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Abstract— Sign Language Recognition is a form of action 

recognition problem. The purpose of such a system is to 

automatically translate sign words from one language to 

another. While much work has been done in the SLR domain, it 

is a broad area of study and numerous areas still need research 

attention.  The work that we present in this paper aims to 

investigate the suitability of deep learning approaches in 

recognizing and classifying words from video frames in different 

sign languages. We consider three sign languages, namely 

Indian Sign Language, American Sign Language, and Turkish 

Sign Language. Our methodology employs five different deep 

learning models with increasing complexities. They are a 

shallow four-layer Convolutional Neural Network, a basic 

VGG16 model, a VGG16 model with Attention Mechanism, a 

VGG16 model with Transformer Encoder and Gated Recurrent 

Units-based Decoder, and an Inflated 3D model with the same. 

We trained and tested the models to recognize and classify 

words from videos in three different sign language datasets. 

From our experiment, we found that the performance of the 

models relates quite closely to the model’s complexity with the 

Inflated 3D model performing the best. Furthermore, we also 

found that all models find it more difficult to recognize words in 

the American Sign Language dataset than the others. 

Keywords—Sign Language, Sign Language Recognition, 

Deep Learning, Convolutional Neural Networks,  

I. INTRODUCTION 

Deaf people all over the world use sign language to 
communicate visually. The most common ways to sign words 
and sentences are by waving fingers, arms, hands, and making 
motions with your face. Each sign language has unique 
characteristics and has its own vocabulary and grammar. Sign 
language recognition (SLR) is a form of action recognition 
problem which uses technologies, such as computer vision, 
that can be used to translate a sign language into another sign 
language or a verbal language.  SLR is a complex task, it 
considers several factors when identifying a sign word, 
including hand orientations, movement of hands, the posture 
of the body, and facial expressions. Even with cutting-edge 
models, tackling the problem of a sign with a larger 
vocabulary using a computer in real-world circumstances 
remains a difficulty. 

While much work has been done in the SLR domain, it is 
a broad area of study. Since sign language uses extensive 
body, face, and hand movements it is an excellent domain for 
gesture classification problems - a perfect application for 
machine learning, a technique that is used to make decisions 

based on past data and experience. Machine Learning is a 
popular technique for solving a wide variety of problems 
including digital watermarking [1], non-destructive testing 
[2], and tourism data analytics [3]. Machine learning 
techniques have been proposed to develop an SLR system, 
with the Hidden Markov Model (HMM) as one of the most 
popular models [4]. The model has many variants including 
Multi-Stream HMM [5] and Tied-Mixture Density HMM [6] 
that have been used to recognize Japanese and Chinese sign 
languages, respectively. Some other machine learning 
approaches are also popular, these include Neural Networks, 
Naive Bayes Classifiers, Multilayer Perceptron, Self-
Organizing Maps, Self-Organizing Feature Maps, Simple 
Recurrent Networks, Support Vector Machines, and 3D 
Convolutional Residual Networks. Additionally, there are also 
other less common approaches including using Eigenvalue 
Euclidean Distance and the Wavelets. 

Deep learning techniques have recently outpaced prior 
cutting-edge machine learning methods in a variety of 
applications from medical image classification [7], measuring 
organ or landmark sizes from medical images [8], to pest 
detection and classification in agriculture [9]. Deep learning is 
a neural network-based machine learning technique that 
consists of a large number of processing layers to extract 
progressively higher-level features from data. Due to its large 
number of layers, deep learning models require a large amount 
of data to train. The development of extensive, top-notch, and 
publicly accessible labeled datasets such as ImageNet [10] 
together with the capabilities of parallel GPU processing are 
two significant elements that have greatly contributed to the 
development of deep learning. 

Our research aims to assess the suitability of the deep 
learning approach in recognizing and classifying words from 
video frames in different sign languages. Our objectives are 
first to identify suitable deep learning models of varying 
complexities, to identify suitable datasets covering different 
sign languages, and lastly to provide analysis of the word 
classification accuracy that is measured from an experiment. 
The outcome of our research survey related to solving the 
problem of SLR is summarized in the next section. 

