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Multi-omics and spatial mapping characterizes human 

CD8+ T cell states in cancer 

Overline: CANCER 

 

One Sentence Summary: Tumor reactivity-driven exhausted CD8+ T cells and tolerized CD8+ 

T cells associate with contrasting immunotherapy responses in human cancers. 

 

Editor’s Summary: Interrogating T cells. Responses to cancer immunotherapy regimens 

depend on a number of factors, including the T cells and the cancer cells themselves. Here, 

Naulaerts et al. compared CD8+ T cell phenotypes across multiple cancer types to identify 

features that associated with those tumors. CD8+ T cells in immunogenic cancers such as 

melanoma and lung adenocarcinoma tended to have traditional exhaustion signatures. In 

contrast, CD8+ T cells in glioblastoma were enriched for a distinct hypofunctional state. The 

authors investigated clinical trial data to further highlight these differences and also showed that 

a dendritic cell vaccine may correct the hypofunctional CD8+ T cell state observed in 

glioblastoma. Together, these results provide insight into CD8+ T cell phenotypes in the context 

of human cancer. -CM 
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ABSTRACT 

Clinically relevant immunological biomarkers that discriminate between diverse hypofunctional 

states of tumor associated CD8+ T cells remain disputed. Using multi-omics analysis of CD8+ T 

cell features across multiple patient cohorts and tumor types, we identified tumor niche-

dependent exhausted and other types of hypofunctional CD8+ T cell states. CD8+ T cells in 

‘supportive’ niches, like melanoma or lung cancer, exhibited features of tumor reactivity-driven 

exhaustion (CD8+ TEX). These included a proficient effector memory phenotype, an expanded T 

cell receptor (TCR) repertoire linked to effector exhaustion signaling, and a cancer relevant T 

cell-activating immunopeptidome, composed of largely shared cancer antigens or neoantigens. 

In contrast, ‘non-supportive’ niches, like glioblastoma, were enriched for features of hypo-

functionality distinct from canonical exhaustion. This included immature or insufficiently 

activated T cell states, high wound healing signatures, non-expanded TCR repertoires linked to 

anti-inflammatory signaling, high T cell recognizable self-epitopes, and an anti-proliferative state 

linked to stress or pro-death responses. In situ spatial mapping of glioblastoma highlighted the 

prevalence of dysfunctional CD4+:CD8+ T cell interactions, whereas ex vivo single-cell 

secretome mapping of glioblastoma CD8+ T cells confirmed negligible effector functionality and 

a pro-myeloid, wound healing-like chemokine profile. Within immuno-oncology clinical trials, 

anti-programmed cell death protein 1 (PD-1) immunotherapy facilitated glioblastoma’s 

tolerogenic disparities, whereas dendritic cell (DC) vaccines partly corrected them. Accordingly, 

recipients of a DC vaccine for glioblastoma had high effector memory CD8+ T cells and evidence 

of antigen-specific immunity. Collectively, we provide an atlas for assessing different CD8+ T cell 

hypofunctional states in immunogenic versus non-immunogenic cancers. 

 

ONE SENTENCE SUMMARY: Tumor reactivity-driven exhausted CD8+ T cells and tolerized 

CD8+ T cells associate with contrasting immunotherapy responses in human cancers. 
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INTRODUCTION 

Immune-checkpoint blockade therapies (ICBs) have revolutionized oncology (1), but they have 

only benefited a subset of antigenic tumor types (2). The typical mechanism of ICBs involves 

‘reinvigorating’ anti-tumor effector functions of CD8+ T cells (3, 4). This aims to counteract tumor-

induced CD8+ T cell exhaustion or dysfunction (3) characterized by loss of effector functions and 

upregulation of immune-inhibitory receptors (1, 5). Tumor-associated CD8+ T cells exhibit 

heterogenous hypofunctional states (6). These states broadly include a spectrum of tumor 

reactivity induced dysfunction or exhaustion (CD8+ TEX) (1, 5). CD8+ TEX are predominantly 

enriched in ICB-responsive tumors, and represent a mixture of early and late CD8+ TEX, thought 

to be created due to chronic T cell receptor (TCR) stimulation by tumor-relevant antigens (1, 5). 

CD8+ TEX show clear biomarkers in terms of effector or exhaustion signaling, memory 

differentiation, and positive prognostic impact (4–6). Studies with ICB-responsive cancers 

largely capture tumor reactive exhaustion-based hypofunctional CD8+ T cells (1, 3, 5, 6). 

However, it is unclear if the hypofunctionality of CD8+ T cells in ICB-nonresponsive cancers is 

due to CD8+ TEX or other states (7, 8). Since most ICB-nonresponsive cancers exhibit low tumor 

relevant antigenicity, markers of hypofunctional CD8+ T cells resulting from suboptimal antigen-

priming or other stimuli, may be distinct from markers of late-CD8+ TEX (7, 8). However, such 

hypofunctional states of CD8+ T cells still need to be identified in clinical samples (7).  

Current biomarkers for hypofunctional CD8+ T cells mainly consist of immune-inhibitory 

receptors, interferon (IFN)-γ signaling, or memory transcription factors (1, 6, 9). However, these 

are not always applied in an integrated manner, thus limiting their scope and creating 

inconsistencies for interpretations (1). This limits the ability to discriminate tumors that 

differentially enrich CD8+ TEX compared to other types of hypofunctional CD8+ T cells. Moreover, 

most studies interpret these markers in a pan-cancer manner, based on non-spatial analyses 

(1, 3, 6). As such, these approaches underestimate the impact of local cellular communities that 
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can define tumor ecosystems. Thus, there is a need to assess the clinical markers associated 

with the different hypofunctional states of CD8+ T cells in a more holistic manner. 

Hence, we conducted a comprehensive exploration of clinical CD8+ T cell markers, integrating 

tumor contexts with diverse immunogenic or antigenic profiles (>4000 patients across 6 cancer 

types and >40 distinct clinical cohorts). We used a series of existing and consensus CD8+ T cell-

signatures, to drive a multi-modal and multi-dimensional mapping of CD8+ T cell landscapes 

across six tumor types. We initially used a vast array of publicly available patient cohorts for 

integrated bulk RNA sequencing (RNA-seq) immunogenomics and single-cell (sc)RNA-seq 

driven immunology. Thereafter, proof-of-concept analyses were driven through single-cell 

matched scRNA-seq and scTCR-seq data generated for this study as well as by utilizing a meta-

dataset of the T cell-activating immunopeptidome. These concepts were functionally validated 

with original patient samples. This enabled us to precisely define divergent profiles of human 

tumors enriching CD8+ TEX versus other types of hypofunctional CD8+ T cells. The utility of these 

biomarkers for precision therapy was confirmed by interrogating bulk-tumor or single-cell 

transcriptomics data from clinical trials for multiple cancer types or ex vivo T cell analyses from 

a dendritic cell (DC) vaccination clinical trial. Thus, this work provides a roadmap for optimizing 

immunotherapy against tumors that enrich CD8+ T cells with a tolerized-like phenotype. 

 

RESULTS 

A chronically sensitized CD8+ T cell signature differentiates tumor reactive exhaustion 

from naïve and transitional CD8+ T cell states. 

We first needed a consensus genetic signature that identified CD8+ T cell states responding to 

ICBs, to drive our study workflow (Fig. 1A). Several signatures are used in immuno-oncology to 

predict ICB responsiveness (10–13) (hereafter referred to as “I-O gene sets”; data file S1). 

Some of these can capture tumor reactivity or dysfunction/exhaustion of CD8+ T cells (11, 13). 
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However, it is unclear if they capture this at single-cell resolution (7). Hence, we compared 9 I-

O gene sets (10–13) to 21 signatures derived from recent T cell-focused single-cell 

transcriptomics studies with matched tumor reactivity information (14–17) (hereafter referred to 

as “tumor reactive T cell gene sets”; data file S1). We analyzed the extent of gene overlaps 

between them to understand if they redundantly captured the same markers.  

The overlap between the I-O and tumor-reactive T cell gene sets, as well as amongst 

themselves, was limited (fig. S1A). Nevertheless, clusters with implicit genetic cohesion did exist 

for tumor-reactive T cell gene sets relevant for cytolytic activity (cluster#1) and exhaustion 

(cluster#2) (fig. S1A). However, the tumor-reactive T cell gene sets covered only 7 cancer types 

(fig. S1B), with bias toward ICB-responsive types. Hence, to select consensus genes in an 

unbiased fashion, we performed an analysis of clinical publications involving cancer patients 

and investigating markers of CD8+ T cell states like exhaustion/dysfunction or anergy (18) (data 

file S1, Supplemental materials and methods). We derived two features, number of 

publications per gene or protein and different CD8+ T cell states (fig. S1C). At least 14 gene 

expression features associated with terminal exhaustion/dysfunction or senescence (IFNGLOW, 

TNFLOW, IL-2LOW, CD28LOW, CD57HIGH) or exhaustion/dysfunction and anergy (PD-1HIGH, 

TIM3HIGH, CTLA4HIGH, LAG3HIGH, ENTPD-1HIGH, TIGITHIGH, EOMESHIGH, TOXHIGH, CD244HIGH) 

across multiple studies. These analyses covered 21 cancer types (fig. S1D). These 14 marker 

genes were most often associated with tumor-reactive T cell gene sets compared to I-O gene 

sets (Fig. 1B). Since these 14 genes largely covered pathways relevant for tumor-associated 

chronic sensitization of CD8+ T cells (3, 5–7), we assembled them together with CD8+ T cell 

lineage markers (CD8A/B), to form a ‘chronically sensitized’ CD8+ T (csCD8+ T) cell signature. 

