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Abstract—The emerging 4D-imaging automotive MIMO radar
sensors necessitate the selection of appropriate transmit wave-
forms, which should be separable on the receive side in addition
to having low auto-correlation sidelobes. TDM, FDM, DDM, and
inter-chirp CDM approaches have traditionally been proposed
for FMCW radar sensors to ensure the orthogonality of the
transmit signals. However, as the number of transmit antennas
increases, each of the aforementioned approaches suffers from
some drawbacks, which are described in this paper. PMCW
radars, on the other hand, can be considered to be more costly
to implement, have been proposed to provide better performance
and allow for the use of waveform optimization techniques. In this
context, we use a block gradient descent approach to designing a
waveform set that is optimized based on weighted integrated
sidelobe level in this paper, and we show that the proposed
waveform outperforms conventional MIMO-FMCW approaches
by performing comparative simulations.

Index Terms—4D-Imaging, Automotive Radar, FMCW,
PMCW, CDM-MIMO, WISL.

I. INTRODUCTION

To meet the requirement of high-resolution sensing ca-
pabilities in the range–Doppler–azimuth–elevation domains,
Advanced Driver Assistant Systems (ADAS) require 4D-
Imaging radars in emerging automotive applications. With this
regard, a large antenna array aperture is needed that can be
obtained using sparse configuration based on Multiple-Input
Multiple-Output (MIMO) concept. MIMO radars can enlarge
the aperture size virtually, by reducing the number of physical
transmit and receive antenna elements that construct the de-
sired aperture size, in both elevation and azimuth. However, in-
creasing number of transmit antennas enlarges the complexity
of the transmit waveforms, which is a subject of discussion in
Frequency-Modulated Continuous-Wave (FMCW) and Phase-
Modulated Continuous-Wave (PMCW) radar systems.

As compared to FMCW radars, PMCW radars show good
properties in terms of interference mitigation [1]. However,
due to the high instantaneous bandwidth, digitally modulated
waveforms in PMCW radars raise high sampling rate in
Analog to Digital Converter (ADC)s, which increase the cost
of implementation [2]. On the other hand, using orthogonal
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codes allow us to transmit orthogonal waveforms from all
transmitters in PMCW MIMO radars simultaneously, in fast-
time domain. On the contrary, generating orthogonality is a
difficult task to achieve in FMCW radars and can only be
implemented over time, frequency, Doppler, or in slow-time.

In this paper, we provide a comprehensive summary of
different multiplexing techniques to transmit orthogonal wave-
forms and discuss about their advantages and disadvantages.
We also provide a unified signal model through which different
modulation schemes can be implemented. For the case of
PMCW radars, we propose an optimization framework based
on Gradient Descent (GD) to design set of sequences which
exhibit good orthogonality and low sidelobe levels in their cor-
relation functions. The numerical results validate the proposed
algorithm’s performance for a 4D imaging radar example1.

II. TRANSMIT AND RECEIVE SIGNAL MODELS

We consider a colocated MIMO radar sensor, with M
transmit and N receive antenna elements. Let

um,q(t) =
∑K

k=1 wm,qe
jϕm,krect(

t−kTc−Tc
2

Tc
− Tp

2 ) (1)

be the qth transmitted radar pulse2 from mth transmit antenna
with K subpluses of duration Tc (chip-time), resulting in a
coded pulse of Tp duration. With arbitrary selection of ϕm,k,
(1) indicates the transmitted signal for PMCW MIMO radars,
but by setting ϕm,k = βπ(kTc)

2, the same equations shows
FMCW waveform where β is the chirp rate [3]. Additionally,
wm,q generates different orthogonality weights for a MIMO
transmission, as specified in TABLE I for Time-Division
Multiplexing (TDM), Doppler-Division Multiplexing (DDM),
and Binary Phase Modulation (BPM)3 cases. For fast-time
Code-Division Multiplexing (CDM), we can choose wm,q = 1.
Assuming that a total of Q pulses are transmitted in every Co-
herent Processing Interval (CPI), the emitted signal from each

1Notation: We use boldface upper case X for matrices and boldface lower
case x for vectors. The sets of complex number, real number, Hadamard
product, Frobenius norm, phase of vector and matrix, hermitian operation,
correlation, gradient, round and rectangular functions are denoted by, CN ,
RN , ℑ(.), ⊙, ||.||F , ∠., (.)H , ⊛, ∇, ⌊.⌋ and rect(.) respectively.

