
Citation: Mohammad, Z.; Anwary,

A.R.; Mridha, M.F.; Shovon, M.S.H.;

Vassallo, M. An Enhanced Ensemble

Deep Neural Network Approach for

Elderly Fall Detection System Based

on Wearable Sensors. Sensors 2023, 23,

4774. https://doi.org/10.3390/

s23104774

Academic Editor: Valentina Agostini

Received: 21 March 2023

Revised: 27 April 2023

Accepted: 12 May 2023

Published: 15 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Enhanced Ensemble Deep Neural Network Approach
for Elderly Fall Detection System Based on Wearable Sensors
Zabir Mohammad 1 , Arif Reza Anwary 2,* , Muhammad Firoz Mridha 3 , Md Sakib Hossain Shovon 3

and Michael Vassallo 4

1 Department of Computer Science and Engineering, Bangladesh University of Business and Technology,
Dhaka 1216, Bangladesh; zabir@bubt.edu.bd

2 School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
3 Department of Computer Science, American International University—Bangladesh (AIUB),

Dhaka 1229, Bangladesh; firoz.mridha@aiub.edu (M.F.M.); sakib.aiub.cs@gmail.com (M.S.H.S.)
4 Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK; michael.vassallo@uhd.nhs.uk
* Correspondence: a.anwary@napier.ac.uk; Tel.: +44-7589411528

Abstract: Fatal injuries and hospitalizations caused by accidental falls are significant problems
among the elderly. Detecting falls in real-time is challenging, as many falls occur in a short period.
Developing an automated monitoring system that can predict falls before they happen, provide
safeguards during the fall, and issue remote notifications after the fall is essential to improving the
level of care for the elderly. This study proposed a concept for a wearable monitoring framework
that aims to anticipate falls during their beginning and descent, activating a safety mechanism to
minimize fall-related injuries and issuing a remote notification after the body impacts the ground.
However, the demonstration of this concept in the study involved the offline analysis of an ensemble
deep neural network architecture based on a Convolutional Neural Network (CNN) and a Recurrent
Neural Network (RNN) and existing data. It is important to note that this study did not involve
the implementation of hardware or other elements beyond the developed algorithm. The proposed
approach utilized CNN for robust feature extraction from accelerometer and gyroscope data and RNN
to model the temporal dynamics of the falling process. A distinct class-based ensemble architecture
was developed, where each ensemble model identified a specific class. The proposed approach was
evaluated on the annotated SisFall dataset and achieved a mean accuracy of 95%, 96%, and 98% for
Non-Fall, Pre-Fall, and Fall detection events, respectively, outperforming state-of-the-art fall detection
methods. The overall evaluation demonstrated the effectiveness of the developed deep learning
architecture. This wearable monitoring system will prevent injuries and improve the quality of life of
elderly individuals.

Keywords: deep learning; fall detection; pre-fall detection; ensemble architecture; convolutional
neural network; recurrent neural network

1. Introduction

Falls are a major health concern for elderly individuals, with the potential to result
in severe injuries, hospitalization, and even death when they cause head-related injuries.
Moreover, medical studies have shown that severe injuries caused by falls are highly head
related injuries. As a result, individuals must receive medical attention as soon as possible
when they fall. However, detecting falls before they occur may play a critical role in
preventing such incidents and improving the quality of life for seniors [1,2]. In recent
years, there has been a growing interest in developing fall detection systems (FDS) that
use wearable sensors and deep learning (DL) algorithms to detect and alert caregivers or
medical professionals in the case of a fall.

There is a rapid growth in the use of wearable sensors for fall detection systems, using
inertial sensors such as accelerometers, gyroscopes, magnetometers, and inertial measure-

Sensors 2023, 23, 4774. https://doi.org/10.3390/s23104774 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23104774
https://doi.org/10.3390/s23104774
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0270-5608
https://orcid.org/0000-0002-3802-0045
https://orcid.org/0000-0001-5738-1631
https://orcid.org/0000-0002-5013-8556
https://doi.org/10.3390/s23104774
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23104774?type=check_update&version=2

Sensors 2023, 23, 4774 2 of 17

ment units (IMU), as well as pressure sensors [3,4]. Several studies have demonstrated the
effectiveness of using accelerometers on the waist and wireless accelerometers in identi-
fying fall events with high accuracy rates ranging from 86% to 99% [5,6]. Considerable
efforts have been devoted to creating wearable devices that can detect falls after they occur
to ensure prompt medical assistance. Since it only provides assistance after the impact
injuries have already occurred, it is considered reactive. Therefore, researchers have now
redirected their focus toward fall prevention systems (FPS), which are performed through
fall risk assessment and intervention. This approach can filter out older individuals with
high fall risks early and apply appropriate strategies to prevent future falls [7,8]. A Pre-Fall
prediction is an emerging approach that can overcome the limitations of fall detection
systems. The approach can also help prevent fall-related injuries by predicting falls before
they occur and by activating on-demand fall safety systems, such as wearable airbags, in
real-time. However, accurately predicting falls before the ground impact is challenging due
to the short duration of falls (around 0.8 s) and extensive annotation of the falling process.
Very little research has been conducted under such circumstances. Musci et al. [9] devel-
oped an RNN-based model with LSTM blocks on the SisFall dataset, achieving sensitivity
scores of 0.93, 0.84, and 0.93 for Non-Fall, Pre-Fall, and Fall events, respectively, as well as
specificity scores of 0.95, 0.95, and 0.98, and accuracies of 0.94, 0.89, and 0.95. However, the
sensitivity and accuracy scores needed improvement in their approach. Torti et al. [10] also
used the SisFall dataset and developed an embedding RNN method, obtaining sensitivity
scores of 0.88, 0.91, and 0.97 for Non-Fall, Pre-Fall, and Fall events, specificity scores of
0.97, 0.90, and 0.97, and accuracies of 0.92, 0.90, and 0.97. Unfortunately, this model also
struggled to achieve good sensitivity and specificity scores for Non-Fall events. In contrast,
Xiaoqun et al. [11] proposed a better model, ConvLSTM, based on convolution and the
LSTM network. This model achieved a comparatively better performance, with sensitivity
scores of 0.93, 0.93, and 0.96, specificity scores of 0.96, 0.94, and 0.98, and accuracies of
0.94, 0.93, and 0.97 for Non-Fall, Pre-Fall, and Fall events, respectively. While existing
approaches have shown promising results, there are still some limitations that need to be
addressed. More research is required to improve them, as there has been adequate study of
this three-class problem.

