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A B S T R A C T   

Background and aims: We investigated the causal relevance of alcohol intake with measures of carotid artery 
thickness and atherosclerosis in Chinese adults. 
Methods: The study included 22,384 adults from the China Kadoorie Biobank, with self-reported alcohol use at 
baseline and resurvey, carotid artery ultrasound measurements, and genotyping data for ALDH2-rs671 and 
ADH1B-rs1229984. Associations of carotid intima media thickness (cIMT), any carotid plaque, and total plaque 
burden (derived from plaque number and size) with self-reported (conventional analyses) and genotype- 
predicted mean alcohol intake (Mendelian randomization) were assessed using linear and logistic regression 
models. 
Results: Overall 34.2% men and 2.1% women drank alcohol regularly at baseline. Mean cIMT was 0.70 mm in 
men and 0.64 mm in women, with 39.1% and 26.5% having carotid plaque, respectively. Among men, cIMT was 
not associated with self-reported or genotype-predicted mean alcohol intake. The risk of plaque increased 
significantly with self-reported intake among current drinkers (odds ratio 1.42 [95% CI 1.14–1.76] per 280 g/ 
week), with directionally consistent findings with genotype-predicted mean intake (1.21 [0.99–1.49]). Higher 
alcohol intake was significantly associated with higher carotid plaque burden in both conventional (0.19 
[0.10–0.28] mm higher per 280 g/week) and genetic analyses (0.09 [0.02–0.17]). Genetic findings in women 
suggested the association of genotype-predicted alcohol with carotid plaque burden in men was likely to due to 
alcohol itself, rather than pleiotropic genotypic effects. 
Conclusions: Higher alcohol intake was associated with a higher carotid plaque burden, but not with cIMT, 
providing support for a potential causal association of alcohol intake with carotid atherosclerosis.   

* Corresponding author. MRC Population Health Research Unit, Nuffield Department of Population Health, Big Data Institute, University of Oxford, Old Road 
Campus, Oxford, OX3 7LF, UK. 

E-mail address: iona.millwood@ndph.ox.ac.uk (I.Y. Millwood).   
1 Joint first authors.  
2 Joint senior authors.  
3 Members are listed in the Supplementary Materials. 

Contents lists available at ScienceDirect 

Atherosclerosis 

journal homepage: www.elsevier.com/locate/atherosclerosis 

https://doi.org/10.1016/j.atherosclerosis.2023.06.012 
Received 27 February 2023; Received in revised form 8 June 2023; Accepted 9 June 2023   

mailto:iona.millwood@ndph.ox.ac.uk
www.sciencedirect.com/science/journal/00219150
https://www.elsevier.com/locate/atherosclerosis
https://doi.org/10.1016/j.atherosclerosis.2023.06.012
https://doi.org/10.1016/j.atherosclerosis.2023.06.012
https://doi.org/10.1016/j.atherosclerosis.2023.06.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atherosclerosis.2023.06.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Atherosclerosis 377 (2023) 34–42

35

1. Introduction 

Cardiovascular disease (CVD) is the leading cause of the global dis-
ease burden, affecting >500 million individuals in 2019 [1,2]. Athero-
sclerotic cardiovascular disease (ASCVD) has a prolonged latent period, 
and subclinical atherosclerosis can be present long before clinical events 
occur [3]. Therefore, screening for subclinical arterial injury and 
atherosclerosis in the carotid artery is sometimes used for prediction and 
primary prevention of ASCVD [4,5]. Carotid intima media thickness 
(cIMT) and carotid plaques are routinely measured using non-invasive 
ultrasound examination [6], and are associated with higher risk of 
ASCVD [7]. Globally, the prevalence of high cIMT (≥1.0 mm) and ca-
rotid plaque was 27.6% and 21.1% in 2020, respectively, an increase of 
about 60% for both conditions since 2000, highlighting the substantial 
burden of subclinical carotid arterial injury and atherosclerosis and 
ASCVD [8]. 

Alcohol consumption is a major risk factor for the global burden of 
disease, with an estimated 47% of adults drinking in the past year in 
2017 globally, with rising alcohol use particularly among Chinese men 
[9]. Conventional epidemiological studies have consistently reported a 
lower risk of CVD associated with moderate alcohol consumption 
compared with not drinking, however, the causality of these associa-
tions is uncertain, and the biases of reverse causality and residual con-
founding often affect conventional observational studies of alcohol 
intake [10]. Recent large-scale conventional and genetic studies suggest 
there is no safe drinking threshold for CVD risk, but the evidence differs 
across CVD types [11–13]. Moreover, the associations of alcohol use 
with subclinical carotid arterial injury and atherosclerosis remain 
controversial, with both positive and J-shaped associations reported in 
cross-sectional studies in mainly Western populations [14–22]. Mende-
lian randomization (MR) approaches can help assess the causal effects of 
alcohol [23], however, large-scale MR studies assessing the causal as-
sociations of alcohol intake with cIMT or carotid plaque remain limited 
[24,25]. 

Variants in the ALDH2 (G > A, rs671) and ADH1B (G > A, 
rs1229984) genes alter alcohol metabolism, and can cause discomfort 
after drinking and strongly reduce alcohol intake [26]. These variants, 
which are common in East Asian populations [13], can predict large 
differences in alcohol intake, and provide a unique opportunity to assess 
the causal relevance of alcohol intake for subclinical cardiovascular 
outcomes using an MR approach [23]. 

