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Abstract—With the development of cloud computing and data intelligence, datacenters have become an important part of ensuring
service quality and production efficiency in intelligent applications. However, datacenters are also facing increasingly complex and
heavy task processing requirements currently, and more efficient scheduling methods are urgently needed. Therefore, this paper
proposes a multi-swarm particle swarm optimization task scheduling method based on load balancing, aiming at reducing the maximum
completion time (makespan) and response time in task scheduling. The proposed method designs a new fitness function for particles,
and promotes the load balance of the cluster during the scheduling process by optimizing the combination of makespan and machine
completion time variance. And a novel inertia weight is designed to dynamically adjust the particle search performance. The new
initialization method and multi-swarm search design are used to improve the quality and diversity of solutions and avoid particles falling
into local optimum. Finally, the proposed algorithm is verified experimentally using the task dataset released by Alibaba datacenter, and
compared with other benchmark algorithms. The results show that the algorithm can improve the task scheduling performance of
datacenters in supply chain management when dealing with different workloads and changes in the number of machines.

Index Terms—Particle Swarm Optimization, Supply Chain, Datacenter Management, Sustainable Task Scheduling, Load Balancing.
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1 INTRODUCTION

IN today’s globalized and competitive business environ-
ment, supply chain management has become an impor-

tant strategic function that can significantly impact the profit
of companies. As the government and enterprises pay more
and more attention to modern manufacturing systems, dig-
itization has gradually become the trend of future develop-
ment. Currently, manufacturing companies use a top-down
decision-making approach to allocate production demand
from overall equipment efficiency [1]. This approach ignores
machine conditions such as excess inventory or unplanned
downtime. At the same time, due to the lack of connection
between factories, the efficiency of operation management
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is low. Establishing data-driven decision-making services
is an important part of driving supply chain management
intelligence, which can help reduce risk and improve effi-
ciency. Therefore, effective supply chain management can
provide a competitive advantage by improving operational
efficiency, reducing costs, increasing customer satisfaction,
and fostering innovation [2].

The development of cloud computing and Internet of
Things technology has accelerated the pace of modern intel-
ligent application construction. Data and computing are two
important elements of intelligence, and both of them rely on
datacenters to provide storage and computing capabilities
[3]. Therefore, the datacenter has become an important un-
derlying resource supply chain, providing computing and
storage resource services for many applications. The salient
feature of the datacenter is to ensure the access capabil-
ity of building services and the controllability of service
bandwidth, and to provide large-scale service scheduling
capabilities. With the construction of data intelligence, the
scale of datacenters and the complexity of task processing
continue to increase, and the difficulty of supply chain
resource management in data centers also increases [4].
Therefore, designing a reasonable scheduling algorithm is
helpful to improve the efficiency of datacenter task schedul-
ing and resource management, and realize the centralized
management and dynamic use of physical server resources
and virtual resources. This is of great help to enterprises in
building a dynamic, flexible, and adaptable infrastructure to
support business growth and sustainable development [5].

Datacenter task scheduling is a typical scenario of supply
chain management, and it is an important way to ensure
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the safe and efficient execution of user tasks. On the one
hand, cloud service providers need to control costs. On the
other hand, downstream consumers in the supply chain
need to ensure stable and reliable services. Due to the com-
plexity of task scheduling, the computing power resources
of the datacenter are often not fully utilized, which will
also lead to a decline in service quality [6]. The datacenter
environment is highly dynamic, the machine resources are
heterogeneous, and the types of tasks are complex and
diverse. The datacenter task scheduler is a key component
of execution scheduling. It matches corresponding resources
for tasks and ensures that tasks can be completed accurately.
At the same time, the scheduler should also consider the
efficient allocation of cluster resources to maximize resource
utilization [7].

The development of data intelligence has promoted the
continuous expansion of cloud computing market demand.
The types of tasks are more diverse, and the number of
tasks is growing rapidly. This also prompts the scale of
the datacenter to be further expanded to meet more service
demands. Therefore, how to allocate resources reasonably
and flexibly to meet the different requirements of tasks has
become a very challenging problem in task scheduling of
sustainable supply chain datacenters [8]. When scheduling
tasks, first sort the tasks according to certain rules to form an
executable task sequence. When the optimization goals are
different, the constraints used for sorting are also different.
Task scheduling methods can be divided into static task
scheduling and dynamic task scheduling [9]. The schedul-
ing effect of static task scheduling will decrease when the
number of tasks increases. Dynamic task scheduling can
be adaptively adjusted according to the state of the cluster.
Computing the optimal schedule is an NP-hard problem,
therefore, a feasible approach is to find its approximate
optimal solution [10]. The meta-heuristic algorithm belongs
to the dynamic task scheduling method, which combines the
random algorithm and the local search algorithm, and can
dynamically search for the optimal solution in the problem
solution space. For example, the particle swarm optimiza-
tion algorithm can use a group of particles to quickly search
for the optimal solution in the solution space of the prob-
lem, and in the search process, evaluate the quality of the
solution through the fitness function, and finally converge
to a stable value [11].

Datacenter task scheduling research has made a lot of
progress, but there are still deficiencies that need to be im-
proved [12]. First-come-first-served (FCFS) schedules tasks
in the order they arrive, without considering the charac-
teristics of the tasks and the load of the cluster machines.
The principle of the shortest job first (SJF) is to prioritize
the scheduling of shorter tasks. This increases the priority
of short jobs, but it is easy to cause long tasks to be
blocked or even starved to death. Therefore, the scheduling
effect of the SJF task scheduling method is not good when
the number of tasks increases. In order to obtain a better
scheduling effect, it is not possible to simply use these fixed
rules for task scheduling. The dynamics and complexity of
the cloud environment put forward higher requirements
for task scheduling. The particle swarm optimization al-
gorithm can obtain the optimal solution [13] of the task
scheduling sequence through the dynamic exploration of

the particles in the solution space. Zhao et al. [14] proposed
a task scheduling based on particle swarm optimization,
which allocates computing elements to individual tasks to
minimize the total time cost of processing requested tasks.
However, the particle swarm optimization algorithm also
has some disadvantages, such as easily falling into local
optimum, insufficient stability, etc. Moreover, the results
of the particle swarm optimization method are also very
dependent on the quality of the initial solution, and different
initial solutions often lead to different final solutions. The
simulated annealing particle swarm optimization algorithm
adopts particle jumping with a certain probability, which
can alleviate the problem of particle swarm falling into
local optimum [15]. But it does not guarantee stability and
lacks the constraints of a load-balancing mechanism. The
motivation for this study is the desire to improve service
quality and productivity in sustainable supply chain dat-
acenter management. Scheduling tasks to appropriate ma-
chines according to their characteristics is an important way
to improve the efficiency and quality of datacenter supply
chain management services [16]. Setting a load-balancing
constraint mechanism can help reduce the response time of
tasks of different lengths and avoid certain types of tasks
from being blocked.