For gait analysis, Anwary et al. [12] investigated the optimal location for wearable
sensors, Ref. [13] automated the extraction of gait parameters, and [14] evaluated gait
abnormalities. In this paper, we proposed a class-based ensemble architecture approach
that encourages learning each ensemble for one specific event to improve the accuracy
of elderly fall detection. Our approach utilizes wearable sensors placed on the waist to
capture multiple sources of information and increase the robustness of the system. We
evaluated our proposed method on a real-world dataset and compared its performance with
existing state-of-the-art approaches, demonstrating its potential for real-world deployment
in elderly care facilities and home settings.

The following are the contributions of the proposed work:

• The proposed work introduces a wearable fall detection framework that can accurately
detect Non-Fall, Pre-Fall, and Fall events. In the case of a Pre-Fall event, the framework
will activate safety measures to prevent severe head injuries before the individual hits
the ground. Additionally, the framework will issue remote notifications in the event
of a fall to ensure timely medical assistance.

• A novel class-based ensemble architecture was developed for receiving sensory data
through a head model, resulting in improved accuracy due to every ensemble memo-
rizing a single class.

• We conducted experiments on different configurations of the proposed architecture’s
CNN and RNN components. By combining the use of CNN and RNN, our model can
capture both short-term and long-term dependencies in human motion. The CNN
model focuses on short-term dependencies, while the ensemble RNN model captures
long-term dependencies by analyzing feature maps over a sequence of data. Our result
analysis confirms that this architecture provides higher accuracy than other models.

Sensors 2023, 23, 4774 3 of 17

2. Materials and Methods
2.1. Dataset and Material

Many human activity datasets with fall events have been proposed in the literature [15].
However, most of them have been simulated by young volunteers, which is challenging
for real-life scenarios. We chose six datasets from among them for consideration: [16–21].
Following a comparative analysis shown in Table 1, we decided that SisFall [21] was the
most suitable dataset for this work. We selected SisFall for developing and evaluating deep
learning algorithms for two major reasons. First, compared to other publicly available
datasets such as MobiFall [18] and UMAFall [19], it has the largest amount of data in terms
of the number of subjects and the number of activities. Second, there are 15 older subjects
out of a total of 38 subjects in the SisFall dataset with same number of male and female
participants, and the protocol is validated by medical staff. As a result, the data pattern in
the SisFall dataset should be similar to that of the real-life activities of daily living (ADLs)
and fall scenarios of older people. ADLs are routine activities that individuals perform
every day to take care of themselves, such as bathing, dressing, grooming, toileting, eating,
and mobility.

Table 1. Comparative analysis of existing fall detection datasets.

Dataset Type
of Sensors

Sensor
Position

Number of
Subject
(Male/Female)

Age Range Trials

Number of
Activity
Types
(ADL/Fall)

Number of
Samples
(ADL/Fall)

Vilarinho et al. [16]
Accelerometer,
Gyroscope and
Megnetometer.

Wrist,
thigh pocket 3 22–32 - 22 (7/15) 117 (45/72)

T-fall [17] Accelerometer Thigh pocket 10 (7/3) 20–42 3 - 10,909
(9883/1026)

Mobi-fall [18] Accelerometer,
Gyroscope Thigh pocket 24 (17/7) 22–47 1/3/6 13 (9/4) 630 (342/288)

Uma-fall [19]
Accelerometer,
Gyroscope and
Magnetometer

Waist, wrist,
ankle
and chest.

17 (11/6) 18–55 3 11 (8/3) 561 (332/209)

Umi-shar [20] Accelerometer Thigh pocket 30 (6/24) 18–60 - 17 (9/8) 11,771
(7579/4192)

Sis-fall [21] Accelerometer
and Gyroscope waist 38: 15 elderly,

23 young adults 18–75 1/5 34 (19/15) 4505
(2207/1798)

The SisFall dataset contains recordings from 38 volunteers: 23 young subjects and
15 elderly subjects, who each performed 34 different activities in a controlled scenario
(19 ADLs and 15 falls) with multiple trials for a total of 4510 complete sequences. The
SisFall dataset was collected using a custom board with two tri-axial accelerometers and a
tri-axial gyroscope operating at 200 Hz. The recording device was placed on the volunteers’
waists with a fixed orientation to the body. Annotations in the SisFall dataset classify each
entire activity as a fall or an ADL. However, there is no specific indication of when a fall
occurs in the sequence of readings or when a particular ADL occurs, which is insufficient
to support the training of an RNN method aiming for the real-time detection of falls.
Therefore, the annotations must have been presented in event-specific time intervals to
accommodate the training process. A labeling proposal was introduced to this dataset
in [9]. Each temporary sample was categorized as either belonging to a fall event, an alert
(fall hazard), or a daily life activity. To the best of our knowledge, this is the only publicly
available fall dataset that takes into account fall hazard events, such as the moments just
before a fall or a dangerous situation when a user was able to avoid falling. Figure 1

Sensors 2023, 23, 4774 4 of 17

illustrates a reflective diagram of annotations, which shows the three-axis acceleration data
of different samples.

(a) : Signals of accelerometer data while Walking stairs (slowly)

(b) : Signals of accelerometer data while Sitting (collapse down)

(c) : Signals of accelerometer data of falling forward while jogging(trip)

Figure 1. The figure illustrates the annotation of the SisFall dataset’s accelerometer sensor data [21]
of samples. (a) consists of a Non-Fall state (no fall has occurred). (b) consist of Non-Fall and Pre-Fall
states (fall is initiated but did not impact the ground). (c) consist of Non-Fall, Pre-Fall, and Fall states
(fall is initiated and impacts the ground).

In [9]’s annotation process of SisFall, each raw SisFall sequence was first passed
through a low-pass Butterworth filter to remove high-frequency noise. Then, using standard
Z-Score normalization, all readings were converted into the [−1, +1] range. As a recurrent
neural network requires a fixed length of sequences, this length is known as width. The
dimension of each value in the sequence is fixed. The values in this issue are a tuple with
three elements that correspond to the three axes of the accelerometer or gyroscope. From
now on, we will refer to each tuple with the term sample throughout the manuscript.
Similarly, each sequence of samples with a fixed width will be referred to as a block. The
dataset establishes a block width of 256 timesteps and approximately 1.28 s of sensor data.
A 50 percent overlapping was used to extract the block from the whole sequence of raw
sensor data. Each block must have an associated label corresponding to the event class to
train an RNN mode. Therefore, we applied the proposal from [9], in which each block is
categorized based on the frequency of appearance of the most relevant class. The labeling
data are associated with three types of events:

• Non-fall: the time interval during which the person performs ADLs.
• Pre-fall: the time interval during which a person transitions from a controlled to a

dangerous state, which may result in a fall.

Sensors 2023, 23, 4774 5 of 17

• Fall: the time interval during which the person is in a state transition that leads to
a fall.

