27 + 0.31 48.14 £ 0.15 | 40.75+0.28 34.51 £ 0.63 30.36 £ 0.27 26.64 £+ 0.27
FGSM 91.6 0.1 88.77 £ 0.04 85.58 £ 0.11 86.41 £0.7 82.08 £ 1.62 80.6 £ 2.59 76.04 4+ 2.37 77.14 £+ 2.46
79.35£0.06 | 67.11 £0.09 | 56.33 £0.41 0.0 0.0 0.0 + 0.0 0.0 £0.0 0.0 + 0.0 0.0 + 0.0
RS-FGSM 92.09 £ 0.05 89.69 £ 0.01 87.0 £0.12 84.05 £ 0.13 85.21 £ 0.51 65.22 £23.23 43.59 £25.01 76.66 £ 0.38
78.64 £+ 0.08 66.12 +£ 022 | 54.87+0.22 | 46.08 £0.18 0.0 £0.0 0.0 0.0 0.0 + 0.0 0.0 + 0.0
Kim et. al. 92.85 £ 0.11 91.1 £ 0.04 89.34 £ 0.05 89.02 £ 0.1 88.27 £0.14 88.35 £ 0.31 90.01 £ 0.25 90.45 £+ 0.08
7474 £035 | 6051 £04 | 48.95+045 | 33.01£0.09 | 2443 +£0.84 13.11 £ 0.63 5.86 &+ 0.57 1.88 4+ 0.05
AT Free 87.99 £ 0.16 84.98 £0.13 81.77 £ 0.11 78.41 £0.18 | 74.79 £0.22 7391 £ 4.19 61.92 4 14.94 71.64 £ 3.89
74.27 £ 0.33 62.47 £ 0.25 53.18 £0.15 46.03 £ 0.36 39.87 £ 0.07 22.99 £ 16.26 0.0 + 0.0 0.0 + 0.0
ZeroGrad 91.71 £ 0.08 88.8 £0.11 85.71 £ 0.1 82.62 £ 0.05 7991 £ 0.12 78.11 £0.2 75.66 £ 0.46 75.42 £ 0.13
79.36 £ 0.05 67.32 £0.02 | 56.14 +0.21 47.08 0.1 3758 £0.2 27.41 £0.27 21.29 £0.97 13.06 4 0.22
MultiGrad 91.57 £0.16 88.74 £ 0.12 85.75 £ 0.05 8233 £0.14 | 7873 £0.16 7528 £0.2 80.94 £ 5.94 71.42 £5.63
79.34 £0.02 | 66.81 +0.02 56.02 £0.3 4729 £0.07 | 40.11 +0.24 33.87 £0.17 9.55 £ 135 16.35 £ 11.57
PGD2 91.4 £ 0.07 88.46 £0.13 85.14 £0.13 81.41 £ 0.05 77.18 £0.15 72.9 £ 0.26 70.39 £2.71 64.81 £ 11.58
79.55 £ 0.15 | 67.62 £ 0.03 57.39 £0.13 49.58 £ 0.08 433+ 0.11 38.13 £0.15 22.89 £ 15.26 9.6 £ 13.37
PGD-10 91.25 £ 0.04 88.34 £ 0.11 84.79 £ 0.11 80.71 £0.14 | 76.13 +0.35 71.24 £ 03 66.7 + 0.39 62.11 £ 0.62
79.47 £0.13 | 68.29 +0.24 | 58.85+0.18 | 51.33 +0.31 45.02 £+ 0.49 39.93 + 0.5 36.02 £ 0.67 32.22 + 0.64

PreActResNet18 — CIFAR-100 Dataset

€=2/255 e=4/255 €=6/255 €=8/255 €=10/255 €=12/255 €=14/255 €=16/255
N-FGSM 69.12 £ 0.27 64.0 £+ 0.06 59.53 +£0.02 549 +0.2 50.6 £ 0.16 46.06 & 0.14 | 41.67 £0.25 3791 £0.11