CD8+ T cell exhaustion was predominantly established in the context of chronic exposure to viral 

infection or tumor antigens (1, 5). To understand if the csCD8+ T´-cell signature can differentiate 

between CD8+ T cell states, we utilized the following existing scRNA-seq profiles: (I) human 

CD8+ T cells infiltrating skin cutaneous melanoma (SKCM) that exhibit naive, transitional (partial 



 

8 
 

activation preceding exhaustion/dysfunction) or tumor reactivity driven dysfunctional states (6); 

or (II) peripheral CD8+ T cells from patients with high viral loads of human immunodeficiency 

virus (HIV) infection over 0.3 to 27 years (1 patient per timepoint; 3 patients in total), to account 

for time-dependent early-to-late exhaustion (19). Most genes from the csCD8+ T cell signature 

were highly expressed in tumor-reactivity driven dysfunctional CD8+ T cells than in naive or 

transitional cells (Fig. 1C). Similarly, a correlation matrix of csCD8+ T cell signature genes 

showed the highest inter-gene correlation in tumor-reactivity driven dysfunctional CD8+ T cells, 

signifying a tendency for co-expression or concordance (Fig. 1D to F).  

In the HIV-induced early versus late exhaustion setting, there was a balance in expression of 

most genes from the csCD8+ T cell signature, irrespective of early (0.3-3.5 years) or late (27 

years) stages of HIV infection (Fig. 1G). Correlation analyses of the csCD8+ T cell signature 

genes showed highest concordance at early stage (3.5 years) (Fig. 1H and I), which somewhat 

weakened in the later stage (27 years) (Fig. 1J). Altogether, this implied that anti-tumor 

responses or early stages of chronic viral infection create CD8+ T cells with considerable 

transcriptomic homogeneity for these genes. Hereafter, we refer to this state as tumor-reactive 

dysfunction/exhaustion or CD8+ TEX.  

 

Tumor type influences transcriptomic heterogeneity of CD8+ T cell markers.  

These results merited an analysis on whether and how tumors influence transcriptomic 

homogeneity of the csCD8+ T cell signature. Single-cell interrogations, despite their resolution, 

cannot be reliably utilized for high-powered analyses. However, big omics datasets that combine 

clinical variables with bulk tumor transcriptome profiling, such as The Cancer Genome Atlas 

(TCGA), are readily available. Hence, we initially prioritized TCGA-based analyses before 

subsequent single-cell validation.  
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Immune cell estimations in bulk-RNAseq are commonly done through deconvolution 

approaches. Hence, we verified the alignment of the csCD8+ T cell signature with various 

immune deconvolution methods as well as ‘real’ tumor-infiltrating lymphocyte (TIL) features that 

were derived from an existing study that used tumor hematoxylin/eosin (H&E) pathology image 

based deep learning from TCGA (20). These included number of TIL clusters and percentage 

of TILs from TCGA image datasets of 6 major human cancers (20). The deconvolution methods 

included (21): CIBERSORT-ABS, CIBERSORT corrected for relative tumor leukocyte fractions 

(CIBERSORT-CRI), xCELL, TIMER, QUANTISEQ, MCP-COUNTER and EPIC (fig. S1E). 

Deconvoluted macrophages served as negative controls. All parameters were pooled for the 

above cancers and analyzed using principal component analysis (PCA) (fig. S1E). 

CIBERSORT-CRI and QUANTISEQ CD8+ T cell fractions clustered more closely with tumor 

pathological image-derived TIL features than other methods. Whereas the csCD8+ T cell 

signature was clustered within the “CD8+ T cell zone”, away from macrophages, it showed less 

alignment with the H&E-derived TIL features (fig. S1E).  

This seemingly aberrant position of the csCD8+ T cell signature was surprising, since this 

signature shares several genes with most CD8+ T cell deconvolution methods (fig. S1F). We 

therefore performed an analysis with linear models to capture the total amount of variation 

relative to various factors such as tumor type and stage, patient race, gender, or age (fig. S2A). 

Beyond deconvolution methods, tumor type seemed to be a major contributor to the 

misalignments between csCD8+ T cell signature and ‘real’ TIL features or CD8+ T cell fractions.  

 

Diverse CD8+ T cell landscapes exist across human tumors. 

We wondered whether the influence of tumor types on CD8+ T cell markers could be attributed 

to the heterogenous CD8+ T cell landscape across human cancers. Hence, we pursued a large-

scale hybrid (scRNA-seq and TCGA bulk RNA-seq) bioinformatics. To account for tumor type 
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variability, we prioritized 6 TCGA cancers with gradually varying immunogenicity or antigenicity: 

highly immunogenic and highly antigenic (SKCM, lung adenocarcinoma or LUAD, and bladder 

carcinoma or BLCA), marginally immunogenic but low antigenic (breast carcinoma or BRCA), 

and low immunogenic/antigenic (glioblastoma or GBM and ovarian cancer or OV) (13, 22). 

An integrated multi-cancer analysis of CD8+ T cells from 15 existing scRNA-seq datasets 

spanning 206 patients showed that genes from the csCD8+ T cell signature were relatively well-

expressed and homogenous in CD8+ T cells from immunogenic/antigenic tumors (Fig. 2A). 

However, in direct comparison, the signature genes showed either highly heterogenous (BRCA) 

or largely diminished (OV or GBM) expression in CD8+ T cells for other tumors (Fig. 2A). These 

patterns were relatively retained in the bulk RNA-seq data (Fig. 2B).  

We questioned if this heterogeneity also translated into tumor type-dependent differential 

alignment of CD8+ T cell markers. Thus, we pursued correlation of the csCD8+ T cell signature 

with CIBERSORT-CRI CD8+ T cell fractions, relative to 11 other myeloid/lymphoid cell fractions. 

This arranged the 6 TCGA cancers as a continuum centered around a gradient of correlations 

between the csCD8+ T cell signature and CD8+ T cell fractions, from highly positive (SKCM) to 

negative (GBM) (Fig. 2C). Such a gradient was not visible for the other cell fractions. Importantly, 

a similar continuum of correlations was visible between the csCD8+ T cell signature and the 9 I-

O gene sets (fig. S2B). This continuum was also quantitatively applicable such that the amounts 

of lymphocyte infiltration (fig. S2C), and CD8+ T cells, went from high tumor enrichment in SKCM 

and LUAD to depleted in OV and GBM (Fig. 2D). This also translated into a gradient of positive 

to negative impacts on patient’s overall survival (OS), for the csCD8+ T cell signature and I-O 

gene sets (Fig. 2E) as well as some of the tumor-reactive T cell gene sets (fig. S2D).  

As correlation matrices were particularly insightful for distinguishing single-cell CD8+ T cell 

states, we repeated these for the TCGA dataset with the csCD8+ T cell-signature. The csCD8+ 

T cell signature genes showed relatively high concordance in SKCM, LUAD, BLCA, BRCA (Fig. 

2F to I) but this correlative cohesion was lost in OV (Fig. 2J) and especially GBM (Fig. 2K). 
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These results indicated a gradient of CD8+ T cell landscapes across different tumor types, with 

immunogenic/antigenic and non-immunogenic/low antigenic tumors (22) exhibiting homogenous 

versus heterogeneous behavior for csCD8+ T cell signature genes, respectively. 

 

SKCM and GBM CD8+ T cells exhibit contrasting single-cell trajectories for effector 

memory and exhaustion states. 

CD8+ TEX highly express inhibitory receptors. Since GBM and OV-CD8+ T cells did not show 

this, this preliminarily suggested a distinct CD8+ T cell state in GBM and OV. This implied that 

tumors like SKCM might have a higher proportion of CD8+ TEX, whereas GBM was enriched for 

naive/transitional CD8+ T cells or hypofunctional CD8+ T cells distinct from CD8+ TEX. Therefore 

we pursued scRNA-seq analyses using an SKCM (23) and a GBM (24) dataset (fig. S3) based 

on two criteria: (I) Smart-Seq2 based sequencing (since it gives higher sequencing depth than 

10X or Droplet methods) and (II) availability of single-cell profiles for cancer cells as well as T 

cells (to allow cancer cell::T cell interaction analyses). 

