Forensic Science International: Digital Investigation 46 (2023) 301572

Contents lists available at ScienceDirect

I
Investigati,Ow

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

Evaluation of live forensic techniques, towards Salsa20-Based N

Check for

cryptographic ransomware mitigation

Luis Fernandez de Loaysa Babiano, Richard Macfarlane’, Simon R. Davies

School of Computing, Engineering & the Built Environment, Edinburgh Napier University, Edinburgh, UK

ARTICLE INFO ABSTRACT

Article history:

Received 22 September 2022
Received in revised form

6 April 2023

Accepted 26 May 2023
Available online xxx

Ransomware has been established as one of the largest current threats to organisations, small businesses,
governments, and individuals alike. The appearance of cryptocurrencies and the enhancement of
encryption key management schemes increased the capacity of this malicious software to compromise
the victim's data and demand ransom payments. The variety of ransomware families and their continued
evolution make the task of detecting and mitigating these attacks extremely difficult. Current ransom-
ware typically uses complex multi-layer hybrid encryption methods, which cannot be mitigated using
conventional methods such as attacking the encryption keys directly. Recent studies have shown that
when using live forensic techniques, it is possible to find the ransomware data encryption keys in the
volatile memory of an infected machine while the ransomware is being executed, in a form of a side-
channel attack. However, the related work in the field does not address the most recent cryptography
typically now used by ransomware, including stream ciphers such as Salsa20. Related work has also not
fully explored the typical use of unique keys per victim's file which is now common with current ran-
somware. The work described in this paper reproduces these latest cryptographic management tech-
niques being used and explores methods for both, Salsa20 key extraction from memory, and one key per
file ransomware encryption key recovery. The methods have been evaluated against recent real-world
ransomware samples with various victim file data sets. The method has been shown in some cases to
successfully recover over 90% of Salsa20 key and nonce pairs from volatile memory, which in turn have
been used to decrypt victim files to validate the extracted pairs. This method could facilitate the recovery
of victims' files without the need for paying a ransom and bypasses the complex hybrid encryption
methods typically used by current ransomware. The findings from the experiments show that it is
possible to use live memory forensics to extract multiple ransomware symmetric encryption keys during
execution, and then use these to successfully decrypt a large percentage of the victim's encrypted files
without requiring the master key. The developed method could be used to help recover from the most
advanced current ransomware attack and can prove useful when developing new cryptographic ran-

somware mitigation techniques.
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Ransomware
Stream encryption
Memory forensics
Malware analysis

1. Introduction

Ransomware ranks high among current cyber threats around
the world, with institutions such as Interpol classifying it as a threat
that requires the same international collaboration as currently ex-
ists with fighting terrorism, mafia groups, and human trafficking
(Interpol News, 2021). The first cryptographic ransomware
appeared in 2013 and has become the dominant form of

* Corresponding author.
E-mail address: R.Macfarlane@napier.ac.uk (R. Macfarlane).

https://doi.org/10.1016/j.fsidi.2023.301572

ransomware. Crypto-ransomware typically encrypts a selection of a
victim's data files and demands a ransom in exchange for the
decryption of the data. If the ransom is paid, a decryption key or
tool is provided allowing the recovery of the files.

The crypto-ransomware threat model and associated structured
attacks have been aligned to attack models such as with the Cyber-
Kill-Chain (CKC) based taxonomy detailed in (Dargahi et al., 2019).
This maps ransomware attacks to the six of the seven Lockheed
Martin CKC stages: (1) Reconnaissance, (2) Weaponization, (3)
Delivery, (4) Exploitation, (5) Installation, (6) Command and Con-
trol, and (7) Actions on Objectives. Ransomware planning on how
the attack is carried out including the payload delivery, encryption,

2666-2817/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:R.Macfarlane@napier.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301572&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301572
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2023.301572

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

and defence evasion is aligned with the Weaponization stage. The
Delivery stage includes the payload delivery via methods such as
phishing, and the Exploitation phase is concerned with the initial
compromise of the target such as with a specific exploit. The
Installation phase includes the ransomware payload execution
which performs various malicious tasks, including victim file
encryption and with recent strains additionally, exfiltrating victim
data (McIntosh et al., 2021). The Command and Control stage can
involve communications with attacker controlled servers such as
communicating encryption keys or payment information. The last
phase, actions on objectives, includes the demand for ransom
payment from the victim. In the Weaponization stage, crypto-
ransomware can use a variety of different cryptographic manage-
ment strategies including which types of encryption algorithm
should be used to encrypt the victim's files. A range of ransomware
behaviour is defined at this stage, including victim file system di-
rectories to skip, victim file types to target, the sizes of files to
target, and the order files are attacked. The installation stage con-
tains the execution of the ransomware itself and includes the
encryption of victim files, with the method and algorithms used
from the weaponization phase. These weaponization and installa-
tion stages are specific to each crypto-ransomware strain and their
methods are continually changing to combat detection and miti-
gation. Zimba (Zimba et al., 2021a) describes a similar threat model,
and in addition categorises ransomware types based on the attack
structures used, including categories based mainly on the crypto-
graphic systems used for victim files encryption CAT1-CAT5.

Over the last decade, crypto-ransomware has evolved, adopting
more sophisticated cryptographic methods to make its detection
and mitigation more difficult (Oz et al., 2021; Ramsdell and Esbeck,
2021). This includes the use of more robust and faster encryption
algorithms such as Advanced Encryption Standard (AES) and
Salsa20. A recent high-profile example ransomware attack against
Kaseya was carried out using the Sodinokibi ransomware strain (US
Dept. of Justice Office of Public Affairs, 2022), which has been
documented to use Salsa20 for victim file encryption (Guillois,
2020). RansomCartel is another example of a recent ransomware
strain that is known to use Salsa20 encryption (Amer Elsad, 2022).

In addition to this, most ransomware typically now uses an in-
dividual unique encryption key for each file attacked along with
hybrid encryption methods employed for key management, pro-
tecting the per-file encryption keys against recovery. This is ach-
ieved by using additional asymmetric encryption of the per victim
file symmetric encryption keys (Zimba et al., 2021a). A consequence
of this additional encryption is that it becomes extremely chal-
lenging to recover the original victim's files once the encryption
process has been completed. As highlighted recently, research has
often focused on the prevention, detection and post-execution
ransomware responses, while reactive methods have not been
explored by many, especially by those involved in the digital fo-
rensics community (Huck and Breitinger, 2022).

This paper builds on previous work applying live forensic
methods for ransomware file encryption key recovery (Davies et al.,
2020) focusing on stage five of the Cyber Kill Chain. This is where
the ransomware has already bypassed security mechanisms and is
being executed on the victim's system, encrypting victim files
(Dargahi et al., 2019).

® The work explores current ransomware cryptographic
methods leading to evaluating a method for Salsa20
encryption algorithm memory artefact extraction.

@ Experiments are carried out to evaluate this method for
crypto-ransomware per file encryption key recovery from
memory, with recovery and validation of multiple per file
keys.

Forensic Science International: Digital Investigation 46 (2023) 301572

@® These methods are applied, demonstrating a successful side-
channel attack against recent ransomware samples using
individual Salsa20 keys per file encryption, as well as suc-
cessful file decryption for large numbers of files.

@ Salsa20 key exposure times in memory are also evaluated for
a one key per victim file crypto-ransomware.

These methods aim to bypass the multi-layer and hybrid key
management incorporated into current ransomware families with
the goal of developing an effective ransomware encryption key
recovery method that facilitates the decryption of victim files. Such
a method could then be used in mitigation systems, providing
victims with a route to file recovery without requiring the payment
of a ransom.

The remainder of the paper is organised as follows. Section 2
contains a discussion about related work in the area. Section 3
describes the developed methodology with Section 4 detailing
the experiments that were conducted and the results achieved.
Section 5 provides a critical analysis of the experimental results and
a comparison to similar work in the field. Section 6 contains a
discussion of the findings, limitations of the research and possible
future work. The conclusions drawn from this research are repre-
sented in Section 7.

2. Background and related work

This section introduces and discusses the background of crypto-
ransomware at the time of writing. Literature related to this work is
explored specifically concerning crypto ransomware key manage-
ment and cryptographic artefact retrieval using memory forensics.
This section also contains a discussion on the Salsa20 encryption
algorithm.

2.1. Cryptographic ransomware key management

Due to the changing nature of crypto-ransomware, it can be
useful to classify ransomware according to the cryptographic
scheme they employ, typically split into single key or hybrid
encryption systems (Zimba et al., 2021b). For instance, a single-key
attack model uses a symmetric or asymmetric cipher to encrypt the
victim's data. Whereas, a hybrid system uses both symmetric and
asymmetric ciphers simultaneously. With hybrid encryption, user
data is typically encrypted using a symmetric encryption key, and
this symmetric key is then encrypted using the public key to an
asymmetric key pair, the corresponding private key is never pre-
sent on the infected machine. It is important to note that in prin-
ciple the data cannot be recovered without the private key (Bajpai
and Enbody, 2020b, 2020c; Zimba et al., 2021b).

Bajpai (Bajpai and Enbody, 2020b, 2020c) and Oz et al. (2021)
found that popular symmetric and asymmetric ciphers used by
crypto-ransomware are Advanced Encryption Standard (AES) and
Rivest-Shamir-Adleman (RSA) respectively. However, as high-
lighted by Bajpai (Bajpai and Enbody, 2020c), symmetric ciphers
introduce a weakness as the same key is used to both encrypt and
decrypt the data and as the encryption key is exposed in memory;, it
is possible to capture the key at this point and then use it to sub-
sequently decrypt and recover the data. Although, this window is
minimised if a unique encryption key is used for each victim file, as
they highlight can be the case with recent hybrid ransomware.

Typically, more recent crypto-ransomware has been found to
now use this hybrid scheme (Bajpai and Enbody, 2020a, 2020b,
2020c; Geng, 2020; Zimba et al., 2021b), where asymmetric and
symmetric ciphers are combined (Moussaileb et al., 2021; Oz et al.,
2021; Ramsdell and Esbeck, 2021). These types of attack structures
are also the most damaging and difficult to recover from without

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

paying the ransom (Bajpai and Enbody, 2020a, 2020c; Zimba et al.,
2021b). However, these classifications help to understand how
crypto-ransomware acts and can point toward how these might be
detected or mitigated.