51.02 £ 0.34 39.5 +0.12 32.06 £ 0.37 26.46 £+ 0.22 22.23 +0.17 18.95 + 0.15 16.33 £ 0.15 14.34 + 0.07
Grad Align 68.96 £0.15 | 6471 £0.16 | 60.42+0.23 56.53 £ 0.31 54.06 £ 044 | 4887 +032 | 43.84+0.14 | 3893 +0.21
51.31 £ 0.12 | 39.37 +0.25 31.91 + 0.28 258 £0.14 187 £1.92 17.86 £ 0.04 1551 £ 0.16 13.62 +0.19
FGSM 69.01 £ 0.13 64.47 £ 0.15 63.85 £ 2.18 53.42 £ 0.65 45.06 +2.29 46.14 £2.58 | 41.66 £ 0.88 44.68 + 1.74
51.3+0.19 39.7£0.16 10.93 £ 14.64 0.0+ 0.0 0.0 £ 0.0 0.0+ 0.0 0.0+ 0.0 0.0 0.0
RS-FGSM 69.83 £ 0.29 65.9 4+ 0.36 62.15 +0.23 5526 £ 6.86 | 32.33 & 12.12 36.07 £ 2.59 21.52 £5.56 20.38 £ 6.15
50.13 £0.32 | 38.36 +0.19 30.82 £ 0.08 0.01 £ 0.01 0.0 0.0 0.0+ 0.0 0.0 £0.0 0.0 0.0
Kim et. al. 72.92 £ 0.41 70.16 £ 0.07 67.98 £ 0.19 68.07 £+ 0.1 68.37 £ 0.21 74.09 £ 0.06 | 74.06 +0.34 74.01 £ 0.36
44.19 £ 0.25 30.63 £ 0.28 22.0 £0.02 1275 £0.21 6.98 +0.23 0.0 + 0.0 0.0 £ 0.0 0.0 + 0.0
AT Free 63.01 £0.19 59.41 £0.27 55.43 £0.37 51.91 £0.08 48.11 £ 0.09 43.48 £ 1.25 18.33 £4.86 | 2043 £11.25
4577+ 0.33 35.95 £ 0.09 29.37 £ 0.21 2432 £ 04 20.64 £ 0.22 5.71 £8.05 0.0 £ 0.0 0.0 £ 0.0
ZeroGrad 69.35 £ 036 | 64.59 +0.32 60.69 £ 0.09 56.94 £ 0.13 54.55 +£0.17 5297 £0.34 | 50.87 +0.26 50.73 £0.3
51.1 £+ 0.09 39.38 £+ 0.15 31.72 £ 0.21 25.87 £ 0.09 19.49 £ 0.08 14.32 £ 0.08 10.92 £ 0.59 73 +0.16
MultiGrad 69.01 £0.16 | 64.44 +0.11 60.65 £ 0.26 56.84 £ 0.2 53.62 + 0.25 53.05+£1.85 | 4828 £0.66 | 4528 £11.14
51.15 £ 0.03 39.16 £ 0.03 31.73 £ 0.09 25.96 £ 0.11 21.37 £ 0.16 9.57 +17.32 324449 0.0 0.0
PGD-2 69.18 £ 0.1 64.32 £ 0.14 60.21 £ 0.13 55.8 £0.16 51.68 £0.1 482+ 0.1 46.14 + 1.24 37.97 £+ 10.52
51.36 = 0.03 | 40.06 +0.14 32.99 £0.24 27.38 £ 0.16 23.39 +£0.19 19.83 £0.29 10.55 £7.51 479 +6.75
PGD-10 68.83 £ 0.07 63.87 £ 0.09 59.37 £ 0.07 54.79 £ 0.38 50.53 £ 0.15 46.05 £ 0.21 41.76 £ 0.07 37.81 £0.14
51.51£0.27 | 40.59 £0.36 | 33.65+0.02 | 28.55+0.27 | 24.17 £0.12 21.24+0.12 | 1872+ 0.06 | 16.59 £ 0.16