2We split the time index into fast-time (p) and slow-time (q) (i. e., t =
p/fs + qTp) with fs as the sampling rate.

3Called slow-time CDM, when the alphabet size is not limited to binary.



TABLE I: The weight parameter for generating TDM, DDM,
and BPM-MIMO signals. Here, δ is Dirac delta function, had
is Hadamard matrix and mod performs a remainder operation.

Technique wm,q

TDM δ[m−mod(q − 1,M)− 1]

DDM e−j2πmq/M

BPM (Hadamard) had[m,mod(q − 1,M) + 1]

transmitting antenna is, sm(t) =
∑Q

q=1 um,q(t − qT )ej2πfct,
where fc is the carrier frequency, and T is Pulse Repetition
Interval (PRI) which depends on the duty cycle of the trans-
mitting that waveform may or may not be equal to Tp. The
reflected signal from I moving targets, i = 1, 2, . . . , I , is,

yn(t) =
∑I

i=1 σi

∑M
m=1 sm(t− τi), (2)

where σi is the reflection coefficient from ith target, and
τi = τ0,i + τd,i + τs,i. Here, τ0,i = 2Ri

c , where Ri is the
distance and c is the light speed, is the round-trip time related
to the distance of ith target with radar; τd,i = 2νit

c is due to the
speed of the ith target and includes Doppler information; and
τs,i = sin θi(mdt + ndr)

4 is caused by the phase differences
between the mth transmit antenna element and nth receive
antenna element (determines so-called transmit and receive
array steering vectors) for a target at angle θi, with dt and dr as
the transmitter and receiver inter-element spacing, respectively.
The received signal is then processed at each receiver for target
parameter estimation.

A. Signal Processing in FMCW radars

In automotive radars, FMCW is typically used as the
standard modulation scheme, since it can be compressed with
a very low-cost and efficient technique known-as de-chirping
operation (stretch processing) [1], [4]. The primary benefit of
de-chirping is that the received signal can be sampled at much
lower rates in comparison to its bandwidth. Not surprisingly,
this advantage has been motivating many automotive manufac-
tures to build their radar system based on FMCW technology.

Using the de-chirping technique, the received signal is
conjugately mixed with a source chirp to produce Intermediate
Frequency (IF) signal. With some manipulations on (2), the
IF signal as a function of fast-time and slow-time at the nth

receive antenna element can be expressed as [5]:

Zn,p,q =

I∑
i=1

M∑
m=1

σiwm,qe
−j2π(βτ0,i+fd,i)p/fs

e−j2πfd,iqT e−j 2π
λ

(mdt+ndr)sinθi

(3)

where λ = c/fc is the wavelength, fd,i = 2νi/λ is the ith

target Doppler shift. The first, second and third exponential
terms in (3) are used for range, Doppler and angle estimation
of the target, respectively. In the case of MIMO transmission, a
decoding process is required to separate the transmitted signals
in the receive depending on how wm,q is weighted.

4In general, τs,i is a function of antenna positions and also azimuth (θi)-
elevation (ϕi) angles of the target. For simplicity, we consider a Uniform
Linear Array (ULA) setting in the signal model, which cause τs,i be only
depended on θi and the array parameters m, n, dt and dr .

B. Signal Processing in PMCW radars

The received signal in PMCW radars is down-converted to
baseband (i.e., ỹn(t) = yn(t)e−j2πfct), then passed through
the matched-filter, or pulse compression filter, corresponding
to each transmitting waveform at each single receiver. At the
output of the matched-filter with the mth transmit waveform,
for the nth receive element, we have:

Zm,n,q(t) =

∫ ∞

−∞
ỹn(τ̃)u∗

m,q(τ̃ − t)dτ̃ , (4)

substituting the received signal and after sampling, we obtain,
Zm,n,q,p =Zm,n,q(p/fs) =∑I

i=1

∑M
l=1

∑Q
q=1 σirm,l(p− ⌊fsτ0,i⌋)

e−j2πfd,iqT e−j 2π
λ

(mdt+ndr) sin θi

where rm,l(.) is the cross-correlation function between mth

and lth transmit waveforms and p = 1, . . . ,
⌊
2Rmaxfs/c

⌋
and

Rmax is the maximum range of interest.