2.2. Reactive mechanisms

Reactive mechanisms are used as a last resort when mitigation
and prevention solutions have not halted the attack and the ran-
somware is executing in the infected system. These often include
identifying and recovering encryption keys. Some of these mech-
anisms also use key escrow, to store recovered encryption keys
being used by ransomware, to then attempt to recover the
encrypted data (Bajpai and Enbody, 2020b, 2020c; Geng, 2020; Oz
et al., 2021). Berrueta et al. (2019) point out two major studies
from 2017 that take advantage of the ransomware's need to access
random numbers to generate encryption keys in an infected host.
The first study proposes controlling the Pseudo Random Number
Generator (PRNG) of the cryptographic API in Windows systems.
This approach allows the user to control all random numbers
generated by the PRNG. Therefore, the encryption keys can be re-
generated from these captured random numbers to recover the
encrypted files (Kim et al., 2017). The second study presents Pay-
Break, a key escrow solution that hooks the cryptographic API to
gain access to the keys generated in an infected host. However, the
authors of PayBreak noted how malware could intentionally create
false encryption keys to fill the vault where the keys are stored
(Kolodenker et al., 2017). A problem with both proposals is that
ransomware might import its own cryptographic library, such as
with its own version of a PRNG (Bajpai, 2020; Bajpai and Enbody,
2020b; Moussaileb et al., 2021; Oz et al, 2021). Moreover, as
Geng¢ (2020) points out, if PayBreak were to become ubiquitous it
would present a new target for cybercriminals as the encryption
keys needed for other legitimate operations could be stored in the
same vault. After the appearance of PayBreak, Geng (Geng et al.,
2018) developed UshallNotpass which allows or denies access to
the PRNG of the cryptographic API by applications based on their
legitimacy. This means that only processes that have been white-
listed or certified in some manner can access the PRNG function. For
the practical testing, they set a system policy based on locally
whitelisted applications so any program that does not belong in
this list is denied access to the cryptographic APL UshallNotpass is
able to mitigate ransomware such as NotPetya as it stops its
execution before the crypto-API can be used. However, Geng (2020)
notes that UshallNotpass is susceptible to ransomware hijacking the
process of a whitelisted application and being accepted as a legit-
imate application. For this reason, an improved version NoCry was
developed which unifies the interceptor and controller of the
process to avoid the hijacking. While successful results are pro-
duced, a similar problem to that of PayBreak or UshallNotpass re-
mains unsolved, in that ransomware can build in its own
encryption code (Bajpai, 2020; Bajpai and Enbody, 2020b;
Moussaileb et al., 2021; Oz et al., 2021). Geng (2020) argues that
neither UshallNotpass nor NoCry was designed to stop all types of
ransomware and that these applications are to be used as com-
plementary defence solutions. Furthermore, their implementations
require either a local whitelisted database or a method to certify
applications adopted by major manufacturers.

Another key escrow-based system is PickPocket (Bajpai, 2020). In
this solution, a bait file is used to trigger the dumping of keys from
the ransomware process which is encrypting the files. Geng¢ (2020)
highlights the limitation of such a solution, as any files which were
encrypted prior to the bait file being accessed would still be un-
recoverable. Also to note, ransomware which encrypts victim files
with an asymmetric cipher would bypass PickPocket and similar

Forensic Science International: Digital Investigation 46 (2023) 301572

systems as the private key would typically not be available on the
victim machine. However, as highlighted by Bajpai, single-key
asymmetric encryption tend to be slow and resource intensive
resulting in these types of ransomware being much less common
(Bajpai, 2020; Bajpai and Enbody, 2020a). Bajpai (Bajpai, 2020;
Bajpai and Enbody, 2020b, 2020c¢) and Geng (2020) highlight that
crypto-ransomware using a symmetric cipher to create a unique
key for each file encrypted, can make it difficult to capture all keys
due to the speed in which these ciphers encrypt data. Therefore,
Bajpai (2020) developed PickPocket to extract asymmetric keys and
those AES keys that are found to be in the same process memory
space, identifying the presence of these keys via the existence of
their key schedule.

2.3. Extracting keys from memory

Several related studies have demonstrated the retrieval of
encryption keys from the volatile memory of target machines using
digital forensic methods (Halderman, Schoen, Heninger, Clarkson,
Paul, Calandrino, Feldman, Appelbaum, Felten; Hargreaves and
Chivers, 2008; Kaplan and Geiger, 2007; Maartmann-Moe et al.,
2009). Encryption keys are vulnerable to side-channel attacks as
the keys and any supporting artefacts have to be held in memory
while the encryption is being performed. Symmetric encryption al-
gorithms are typically used for data encryption, with the same key
being used for both encryption and decryption. Retrieving a key
during the encryption process allows it to be used to decrypt the
encrypted files. Some related work has focused on retrieving keys
while ransomware is executing, and using those extracted keys to
decrypt data encrypted by the ransomware (Bajpai, 2020; Bajpai and
Enbody, 2020c; Davies et al., 2020). Digital forensics and ransomware
research around extracting keys from memory are overlapping fields.
The method used by Davies (Davies et al., 2020) and around the same
time Bajpai (Bajpai, 2020; Bajpai and Enbody, 2020c) seems to be the
first work to show successful decryption of compromised ransom-
ware encrypted files using keys extracted from the memory of
running ransomware. These approaches focused on AES ransomware
key extraction from memory as ransomware around that time
typically used AES to encrypt victim files.

Significant recent surveys identify that RSA and AES are the
most popular ciphers among crypto-ransomware (Beaman et al.,
2021; Humayun et al., 2021; Mohammad, 2020; Moussaileb et al.,
2021; Oz et al., 2021), but recent technical analysis does indicate
that newer strains are evolving to use faster stream type ciphers
(Craciun et al., 2019; Lee et al., 2019; Yuste and Pastrana, 2021).
Some versions of the Petya ransomware used the Salsa20 sym-
metric cipher to encrypt the Master Boot Record (MBR) and Master
File Table (MFT) of infected machines (Aidan et al., 2018; Fayi,
2018). Anatova (Poudyal, 2021), Darkside (Makrakis et al., 2021),
and Ranzy Locker in 2020 (Ozarslan, 2021), Karma and BlackMatter
in 2021 (Mundo, 2022; Team, 2021), and RansomCartel in 2022
(Amer Elsad, 2022) also use the Salsa20 cipher or a variant to
encrypt files of their victims, as well as some others using Chacha20
which is modified version of Salsa20 (Yuste and Pastrana, 2021).
Current methods of extracting RSA, and AES keys from memory are
well-defined, but these techniques are not able to identify Salsa20
keys and nonces. These existing cipher key recovery methods use
key schedule and entropy-related methods. Salsa20 stream ciphers
can not be recovered using the same techniques, but a method
using the initialisation matrix is proposed in this work. The iden-
tification and recovery of Salsa20 keys from memory do not seem to
have been explored in the literature and this is the focus of the
initial phase of this research, followed by applying the developed
method to real-world ransomware in the subsequent phases of this
research.

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies
2.4. Salsa20 encryption

Salsa20 is a stream cipher, that uses a key, nonce and counter to
generate a key stream which is then aligned to the plain-text
stream and used to create an encryption stream the same size as
the input plain-text stream. The author defines this as a hash
function which combines the key, nonce and counter along with
some constant values, to create each 64-byte block of the stream.
The block is organised into a 4 x 4 array which has 32 bytes Salsa20
key, 8 bytes nonce, and 8 bytes block counter (or ‘position’), with
additional 16 bytes of constants also included. The algorithm then
performs addition, XOR, and rotation operations on the 64 bytes
block in various rounds to create the Salsa20 stream. The stream
can then be used to encrypt the associated plain-text stream, using
XOR operations, up to the length of bytes of the plain text with the
rest of the stream being disregarded (Bernstein. and Snuffle, 2005).

Bernstein (2008) defines the 32-word array as being built from
four constant values of two words each, 16 words making up the
32-byte key, four words making up the nonce, and four words
making up the block counter/position. The order they are posi-
tioned in the array is fixed, with a two-word constant 0x61707865,
followed by 8 keywords making up the first 16 bytes of the key
value, then a constant two-word 0x3320646e, four words making
up the 8-byte nonce, four words for the 8-byte block-counter/
position value, a constant two-word 0x79622d32, the last 8 words
of the key value, and a constant 0x6b206574. These values are in
little-endian format. The constant values in ASCII are expa, nd 3, 2-
by, and te k and are the same for every Salsa20 array. These are
arranged in a diagonal, in row 1 column 1, row 2, column 2, row 3
column 3, and row 4 column 4, making the complete array as
shown in Fig. 1.

3. Methodology

This work builds on the previous related work but focuses on
the extraction of encryption keys for the Salsa20 encryption algo-
rithm, which has at the time of writing is an encryption method of
choice for many of the recent crypto-ransomware strains. Firstly a
method for identifying the Salsa20 array and extracting the key and
nonce is evaluated. Subsequently, the method is then evaluated
with samples of Salsa20-based crypto-ransomware, while they
perform encryption of a mixed file data set. According to the
literature the most current ransomware strains now employ a one
key per file technique (Bajpai, 2020; Bajpai et al., 2018; Kolodenker
et al., 2017), so the ransomware key extraction experiments were
designed to include multiple key captures facilitating the evalua-
tion of key exposure in memory during the execution of the ran-
somware. Samples of crypto-ransomware documented as using
unique Salsa20 keys and nonce's for victim file encryption were
selected for the experiments. The evaluation of the Salsa20 algo-
rithm was selected for this research due to its increasing use by
ransomware developers, possibly due to the enhanced speed of the
algorithm (Bernstein. and Snuffle, 2005). Salsa20 is a stream cipher,
which encrypts data faster than traditional block ciphers such as
some modes of AES (Sharif and Mansoor, 2010). The encryption
speed of the Salsa20 algorithm could be leveraged by the ran-
somware developers as it allows the attack to complete sooner, thus

‘expa’ key-dword1 key-dword?2 key-dword3
key-dword4 'nd 3' nonce-dwordl | nonce-dword2
counter-dwordl | counter-dword?2 "2-by’ key-dword5
key-dword6 key-dword7 key-dword8 "te k'

Fig. 1. Salsa20 initialisation matrix in memory.

Forensic Science International: Digital Investigation 46 (2023) 301572

aiding ransomware attacks by avoiding detection (Salvio, 2018).
Methods for finding and extracting Salsa20 keys from memory do
not seem to have been attempted in any related work.

The research has been divided into two main parts. A method for
the identification and retrieval of Salsa20 crypto artefacts including
the key and nonce, which would typically be unique for each file
encrypted by current ransomware. Followed by the application of
the method to specific ransomware samples, including extraction
of the encryption keys from the memory of running ransomware
and validation of the extracted keys by decryption of files previ-
ously encrypted by the ransomware.

3.1. Method for identifying Salsa20 key and nonce pairs in memory

Using the pattern of the structure described in Section 2.4, it
should be possible to identify these Salsa20 array artefacts in
memory. Once identified and extracted, these Salsa20 keys and
nonces can be used to decrypt any data which has been encrypted
using those arrays.