II. LITERATURE REVIEW 

The development of a sign language recognition system 
for sentence translation, or words into voice and text, is one of 
the fundamental problems in allowing communication 
between the deaf majority and hearing people. A system needs 



to be developed which can enable real conversation between 
hearing people and the deaf. These systems should also 
account for the problem of splitting videos, including 
sentences or sign words into separate words. The problems 
that are prevalent in the domain of SLR are mainly two - 
isolated SLR and continuous SLR. Word-by-word recognition 
is an example of isolated SLR, whereas translating entire 
sentences is an example of continuous SLR [11]. 

The current methods for continuous SLR while using 
isolated SLR as building blocks also add layers of pre-
processing and post-processing which indicate temporal 
segmentation and sentence synthesis, respectively. Most 
existing SLRs fall into the category of isolated SLR which 
deals with the recognition of words or expressions. Being 
more challenging, continuous SLR involves reconstructing 
sentence structures which divide the problem of recognizing 
sentences into three stages which are the segmentation of 
videos with time, recognizing isolated word/expression, and 
sentence synthesis with a language model. 

The development of an end-to-end and sequence-to-
sequence model that can generate video captions is a relevant 
research area. The state-of-the-art performance in generating 
image captions is demonstrated by Recurrent Neural 
Networks (RNN), specifically Long Short-Term Memory 
(LSTM) networks [12] [13]. After being trained using pairs of 
video-sentence, the model associates a sequence of video 
frames to a sequence of words to describe an event in the video 
clip.  Attention mechanisms can also be incorporated into 
LSTM for the automatic selection of the most likely video 
frames [14]. 

Industry labs and research groups have created solutions 
that are open-source for SLR called Neural Machine 
Translation (NMT). It is a Neural Networks-based approach 
that translates phrases from a source language to a target 
language. The solutions are based on platforms related to deep 
learning. However, these tools are targeted only toward 
research groups that have a good understanding of deep 
learning architecture and know how to handle large code 
bases. One such solution, called Joey NMT [15] was designed 
as a model which provides a minimum code platform with 
quality that can be compared to more standard benchmarks 
with complex code bases. It includes standard network 
architectures such as RNN, transformers, different attention 
mechanisms, input feeding, configurable encoder/decoder 
bridge, standard learning techniques (dropout, learning rate 
schedule, weight tying, early stopping criteria), and 
visualization/monitoring tools. 

The use of deep Convolutional Neural Networks (CNN) 
stacked with temporal fusion layers for extracting features, 
and bidirectional RNN for sequence learning modules was 
proposed with an iterative optimization process to exploit the 
representational capability of deep neural networks with 
limited data [16]. The end-to-end recognition model for the 
alignment proposal was trained first, and then the proposal 
was used to tune the feature extraction module. This process 
can run iteratively to achieve improvements in recognition 
performance. 

For detecting hands from various sources of input, such as 
skeletons, images, flow features, videos, and so on, most deep 
learning-based models employed a CNN or a combination of 
a CNN with another approach [17]. Even though extensive 
research has been made in hand detection recently and several 

methods are suggested, there are still many problems to 
overcome. Even accurate key point annotations are difficult to 
make manually due to high occlusions in hand key points.  

III. MATERIAL AND METHOD 

In this section, we will be discussing the datasets used and 
the approach we employ to achieve our aim and objectives. 
Three datasets of sign language will be used, they are 
INCLUDE: A Large Scale Dataset for Indian Sign Language 
Recognition [18], WLASL: Word-Level American Sign 
Language [19], and AUTSL: Ankara University Turkish Sign 
Language [20]. The summary of the datasets and some 
samples of video frames from each dataset are provided in 
Table I and Figure 1, respectively below. 

TABLE I.  SIGN LANGUAGE DATASETS USED 

 INCLUDE WLASL AUTSL 

Sign Language Indian Sign 

Language 

(ISL) 

American Sign 

Language 

(ASL) 

Turkish Sign 

Language 

(TSL) 

# Words 263 2,000 226 

# Word Categories 15 - - 

# Videos 4,292 21,083 38,336 

# Frames 270,000 - - 

Video Resolution 1920x1080 - 512x512 

# Signers 7 119 43 

 

 

Fig. 1. Examples of the video frames in INCLUDE (top), WLASL 

(middle), and AUTSL (bottom) datasets. 