Next, we performed T cell subpopulation annotation (1, 3, 6, 7) (see data file S2 and S3 for 

details; fig. S4) coupled with single-cell trajectory network analyses. This revealed that SKCM 

enriched for diverse CD4+ and CD8+ T cell-subpopulations with distinct functional or exhaustion 

states (Fig. 2L to O). SKCM-CD8+ T cell subpopulations exhibited interconnectivity between 

states including naive (TN), resident memory (TRM), central memory (TCM), pre-effector memory 

(pre-TEM), effector-to-exhausted transitional (TEET-like, early TEET and TEET; these cells 

expressed both immune-inhibitory receptor genes like PDCD1, LAG3, CTLA4 together with 

effector/cytolytic genes like TBX21, IFNG, PRF1, GZMA/B/K, CCL5, TNF (1, 5)), effector 

memory (TEM), effector memory re-expressing CD45RA (TEMRA), and partially activated (TPA) 

cells (1). SKCM-CD4+ T cells also showed diverse polarization states typically associated with 

immunogenic tumors such as TH1, TH2, regulatory (Treg), and IFN-stimulated (Fig. 2M). In 
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contrast, GBM samples were enriched for sparsely interconnected immature (TIMM) and 

immunosuppressive/invariant (TOXHICD8+ TINV, ICOSHITreg like) CD8+ T cells, together with 

some hypofunctional states like pre-cytotoxic (pre-TCYT), TOX+TIGIT+GZMA/KHICD8+ T cells or 

IL7RHIGZMA+PRF1+CD8+ T cells (Fig. 2N), with no clear recoverability of strong 

effector/memory phenotypes. GBM-CD4+ T cells also largely showed low functional or immuno-

regulatory states (Fig. 2O). These observations indicated that GBM datasets were enriched for 

a distinct hypofunctional CD8+ T cell state, along with immature CD8+ T cells, whereas SKCM 

datasets were enriched for CD8+ TEX states. Although GBM-CD8+ T cells indeed showed little 

expression of effector markers, one of the essential features of hypo-functionality, they did not 

fit the classical CD8+ TEX phenotype due to low expression of several immune-inhibitory receptor 

genes, nor the anergic CD8+ T cell state since anergic and exhausted states share several key 

features including high expression of immune-inhibitory receptor genes (7, 18). 

 

High antigenic versus low antigenic tumors show differences in effector signaling 

molecules in expander versus non-expander TCR clonotypes. 

These results suggested that CD8+ TEX enriched in antigenic tumors might have T cell receptor 

(TCR) mediated activation and high tumor reactivity. However, it was not clear if the 

hypofunctional CD8+ T cell state in lower antigenic tumors like GBM showed sufficient TCR 

mediated activation and tumor-reactivity or a more ‘tolerized’ orientation (7). A tolerized CD8+ T 

cell state refers to hypo-functionality due to heightened encounters with self-antigens, and is 

distinguished by lack of both effector features and TCR activation as well as increased 

susceptibility to apoptosis (18).  

To address this, we compiled a single-cell matched scRNA-seq + scTCR-seq dataset of CD8+ T 

cells across SKCM, LUAD, BRCA, and GBM. Quality control was applied during the assembly 

of this dataset, which excluded existing data for OV and BLCA. This dataset integrated existing 



 

13 
 

data from 44308 intra-tumoral CD8+ T cells from 44 patients, that were batch-corrected using 

the Combat algorithm. Both visual and quantitative assessments showed that cells were 

sufficiently mixed for different patients and cancer types (Fig. 3A). 

The scTCR-seq was used to define clonotypes based on shared TCR sequences. Their relative 

frequency per cancer type was plotted across clonal thresholds (from 2 up to 10 cells with 

identical TCR sequences). The frequency of TCR clonotypes per threshold varied depending on 

the tumor type (Fig. 3B). At almost every threshold, TCR clonality of SKCM or LUAD CD8+ T 

cells was considerably higher than BRCA or GBM CD8+ T cells, with GBM CD8+ T cells having 

the least TCR clonality (Fig. 3B). Between the cancer types, there was very little sharing of TCR 

sequences, highlighting that each tumor type enriched a unique TCR repertoire (Fig. 3C). The 

threshold of 5 cells with identical TCRs was the lowest that clearly separated all cancer types. 

Hence, we used the ≥5 threshold to define clonotype cells with expander (E)-TCRs versus non-

expander (NE)-TCRs (Fig. 3D). 

To understand the tumor reactivity of CD8+ T cells, we pursued transcriptomic analyses for E-

TCRs versus NE-TCRs for each tumor type, using previously published signatures for TCR 

activation versus bystander activation (25), and neoantigen-associated TCR activation in CD8+ 

T cells (NeoTCR8) (15). CD8+ T cells with E-TCRs in SKCM, LUAD, and BRCA were enriched 

for a higher NeoTCR8 signature than cells with NE-TCRs (Fig. 3E). In contrast, GBM-CD8+ T 

cells exhibited no difference in enrichment for NeoTCR8 (Fig. 3E). Similar findings were 

observed for not only TCR activation (fig. S5A) and bystander activation (fig. S5B) signatures, 

but also the csCD8+ T cell signature (Fig. 3F). This result highlighted that the csCD8+ T cell 

signature captured E-TCR enrichment. Overall, these results suggested that neoantigen 

reactivity, as extrapolated by NeoTCR8 enrichment, better differentiated E-TCR from NE-TCR 

CD8+ T cells in antigenic tumors like SKCM than in GBM. 

To validate above observations, we did a differential gene enrichment (DGE) analysis (Fig. 3G, 

data file S3), coupled with REACTOME pathway analyses (Fig. 3H, data file S3), between 
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CD8+ T cells with E-TCR versus NE-TCR, integrating all 4 tumor types. We observed that E-

TCR CD8+ T cells enriched the following pathways or genes connected with effector or 

exhaustion features (Fig. 3H, data file S3): IFN-γ or IFN-α/β signaling (and genes like IFNG, 

OASL, TBX21), cell cycling or mitosis, immune-inhibitory receptors (PDCD1, ENTPD1, TIGIT, 

HAVCR2, LAG3, ADORA2A), TCR signaling (with exhaustion-relevant memory transcription 

factor genes like TOX, EOMES), and interleukin (IL)-2/CD28 signaling and other pro-

immunogenic (CCL5, CXCL13, CD70) or cytotoxicity-related genes (FASLG, PRF1, NKG7, 

GZMA/B/H). In contrast, NE-TCR CD8+ T cells were enriched for pathways or genes connected 

with cellular dysfunction, immunosuppression, or tolerization (Fig. 3G and H) such as anti-

inflammatory signaling involving IL-4, IL-13, ADORA2B, VEGFA-VEGFR2, PDGF (and genes 

like IL4R, SOCS3, CXCL16, FOS, S1PR1, PTGER2, NT5E, FOXP3), tolerogenic transforming 

growth factor (TGF)-β signaling (5, 26), stress responses like starvation or pro-apoptotic 

pathways (with genes like BNIP3, HSPA1L, HSPA2), and genes related to naive CD8+ T cells 

(IL7R, SELL, CCR7) (1). 

This necessitated an analysis of the positioning of these E-TCR and NE-TCR cells relative to 

the tumor types. Hence, we did a comparative enrichment analysis of E-TCR versus NE-TCR 

CD8+ T cell-derived signatures (data file S3) from the DGE analyses. Signatures linked to E-

TCR CD8+ T cells were primarily enriched in SKCM or LUAD CD8+ T cells, whereas those linked 

to NE-TCR CD8+ T cells were enriched in BRCA or GBM CD8+ T cells (Fig. 3I). Although these 

signatures were linked to relatively prolonged OS in most tumor types (especially in SKCM), 

they were associated with a considerably shorter OS in GBM (Fig. 3J). Altogether, these results 

demonstrated that antigenic tumors are enriched for higher amounts of E-TCR CD8+ T cells 

(thus aligning with their preference for CD8+ TEX), whereas low antigenic tumors (particularly 

GBM) are enriched for higher NE-TCR CD8+ T cells. This supported the tendency for GBMs to 

enrich for hypofunctional CD8+ T cells with an apparent tolerized-like CD8+ T cell state (18, 26).  
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SKCM and LUAD enrich for cancer relevant T cell activating immunopeptidomes, whereas 

GBM prioritizes higher T cell activating self-epitopes. 

SKCM and LUAD had a higher fraction of tumor reactive CD8+ TEX than GBM. However, the 

dominant epitope specificity for GBM-CD8+ T cells was not clear. Hence, we evaluated the CD8+ 

T cell activating immunopeptidome. Cytotoxic T lymphocyte-relevant epitopes (≥8 amino acids) 

were retrieved from 101 published immuno-peptidomics studies across the above described 6 

cancer types. These were further filtered for only those epitopes that activated T cells in 

functional assays (IFN-γ production, 51Cr release based cytotoxicity, or degranulation assays) 

and were classified into antigen families (shared-cancer antigens, neo-antigens, self-epitopes, 

or viral antigens) based on literature. This revealed that cancer relevant, shared-cancer antigens 

(Fig. 3K) or neo-antigens (Fig. 3L), were pre-dominantly retrievable from SKCM or LUAD. 