An experiment was designed to evaluate the method, based on
the previous work on AES ransomware keys discovery (Bajpai,
2020; Bajpai and Enbody, 2020c; Davies et al., 2020). Firstly a
synthetic ransomware program which mimics ransomware
behaviour, encrypting files using the Salsa20 algorithm, will be
developed by the authors and subsequently executed in a virtual
environment. During the execution of this program, while the
synthetic ransomware is carrying out the encryption, the machine's
volatile memory is acquired. The memory capture is then searched
in an attempt to identify and extract candidate Salsa20 array
structures, from which the encryption keys and nonces can be
determined. The found key and nonce pairs will then be used to
decrypt the files which have been encrypted, thus validating that
the correct encryption keys/nonces have been identified and that
the method is viable. The developed synthetic ransomware soft-
ware will also display the keys as it uses them, so the keys will be
‘known’ and act as an additional method of validation. The software
will be executed for a specific length of time sufficient for the
memory to be captured, and also no attempt at key hygiene will be
performed by the synthetic ransomware. Typically modern ran-
somware will attempt to remove encryption keys from memory
once file encryption is completed, and so the length of time the
keys are in memory may vary but typically will be only until the key
has been successfully used to encrypt a victim file, after which, the
key is removed from memory (The BlackBerry Research and
Intelligence Team, 2019).

3.2. Experiments to evaluate the Salsa20 method with real
ransomware

Further experiments were then designed to assess the method's
success against a real-world ransomware sample. An air-gapped
virtualised environment was used to run a real-world ransom-
ware sample from the Sodinokibi family. Using a similar experi-
mental process to the above, to encrypt mixed file data sets and
extract and validate Salsa20 cryptography artefacts to allow
decryption of the victim's files. The ransomware sample selected
uses complex multilevel hybrid cryptography to protect its sym-
metric Salsa20 file encryption keys by encrypting them with
asymmetric encryption using public/private key pairs. A public key
is used to encrypt each file's Salsa20 encryption key. The associated
private key, required to decrypt the Salsa20 key and thus recover
the victim's encrypted file, is never present on the victim's machine
and is held until the ransom is paid (Guillois, 2020). This is typical
of current ransomware, but the hypothesis is that the side-channel
attack on the memory of the running ransomware should be able to

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

extract Salsa20 artefacts and these can then be used to decrypt the
victim's files successfully without the need for determining the
asymmetric key pairs.

An initial experiment is carried out to encrypt files, capture the
memory and identify Salsa20 keys and nonce values and validate
that these can be used to decrypt the files. It is similar in nature to
the previous Salsa20 identification method experiment in using a
small set of files to evaluate the method, except in this case a real-
world ransomware sample is being used to encrypt the files and
create the Salsa20 memory artefacts. The keys are not known as the
ransomware does not disclose these as our initial experiment
software does. Real ransomware may not hold the keys in memory
for the duration of the process such as with the synthetic ran-
somware software, so memory captures will be carried out at time
intervals to evaluate the key's exposure to the side channel type
attack.

Further experiments are then carried out to assess the method
for a larger more realistic victim file data set. A set of 4000 files
from the NapierOne mixed file data set are used to represent user
data files (Davies et al., 2021) and are added to a standard Windows
10 machine file system. Real-world Salsa20-based ransomware
samples are then executed. Ransomware typically ignores some
directories, and file types so the files created from the execution of
the ransomware are reviewed to assess how many have been
encrypted. Again periodic memory captures are carried out and the
Salsa20 keys and nonces are identified and validated as being able
to decrypt the encrypted victim files. The total number of valid keys
is recorded for each memory capture, as well as unique keys found
at each capture, to assess the total number of keys found and
compare these to the number of files encrypted. When keys are
present in memory and how long they are exposed before removal
are also recorded.

4. Implementation and initial evaluation

Initial experiments were conducted into the evaluation of the
method for identification of Salsa20 encryption artefacts from
running memory, and then further experiments in applying this
method against real-world ransomware samples. Two experi-
mental environment setups were used to perform these in-
vestigations; both using VMware Workstation type 2 hypervisor
and Virtual Machines (VM) to isolate the ransomware activity and
associated memory, with the second also air-gapped and using
additional isolation techniques to ensure a safe and ethically sound
environment for ransomware analysis.

4.1. Identifying Salsa20 Keys/nonce's in memory

The experiment was designed to explore the method for iden-
tifying Salsa20 keys in memory, using a similar technique to the
previous work in extracting AES key schedules (Bajpai, 2020; Bajpai
and Enbody, 2020c; Davies et al., 2020; Hargreaves and Chivers,
2008). Simple software to mimic ransomware behaviour was
created, which generated Salsa20 keys/nonces and encrypted some
files, during its execution, it also displays these keys to the user. This
synthetic ransomware is run in the virtual environment and the
virtual machine's memory is captured by taking snapshots of the
VM to create.vmem files, which contain the VM memory contents.
The known keys can then be searched for in the volatile memo-
ry.vmem files, by identifying the Salsa20 array pattern defined in
Section 2.4. The keys and nonces found can then be validated, by
decrypting the associated files and comparing those to the original
files.

Forensic Science International: Digital Investigation 46 (2023) 301572

4.1.1. Experimental setup

The experimental setup comprised of a Windows 10 host
running within a virtual machine (1 GB RAM + 1 core of a i7-8700k
processor and 30 GB of disk space). The technical specification of
the environment are detailed in Table 1.

4.1.2. Salsa20 key extraction tool

A simple tool was created to identify and extract Salsa20 initi-
alisation matrix and the key and nonce pairs from the memory
captures. The tool searched for the Salsa20 Key State Matrix
matching the pattern of constants, key nonce pair and block
counter. The script accepted binary files as input which can be in
different formats such as.dmp, .vmem, and.core. The tools matches
on the 64 byte Salsa20 initialisation matrix pattern: the ASCII string
‘expa’ hexadecimal equivalent 0x65787061 at byte 1 and ASCII ‘nd
3’ hexadecimal 0x6e642033 at byte 21, ‘2-by’ or hexadecimal
0 x 322d6279, and at byte 61 ASCII ‘te K’ or 0 x 7465206b
(Bernstein. and Snuffle, 2005). The process for identifying and
extracting the Salsa20 Key and Nonce values from the memory
capture is shown in Algorithm 1.

Algorithm 1. Identify Salsa20 Keys in Memory Capture

Algorithm 1 Identify Salsa20 Keys in Memory Capture

while not end of Memory Capture do
PossM atrix < Read 64 Bytes
if PossM atrix = Salsa20 Matrix Pattern then
Salsa20Key «— PossMatrix[5:20] +
PossMatrix[45:60]
Nonce < PossMatrix[25:32]
Keys « Keys + 1
if Salsa20Key not in Keystore then
KeyStore « Add Salsa20Key and Nonce
UniqueKeys « UniqueKeys + 1
Move 64 bytes forward
end if
else
Move forward 1 byte
end if
end while

4.1.3. Synthetic ransomware file encryption

The behaviour of the synthetic ransomware is that it reads all
the files in a specified directory, encrypts each file's content using a
unique Salsa20 key and nonce per file and then pauses for a small
amount of time before writing the encrypted files to the directory
and terminating the process. The program does not overwrite the
original files but creates a new encrypted version adding an
incremented counter to the name of the created file. Fig. 2 shows
this program generating four Salsa20 key and nonce pairs,
encrypting four files and terminating the process after 30 s.

4.1.4. Extraction of Salsa20 keys from memory

While the synthetic ransomware is running the memory of the
VM was captured and saved to a.vmem file. The Salsa20 identifi-
cation tool was run then against the memory dump file to identify
and extract any Salsa20 keys and nonces and record the number of
keys found. Fig. 3 shows the output of the extraction tool and the
key and nonce pairs being successfully identified and Fig. 4 shows a
key as it is presented in the memory dump.

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

Table 1
Experimental environment technical details.

Forensic Science International: Digital Investigation 46 (2023) 301572

Software

Version and additional information

Hypervisor type 2
Python3

findaes

Operating System
Virtual Machine
Hex Editor
Sodinokibi

VMware Workstation 15 Pro - 15.5.6 build-16341506

Version 3.9, Modules imported: PyCryptodome, Time and Os
https://github.com/mmozeiko/aes-finder

Windows 10 Education build 19041.1415

1 processor with 1 cores (i7-8700K), 1024 MB of RAM and 30 GB of disk space.
HxD version 2.5.0.0

Hash: 96dde0a25cc6ca81a6d3d5025a36827b598d94f0fca6ab0363bfc893706f2e87

Fig. 2. Synthetic Ransomware Encrypting Files and Salsa20 Key and Nonce pairs used.

4.1.5. Validation of found Salsa20 keys and nonces

To validate the extracted keys, the files encrypted by the syn-
thetic ransomware were decrypted using the Salsa20 keys and
nonces found by the extraction tool. The decrypted files were then
compared to the original files. When using the synthetic ransom-
ware program, the keys are known as the program displays them,
so the encrypted files can be easily matched to the appropriate keys
and nonces. With real-world ransomware, typically the nonce is
appended to the encrypted file in plain text along with the asym-
metrically encrypted Salsa20 encryption key (Guillois, 2020;
Hasherezade, 2021). If this is the case, for larger scale experiments,
or experiments using real ransomware, the nonce should be able to
be used to match the extracted Salsa20 key and nonce to the
appropriate encrypted files for decryption. The decryption tool
outputs the data in plain text and hexadecimal to the console and
also writes the file to the directory. Fig. 5 shows a comparison of
one of the files 2data_enc_Salsa20.txt after decryption and the
original file 02dataSalsa20.txt encrypted in stage 1 and in Fig. 6 the
hashes of these files to verify their integrity and similarity in bytes
before and after encryption. This confirms that the files are the
same, validating the decryption process.

4.2. Evaluation of method for real-world Salsa20-based
ransomware

These experiments were designed to evaluate the method for

1565021bba34edc

2c7 fad9lde

Fig. 3. Key and nonce pairs identified in memory.

Fig. 4. Salsa20 initialisation matrix in memory.

Enter file to decrypt:
Enter key in hex:
Enter nonce in hex:
Decrypted text:

b"Lorem Ipsum is simply dummy text of the printing and typesetting

Decrypted in hex: 4c6f72656d20497073756d2069732073696d706c792064756d6d7920746578742
4] 02dataSalsa20.txt

Offset (h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00000000 4C 6F 72 65 €D 20 49 70 73 75 6D 20 €9 73 20 73
€9 €D 70 6C 7% 20 €4 75 €D €D 79 20 74 €5 78 74
20 6F 66 20 74 €8 65 20 70 72 69 €E 74 €% €E 67

Lorem Ipsum is s
imply dummy text
of the printing

Fig. 5. Validate keys by decryption of files.

identifying Salsa20 keys in memory against a typical current ran-
somware sample which uses Salsa20 to encrypt victim files. As with
most modern ransomware strains, multiple, unique, Salsa20 keys/
nonces are used to encrypt the files.

A similar process to the initial experiments was followed with
the real-world ransomware strain replacing the synthetic ran-
somware used previously. This sample creates and uses a unique
Salsa20 key/nonce to encrypt each victim file, and targets a range of
file types on the victim file system where it is run.