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PreActResNet18 — SVHN Dataset

€=2/255 e=4/255 ‘ €="6/255 ‘ €=8/255 ‘ €=10/255 €=12/255
N-FGSM 96.01 £ 0.04 94.54 £ 0.15 92.25 +£0.33 89.56 £ 0.49 86.74 £ 0.86 81.48 £ 1.64
86.44 + 0.1 72.53 4+ 0.19 58.42 £ 0.14 45.63 + 0.11 33.96 £+ 0.49 26.13 £+ 0.81
Grad Align 96.02 £ 0.05 94.56 £0.21 92.53 +0.24 90.1 £+ 0.34 87.23 £0.75 84.01 £ 0.46
86.43 £+ 0.1 72.12 £ 0.19 57.34 £ 0.24 43.85 +£0.14 32.87 £0.33 23.62 £ 041
FGSM 96.04 £+ 0.07 95.67 £ 0.07 93.73 £+ 0.68 91.74 £ 0.86 90.76 £ 0.63 87.17 £ 0.43
86.5 £ 0.05 13.61 +5.83 0.56 +0.72 0.26 £ 0.36 0.07 £ 0.1 0.0 + 0.0
RS-FGSM 96.18 £ 0.11 95.09 £ 0.09 95.11 £ 0.44 94.46 £+ 0.16 93.88 £0.24 92.74 £ 0.5
86.16 + 0.14 71.28 £ 0.4 0.11 + 0.08 0.0+ 0.0 0.0 £0.0 0.0 + 0.0
Kim et. al. 96.35 £ 0.02 95.25 £ 0.08 94.83 £+ 0.02 94.88 £ 0.29 96.61 £ 0.09 96.61 £ 0.01
83.26 + 0.24 66.32 £ 0.63 48.27 £ 0.52 31.8 £ 1.1 0.18 £ 0.21 0.0 £ 0.0
AT Free 95.01 £ 0.09 93.66 £ 0.12 91.72 £ 0.29 91.29 £+ 4.07 91.86 £ 3.66 9236 £ 1.0
84.55 £ 0.27 71.61 £0.75 59.31 + 1.0 0.01 0.0 0.0 + 0.0 0.0 + 0.0
ZeroGrad 96.06 £ 0.03 94.81 £0.16 93.53 +£0.26 9242 +£1.29 90.34 £ 0.32 88.09 + 0.4
86.43 £+ 0.1 71.59 +£0.22 51.72 £ 0.53 3593 £2.73 21.34 £0.31 14.14 £0.32
MultiGrad 96.01 £ 0.08 94.71 £0.17 95.75 £ 0.58 94.86 £ 0.97 94.7 £0.12 94.48 £ 0.19
86.4 £+ 0.08 71.98 £+ 0.26 28.1 £ 18.85 11.49 £ 16.19 0.0 £ 0.0 0.0 £ 0.0
PGD2 96.03 £ 0.14 94.66 £ 0.1 93.77 £ 0.61 94.63 £ 1.29 84.09 £ 14.99 94.16 £ 0.54
86.72 £ 0.06 73.29 £0.29 60.53 £+ 0.73 20.68 £ 18.56 0.41 £0.29 0.02 £+ 0.03
PGD-10 95.92 £+ 0.08 9437 £0.13 92.46 4+ 0.25 89.67 £ 0.34 85.75 £ 0.65 80.08 £ 0.93
86.94 £+ 0.14 74.76 £+ 0.19 63.9 + 0.48 53.95 £ 0.55 44.91 £ 0.45 37.65 + 0.53
WideResNet28-10 — CIFAR-10 Dataset
€=2/255 e=4/255 €=6/255 €=8/255 €=10/255 €=12/255 €=14/255 €=16/255
N-FGSM 92.51 £0.11 89.65 £ 0.09 85.8 £0.23 81.59 £+ 0.32 76.92 £ 0.04 72.13 £ 0.15 67.82 £ 0.43 56.73 £ 0.42