 We are comparing five different deep learning models and 
architectures on the above three datasets. The description of 
each deep learning model and architecture is provided below. 

A. Method 1. A 4-Layer CNN 

Convolutional Neural Networks are used in a variety of 
applications and without a doubt, the most widely used deep 



learning architecture. The enormous popularity and 
effectiveness of CNN have sparked a recent rise in interest in 
deep learning. AlexNet [21] sparked interest in CNN in 2012, 
and it has grown rapidly since then. Researchers went from an 
8-layer AlexNet to a 152-layer ResNet [22] in just four years. 
CNN has become the go-to model for any image-related 
classification problems because they outperform the 
competitors in terms of accuracy. The fundamental advantage 
of CNN over its predecessors is that it discovers essential traits 
without the need for human intervention. In addition, CNN is 
computationally efficient. It performs parameter sharing and 
uses special convolution and pooling algorithms. CNN models 
can also be made compact to be able to be used on smaller 
devices, making them universally appealing [23]. 

In this first model, the following architecture will be used: 
Four (Convolutions + Pooling) layers followed by two fully 
connected layers with a SoftMax layer at the end. The input is 
an image, and the output is the predicted class. The diagram 
shown in Figure 2 illustrates the architecture of the CNN used. 

 

Fig. 2. The architecture of the 4-layer CNN. 

A RELU activation function is used when creating the 
convolution while the padding option is enabled, and the stride 
value is set to one. When creating the max pooling layer, a 2x2 
window is used. During training, a neuron is momentarily 
"dropped out" or inhibited with probability �  at each 
repetition. This technique is known as dropout and is used to 
prevent overfitting. This signifies that at this iteration, all this 
neuron's inputs and outputs will be disabled. At each training 
step, the dropped-out neurons are resampled with probability 
�, so a dropped-out neuron at one step can become active at 
the next. The dropout rate � is set to 0.5. 

B. Method 2. VGG16 

VGG16 is one of the most popular CNN models [24]. The 
creators of this model analyzed the networks and enhanced the 
depth using an architecture with very small (3x3) convolution 
filters, which outperformed previous state-of-the-art setups 
significantly. The depth was increased to 16 weight layers, 
resulting in 138 trainable parameters. VGG16 achieves a 92.7 
percent accurate object identification and classification on 
ImageNet [10]. A pre-trained VGG16 model on this dataset is 
available and can be used to classify more general images by 
utilizing transfer learning. 

 

Fig. 3. VGG-16 architecture 

Figure 3 shows the VGG16 architecture. The key pointers 
to note here are as follows: The 16 in VGG16 stands for 16 
weighted layers. VGG16 comprises thirteen convolutional 

layers, five Max Pooling layers, and three dense layers, for a 
total of twenty-one layers, but only sixteen of those are weight 
or learnable parameters layers. VGG16 uses a 224x224 input 
tensor size with three RGB channels. 

The most distinctive feature of VGG16 is that, rather than 
having a huge number of hyper-parameters; it uses 3x3 filter 
convolution layers with stride 1 and always uses the same 
padding and Max Pooling layer of 2x2 filter with stride 2. The 
convolution and Max Pooling layers are placed in a regular 
pattern throughout the architecture. The Conv-1 layer has 64 
filters, the Conv-2 layer has 128 filters, the Conv-3 layer has 
256 filters, and Conv-4 and Conv-5 layers have 512 filters. 
Following a stack of convolutional layers, three Fully 
Connected layers are added: the first two have 4096 channels 
each, while the third performs 1000-way image classification 
and so has 1000 channels (one for each class). The SoftMax 
layer is the final layer. 

Training a VGG16 model from random initial weights 
takes a long time. The model’s trained weights are 528 MB in 
size. As a result, it consumes a significant amount of storage 
space and bandwidth, making it inefficient. 

