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Abstract 

This MSc thesis reports the design, implementation, and experimental evaluation of a deep 
learning-based system for the three-dimensional (3-D) reconstruction and visualisation of 
fossil-fired burner flames. A literature review is given to examine all existing techniques for 
3-D visualisation and characterisation of flames. Methodologies and techniques for the 3-D 
reconstruction of burner flames using optical tomographic and deep learning (DL) techniques 
are presented, together with a discussion of their advantages and limitations in their 
applications. Technical requirements and existing problems of the reviewed techniques are 
discussed.  
 
A technical strategy, incorporating numerical simulations, DL, digital image processing and 
optical tomographic techniques is proposed for the reconstruction and visualisation of a 
flame. Based on this strategy, a 3-D flame reconstruction and visualisation system based on 
DL is developed. The system consists of a trained convolutional neural network (CNN) based 
network model and the use of a third-party software tool for visualisation. The system can 
use flame images acquired concurrently from eight different directions of a burner and 
perform a 3-D reconstruction of the flame. A numerical simulation is performed initially to 
examine the suitability of the DL algorithm proposed, ground truth data are generated using 
a mathematical model designed to mimic a flame structure and 2-D projection data are 
generated from each ground truth. A modified CNN model with a 1-D output dense layer is 
established and trained for the reconstruction of the 3-D Gaussian distribution. To determine 
the optimal network model architecture for this solution, various experiments were conducted 
using different network model parameters. A detailed description of a CNN-based network 
implemented for the numerical solutions is presented. 
 
A series of experiments was conducted using flame data obtained from a laboratory-scale 
combustion test rig to evaluate the performance of the established CNN model. These 
included implementing code to perform image processing routines to prepare the dataset 
collected from the laboratory-scale combustion test rig. Additional datasets were also 
generated using OpenCV morphological transformation operations to augment the original 
dataset. The obtained results have proven that the implemented and trained CNN network 
model can reconstruct the cross-sectional slices of a burner flame based on the images 
obtained under various combustion conditions. It was also possible to obtain a 3-D flame 
structure from the reconstructed cross-sectional flame data using a 3-D visualisation tool. 
Results from the experiments and the performance of the implemented 3-D flame 
reconstruction and visualisation system based on DL are presented and discussed. 



3 

Acknowledgements 

The author would specifically like to express thanks for the following: 

 

University of Kent 

Dr Md Moinul Hossain My first supervisor, for his invaluable advice, encouragement 

and support made it possible for me to complete this project.  

 

Dr Gang Lu My second supervisor, for his support, advice and 

encouragement which enable me to continually make 

satisfactory progress.  

 

 

My family members in particular my father and mother for all the support put into my 

education. 

This thesis is dedicated to my wife Damilola Ogunjumelo and my sons Oladele and Olatoni 

Ogunjumelo, for their encouragement, help, support, and patience throughout the project. 

  



4 

Content 

Abstract .................................................................................................................................. 2 

Acknowledgements ................................................................................................................ 3 

Content ................................................................................................................................... 4 

List of Figures ...................................................................................................................... 10 

Nomenclature....................................................................................................................... 12 

List of Abbreviations .......................................................................................................... 13 

1 The Importance of Three-Dimensional Reconstruction of Burner Flames............ 15 

1.1 Introduction ........................................................................................................... 15 

1.2 Research Questions ............................................................................................... 16 

1.3 Technical Challenges in 3-D Reconstruction of Burner Flames Using Deep 

Learning ............................................................................................................................ 17 

1.4 Aims and Objectives ............................................................................................. 18 

1.5 Summary of Contributions .................................................................................... 18 

1.6 Thesis Structure ..................................................................................................... 19 

2 Literature review ......................................................................................................... 21 

2.1 Introduction ........................................................................................................... 21 

2.2 Tomographic Techniques for 3-D Flame Visualisation ........................................ 23 

2.2.1 Passive Optical Tomographic Techniques ...................................................... 23 

2.3 Flame Reconstruction with Computed Tomography ............................................ 31 

2.3.1 Computed Tomography .................................................................................. 31 

2.3.2 Analytical Reconstruction ............................................................................... 32 

2.3.3 Iterative Reconstruction .................................................................................. 34 

2.4 Flame Reconstruction with Neural Networks and Deep Learning ........................ 35 



5 

2.4.1 Convolutional Neural Network-based Methods.............................................. 35 

2.4.2 Residual Neural Network-based Methods ...................................................... 38 

2.4.3 Transfer Learning Methods ............................................................................. 39 

2.4.4 Hybrid DL Methods ........................................................................................ 39 

2.5 Overview of Deep Learning Flame Reconstruction Methods ............................... 40 

2.6 Summary ............................................................................................................... 44 

3 Methodology ................................................................................................................. 47 

3.1 Introduction ........................................................................................................... 47 

3.1.1 Introduction to Deep Neural Networks ........................................................... 47 

3.1.2 Convolutional Neural Network ....................................................................... 50 

3.1.3 Activation Functions ....................................................................................... 55 

3.2 Deep Learning Approach ...................................................................................... 56 

3.2.1 Design and Implementation CNN Network Model ........................................ 57 

3.2.2 Training ........................................................................................................... 61 