However, GBM was predominantly enriched for T cell activating self-epitopes (Fig. 3M). Next, a 

correlation analysis was performed comparing TCR clonal diversity (Shannon entropy) and 

transcriptomic signatures of E-TCRs, NE-TCRs, NeoTCR8s, TCR/Bystanders, and csCD8+ T 

cells, as well as IFN-γ scores (data file S3) in single-nucleotide variation (SNV) derived 

neoantigen high tumors from TCGA. These results highlighted a bifurcated arrangement for the 

six cancer types (Fig. 3N), going from a largely positive correlation (SKCM, LUAD, BLCA, 

BRCA) to negative correlation (OV, GBM). This emphasized that tumors with higher CD8+ TEX 

enrichment also had a more pronounced cancer relevant immunopeptidome, whereas GBM had 

a relatively higher enrichment of self-epitopes. High enrichment of self-epitopes, hypo-

functionality, NE-TCRs and anti-inflammatory/tolerogenic signaling together suggested 

preferential existence of tolerized CD8+ T cells in GBM (7, 8, 18, 27). 
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GBM-associated CD8+ T cells exhibit defects in IL-2 signaling and cell cycling.  

NE-TCR CD8+ T cells were enriched for pro-apoptotic pathways, whereas E-TCR CD8+ T cells 

were enriched for proliferative pathways like cell cycling and IL-2 signaling. An association of IL-

2 and high cell cycling with TCR-activated CD8+ T cells is well-established (28). Considering 

that GBM-CD8+ T cells were enriched for NE-TCRs, this suggested a lack of cell cycling and 

higher cell death in GBM-CD8+ T cells. However, the enrichment of some of these pathways 

was not statistically significant. Hence, this result required cross-verification in independent 

scRNAseq datasets with higher transcriptomic depth. 

Hence, we utilized the previous Smart-seq2 datasets for SKCM and GBM (Fig. 2A, Fig. 2L to 

O, fig. S3A and B). Confirmatively, estimation of cell cycle (phase) scores revealed that GBM-

CD8+ T cells exhibit lower S/G2M scores and a higher G1 score, compared to SKCM-CD8+ T 

cells (Fig. 4A and B). This suggested a lack of sufficient cell cycling in GBM-CD8+ T cells. It 

was reported previously that T cells exhibiting a lack of cell cycling and having a pre-apoptotic 

state induced by IL-2 starvation exhibit a very specific gene expression signature (29). GBM-

CD8+ T cells showed a higher association with this signature than SKCM-CD8+ T cells (Fig. 4C), 

indicating a G1 phase arrest-like, pro-death phenotype in GBM-CD8+ T cells. 

We next used cell cycle mathematical modelling for CD8+ T cells proliferating after anti-CD3 and 

IL-2 stimuli (30). We adjusted this model’s parameters to reflect the cell cycle scores computed 

from the Smart-seq2 cohorts and used experimentally verified kinetics of anti-CD3/IL-2 

stimulated CD8+ T cells as a reference point (30). SKCM-CD8+ T cells clustered closely with this 

reference point, showing high S/G2M cycling, whereas GBM-CD8+ T cells failed to co-cluster 

and showed higher G1 persistence (Fig. 4D). Using another independent model (31), we 

observed that changing G1 phase-specific reaction rates predisposed GBM-CD8+ T cells to a 

G1-arrest phenotype (Fig. 4E). Thus, GBM-CD8+ T cells appeared to exhibit cell cycling defects. 

 



 

17 
 

GBM-CD8+ T cells show higher cell death or non-proliferative immunoregulation. 

The tolerized CD8+ T cell state can increase susceptibility to cell death (4, 18). However, cell 

death is hard to establish with transcriptomic data. Hence, we re-analyzed existing proteomic 

mass cytometry by time of flight (CyTOF) profiles for GBM-CD8+ T cells (based on 161,513 

CD45+CD3+CD8+ cells from 6 GBM samples) versus LUAD-CD8+ T cells (based on 356,901 

CD45+CD3+CD8+ cells from 11 non-small cell lung cancer samples), wherein 48 proteomic 

immune markers and cell death staining (195Pt-cisplatin) were available (32). 

We found that GBM had fewer CD8+ T cells per tumor than LUAD (fig. S6A). LUAD-CD8+ T 

cells exhibited diverse polarization states (Fig. 4F, fig. S6B) including a large proportion of 

mostly naive and effector cells. Of note, FOXP3 marked the immuno-regulatory phenotype (33). 

In contrast, GBM-CD8+ T cells were largely composed of non-proliferating, immuno-regulatory, 

dysfunctional/dying, and naive cells (Fig. 4G, fig. S6C). We also observed small proportions of 

exhausted immuno-regulatory and early immuno-regulatory cells (33). Thus, LUAD-CD8+ T cells 

exhibited a higher proportion of CD8+ TEX cells, whereas GBM-CD8+ T cells had higher 

tolerization-like features and non-proliferative, FOXP3HIGH immuno-regulatory cells (7, 8, 27, 33). 

 

TGF-β signaling and wound healing signatures characterize T cell-cancer cell 

interactions in GBM. 

These results suggested that the interface of GBM-CD8+ T cells with the tumor is tolerogenic. 

To verify this, we explored computational predictions of receptor-ligand interactions between 

cancer cells and CD4+ or CD8+ T cells using CellPhoneDB in GBM as compared to SKCM. CD4+ 

and CD8+ T cells had higher predicted interaction counts with SKCM cancer cells than GBM 

cancer cells (fig. S7A). Several cancer type-specific and overlapping/shared receptors-ligand 

interactions were predicted between T cells and SKCM/GBM cancer cells (fig. S7B to E). To 

prioritize the most dominant interactions for further investigation, we filtered the predicted CD8+-
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CD4+ T cell and CD4+ or CD8+ T cell-cancer cell interactions through SKCM or GBM TCGA-

based networking approaches. SKCM-associated interactions were characterized by effector 

signaling, immune regulatory receptors, TNF superfamily-associated inflammation, and wound 

healing (Fig. 4H). In GBM, these interactions were skewed toward tissue repair-inflammation, 

TGF-β/wound healing responses or some NK cell receptors (KLRK1, KLRC2/3) (Fig. 4I). 

We next asked if the TGF-β/wound healing response was negatively correlated with CD8+ T cell 

infiltration across cancers. To address this, we again utilized TCGA data and we estimated a 

ratio of the TGF-β/wound healing genetic signature (34) to deconvoluted CD8+ T cell fractions. 

This ratio changed in a manner that formed a continuum across the 6 cancer types, with SKCM 

having the lowest ratio and GBM having the highest ratio (Fig. 4J). Altogether, these results 

emphasized a cancer type specific TGF-β/wound healing footprint. 

 

Evidence of CD8+ T cell chronic sensitization is highest near tumoral blood vessels. 

Single-cell and bulk transcriptome data indicated that GBM had higher probability of enriching 

immature or tolerized CD8+ T cells. However, such data could be biased due to the dissociation 

procedures that may or may not capture the entire tumoral immune landscape (1, 3). Moreover, 

non-spatial analyses may overlook weakly enriched, pro-immunogenic CD8+ T cell states (like 

TEX), in T cell hostile tumors like GBM. Finally, it was also necessary to interrogate spatially 

resolved functional interactions between CD4+ and CD8+ T cells. We pursued two step spatial 

analyses: we started with proteomic analyses at single-cell resolution using multiplex 

immunohistochemical probing of tumor tissue (MILAN) (35) in our SKCM and GBM patient-

cohorts. This was independently validated using IVY-GAP (36), a GBM tissue anatomy-driven 

transcriptomic dataset. Finally, we pursued TCGA derived immuno-transcriptomic validation.  

The MILAN method mapped CD4+ and CD8+ T cells within tumor tissue from patients with SKCM 

and GBM (data file S4) inside various anatomical niches, including (I) tumoral, peri-tumoral and 



 

19 
 

non-tumoral areas, (II) intra-tumoral non-vascular, peri-vascular, and vascular zones, and (III) 

(GBM-specific) hemorrhagic zones (Fig. 5A to D, fig. S8). We confirmed our computational 

observations that SKCM was enriched for higher CD8+ T cell density than GBM (Fig. 5E). Within 

SKCM (but not GBM), there was an enrichment of CD8+ and CD4+ T cells in peri- and non-

tumoral areas, whereas tumoral areas were mainly enriched for CD8+ T cells (Fig. 5F; fig. S9A 

to C). Within tumoral areas, SKCM and GBM T cells preferred peri-vascular zones (Fig. 5F, fig. 

S9A, D to E). GBM-CD4+ and CD8+ T cells were also enriched within hemorrhagic zones (fig. 