2.2. Proposed FDS Framwork

The proposed fall detection framework, as depicted in Figure 2, aims to detect falls
and prevent fall-related injuries in elderly individuals by utilizing wearable devices. The
framework consists of two interconnected devices that can communicate with each other
through wired or Bluetooth connections. The first device is an embedded wearable sensor
placed on the waist, which contains an accelerometer and a gyroscope for data acquisition
and fall detection. The second device is an airbag helmet worn around the neck to prevent
head injuries resulting from a fall.

The initial phase of the proposed framework involved the acquisition of sensor data
through the embedded wearable device in real-time. To prepare the data for processing,
normalization was applied to normalize the sensor data within the range of [−1, +1]. The
normalized data were then passed to a deep learning model, as discussed in Section 2.4, to
perform a three-class classification.

In the event that the deep learning model predicts a Pre-Fall event, the embedded
device sends a signal to the airbag helmet to inflate, thereby preventing head injuries.
Similarly, if a Fall event is predicted, the model sends an alert to the cloud via Cloud
Communication, which exploits backhaul networks to transmit data to the cloud. The Data
Analytics Unit (DAU) in the cloud provides various microservices, such as sending remote
notifications to relatives and arranging emergency medical services for initial medical aid.

It should be noted that while, the proposed fall detection framework has been de-
signed and its functionality has been described, the wearable devices and their hardware
implementation have not yet been developed as part of this study. The proposed framework
represents a concept that will require further development and implementation to realize
its full potential.

Z

X

Y

Medical
Emergency

Police
Emergency

Neck Wearable
 Device

Waist Wearable
Device

Cloud
Communication Data Analytic Unit

Remote
Notification

DAU's MicroservicesFall Initialization Fall Event Standing Position

Figure 2. The figure illustrates the proposed fall detection framework. Two interconnected wearable
devices have been attached to the subject: one placed on the waist is an embedded device for data
acquisition from sensors and fall detection, and the other is an airbag helmet designed to inflate to
prevent head-related injuries when falls are detected. Additionally, it issues a remote notification to
provide immediate medical assistance.

2.3. Architectural Motivation

Ensemble approaches in neural network architecture have been found to enhance
model performance by combining several sub-models to improve accuracy [22]. Compared
to simple models, ensemble architectures are less susceptible to overfitting and produce
more accurate results [23]. Additionally, ensembles are capable of dealing with complex
data patterns that a single model may struggle to recognize [24]. Ensemble methods
have been implemented in various domains such as geospatial land classification, face
recognition, image segmentation, and more. In literature [25], the authors addressed

Sensors 2023, 23, 4774 6 of 17

three key reasons why ensemble architectures may outperform traditional models. Firstly,
the training phase may not contain sufficient data to produce the best classifier. Secondly, a
single algorithm may fail to converge to the global optimum, but an ensemble of algorithms
starting from different points could lead to a better approximation of the global optimum.
Finally, the space being searched may not contain any optimum position, but an ensemble
may lead this space to a better optimum position. Ensembles are a powerful tool in
machine learning, and researchers continue to explore new ways to leverage their potential
for improved model performance.

In the current context of deep learning, there exist three widely used types of ensemble
classifier architecture: (1) stacked ensembles, (2) weight average ensembles, and (3) class-
based ensembles. The stacked ensemble architecture involves input data passing through
multiple sub-models, and the data stream is then directed to a final learning model which
generates the output of the classifier. This process can be represented mathematically as

Eφ(x) = f
(
ε1(x), ε2(x), · · · · ··, εn(x)

)
(1)

where x is input data, Eφ() is a stacked ensemble model, ε() is the ensemble sub-models,
f () is the final learning model, and n is the number of sub models.

The weight average ensemble architecture calculates the predictions of multiple mod-
els separately and then combines them through weight multiplication calculations to
generate the final prediction [26]. This can be expressed mathematically as

Eφ(x) = argmax
(
ω1 · ε1(x), ω2 · ε2(x), · · · · ··, ωn · εn(x)

)
, (2)

where x is input data, Eφ() is a weighted average ensemble model, ε() is the ensemble
sub-models, ω is weights for each ensemble model and n is the number of sub models.

The class-based ensemble architecture is characterized by having the same number
of ensemble models as the number of classes to be identified. Each ensemble model is
trained to recognize a specific category, and together they form a complete system that
can accurately classify input data [27]. This architecture can be mathematically derived
as follows:

Eφ(x) = argmax
(
ε1(x), ε2(x), · · · · ··, εn(x)

)
, (3)

where x is input data, Eφ() is a class-based ensemble model, ε() is an ensemble sub-model
for the i-th class, and n is the number of output classes.

Inspired by the enhancements achieved through ensemble architectures, we have
created an ensemble architecture that delivers comparable results to the class-based en-
semble architecture. However, our proposed architecture has some slight variations from
the class-based ensemble architecture. Mathematically, the proposed architecture can be
formulated as follows:

Eφ(x) = argmax
(

ε1
(

f (x)
)
, ε2

(
f (x)

)
, · · · · ··, εn

(
f (x)

))
, (4)

where x is input data, Eφ() is the proposed ensemble model, ε() is the ensemble sub-model
for the i-th class, f () is the head model, and n is the number of output classes.

Our proposed ensemble architecture was inspired by the success of class-based ensem-
bles but has some unique features [28]. Instead of passing inputs directly to the ensemble
models, our architecture uses a head model as an auxiliary feature extractor. The head
model selects relevant feature embeddings and reduces the dependence on the ensemble
models. We kept the number of ensembles equal to the number of target classes, and
each ensemble model learns explicitly to identify a particular class. Figure 3 illustrates
the proposed ensemble approach. This approach allows individual ensemble models
to focus on recognizing a specific class, which may improve the accuracy of the overall
proposed architecture.

Sensors 2023, 23, 4774 7 of 17

Ensemble
Model1

Head Model

Ensemble
Model2

Ensemble
Modeln

Concatenation

Output

Sigmoid
Activation

Sigmoid
Activation

Sigmoid
Activation

Figure 3. The figure depicts the architectural strategy of the class-based ensemble architecture. Inputs
flow through the head model, which is further passed through the class-specific ensemble submodels.

2.4. Architecture

The proposed architecture comprises two main components: the feature extractor
model (head model) and the ensemble model. The feature extractor model receives input
sensory data and generates embeddings, which are then fed to the ensemble models. Each
ensemble model is responsible for recognizing a specific target class, so the number of
ensemble models must match the number of possible categories. Using the head model
offers several advantages over the typical class-based model. Higher parameters in an
architecture increase the risk of overfitting, which is especially problematic for wearable
devices that require less parameterized models. Passing the input through a head model
reduces the number of irrelevant features and the number of trainable parameters, leading
to a significant reduction in computation and overfitting [29]. Overall, our proposed en-
semble architecture offers the following benefits: each ensemble extracts only the necessary
information to recognize a specific class, resulting in an approximate optimal position for
each class and superior accuracy; and the use of the head model significantly reduces the
number of parameters required for each ensemble model.