C.  Method 3. VGG16 with Attention Mechanism 

Bahdanau et al. established the famous "Attention 
Mechanism" approach [25] – which is an NMT technique. 
Even though the concept of attention has evolved, the 
mechanism described in this study is still recognized as 
"Bahdanau Attention". Until this study, such NMT models 
have relied on numerous networks, each of which had to be 
trained separately. The research proposes that a single, 
massive neural network be built and trained to comprehend a 
sentence and correctly translate it, which is the foundation for 
all current Sequence to Sequence models based on Encoder-
Decoder architecture. 

Machine Translation is analogous to finding a target 
sentence �  that maximizes the conditional probability of 
���|��, where � is the source sentence, from a probabilistic 
standpoint. The goal of an NMT task is to use a parallel 
training corpus to maximize the conditional probability of 
sentence pairs. To simulate such a relationship, a 
parameterized model would be employed with a 
backpropagation technique utilized to learn the parameter 
weights. A source sentence is fed into an encoder, which 
converts it into a fixed-length vector. The translation (target 
sentence) from the Encoded Vector is output by a decoder. For 
a given source-target sentence pair, the encoder-decoder 
system is jointly trained to maximize the conditional 
probability of an accurate translation. There are some 
limitations with encoder-decoder architecture. For 
information about the source sentence, the decoder only uses 
the last encoded fixed-length vector. It's very difficult for the 
encoder to compress all the information into a single vector 
when the source sentence is quite long. The performance of a 
basic encoder-decoder degrades significantly as the length of 
a source sentence increases, according to actual evidence. 

 That study proposes an Encoder-Decoder model 
extension that learns to 'align' and 'translate' together. When 
the NMT model generates a translated term, it does a soft 
search for a set of positions in the source sentence and looks 
for the positions with the highest concentration of relevant 
information. It is like selecting the words that make the most 
sense in the final translation. This is incompatible with the 
idea of storing the full source sentence into a single fixed-



length context vector. The NMT model then predicts a target 
translation using context vectors associated with these source 
positions as well as previously generated translation outputs. 
The source text is encoded as a sequence of vectors, and the 
decoder selects a subset of these vectors to produce the 
translation. It allows the NMT model to interpret long words 
and do a selective search based on context importance rather 
than squashing all the information into a single vector. 

D. Method 4. VGG16 with Encoder and Decoder 

In this method, we use the VGG16 model with 
Transformer Encoder and Gated Recurrent Units (GRUs) -
based Decoder. Due to advances in Sequence Modelling, such 
as LSTM, and the development of GRUs, generating captions 
in videos and summarizing them have been recently popular 
[26]. Existing architectures use CNNs to extract 
spatiotemporal information and soft attention layers to model 
dependencies using GRUs or LSTMs. The layers which are 
attention-based, help in paying attention to the important 
aspects where recurrent units are also improved; nonetheless, 
there are problems from recurrent units' intrinsic flaws, with 
some are addressed by using a different network design. 

E. Method 5. I3D with Encoder and Decoder 

In this final method, we use a two-stream Inflated 3D 
(I3D) model with Transformer Encoder and GRUs-based 
Decoder. Recent advancements in the field of activity 
recognition have resulted in a variety of network designs that 
can be used to extract spatiotemporal features. Instead of 
depending on a recurrent network to encode information from 
each time step, architectures that can directly offer temporal 
information are looked at. For example, in [27], these features 
are extracted for the Transformer model using I3D 
Convolutional Neural Networks for Activity Recognition. 
Rather than employing frame-level feature extractors, 3D 
convolution networks can be used to extract spatiotemporal 
information from videos. 3D convolutions are used in these 
structures to encode both spatial and temporal information in 
videos. Whereas using 2D convolutions on an image or a 
video (series of frames) results in a single feature map, using 
3D convolutions on a set of frames, on the other hand, 
produces a set of feature maps. The size of the temporal kernel 
and the strides employed determine the number of feature 
mappings. Techniques that can reduce dimensions are used to 
control the total size of a model. 

The summary of the models and modifiers used in each 
method is shown in Table II below. 