4.2.1. Ransomware sample

Sodinokibi, also sometimes referred to as REvil, was identified
from the literature as using Salsa20 for victim file encryption along
with a complex hybrid cryptographic scheme to protect the Salsa20
victim file encryption keys (Tiwari and Koshelev, 2019). It was first
identified in 2019 and was one of the most pervasive ransomware
of 2021 (Blog, 2022). Sodinokibi uses a unique Salsa20 key to
encrypt each of the victim's files after infection (Guillois, 2020). It
also uses a range of asymmetric and symmetric encryption algo-
rithms; orchestrating them to avoid leakage of relevant information

@2dataSalsa20.txt - 574 bytes

MD5: ©@laad@e51fcd5582b307613842e4ffe5
SHALl: d595afa5f@ad282342506bc7f1186e6acebff53b

data_recovered.txt - 574 bytes

MD5: BlaadBe51fcd5582b307613842e4ffe5
SHALl: d595afa5f0a4282342506bc7f1106ebacebffS3b

Fig. 6. Comparing file hashes to verify integrity of the files.

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

and to ensure that the files can only be recovered with one of the
two master keys. These master keys are never present on the victim
machine which in normal circumstances means that decryption of
these files would be impossible without paying the ransom to ac-
quire these keys. From a technical analysis of the specific ransom-
ware, the encryption of files appears to be performed in a multi-
threaded manner with the probable aim of making the file
encryption process as fast as possible (Tiwari and Koshelev, 2019).
This could result in more than one set of keys being in memory at
the same time, but perhaps would not be in memory for as long as
they would be if the process was serialised. However, as mentioned
previously, other factors such as the size of the victim files would
also affect the key exposure time.

The following is a summary of the cryptography used by the
Sodinokibi ransomware strain. At first, the ransomware creates a
per-file public and private key and a session key. It then uses the
private key and the session public key with the Elliptic-Curve Diffie-
Hellman (ECDH) algorithm to generate a file encryption key which
is used to derive a Salsa20 key and nonce pair, unique to each victim
file, that is used to encrypt the data content of each file. This process
is shown in Fig. 7.

After encryption of the content of the victim file, the ransom-
ware process appends metadata to the encrypted file including the
encrypted Salsa20 key, encrypted by two separate asymmetric
master keys, the nonce in plain text, as well as some configuration
parameters, along with a CRC value and constant value (Guillois,
2020). While reversing the asymmetric encryption of the Salsa20
keys is impossible, given that neither of the two private master keys
is ever present on the victim machine, a side channel attack should
be able to capture the Salsa20 keys directly from the volatile
memory while the ransomware encrypts the files, as demonstrated
in the earlier experiments.

4.2.2. Experimental setup

The machine configuration for these experiments was changed
so that the test machine was air-gapped, with the ransomware
sample being delivered to the air-gapped machine via a USB
memory stick. Any files for further analysis were moved back from
the air-gapped machine to an analysis machine using the same
technique. The configuration of the air-gapped machine again had a
Windows 10 OS running within a VM (1 GB RAM + 1 core of an i7-
8700k processor and 30 GB disk).

The experiment is carried out with the real-world ransomware
sample running within the VM with memory captures from the VM
being taken at time intervals during the period that the ransom-
ware is encrypting the victim files. Similar to the previous experi-
ment, Salsa20 encryption artefacts are identified by searching the
memory captures using the new method explored in the initial
experiment. Unlike the previous experiment, the victim file Salsa20
encryption keys and nonces are not known, requiring that for the

Private Key Public Key

51

Session Key File Encryption Key
ECDH Salsa20
Ly
7 g g >
File Content

Fig. 7. Sodinokibi key generation.

Forensic Science International: Digital Investigation 46 (2023) 301572

found keys and nonces to be validated, the associated encrypted
files must first be identified, and then decryption attempted.

In the initial experiments with the real-world ransomware
sample, a small number of files were used, to assess the viability of
the Salsa20 identification method, and to explore the decryption
process. This decryption process is often not as straightforward as it
was with the synthetic ransomware program, as real-world ran-
somware-encrypted victim files typically have a range of additional
metadata appended to them. Also, sometimes, parts of the original
file are removed, such as the header sections, and encryption may
also be applied to portions of the victim's files. Once a robust
decryption process was developed during the small-scale initial
experiment, this was then automated, and larger-scale experiments
on a victim file data set made up of 4000 files were carried out. This
data set was created from the NapierOne dataset (Davies et al.,
2021) and contained mixed file types.

4.2.3. Sodinokibi ransomware execution to encrypt victim files
(Salsa20 key recovery. Step 1)

To encrypt the victim file data set, the Sodinokibi ransomware
sample was executed on the VM, hosted on the air-gapped ma-
chine. For the initial experiment, only three files were used to
explore the ransomware implementation, along with the method
for decryption. The command to execute the ransomware, with
flags and parameters:

C:\Sodinokibi.exe -path files.

The ransomware reads the files in the directory specified after
the -path argument and creates encrypted files with metadata
appended to them, overwriting or deleting the original files. The
ransomware is run in default mode, rather than the faster partial
encryption mode which is also available.

To evaluate the new Salsa20 key identification and extraction
method when executing the real-world Sodinokobi ransomware
sample, the same three-stage experiment was performed in the air-
gapped experimental environment. Furthermore, a data set of files
to be encrypted was created on the virtual machine. These target
files were sourced from a publicly available dataset of mixed files
(Davies et al., 2021). Initially, only three files were used in the target
data set in order to confirm the main experimental steps of key
extraction and validation of decryption functioned correctly, prior
to moving onto a larger data set of victim files.

4.2.4. Extract Salsa20 keys from memory (Sodinokibi ransomware
Salsa20 key recovery. Step 2)

While the ransomware is executing, the memory of the VM was
captured at 10-s intervals; during this period the ransomware en-
crypts the victim files. The Salsa20 Identification tool was then run
against the memory captures to identify and extract any Salsa20
keys and nonces, and keep a count of keys found and unique keys.
Successful extraction of Salsa20 keys and nonces were found for the
memory captures at 20, 30 and 40 s after the start of the ransom-
ware execution and are shown in Figs. 8—10. Two key and nonce
pairs were found in the memory capture at the 20-s interval, and
then a new pair is additionally found at the 30-s interval, with the
original first two found keys still exposed in memory. At the 40-
s interval, only one key remains in memory, this being the last of
the three previously found keys. Presumably, the first two keys
being used to encrypt the first two files are then subsequently being
removed from memory after a period of time. This aligns with
technical analysis that has been published on this ransomware
strain where the researchers claim that the keys are being removed
from memory after each file has finished being encrypted (The
BlackBerry Research and Intelligence Team, 2019).

Also pointed out by the literature, the appended data at the end
of the files contains the nonce used to encrypt them, as well as

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

32 byte Salsa20 Key - 232371c7f5194c40f2c7696b4e48604439a8da6a32290044f4dd1b3a387e00f4
Nonce - 3d61027bb8265ce8

32 byte Salsa20 Key - edd8a9f8e446c41b312649df34f5237740db6b2a592325244300389c9¢c3d3f54
Nonce - 094f60cabbcfb4c9

Fig. 8. Identification of Salsa20 key and nonce pairs at 20 seconds.

32 byte Salsa20 Key - 232371c7f5194c40f2c7696b4e48604439a8da6a32290044F4dd1b3a387e00f4
Nonce - 3d61027bb8265ce8

32 byte Salsa20 Key - edd8a9f8e446c41b312649df34f5237740db6b2a592325a44300389¢c9¢c3d3f54

Nonce - 094f60cabbcfb4c9
32 byte Salsa2e Key - 6d38d2f2de318e53712156ad06f6813349be934a83b15f723f039a82fa3f2fb9
Nonce - 1c5cd305932039f5

Fig. 9. Identification of Salsa20 key and nonce pairs at 30 seconds.

32 byte Salsa2 Key - 6d38d2f2d8318e53712156ad066813349be934a83b15F723F839a82fa3f2fb9
Nonce - 1c5cd305932039f5

Fig. 10. Identification of Salsa20 key and nonce pairs at 40 seconds.

some other metadata information related to the ransomware and
encryption keys (Guillois, 2020; Hasherezade, 2021).

4.2.5. Validate Salsa20 keys and nonces found in memory
(Sodinokibi ransomware Salsa20 key recovery. Step 3)

To validate the keys identified from the captures, the same
process of decrypting the files encrypted by the ransomware, and
then comparing them to the original files, was followed. For the
Sodinokibi encrypted files, the keys used for each file encryption
are not known. As a result, the extracted keys and nonces have to be
matched to the corresponding encrypted files. Alternatively, some
type of brute force decryption would need to be undertaken where
all found keys were tested against every file until successful
decryption was carried out. As discussed previously, in this case, the
nonce should be able to be used to match the Salsa20 key and
nonce pair to the appropriate encrypted files for decryption via the
appended metadata by Sodinokibi. After analysis of the encrypted
files and the appended metadata, the matching nonces in plaintext
for the three found in the memory captures were located in the
metadata of encrypted victim files. Details of the 232 bytes of
appended metadata are discussed in Sodinokibi technical papers
such as (Guillois, 2020). The encrypted files and their appended
metadata were analysed using a hex editor to validate the 232 bytes
of metadata and the individual items were consistent for all three
files. An example is shown in Fig. 11 which highlights the 8-byte
nonce used for encryption of the file 0307- pptx.pptx.gp7k2 in
the initial Sodinokibi experiments and can be located 24 bytes from
the end of the metadata, or as a 208-byte offset from the beginning
of the metadata (from the end of the encrypted file's data).

The last 4 bytes of the metadata are a 4-byte NULL word which
has been encrypted using Salsa20. The 4 bytes are 0 x 00 values
encrypted with the same Sodinokibi key and nonce used to encrypt
the file contents.

A decryption tool was created, to first match a nonce identified
in memory to a Sodinokibi encrypted file via the plain text nonce in
its metadata, then to decrypt the victim file's encrypted content.

The 232 bytes of metadata were removed, with the encrypted
file contents matching in size to the original files in all three cases.
The decryption of the file contents was then attempted with the
Salsa20 key and nonce matched via the previous process and the
output compared to the original files. However, the file contents did
not match any of the three files. The last 4 bytes of the encrypted
file's metadata were extracted and decryption was successful, with
the output 0 x 0000 as expected. This pointed towards the key and

Forensic Science International: Digital Investigation 46 (2023) 301572

Encrypted Content

file_public (32 bytes)

IV_tie (8 bytes)

CRC_public_fle (4 bytes)

Encryption type (4 bytes)

spsizo (4 bytes)

Encrypted NULL (4 btyes)

U0 |0050000.00] 27 D7 3 50

Fig. 11. Sodinokibi encrypted file content and metadata.

nonce being those used to encrypt the file, but perhaps some other
step has been added to the encryption process.