The aim of this study was to investigate the associations of cIMT and 
subclinical carotid atherosclerosis (presence of any carotid plaque, and 
total carotid plaque burden) with self-reported alcohol intake using 
conventional epidemiological methods, and with genotype-predicted 
mean alcohol intake, using data from the China Kadoorie Biobank 
(CKB) study. 

2. Patients and methods 

2.1. CKB study population 

The current study was conducted in a subset of 22,384 participants 
from the CKB study. The CKB is a prospective cohort study which 
recruited 512,726 participants aged 30–79 years at baseline from five 
urban and five rural areas of China during 2004–2008 [27]. Details of 
the study design and methods have been previously reported [27]. The 
baseline survey was conducted using an interviewer-administered 
questionnaire which collected information on socio-demographics, 
medical history and major lifestyle factors, with physical measure-
ments (e.g. blood pressure, height, weight) taken and a non-fasting 
blood sample collected for long-term storage. Two separate resurveys 
of ~5% randomly selected surviving participants were conducted in 
2008 and 2013–2014, respectively, using similar procedures. The ca-
rotid ultrasound examination was conducted at the 2013–2014 resurvey 
(referred to as “resurvey” hereafter), for which the response rate was 

76%. Ethical approval was obtained from local, national and interna-
tional ethical committees. All participants provided written informed 
consent. 

2.2. Assessment of self-reported alcohol intake 

Self-reported past and current alcohol drinking patterns were 
recorded using an interviewer-administered questionnaire (details in 
Supplementary materials), as previously described [28,29]. Participants 
were categorized based on their baseline alcohol drinking status into 
four categories: ex-drinkers; non-drinkers; occasional drinkers; and 
current drinkers. Current drinkers were grouped according to baseline 
reported alcohol intake in grams (g) per week, separately for men 
(<140, 140–279, 280–419, and ≥420 g/week) and women (<70 and ≥
70 g/week), broadly based on the recommended cut-offs for alcohol 
categories by the World Health Organisation [30] and national drinking 
guidelines. 

Self-reported alcohol consumption was re-assessed during the two 
resurveys using the same questionnaire. To account for regression 
dilution bias [31], the usual alcohol intake for baseline alcohol cate-
gories was estimated from the average of alcohol intake at the two 
resurveys (Supplementary Table 1). 

2.3. Carotid artery ultrasonography measurements 

At the resurvey, ultrasound examination was performed using a 
Panasonic CardioHealth Station in each of the four segments of the ca-
rotid arteries on both sides, including the distal common carotid artery 
(CCA), carotid bifurcation, proximal internal carotid artery, and prox-
imal external carotid artery. The cIMT was measured only in the distal 1 
cm of the CCA just before the bifurcation at 150◦ and 120◦ for right CCA 
and at 210◦ and 240◦ for left CCA. Mean cIMT was estimated as the mean 
of these four measurements. All four segments were screened for the 
presence of plaques. Carotid plaque was defined as any focal thickening 
or protrusion from the wall into the lumen with cIMT >1.5 mm [32]. 
Carotid plaque burden was derived by standardizing the plaque number 
and maximum size and estimating the average, then multiplying the 
average value by the standard deviation (SD) of the maximum plaque 
thickness to provide a measure of plaque burden recorded in mm [33, 
34]. Details of carotid artery ultrasonography measurements were 
described previously [33] and in Supplementary materials. 

2.4. Genotyping and biochemistry measurements 

ALDH2-rs671 and ADH1B-rs1229984 were genotyped using custom 
Illumina Golden Gate or Affymetrix Axiom arrays at BGI, Shenzhen, 
among 167,734 CKB participants, which included a randomly selected 
subset of 151,035 participants (Supplementary materials). 

Non-fasting blood samples collected at resurvey were assayed using 
on-site analysers for lipid measurements (including low-density lipo-
protein cholesterol [LDL-C]) and glucose. 

2.5. Genotype-predicted mean alcohol intake 

Using an approach described previously [13], mean alcohol intake in 
men was predicted using a combination of genotype and study area, 
both of which were strongly associated with alcohol intake. Briefly, nine 
genotype combinations were defined based on the genotypes for the two 
variants (each AA, AG, or GG): from AA/AA to GG/GG 
(rs671/rs1229984). Mean male alcohol intake was calculated for the 
combinations of the nine genotypes across the ten study areas, assigning 
an intake of 5 g/week to occasional drinkers and excluding ex-drinkers 
from the calculation. Thresholds (at cutoff points of 10, 25, 50, 100, 150 
g/week) were applied to group these 90 genotype-area combinations 
into six categories (C1–C6) for use in genetic analyses. This allowed a 
reliable assessment of the shape and strength of associations with 
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outcomes across a wide range of predicted mean male alcohol intake, 
while allowing adequate sample size in each category for reliable 
comparisons. In this way individual participants were classified only 
based on their genotypes and study area, but not on individual 
self-reported drinking patterns (which may be subject to confounding 
and reverse causation biases). The genetic instrument provided a mea-
sure of mean alcohol intake predicted by genotype and area, and com-
parisons of these six genetic categories can, where analyses are stratified 
by area (to adjust for any confounding by study area), be used to esti-
mate the genotypic effects on outcomes (hence referred to as “genoty-
pe-predicted mean alcohol intake” hereafter for simplicity). 