This paper analyzes the task characteristics and machine
resource utilization of the Alibaba datacenter, and sum-
marizes the existing problems. Aiming at optimizing the
makespan and response time in datacenter task scheduling,
a multi-swarm particle swarm optimization algorithm based
on load balancing is proposed. The main contributions of
this paper can be summarized as follows. First, a new
particle swarm optimization fitness function is designed,
which combines the optimization of the completion time
and the variance of the machine completion time to im-
prove the cluster load balance. Second, a novel adaptive
inertia weight is designed to dynamically tune the particle
search performance. Third, a new initialization method and
multi-swarm design are used to improve the quality and
diversity of solutions and avoid falling into local optimum.
Finally, the proposed method is verified experimentally
under different environments using the Alibaba datacenter
task dataset. The results show that the proposed method
can achieve better scheduling results than other baseline
methods under different workloads and elastically varying
machine numbers.

The related work of task scheduling in sustainable sup-
ply chain datacenter is reviewed in Section 2. The workloads
and resource characteristics of the Alibaba datacenter are
analyzed in Section 3. The proposed multi-swarm PSO
approach is described in Section 4, and the performance
evaluation is presented in Section 5. Section 6 summarizes
the research work and looks forward to future directions.

2 RELATED WORKS

As cloud infrastructure has gradually become the basic
supply chain of many industries, it carries diverse and
massive service demands. The stability and efficiency of
the basic supply chain is an important part to ensure the
service quality and production efficiency of many other
industries [17]. Due to the rapid growth of the number of
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users and the diversification of service requirements, the
scale of data centers is getting larger and the structure is be-
coming more and more complex. In the cloud environment,
there is randomness in the task arrival rate, task duration
and resource requirements. Efficient task scheduling is con-
ducive to improving datacenter service quality and resource
utilization efficiency. Therefore, how to efficiently and rea-
sonably schedule tasks to be executed on suitable machines
in a random environment has been widely concerned by
researchers [18].

Mahmud et al. [19] proposed an adaptive hyperheuristic
multi-objective optimization method for integrated supply
chain scheduling problems, where supplier, manufacturer
and batch decisions are simultaneously optimized to re-
spond to heterogeneous customer demands with time win-
dow constraints. Gao et al. [20] proposed a distributed
shortest remaining time first scheduling for datacenter net-
works. they utilize the estimated remaining stream size
and available bandwidth to determine the remaining time
for each stream and to prioritize them. Ajayi et al. [21]
designed a carry-on weighted Round Robin approach in
cloud workloads scheduling, which takes multiple work-
loads classes into account. Shirvani et al. [22] proposed a
novel hybrid heuristic-based list scheduling algorithm for
the task-dependent scheduling problem in heterogeneous
cloud computing environments. Elmougy et al. [23] pro-
posed a hybrid task scheduling algorithm (SRDQ) that com-
bines Shortest Job First (SJF) and Round Robin Scheduling
(RR). It takes into account dynamically variable task vol-
umes and aims to reduce task response time and starvation
issues. These methods are improvements to the heuristic
algorithm. However, when dealing with complex changes
in the cloud environment, heuristic algorithms often cannot
achieve better results due to fixed and single rules.

The meta-heuristic algorithm combines random algo-
rithms and local search, so it can dynamically search for
optimal solutions [24]. Wu et al. [25] introduced a selection
operator to improve standard PSO, aiming to solve the
inefficiency of current methods. Cloudsim is used for verifi-
cation, and the experimental results show that the improved
PSO has higher search performance and convergence speed
than the original PSO. However, the load balancing rate of
this method is low, and further improvements are needed
in terms of fitness function and inertia weight parameters.
Kumar et al. [26] proposed a resource allocation model
named PSO-cogent based on particle swarm optimization
for efficient processing of applications. Compared with PSO
and min-min algorithms, the optimization of PSO-cogent
algorithm in resource utilization and throughput has been
improved. Alsaidy et al. [27] proposed an improved ini-
tialization for PSO using heuristics, which initializes the
PSO with the longest job to the fastest processor and short-
est completion time algorithm. Dubey et al. [28] designed
a new multi-objective CR-PSO task scheduling algorithm
with deadline constraints. It was improved on the basis
of traditional chemical reaction optimization and particle
swarm optimization and combines the characteristics of
optimal scheduling order of hybridization. Jiang et al. [29]
exploited Alibaba as a case to study the characteristics of the
collaborative distribution of batch jobs and online services
in sustainable supply chain datacenter management.

Meziani et al. [30] proposed a hybrid algorithm com-
bining particle swarm optimization and simulated anneal-
ing (SA-PSO) for the two-machine flowshop scheduling
problem with coupled operations. Simulated annealing PSO
accepts the current solution of the particle with a certain
probability, so it can probabilistically jump out of the local
optimal solution and find the global optimal. Liu et al. [31]
introduced the simulated annealing algorithm in the adap-
tive PSO algorithm and proposed an adaptive simulated
annealing particle swarm optimization algorithm. It aims
to overcome the shortcoming that PSO is easy to fall into
local extreme points and achieves certain results in terms of
convergence speed. Wu et al. [32] described a new cluster
scheduler, Aladdin. It adopts a multi-dimensional nonlinear
capacity function to support constraint expressions and uses
an optimized maximum flow algorithm to improve resource
utilization. Wang et al. [33] used the multi-objective plan-
ning theory to establish a multi-objective optimal allocation
model aiming at the sustainable utilization of regional water
resources.