In previous work (Davies et al., 2020), file headers and trailers
had to be manipulated during the decryption process, but in this
case, the file sizes including these match between original and
encrypted files, indicating that the encrypted files contain header/
footer data of at least the same size. Several manual manipulations
of the data were made, such as reversing the data before decryption
and altering the headers and footers, but none were successful. To
check for Salsa20 encryption stream having been aligned to a
different offset, rather than the first byte, a script was created to try
decryption incrementally starting at each byte in the file, with the
file being rotated by adding a byte from the start to the end of the
file after each attempt; thus attempting decryption of the entire file
contents starting at a different byte each time. The script matched
the bytes decrypted at each offset against the first 25 bytes of the
original file including the file header values. For example, a JPG file
would include the signature 0xffd8ff and the 19 bytes following. It
was found that the decryption back to the original files was
accomplished successfully with an offset of —64 bytes or 64 bytes
from the end of the file. Thus, the first byte of the file needs to be
aligned with the 65th byte of the Salsa20 stream to perform the
decryption successfully.

This offset was added to the decryption tool, and the extracted
keys and nonces were validated. The decryption of the three files
encrypted by the Sodinokibi ransomware was successful using the
Salsa20 keys and nonces found by the extraction tool and the
method above and was an exact match when compared to the
original files. Fig. 12 shows the hash of the original and decrypted
files to verify their. This encryption/decryption offset does not seem
to be documented in any other academic literature or technical

0387 -pptx.pptx - 3151496 bytes

MD5: 33al6136aaeac99def2388ab241045cf
SHALl: b536888%a6bb347bb78469135e661efdbebdd754

recovered_©0307-pptx.pptx - 3151496 bytes

MD5: 33al16136aaeac99def2388ab241045cf
SHALl: b536808%a6bb347bb78469135e661efdbebdd754

Fig. 12. Verifying integrity of files after decryption.

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

papers. The process of decryption is outlined in Algorithm 2.

Algorithm 2. Decrypt Files with Extracted Keys and Nonces

Algorithm 2 Decrypt Files with Extracted Keys and Nonces

Read Encrypted File

if Nonce in Enc File Metadata then
Enc Content < Enc File less 232 Bytes of Metadata
Salsa20 Stream « CreateStream(Key + Nonce)
Align Enc Content to 65th Byte of Salsa20 Stream
Decrypted Bytes < Decrypt(Enc Content)
Write Decrypted File < Decrypted Bytes

else
Read Next File

end if

5. Evaluation
5.1. Sodinokibi large scale key recovery

The Salsa20 extraction method was shown to be able to identify
and extract the encryption key and nonce pairs from the crypto-
graphic ransomware sample's memory while it was executing. The
decryption tool could then validate the keys and nonces as being
able to successfully perform decryption, and thus recover the
original victim files.

To be able to determine how many keys could be successfully
extracted using this method, and also to produce a timeline of
when these might be found in memory, the same experiment was
run with a significantly larger data set of 4000 files of mixed types
and sizes, with a total size of 2.7 GB. These were sourced from the
NapierOne mixed file data set which has been created from real
files (Davies et al., 2021) and aims to represent victim user's data
files in a data set of similar construction to other researcher's
(Berrueta et al., 2020; Kolodenker et al., 2017). Table 2 shows the
details of the file types, minimum and maximum file sizes, and the
number of each file type contained in the 4000 file data set. These
file types were selected as they typically represent files that are
targeted by crypto-ransomware, and as the focus was on testing the
method while files were being encrypted, these should trigger the
encryption. The mixed file data set was added to a Windows 10 file
system, under a single directory, which could be specified for this
particular ransomware sample. The Windows 10 file system con-
tained a total of 88,265 files and the total size of the file system was
approximately 22 GB. Note these were not targeted by the ran-
somware during the experiment, as the ransomware sample under
test was specifically targeted at the 4000 file data set.

After some initial experimentation, a 10-s interval between
memory captures starting at 5 s was decided on, with the same
method of key and nonce extraction carried out at each time
interval.

Table 2
Details of mixed file data set.
File Type Quantity Max Size in KB Min Size in KB
.ppt 556 11161 58
.pdf 780 10111 5
.docx 1220 7340 12
xlsx 240 7081 11
ipg 980 4495 3
tiff 224 2939 872

Forensic Science International: Digital Investigation 46 (2023) 301572

Fig. 13, shows results from the experiment, with a total number
of keys found in memory at each memory capture, for the same
Sodinokibi sample encrypting 4000 files. After 15 s of execution, the
first Salsa20 encryption keys/nonces are identified in memory. At
this point over a thousand keys are identified from the memory
capture. The total number of keys found increases for the next 3
intervals until 45 s where 1789 keys are found, after which the
number of keys found decreases until none are present after 95 s.
The keys appear to be removed from memory as the program ex-
ecutes, most likely after the files have been encrypted and written
to disk. It was identified that this strain of ransomware creates the
ransom note just prior to the point where the keys start to be
identified in memory, at around 15 s after execution, which aligns
with documented behaviour (Guillois, 2020).

However, after analysis of the extracted keys, it was discovered
that more than 8000 Salsa20 keys were found over the experi-
ment's total time. After, comparing key and nonce values, it was
observed that some of the keys identified in the memory snapshots
were not unique as one key and nonce pair may appear within
multiple memory dumps. The numbers of unique keys found in
each memory capture were then analysed, as shown in Fig. 14.

Fig. 14 highlights the unique key and nonce pairs that pertain to
each of the intervals. For instance, interval 25 has 796 pairs that are
not found in any other memory dump. The total number of unique
Salsa20 keys and nonces recovered from the memory captures was
3,612, which is over 90% of the probable 4000 keys used by the
ransomware to encrypt the 4000 files. Furthermore, Fig. 14 also
demonstrates that Sodinokibi initialises a significant amount of the
keys in the first interval and does not gradually increase the
number of keys as might be expected. This could be due to the
ransomware's multi-threaded behaviour for the key creation and
encryption (Tiwari and Koshelev, 2019). It also initialises a lower
number of pairs in the following intervals; however, interval 55 has
an increased number of new unique pairs when compared to in-
terval 45. This could be due to attempts by the ransomware to
delete keys from memory once the file encryption has been
completed. Fig. 15, attempts to show the persistence of keys found
at each memory capture. It shows the total amounts of keys at each
interval and highlights the number of unique new keys created at
each interval and the number of keys still in memory from the
previous captures. This shows the exposure time of the keys found
across several memory captures, and the persistence of the keys in
memory as the encryption of the files is carried out. From the 1045
unique keys found at 15 s, 449 were shown still to be in memory at
25 s, and 280 at 35 s, and this indicates a pattern of removal from
memory after use. As mentioned previously this will depend on
several factors, including the implementation of the ransomware
software such as threading and key hygiene processes (The

1800 L

1600
, 1383
1400
1245
& 1200
K 1045
o 1000
R
600
400
200
i 0
0
5 15 5 35

N

19 0
8S

769
5 8

nterval

Fig. 13. Total Sodinokibi Salsa20 keys identified in memory.

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

1045

" 7% 775
600 531
o 329
200 136
) 0 . 1 0 0
0
15 2 35 45 55 65 7 95

Interval in Seconds

Number of keys

Fig. 14. Unique Sodinokibi Salsa20 keys identified in memory.

BlackBerry Research and Intelligence Team, 2019), the size of victim
files being encrypted, and the victim system resources as well as
other software running on the system.

Showing how long the pairs found at each memory dump are
present in memory is interesting and represents the pattern of
chunks of keys being created and then gradually deleted after use.
An anomalous pattern is observed among keys from intervals 15,
25, and 35 s which can also be seen in Fig. 14 in that some of the
unique keys found seem to be removed from memory and then are
found at a later capture. This could indicate swapping of the
memory from RAM to disk and back, and experimentation into an
analysis of the paging files might be interesting to explore, as
highlighted in previous work (Hargreaves and Chivers, 2008).

This experiment showed that out of 4000 files encrypted by this
sample of cryptographic ransomware 90.3% were recovered using
live memory forensics techniques at 10-s intervals. It also showed
that the encryption of the files by this sample of Sodinokibi com-
mences at around 15 s with the described setup and this value is
consistent over multiple executions of this experiment. Also, the
time that the keys are exposed in memory is between 10 and 60 s

Number of keys

620
328 ‘
i EE
-
25 35 45

Forensic Science International: Digital Investigation 46 (2023) 301572

from the start of the ransomware's execution.
5.2. Sodinokibi encryption key exposure time lining

Another smaller experiment was performed to attempt to
analyse the exact timeline of exposure of specific Salsa20 file
encryption keys in memory for the sample ransomware. It was
executed using a smaller data set of 20 files of exactly the same size
and with snapshots taken at 1-s intervals. The aim was to attempt
to identify specific file encryption keys exposure in memory;
highlighting individual keys being created and destroyed while the
ransomware was carrying out the encryption. This experiment was
performed six times and on only one occasion were all 20 key and
nonce pairs identified, which are the results discussed. For the
remaining executions, a maximum of no more than four keys were
found, possibly as a consequence of the limited number of files
being used and the multi-threaded nature of the ransomware
sample. Fig. 16 shows the results of the experiment where all 20
Salsa keys were found. The Salsa20 encryption keys found in each
memory capture are shown, along with the encrypted files the keys
were used to create, and these are ordered by the last modified
date. This shows the key's timeline in the memory captures against
the encrypted files in the order they were written to disk.

The figure shows all of the keys are in memory at 12 s, with no
keys appearing in any of the memory captures prior to this point.
The ransom note was also created at 12 s. As with the previous
experiment, no keys are present in memory for the first 11 s, with
perhaps the ransomware process performing reconnaissance and
preparation prior to the encryption phase, which aligns with
documented behaviour (Guillois, 2020; Tiwari and Koshelev, 2019).
For the next 3 s, all 20 keys can be found in memory. At 15 s the first
key and nonce pairs for the first 10 files were no longer available
and had probably been removed from memory by the ransomware
after the encryption of those files had been completed and the files
are written. Three seconds later the remaining keys were also
removed from the memory This shows a similar pattern of

77 383

55 65 75 85 o5

Intervals in seconds

m Keys created at S m Keys created at 15 m Keys created at 25

Keys created at 35 m Keys created at 45

B Keys created at 55 B Keys created at 65 B Keys created at 75 B Keys created at 85

Fig. 15. Sodinokibi Salsa20 keys persistence in memory.

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

w
t=r
.

Fig. 16. Sodinokibi encrypted file Salsa20 keys exposure.

behaviour, where keys are being created in bulk and then subse-
quently removed from memory once those files have been
encrypted.