TABLE II.  SUMMARY OF THE METHODS 

 Model Modifier 

Method 1 4-Layer 

CNN 

None 

Method 2 VGG16 None 

Method 3 VGG16 Attention Mechanism 

Method 4 VGG16 Transformer Encoder + GRU-based Decoder 

Method 5 I3D Transformer Encoder + GRU-based Decoder 

 

IV. EXPERIMENT AND RESULT ANALYSIS 

A. Implementation Setup 

The experiment is implemented using the following software 
and hardware setup.  

• Operating System: Windows 

• Programming Language: Python 3.9.1, Shell Script 

• Package Manager: PIP 

• Python Libraries: OpenCV, NLTK, Matplotlib, Numpy, 
CSV 

• A laptop with SSD: 512GB, RAM: 40GB, GPU: NVIDIA 
2080 RTI, 12GB 

Each dataset is split into three sets namely the training, testing, 
and validation sets with the following ratio of 70:10:20, 
respectively. 

B. Evaluation metric 

Since we have a balanced dataset, in this study we decided 
to use Accuracy as the one evaluation metric. The accuracy 
metric, denoted here as �, is a measure of how well a method 
is getting the right result [28]. It is formally calculated as the 
percentage of correct predictions (sum of the True Positives 
and True Negatives) over the entire test population. 
Mathematically, it is calculated as: 

 � =
	
�	�

	
�	��
��


 (1) 

where TP, TN, FN, and FP denote True Positive, True 
Negative, False Positive, and False Negative, respectively. 

 

C. Results and Analysis 

A summary of the results of the experiment is given in 
Table III below. The table shows that Method 1 is generally 
the worst of the five models tested. This could be because the 
four-layer CNN used in the experiment is quite simple as it 
contains only four feature extraction layers and it was trained 
from scratch. The results tend to get better as the complexity 
of the method increases and reach their highest when using 
Method 5. However, for some unknown reasons, the results 
on the WLSAL dataset are very poor for all methods. The best 
accuracy attained is only 0.35 using Method 5. 

 

TABLE III.  ACCURACY OF EACH METHOD ON DIFFERENT DATASETS 

 INCLUDE WLASL AUTSL 

Method 1 0.60 0.26 0.76 

Method 2 0.63 0.28 0.78 

Method 3 0.65 0.31 0.82 

Method 4 0.89 0.32 0.86 

Method 5 0.98 0.35 0.96 

 

We also provided some example results that were 
produced by the methods in each dataset. These are shown in 
Tables IV, V, and VI for INCLUDE, WLASL, and AUTSL 
datasets, respectively. 

 

TABLE IV.  EXAMPLE RETURNED RESULTS USING INCLUDE DATASET 

 1 2 3 4 5 

Loud Loud Loud Loud Loud Loud 

Quiet Quiet Quiet Quiet Quiet Quiet 

Happy Happy Happy Glad Happy Happy 

Sad Nice Unhappy Sat Sad Sad 

Deaf Flat Dumb Dean Unheard Dumb 

Blind Short Blink Blind Unseen Blink 



TABLE V.  EXAMPLE RETURNED RESULTS USING WLASL DATASET 

 1 2 3 4 5 

Book Book Book Book Book Book 

Drink Drink Drink Drink Drink Drink 

Compute

r 

Comput
er 

Comput
er 

Laptop Comput
er 

Comput
er 

Before Being Beside Before Beside Beside 

Chair Charm Table Furnitur

e 

Chair Chart 

Go Gone Gone Going Gone Been 

TABLE VI.  EXAMPLE RETURNED RESULTS USING AUTSL DATASET 

 1 2 3 4 5 

Acele Acele Acele Acele Acele Acele 

Acikmak Acikmak Acikmak Acikmak Acikmak Acikmak 

Agabey Agabey Bebek Agabey Agabey Agabey 

Agac Bahce Bahce Bahce Agac Bahce 

Aile Baba Aile Arkadas Erkek Aile 

Anne Bekar Bekar Baba Bebek Anne 

 

Overall, the quality of the translations is relatively good. 
In most cases where the exact wording differs, the translated 
words convey similar information (e.g., Glad for Happy, 
Unhappy for Sad, Laptop for Computer, Unseen for Blind, 
Table/Furniture for Chair, or Unheard for Deaf). There are 
also occasions where the translated words do not convey 
similar information such as (Dean, Dumb, and Flat for Deaf, 
Blink for Blind, or Sat for Sad). They could be due to the 
words’ limited contexts in the training data.  