For comparison of genotypic effects by sex, women were classified 
into the same six categories as men based on their genotypes and study 
area, regardless of female drinking patterns. 

2.6. Statistical analysis 

The present study included 22,384 participants who had complete 
data for both genetic variants, self-reported alcohol intake details at 
baseline and resurvey, and carotid ultrasound measurements at resurvey 
(Supplementary Fig. 1). Since alcohol consumption patterns varied 
substantially by sex, all analyses were conducted separately in men and 
women. 

Mean values and percentages of selected characteristics were 
calculated across self-reported drinking categories. General linear 
models were used to estimate adjusted means and percentages of 
selected characteristics for individual SNP genotypes (AA, AG, GG), and 
for genotype-predicted mean male alcohol intake categories (C1–C6), 
adjusted for age, ten study areas and 12 genomic principal components 
[35]. The associations of variables with individual SNPs were assessed 
by an inverse-variance-weighted meta-analysis of the per G-allele effect 
across ten study areas. The trend across the six genetic categories was 
assessed from the straight line of best fit through the adjusted mean 
values and their standard errors and the mean male alcohol intake of 
each category within each study area, which were then combined by 
inverse-variance-weighted meta-analysis to yield the overall 
area-stratified genotypic associations. 

Participants with self-reported history of CVD (coronary heart dis-
ease, stroke or transient ischemic attack) at baseline or resurvey (n =
2337) were excluded from conventional epidemiological analyses. 
Linear or logistic regression was used to assess the associations of self- 
reported drinking patterns with mean cIMT and carotid plaque 
burden, or presence of carotid plaque, adjusted for age, ten study areas, 
education level (no formal school; primary school; middle/high school; 
college/university), household income (<10,000, 10,000–34,999, 
35,000+ yuan/year), and smoking status (never, ex-, occasional, current 
smokers) at resurvey. To correct for regression dilution bias, the means 
or log ORs among current drinkers were plotted against usual alcohol 
intake, and the slopes of the lines of best fit were described as the change 
in the means or log ORs per 280 g higher usual alcohol intake per week. 

To investigate potential confounding or mediation by cardiovascular 
risk factors, the regression models were further adjusted for systolic 
blood pressure (SBP), body mass index (BMI), and LDL-C measured at 
resurvey as continuous variables. The associations of alcohol with ca-
rotid measurements were examined in subgroups defined by age, SBP, 
BMI, LDL-C, and random blood glucose level, with the trend across the 
slopes of best fitted lines within subgroups assessed using chi-squared 
trend tests. Sensitivity analyses included individuals with self-reported 
prior CVD. 

For the genetic analyses, linear or logistic regression was used to 
assess the associations of genotype-predicted mean male alcohol intake 
with mean cIMT and carotid plaque burden, or presence of carotid 
plaque, without excluding participants with a history of CVD. These 
models were adjusted for age, study area and 12 genomic principal 
components. The means or log ORs were plotted against the mean male 
alcohol intake for each of the six genetic categories. To account for 

potential geographic confounding effects, the slope of the line of best fit 
was estimated within each study area (thus each reflecting purely 
genotypic effects) and combined by inverse-variance-weighted meta- 
analysis to yield the overall area-stratified genotypic associations, 
summarized as the change in the means or log ORs per 280 g/week 
higher genotype-predicted mean male alcohol intake. Sensitivity ana-
lyses excluded those with self-reported CVD at baseline or resurvey. 

Since few women consumed alcohol, any genotypic effects of the six 
genetic categories that are mediated by drinking alcohol should be much 
smaller in women than in men, but any other pleiotropic genotypic ef-
fects (i.e. genotypic effects not mediated by drinking patterns) should be 
similar in both sexes. Hence, similar analyses using the same six genetic 
categories were performed in women relating the genotypic effects in 
women to the genotype-predicted mean male alcohol intake in each 
category, to allow comparison of genotypic effects by sex. 

The genotypic associations of individual genetic variants (rs671, 
rs1229984) with carotid artery measurements were also assessed. The 
age- and genomic principal components-adjusted genotypic effects (GG 
vs. AG genotypes) were estimated within each study area and were 
combined by inverse-variance-weighted meta-analysis to yield the 
overall area-stratified genotypic associations. 

For exposure variables involving more than two categories, ORs were 
presented with group-specific 95% CIs calculated using “floating” 
standard errors to enable comparison between any two categories rather 
than just with the reference category [31]. All analyses were conducted 
using SAS (Version 9.4) and figures were produced using R (version 
4.0.5) and Stata/SE 16.1 (StataCorp LLC, TX, USA). 

2.7. Ethics statement 

Ethical approval was obtained from the Ethical Review Committee of 
the Chinese Centre for Disease Control and Prevention (Beijing, China, 
005/2004) and the Oxford Tropical Research Ethics Committee, Uni-
versity of Oxford (UK, 025–04), and all participants provided written 
informed consent. 