S9D and E). CD4+ T cells were closer in proximity to CD8+ T cells in SKCM (fig. S9F). 

Next, we investigated CD8+ T cell activation relative to spatial distribution. We used a previously 

established CD69-OX40 versus TIM3-LAG3 model of phenotypic activation/exhaustion (fig. 

S10A to C) (35). SKCM-CD8+ T cells showed higher activation than GBM-CD8+ T cells (Fig. 

5G), irrespective of anatomical location (fig. S11A to C). Proximity of CD4+ and CD8+ T cells to 

each (with <20µm relative distance representing cell-to-cell contact range) increased markers 

of activation in SKCM-CD8+ T cells, but not GBM-CD8+ T cells (Fig. 5H; fig. S11D). SKCM-

CD8+ T cells were more phenotypically activated in non-/peri-tumoral areas than within the tumor 

(Fig. 5I) (3). This was not observed for GBM-CD8+ T cells (Fig. 5J). In SKCM, but not GBM, 

vascular zones had a higher CD8+ T cell activation (Fig. 5K and L). 

We next interrogated IVY-GAP (Fig. 5M and N, fig. S12A to E). The GBM tumor core, invasive 

margin, and leading edge showed depletion of T cell markers (Fig. 5M). A hypofunctional profile 

was visible, as effector function genes failed to positively correlate with CD8A/B (Fig. 5N). An 

appreciable proportion of GBM-CD4+ and CD8+ T cell markers were associated with vascular 

zones, particularly in immature microvascular proliferation (MVP) areas (Fig. 5N, fig. S12B to 

C). These vascular GBM-CD8+ T cells co-associated with the CD8+ TEX-like phenotype 

(especially within MVP) and CD4 (Fig. 5N). Accordingly, these vascular zones had relatively 

more IFNG and IL2 (fig. S12D to E).  



 

20 
 

Lastly, to generalize these observations to other tumor types, we pursued correlative analyses 

between the csCD8+ T cell signature and previously published (37) signatures for tumor relevant 

immature versus mature (arterial/venous) blood vessels (data file S5) in TCGA. In immunogenic 

tumors (BLCA, LUAD, SKCM) the mature blood vessel signature correlated better with the 

csCD8+ T cell signature; these patterns were diminished in low antigenic tumors (BRCA, OV, 

GBM) or even reversed (GBM) (fig. S12F). These patterns were consistent with GBM’s behavior 

in IVY-GAP (fig. S12B to E). Thus, SKCM, but not GBM, exhibited higher spatial accessibility 

to T cells, a pro-lymphocytic vasculature, and higher probability of CD4+-CD8+ T cell contacts.  

 

GBM-CD8+ T cells lack polyfunctionality and secrete wound healing-associated 

chemokines.  

Immature or tolerized CD8+ T cells should not be capable of processing a strong TCR stimulus 

(38). Thus, we assessed the functionality of GBM-CD8+ T cells at single-cell resolution. We 

freshly isolated patient derived CD8+ T cells from GBM resected tumor samples and assessed 

their ability to be activated following exposure to anti-CD3/anti-CD28; peripheral CD8+ T cells 

from healthy individuals were exposed to the same conditions as a control (Fig. 6A, data file 

S6). We evaluated the ability of these CD8+ T cells to secrete multiple (≥2-5) cytokines, a 

measure of polyfunctionality, using single-cell secretome analysis (39) (Fig. 6A). Clustering 

analyses of the immuno-secretomes revealed that, relative to their unstimulated counterparts, 

and despite identical activation stimuli, the activated PBMC-derived CD8+ T cells and GBM-CD8+ 

T cells clustered separately (Fig. 6B). In contrast to the polyfunctional PBMC CD8+ T cells, 

activated GBM-CD8+ T cells had very low polyfunctionality (Fig. 6C). Similarly, whereas PBMC 

CD8+ T cells demonstrated a 300-fold increase in polyfunctional strength index (PSI; % 

polyfunctional cells multiplied by the intensities of secreted cytokines) after activation, activated 

GBM-CD8+ T cells experienced barely a 20-fold PSI increase beyond the unstimulated condition 

(Fig. 6D). The latter PSI was not driven by secretion of effector (IFN-γ) or inflammatory (TNF) 
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cytokines, but by pro-myeloid chemokines like IL-8, CCL3, and CCL4 (which have redundant 

functions during wound healing processes (40)) (Fig. 6D and E). This contrasted with stimulated 

PBMC CD8+ T cells that secreted functionally diverse cytokines/chemokines (Fig. 6D and E).  

Finally, we verified whether the IFN-γ production defect in GBM-CD8+ T cells was specific for 

direct TCR stimulus or if it also occurred after stimulation with ionomycin/PMA, and if the defect 

also extended to CD45RO+ memory CD8+ T cells. To address this, PBMC-derived CD8+ T cells 

and GBM-CD8+ T cells (patient-matched) were activated by ionomycin/PMA and analyzed for 

expression of CD45RO and IFN-γ. Effector memory CD8+CD45RO+IFN-γ+ T cells were less 

frequent in the GBM-CD8+ T cells than in the control PBMC-derived cells after ionomycin/PMA 

activation (Fig. 6F). Altogether, these data demonstrated a hypofunctional phenotype for most 

GBM-CD8+ T cells that may enhance pro-myeloid cell functions.  

 

CD8+ TEX and tolerized CD8+ T cell features define differential ICB responses in human 

tumors.  

We next wondered if CD8 +TEX and tolerized CD8+ T cell-differentiating genetic signatures (e.g., 

csCD8+ T cell, E-TCR versus NE-TCR, TGF-β/wound healing signaling) could differentiate ICB-

responsiveness of antigenic and non-antigenic tumors. We thus conducted retrospective 

analyses of 7 published immuno-oncology clinical trials that profiled SKCM, LUAD, BLCA, and 

GBM tumors across 474 patients. Transcriptomic profiling was done before treatment with anti-

PD-1, anti-PDL-1, anti-CTLA-4, or a combination thereof, and overall survival (OS) was analyzed 

after treatment (2, 41–45). 

Signatures for csCD8+ T cells and E-TCR CD8+ T cells, as well as the IFN-γ score predicted 

prolonged OS after ICB treatment in SKCM, BLCA, and LUAD (Fig. 7A). In contrast, the ability 

of the NE-TCR CD8+ T cell and TGF-β/wound-healing signatures to predict OS after ICB 

treatment, was either inconsistent or skewed toward predicting shorter OS (Fig. 7A) (2). Almost 
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all the above signatures were associated with shorter OS in patients with GBM treated with ICB 

(Fig. 7A). These predictive observations for ICB responses overlapped with prognostic 

observations in the TCGA (Fig. 2E). Altogether, these data suggest that CD8+ TEX and tolerized 

CD8+ T cell features are associated with different outcomes in response to ICB. 

 

PD-1 blocking immunotherapy facilitates tolerized CD8+ T cell features in GBM.  

Since the bulk transcriptomics was done on baseline samples, it was necessary to investigate 

the evolution of CD8+ T cell features. Therefore, we interrogated SKCM and GBM clinical trials 

with transcriptomic profiles collected before and after PD-1 blockade (46, 47). We observed no 

change in CD8+ T cell or wound-healing signatures in SKCM (Fig. 7B). Although GBM samples 

were associated with an increase in a CD8+ T cell signature after anti-PD-1 ICB, these samples 

were also enriched for a tolerogenic TGF-β/wound-healing signature (Fig. 7B). Accordingly, the 

csCD8+ T cell signature genes exhibited concordance in SKCM, both before and after PD-1 

blockade (Fig. 7C); whereas in GBM, PD-1 blockade reduced, rather than improved, pre-existing 

discordance (Fig. 7C). Although the csCD8+ T cell signature positively correlated with OS in 

SKCM after anti-PD-1 ICB (Fig. 7D) (47), this was not observed in GBM samples; further, the 

signature was negatively associated with a GBM-relevant positive prognostic biomarker, O(6)-

Methylguanine-DNA methyltransferase (MGMT) promoter-methylation (Fig. 7D) (46). These 

patterns were consistent with our earlier findings.  

Finally, we validated two major observations from above analyses using scRNA-seq data from 

human SKCM or GBM tumors after ICB treatment. We extracted scRNA-seq data from post-ICB 

treatment timepoints (PD-1/CTLA4 blockade for SKCM and PD-1 blockade for GBM), from 

existing clinical studies with 27 patients with SKCM (48) and 30 patients with GBM (49) (Fig. 7E 

to G). After ICB treatment, the concordance of the csCD8+ T cell signature was higher in SKCM-

CD8+ T cells as compared to GBM-CD8+ T cells (Fig. 7F). The TGF-β/wound-healing signature 
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was consistently present in all GBM cellular compartments after ICB treatment (Fig. 7G) but was 

only lowly enriched in SKCM. Thus, CD8+ TEX enriching landscapes are primed for ICB-

responsiveness, whereas this was not observed in GBM, which is a tolerized CD8+ T cell 

enriching landscape. 