However, the task scheduling algorithm based on par-
ticle swarm optimization still needs to be optimized. For
example, the particle swarm optimization algorithm is easy
to fall into the local optimal solution, and the solution
quality of random initialization of particles is unstable. The
movement of particles is affected by local and global optimal
solutions, and if particles are guided to a local optimal
solution, it is difficult to escape from this local optimal
solution. In the particle swarm optimization algorithm, the
movement of particles will be affected by other particles, so
there may be too many similar particles, resulting in a lack
of diversity in the algorithm.

3 ANALYSIS OF WORKLOADS AND MACHINES

As a well-known cloud computing service provider, Alibaba
not only boasts large amounts of cloud-based infrastructures
but also supplies various cloud computing service needs for
many industries around the world. It occupies an important
position in the management of sustainable supply chain
datacenters, and provides various services, such as comput-
ing and storage services, to consumers around the world
every day. Therefore, the dataset of the real production
scenario is suitable for the analysis and optimization of
scheduling algorithms in a cloud environment. The oper-
ation data disclosed by Alibaba datacenter was selected as
the objection of research for this paper. cluster-trace-v2017
is a dataset made public by Alibaba in 2017, and it contains
data from about 1300 machines in 12 hours. By researching
the state of the cluster, we can gain a better understanding of
how resources are utilized and design better algorithms to
distribute workloads to machines to achieve a higher quality
of service.

As one of the most important attributes of a task, time
can convey a lot of characteristic information about the
task, such as the arrival time, duration, and deadline of
the task. Firstly, the distribution characteristics of the tasks
in the task dataset are analyzed. The statistical analysis
results of the length distribution of the tasks are shown in
Fig. 1. The distribution of the number of tasks in different
durations is counted, the vertical axis represents the number
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Fig. 1. Distribution of submission time interval of adjacent tasks.

0

20

40

60

80

100

120

140

160

180

200

1

2
1
4

4
2
7

6
4
0

8
5
3

1
0
6

6

1
2
7

9

1
4
9

2

1
7
0

5

1
9
1

8

2
1
3

1

2
3
4

4
2

5
5

7
2

7
7

0
2

9
8

3

3
1
9

6

3
4
0

9

3
6
2

2

3
8
3

5

4
0
4

8

4
2
6

1

4
4
7

4

4
6
8

7

ta
sk

 s
u
b

m
is

si
o

n
 i

n
te

rv
al

(s
)

task id

Fig. 2. Task duration proportion among all the tasks.

of tasks, and the horizontal axis represents the duration
of tasks. The duration of tasks in this dataset is all within
1000s, most of them are within 200s, accounting for 88.7%,
tasks within 200-300s account for 7%, tasks within 300-400s
account for 2.1%, and tasks exceeding 400s account for 2.2%.
The number of tasks whose duration exceeds 200s gradually
decreases. It reflects that the duration distribution of data
center tasks is scattered and dynamic. Fig. 2 describes the
distribution of the submission intervals of adjacent tasks,
in which 83.7% of the job submission intervals are within
20s, and 13.7% are between 20-50s. Only 2.6% of tasks are
submitted with a time interval of more than 50s. It reflects
that the number of tasks arriving at the data center is
relatively dense, but the task traffic is also relatively stable,
with neither explosive growth nor cliff-like decline.

Resource utilization is the best indicator to reflect the
load balance of the cluster, which may contribute to the
design of the constraints of load balance. Therefore, the
machine utilization table is also selected to analyze the
cluster load characteristics, which contains the data of
187,963 machines. It selects 144 timestamps to record the
resource utilization data of 1313 machines. These operation
data include CPU utilization, memory utilization, hard disk
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Fig. 3. Resource utilization of single machine through all timestamps.
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Fig. 4. Resource utilization of all machines at one timestamp.

utilization, and average CPU utilization in 15 minutes, 5
minutes, and 1 minute. It mainly focuses on CPU and mem-
ory utilization data, and analyzes resource utilization from
the perspective of a single machine and the entire cluster.
Fig. 3 shows the resource utilization of a single machine
at all time stamps. It can be seen from the figure that the
resource utilization of the machines has roughly the same
change trend. The CPU utilization is low, whether it is the
average utilization of 15 minutes, 5 minutes, and 1 minute,
or the real-time utilization, most of the time is below 30%.
Moreover, the utilization rate fluctuates greatly, and the load
is unbalanced in each time period. Memory utilization is sig-
nificantly higher than CPU utilization and varies with CPU
utilization. Fig. 4 shows the resource utilization distribution
of all machines in the cluster at the same timestamp. From
the perspective of the entire cluster, the CPU utilization
of all machines is still in a low state, most of which are
30% and below. The memory utilization of the machine is
higher than the CPU utilization and remains around 60%.
In addition, the resource utilization of machines numbered
415-533 is significantly lower than that of other machines,
which indicates that the load is imbalanced in the cluster.
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4 PROPOSED MULTI-SWARM PSO APPROACH

Aiming at the problems of long completion time and slow
task response in the task scheduling of the supply chain
datacenter, this section proposes a multi-swarm particle
swarm optimization method to optimize the task scheduling
process of the data center. This section contains two sub-
sections. The first part is problem formulation and system
model in supply chain data center management, which
introduces the characteristics of the supply chain datacen-
ter task delivery and scheduling process. The second part
introduces the design and improvement of the proposed
multi-swarm particle swarm optimization algorithm based
on load balancing.

4.1 Problem formulation and System model
Task scheduling is a mapping process between tasks and
computing resources, and the scheduler will perform task
scheduling and resource allocation in the cloud environment
supply chain according to constraints. The task scheduler
compares the requirements of the task with the characteris-
tics of the resource, assigns the task submitted by the user
to the most suitable machine for execution, and returns the
result. The mathematical form of task scheduling can be
described as follows.

Datacenter broker plays the role of the scheduler, which
receives n number of tasks request which is indepen-
dent of each other. The task list can be defined as T =
{t1, t2, t3, · · · , tn}, where n denotes the number of tasks in
T and ti represents the ith task. Each task ti can be described
as a vector ti = (li,mi, pi, di), which li represents the length
of ti in MIPS, and mi , pi , di denotes the memory, proces-
sor and deadline required by ti, respectively. The cluster
contains the m number of heterogeneous cloud resources
which can be defined as R = {r1, r2, r3, · · · , rm}, which are
different in terms of MIPS speed, the core numbers, RAM,
hypervisor, etc. Each virtual machine rj can also be de-
scribed as a vector rj = (mipsj , corej , ramj , hyperj). The
scheduler will match the corresponding machine according
to the resource requirements of the task to ensure that the
task is completed on time. Since the number of tasks in a
cloud data center is usually far greater than the number of
machine resources, the scheduler needs to take into account
both the task completion time and response time.