Figure 4 illustrates the architectural specifications of the proposed class-based ensem-
ble architecture. The architecture is split into two parts: the head model and the ensemble
model. The head model consists of CNN and the ensemble model consists of RNN. The use
of combined CNN and RNN was inspired by [11] work. CNN acts as a feature extractor
that provides an abstract representation of the input sensor data in a feature map. The
CNN captures the short-time dependency of the sensor data. Further, the feature maps are
passed through an ensemble model. The recurrent layers of the ensemble models deal with
long-term temporal dynamics of the activation of the feature maps and recognize features
over time in sequential data. CNN layers capture features from raw data and pass them to
RNN layers to discover temporal correlations, potentially saving computing time.

Sensors 2023, 23, 4774 8 of 17

Dropout

Recurrent layer

BatchNormalization

Dropout

Recurrent layer

Fully Connected

Sigmoid

Dropout

Recurrent layer

BatchNormalization

Dropout

Recurrent layer

Fully Connected

Dropout

Recurrent layer

BatchNormalization

Dropout

Recurrent layer

Fully Connected

Pooling: p=3, s=2

Conv: k=3

Activation first Conv : k=3

Pooling p=3, s=2

+

Activation first Conv : k=3

Activation first Conv : k=3

Activation first Conv : k=3

+

Activation first Conv : 16

Activation first Conv : k=3

Pooling : p=3, s=2

+

Conv block : k=3

Conv : k=1 , s=2

Conv: k=1, s=2

Conv Block: k=3,s=1Head Model

Ensemble model

Skip connection block

d times

Conv Convolutional

BatchNormalization

Conv Block Conv

Activation

Activation first
Conv Activation

Conv

k = Kernel size, s = Strides, p = Pool size
Legend

Optional Optional

SigmoidSigmoid

Figure 4. The figure illustrates the head and ensemble model of the architecture. The head network
receives input sensor data, and the processed data. It further forwards the processed data to the
multiple ensemble models. The optional block provides flexibility as it allows the user to choose how
many times to use it, or to not use it at all.

2.5. Data Augmentation

Data augmentation has been proven to enhance the generalization of machine learning
models, and is especially effective when training deep neural networks. It can be defined
as a technique to enhance the diversity of the data by minor transformations of already
existing data. In addition, data augmentation helps to prevent overfitting and improve
the generalization ability of a DL model. In image recognition, data augmentation is a
well-known process for training DL models. However, augmenting wearable sensor data
is challenging due to maintaining label-preserving augmentation. Label-preserving aug-
mentation refers to a technique used in machine learning to augment the training data by

Sensors 2023, 23, 4774 9 of 17

applying transformations to the input images while preserving the labels. For example, scal-
ing the acceleration data may change their labels because the motion intensity differentiates
some labels. However, small changes in magnitude may preserve the labels. Nevertheless,
in this work, we used arbitrary rotation, scaling, and jitter transformation processes defined
in [30] to augment the data. Furthermore, the transformation process was labeled invariant,
which does not change the sensor data characteristics. Thus, we maintained the label of the
augmented data based on their original label. The transformations are follows:

• Rotation: Rotation of sensor data refers to the transformation of the data by rotating
it around a specified axis or point in three-dimensional space. The rotation can be
represented by three angles, known as Euler angles, which specify the amount of
rotation around each axis. In this experiment, we uses a rotation angle in the range
(−π, π) radian.

• Scaling: Scaling sensor data refers to rescaling the magnitude of the sensor data in a
window by multiplying it by a random scalar, where the random scalar is sampled
from a normal distribution with a mean of 1 and a standard deviation of 0.1. The
choice of a standard deviation of 0.1 for the scaling factor helps to ensure that the
augmented data are not too different from the original data, while still introducing
some variability

• Jitter: Jittering is a data augmentation technique used to simulate sensor noise. It
adds random noise to the sensor data to make it more robust against both additive
and multiplicative noise. By adding noise to the data, the model can learn to be more
resilient to unexpected variations in the sensor readings. In this case, the standard
deviation of the noise added was set to 0.01, which determines the amount of random
noise that is added to the sensor data during the jittering process.

Most use data augmentation processes to train neural networks to increase the data
samples. However, our study used a non-generative augmentation (online augmentation)
process to train the network. The process can be seen as randomly taking training data and
applying augmentation techniques before fitting the model. This technique does not save
any disk data and preprocesses data in real-time while making the training batch data.

Algorithm 1 outlines the process for generating each batch of data during training of
the neural network model. The algorithm starts by initializing transformation probabilities
for rotation, scaling, and jitter. For each batch, the algorithm selects half of the batch’s
data and randomly chooses a transformation for each data point based on the assigned
probabilities, and applies the chosen transformation to the selected data within the batch.
This process was repeated for each batch during the training phase, with the objective of
enhancing the model’s resilience to noise and augmenting its overall performance.

Algorithm 1: Online data augmentation algorithm.
Input: Subset of the dataset for training X, transformation probability ω, training

batch per iteration batchSize, training iteration Ep
Output: Training set for DL model.
Initialize a transformation probability for rotation, scaling, and jitter;

ω = {0.6, 0.3, 0.1} ,respectively;
foreach epoch← 1 to Ep do

foreach Xbatch ∈ X do
counter ← 0;
foreach x ∈ Xbatch do

if counter mod 2 then
Xbatch[counter]← randomly choose transformation according to
transformation probability and apply transformations on x ;

counter ← counter + 1;
Xbatch ← half of the training batch data augmented.

Sensors 2023, 23, 4774 10 of 17

3. Results
3.1. Evaluation Metrics

Due to the highly imbalanced data of each class, traditional classification accuracy
is not suitable for analyzing the system’s effectiveness. To measure the effectiveness of
the proposed architecture, we calculated the metrics individually for each event, where
Events ∈ {Non− Fall, Pre− Fall, Fall}. That allowed us to compute accuracy using an
unbalanced number of Non-Fall, Pre-Fall, and Fall events in a single test. Three evaluation
metrics were used in the method, which is presented as follows:

• Accuracy: Accuracy is one of the most fundamental evaluation metrics. It can be
formally defined as the ratio of accurateness over all experiments. It can be defined as:

Accuracyc∈Events =
TPc + TNc

TPc + TNc + FPc + FNc
. (5)

• Sensitivity: Sensitivity is also known as recall score or true positive rate. It refers to the
correctness of the true positive events of each available class. It can be mathematically
defined as

Sensitivityc∈Events =
TPc

TPc + FNc
. (6)

• Specificity: Specificity is also known as the true negative rate. It refers to the percent-
age of all negative samples that the model correctly predicts as negative. It can be
represented as

Speci f icityc∈Events =
TNc

TNc + FPc
, (7)

where c ∈ Events and Events → {Non − Fall, Pre − Fall, Fall}. For a specific event, c,
TPc is the number of events correctly classified as the event; FNc is the number of events
incorrectly classified as the event; FPc is the number of events misclassified as the event;
and TNc is the number of events correctly classified as not the event.