 

Dendritic cell (DC) vaccines may ameliorate the tolerized CD8+ T cell landscape in GBM. 

It has been proposed that cellular immunotherapies may overcome T cell disparities by 

rejuvenating antigen-specific immunity. Indeed, sporadic success has been reported for cellular 

immunotherapies like DC vaccines (50). We therefore asked if CD8+ T cell relevant genes were 

facilitated by DC vaccines, better than PD-1 blockade. In a DC vaccine trial with longitudinal 

sampling (51), compared to changes elicited by PD-1 blockade in GBM (above trial), changes 

elicited by DC vaccination were enriched for effector genes (such as IFNG, IL2, TNF, and CD28) 

(Fig. 8A to C). This indicated that DC vaccines may help to overcome the tolerized CD8+ T cell 

landscape. 

 

DC vaccines induce antigen-specific immunity in patients with GBM. 

Considering that an existing GBM trial did not observe enrichment of memory T cells after anti-

PD-1 ICB (52), and since DC vaccines showed signs of overcoming the GBM’s tolerized CD8+ 

T cell landscape, we next asked whether DC vaccines can actually rejuvenate effector memory 

and antigen-specific immunity. Hence, we accessed GBM-infiltrating CD8+ T cells and PBMCs 

from the GlioVax clinical trial (NCT03395587) (53). GlioVax is a phase II trial (Fig. 8D, data file 

S6) involving patients randomized into two treatment arms: (1) standard-of-care radiotherapy 

and chemotherapy and (2) tumor lysate-loaded DC vaccination combined with standard-of-care. 

Further details of the trial and DC vaccine were previously described (53).  
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We isolated tumor-infiltrating CD8+ T cells from control and DC vaccinated patients and analyzed 

them by flow cytometry directly or after activation with ionomycin/PMA to quantify 

CD8+CD45RO+IFN-γ+ effector-memory T cells (Fig. 8D). Importantly, unvaccinated GBM 

samples were not enriched for effector memory CD8+ T cells, and these samples failed to 

upregulate IFN-γ production after activation (Fig. 8E). However, samples from DC vaccine 

recipients were enriched for effector memory CD8+ T cells, which showed increased IFN-γ 

production upon activation (Fig. 8E). Finally, to confirm rejuvenation of antigen-specific immunity 

in DC vaccinated patients, we longitudinally isolated these patients’ PBMCs and re-stimulated 

them with the autologous GBM tumor lysate-loaded DCs as an antigen source (Fig. 8D), then 

analyzed the samples for IFN-γ production by ELISPOT. The PBMCs isolated after DC 

vaccination exhibited higher IFN-γ production than those derived before any therapy (baseline), 

or after radiotherapy and chemotherapy (post-RC/pre-vaccination) (Fig. 8F). Altogether, these 

results indicated that DC vaccines can rejuvenate functional effector memory CD8+ T cell 

responses and antigen-specific immunity in patients with GBM.  

 

DISCUSSION 

Our study revealed tumor-specific immune landscapes as major players in shaping enrichment 

of CD8+ TEX or tolerized CD8+ T cells (1). CD8+ TEX were largely enriched in immunogenic and 

antigenic tumors (like SKCM or LUAD) and showed transcriptional homogeneity for major T cell 

pathways, a positive association with outcome, high effector and co-stimulatory signaling with 

tumor-reactive TCR clonality and a pro-effector TCR repertoire, enrichment of a cancer relevant 

T cell activating immunopeptidome, stable effector memory and exhaustion states, spatially T 

cell-accessible tumor margins, and sufficient availability of CD4+ T cell help. The CD8+ TEX were 

associated with efficacy of ICBs as a therapeutic intervention. Contrastingly, tolerized CD8+ T 

cells could be defined as a population that is mainly enriched in immuno-privileged or low 

antigenic tumors (especially GBM and perhaps OV). Tolerized CD8+ T cells are composed of 
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lowly functional or dying CD8+ T cells, showing high transcriptional heterogeneity for major T 

cell pathways, null-to-negative associations with patient outcomes, low effector and co-

stimulatory signaling with tumor hypofunctional TCR clonality and an anti-

inflammatory/tolerogenic TCR state, heightened recognition of self-epitopes, unstable and non-

recoverable effector memory states accompanied by immunoregulation and wound healing-like 

chemokine profiles, sensitization toward a tolerogenic TGF-β/wound healing and spatially non-

T cell supportive tumor microenvironment (TME), low cell cycle activity and cell death, and lack 

of CD4+ T cell interactions. Tolerized CD8+ T cells in GBM seemed to be hypofunctional to TCR 

activation in terms of cytokine production, with tendency to even facilitate wound healing-like 

chemokines or effector dysfunction upon CD3/CD28-activation or PD-1 blockade. High 

enrichment of self-reactive epitopes, the FOXP3HIGH phenotype, NE-TCRs, and a non-

supportive TME together suggest that the tolerized phenotype of GBM-CD8+ T cells might be a 

result of complex TME pressures aimed at avoiding autoimmune damage (54). 

Additionally, we observed that, although tumor-reactive features were associated with TCR 

clonal expansion, the consistency of this association was cancer type dependent. More 

specifically, this was applicable to SKCM and LUAD but, in the case like GBM, TCR clonal 

expansion was instead associated with anti-inflammatory/tolerogenic or stress response 

signaling. Importantly, our observations of the anti-inflammatory/tolerogenic orientation for the 

TCR repertoire in GBM are substantiated by results from immuno-oncology clinical trials: 

patients with GBM that did not respond to PD-1 blockade showed higher TCR clonal diversity 

than those that slightly responded (2). Altogether, this indicated that expanded TCR clones of 

CD8+ T cells in antigenic tumors may be less susceptible to immunosuppression than CD8+ T 

cell clones in non-antigenic tumors (18). These results suggest that TCR clonality should be 

analyzed from both quantitative and qualitative angles.  

Another interesting observation in GBM was the increase in TGF-β and wound-healing 

responses after PD-1 blockade or TCR stimulation. Tolerized T cell states are meant to avoid 
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autoimmunity (5, 8, 18, 27). Thus, the increase in TGF-β and wound healing following PD-1 

blockade in GBM, as well as the preferable secretion of wound healing-like chemokines from 

CD3/CD28-activated GBM-CD8+ T cells, may indicate these cells’ programming to avoid brain-

associated auto-immunity (5, 26). Henceforth, cellular immunotherapies like DC vaccines should 

be considered for baseline restructuring of GBM-like tumors to help generate CD8+ TEX-like cells. 

These therapies could create a more permissive therapeutic setting for ICB treatment.  

Our study has some limitations that mandate further research. For instance, the diversity of 

patient datasets used by us may introduce some unanticipated heterogeneity due to differences 

in tumor versus metastasis sampling site, age, treatment strategy, treatment sequencing or 

scheduling, gender, ethnicity, or immuno-haplotypes. Also, some datasets were insufficiently 

powered in terms of patient numbers (e.g., HIV cohort), single-cell or immuno-peptidomics data, 

or clinical trial cohorts. Finally, the exact molecular overlaps or distinctions between bystander 

CD8+ and tolerized CD8+ T cell states require systematic analyses. Although high enrichment of 

self-antigens suggested a bystander-like orientation for tolerized GBM-CD8+ T cells, yet more 

fundamental research is needed to understand how exactly tolerized CD8+ T cells are formed in 

GBM. 

In conclusion our study delivers unique resources and methods for differentiating CD8+ TEX from 

tolerized CD8+ T cells in clinical settings. We believe our study provides resources, 

immunological and clinical insights, and a reference map for tumor relevant CD8+ T cell states 

in cancer, as well as a critical overview of immunotherapy deterministic factors. Overall, these 

findings may help guide the design of immunotherapy regimens for hard-to-treat cancers. 
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MATERIALS AND METHODS:  

Study Design: 

Determination of sample size was not applicable for publicly available patient cohorts. For 

analyses of original samples, the size was not based on specific calculations but pre-determined 

based on availability of appropriate biobank samples. Rules for stopping data collection were 

pre-determined by the publicly available data or based on existing clinical protocols as 

applicable. There were no deliberate data exclusions. Minor variations in patient numbers 

occurred for some datasets, due to differential qualitative thresholds (e.g., during stratification 

or data transformations) or analyses-specific qualitative cut-off constraints (e.g., non-calculable 

values during computational calculations or deconvolutions). However, these variations didn’t 

create any inconsistencies within our study. Nevertheless, all such variations have been 

transparently recorded in the figure legends or methods section. For the non-MILAN analyses, 

outliers were detected using the local outlier factor, as defined in PyOD 

(https://pyod.readthedocs.io/en/latest/). No samples were excluded as outliers. For the MILAN 

analysis MFI, Z-scores were trimmed in the pre-defined [0, 5] range to avoid a strong influence 

of any possible outliers and a median filter was applied. For MILAN-based activation scores, z-

scores were trimmed to the preset [-3,3] range. All details are provided in the corresponding 

methods section. Reproducibility of experimental findings was verified by either considering 

analyses of multiple patient samples, high number of single-cells, or ≥3 biologically independent 

experiments. Research participants included cancer patients, or experimental units (cell 

cultures, single cell readouts, image quantifications, fluorescence). The overall design 

depending on the analyses was either controlled laboratory experiment, observational study, or 

survey. Please see Fig. 1A for an overview of our study design. As applicable, patients were 

randomly allocated. For in situ or ex vivo analyses, the patient samples were randomly recruited 

into the study from the BioBank. The primary investigators of the study were blinded to patient 

or sample allocation for experimental assays and initial analyses wherever applicable. For 

https://pyod.readthedocs.io/en/latest/
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patient information, the study protocol was approved by the UZ Leuven/KU Leuven biobank or 

ethical committee of the University Hospital Düsseldorf and participants gave written informed 

consent. DC vaccination of GBM patients in the GlioVax trial was conducted at the University 