81.43 + 0.3 69.11 £ 0.24 58.29 £0.14 49.53 £ 0.25 42.37 £+ 0.36 36.85 + 0.2 31.66 £ 0.6 25.01 £0.23
Grad Align 92.59 £ 0.05 89.95 + 0.3 86.98 £ 0.06 83.19 + 0.26 79.35 £ 0.26 73.79 £ 0.72 66.38 £+ 0.53 57.75 £0.75
81.33 + 0.4 69.81 + 0.47 59.0 + 0.13 50.0 £ 0.05 41.48 £0.51 35.06 £ 0.74 30.83 £ 0.39 26.26 £ 0.13
FGSM 92.65 £ 0.17 90.06 £ 0.18 8799+ 1.3 86.46 £ 0.45 82.67 £ 1.78 80.14 £ 1.2 74.54 £ 4.01 71.56 £+ 3.78
81.38 = 0.22 69.59 £ 0.25 | 38.69 + 26.54 0.0£0.0 0.0+0.0 0.0 £ 0.0 0.0+ 0.0 0.0 £ 0.0
RS-FGSM 92.85 £ 0.1 90.73 £ 0.2 88.24 £0.19 83.64 £ 1.74 82.1 £ 1.45 78.62 + 0.7 73.25 £ 8.16 68.64 £ 4.3
80.9 £0.13 68.23 £+ 0.17 57.21 £0.17 0.0 +£0.0 0.0 +£0.0 0.0 0.0 0.0+ 0.0 0.0 + 0.0
RandAlpha 93.37 £ 0.22 92.17 £0.21 90.71 £+ 0.14 89.16 £ 0.19 87.44 £ 0.31 85.69 £ 0.28 83.98 £0.24 83.23 £ 0.46
77.67 £ 0.66 63.73 £ 0.31 504 £0.14 39.37 £ 0.42 30.13 £ 09 23.13 £ 0.33 16.0 £ 0.22 8.47 £ 0.66
AT Free 90.66 £ 0.25 88.37 £0.15 86.11 £0.29 83.5 £0.27 80.52 £ 0.32 83.59 £ 1.35 39.58 £15.8 42.59 £ 27.96
77.0 +0.27 64.25 £+ 0.33 53.76 £ 0.48 44.85 +0.39 31.87 £5.53 0.0 + 0.0 0.0 + 0.0 0.0 £0.0
ZeroGrad 92.62 £ 0.11 90.17 £ 0.05 86.98 £ 0.28 84.25 £0.28 81.72 £ 0.29 79.24 +0.82 78.14 £ 0.46 75.34 £0.12
81.42 £+ 0.28 69.28 £+ 0.29 58.4 £ 0.14 48.29 +0.16 36.08 + 0.29 28.24 + 1.79 18.54 4+ 0.31 14.6 + 0.12
MultiGrad 92.64 £+ 0.1 90.18 £ 0.13 87.11 £ 0.36 83.87 £ 0.46 80.89 £ 0.14 82.88 £2.85 86.6 £ 1.52 85.46 £3.73
81.19 +0.28 69.3£02 57.98 £ 0.08 48.74 + 0.09 41.22 £0.57 4.46 + 6.09 0.0+ 0.0 0.0 + 0.0
PGD-2 92.69 £+ 0.14 90.18 £ 0.19 86.87 £ 0.18 83.31 £ 0.16 79.61 £ 0.47 75.81 £0.24 7141 £ 1.38 67.2 + 14.94
81.54 £ 0.18 69.87 £+ 0.26 594 +0.19 50.88 £ 0.16 4394 +£0.24 37.77 £ 0.57 21.06 £ 13.39 0.0 + 0.0
PGD-10 92.24 £ 0.31 89.65 £ 0.33 86.91 £ 0.51 82.82 £ 0.7 78.63 £ 0.66 74.0 £ 0.67 68.6 + 0.58 64.17 £0.72
81.18 £ 0.57 70.34 £+ 0.26 60.59 £ 0.21 52.58 £ 0.2 4592 +0.38 | 40.44 + 0.17 35.98 + 0.56 32.5 +0.61