3.2. Model’s Training

The overall architecture was implemented using the Tensorflow, Keras, Scikit-learn, and
NumPy libraries. The input data for training have six dimensions, including a three-axis
accelerometer and a three-axis gyroscope. The architecture was trained using a batch size of
128 with a maximum epoch of 200. With an initial learning rate of 0.0005, the Adam [31]
optimizer was used to train the architecture and the loss function used was weighted binary
cross-entropy loss.

A particular train test set was selected to access the proposed model’s generalization
and evaluate the architectures with the state-of-the-art. There were 23 young and 15 elderly
volunteers who contributed to the dataset. To mitigate any bias in the architecture and
ensure accurate measurement of each architecture’s accuracy, we defined the test set
containing four young and two elderly people’s activities as in [9]. The remaining person’s
activities were split into the training and validation sets with an 80–20% ratio. This train–test
set separation prevented us from having the same subject appear in both the training and
test sets. Thus, we could measure the architecture’s robustness in a real-life scenario. All
the experiments were conducted on this specific dataset. Furthermore, the final displayed
result represents three training runs’ mean and standard deviation.

3.3. Result Analysis

In the result comparison, we split the section into three subsections. First, we analyzed
the proposed architecture with different hyperparameters, such as the number of skipped
convolution blocks, the number of recurrent layers, and the width of the network, in
terms of the sensitivity of the architecture. Secondly, we analyzed the baseline architecture
from hyperparameter tuning with different convolution layers, such as convolutions and
separable convolutions [32], pooling layers, such as max-pooling and average pooling,
activation layers, such as Relu and Swish [33], and recurrent layers, such as LSTM, GRU [34],

Sensors 2023, 23, 4774 11 of 17

and bidirectional [35]. Finally, we compared our proposed architectural results with state-
of-the-art real-time FDS detection works.

Table 2 summarizes the result of the hyperparameter tuning experiment on testing
data. The proposed architecture receives the sensory data through the head model. The
head model is used as a feature extractor of the input data to generate sequential embedding.
Furthermore, the embeddings are passed to the ensemble model for sequential processing
to classify events. As the experiments show, increasing the number of skipped convolution
blocks 3 to 4 in the head model decreases the architecture’s performance. The ensemble
model consists of recurrent layers for processing sequential data. Increasing the number of
recurrent layers from 1 to 2 in the ensemble model increases the architecture’s performance
by 2%. Increasing the number of recurrent layers from 2 to 3 has a performance gain
of 0.05%. However, increasing the recurrent layers results in a considerable parameter
expansion, and sequential processing requires time. As our process is in real-time, the
increasing processing time is not considered for the work. Our experiments found that
three skipped convolution blocks for the head model and two recurrent layers for the
ensemble model are suitable for the architecture.

Table 2. The table illustrates the hyperparameter tuning experiment, such as the number of skipped
convolution blocks, the width of the head model, the number of recurrent layers, and the width of the
ensemble network, in terms of the sensitivity of the architecture. Table is based on all possible outcomes
of the best results obtained from hyperparameter tuning. We performed extensive experimentation
with various hyperparameter configurations to find the optimal settings for our ensemble deep neural
network architecture. As mentioned in the paper, our proposed model is an ensemble of convolutional
neural network (CNN) and recurrent neural network (RNN), which is a nonlinear model.

Head Model Ensemble Model Sensitivity

No. of skipped
Convolutional Blocks Width No. of

Recurrent layers Width Non-Fall Pre-Fall Fall

2 (16,16,16) 1 (16) 0.89 0.87 0.94
2 (16,16,32) 1 (32) 0.88 0.85 0.91
2 (16,16,16) 2 (16,16) 0.90 0.88 0.94
2 (16,16,32) 2 (32,64) 0.88 0.87 0.91
2 (16,16,16) 3 (32,32,64) 0.88 0.88 0.90
2 (16,32,64) 3 (64,64,128) 0.87 0.86 0.89
2 (16,16.16) 4 (16,16,32,32) 0.89 0.88 0.90
2 (16,16,32) 4 (32,32,64,64) 0.89 0.82 0.88
3 (16,16,16) 2 (16,16) 0.91 0.89 0.96
3 (16,32,32) 2 (32,32) 0.90 0.87 0.94
3 (16,32,64) 3 (64,64,128) 0.90 0.88 0.94
3 (16,16,16) 3 (16,16,16) 0.91 0.89 0.97
3 (16,16,32) 4 (32,32,64,64) 0.91 0.87 0.94
3 (16,32,64) 4 (64,64,128,128) 0.90 0.88 0.93
4 (16,16,16) 2 (16,16) 0.92 0.90 0.94
4 (16,16,32) 2 (32,64) 0.90 0.89 0.92
4 (16,32,64) 3 (64,64,128) 0.89 0.87 0.89
4 (16,16,32) 3 (32,32,64) 0.90 0.88 0.90
4 (16,16,16) 4 (16,16,16,16) 0.92 0.90 0.95
4 (16,32,64) 4 (64,64,128,128) 0.89 0.88 0.91

Traditional deep learning architecture increases the width of the network for each
block. However, our experiment shows that the same architectural width produces better
results than increasing the width of the architecture. Furthermore, the optimal width of
the network is set at 16. Table 2 shows that expanding the network’s width decreases the
architecture’s performance because, in the ensemble model, the width is greater than the
data’s sequentiality. However, the low-level width of the network has one other advantage;
the model is less parameterized and requires fewer computational costs.

Sensors 2023, 23, 4774 12 of 17

We further investigated our proposed baseline architecture in the table with different
layer configurations. Table 3 shows the performance analysis with varying compositions
of layers. First, the head model was analyzed using two different convolutions, pooling,
and activation functions: the general convolution and the separable convolution with the
ReLU and the Swish activation functions, along with max pooling and average pooling.
Max pooling retains the most prominent features of the feature map and average pooling
retains the average values of features of the feature map. Due to the high peaks of sensor
data during the fall, the max pool works better than the average pool because it helps
the architecture preserve the sensor data’s peak values. From Table 3, we saw that the
swish activation function gives a superior performance boost of 3% to the ReLU activation
function in all different configurations. Swish is a smooth continuous function that allows
a small number of negative weights to be propagated through the network while ReLu
thresholds all negative weights to zero. Additionally, the trainable parameters allow better
tuning of the function to maximize information propagation and push for a smoother
gradient. It helps to optimize the network to be more accessible, thus generalizing better
and faster.