III. WAVEFORM SELECTION FOR FMCW AND PMCW
MIMO RADAR SENSORS

The choice of waveform in the automotive MIMO radars
is critical because it influences both radar performance and
implementation complexity. MIMO radar waveforms should
possess low auto-correlation sidelobes, and be chosen from
an orthogonal set to be separated in the receive side.

A. Orthogonal Set Generation for FMCW MIMO Radars

Different modulation schemes, such as TDM, Frequency
Division Multiplexing (FDM), DDM, and (slow-time) CDM,
have been presented in the literature to generate a set of
orthogonal waveforms based on FMCW.

The TDM-based multiplexing technique is the most widely
employed in the conventional automotive radar due to its low
hardware complexity. This modulation allocates a different
time slot to each transmitter in order to produce orthogonal
transmitting waveforms (in time domain) and ensures the ideal
orthogonality [6]. With this regard, each transmit antenna has
an exclusive access to the radar channel within a relatively
short time period. On the other hand, all receive antennas
operate simultaneously [7]–[10].

Although low cost and easily implemented, TDM requires
longer measurement time, strict synchronization between
transmit and receive side, and additional effort for estimation
of moving target velocity. Furthermore, TDM-MIMO radars
suffer from the transmit energy loss, leading to a reduced
Signal to Noise Ratio (SNR). As a result, it reduces the
target detection range and degrades the parameter estimation
performance with increasing the number of transmit elements
[5]. One major drawback of TDM-MIMO technique is the
ambiguity in maximum Doppler velocity estimation, which is
proportional to the inverse of the number of transmit antenna
elements. Thus, in 4D-imaging automotive radars, due to the
requirement of large number of transmit antenna elements,
the maximum unambiguous velocity in TDM structure will be
significantly reduced, compared to the fewer number of trans-
mit antennas scenario. This degradation in velocity estimation



will also corrupts the Direction Of Arrival (DOA) estimation,
which cause a coupling between target angle and velocity
[7]. This coupling leads to an additional phase component
in the array steering vector of the virtual transmit antenna
elements. In order to tackle the above-mentioned limitations of
the TDM-MIMO, some alternatives to the TDM-based FMCW
radar were proposed in the literature.

Unlike the TDM technique, FDM can produce transmitting
signals that are concurrently sent but distinct from one another
in the frequency domain. To this end, the transmitted signals
(e. g., FMCW) are modulated by different carrier frequencies
[11]. In the conventional FDM, the frequency shifts are equal
to the bandwidth of transmitted signals from each antennas.
In this case, the problem of Doppler ambiguity limit which
was discussed in TDM case is being solved. Furthermore,
FDM achieves higher SNR compared to TDM. On the other
side, due to the need for large bandwidth, it leads to a waste
of frequency resources and bandwidth loss, and has a high
implementation cost. Also, a range-angle coupling problem
will occur. A randomization of the frequency shift among
transmit antennas reduces this range-angle coupling. However,
a large number of transmit antennas is needed for this purpose,
which is feasible for 4D-imaging radars [12]. But, due to the
large occupied bandwidth in 4D-imaging automotive radars,
using conventional FDM is not efficient. On the other side,
there are other types of FDM waveforms, like DDM, which
only depends on some frequency offsets.

DDM-MIMO is a low-complex multiplexing technique that,
like in FDM, shifts each transmitting signal spectrum, using
a sequence of phase shifters. The difference is that only a
slight Doppler frequency step size is needed such that it can
enable signal separation in Doppler domain [13]. DDM has
been widely implemented in automotive radars, due to the high
performance-to-cost ratio [14], [15]. Two requirements ought
to be considered for the frequency step size in DDM structure.
First, The frequency shifts in DDM should be greater than two
times of the fastest target Doppler shift to ensure separation
in Doppler domain. Second, to guarantee the orthogonality,
the frequency step size has to be equal or greater than the
inverse of pulse duration time [6]. DDM Improves the problem
of limited frequency spectrum resources in FDM (due to the
small frequency offset) and long measurement time in TDM
(due to simultaneous transmitting). Nonetheless, orthogonal
waveforms in Doppler domain suffer from the reduction in the
maximum unambiguous Doppler and the maximum detectable
velocity, since the received signals are aliased in Doppler
domain. As a result, DDM-MIMO is mostly fits to Short Range
Radar (SRR) applications. To solve the problem of Doppler
ambiguity in DDM, different approaches, like TB-DDM [5]
and dithered-DDM [16], were proposed in the literature.