The timeline experiment showed that the symmetric encryption
keys are exposed in memory for a short amount of time in which
they can be recovered. However, it is likely that this time shrinks if
the infected system has more resources (Bajpai, 2020; Tiwari and
Koshelev, 2019), on the other hand in a more realistic environ-
ment other applications would be taking up resources of that sys-
tem, therefore more experiments would be needed to accurately
determine the time in which these keys are available in a real-world
system.

5.3. Ransom Cartel key recovery evaluation

For comparison, a second large-scale key recovery experiment
was performed using the Ransom Cartel strain of crypto-
ransomware. This strain was selected because it is documented to
use the standard Salsa20 encryption algorithm for victim file
encryption (Amer Elsad, 2022), the details of the specific version
used are presented in Table 3. Ransom Cartel first appeared in
December 2021, and like Sodinokibi, was active throughout 2022
and remains active at the time of writing. The analysis states that it
uses a unique Salsa20 key nonce pair for each victim file encrypted,
and similar to Sodinokibi protects these with symmetric and
asymmetric encryption preventing the decryption of files without
paying a ransom for a master private key.

The same 4000 file mixed file data set was added to the same
base Windows 10 file system, under a single directory. However, for
this particular ransomware sample, no option for specifying the
directories to encrypt was available resulting in this ransomware
theoretically targeting the entire file system of the VM. This
included the 88,265 files from the Windows 10 file system as well
as the 4000 mixed file data set mentioned previously. During the
execution of this ransomware, in theory, the entire file system could
be encrypted, however, it is known that normally system folders
are excluded and thus the majority of Windows 10 OS files were
expected to remain untouched. The anticipated behaviour was that
the ransomware would mainly target files under the C:\Users
directory, where user data files are typically stored in a Windows
file system.

After execution of the ransomware program, it was identified

Table 3
Ransom cartel crypto-ransomware sample.

Forensic Science International: Digital Investigation 46 (2023) 301572

that all 4000 files within the test dataset had been encrypted,
together with an additional 18 files that were also present under
the C:\Users directory. The total execution time taken for the ran-
somware sample was 4.16 min, and as shown in Fig. 17, no keys
were identified in memory after 220 s. This is slower than the
Sodinokibi sample, although Ransom Cartel was potentially tar-
geting many more directories for encryption as well as generating
more ransom note files. This behaviour could explain the difference
in execution times. The total Salsa20 key and nonce pairs identified
in the memory captures, using 10-s capture intervals, was 14,175.
This is significantly more than was identified during the execution
of the Sodinokibi sample. However, the total number of unique keys
recovered was 3,182, which is only 79% of the possible 4018 file
encryption key and nonce pairs generated. Fig. 17 illustrates the
presence of Salsa20 encryption keys identified in the ransomware's
volatile memory and it can be seen that the process cleans up and
removes used keys periodically, with the final clean-up occurring
between 220 and 230 s.

It's interesting to note that the time taken during the recon-
naissance phase, before the start of encryption, is similar to that of
Sodinokibi, even though this sample is targeting the entire file
system. This aligns with the expected behaviour mentioned earlier
where the majority of the files on the base file system are ignored
and the program focuses on user data files. It is known that ran-
somware is evolving so that it focuses its targeting of files in an
attempt to execute as fast as possible and thus evade detection. This
behaviour highlights the relatively small period of time detection
systems have to identify these types of malware once they start
executing.

6. Discussion

Currently, no single solution to mitigate cryptographic ran-
somware exists. However, progress is continually being made in the
effort to combat this type of malware. This work has presented a
method for identifying and recovering Salsa20 cryptographic ar-
tefacts from volatile memory and applying this to the mitigation of
one key per file Salsa20-based ransomware. An evaluation of pe-
riodic sampling for key recovery with real ransomware samples has
been conducted in an attempt to map the life cycle of cryptographic
keys in volatile memory. Furthermore, this paper also demonstrates
a successful technique for the successful decryption of
ransomware-encrypted victim files validating that the keys being

1000
900 869
800

700

456

Number of keys
o
5
s

283
300 26

137

200 173 175 168
130 11 -
100 sg 69 51 56 I I a7 =
1 15 14 I
cc2HAmEREZN ' m Zinm imBlae

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 150 200 210 220 230
Interval in Seconds

Fig. 17. Unique ransom cartel Salsa20 keys identified in memory.

Ransomware Strain

SHA256 Hash

Ransom Cartel

55e4d509de5b0f1ea888ff87eb0d190c328a559d7cc5653c46947e57c0f01ec5

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

recovered are in fact the ones used to encrypt the targeted files. No
description of such a technique has been found in the literature.

The initial experiments in this research build on the previous
work in the established area of the encryption key extraction from
memory (Halderman et al., 2009; Hargreaves and Chivers, 2008),
by developing, evaluating and validating a method of identifying
Salsa20 encryption artefacts in volatile memory. The developed
method was then applied to the analysis of Sodinokibi, which is an
actual example of Salsa20-based crypto-ransomware. The work has
similarities to previous AES-based related work (Bajpai and Enbody,
2020c; Davies et al., 2020; Yuste and Pastrana, 2021), evaluating a
side-channel attack on the running ransomware to retrieve AES
encryption keys from the ransomware process memory. However,
many of the new strains of ransomware are now employing faster
encryption algorithms such as Salsa20 resulting in the need to
expand the research into developing the methods for recovery of
Salsa20 encryption keys. The identified keys are validated by the
successful decryption of files targeted by the ransomware. The
working decryption method for the Sodinokibi ransomware strain's
victim files is also described in detail, as descriptions of this type of
process do not seem to be documented anywhere in the literature.

The developed methods of key recovery were then evaluated
against two Salsa20-based ransomware strains, targeting a data set
of mixed data victim files. The method used periodic sampling and
analysis of the ransomware's volatile memory. Using a 10-
s sampling interval the method successfully recovers a high per-
centage of Salsa20 encryption keys demonstrating the viability of
this live forensics approach in the mitigation of some strains of
crypto-ransomware. However, using periodic sampling could
potentially miss keys depending on factors such as the environ-
ment resources, the ransomware's cryptographic management
implementation, the size of the files being encrypted, and faster-
emerging methods such as partial and intermittent encryption.
However, the method can produce very good results, if the sam-
pling interval could be matched to the speed of keys being created
and could provide a good last line of defence. The technique could
theoretically also be incorporated as a part of other detection and
mitigation solutions.

There appears to be little related research concerning ransom-
ware that uses one unique encryption key per file, with the ma-
jority of the related work focusing on ransomware that uses a single
key for all the encryption (Bajpai and Enbody, 2020c; Davies et al.,
2020; Yuste and Pastrana, 2021). Using a unique encryption key per
file is now the preferred method used by most modern ransom-
ware. This work evaluates the identification and collection of the
file encryption keys across a mixed file data set and shows that by
periodic sampling of the memory of the malicious process, many of
these keys can be identified and extracted. The exposure and life-
cycle of the keys in memory are explored with timeline experi-
ments, and these show the creation of keys as the ransomware
executes, and what looks like removal from memory once the key
had been used, This behaviour aligns with other technical analysis
of the ransomware behaviour (Tiwari and Koshelev, 2019). Analysis
of key exposure could aid the development of new useful tech-
niques to extract important information from the memory of an
infected host. Investigation into events that could be used to trigger
memory analysis could also be researched as a method for deter-
mining optimal times for key extraction. New strains of crypto-
graphic ransomware could also be analysed using this sampling
technique and may provide a better way of understanding the
ransomware threat model, through the evaluation of key persis-
tence in memory as new ransomware methods evolve.

12

Forensic Science International: Digital Investigation 46 (2023) 301572
6.1. Limitations and future work

Limitations of the work are mainly related to the narrow focus
on the later parts of the crypto-ransomware threat model. The
methods of recovering keys and decryption of victim files are a last
defence mechanism, once the ransomware is already encrypting
the user's data. As highlighted by recent surveys (McIntosh et al.,
2021), ransomware can also use the exfiltration of victim data as
an additional method of extortion. However, victim file encryption
is still performed and used for extortion by all the main ransom-
ware strains currently in operation so any mechanisms of mitiga-
tion and recovery would be beneficial.

There are some areas of research related to the work described
in this paper that could benefit from further investigation. One
direction could be memory analysis based on trigger events, to try
to identify when to capture keys, such as with previous research
hooking on certain API function calls (Geng et al.,, 2018; Kim et al,,
2017; Kolodenker et al., 2017; Mehnaz et al., 2018; Seo and Kim,
2012), though these single trigger events can, in theory, be
evaded such as with custom cryptography or direct system calls
(MclIntosh et al., 2021). Evaluating the scanning of more specific
areas of memory for encryption keys, such as within the process
memory, could also be interesting. Methods for monitoring in near
real-time, or capturing memory within smaller time intervals, may
also be needed to mitigate against the emerging faster crypto-
ransomware strains (Anand et al., 2022).

The development of tools for the identification and extraction of
Salsa20 cryptographic artefacts has shown to be useful, and addi-
tional methods could be developed to extract other similar sym-
metric encryption algorithms, such as variants of Salsa20 and
custom implementations. Limitations with the methods currently
identified could be encountered, due to custom versions of these
algorithms being implemented, such as with custom initialisation
arrays reported to be used by some of the latest ransomware strains
(Yuste and Pastrana, 2021), so further work on identifying these
could also be undertaken.

7. Conclusion

The work presented in this paper demonstrates that methods
for ransomware encryption key identification and subsequent
extraction can be successfully extended and applied to current
techniques being used by ransomware. Previous work in this area
has focused on investigating AES symmetric encryption and key
extraction. However, some strains of ransomware are now using
alternative encryption algorithms such as Salsa20, as well as typi-
cally using a unique encryption key per file. This paper presents a
method that can successfully identify Salsa20 cryptographic arte-
facts in the volatile memory of a ransomware process. The research
builds on previous work to facilitate key extraction from ransom-
ware strains that employ more complicated techniques of encryp-
tion key management, including multiple symmetric encryption
keys.

The paper initially describes the methods required to allow for
Salsa20 key identification and extraction, as well as per file
encryption keys. These methods were then tested and validated
using a synthetic ransomware sample with the results confirming
that the identified keys were able to decrypt the files affected by the
ransomware. Two samples of different strains of real-world ran-
somware programs were then run on a forensically safe, isolated
machine and again the developed method was able to successfully
identify and extract the majority of the keys used by the

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

ransomware. These keys were then validated by decrypting the
affected files and recovering the victim's data. In a real-world sce-
nario, this would effectively relieve the victim from having to pay
any ransom to recover their data.

Arelated part of the research performed during this work was to
analyse and map the symmetric encryption key life cycle and
monitor how long specific keys were exposed in memory. It was
noted that key generation appears to be handled on a block basis
where blocks of keys appear to be created at the same time, are
present in the memory at the same time and destroyed simulta-
neously. It is hypothesised that this could be related to the ran-
somware executable being multi-threaded. Due to the granularity
of the technique used to capture the memory during this work, it
was not possible to precisely map individual key life cycles, but this
observation raises some interesting questions and will most
certainly be followed up in subsequent research.