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WideResNet28-10 — CIFAR-100 Dataset

€=2/255 €="5/255 ‘ €=6/255 ‘ €=8/255 ‘ €=10/255 ‘ €=12/255 ‘ €=14/255 ‘ €=16/255
N-FGSM 71.56 £0.13 66.49 £ 0.46 61.38 £ 0.68 56.23 £ 0.59 51.54 £ 0.63 46.43 £+ 0.61 42.11 £0.32 38.34 + 047
5223 +0.33 | 39.93+0.37 30.97 £0.21 26.77 £ 0.65 23.03 £+ 0.54 19.3 + 0.59 16.67 + 0.4 14.27 + 0.33
Grad Align 71.68 £ 0.33 67.09 £ 0.19 62.86 £ 0.1 58.55 £ 0.41 53.85 +£0.73 46.94 £ 0.86 42.63 £ 0.5 36.17 £0.45
51.5 £ 045 39.9 £+ 0.42 32.0 +£0.22 26.9 + 0.62 22.63 £+ 0.62 19.9 £ 0.65 16.93 + 0.12 14.03 £ 0.24
FGSM 71.92 +0.33 67.34 £ 0.36 64.72 £ 1.12 56.87 £ 1.24 5231 £ 2.11 48.99 £+ 1.17 4427+ 14 42.05 £+ 1.03
52.83 +0.37 | 39.83 +£0.31 0.0 £ 0.0 0.03 £+ 0.05 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 0.0
RS-FGSM 72.65 £ 0.28 68.26 £ 0.2 65.58 £0.69 | 5425+5.85 | 46.08 £4.87 | 3584 +0.17 244 +£125 21.37 £5.04
51.63 £0.52 39.57 £ 0.09 26.63 £2.8 0.0 + 0.0 0.0 + 0.0 0.0 £0.0 0.0 + 0.0 0.0 0.0
RandAlpha 73.9 £0.15 71.17 £0.12 68.65 £ 0.22 66.42 £+ 0.13 64.05 £ 0.5 61.99 £ 0.6 59.74 £ 0.57 589 £0.78
49.13 £ 091 343 + 0.54 255 £0.33 20.27 £ 0.98 163 £0.14 12.4 £0.29 6.93 £0.19 3.63 £0.12
AT Free 67.62 £0.24 63.27 £0.72 59.53 £0.31 55.77 £ 0.28 47.02 £+ 3.83 33.52£9.24 7.87 +£1.78 20.92 £ 21.48
48.07 £ 0.31 37.93 £ 0.69 29.7 £ 0.51 24.43 £ 0.37 3.23 £4.43 0.0 + 0.0 0.0 + 0.0 0.0 0.0
ZeroGrad 71.68 £ 0.07 67.2+0.14 63.69 £+ 0.14 60.77 £ 0.26 61.05 £ 0.38 58.39 £ 0.16 56.19 £ 0.11 56.38 £+ 0.18
52.63 £ 0.61 39.57 £0.33 30.27 £ 0.54 23.7 £0.08 15.1 £0.49 11.13 £ 0.68 8.8 +£0.36 49 +0.36
MultiGrad 71.8 £0.15 67.73 £ 0.48 63.24 £ 0.33 60.05 £ 0.79 56.39 £ 0.49 56.79 £ 8.27 59.8 £3.77 52.96 £ 5.58
51.9 £0.29 39.7 £0.37 31.5 £ 0.62 26.03 £ 0.09 20.8 £0.29 0.0 £ 0.0 0.0+ 0.0 0.0 £0.0
PGD2 71.62 £ 0.15 67.25 £ 0.43 63.18 £ 0.36 59.02 £ 0.4 54.47 £ 045 50.91 £ 0.35 41.03 +3.18 40.13 £ 3.66
51.73 £ 048 40.27 £ 0.7 3223 £0.19 27.13 £0.37 23.43 £ 0.31 20.23 £ 0.39 0.03 £+ 0.05 0.0 £0.0