On the other hand, compared to general convolution with swish activation, separable
convolution with swish activation gives a more acceptable result, with a performance gain
of 1.5%. The reason lies in the configuration of separable convolution. While standard
convolution computes channel-wise and spatially in a single phase, separable convolution
divides the calculation into two steps: depthwise convolution uses a single convolutional
filter for each channel. Moreover, pointwise convolution generates a linear combination of
the depthwise convolution output. Therefore, separable convolutions work on multiple
filters simultaneously and tend to understand the information characteristics better. Addi-
tionally, separable convolution provides better nonlinearity than traditional convolutions,
with excellent convergence speed, minor accuracy gain, and fewer trainable parameters
than standard convolution.

Secondly, the ensemble model was analyzed using three types of recurrent layers:
LSTM, GRU, and bidirectional. From Table 3, we chose LSTM as the baseline recurrent
layer in our proposed architecture. Although bidirectional LSTM achieved a performance
gain of 0.5% over LSTM, bidirectional recurrent layers increase the network’s computa-
tional complexity and memory occupancy, making such performance improvements not
worthwhile for real-time. We also considered GRU in our experiment. However, due to
the absence of the output gate, GRU required slightly fewer computations and parameters
than LSTM but entailed a reduction in sensitivity of over 4%. From the experiment, we
found that a dropout rate of 0.5 was suitable for our architecture.

Table 4 presents a comparison of our proposed architecture with the state-of-the-art
systems. The results demonstrate that our proposed architecture outperforms the state-of-
the-art in all aspects. Two literature reviews [10,11] represent the current state-of-the-art,
respectively. Ref. [10] achieves mean accuracies of 0.93, 0.90, and 0.97 for Non-Fall, Pre-Fall,
and Fall events, respectively. Ref. [11] outperformed this result using a convolutional
recurrent architecture with mean accuracies of 0.94, 0.93, and 0.97. However, our proposed
ensemble-based convolutional recurrent architecture achieves an even higher accuracy,
with mean accuracies of 0.95, 0.97, and 0.99 for all classes.

In terms of specificity, our proposed architecture achieves a mean specificity of 0.98,
0.97, and 0.99 for Non-Fall, Pre-Fall, and Fall events, respectively, which is higher than
that of the state-of-the-art architectures. With respect to sensitivity, our proposed ensemble
model achieves a mean sensitivity of 0.96, 0.94, and 0.98, which is higher than that of
the state-of-the-art systems’ sensitivity; Ref. [10]’s 0.88, 0.91, and 0.97 and [11]’s 0.93,
0.93, and 0.96 for Non-Fall, Pre-Fall, and Fall events, respectively. Figure 5 illustrates the
losses, accuracy, confusion matrix, and ROC curve of the resultant architecture, respectively.
Figure 5a and b indicate that the model did not overfit during training, as the training and
validation loss decreased consistently and the training and validation accuracy increased
consistently without diverging from each other. However, it should be noted that these

Sensors 2023, 23, 4774 13 of 17

graphs are based on the performance of the deep learning model on simulated data, and
the actual hardware implementation of the model has not been developed in the current
scope of the study. Therefore, the results of the model’s performance on real-world data
may differ from the simulated data presented in the figure.

Table 3. The table illustrates the performance comparison with varying compositions of layers.

Head Model Ensemble Model Sensitivity

Convolutions Pooling Activations Recurrent layers Dropout Rate Non-Fall Pre-Fall Fall

Conv Max ReLU LSTM 0.5 0.91 0.89 0.97

Conv Max ReLU GRU 0.25 0.90 0.89 0.93

Conv Max ReLU Bi-directional 0.8 0.91 0.89 0.94

Conv Max Swish LSTM 0.8 0.92 0.87 0.96

Conv Max Swish GRU 0.5 0.90 0.88 0.94

Conv Max Swish Bi-directional 0.25 0.93 0.89 0.97

Conv Average ReLU LSTM 0.5 0.89 0.87 0.93

Conv Average ReLU GRU 0.25 0.88 0.84 0.89

Conv Average ReLU Bi-directional 0.8 0.90 0.83 0.85

Conv Average Swish LSTM 0.25 0.90 0.90 0.90

Conv Average Swish GRU 0.5 0.88 0.86 0.90

Conv Average Swish Bi-directional 0.8 0.90 0.89 0.91

SeparableConv Max ReLU LSTM 0.8 0.91 0.89 0.96

SeparableConv Max ReLU GRU 0.25 0.90 0.88 0.95

SeparableConv Max ReLU Bi-directional 0.5 0.92 0.90 0.96

SeparableConv Max Swish LSTM 0.5 0.96 0.94 0.98

SeparableConv Max Swish GRU 0.25 0.92 0.88 0.95

SeparableConv Max Swish Bi-directional 0.8 0.95 0.91 0.98

SeparableConv Average ReLU LSTM 0.5 0.89 0.85 0.91

SeparableConv Average ReLU GRU 0.25 0.87 0.80 0.90

SeparableConv Average ReLU Bi-directional 0.5 0.89 0.85 0.91

SeparableConv Average Swish LSTM 0.8 0.88 0.86 0.92

SeparableConv Average Swish GRU 0.25 0.87 0.83 0.87

SeparableConv Average Swish Bi-directional 0.5 0.89 0.86 0.90

Table 4. The table illustrates the comparison of proposed framework with the state-of-the-art.

Metrics Events [9] [10] [11] Proposed

Sensitivity
Non-Fall 0.93 0.88 0.93 0.96
Pre-Fall 0.84 0.91 0.93 0.94
Fall 0.93 0.97 0.96 0.98

Specificity
Non-Fall 0.95 0.97 0.96 0.98
Pre-Fall 0.95 0.90 0.94 0.97
Fall 0.98 0.97 0.98 0.99

Accuracy
Non-Fall 0.94 0.92 0.94 0.95
Pre-Fall 0.89 0.90 0.93 0.97
Fall 0.95 0.97 0.97 0.99

Sensors 2023, 23, 4774 14 of 17

(a) Training and validation loss. (b) Training and validation accuracy.

(c) Confusion matrix on test set. (d) ROC curve on test set.
Figure 5. The figure represents the (a) training and validation loss, (b) training and validation
accuracy, (c) confusion matrix, and (d) ROC curve of the resultant architecture.