Hospital Düsseldorf with the informed consent of the patients and in agreement with Art. 37 of 

the Declaration of Helsinki, as well as International Conference on Harmonization - Good Clinical 

Practice (ICH-GCP) Guideline, German Drug Law, Good Clinical Practice Regulation (GCP-V) 

and applicable national and European guidelines (EudraCT-Number: 2017-000304-14, 

NCT03395587). 

 

Statistical Analysis: Statistical details of all the analyses are reported in the figure legends or 

figures. In some cases, the counts or number of datapoints are described in the methods section. 

All the statistical tests used were always two-tailed unless otherwise mentioned. In case of all 

experiments, the reported measurements were taken from distinct samples and not measured 

repeatedly from the same sample. Gene signatures were estimated by considering the average 

expression of all the genes within that signature, unless otherwise mentioned. All statistical 

analyses or graphical representations were executed using Python version 3.7.3, R versions 

4.0.1, 3.6.2, and 3.5.3 or GraphPad Prism version 8. Different package versions used in this 

manuscript are detailed in data file S6. All raw, individual-level data for experiments where n<20 

are presented in data file S7. 

 

Supplementary Materials: 

Supplementary Materials and Methods 

fig. S1 to S13 

MDAR Reproducibility Checklist 
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Data file S1 to S7 
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Figure 1. Signature-based immunogenomics were used to characterize the CD8+ T cell 

landscape. (A) Schematics of our study design to differentiate tumor-reactivity induced 

exhaustion (CD8+ TEX) from other hypofunctional CD8+ T cell states. The analysis spanned both 

publicly available and in-house patient cohorts, with non-spatial (bulk and single-cell 

transcriptomics, scTCR-seq, and immuno-peptidomics) and spatial (multiplexed protein, 

transcriptomic) analysis. These results were validated with functional profiling and with clinical 

trial data. (B) Shown is a comparison of the most used signatures to describe T cell exhaustion. 

We collected 21 published tumor-reactive T cell-associated genetic signatures (marked in 

orange) and clinical trial-relevant signatures and performed gene overlap analyses with the 

csCD8+ T cell signature. (C to J) Stacked bar-plots based on median gene expression (C, G) 

and correlation matrices (D, E, F, H, I, J) are shown for the following: genes from csCD8+ T cell 

signature for which expression was reported in a melanoma scRNA-seq cohort, covering CD8+ 

T cells with naïve (C, D, 5378 cells), transitional (C, E, 4189 cells) or tumor-reactive dysfunctional 

phenotypes (C, F, 10120 cells); or single-cell CD8+ T cell profiles from individuals infected with 

HIV for 0.3 years (G, H, 1596 cells), 3.5 years (G, I, 841 cells) or 27 years (G, J, 1304 cells). 
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Figure 2. The CD8+ T cell landscape differs between cancer types. (A) Expression of the 

csCD8+ T cell-signature genes in 15 scRNAseq studies covering 5 cancer types. Smart-seq2 

data are marked with an asterisk. (B) Stacked bar-plot showing normalized mean expression of 

the 16 signature genes over six tumor-types (BLCA, n=426; BRCA, n=1212; GBM, n=171; 

LUAD, n=574; OV, n=427, SKCM, n=470). (C) Z-score column standardized Pearson’s 

correlations between CIBERSORT-CRI inferred immune cell fractions and csCD8+ T cell-

signature expression per cancer type in TCGA. (D) Violin plots for CD8+ T cell fractions 

(CIBERSORT-CRI). The violin plots show median and 25th-75th percentiles. Data were 

analyzed using the Kruskal-Wallis test. Pairwise comparisons were made using the Dunn 

posthoc test, using holm-sidak correction (p < 0.05 for significance, median and 25%-75% 

percentiles indicated within violins). (E) Patient-based CoxPH regression Z-scores (95% 

confidence interval) from TCGA, indicating prognostic value of various signatures (BLCA, 

n=406; BRCA, n=1090; GBM, n=159; LUAD, n=504; OV, n=420, SKCM, n=451). (F to K) 

Matrices show the Spearman correlation between the expression of the indicated genes from 

csCD8+ T cell-signature for SKCM (F), LUAD (G), BLCA (H), BRCA (I), OV (J) or GBM (K). (L 

to O) Partition-based graph abstraction (PAGA) derived T single-cell subpopulation connectivity 

networks are shown for SKCM-CD8+ T cells (L), SKCM-CD4+ T cells (M), GBM-CD8+ T cells 

(N), and GBM-CD4+ T cells (O). Please see data file S2 for the full annotations and 

abbreviations for above sub-population nomenclatures (L to O). Marker details are in fig. S4. 
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Figure 3. Analysis of single-cell transcriptomics, T cell receptor (TCR) repertoires, and 

immunopeptidomics reveals differences between antigenic and non-antigenic tumors. 

(A) Uniform Manifold Approximation and Projection (UMAP) of a single-cell multi-cancer 

transcriptomics dataset of 44308 tumor infiltrating CD8+ T cells (44 patients). Tumor types 

included were BRCA (10932 cells), GBM (4006 cells), LUAD (18359 cells) and SKCM (11011 

cells). (B) Threshold selection to discriminate between expanders and non-expanders at various 

TCR clonotype thresholds (x-axis: proportion of putative CD8+ T cell expanders per cancer type, 

y-axis: number of isotype occurrences). 5 is the lowest threshold to distinguish between all 

cancer types. This cut-off results in 25083 expanders and 19155 non-expanders. (C) Number of 

unique clonotypes per cancer type between brackets, number of TCR clonotypes shared 

between cancer types are represented by the edge widths and listed next to corresponding 

edges. (D) The UMAP shows the positions of expander (E) and non-expander (NE) TCRs 

amongst CD8+ T cells at a threshold of at least 5 cells with identical TCRs. (E and F) Signature 

expression (metagenes) is shown for the NeoTCR8 signature (E) and the csCD8+ T cell 

signature (F) in E-TCR and NE-TCR CD8+ T cells. Data were analyzed using Welch’s t-test. The 

violin plots show median and 25th-75th percentiles. (G) Volcano plot for the differential gene 

expression (DGE) analysis contrasting E-TCR versus NE-TCR CD8+ T cells. (H) Gene set 

enrichment analysis (GSEA) using the REACTOME pathway dataset is shown. Significant terms 

are marked with a black border. (I) Interquartile range-scaled metagene expression is shown, 

representing differences in E-TCR and NE-TCR CD8+ T cell signatures across each cancer type. 

(J) Hazard ratios were obtained with CoxPH survival analysis using the E-TCR and NE-TCR 

CD8+ T cell signatures. (K to M) Shown is analysis of 101 immunopeptidomics studies (43306 

unique linear peptides with minimal size of 8 amino acids), after quality control filtering for 

positive hits. Epitopes used in CD8+ T cell activation assays for BLCA (29), BRCA (28), GBM 

(273), LUAD (191), OV (87) and SKCM (579) are presented and were annotated for antigen 

families including shared cancer antigens (K), neoantigens (L) and self-antigens (M). Numbers 
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of unique epitopes are marked between brackets. (N) Shown is the correlation between TCR 

diversity (Shannon entropy value) for each cancer type and the indicated T cell signatures. The 

analyses were restricted to patients with a high SNV neoantigen load (above the median cut-

off). 
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Figure 4. Cell cycle arrest and wound-healing signatures are enriched in GBM CD8+ T 

cells. (A and B) The pie charts represent the distribution of CD8+ T cells per cell cycle phase 

scores (G1, S or G2M) for SKCM (A) or GBM (B) (Fisher exact test-based statistics were 

estimated for SKCM versus GBM comparisons for each phase score). (C) The fused violin-plot 

compares the Spearman Rho-value distribution (Y-axis) for each cell in GBM (52 cells) and 

SKCM (1180 cells) T cell populations (x-axis) to the T cell-specific IL-2 withdrawal signature 