3. Results 

Among the 22,384 study participants, 38% (n = 8503) were men and 
the mean age at resurvey was 60.3 (SD 10.4) years in men and 59.1 
(10.0) in women (Table 1). At baseline, 34% of men and 2% of women 
were current drinkers (Supplementary Table 2), with a corresponding 
prevalence of 29% and 2% at resurvey. Among both men and women, 
the proportion of current smokers was highest among current drinkers 
(Table 1). Ex-drinkers were older and had the highest mean SBP and the 
highest prevalence of prior CVD, especially among men (19% in ex- 
drinkers vs. 9% in current drinkers). 

In men, baseline alcohol drinking patterns varied across study areas, 
with the prevalence of current drinkers ranging from 11% to 57%, and 
mean intake among current drinkers ranging from 180 g/week to 427 g/ 
week (Supplementary Fig. 2). In women, the prevalence of current 
drinkers was low in all study areas (<10%). 

Overall, the rs671 A-allele frequency was 21% (range 13%–29% 
across areas), and the rs1229984 A-allele frequency was 70% (64%– 
74%) (Supplementary Table 3). In men, the A-alleles for both variants 
were associated with lower alcohol consumption, with a stronger effect 
of rs671 (adjusted prevalence of current drinkers: 0.3% vs. 17% vs. 46%, 
AA vs. AG vs. GG) than rs1229984 (32% vs. 35% vs. 44%, AA vs. AG vs. 
GG) (Supplementary Table 4). The six genetic categories strongly pre-
dicted alcohol consumption, with a 30-fold difference in current 
drinking prevalence (2% vs. 61%) and a 60-fold difference in mean 
alcohol intake (4 vs. 255 g/week) between C1 and C6 at baseline, as 
previously described (Table 2) [12]. In women, alcohol consumption 
levels remained low across the six genetic categories. Higher 
genotype-predicted mean alcohol intake was associated with higher 
mean SBP in men at resurvey, but was not associated with smoking or 
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Table 1 
Characteristics of men and women at resurvey by self-reported baseline alcohol drinking categories.   

Overall Ex-drinkers Non-drinkers Occasional drinkers Current drinkers 

Men (n = 8503) (n = 680) (n = 1654) (n = 3264) (n = 2905) 
Age (SD), year 60.3 (10.4) 63.9 (9.7) 63.6 (10.6) 58.9 (10.4) 59.2 (9.9) 
Education ≥6 years, % 57.3 51.0 44.6 64.0 58.5 
Household income ≥35,000 RMB/year, % 62.6 58.8 60.7 60.0 67.5 
Prior CVD historya, % 10.9 19.1 11.7 10.2 9.2 
Current smokers, % 50.5 48.1 43.3 47.2 59.0 
SBP (SD), mmHg 137.0 (19.7) 141.0 (21.9) 137.4 (20.6) 135.0 (19.0) 138.1 (19.2) 
BMI (SD), kg/m2 24.0 (3.4) 24.1 (3.4) 23.3 (3.5) 24.1 (3.3) 24.2 (3.4) 
Physical activity (SD), MET-h/day 18.8 (15.0) 15.5 (13.6) 17.5 (15.2) 19.9 (15.8) 19.2 (14.3) 
cIMT, mm (SD) 0.70 (0.16) 0.73 (0.16) 0.73 (0.17) 0.70 (0.16) 0.69 (0.15) 
Carotid plaque, % 39.1 48.8 40.3 36.3 39.3 
Carotid plaque burden, mm (SD) 0.99 (1.19) 1.24 (1.28) 1.05 (1.22) 0.92 (1.16) 0.98 (1.18) 

Women (n = 13881) (n = 125) (n = 9019) (n = 4442) (n = 295) 
Age (SD), year 59.1 (10.0) 64.6 (9.3) 59.9 (10.1) 57.4 (9.5) 60.9 (10.3) 
Education ≥6 years, % 41.5 38.4 34.8 55.4 39.0 
Household income ≥35,000 RMB/year, % 58.3 46.4 61.0 53.9 49.2 
Prior CVD history*, % 10.2 16.8 9.8 10.6 11.9 
Current smokers, % 1.5 6.4 1.0 1.6 14.2 
SBP (SD), mmHg 136.5 (21.3) 139.6 (23.8) 137.6 (21.4) 134.1 (20.6) 136.5 (21.7) 
BMI (SD), kg/m2 24.3 (3.5) 24.2 (3.5) 24.1 (3.5) 24.6 (3.5) 23.9 (3.7) 
Physical activity (SD), MET-h/day 17.6 (12.8) 14.5 (10.1) 17.6 (13.4) 17.6 (11.6) 17.4 (11.3) 
cIMT, mm (SD) 0.64 (0.13) 0.64 (0.13) 0.65 (0.14) 0.64 (0.13) 0.64 (0.12) 
Carotid plaque, % 26.5 28.0 26.2 26.7 28.8 
Carotid plaque burden, mm (SD) 0.65 (0.99) 0.62 (1.00) 0.65 (0.99) 0.66 (0.99) 0.71 (1.01) 

RMB: renminbi; CVD: cardiovascular disease; SBP: systolic blood pressure; BMI: body mass index; MET-h/day: metabolic equivalents of task per hour per day; cIMT: 
carotid intima media thickness; SD: standard deviation. 

a Self-reported CVD history at baseline or resurvey. 