V. CONCLUSION 

We have presented in this paper the results of our 
experiment of using deep learning approaches to perform sign 
language recognition on three sign language datasets. We 
consider five deep learning models and architectures which 
are a four-layer CNN, VGG16, VGG16 with Attention 
Mechanism, VGG16 with Transformer Encoder + GRU-
based Decoder, and lastly I3D with Transformer Encoder + 
GRU-based Decoder. The datasets used are INCLUDE, 
WLASL, and AUTSL. Our experiment shows that the I3D 
model with Transformer Encoder and GRU-based Decoder 
produces the best result out of the five tested methods. The 
method works well in both INCLUDE and AUTSL datasets 
achieving 0.98 and 0.96 accuracy, respectively. We predict 
that most of the difficulties in the field of SLR will be 
overcome with the aid of deep learning, because of faster 
hardware to process the input data, precise multi-modal 
methods, and fresh data illustrating the true variability and 
distribution of the problem at hand. Although most of the 
models that have been presented are focused on isolated sign 
language recognition, we anticipate that the community will 
soon begin to address the difficulties of continuous sign 
language recognition, including continuous annotated 
datasets, tokenization, and long-term multi-modal data 
modeling, particularly by combining vision and language 
models.  

REFERENCES 

[1] C. Song, S. Sudirman, M. Merabti, and D. Al-Jumeily, “Region-

adaptive watermarking system and its application,” in Proceedings of 
4th International Conference on Developments in eSystems 

Engineering, 2011, pp. 215–220. 

[2] S. Sudirman, F. Natalia, A. Sophian, and A. Ashraf, “Pulsed Eddy 
Current signal processing using wavelet scattering and Gaussian 

process regression for fast and accurate ferromagnetic material 

thickness measurement,” Alexandria Eng. J., vol. 61, no. 12, pp. 

11239–11250, 2022. 

[3] S. Monica, F. Natalia, and S. Sudirman, “Clustering Tourism Object 
in Bali Province Using K-Means and X-Means Clustering 

Algorithm,” in 2018 IEEE 20th International Conference on High 

Performance Computing and Communications; IEEE 16th 
International Conference on Smart City; IEEE 4th International 

Conference on Data Science and Systems (HPCC/SmartCity/DSS), 

2018, pp. 1462–1467. 

[4] T. Starner and A. Pentland, “Real-time american sign language 

recognition from video using hidden markov models,” in Motion-

based recognition, Springer, 1997, pp. 227–243. 

[5] S. Sako and T. Kitamura, “Subunit modeling for japanese sign 

language recognition based on phonetically depend multi-stream 

hidden markov models,” in International Conference on Universal 
Access in Human-Computer Interaction, 2013, pp. 548–555. 

[6] L.-G. Zhang, Y. Chen, G. Fang, X. Chen, and W. Gao, “A vision-

based sign language recognition system using tied-mixture density 
HMM,” in Proceedings of the 6th international conference on 

Multimodal interfaces, 2004, pp. 198–204. 

[7] F. Natalia, J. C. Young, N. Afriliana, H. Meidia, R. E. Yunus, and S. 
Sudirman, “Automated selection of mid-height intervertebral disc 

slice in traverse lumbar spine MRI using a combination of deep 

learning feature and machine learning classifier,” PLoS One, vol. 17, 
no. 1, p. e0261659, 2022. 

[8] F. Natalia, H. Meidia, N. Afriliana, J. C. Young, R. E. Yunus, M. Al-

Jumaily, A. Al-Kafri, and S. Sudirman, “Automated measurement of 
anteroposterior diameter and foraminal widths in MRI images for 

lumbar spinal stenosis diagnosis,” PLoS One, vol. 15, no. 11, pp. 1–
27, 2020. 