4. Discussion

In this study, we proposed a class-based enhanced ensemble deep-learning architecture
that utilizes accelerometer and gyroscope sensor data to classify Pre-Fall and Fall events in
elderly individuals. The results indicate that our ensemble architecture outperforms the
state-of-the-art models in terms of sensitivity, specificity, and overall accuracy to identify
Pre-Fall, Fall, and Non-Fall events. The SisFall dataset and real-world scenarios predomi-
nantly contain Non-Falls, making the detection of Fall instances challenging. However, our
proposed architecture achieves a higher classification sensitivity in the Non-Fall class, re-
sulting in a lower false alarm rate and a 3% improvement. Even though a 3% improvement
in accuracy may seem small, in the context of an automated fall monitoring system for the
elderly, it can have significant practical benefits. It can lead to more reliable and timely
alerts, minimize false positives and unnecessary anxiety, and provide an added layer of
safety through Pre-Fall detection and the activation of safety mechanisms to prevent or
minimize fall-related injuries. Our proposed ensemble architecture comprises individual
models that focus on recognizing specific events, enabling them to achieve their ideal state
of identifying a particular event while disregarding others. This unique feature has the
potential to improve the accuracy of the architecture. Additionally, the combination of
convolutional and recurrent layers enhances the architecture’s performance by capturing
short-term dependencies of human motion through CNN and long-term dependencies
of feature maps over the time domain in the sequential data through RNN. We also used
online data augmentation to enhance the network’s performance during training. This
method involves augmenting half of the existing data during each training iteration, in-
creasing the data diversity, and improving the architecture’s accuracy. Furthermore, we
employed separable convolution to enhance the performance of the architecture. Unlike
standard convolution, separable convolution divides the calculation into depth-wise and
pointwise convolution steps, providing better nonlinearity and improving convergence
speed. Swish activation is another technique that we used, allowing negative weights to
propagate through the network and improving performance. Finally, we utilized LSTM
with memory cells to ease the learning of long-term time dependence on motion data by

Sensors 2023, 23, 4774 15 of 17

learning to store and output information based on training. Our proposed hybrid deep
learning ensemble approach using wearable sensors is a promising technique for enhancing
elderly fall detection. It outperforms the state-of-the-art models, achieves high accuracy,
and has the potential to improve the lives of elderly individuals by providing timely fall
detection and intervention.

5. Conclusions

In this study, we proposed a deep learning ensemble algorithm to enhance fall detec-
tion for elderly people using wearable sensors. The proposed method uses a class-based
ensemble architecture that combines convolutional and recurrent neural networks. Our ap-
proach achieved a mean accuracy of 95%, 0.96%, and 0.98% for Non-Fall, Pre-Fall, and Fall
events, respectively. Moreover, the proposed method outperformed existing fall detection
methods in terms of sensitivity and specificity. The results demonstrate that the proposed
algorithm is highly effective in detecting Pre-Fall and Fall events using wearable sensors.
Therefore, our approach can be implanted into wearable inertial sensor-based systems
to predict Fall events in real-time, allowing protective devices to be triggered in time to
prevent fall-related injuries in the case of Pre-Fall events and issue a remote notification for
timely medical assistance in the case of Fall events.

The findings of this research have significant implications for improving the safety
and well-being of elderly people. Falls are a significant public health problem that can lead
to serious injuries and even death in the elderly population. The proposed method offers a
potential solution to address this issue by providing accurate and timely fall detection using
wearable sensors. The proposed algorithm’s high performance in detecting Pre-Fall and
Fall events can help prevent fall-related injuries and improve the quality of life for elderly
individuals. In conclusion, our study provides a novel approach to fall detection and offers
a promising solution for improving the safety and well-being of elderly individuals.

Author Contributions: Conceptualization, Z.M. and A.R.A.; methodology, Z.M.; formal analysis,
Z.M.; investigation, Z.M.; writing—original draft preparation, Z.M. and M.S.H.S.; writing—review
and editing, A.R.A., M.F.M. and M.V.; supervision, A.R.A.; resources, Z.M.; project administration,
A.R.A. and M.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

FDS Fall Detection Systems
DL Deep Learning
IMU Inertial Measurement Units
FPS fall prevention systems
RNN Recurrent Nueral Network
LSTM Long-Short Term Memory
CNN convolutional Neural Network
ADL Activity of Daily Livings
GRU Gated Recurrent Unit
DAU Data Analytics Unit

Sensors 2023, 23, 4774 16 of 17

References
1. Silva de Lima, A.L.; Evers, L.J.; Hahn, T.; Bataille, L.; Hamilton, J.L.; Little, M.A.; Okuma, Y.; Bloem, B.R.; Faber, M.J. Freezing

of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review. J. Neurol. 2017, 264, 1642–1654.
[CrossRef] [PubMed]

2. El Halabi, N.; Daou, R.A.Z.; Achkar, R.; Hayek, A.; Börcsök, J. Monitoring system for prediction and detection of epilepsy seizure.
In Proceedings of the 2019 Fourth International Conference on Advances in Computational Tools for Engineering Applications
(ACTEA), Beirut, Lebanon, 3–5 July 2019; pp. 1–7.

3. Butt, F.S.; La Blunda, L.; Wagner, M.F.; Schäfer, J.; Medina-Bulo, I.; Gómez-Ullate, D. Fall detection from electrocardiogram (ecg)
signals and classification by deep transfer learning. Information 2021, 12, 63. [CrossRef]

4. Xi, X.; Tang, M.; Miran, S.M.; Luo, Z. Evaluation of feature extraction and recognition for activity monitoring and fall detection
based on wearable sEMG sensors. Sensors 2017, 17, 1229. [CrossRef] [PubMed]

5. Hsieh, C.Y.; Liu, K.C.; Huang, C.N.; Chu, W.C.; Chan, C.T. Novel hierarchical fall detection algorithm using a multiphase fall
model. Sensors 2017, 17, 307. [CrossRef]

6. Choi, A.; Kim, T.H.; Yuhai, O.; Jeong, S.; Kim, K.; Kim, H.; Mun, J.H. Deep learning-based near-fall detection algorithm for fall
risk monitoring system using a single inertial measurement unit. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2385–2394.
[CrossRef]

7. Choi, S.D.; Guo, L.; Kang, D.; Xiong, S. Exergame technology and interactive interventions for elderly fall prevention: A systematic
literature review. Appl. Ergon. 2017, 65, 570–581. [CrossRef]

8. Qiu, H.; Rehman, R.Z.U.; Yu, X.; Xiong, S. Application of wearable inertial sensors and a new test battery for distinguishing
retrospective fallers from non-fallers among community-dwelling older people. Sci. Rep. 2018, 8, 16349. [CrossRef]

9. Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online fall detection using recurrent neural networks on smart
wearable devices. IEEE Trans. Emerg. Top. Comput. 2020, 9, 1276–1289. [CrossRef]