Table 2 
Characteristics at resurvey, and baseline drinking patterns, by categories of genotype and study area, in men and women.   

Genotype-area categories ptrend
a 

C1 C2 C3 C4 C5 C6 

Men 
Drinking patternsb (n = 4269) (n = 6353) (n = 11,974) (n = 13,527) (n = 9047) (n = 15,814)  

Current drinkers, % 1.7 10.6 15.0 30.2 48.5 61.4 <0.001 
Mean alcohol intake (SD), g/week 4.0 (28.5) 18.3 (65.3) 33.5 (108.1) 78.3 (160.9) 130.2 (190.6) 255.5 (278.7) <0.001 

Resurvey characteristicsc (n = 620) (n = 991) (n = 1652) (n = 2016) (n = 1209) (n = 2015)  
Age (SD), year 60.1 (10.2) 60.0 (10.6) 60.2 (10.4) 60.7 (10.6) 59.8 (10.7) 60.5 (10.0) 0.543 
Education ≥6 years, % 56.6 54.4 55.8 56.9 61.4 58.0 0.077 
Household income ≥35000 RMB/year, % 61.3 64.3 63.1 61.6 63.5 62.1 0.913 
Prior CVD historyd, % 10.7 10.4 10.6 11.6 12.1 9.9 0.877 
Current smokers, % 46.2 50.0 51.0 49.4 53.5 51.0 0.145 
SBP (SD), mmHg 135.0 (20.2) 135.9 (20.1) 135.9 (19.2) 137.3 (19.5) 138.4 (20.3) 138.0 (19.1) <0.001 
BMI (SD), kg/m2 23.9 (3.5) 23.9 (3.3) 23.9 (3.4) 24.0 (3.4) 23.9 (3.5) 24.2 (3.3) 0.060 
Physical activity (SD), MET-h/day 18.9 (16.3) 18.6 (15.8) 18.6 (15.5) 18.9 (14.5) 19.7 (13.9) 18.6 (14.8) 0.946 

Women 
Drinking patternsb (n = 6439) (n = 9723) (n = 17,174) (n = 19,943) (n = 13,051) (n = 23,721)  

Current drinkers, % 0.1 0.5 0.5 1.5 3.5 4.0 <0.001 
Mean alcohol intake (SD), g/week 0.6 (2.6) 1.9 (3.9) 1.2 (6.1) 3.5 (13.4) 5.4 (23.0) 7.8 (41.7) <0.001 

Resurvey characteristicsc (n = 1036) (n = 1636) (n = 2557) (n = 3295) (n = 1703) (n = 3654)  
Age (SD), year 59.5 (10.2) 59.5 (9.9) 58.8 (10.0) 58.9 (9.8) 58.9 (10.4) 59.5 (9.9) 0.181 
Education ≥6 years, % 43.1 42.6 40.7 41.4 40.3 41.9 0.403 
Household income ≥35000 RMB/year, % 58.6 58.9 60.0 56.6 60.5 57.4 0.330 
Prior CVD historyd, % 11.0 9.5 9.6 11.1 9.5 10.2 0.782 
Current smokers, % 1.2 1.1 1.7 1.3 1.5 1.7 0.885 
SBP (SD), mmHg 136.9 (21.7) 136.3 (21.3) 137.3 (21.4) 136.4 (21.4) 136.0 (22.1) 136.2 (20.3) 0.244 
BMI (SD), kg/m2 24.3 (3.5) 24.2 (3.5) 24.2 (3.4) 24.3 (3.7) 24.1 (3.5) 24.4 (3.6) 0.153 
Physical activity (SD), MET-h/day 16.8 (13.0) 16.8 (11.7) 18.0 (14.5) 17.7 (11.5) 18.1 (12.2) 17.6 (13.0) 0.121 

RMB: renminbi; CVD: cardiovascular disease; SBP: systolic blood pressure; BMI: body mass index; MET-h/d: metabolic equivalents of task per hour per day; SD: 
standard deviation. 

a p-trend is from the straight line of best fit through the age- and genomic principal component-adjusted mean values and their standard errors and the mean male 
alcohol intake across the six genetic categories within each study area, which were then combined by inverse-variance-weighted meta-analysis to yield the overall area- 
stratified genotypic associations. 

b Prevalence of current drinkers and mean alcohol intake at baseline were unadjusted and were calculated in a sample of 60,984 men and 90,051 women in CKB with 
genotype information as previously described (Millwood et al., 2019 Lancet 393:1831–1842) [13]. The genetic instrument strength in men was F-statistic 1752 (range 
by area 43–783), variance in alcohol intake explained (r2) 13.6% (1.2%–22.5%). 