The time from the start of execution to the end of a task
on a particular machine is called the execution time, which
can be formulated in Eq. (1), li and mipsj represent the
length of task ti and MIPS speed of the virtual machine rj ,
respectively.

ETi =
li

mipsj
(1)

Makespan is one of the most commonly used evalu-
ation indicators in task scheduling, which represents the
maximum completion time of all machines. The makespan
is calculated in Eq. (2), where CTj = γj − start(rj), γj
represents the time when all the tasks assigned to jth virtual
machine have been accomplished and start(rj) is the time
instance when jth virtual machine starts its execution. CTj

represents the completion time of all tasks assigned to the
jth virtual machine. The maximum completion time is taken

as makespan (MS). The average completion time of all
machines is also calculated as Eq. (3) during each iteration
for the fitness function to evaluate the load balancing of the
cluster.

MS = Max{CT1, CT2, ..., CTm} (2)

MS−AV G =

∑m
j=1 CTj

m
(3)

The response time of a task is the time to wait between
the task arriving and getting executed. RT(ti) = ϑ(ti) −
θ(ti), where ϑ(ti)is the time when task ti start to execute
and θ(ti) denotes the arrival time of task ti. However, Since
the number of tasks is large, it is not appropriate to collect
the response time of each task and exploit it to evaluate the
scheduling efficiency. Therefore, the average response time
is usually chosen in scheduling performance evaluation. The
average response time of virtual machine rj is calculated in
Eq. (4), where K represents the number of tasks allocated
to rj . In this paper, not only the average response time of
the assigned tasks on each virtual machine is calculated,
but also the variance of the average response time of all
machines. So that the load balancing of different machines
can be presented clearly. The global average response time
can be calculated through Eq. (5), where m is the number of
virtual machines mentioned in the cloud resource above.

AV G RTrj =

∑K
i=1 RTti

K
(4)

AV G RTglobal =

∑m
j=1 AV G RTrj

m
(5)

The tasks processed by the datacenter are various, and
the number of tasks is far greater than the number of com-
puting nodes. Cloud computing virtualizes the physical ma-
chines of the datacenter into more virtual resources through
virtualization technology. Each virtual resource has certain
attributes, such as CPU, storage capacity, network band-
width, etc., and can process tasks independently without
affecting each other. In this case, each node needs to execute
multiple tasks in queued order. The task scheduling opti-
mization model refers to the optimization problem-solving
model established for the computing needs of massive tasks
in the datacenter. The process includes building models,
generating strategies, scheduling adjustment and optimiza-
tion, and applying scheduling strategies, so that tasks are
reasonably assigned to appropriate nodes for execution. The
scheduler will perform task scheduling and resource alloca-
tion in the datacenter according to constraints, and assign
tasks submitted by users to the most suitable machines for
execution.

The task delivery and scheduling model in supply chain
datacenter management is shown in Fig. 5, which is mainly
divided into four stages. In the first step, users submit tasks
to the datacenter through the client network, forming a
huge task pool, which concentrates the tasks waiting to be
scheduled for execution. In the second step, the scheduler
checks the current resource situation and allocates the corre-
sponding virtual machine resources to the tasks. The work
of the datacenter task scheduler is relatively complicated,
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and it needs to properly classify and sort the tasks in the task
pool. At the same time, the scheduler also needs to observe
the load of the virtual machine cluster, and then schedule
tasks and allocate resources based on the information it has.
In this process, the transmission of tasks and data is carried
out in the internal network of the datacenter. The third
step is to map the obtained virtual machine to the physical
host to start executing the task. If the migration of virtual
machines is involved in the process, there will be communi-
cation and latency overhead. Because it is necessary to shut
down the virtual machine and transfer related data. The
last step is the delivery phase of the task results, and the
results are fed back to the user through the network. The
datacenter scheduler is a key module of task scheduling,
which schedules a large number of tasks submitted by users
to appropriate virtual machines.

4.2 Multi-Swarm PSO Algorithm for Load Balancing

According to the results of workload and machine analysis,
the load of the cluster is unbalanced in time and space. The
load balancing of cluster machines is closely related to task
response time and completion time. The PSO algorithm can
dynamically search the solution space to find the optimal
solution. However, the optimal solution finally searched by
PSO depends heavily on its initialization. If the random
initialization gives a poor solution, the final solution will
also be of poor quality. These issues are closely related
to scheduling efficiency, therefore, we need to avoid pre-
mature convergence of the algorithm to a local optimum.
Meanwhile, it is necessary to design a more reasonable and
effective fitness function to evaluate the search effect of
particles.

In the design of the PSO algorithm, The particle has only
two attributes: velocity and position. Velocity and position
are varied according to algorithm rules during the execution
of the search until the optimal solution is obtained. Depend-
ing on the dimension of the solution to the problem, the

velocity and position of the particle are described as vec-
tors of the corresponding dimension, respectively. Suppose
there are N particles, and ϕ represents the dimension of
the solution to the problem. Velocity represents the speed
and direction of particle movement, which can be defined
as a vector vi = (v1i , v

2
i , v

3
i , · · · , v

ϕ
i ). Each scalar in the

velocity vector represents the distance the particle travels
in that dimension. The position is the current position of the
particle, which is usually initialized with a set of random
values and represents a solution to the problem even if not
the best. Correspondingly, the position of each particle can
be defined as a vector xi = (x1

i , x
2
i , x

3
i , · · · , x

ϕ
i ). In each

round of iteration, the particle moves independently in the
solution space and explores better solutions, and uses pbest
to mark the optimal solution obtained by itself. The optimal
solution of the whole swarm is obtained by comparing the
optimal solutions of all particles. All particles in the group
continuously adjust their speed and position during the
search progress. Particles adjust their speed and position
according to their individual extrema (pbest) and the global
optimum (gbest). The PSO algorithm makes each particle
obtain an initial velocity and position through random
initialization and then finds the optimal solution through
iteration and update. The updated formulas for the velocity
and position of the particles are Eqs. (6) and (7), respectively.