[9] L. Liu, C. Xie, R. Wang, P. Yang, S. Sudirman, J. Zhang, R. Li, and 

F. Wang, “Deep Learning Based Automatic Multiclass Wild Pest 
Monitoring Approach Using Hybrid Global and Local Activated 

Features,” IEEE Trans. Ind. Informatics, vol. 17, no. 11, pp. 7589–

7598, 2021. 

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, 

“Imagenet: A large-scale hierarchical image database,” in Computer 

Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference 
on, 2009, pp. 248–255. 

[11] J. Huang, W. Zhou, Q. Zhang, H. Li, and W. Li, “Video-based sign 

language recognition without temporal segmentation,” in Proceedings 
of the AAAI Conference on Artificial Intelligence, 2018, vol. 32, no. 

1. 

[12] C. K. M. Lee, K. K. H. Ng, C.-H. Chen, H. C. W. Lau, S. Y. Chung, 
and T. Tsoi, “American sign language recognition and training 

method with recurrent neural network,” Expert Syst. Appl., vol. 167, 

p. 114403, 2021. 

[13] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, 

and K. Saenko, “Sequence to sequence-video to text,” in Proceedings 

of the IEEE international conference on computer vision, 2015, pp. 
4534–4542. 

[14] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. 

Courville, “Describing videos by exploiting temporal structure,” in 
Proceedings of the IEEE international conference on computer vision, 

2015, pp. 4507–4515. 

[15] J. Kreutzer, J. Bastings, and S. Riezler, “Joey NMT: A minimalist 
NMT toolkit for novices,” arXiv Prepr. arXiv1907.12484, 2019. 

[16] R. Cui, H. Liu, and C. Zhang, “A deep neural framework for 

continuous sign language recognition by iterative training,” IEEE 
Trans. Multimed., vol. 21, no. 7, pp. 1880–1891, 2019. 

[17] L. Pigou, S. Dieleman, P.-J. Kindermans, and B. Schrauwen, “Sign 

language recognition using convolutional neural networks,” in 
European conference on computer vision, 2014, pp. 572–578. 

[18] A. Sridhar, R. G. Ganesan, P. Kumar, and M. Khapra, “Include: A 

large scale dataset for indian sign language recognition,” in 
Proceedings of the 28th ACM international conference on multimedia, 

2020, pp. 1366–1375. 



[19] D. Li, C. R. Opazo, X. Yu, and H. Li, “Word-level deep sign language 

recognition from video: A new large-scale dataset and methods 
comparison,” Proc. - 2020 IEEE Winter Conf. Appl. Comput. Vision, 

WACV 2020, pp. 1448–1458, 2020. 

[20] O. M. Sincan and H. Y. Keles, “Autsl: A large scale multi-modal 
turkish sign language dataset and baseline methods,” IEEE Access, 

vol. 8, pp. 181340–181355, 2020. 

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet 
classification with deep convolutional neural networks,” in Advances 

in Neural Information Processing Systems, 2012, pp. 1097–1105. 

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for 
image recognition,” in Proceeding of IEEE Conference on Computer 

Vision and Pattern Recognition, 2016, pp. 770–778. 

[23] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. 
Wang, G. Wang, J. Cai, and others, “Recent advances in convolutional 

neural networks,” Pattern Recognit., vol. 77, pp. 354–377, 2018. 

[24] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks 
for Large-Scale Image Recognition,” in International Conference on 

Learning Representations, 2015. 

[25] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by 
jointly learning to align and translate,” arXiv Prepr. arXiv1409.0473, 

2014. 

[26] N. C. Camgoz, S. Hadfield, O. Koller, H. Ney, and R. Bowden, 
“Neural sign language translation,” in Proceedings of the IEEE 

conference on computer vision and pattern recognition, 2018, pp. 

7784–7793. 

[27] M. Bilkhu, S. Wang, and T. Dobhal, “Attention is all you need for 

videos: Self-attention based video summarization using universal 
transformers,” arXiv Prepr. arXiv1906.02792, 2019. 

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT 

press, 2016. 

 