PGD-10 71.11 £+ 0.62 66.9 £+ 0.57 62.05 £ 0.47 57.64 £+ 0.81 52.84 +0.88 48.14 £ 0.73 43.14 +0.87 39.2 £0.62
52.5+0.59 40.73 £ 0.56 32.8 +0.29 27.97 £ 0.59 24.7 1+ 0.36 21.8 £ 0.57 18.87 £ 0.6 16.8 £ 0.57
WideResNet28-10 — SVHN Dataset
€=2/255 e=4/255 €=06/255 €=8/255 €=10/255 €=12/255
N-FGSM 95.64 £+ 0.09 93.66 £ 0.41 91.77 £ 0.42 88.89 + 0.58 88.07 £ 0.59 87.52 £ 0.49
84.1 +0.73 66.9 £ 0.86 53.0 + 0.36 40.5 + 0.37 30.47 £+ 0.76 22.43 +0.53
Grad Align 95.41 £ 0.06 93.9 £0.48 68.36 £ 34.49 42.62 £+ 32.73 19.3 £0.21 19.53 £ 0.08
84.57 £+ 0.56 67.27 £ 0.54 39.53 £+ 14.89 2474934 17.63 £ 0.62 18.13 £ 0.52
FGSM 95.83 £ 0.1 95.0 £ 0.24 94.23 £0.79 91.11 £ 1.36 88.83 £ 1.71 86.74 £ 0.7
85.03 £+ 0.37 31.53 £6.57 1.7+ 136 0.13 £0.19 0.0 £ 0.0 0.0 0.0
RS-FGSM 95.81 £ 0.25 94.53 £ 0.4 95.23 £0.26 94.68 £ 0.62 93.9 +0.52 91.64 +2.98
83.8 £0.43 66.67 £ 0.65 0.53 +0.26 0.0+ 0.0 0.0 0.0 0.0 + 0.0
RandAlpha 96.02 £+ 0.23 95.47 £0.18 94.69 £ 0.26 93.72 £ 0.44 93.08 £ 1.45 93.96 £ 0.68
82.5 £ 045 63.33 £ 0.53 47.7 + 0.99 35.73 £ 0.34 23.17 £1.97 11.1 £ 3.05
AT Free 94.85 £ 0.39 92.95 £ 0.65 91.62 £+ 1.93 93.74 £ 0.69 92.47 £0.97 90.5 £+ 1.41
83.13 £ 0.17 68.67 £ 0.53 54.93 £+ 2.58 0.03 £ 0.05 0.0 £ 0.0 0.0 £ 0.0
ZeroGrad 95.78 £0.21 94.06 £ 0.52 92.13 £ 0.98 91.04 £ 0.4 88.85 £ 0.92 89.8 £ 1.36
84.47 £+ 0.83 66.1 £ 0.37 47.3 +£0.62 29.33 £ 0.56 20.77 £ 0.63 9.33 £0.76
MultiGrad 95.63 £ 0.16 94.27 £ 0.38 93.64 £ 1.21 94.83 £ 1.55 95.26 £ 0.34 95.22 +£0.15
84.37 £+ 0.59 67.27 £0.31 50.1 £09 1.77 £ 1.72 0.0 0.0 0.0 + 0.0
PGD-2 95.88 £ 0.35 94.66 £ 0.1 93.77 £ 0.61 92.99 £ 1.11 88.81 +£0.93 83.17 £ 4.78
86.25 + 0.7 73.29 £0.25 60.53 £ 0.72 40.77 4+ 4.39 34.33 £2.76 26.8 +£3.31
PGD-10 95.92 £ 0.08 94.36 £ 0.13 92.46 £+ 0.25 89.67 £ 0.34 85.98 £ 0.59 80.08 £ 0.93
86.94 £+ 0.13 74.46 £ 0.54 63.87 £ 0.49 53.95 £ 0.55 44.59 +0.14 | 37.64 + 0.49
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