vi = vi + c1 · µ · (pbest − xi) + c2 · µ · (gbest − xi) (6)

xi = xi + vi (7)

where i = 1, 2, ..., N . N is the total number of particles in
the swarm. xi and vi are the position and velocity of the par-
ticle, respectively. The µ is a random number between (0,1),
which aims to increase the move randomness of particles.
c1 and c2 are used to control the effect of individual and
global extremes. The Eq. (6) is the update process of particle
velocity, which includes three parts, namely, the memory
item, the self-recognition item, and the group cognition
item. Each of these three parts has a different role. They
determine the movement of particles from the inertia of
the particle’s own motion, the knowledge acquired by its
own exploration, and the globally shared knowledge. In
this way, it can not only maintains the independence of
particle exploration itself but also ensures the sharing of
information between different particles, thereby improving
efficiency and speeding up. After obtaining the update of
the velocity, the update of the position is as shown in Eq. (7).
The updated formula for particle velocity is improved as
shown in Eq. (8).

vi = w · vi + c1 · µ · (pbest − xi) + c2 · µ · (gbest − xi) (8)

where w represents the weight of inertia, which is an
important parameter. The parameter w greatly improves
the optimization ability and generalization ability of the
PSO algorithm. The global and local search capabilities of
particles can be adjusted according to actual problem needs,
which also enables the PSO algorithm to be applied to a
wider range of practical problems. When the value of w is
large, it has a good effect on improving the global search
ability of the algorithm, and on the contrary, it enhances the
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local search ability of PSO. A dynamic value of w often has
better results than a fixed value, and it can be dynamically
adjusted according to the change of the particle search state
in the current swarm, thereby ensuring a better result. In
order to improve the ability of particles to explore the
optimal solution in the process of task scheduling, a new
nonlinear dynamic adaptive inertia weight is designed in
this paper. As shown in Eq. (9).

w =

{
wmin + (wmax − wmin)

(f−fmin)
(favg−fmin)

, f ≤ favg

wmax, f > favg
(9)

where wmax and wmin represent the predetermined min-
imum and maximum inertia coefficients w in the al-
gorithm. and f is the value of the current objective
function of the particle. favg =

∑n
i=1 xi/n is the cur-

rent average value of the objective function of all par-
ticles, and fmin=min{f(x1), f(x2), f(x3), ..., f(xn)} repre-
sents the minimum value of the objective function of all
particles. Linearly changing inertia weights refer to chang-
ing the value of the weights at regular intervals according to
time. But this method is not very effective, because it does
not consider the relationship between the current solution
situation and the search capability of particles. When the
objective function values of particles tend to be consistent,
it indicates that they may fall into the local optimum, so
increasing the relationship weight can expand the global
search ability of particles. When the objective function value
is scattered, it indicates the lack of refined search, and
reducing the inertia weight can improve the particle’s local
exploration ability. The new inertia weight design changes
the way of linear change, and instead adjusts according to
the relationship between particles and the whole world. If
the particle objective function value is smaller than the aver-
age value, the value of the inertia weight will be smaller to
ensure that it continues to explore the local optimal solution.
Instead, the particle’s inertial weight increases, allowing it
to explore other possibilities to avoid lingering around bad
solutions. The new inertia weights are related to the fitness
of each particle. The smaller the fitness, the closer to the
optimal solution, requiring local search. The greater the
fitness, the farther away from the optimal solution, requiring
a global search.

The load balancing of the machine cluster has a great
impact on the completion time and response time in the
task scheduling process. Because if the load varies greatly
between machines, some machines will be overloaded,
which will increase both completion time and response time.
According to the analysis results of workload and machine
resource utilization, the load of the cluster is unbalanced
in time and space. Therefore, it is not enough to optimize
only makespan in the fitness function, because it is difficult
to consider the load balancing of all machines in the entire
cluster. By calculating the completion time of each machine
after the execution of different scheduling algorithms, it
is found that there are large differences between different
machines. Among them, the proportion of the difference
between the maximum completion time and the minimum
completion time of all virtual machines in the FCFS schedul-
ing method reaches 566%, the SJF scheduling algorithm is
185%, and the PSO algorithm is 385%.

Therefore, in the design of the fitness function, the
method of evaluating only the makespan value is discarded.
The objective function will evaluate the combinatorial op-
timality of makespan and the variance of the completion
time among all machines during each iteration. In this way,
the load balancing constraints between machines in the task
scheduling process are realized. Therefore, in the design
of the fitness function, the method of only evaluating the
value of the completion period is abandoned. The new
fitness function designs the combinatorial optimization of
the makespan and the variance of the maketimes of all ma-
chines. On the one hand, it restricts the growth of makespan.
On the other hand, the load variance among machines is
reduced by constraining the variance of the completion time
of cluster machines. When the load of the cluster machines
is more balanced, the makespan and response time will
be further reduced. The objective optimization function of
fitness evaluation is shown in Eq. (10).

f = δ ·MS + (1− δ)

∑m
j=1(CTj −MS AV G)2

m
(10)

Where CTj represents the calculated completion time of
each machine, MS AV G is the average completion time of
all machines, and m represents the total number of virtual
machines. The MS is the maximum of all the machines’
completion time during each iteration. f is the optimization
objective, and the purpose is to minimize its value. The δ
is the optimization weight ratio, which is used to flexibly
adjust the proportion of the optimization target.

By observing each complete search process of the particle
swarm optimization algorithm, it is found that the optimal
solution finally searched by the particle swarm optimization
algorithm depends to a large extent on its initialization
state. If random initialization gives a poor solution, then
the quality of the final solution will also be relatively poor.
Therefore, this section improves the particle initialization
method to ensure that there is at least one solution with
better quality in the particle community. So as to allevi-
ate the possible poor results brought by randomness, and
then search for a better solution in the solution space on
this basis. By prioritizing both short and long tasks, the
largest jobs are mapped to the best-performing machines,
and the smallest jobs are mapped to the lowest-performing
machines. Then map according to the sequence number
and shrink towards the middle. After mapping a round
of virtual machines, the loop continues until all tasks have
been mapped.