c Means and prevalences of resurvey characteristics were adjusted for age, study area and genomic principal components as appropriate. 
d Self-reported CVD history at baseline or resurvey. 
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Fig. 1. Associations of carotid measurements with self-reported alcohol consumption and with genotype-predicted mean alcohol intake, in men. 
Conventional epidemiological analyses (A–C) of baseline self-reported drinking patterns with cIMT (A), presence of carotid plaque (B), and carotid plaque burden (C) 
in men without prior cardiovascular disease. The reference group was non-drinkers and results were adjusted for age, area, education, income, and smoking. The 
means or odds ratios for current drinkers were plotted against usual alcohol intake, with a fitted line giving the mean change or odds ratio (95% CI) per 280 g per 
week higher usual alcohol intake. Genetic epidemiological analyses (D–F) of genotype predicted mean alcohol intake with cIMT (D), presence of carotid plaque (E), 
and carotid plaque burden (F) in all men. Results were adjusted for age, area, and genomic principal components. The means or odds ratios were plotted against 
genotype-predicted mean alcohol intake, with the mean change or odds ratio (95% CI) per 280 g per week higher genotype-predicted mean alcohol intake calculated 
within study areas and combined by inverse variance-weighted meta-analysis. The area of each square is inversely proportional to the variance of the least square 
mean in (A, C, D, F), and the variance of the log odds in (B, E). The group-specific 95% CIs, calculated from this variance, are shown by error bars. cIMT: carotid 
intima media thickness; CI: confidence interval. 

Table 3 
Adjusted associations of carotid measurements with self-reported alcohol intake in male current drinkers.  

Male current drinkers, n = 2905 Effect per 280 g/week usual alcohol (95% CI) p-value 

cIMT, mm 
Main model 0.001 (− 0.012, 0.013) 0.930 
+SBP − 0.006 (− 0.018, 0.006) 0.340 
+SBP and BMI − 0.006 (− 0.017, 0.006) 0.361 
+SBP, BMI and LDL-C − 0.002 (− 0.015, 0.012) 0.799 
Main model including prior CVD 0.002 (− 0.015, 0.010) 0.696 

Carotid plaque (OR) 
Main model 1.42 (1.14, 1.76) 0.002 
+SBP 1.32 (1.06, 1.64) 0.013 
+SBP and BMI 1.32 (1.06, 1.64) 0.013 
+SBP, BMI and LDL-C 1.49 (1.16, 1.91) 0.002 
Main model including prior CVD 1.37 (1.11, 1.68) 0.003 

Carotid plaque burden, mm 
Main model 0.19 (0.10, 0.28) <0.001 
+SBP 0.15 (0.07, 0.24) <0.001 
+SBP and BMI 0.15 (0.06, 0.24) <0.001 
+SBP, BMI and LDL-C 0.20 (0.10, 0.30) <0.001 
Main model including prior CVD 0.18 (0.09, 0.27) <0.001 

Main model was adjusted for age, area, education, household income, and smoking, and participants with self-reported history of cardiovascular disease at baseline or 
resurvey were excluded. Participants with missing LDL-C data were excluded from models adjusted for LDL-C. 
cIMT: carotid intima media thickness; SBP: systolic blood pressure; BMI: body mass index; LDL-C: low-density lipoprotein cholesterol; OR: odds ratio; CI: confidence 
interval. 
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other self-reported socio-economic or lifestyle factors in either men or 
women (Table 2). 

At resurvey, the mean cIMT was 0.70 mm among men and 0.64 mm 
among women, and 39% of men and 27% of women had carotid plaque 
(Table 1). The mean burden of carotid plaque was 0.99 mm among men 
and 0.65 mm among women. Among men, mean cIMT was similar across 
self-reported drinking categories (Supplementary Table 5). Moreover, 
among current drinkers there was no significant dose-response associ-
ation between mean cIMT and self-reported usual alcohol intake 
(change in cIMT [mm]: 0.001, 95% CI [− 0.012, 0.013], per 280 g/week 
higher usual alcohol intake) (Fig. 1A). For carotid plaque, the odds of 
having plaque was higher in ex-drinkers compared with non-drinkers, 
and increased in a dose-response relationship with alcohol intake 
amount among current drinkers, with 42% (OR = 1.42; 95% CI 1.14, 
1.76) higher odds per 280 g/week higher usual alcohol intake (Fig. 1B). 
The association was similar in shape for carotid plaque burden, with 
each 280 g/week higher usual alcohol intake associated with 0.19 (95% 
CI 0.10, 0.28) mm higher carotid plaque burden (Fig. 1C). The dose- 
response associations of carotid plaque and plaque burden were atten-
uated but remained significant after adjusting for SBP, and did not 
change materially after further adjusting for BMI, but appeared slightly 
stronger after further adjusting for LDL-C (Table 3). 

The associations of usual alcohol intake with cIMT and carotid pla-
que were similar across subgroups defined by major CVD risk factors 
(Supplementary Table 6). For carotid plaque burden, the association 
with usual alcohol intake tended to be stronger in men with higher SBP 
(p for trend = 0.029), but was otherwise similar across subgroups. 

Including men with prior CVD did not materially alter the associa-
tions of alcohol with carotid measurements (Supplementary Table 5). 

Among women, there were no clear dose-response associations of 
usual alcohol intake with carotid measurements, although mean cIMT 
and plaque burden were somewhat lower among ex-drinkers than non- 
drinkers (Supplementary Table 7). 