The method of identifying and extracting Salsa20 cryptographic
artefacts from memory, and using these to decrypt files has been
shown to be successful, and useful in the mitigation of modern
ransomware which used hybrid cryptography. The method of using
live forensics to extract victim file encryption keys directly from the
memory of running ransomware has been shown to produce suc-
cessful results, in terms of being able to decrypt victim files without
the need for the master asymmetric key, and so help prevent the
need to pay a ransom.

The main focus of this paper was to explore the possibility of
being able to extract encryption keys from the volatile memory of
running ransomware programs, and the tools developed to identify
Salsa20 key identification, key extraction and file decryption are
available on request.

Declaration of competing interest

This paper has not been previously published or considered or is
being considered for publication elsewhere. There are also no
conflicts of interest.

Data availability

Data will be made available on request.

References

Aidan, J.S., Verma, H.K., Awasthi, LK., 2018. Comprehensive survey on petya ran-
somware attack, 2017. In: Proceedings - 2017 International Conference on Next
Generation Computing and Information Systems. ICNGCIS, pp. 131—136. https://
doi.org/10.1109/ICNGCIS.2017.30.

Amer Elsad, D.B., 2022. Ransom cartel ransomware: a possible connection with
revil. URL: https://unit42.paloaltonetworks.com/ransom-cartel-ransomware/.

Anand, P.M., Charan, P.S., Shukla, S.K., 2022. A comprehensive api call analysis for
detecting windows-based ransomware. In: 2022 IEEE International Conference
on Cyber Security and Resilience (CSR). IEEE, pp. 337—344.

Bajpai, P., 2020. Extracting ransomware's keys by utilizing memory forensics. URL:
https://d.lib.msu.edu/etd/48467.

Bajpai, P.,, Enbody, R., 2020a. An Empirical Study of Key Generation in Cryptographic
Ransomware. International Conference on Cyber Security and Protection of
Digital Services. https://doi.org/10.1109/CYBERSECURITY49315.2020.9138878.
Cyber Security 2020.

Bajpai, P.,, Enbody, R., 2020b. Attacking Key Management in Ransomware, vol. 22. IT
Professional, pp. 21—27. https://doi.org/10.1109/MITP.2020.2977285.

Bajpai, P,, Enbody, R., 2020c. Memory Forensics against Ransomware. International
Conference on Cyber Security and Protection of Digital Services. https://doi.org/
10.1109/CYBERSECURITY49315.2020.9138853. Cyber Security 2020.

Bajpai, P, Sood, AK. Enbody, R., 2018. A key-management-based taxonomy for
ransomware. In: 2018 APWG Symposium on Electronic Crime Research
(eCrime). https://doi.org/10.1109/ecrime.2018.8376213.

Beaman, C., Barkworth, A., Akande, T.D., Hakak, S., Khan, M.K., 2021. Ransomware:
recent advances, analysis, challenges and future research directions. Comput.
Secur. 111, 102490. https://doi.org/10.1016/j.cose.2021.102490.

Bernstein, D.J., 2008. The salsa20 family of stream ciphers. In: New Stream Cipher
Designs. Springer, pp. 84—97.

13

Forensic Science International: Digital Investigation 46 (2023) 301572

Bernstein, D.J., Snuffle, 2005. URL: https://cr.yp.to/snuffle.html (Last Accessed:
2021-11-14).

Berrueta, E., Morato, D., Magana, E., Izal, M., 2019. A survey on detection techniques
for cryptographic ransomware, 1—1 IEEE Access 7. https://doi.org/10.1109/
ACCESS.2019.2945839.

Berrueta, E., Morato, D., Magana, E., Izal, M., 2020. Open repository for the evalu-
ation of ransomware detection tools. IEEE Access 8, 65658—65669.

Blog, Threatcop, 2022. Notorious ransomware attacks by revil in 2021. URL: https://
threatcop.com/blog/revil-group/.

Craciun, V.C., Mogage, A., Simion, E., 2019. Trends in design of ransomware viruses.
URL:. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Cham,
pp. 259-272 https://link.springer.com/chapter/10.1007/978-3-030-12942-2_
20.

Dargahi, T., Dehghantanha, A., Bahrami, P.N., Conti, M., Bianchi, G., Benedetto, L.,
2019. A cyber-kill-chain based taxonomy of crypto-ransomware features. Jour-
nal of Computer Virology and Hacking Techniques 15, 277—305. https://doi.org/
10.1007/s11416-019-00338-7.

Davies, S.R., Macfarlane, R., Buchanan, W.J., 2020. Evaluation of live forensic tech-
niques in ransomware attack mitigation. URL: Forensic Sci. Int.: Digit. Invest. 33,
300979 https://linkinghub.elsevier.com/retrieve/pii/S2666281720300858.

Davies, S.R., Macfarlane, R, Buchanan, W,J., 2021. Differential area analysis for
ransomware attack detection within mixed file datasets. URL: Comput. Secur.
108, 102377 https://www.sciencedirect.com/science/article/pii/
S0167404821002017.

Fayi, S.Y.A., 2018. What petya/NotPetya ransomware is and what its remidiations
are. URL: Adv. Intell. Syst. Comput. 738, 93—100 https://link.springer.com/
chapter/10.1007/978-3-319-77028-4_15.

Geng, Z.A., 2020. Analysis, detection, and prevention of cryptographic ransomware.
URL: https://orbilu.uni.lu/handle/10993/44662.

Geng, Z.A., Lenzini, G, Ryan, PY., 2018. No random, No ransom: a key to stop
cryptographic ransomware. Lecture notes in computer science (including sub-
series lecture notes in artificial intelligence and lecture notes in bioinformatics)
10885 LNCS, 234—255. URL: https://link.springer.com/chapter/10.1007/978-3-
319-93411-2_11.

Guillois, N., 2020. Sodinokibi/revil malware analysis. URL: https://www.amossys.fr/
fr/ressources/blog-technique/sodinokibi-malware-analysis/.

Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,].A.,
Feldman, AJ., Appelbaum, J., Felten, E.W., 2009. Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52, 91-98.

Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A.,
Feldman, AJ., Appelbaum, J., Felten, E.W.. Lest we remember: cold boot attacks
on encryption keys. Technical Report. URL: http://citp.princeton.edu/memory.

Hargreaves, C., Chivers, H., 2008. Recovery of encryption keys from memory using a
linear scan. In: ARES 2008 - 3rd International Conference on Availability, Se-
curity, and Reliability, Proceedings, pp. 1369—1376. https://doi.org/10.1109/
ARES.2008.109.

Hasherezade, 2021. A deep dive into phobos ransomware. URL: https://blog.
malwarebytes.com/threat-analysis/2019/07/a-deep-dive-into-phobos-
ransomware/.

Huck,], Breitinger, F, 2022. Wake up digital forensics' community and help
combating ransomware. IEEE Security Privacy 2—11. https://doi.org/10.1109/
MSEC.2021.3137018.

Humayun, M., Jhanjhi, N.Z., Alsayat, A., Ponnusamy, V., 2021. Internet of things and
ransomware: evolution, mitigation and prevention. Egyptian Informatics Jour-
nal 22, 105—117. https://doi.org/10.1016/].E1].2020.05.003.

Interpol News, 2021. Immediate action required to avoid ransomware pandemic.
URL: https://www.interpol.int/en/News-and-Events/News/2021/Immediate-
action-required-to-avoid-Ransomware-pandemic-INTERPOL.

Kaplan, B., Geiger, M., 2007. URL: https://cryptome.org/0003/RAMisKey.pdf.

Kim, H.E., Yoo, D., Kang, J.S., Yeom, Y., 2017. Dynamic ransomware protection using
deterministic random bit generator. In: 2017 IEEE Conference on Applications,
Information and Network Security, AINS 2017 2018-January, pp. 64—68. https://
doi.org/10.1109/AINS.2017.8270426.

Kolodenker, E., Koch, W., Stringhini, G., Egele, M., 2017. Paybreak : defense against
cryptographic ransomware. In: ASIA CCS 2017 - Proceedings of the 2017 ACM
Asia Conference on Computer and Communications Security, pp. 599—611.
https://doi.org/10.1145/3052973.3053035.

Lee, S., Youn, B, Kim, S., Kim, G., Lee, Y., Kim, D., Park, H., Kim, J., 2019. A study on
encryption process and decryption of ransomware in 2019. URL: Journal of the
Korea Institute of Information Security & Cryptology 29, 1339—1350. https://
doi.org/10.13089/JKIISC.2019.29.6.1339.

Maartmann-Moe, C., Thorkildsen, S.E., Arnes, André, 2009. The persistence of
memory: forensic identification and extraction of cryptographic keys. Digit.
Invest. 6, S132—S140. https://doi.org/10.1016/].DIIN.2009.06.002.

Makrakis, G.M., Kolias, C., Kambourakis, G., Rieger, C., Benjamin, J., 2021. Industrial
and critical infrastructure security: technical analysis of real-life security in-
cidents. IEEE Access 9, 165295—165325. https://doi.org/10.1109/
ACCESS.2021.3133348.

Mclntosh, T., Kayes, A., Chen, Y.P.P., Ng, A., Watters, P., 2021. Ransomware mitigation
in the modern era: a comprehensive review, research challenges, and future
directions. ACM Comput. Surv. 54, 1-36.