The phenomenon that the particle swarm falls into the
local optimum is that the number of iterations has not
yet ended, and the particles have gathered near the local
optimum solution and no longer move. When a particle in
the particle swarm gets a better solution, other particles will
move toward it. If the optimal particle is captured by the
local optimal solution, the speed of other particles will grad-
ually decrease until they lose their activity. Since a particle
swarm can only generate one gbest, the information of other
particles will be lost. Therefore, in the process of iteration,
the search space will gradually shrink, and eventually all
particles will fall into the local optimal position. Aiming at
the problem that particle swarm may fall into local opti-
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TABLE 1
Physical machine configuration.

PM Mips cores Memory/GB BD/(MB/s)
Host 3000 4 16 1200

TABLE 2
Virtual machine configuration.

VM Small Medium Large
Processor/Mips 1000 1500 2000
Core numbers 1 1 1

Ram/GB 1 2 2
BD(MB/S) 100 100 100

mum, this paper adopts a new multi-swarm optimization
design. Therefore, multiple particle swarms are designed to
jointly search in the solution space, so that multiple gbest
can be generated. Then the optimal particle is selected as
the result to alleviate the problem that all particles fall into
the local optimum. The advantage of this design is that the
particles in different swarms are independent of each other
and will not fall into local optimum together. Moreover,
even if some swarms fall into the local optimum, the optimal
solution can be selected among multiple swarms.

5 PERFORMANCE EVALUATION
This section contains two summaries, the experimental
setup and the experimental results. Section 5.1 introduces
the experimental environment, experimental settings and
datasets. Section 5.2 conducts experiments to verify the per-
formance of the proposed method in various experimental
environments, and compares the performance with other
scheduling methods.

5.1 Experimental Setup
In this paper, the proposed method load balancing multi-
group PSO (LBMSPSO) is tested in the CloudSim simulation
environment. First, a data center with 12 physical machines
(PM) was built. The specific configuration parameters of
the physical host are shown in the table 1. Then three
types of virtual machines are established, each with different
resource types, the specific configuration is shown in the
table 2. The task dataset from the Alibaba data center is
used as the task input for the experiments. The experiments
assume that each task’s memory and CPU requirements
remain constant during its execution.

5.2 Experiment Result and Comparison
In this section, the proposed task scheduling method is ex-
perimentally verified and compared with existing heuristic
and meta-heuristic methods. Algorithms chosen for com-
parison include FCFS, SJF, PSO, and simulated annealing
PSO (SAPSO). The selected comparison metrics include
makespan and task average response time. In addition, the
variance of the completion time of the machine and the
variance of the average response time of the machine are
compared to evaluate the load balance of the cluster during
task scheduling.
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The scheduling effect of the algorithm on changing
workloads under a fixed number of machines is verified
firstly. A heterogeneous virtual machine cluster is created,
including 12 small, 8 medium and 6 large virtual machines,
a total of 26 sets. Then change the number of tasks in
the workload to test the scheduling effect of the proposed
method. The results of makespan are shown in Fig. 6, and
the number of tasks is set to 300, 400 and 500, respectively.
The scheduling effect of FCFS is the worst, and as the num-
ber of tasks increases, its makespan grows the fastest. There-
fore, FCFS has poor adaptability to task scheduling in the
cloud environment. In the results of makespan, the method
proposed in this paper can improve by an average of 39%
under different loads. The scheduling principle of SJF is to
schedule the shortest task first, which easily leads to long
task blocking, which is not conducive to fair scheduling. As
the number of tasks increases, the scheduling efficiency of
SJF decreases, and the response time for long tasks increases.
Compared with SJF, LBMSPSO can improve by an average
of 20.4% under different workloads. The method proposed
in this paper increases the constraints of the load balancing
mechanism in the scheduling process, which can reduce the
load difference between different machines. Moreover, new
initialization methods and multi-community designs can
improve the quality and diversity of solutions. Therefore,
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compared with PSO and SAPSO, LBMSPSO can improve
the results of makespan by an average of 9.7% and 6.3%,
respectively.

By recording the completion time of each virtual ma-
chine and calculating the variance of the machine comple-
tion time, it can reflect the load balance of the cluster during
the task scheduling process. Therefore, the comparison of
the variance of machine completion time in different work-
load task scheduling experiments is shown in Fig. 7. The
load variance of FCFS is always at the maximum, and the
variance of machine completion time grows rapidly when
the number of tasks increases. This also explains the rapid
increase in the results of makespan in FCFS scheduling. The
first-come-first-served scheduling method does not consider
the load balancing of machines. Since the proposed method
adds a constraint on the cluster machine load difference
in the fitness function, the load difference of LBMSPSO is
always kept at the lowest.

The results of task average response time under different
workloads are shown in Fig. 8. Corresponding to the result
of makespan, the task average response time of FCFS is
still the highest among all methods. However, unlike the
results in makespan, the average task response speed of SJF
surpasses PSO and SAPSO. This is due to the scheduling
mechanism of SJF. Because SJF schedules short tasks first,
and short tasks are executed in a faster time, so that the
average task response time can be reduced. Therefore, even
though the makespan values of PSO and SAPSO are lower
than those of SJF, the average task response time is larger
than that of SJF. LBMSPSO makes up for this defect. It uses
an improved particle initialization method to obtain better
results and avoid the influence of randomness. Therefore,
compared with other baseline methods, LBMSPSO can fur-
ther reduce the average response time of tasks on the basis
of reducing makespan.

As the workload increases, both the task completion time
and response time increase accordingly. When the workload
is heavy and affects the quality of service, it is necessary to
elastically increase the number of machines to relieve system
pressure. Therefore, this section also tests the scheduling
performance of the proposed method under an elastically
varying number of virtual machines. A homogeneous vir-
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tual machine cluster containing 20 large virtual machines
is created. Under the workload of 500 tasks, elastically
increase the number of virtual machines for experimental
comparison.

The results of makespan are shown in Fig. 9. Except
for FCFS, as the number of virtual machines increases, the
results of makespan for other scheduling methods decrease.
The scheduling effect of FCFS is not stable. Increasing the
number of virtual machines does not necessarily reduce the
value of its makespan, and may even increase it. It shows
that it is not effective in dealing with elastic changes in
the number of virtual machines. Under the constraints of
the load balancing mechanism, LBMSPSO can quickly and
evenly distribute tasks to machines with lighter loads to
reduce the makespan when the number of virtual machines
increases. It can be seen from the figure that as the number of
virtual machines grows elastically, LBMSPSO can achieve a
better makespan than other benchmark methods. Therefore,
LBMSPSO can effectively cope with the elastic change of the
number of virtual machines when the workload is heavy in
the task scheduling process.