CDM among chirps can be applied in both fast-time and
slow-time domains. In the slow-time chirp coding, each sepa-
rate chirp is multiplied by a code symbol (inter-chirp CDM),
and it is in fact equivalent to the conventional DDM approach,
with similar advantages and disadvantages. There is also a
variation of CDM which has been applied in fast-time and

is called intra-chirp coding [17]. Inter-chirp coding provides
significantly lower range sidelobs in the ambiguity function
compared to the intra-chirp coding. As a result, in automotive
radar applications, inter-chirp coding has been widely used
[17]. In this context, there exists special binary code with
near perfect orthogonality for inter-chirp coding, which is the
Hadamard code [5]. Since inter-chirp CDM-MIMO utilizes
various phase-codes for transmitted signals, in the same fre-
quency and time, it necessitates a decoding process at the
receive side to separate the transmitting signals.

B. Orthogonal Set Design for PMCW MIMO Radars

Another orthogonalization scheme that is used recently in
automotive radars, is based on CDM, which in principle is
suitable for PMCW radars [18]–[21]. CDM-MIMO based on
intra-pulse coding, which is a systematic approach in many
different radar applications, and utilizes set of sequences with
good auto- and cross-correlation properties [1], [22]–[25]. This
scheme is a suitable solution for fast 4D-Imaging automotive
applications, since it supports simultaneous transmitting in
both time and frequency. The advantage of using CDM is
that it overcomes the above-mentioned drawbacks for TDM,
FDM, or BPM, and achieves higher SNR and higher range
resolution in comparison with TDM and FDM, respectively.
However, it suffers from difficult hardware implementation.
Also, due to the cross-correlation among the codes, it is diffi-
cult to achieve perfect orthogonality, unlike TDM and FDM.
Thus, the properties of the code set such as auto-correlation
and cross-correlation highly influence the performance of the
CDM. The noise floor and range ambiguity limit the radar
performance in the case of CDM. To adequately distinguish
between the multiple targets, the codes should have very
low cross-correlation values. The multiple-source interference
levels are controlled by the cross-correlation level as well
as the relative power level of the received signals. Hence,
finding a code set that satisfies the radar system requirement is
challenging, but has been well studied and addressed in several
recent papers [25].

IV. WAVEFORM OPTIMIZATION

There are several metrics available for designing a set of
sequences with good orthogonality in PMCW radars [26],
one of which is Weighted Integrated Side-lobe Level (WISL)
[25]. The aim here is to reduce the auto- and cross-correlation
sidelobes of a sequence set as much as possible in a Regions
Of Interest (ROI), which can be calculated in principle based
on the radar system’s maximum detection range. This method-
ology is useful when the pulse time Tp in (1) is much greater
than the delay of τ0,i, i = 1, 2, . . . , I , as in PMCW automotive
radar applications.

Let us assume that X ∈ CM×K is the set of transmitted
sequences in baseband with M transmit antennas and K
samples for each transmitter, and xm,k = ejϕm,k is the
kth sample of mth antenna. We aim to solve the following
optimization problem:




min

X
f(X) ≜

∑M
m=1

∑M
l=1

∑K−1
k=−K+1|αm,l(k)rm,l(k)|2

−
∑M

m=1 |αm,m(0)K|2

s.t. xm,n ∈
{
ejϕ|ϕ ∈ [0, 2π)

}
(5)

where αm,l(k) ∈ [0, 1], ∀k ∈ {−K+1, . . . ,K−1} represents
an arbitrary set of weights, rm,l(.) is the cross-correlation
between mth- and lth- antenna transmitting waveforms, m, l ∈
{1, 2, ...,M}. If m = l, rm,l(.) represents the auto-correlation
of the mth transmitting signal. k is the different lags in cross-
correlation computation. Please note that

∑M
m=1 |αm,m(0)K|2

is the weighted energy of the waveform which is essentially
the zero-lag of the auto-correlations. Since this is a constant
term it can be eliminated in the objective function.