10. Torti, E.; Fontanella, A.; Musci, M.; Blago, N.; Pau, D.; Leporati, F.; Piastra, M. Embedding recurrent neural networks in wearable
systems for real-time fall detection. Microprocess. Microsyst. 2019, 71, 102895. [CrossRef]

11. Yu, X.; Qiu, H.; Xiong, S. A novel hybrid deep neural network to predict pre-impact fall for older people based on wearable
inertial sensors. Front. Bioeng. Biotechnol. 2020, 8, 63. [CrossRef]

12. Anwary, A.R.; Yu, H.; Vassallo, M. Optimal foot location for placing wearable IMU sensors and automatic feature extraction for
gait analysis. IEEE Sens. J. 2018, 18, 2555–2567. [CrossRef]

13. Anwary, A.R.; Yu, H.; Vassallo, M. An automatic gait feature extraction method for identifying gait asymmetry using wearable
sensors. Sensors 2018, 18, 676. [CrossRef] [PubMed]

14. Anwary, A.R.; Yu, H.; Vassallo, M. Gait evaluation using procrustes and euclidean distance matrix analysis. IEEE J. Biomed.
Health Inform. 2018, 23, 2021–2029. [CrossRef] [PubMed]

15. Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. Analysis of public datasets for wearable fall detection systems. Sensors 2017,
17, 1513. [CrossRef] [PubMed]

16. Vilarinho, T.; Farshchian, B.; Bajer, D.G.; Dahl, O.H.; Egge, I.; Hegdal, S.S.; Lønes, A.; Slettevold, J.N.; Weggersen, S.M. A combined
smartphone and smartwatch fall detection system. In Proceedings of the 2015 IEEE International Conference on Computer
and Information Technology, Ubiquitous Computing and Communications, Dependable, Autonomic and Secure Computing,
Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015; pp. 1443–1448.

17. Medrano, C.; Igual, R.; Plaza, I.; Castro, M. Detecting falls as novelties in acceleration patterns acquired with smartphones. PLoS
ONE 2014, 9, e94811. [CrossRef] [PubMed]

18. Vavoulas, G.; Pediaditis, M.; Chatzaki, C.; Spanakis, E.G.; Tsiknakis, M. The mobifall dataset: Fall detection and classification
with a smartphone. Int. J. Monit. Surveill. Technol. Res. (IJMSTR) 2014, 2, 44–56. [CrossRef]

19. Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. Umafall: A multisensor dataset for the research on automatic fall detection.
Procedia Comput. Sci. 2017, 110, 32–39. [CrossRef]

20. Micucci, D.; Mobilio, M.; Napoletano, P. Unimib shar: A dataset for human activity recognition using acceleration data from
smartphones. Appl. Sci. 2017, 7, 1101. [CrossRef]

21. Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A fall and movement dataset. Sensors 2017, 17, 198. [CrossRef]
22. Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [CrossRef]
23. Tao, S. Deep neural network ensembles. In Proceedings of the International Conference on Machine Learning, Optimization, and

Data Science, Siena, Italy, 10–13 September 2019; pp. 1–12.
24. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
25. Dietterich, T.G. Ensemble methods in machine learning. In Proceedings of the International Workshop on Multiple Classifier

Systems, Cagliari, Italy, 21–23 June 2000; pp. 1–15.
26. Acar, E. Effect of error metrics on optimum weight factor selection for ensemble of metamodels. Expert Syst. Appl. 2015,

42, 2703–2709. [CrossRef]
27. Al-Khateeb, T.; Masud, M.M.; Al-Naami, K.M.; Seker, S.E.; Mustafa, A.M.; Khan, L.; Trabelsi, Z.; Aggarwal, C.; Han, J. Recurring

and novel class detection using class-based ensemble for evolving data stream. IEEE Trans. Knowl. Data Eng. 2015, 28, 2752–2764.
[CrossRef]

http://doi.org/10.1007/s00415-017-8424-0
http://www.ncbi.nlm.nih.gov/pubmed/28251357
http://dx.doi.org/10.3390/info12020063
http://dx.doi.org/10.3390/s17061229
http://www.ncbi.nlm.nih.gov/pubmed/28555016
http://dx.doi.org/10.3390/s17020307
http://dx.doi.org/10.1109/TNSRE.2022.3199068
http://dx.doi.org/10.1016/j.apergo.2016.10.013
http://dx.doi.org/10.1038/s41598-018-34671-6
http://dx.doi.org/10.1109/TETC.2020.3027454
http://dx.doi.org/10.1016/j.micpro.2019.102895
http://dx.doi.org/10.3389/fbioe.2020.00063
http://dx.doi.org/10.1109/JSEN.2017.2786587
http://dx.doi.org/10.3390/s18020676
http://www.ncbi.nlm.nih.gov/pubmed/29495299
http://dx.doi.org/10.1109/JBHI.2018.2875812
http://www.ncbi.nlm.nih.gov/pubmed/30418928
http://dx.doi.org/10.3390/s17071513
http://www.ncbi.nlm.nih.gov/pubmed/28653991
http://dx.doi.org/10.1371/journal.pone.0094811
http://www.ncbi.nlm.nih.gov/pubmed/24736626
http://dx.doi.org/10.4018/ijmstr.2014010103
http://dx.doi.org/10.1016/j.procs.2017.06.110
http://dx.doi.org/10.3390/app7101101
http://dx.doi.org/10.3390/s17010198
http://dx.doi.org/10.1109/34.58871
http://dx.doi.org/10.1016/j.eswa.2014.11.020
http://dx.doi.org/10.1109/TKDE.2015.2507123

Sensors 2023, 23, 4774 17 of 17

28. Ohi, A.Q.; Mridha, M.F.; Hamid, M.A.; Monowar, M.M.; Kateb, F.A. Fabricnet: A fiber recognition architecture using ensemble
convnets. IEEE Access 2021, 9, 13224–13236. [CrossRef]

29. Maida, A. Cognitive computing and neural networks: Reverse engineering the brain. In Handbook of Statistics; Elsevier:
Amsterdam, The Netherlands, 2016; Volume 35, pp. 39–78.

30. Um, T.T.; Pfister, F.M.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data augmentation of wearable sensor
data for parkinson’s disease monitoring using convolutional neural networks. In Proceedings of the 19th ACM International
Conference on Multimodal Interaction, Glasgow, UK, 13–17 November 2017; pp. 216–220.

31. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
32. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
33. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
34. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv 2014, arXiv:1412.3555.
35. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3051980
http://dx.doi.org/10.1109/78.650093

	Introduction
	Materials and Methods
	Dataset and Material
	Proposed FDS Framwork
	Architectural Motivation
	Architecture
	Data Augmentation

	Results
	Evaluation Metrics
	Model's Training
	Result Analysis

	Discussion
	Conclusions
	References