The comparison of the variance of the machine com-
pletion time under different numbers of virtual machines
is shown in Fig. 10. From the variance of the machine
completion time, it can be seen that the variance of the
machine completion time of FCFS is still the largest, and
it fluctuates with the increase of the number of machines.
The value of the variance of the FCFS machine make time
also reflects the reason for the change of its makespan value.
It shows that the machine load difference of FCFS task
scheduling is the largest, and it is difficult to cope with
the elastic change of the number of machines in the cloud
environment. Under a stable load, when the number of
virtual machines is elastically increased, SAPSO, PSO, SJF,
and LBMSPSO can all maintain the stability of cluster ma-
chine load differences, and LBMSPSO performs optimally in
maintaining load balancing.

The results of the average task response time are shown
in Fig. 11. Under a stable workload, increasing the number
of virtual machines can reduce system pressure and reduce
task response time. Among them, the average task response
time of FCFS is still the highest, but as the number of virtual
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machines increases, the response time gradually decreases.
SJF lowers the average task response time because it pri-
oritizes short tasks. Due to the impact of randomness and
the lack of load balancing constraints, PSO and SAPSO do
not perform well in the average response time of tasks.
LBMSPSO can achieve the lowest average task response
time, and when the number of virtual machines increases
elastically, it can also maintain system load balance and
further reduce response time.

6 CONCLUSION AND FUTURE WORK
Aiming at the task scheduling problem of sustainable sup-
ply chain datacenter, a task scheduling approach based on
multi-swarm particle swarm optimization is proposed. The
task and cluster machine data sets released by the Alibaba
datacenter are analyzed, and the data analysis shows that
there is a problem of uneven load in the cluster. By design-
ing a new adaptive inertia weight to automatically adjust
the local and global search capabilities of particles, particle
search efficiency can be improved. The newly designed
fitness function can more effectively evaluate the quality
of particle solutions, so that the cluster can be optimized

toward load balancing. The design of multi-swarm and new
initialization method can promote the diversity and quality
of the initial solution of particle swarm, and alleviate the
problem that particle swarm is easy to fall into local opti-
mum. The proposed method is experimentally tested and
compared in a diverse set of environments. Experimental
results show that the method proposed in this paper can
maintain stable scheduling performance when the datacen-
ter workload increases or the number of virtual machines
changes elastically. And it outperforms other methods in
makespan and task average response time.

However, task scheduling in sustainable supply chain
data centers still needs to be optimized. How to achieve
more coordinated and intelligent scheduling between batch
jobs and online services to provide a higher quality of
service and improve the throughput of batch jobs. How to
deal with workflow scheduling with dependencies among
tasks to improve system resource utilization efficiency. In
future work, we plan to study artificial intelligence-driven
sustainable supply chain data center task scheduling to
further improve the intelligence level of datacenter manage-
ment.

ACKNOWLEDGMENTS

This work has received funding from the Key Laboratory
Foundation of National Defence Technology under Grant
61424010208, National Natural Science Foundation of China
(No. 62002276, 41911530242 and 41975142), 5150 Spring
Specialists (05492018012 and 05762018039), Major Program
of the National Social Science Fund of China (Grant No.
17ZDA092), 333 High-Level Talent Cultivation Project of
Jiangsu Province (BRA2018332), Royal Society of Edin-
burgh, UK and China Natural Science Foundation Coun-
cil (RSE Reference: 62967 Liu 2018 2) under their Joint
International Projects funding scheme and basic Research
Programs (Natural Science Foundation) of Jiangsu Province
(BK20191398 and BK20180794).

REFERENCES

[1] B. Li, R.-S. Chen, and C.-Y. Liu, “Using intelligent technology and
real-time feedback algorithm to improve manufacturing process in
iot semiconductor industry,” The Journal of Supercomputing, vol. 77,
no. 5, pp. 4639–4658, 2021.

[2] F. Bouhannana and A. Elkorchi, “Trade-offs among lean, green and
agile concepts in supply chain management: Literature review,” in
2020 IEEE 13th International Colloquium of Logistics and Supply Chain
Management (LOGISTIQUA). IEEE, 2020, pp. 1–5.

[3] A. Dweekat and R. Al-Aomar, “An iot-enabled framework for
dynamic supply chain performance management,” in 2018 IEEE
Technology and Engineering Management Conference (TEMSCON).
IEEE, 2018, pp. 1–5.

[4] E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N. Suganthan,
“Task scheduling in cloud computing based on meta-heuristics:
review, taxonomy, open challenges, and future trends,” Swarm and
Evolutionary Computation, vol. 62, p. 100841, 2021.

[5] H. Shan, Y. Li, and J. Shi, “Influence of supply chain collaborative
innovation on sustainable development of supply chain: a study
on chinese enterprises,” Sustainability, vol. 12, no. 7, p. 2978, 2020.

[6] M. Hussain, L.-F. Wei, A. Lakhan, S. Wali, S. Ali, and A. Hus-
sain, “Energy and performance-efficient task scheduling in het-
erogeneous virtualized cloud computing,” Sustainable Computing:
Informatics and Systems, vol. 30, p. 100517, 2021.

[7] M. S. Sangari and A. Mashatan, “A data-driven, comparative
review of the academic literature and news media on blockchain-
enabled supply chain management: Trends, gaps, and research
needs,” Computers in Industry, vol. 143, p. 103769, 2022.



MULTI-SWARM PSO FOR SUSTAINABLE TASK SCHEDULING 11

[8] H. Yuan, J. Bi, and M. Zhou, “Multiqueue scheduling of hetero-
geneous tasks with bounded response time in hybrid green iaas
clouds,” IEEE Transactions on Industrial Informatics, vol. 15, no. 10,
pp. 5404–5412, 2019.

[9] X. Xu, H. Li, W. Xu, Z. Liu, L. Yao, and F. Dai, “Artificial intel-
ligence for edge service optimization in internet of vehicles: A
survey,” Tsinghua Science and Technology, vol. 27, no. 2, pp. 270–
287, 2021.