In the sequel, we propose a Weighted Block Gradient
Descent (WBGD) method to solve the above optimization
problem. As a first step, we split the optimization variable
into several blocks. To this end, we consider the signal
of each transmitter as the corresponding block, that is xt

(t ∈ {1, . . . ,M}), while other blocks are held fixed and
stored in the matrix X−t ≜ [xT

1 ; . . . ;x
T
t−1;x

T
t+1; . . . ;x

T
M ] ∈

C(M−1)×K . The objective function f(X) can then be decom-
posed to three terms, the first one (fm) is independent of the
optimization variable xt, the second (fau) indicate the auto-
correlation of xt, and the last one (fcr) is its cross-correlation
with the other sequences of the set X−t. Mathematically,

f(X) = fm(X−t) + fau(xt) + fcr(xt,X−t), (6)

where fm(X−t) =
∑M

m,l=1
m,l ̸=t

∑N−1
k=−N+1 |αm,l(k)rm,l(k)|2,

fau(xt) =
∑N−1

k=−N+1 |αt,t(k)rt,t(k)|2, fcr(xt,X−t) =

2
∑M

l=1
l ̸=t

∑N−1
k=−N+1 |αt,l(k)rt,l(k)|2. Now, let Φ ≜ ∠X ∈

RM×K , Φ−t ≜ ∠X−t ∈ R(M−1)×K and the vector φt ≜
∠xt ∈ RK be the phases corresponding to the matrices X,
X−t and the vector variable xt, respectively. Hence, with
respect to φt, the optimization problem is:min

φt

fm(Φ−t) + fau(φt) + fcr(φt,Φ−t)

s.t. ϕt,k ∈ ϕ ∈ [0, 2π)
(7)

To solve (7), we use GD framework, which is a first-order
iterative optimization algorithm for finding a local minimum
of a differentiable function. In general, the GD procedure starts
with an initial solution (Φ(0)), then at ith iteration, each block
(φt) is updated by φ

(i+1)
t = φ

(i)
t + δ(i)∆φ

(i)
t , where δ(i)

and ∆φ
(i)
t are the ith iteration step size and search direction.

A possible solution for step size is using backtracking line
search [27] and the opposite direction of the gradient, i.e.
∆φ

(i)
t = −∇f(φ

(i)
t ) is chosen for the search direction. After

updating all of the blocks, the phase matrix is updated by
Φ(i+1) ≜ [φ

(i+1)
1 , . . . ,φ

(i+1)
M ]T . Further, the gradients of

∇φt
fau(φ

(i)
t ) and ∇φt

fcr(φ
(i)
t ), can be obtained using the

following equations, in which e−jφl ≜ [ejϕl,1 , . . . , ejϕl,K ]H ∈
CK , α̃m,l ≜ [α2

m,l(−K+1), . . . , α2
m,l(K−1)]T ∈ R2K−1 and

r̄t,l ≜ [rt,l(K − 1), . . . , rt,l(−K + 1)]T ∈ C2K−1 sequence
reverse [28]:
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Fig. 2: Range profile for PMCW MIMO radar

TABLE II

Range (m) Speed (m/s) θ (deg.) ϕ (deg.) σ (m2)
1 5 BPM(0.6), PMCW(7.2) 4 0 1
2 5 BPM(0.6), PMCW(7.2) -5 0 1
3 7 BPM(0.6), PMCW(7.2) 2 0 0.2
4 5.6 BPM(0.56), PMCW(6.7) -5 0 0.2

TABLE III

Range (m) Speed (m/s) θ (deg.) ϕ (deg.) σ(m2)
1 5 0 0 15 1
2 5 0 12 0 1

∇φt
fau(φ

(i)
t ) = 4ℑ[e−jφ(i)

t ⊙ ((α̃t,t ⊙ rt,t)⊛ ejφ
(i)
t )k+K−1],

∇φt
fcr(φ

(i)
t ) = 2ℑ

M∑
l=1,l ̸=t

[e−jφ(i)
l ⊙ ((α̃t,l ⊙ r̄m,l)⊛ e−jφ(i)

t )k+K−1].