(Welch t-test). (D and E) Shown is the distribution of cell cycle phase pseudo-durations for 100 

CD8+ T cell cycle iterations using the stretched cell cycle model (D) or the Erlang cell cycle 

model (E). Red arrows in (E) indicate underlying mathematical reaction-rates corresponding to 

each (adjustable) cell cycle phase pseudo-durations and boxes represent the centre of the 

population. (F and G) Shown are UMAPs visualizing CD8+ T cell populations in CyTOF datasets 

for non-small cell lung cancer (NSCLC) or LUAD (F) and GBM (G). (H and I) Shown is network 

topology of SKCM (H) and GBM (I) scRNA-seq based CellPhoneDB interaction predictions, 

filtered based on TCGA tumor bulk RNA-seq data (threshold: FDR adjusted p-value<0.05). (J) 

The bar-plots illustrate the normalized ratio of TGF-β response and wound-healing signatures 

to the deconvoluted CIBERSORT-CRI CD8+ T cell fraction. Statistical significance was tested 

with the Kruskal-Wallis test (Dunn’s posthoc test for pairwise comparisons vs SKCM with Holm-

sidak as posthoc, P < 0.05 for significance) as (GBM, n=134; BRCA, n=1088; LUAD, n=528; 

BLCA, n=406; SKCM, n=451; OV, n=394). 
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Figure 5. Spatial immuno-mapping distinguishes melanoma and glioblastoma tumor 

tissue. (A and B) Shown are Multiple Iterative-Labelling by Antibody-Neodeposition (MILAN)-

derived representative immunofluorescent images of indicated immune and cancer cell markers 

in SKCM (A, left), or GBM (B, left) tissue sections. Digital representations of indicated 

anatomical (middle) or vasculature areas (right) are shown for SKCM (A) or GBM (B). (C and 

D) tSNE maps are shown for a random subset of main annotated cell types across SKCM (n=10 

samples across 10 patients) (C) and GBM (n=11 samples across 8 patients) (D), using the same 

color representations as in (A and B). (E and F) Density analysis of CD8+ T cells (across entire 

tissue section) in GBM and SKCM is shown as violin plots (E) and as heatmaps showing relative 

distribution across indicated areas (F). (G to L) Activation scores were calculated for each CD8+ 

T cell based on CD69/OX40 versus LAG3/TIM3 expression. Violin plots (G) depict overall 

activation of all CD8+ T cells. Line plots (H) show median activation of each CD8+ T cell relative 

to its distance from nearest CD4+ T cell in SKCM and GBM (for statistics, see fig. S11A and B. 

Activation scores of CD8+ T cells were defined across indicated tumor (I and J) and vasculature 

regions (K and L) defined in SKCM (I and K) or GBM (K and L). (M) Z-score expression profiles 

of indicated genes across the 7 GBM micro-dissected anatomical sections from IVY-GAP cohort 

(n=270 anatomical sections from 36 GBM patients). (N) Pearson’s correlations are shown for 

the indicated genes within the CD8+ T cell signature (CD8A/CD8B) in the IVY-GAP cohort. In (E, 

G, I to L), Mann-Whitney tests with Holm’s correction for multiple comparisons were applied 

(FDR-adjusted p-values are indicated). In (F, K to L), vasculature analyses were restricted to 

only regions within the tumor core (non/peri-tumoral zones were excluded). All violin plots show 

median and 25th-75th percentiles. 
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Figure 6. Functional single-cell secretome analysis reveals tolerized-like phenotype of 

glioblastoma-derived CD8+ T cells. (A) Shown is a visualization of the Isoplexis single-cell 

secretome experimental design involving GBM-derived CD8+ T cells (258 unstimulated versus 

248 stimulated CD8+ T cells across 4 patients) and control peripheral blood mononuclear cells 

(PBMC)-derived CD8+ T cells (734 unstimulated versus 371 stimulated CD8+ T cells from 1 

healthy donor). (B) Shown is a 3D t-SNE representation for the GBM-CD8+ T cells and the 

PBMC-CD8+ T cells with or without anti-CD3/CD28 stimulation. (C) The heatmap shows the 

number of unique proteins detected for respective CD8+ T cell populations, representing an 

estimation of overall polyfunctionality. (D) Shown are heatmaps for the individual secretion 

frequencies of the indicated factors. (E) Shown is the polyclonality strength index (PSI), 
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representing activity in each of the single cell secretomics samples. Colored bar sections 

represent the contribution of each protein to the total PSI score. Protein signals plus 3 standard 

deviations were calculated, and signals with signal-to-noise ratio (SNR) of at least 2 (relative to 

the background threshold) and from at least 20 single cells or 2% of all single cells (whichever 

quantity was larger) were considered substantially secreted. Signals that were insufficiently 

above background owing to these thresholds are denoted by an arrow. (F) Shown is a violin plot 

(median and 25th-75th percentiles) for the frequency of IFNγ-producing, CD45RO+, GBM-

derived, PBMC-associated (blood) or tumor-infiltrating CD8+ T cells (TIL) after stimulation with 

ionomycin/PMA and analyzed by flow cytometry (n=6; Mann-Whitney t-test). 
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Figure 7. Immunogenomics associate with outcomes of immuno-oncology clinical trials. 

(A) The heatmap shows CoxPH regression Z-scores for single-cell TCR signatures, TGF-

β/wound-healing signatures, CD8+ T cell signatures and IFNG signatures in 7 distinct clinical 

trials covering 474 patients. (B to G) Clinical trials involving pre and post anti-PD-1 treatment-

derived tumor-tissue from SKCM (Pre, n=13; Post, n=11, 11 longitudinal) or GBM (Pre, n=24; 

Post, n=25, 0 longitudinal) were analyzed. (B) Violin plots for scores pre- and post- 

immunotherapy for indicated signatures are shown for the indicated tumor types (data were 

analyzed by Mann-Whitney test). (C) Correlation matrices are shown for the csCD8+ T cell-

signature in these trials. Yellow squares indicate the cluster marked by CD8A/B genes, blue 

squares illustrate clusters consisting of effector genes (IFNG, IL2, TNF, CD28). (D) Shown are 

Pearson correlations between csCD8+ T cell-signature and patient outcomes [OS, PFS, and O6-

methylguanine-DNA methyltransferase, (MGMT) promoter-methylation (Methyl.MGMT-p)]. (E) 

UMAPs of the cell composition in scRNA-seq datasets from patients with SKCM (E, upper panel) 

and GBM (E, lower panel) treated with ICBs. (F) Heatmap visualizations of the correlation 

between csCD8+ T cell signature genes in CD8+ T cells recovered post-treatment with anti-PD-

1 and anti-CTLA-4 in SKCM (F, left) or anti-PD-1 ICB in GBM (F, right). (G) TGF-β/wound-

healing signature expression is overlaid on the UMAP representation for SKCM (G, left) and 

GBM (G, right). Violin plots show median and 25th-75th percentiles. 
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Figure 8. DC vaccination facilitates effector immunity against glioblastoma in clinical 

trials. (A and B) Tissues from clinical trials involving DC vaccination (Pre, n=6; Post, n=6, 6 

longitudinal) or anti-PD-1 treatment (Pre, n=24; Post, n=25, 0 longitudinal) in GBM were used to 

create cubic-spline representations of nearest-neighbor (Pearson’s correlation) analyses for 

indicated genes. Nearest neighbor analyses were conducted with data from a GBM anti-PD-1 

immunotherapy trial (A) and the DC vaccination trials (B). 1000-permutations for initial candidate 

selection were used to approximate the optimal results. (C) Violin plots are shown comparing 

the correlations between pre- and post-treatment expression of genes involved in a cytolytic 

activity signature (PRF1, GZMA, GZMB, GZMH, GZMK, TNFSF10) and an effector function 

signature (IFNG, IL2, CD28). Data are from clinical trials employing anti-PD-1 treatment (n=25) 

and DC vaccination (n=6) for GBM. (D) Shown is a schematic overview of the GlioVax clinical 

trial and the experimental design. (E) Violin plots show the frequency of IFN-γ-producing GBM-

derived effector-memory CD8+ T cells. Cells were either stimulated with PMA/ionomycin or left 

unstimulated and were from either the DC vaccination arm (n=7) or control arm (n=5) at 

suspected tumor recurrence. Cells were analyzed by flow cytometry. Data were analyzed with 

a one-way ANOVA. (F) Violin plot is shown for the number of IFN-γ spots produced by PBMCs 

collected longitudinally from patients at different vaccination timepoints (baseline, n=18; post-

radio-chemotherapy/RC or pre-vaccination, n=18; post DC vaccinations 1-4, n=18; post DC 

vaccinations 5-6, n=17). PBMCs were pulsed with corresponding GBM-tumor lysate-loaded DC 

and analyzed for IFN-γ production by ELISPOT (Kruskal-Wallis test, Dunn’s posthoc for pairwise 

comparison, p < 0.05 for significance). The violin plots show median and 25th-75th percentiles. 