In genetic analyses, among men genotype-predicted mean alcohol 
intake was not associated with cIMT (− 0.008 [95% CI -0.018, 0.003] 
mm per 280 g/week). Higher genotype-predicted mean alcohol intake 
was associated with significantly higher plaque burden (0.09 [0.02, 
0.17] mm per 280 g/week) and showed a trend, although non- 
significant, towards higher odds of carotid plaque (OR 1.21 [0.99, 
1.49] per 280 g/week) (Fig. 1, Table 4). Excluding men with prior CVD 
did not materially alter the associations (Supplementary Table 8). 

Among women, there were no associations between the six genetic 

categories and the three carotid measurements (Table 4, Supplementary 
Table 9). The genotypic associations for carotid plaque burden were 
significantly different between men and women (p for heterogeneity =
0.022), suggesting the effects on plaque burden in men were likely to be 
largely due to alcohol itself and not to pleiotropic effects of the studied 
genotypes. 

In separate analyses of the two individual genetic variants, men with 
ALDH2-rs671 GG genotype (associated with higher alcohol intake) had a 
significantly higher mean carotid plaque burden (mean difference 0.05 
mm, 95% CI 0.01, 0.10) compared to those with the AG genotype 
(Table 4). There was no association of carotid plaque burden with 
ALDH2-rs671 in women (P for heterogeneity = 0.010 between men and 
women). No differences in the three carotid measurements were 
observed for ADH1B-rs1229984 genotypes in either men or women. 

4. Discussion 

Using conventional and genetic approaches, this study assessed the 
causal relevance of alcohol intake with carotid artery thickness and 
plaque in a large Chinese population (Fig. 2). In both conventional and 
genetic analyses, higher alcohol intake was associated with a higher 
carotid plaque burden among men. However, no clear associations were 
observed between alcohol intake and cIMT in either conventional or 
genetic analyses. Among women, very few drank alcohol and there were 
no associations of the genetic instruments with any of the three carotid 
measurements, suggesting that the genetic associations for carotid pla-
que burden among men were likely to be chiefly due to alcohol intake 
rather than pleiotropic genotypic effects. 

Observational studies involving predominantly Western populations 
have examined the associations of alcohol intake and cIMT, with con-
flicting results. However, evidence from these studies were limited by 
relatively small sample size (N < 5500) [16,21,36], cross-sectional study 
design [16,22,37], or failing to separate former drinkers from long-term 
non-drinkers [16,22] which would introduce “sick-quitter” bias [15,19, 
21]. A study involving two British cohorts (n = 5403) found no differ-
ences in cIMT between non-drinkers and stable moderate drinkers but an 
increased cIMT among consistent heavy drinkers [21], whereas another 
European longitudinal study (n = 3703) reported an inverse association 
of moderate alcohol consumption with cIMT [36]. Existing studies on 
the relationship between alcohol drinking and carotid plaque are limited 
[38]. With a larger sample size than previous studies, our conventional 
analyses in men showed overall J-shaped associations of self-reported 

Table 4 
Associations of carotid measurements with genotype-predicted alcohol intake, and with ALDH2-rs671 and ADH1B-rs1229984 genotypes, in men and women.   

Effect per 280 g/week genotype-predicted  
mean malea alcohol intake (95% CI) 

p-value phet
b ALDH2-rs671 GG vs AG 

Effect (95% CI) 
p-value phet

b ADH1B-rs1229984 GG vs AG 
Effect (95% CI) 

p-value phet
b 

cIMT, mm 
Men − 0.008 (− 0.018, 0.003) 0.148  − 0.002 (− 0.009, 0.004) 0.508  0.003 (− 0.008, 0.013) 0.631  
Women − 0.004 (− 0.011, 0.002) 0.186 0.589 − 0.004 (− 0.008, 0.001) 0.090 0.738 0.004 (− 0.003, 0.011) 0.267 0.855  

Carotid plaque, OR 
Men 1.21 (0.99, 1.49) 0.061  1.03 (0.92, 1.16) 0.573  1.06 (0.87, 1.28) 0.572  
Women 0.98 (0.81, 1.17) 0.806 0.120 0.93 (0.84, 1.03) 0.160 0.178 0.97 (0.83, 1.15) 0.740 0.518  

Carotid plaque burden, mm 
Men 0.09 (0.02, 0.17) 0.018  0.05 (0.01, 0.10) 0.027  − 0.02 (− 0.10, 0.06) 0.591  
Women − 0.01 (− 0.06, 0.03) 0.600 0.022 − 0.02 (− 0.05, 0.01) 0.195 0.010 − 0.03 (− 0.08, 0.02) 0.247 0.883 

Analyses were adjusted for age, and genomic principal components within each study area, and then combined by inverse-variance-weighted meta-analysis to yield the 
overall area-stratified genetic associations. The genetic instrument strength was assessed in 60,984 men with genotype information: Main genetic instrument F-statistic 
1752 (range by area 43–783), variance in alcohol intake explained (r2) 13.6% (1.2%–22.5%); ALDH2-rs671 F-statistic 3267 (31–891), r2 10.5% (1.0%–22.6%); 
ADH1B-rs1229984 F-statistic 191 (4–43), r2 0.7% (0.1%–1.4%). 

a As women consumed little alcohol, the same six genotypic-area categories in women were used to estimate the genotypic effects in the same way as in men, in order 
to evaluate potential pleiotropic effects by comparing effects in men (who drank alcohol) with women. 

b p-value for heterogeneity between men and women. 
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alcohol consumption with carotid plaque and plaque burden, and clear 
dose-response associations of self-reported alcohol intake with carotid 
plaque and plaque burden among current drinkers, but no association 
with cIMT. 