V. SIMULATION AND RESULTS

As a case study for 4D-imaging in this section, we consider
TI imaging radar (from Texas Instruments), with LT = 12 Tx
and LR = 16 Rx channels [29], and set B = 300MHz, and
ROI = 100m. In order to compare range sidelobe level and
range mainlobe width of our proposed waveform with other
traditional waveforms such as FMCW, Windowed FMCW
(weighted by Hamming window) and Golomb sequence, we
show the range profile of each waveform for Single-Input
Multiple-Output (SIMO) radar in Fig. 1. The range profile
for FMCW signals is the Fast Fourier Transform (FFT) of
beat frequency and for PMCW signals is the matched-filter
output. This figure shows that our proposed waveform has a
very low sidelobe level while maintaining a narrow mainlobe
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width. Despite the fact that our proposed waveform has a
very high sidelobe level outside of ROI, we can perfectly
use it in automotive applications due to the small required
ROI. Fig. 2, illustrates PMCW waveforms (random-phase and
proposed waveforms) in a 4D-imaging MIMO setting with 12
transmit antennas. The length of code sequences is set to be

3000, which is related to a pulse duration 10µs. It can be seen
that, by considering weights αk = 1, k ∈ −K + 1, . . . ,K − 1
(when ROI equals to the code length), our proposed method
has the same performance as the random-phase sequence. On
the other hand, an optimized set of sequences with a weight
in the ROI (corresponding to a range of 100m), significantly
reduces the range sidelobes (almost −60 dB), and outperforms
the others. Finally, the performance of a PMCW MIMO radar
using the sequence set optimized in this paper is compared
to that of traditional FMCW radars in Fig. 3 and Fig. 4. We
consider I = 4 targets with different parameters specified in
TABLE II. The red points in these figures show the ground
truth for the targets. The total number of Q = 32 pulses
in a CPI is transmitted and also Pulse Repetition Frequency
(PRF) = 10 KHz has been used for this simulation. In Fig. 3,
a windowed FMCW waveform (with Hamming window) is
transmitted from M = 12 transmit antennas with BPM-
MIMO modulation. As a result of the windowing function, the
mainlobe width is slightly increased. In Fig. 3a, a weak target
is covered by the range sidelobes of the strong target and it is



hard to be detected. Compared to the PMCW MIMO case, the
maximum unambiguous velocity is reduced with increasing
the number of transmit antennas, which can be seen in Fig. 3b
and Fig. 3c. These two figures, show the Angle-velocity map
in two range cuts, that is R = 5m and 7m. Fig. 3d also shows
the angle-range map, which is wide in range domain due to
the windowing operation.

Compared to other existing PMCW waveforms, which have
the problem of high sidelobe levels, our proposed PMCW
waveform has a very low sidelobe level in the required ROI
(due to the considered weights in the optimization). Thus,
as it is seen in Fig. 4a, the range resolution is preserved
while the weak target has been also detected in range. Due to
the fast-time orthogonality based on CDM-MIMO, as another
advantages of PMCW, the maximum detectable unambiguous
velocity is increased. This concept is illustrated in Fig. 4b
and Fig. 4c, where a Doppler velocity of M times of that
in BPM-MIMO case has been detected, e.g., 0.6 × 12 = 7.2
m/s). Furthermore, Fig. 4d, the angle-range map, shows the
better range resolution for the proposed PMCW radar. To add
elevation estimation to the range-angle-velocity estimation,
as in real 4D-Imaging radars, we consider two targets in
the same range with the parameters defined in Table III.
For the assessment of our proposed PMCW waveform, the
azimuth-elevation map is depicted in Fig. 5. It can be seen
that range–Doppler–azimuth–elevation estimation can be done
with our proposed PMCW waveform using 2D planar array of
AWR2243 4D-Imaging radar.

VI. CONCLUSION

In this paper, we proposed a generic signal model for
different multiplexing techniques, such as TDM, DDM, CDM
with Hadamard coding and fast-time CDM with PMCW
waveforms. Furthermore, we introduced WBGD method to
design transmit sequences with near perfect orthogonality in
terms of correlation sidelobes. We simulated and compared the
performance of different methods and finally, showed that the
proposed WBGD technique can achieve a good performance
in 4D-imaging automotive MIMO radar systems.
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