Mehnaz, S., Mudgerikar, A., Bertino, E., 2018. RWGuard: a real-time detection sys-
tem against cryptographic ransomware. Lecture notes in computer science
(including subseries lecture notes in artificial intelligence and lecture notes in

https://doi.org/10.1109/ICNGCIS.2017.30
https://doi.org/10.1109/ICNGCIS.2017.30
https://unit42.paloaltonetworks.com/ransom-cartel-ransomware/
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref3
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref3
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref3
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref3
https://d.lib.msu.edu/etd/48467
https://doi.org/10.1109/CYBERSECURITY49315.2020.9138853
https://doi.org/10.1109/MITP.2020.2977285
https://doi.org/10.1109/CYBERSECURITY49315.2020.9138853
https://doi.org/10.1109/CYBERSECURITY49315.2020.9138853
https://doi.org/10.1109/ecrime.2018.8376213
https://doi.org/10.1016/j.cose.2021.102490
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref10
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref10
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref10
https://cr.yp.to/snuffle.html
https://doi.org/10.1109/ACCESS.2019.2945839
https://doi.org/10.1109/ACCESS.2019.2945839
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref13
https://threatcop.com/blog/revil-group/
https://threatcop.com/blog/revil-group/
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_20
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_20
https://doi.org/10.1007/s11416-019-00338-7
https://doi.org/10.1007/s11416-019-00338-7
https://linkinghub.elsevier.com/retrieve/pii/S2666281720300858
https://www.sciencedirect.com/science/article/pii/S0167404821002017
https://www.sciencedirect.com/science/article/pii/S0167404821002017
https://link.springer.com/chapter/10.1007/978-3-319-77028-4_15
https://link.springer.com/chapter/10.1007/978-3-319-77028-4_15
https://orbilu.uni.lu/handle/10993/44662
https://link.springer.com/chapter/10.1007/978-3-319-93411-2_11
https://link.springer.com/chapter/10.1007/978-3-319-93411-2_11
https://www.amossys.fr/fr/ressources/blog-technique/sodinokibi-malware-analysis/
https://www.amossys.fr/fr/ressources/blog-technique/sodinokibi-malware-analysis/
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref23
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref23
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref23
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref23
http://citp.princeton.edu/memory
https://doi.org/10.1109/ARES.2008.109
https://doi.org/10.1109/ARES.2008.109
https://blog.malwarebytes.com/threat-analysis/2019/07/a-deep-dive-into-phobos-ransomware/
https://blog.malwarebytes.com/threat-analysis/2019/07/a-deep-dive-into-phobos-ransomware/
https://blog.malwarebytes.com/threat-analysis/2019/07/a-deep-dive-into-phobos-ransomware/
https://doi.org/10.1109/MSEC.2021.3137018
https://doi.org/10.1109/MSEC.2021.3137018
https://doi.org/10.1016/J.EIJ.2020.05.003
https://www.interpol.int/en/News-and-Events/News/2021/Immediate-action-required-to-avoid-Ransomware-pandemic-INTERPOL
https://www.interpol.int/en/News-and-Events/News/2021/Immediate-action-required-to-avoid-Ransomware-pandemic-INTERPOL
https://cryptome.org/0003/RAMisKey.pdf
https://doi.org/10.1109/AINS.2017.8270426
https://doi.org/10.1109/AINS.2017.8270426
https://doi.org/10.1145/3052973.3053035
https://doi.org/10.13089/JKIISC.2019.29.6.1339
https://doi.org/10.13089/JKIISC.2019.29.6.1339
https://doi.org/10.1016/J.DIIN.2009.06.002
https://doi.org/10.1109/ACCESS.2021.3133348
https://doi.org/10.1109/ACCESS.2021.3133348
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref36
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref36
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref36
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref36

L. Fernandez de Loaysa Babiano, R. Macfarlane and S.R. Davies

bioinformatics) 11050 LNCS, 114—136. URL: https://link.springer.com/chapter/
10.1007/978-3-030-00470-5_6.

Mohammad, A.H., 2020. Analysis of ransomware on windows platform comparing
two feature selections methods (information gain and gain ratio) on three
different classification algorithms using Arabic dataset. View project analysis of
ransomware on windows platform. URL: IJCSNS International Journal of Com-
puter Science and Network Security 20 https://www.researchgate.net/
publication/343194067.

Moussaileb, R., Cuppens, N., Lanet,].L., Bouder, H.L., 2021. A survey on windows-
based ransomware taxonomy and detection mechanisms. ACM Comput. Surv.
54, 1-36. https://doi.org/10.1145/3453153.

Mundo, A., 2022. Blackmatter ransomware analysis; the dark side returns. URL:
https://www.trellix.com/en-gb/about/newsroom/stories/threat-labs/
blackmatter-ransomware-analysis-the-dark-side-returns.html.

of Public Affairs, O, 2022. Ukrainian arrested and charged with ransomware attack
on kaseya. URL: https://www.justice.gov/opa/pr/ukrainian-arrested-and-
charged-ransomware-attack-kaseya.

Oz, H., Aris, A., Levi, A, Uluagac, A.S., 2021. A survey on ransomware: evolution,
taxonomy, and defense solutions. ACM computing surveys 1. URL: http://arxiv.
org/abs/2102.06249. arXiv:2102.06249.

Ozarslan, S., 2021. A detailed walkthrough of ranzy locker ransomware ttps. URL:
https://www.picussecurity.com/resource/blog/a-detailed-walkthrough-of-
ranzy-locker-ransomware-ttps.

Poudyal, S., 2021. Multi-Level Analysis of Malware Using Machine Learning. Ph.D.
thesis. The University of Memphis.

Ramsdell, K.A.W., Esbeck, K., 2021. Evolution of ransomware - mitre corporation.
URL: https://healthcyber.mitre.org/wp-content/uploads/2021/08/Ransomware-

14

Forensic Science International: Digital Investigation 46 (2023) 301572

Paper-V2.pdf.

Salvio, J., 2018. Gandcrab v4.0 analysis: new shell, same old menace. URL: https://
www.fortinet.com/blog/threat-research/gandcrab-v4-0-analysis-new-shell-
same-old-menace.

Seo, HJ., Kim, H.W., 2012. Network and data link layer security for DASH7. Journal of
information and communication convergence engineering 10, 248—252. URL:
http://jicce.org.

Sharif, S.0., Mansoor, S.P.,, 2010. Performance analysis of stream and block cipher
algorithms. In: ICACTE 2010 - 2010 3rd International Conference on Advanced
Computer Theory and Engineering, Proceedings, vol. 1. https://doi.org/10.1109/
ICACTE.2010.5578961.

Team, T.B.RI, 2021. Threat thursday: Karma ransomware. URL: https://blogs.
blackberry.com/en/2021/11/threat-thursday-karma-ransomware.

The BlackBerry Research and Intelligence Team, 2019. Threat spotlight: revil/sodi-
nokibi ransomware - blackberry. URL: https://blogs.blackberry.com/en/2019/
07/threat-spotlight-sodinokibi-ransomware.

Tiwari, R., Koshelev, A., 2019. Taking deep dive into sodinokibi ransomware. URL:
https://www.acronis.com/en-gb/blog/posts/sodinokibi-ransomware/.

Yuste,]J., Pastrana, S., 2021. Avaddon ransomware: an in-depth analysis and
decryption of infected systems. URL: Comput. Secur. 109. https://doi.org/
10.1016/J.COSE.2021.102388 www.sciencedirect.com. arXiv:2102.04796.

Zimba, A., Chishimba, M., Chihana, S., 2021a. A ransomware classification frame-
work based on file-deletion and file-encryption attack structures. URL: https://
doi.org/10.48550/arXiv.2102.10632.

Zimba, A., Wang, Z., Chishimba, M., 2021b. Addressing crypto-ransomware attacks:
before you decide whether to-pay or not-to. J. Comput. Inf. Syst. 61, 53—63.
https://doi.org/10.1080/08874417.2018.1564633.

https://link.springer.com/chapter/10.1007/978-3-030-00470-5_6
https://link.springer.com/chapter/10.1007/978-3-030-00470-5_6
https://www.researchgate.net/publication/343194067
https://www.researchgate.net/publication/343194067
https://doi.org/10.1145/3453153
https://www.trellix.com/en-gb/about/newsroom/stories/threat-labs/blackmatter-ransomware-analysis-the-dark-side-returns.html
https://www.trellix.com/en-gb/about/newsroom/stories/threat-labs/blackmatter-ransomware-analysis-the-dark-side-returns.html
https://www.justice.gov/opa/pr/ukrainian-arrested-and-charged-ransomware-attack-kaseya
https://www.justice.gov/opa/pr/ukrainian-arrested-and-charged-ransomware-attack-kaseya
http://arxiv.org/abs/2102.06249
http://arxiv.org/abs/2102.06249
https://www.picussecurity.com/resource/blog/a-detailed-walkthrough-of-ranzy-locker-ransomware-ttps
https://www.picussecurity.com/resource/blog/a-detailed-walkthrough-of-ranzy-locker-ransomware-ttps
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref44
http://refhub.elsevier.com/S2666-2817(23)00081-1/sref44
https://healthcyber.mitre.org/wp-content/uploads/2021/08/Ransomware-Paper-V2.pdf
https://healthcyber.mitre.org/wp-content/uploads/2021/08/Ransomware-Paper-V2.pdf
https://www.fortinet.com/blog/threat-research/gandcrab-v4-0-analysis-new-shell-same-old-menace
https://www.fortinet.com/blog/threat-research/gandcrab-v4-0-analysis-new-shell-same-old-menace
https://www.fortinet.com/blog/threat-research/gandcrab-v4-0-analysis-new-shell-same-old-menace
http://jicce.org
https://doi.org/10.1109/ICACTE.2010.5578961
https://doi.org/10.1109/ICACTE.2010.5578961
https://blogs.blackberry.com/en/2021/11/threat-thursday-karma-ransomware
https://blogs.blackberry.com/en/2021/11/threat-thursday-karma-ransomware
https://blogs.blackberry.com/en/2019/07/threat-spotlight-sodinokibi-ransomware
https://blogs.blackberry.com/en/2019/07/threat-spotlight-sodinokibi-ransomware
https://www.acronis.com/en-gb/blog/posts/sodinokibi-ransomware/
https://doi.org/10.1016/J.COSE.2021.102388
https://doi.org/10.1016/J.COSE.2021.102388
http://www.sciencedirect.com
https://doi.org/10.48550/arXiv.2102.10632
https://doi.org/10.48550/arXiv.2102.10632
https://doi.org/10.1080/08874417.2018.1564633

	Evaluation of live forensic techniques, towards Salsa20-Based cryptographic ransomware mitigation
	1. Introduction
	2. Background and related work
	2.1. Cryptographic ransomware key management
	2.2. Reactive mechanisms
	2.3. Extracting keys from memory
	2.4. Salsa20 encryption

	3. Methodology
	3.1. Method for identifying Salsa20 key and nonce pairs in memory
	3.2. Experiments to evaluate the Salsa20 method with real ransomware

	4. Implementation and initial evaluation
	4.1. Identifying Salsa20 Keys/nonce's in memory
	4.1.1. Experimental setup
	4.1.2. Salsa20 key extraction tool
	4.1.3. Synthetic ransomware file encryption
	4.1.4. Extraction of Salsa20 keys from memory
	4.1.5. Validation of found Salsa20 keys and nonces

	4.2. Evaluation of method for real-world Salsa20-based ransomware
	4.2.1. Ransomware sample
	4.2.2. Experimental setup
	4.2.3. Sodinokibi ransomware execution to encrypt victim files (Salsa20 key recovery. Step 1)
	4.2.4. Extract Salsa20 keys from memory (Sodinokibi ransomware Salsa20 key recovery. Step 2)
	4.2.5. Validate Salsa20 keys and nonces found in memory (Sodinokibi ransomware Salsa20 key recovery. Step 3)

	5. Evaluation
	5.1. Sodinokibi large scale key recovery
	5.2. Sodinokibi encryption key exposure time lining
	5.3. Ransom Cartel key recovery evaluation

	6. Discussion
	6.1. Limitations and future work

	7. Conclusion
	Declaration of competing interest
	Data availability
	References