Cardiovascular risk factors, such as age, smoking, SBP, and lipid 
levels might confound or mediate the observed associations of alcohol 
intake with subclinical carotid atherosclerosis [8,15,16,19,20]. We 
found that the association of alcohol with carotid plaque attenuated 
after adjusting for SBP and was stronger in men with higher SBP levels, 
and became slightly stronger with adjustment for LDL-C. These findings 
suggest that SBP and plasma lipid levels may potentially play a role in 
mediating or modifying the relationship between alcohol intake and 
subclinical atherosclerosis. 

Reverse causation bias and residual confounding remain major issues 
even in well-designed conventional epidemiological analyses. The two 
genetic variants, rs671 and rs1229984, which are strongly associated 
with alcohol intake in East Asian populations, can be used to assess the 
causal effects of alcohol intake [13]. The association of rs671 with 
subclinical carotid atherosclerosis has been assessed in two small genetic 
association studies each involving 300–400 East Asian men and women 
[24,25]. Individuals with rs671 GG genotype had higher plaque score 
compared with AA genotype in one study [24], but had a lower cIMT 
compared with AA/AG genotype in another study [25]. Using a genetic 
instrument derived from both rs671 and rs1229984 that predicts a wide 
range of alcohol intake, while not associated with conventional con-
founders such as smoking, we have previously reported a causal asso-
ciation of alcohol drinking with stroke risk [13]. In the present study we 
extended the investigation into carotid atherosclerosis and found a 
significant, although modest, dose-response relationship between 
genotype-predicted mean alcohol intake and carotid plaque burden, 
which corroborated the conventional analyses, with directionally 
consistent genetic associations with presence of carotid plaque, but no 
associations with cIMT. Our analyses of individual variants showed that 
the association between genotype-predicted mean alcohol intake and 
carotid plaque burden was likely to be mainly driven by rs671, which 
may reflect the stronger influence on alcohol intake of rs671 compared 
with rs1229984. The null genetic findings in women, who rarely drank 
alcohol despite their genotypes, provide further support for the associ-
ations for carotid plaque burden seen in men being potentially due to the 
causal effects of alcohol intake. 

Previous analyses in CKB only showed moderate correlation between 
cIMT and carotid plaque burden (correlation coefficient 0.51), with 
somewhat weaker correlation in individuals with carotid plaque (cor-
relation coefficient 0.36) [33,34]. Although cIMT and carotid plaque 
share similar risk factors [8,39], the natural history and clinical signif-
icance of these measurements differ. Carotid plaque is considered to be 
an indicator of early atherosclerotic disease [40], and compared to 
cIMT, may be more strongly influenced by levels of SBP and diabetes 
[41,42]. The differing associations of alcohol with cIMT and with ca-
rotid plaque in the present study may reflect the distinct role of cIMT 

from carotid plaque in carotid atherosclerosis. Nevertheless, the precise 
mechanisms through which alcohol may influence different aspects of 
carotid arterial injury and atherosclerosis are not fully understood and 
further investigations are warranted to understand the underlying 
pathophysiological mechanisms. 

This is the first genetic epidemiological study using rs671 and 
rs1229984 in addition to self-reported drinking patterns to assess the 
causal associations between alcohol intake and three different carotid 
artery measurements in a large Chinese population. In the present an-
alyses, ex-drinkers could be distinguished from others based on infor-
mation acquired for past drinking, and repeated alcohol measurements 
allowed us to estimate usual alcohol intake over an 8-year period and 
account for regression dilution bias in our analyses. Furthermore, with a 
strong genetic instrument that predicted a wide range of alcohol intake 
in men, and the ability to assess potential pleiotropy among women who 
drank little alcohol, the study was able to assess potential casual re-
lationships. However, our study also had several limitations. First, the 
periodic resurvey can only include surviving participants and the 
response rate among eligible surviving participants was around 80%, 
suggesting that survival bias might exist and those who had a poor 
health status and very heavy/problem drinkers might have been reluc-
tant or unable to attend the resurvey, leading to a potential underesti-
mation of the associations. Second, our study only had carotid artery 
measurements at one time point and was unable to assess progression of 
subclinical atherosclerosis. In future investigations, measurements of 
progression of cIMT and carotid plaque would allow the relationships 
between alcohol intake and carotid arterial injury and subclinical 
atherosclerosis, and with CVD outcomes, to be more thoroughly 
explored. Third, although our study was the largest to date using a 
strong genetic instrument, it was limited to a subset of the CKB popu-
lation. Future well-powered genetic epidemiological studies are war-
ranted to further clarify the causal effects of alcohol on cIMT and carotid 
plaque. 

In summary, genetic epidemiological analyses suggest that alcohol 
consumption may be causally associated with a higher burden of carotid 
plaque but not with cIMT in this Chinese population. The findings of the 
present study provide no evidence for a causal protective effect of 
moderate alcohol intake on carotid atherosclerosis. This study provides 
evidence to support the strategy of lowering alcohol consumption to 
prevent atherosclerosis and subsequent ASCVD. 
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