[10] T. Ujazdowski and R. Piotrowski, “Task scheduling–review of
algorithms and analysis of potential use in a biological wastewater
treatment plant,” IEEE Access, vol. 10, pp. 45 230–45 240, 2022.

[11] X. Zhu, M. Hussain, and X. Li, “Energy-efficient independent
task scheduling in cloud computing,” in International Conference
on Human Centered Computing. Springer, 2018, pp. 428–439.

[12] W. Shu, K. Cai, and N. N. Xiong, “Research on strong agile
response task scheduling optimization enhancement with optimal
resource usage in green cloud computing,” Future Generation Com-
puter Systems, vol. 124, pp. 12–20, 2021.

[13] B. Shen, X. Xu, L. Qi, X. Zhang, and G. Srivastava, “Dynamic
server placement in edge computing toward internet of vehicles,”
Computer Communications, vol. 178, pp. 114–123, 2021.

[14] N. Mansouri, B. M. H. Zade, and M. M. Javidi, “Hybrid task
scheduling strategy for cloud computing by modified particle
swarm optimization and fuzzy theory,” Computers & Industrial
Engineering, vol. 130, pp. 597–633, 2019.

[15] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A compre-
hensive survey for scheduling techniques in cloud computing,”
Journal of Network and Computer Applications, vol. 143, pp. 1–33,
2019.

[16] F. Abazari, M. Analoui, H. Takabi, and S. Fu, “Mows: multi-
objective workflow scheduling in cloud computing based on
heuristic algorithm,” Simulation Modelling Practice and Theory,
vol. 93, pp. 119–132, 2019.

[17] A. Hmioui, B. Bentalha, and L. Alla, “Service supply chain: A
prospective analysis of sustainable management for global perfor-
mance,” in 2020 IEEE 13th International Colloquium of Logistics and
Supply Chain Management (LOGISTIQUA). IEEE, 2020, pp. 1–7.

[18] L. Versluis and A. Iosup, “A survey of domains in workflow
scheduling in computing infrastructures: Community and key-
word analysis, emerging trends, and taxonomies,” Future Gener-
ation Computer Systems, vol. 123, pp. 156–177, 2021.

[19] S. Mahmud, A. Abbasi, R. K. Chakrabortty, and M. J. Ryan,
“A self-adaptive hyper-heuristic based multi-objective optimiza-
tion approach for integrated supply chain scheduling problems,”
Knowledge-Based Systems, p. 109190, 2022.

[20] C. Gao, V. C. Lee, and K. Li, “D-srtf: Distributed shortest remaining
time first scheduling for data center networks,” IEEE Transactions
on Cloud Computing, vol. 9, no. 2, pp. 562–575, 2018.

[21] O. Ajayi, F. Oladeji, C. Uwadia, and A. Omosowun, “Scheduling
cloud workloads using carry-on weighted round robin,” in Inter-
national Conference on e-Infrastructure and e-Services for Developing
Countries. Springer, 2017, pp. 60–71.

[22] M. H. Shirvani and R. N. Talouki, “A novel hybrid heuristic-based
list scheduling algorithm in heterogeneous cloud computing envi-
ronment for makespan optimization,” Parallel Computing, vol. 108,
p. 102828, 2021.

[23] S. Elmougy, S. Sarhan, and M. Joundy, “A novel hybrid of shortest
job first and round robin with dynamic variable quantum time
task scheduling technique,” Journal of Cloud computing, vol. 6, no. 1,
pp. 1–12, 2017.

[24] N. Raman, A. B. Wahab, and S. Chandrasekaran, “Computation
of workflow scheduling using backpropagation neural network
in cloud computing: a virtual machine placement approach,” The
Journal of Supercomputing, vol. 77, no. 9, pp. 9454–9473, 2021.

[25] D. Wu, “Cloud computing task scheduling policy based on im-
proved particle swarm optimization,” in 2018 International Confer-
ence on Virtual Reality and Intelligent Systems (ICVRIS). IEEE, 2018,
pp. 99–101.

[26] M. Kumar and S. C. Sharma, “Pso-cogent: Cost and energy effi-
cient scheduling in cloud environment with deadline constraint,”
Sustainable Computing: Informatics and Systems, vol. 19, pp. 147–164,
2018.

[27] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, “Heuristic initializa-
tion of pso task scheduling algorithm in cloud computing,” Journal
of King Saud University-Computer and Information Sciences, 2020.

[28] K. Dubey and S. C. Sharma, “A novel multi-objective cr-pso task
scheduling algorithm with deadline constraint in cloud comput-

ing,” Sustainable Computing: Informatics and Systems, vol. 32, p.
100605, 2021.

[29] C. Jiang, G. Han, J. Lin, G. Jia, W. Shi, and J. Wan, “Characteristics
of co-allocated online services and batch jobs in internet data
centers: a case study from alibaba cloud,” IEEE Access, vol. 7, pp.
22 495–22 508, 2019.

[30] N. Meziani, M. Boudhar, and A. Oulamara, “Pso and simulated
annealing for the two-machine flowshop scheduling problem with
coupled-operations,” European Journal of Industrial Engineering,
vol. 12, no. 1, pp. 43–66, 2018.

[31] S. Liu, W. Liu, F. Huang, Y. Yin, B. Yan, and T. Zhang, “Multitar-
get allocation strategy based on adaptive sa-pso algorithm,” The
Aeronautical Journal, pp. 1–13, 2022.

[32] H. Wu, W. Zhang, Y. Xu, H. Xiang, T. Huang, H. Ding, and
Z. Zhang, “Aladdin: Optimized maximum flow management for
shared production clusters,” in 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2019, pp. 696–
707.

[33] Z. Wang, J. Tian, and K. Feng, “Optimal allocation of regional
water resources based on simulated annealing particle swarm
optimization algorithm,” Energy Reports, vol. 8, pp. 9119–9126,
2022.


	1 Introduction
	2 Related works
	3 Analysis of workloads and machines
	4 Proposed Multi-Swarm PSO Approach
	4.1 Problem formulation and System model
	4.2 Multi-Swarm PSO Algorithm for Load Balancing

	5 PERFORMANCE EVALUATION
	5.1 Experimental Setup
	5.2 Experiment Result and Comparison

	6 CONCLUSION AND FUTURE WORK 
	References