3.3 Performance Metrics ............................................................................................. 61 

3.3.1 Mean Absolute Error ....................................................................................... 62 

3.3.2 Mean Squared Error (Loss) ............................................................................. 62 

3.3.3 Root Mean Square Error ................................................................................. 63 

3.3.4 Structural Similarity Index .............................................................................. 63 

3.3.5 Peak Signal-to-Noise Ratio ............................................................................. 64 

3.4 Machine Learning Toolchain ................................................................................ 64 

3.4.1 Python ............................................................................................................. 64 

3.4.2 TensorFlow ..................................................................................................... 65 

3.4.3 Keras ............................................................................................................... 65 



6 

3.4.4 Google Colaboratory ....................................................................................... 65 

3.5 Image Processing and 3D Visualisation Tools ...................................................... 67 

3.5.1 ImageMagick................................................................................................... 67 

3.5.2 Slicer 3D.......................................................................................................... 67 

3.6 Summary ............................................................................................................... 68 

4 Numerical Simulation .................................................................................................. 69 

4.1 Introduction ........................................................................................................... 69 

4.2 Numerical Simulation ............................................................................................ 69 

4.3 Data Collection and Preparation ............................................................................ 72 

4.3.1 Ground Truth Dataset ...................................................................................... 72 

4.3.2 Projection Dataset ........................................................................................... 73 

4.4 Model Establishment ............................................................................................. 75 

4.5 Model Evaluation .................................................................................................. 78 

4.5.1 Numerical Simulation Reconstruction Results ............................................... 78 

4.6 Summary ............................................................................................................... 81 

5 3-D Reconstruction of Flames ..................................................................................... 83 

5.1 Introduction ........................................................................................................... 83 

5.2 Laboratory-scale Combustion Test Rig ................................................................. 84 

5.3 Data Collection and Preparation ............................................................................ 84 

5.3.1 Projection Dataset ........................................................................................... 86 

5.3.2 Ground Truth Dataset ...................................................................................... 89 

5.4 Model Establishment ............................................................................................. 90 

5.5 Model Evaluation .................................................................................................. 92 

5.5.1 Reconstruction of Flame Cross-sections ......................................................... 96 



7 

5.5.2 Reconstruction of Flame Longitudinal Sections ............................................. 97 

5.5.3 Flame Volumetric Reconstruction .................................................................. 98 

5.5.4 3-D Flame Reconstruction Time ................................................................... 101 

5.6 Summary ............................................................................................................. 102 

6 Conclusion & Recommendations for Future Work................................................ 103 

6.1 Introduction ......................................................................................................... 103 

6.2 Conclusions ......................................................................................................... 104 

6.2.1 Deep Learning Model ................................................................................... 104 

6.2.2 Numerical Simulation ................................................................................... 104 

6.2.3 3-D Flame Reconstruction ............................................................................ 105 

6.2.4 Dataset ........................................................................................................... 106 

6.2.5 3-D Flame Reconstruction Time ................................................................... 107 

6.3 Recommendations for Future Work .................................................................... 107 

6.3.1 Larger Dataset ............................................................................................... 108 

6.3.2 CNN Model Optimisation ............................................................................. 108 

6.3.3 Automation of 3-D flame Visualisation ........................................................ 109 

6.3.4 Hardware Accelerators and Edge Computing ............................................... 109 

References .......................................................................................................................... 110 

Appendix 1 Program for generating numerical simulation experimental data .......... 119 

Appendix 2 Program for preparing 3-D flame data ...................................................... 126 

Appendix 3 Program for CNN model implementation used for 3-D flame 

reconstruction .................................................................................................................... 130 

Appendix 4 Program for CNN model implementation used for numerical simulation

 131 



8 

Appendix 5 Program for CNN training and evaluation metrics .................................. 132 

Appendix 6 Program for checking the accuracy of reconstructed flame .................... 134 



9 

List of Table 

Table 2.1 Advantages and disadvantages of DL flame reconstruction methods ................. 41 

Table 3.1 Important milestones in the history of neural networks and machine learning, 

leading up to the era of deep learning ( Voulodimos et al. [60] ) ........................................ 49 

Table 3.2 Activation functions for CNN (Verdhan [78] ) ................................................... 56 

Table 3.3 Google Colaboratory hardware specifications (Kegenbekov et al [93] ) ............ 66 

Table 4.1 Generated ground truth dataset ........................................................................... 73 

Table 4.2 Numerical simulation dataset composition ......................................................... 75 

Table 4.3 Performance metrics ............................................................................................ 79 

Table 5.1 Flame conditions ................................................................................................. 86 

Table 5.2 Flame images used in dataset preparation ........................................................... 88 

Table 5.3 Dataset composition ............................................................................................ 88 

Table 5.4 Reconstruction time ........................................................................................... 101 

 

 

 

 

 

 

 

 

 

 

  



10 

List of Figures 

Figure 2.1 Schematic diagram of a single camera system for 3-D flame imaging (Brisley et 

al. .......................................................................................................................................... 24 

Figure 2.2 Experimental setup and example results, (a) system setup and (b) reconstructed 

soot radical distribution (Veríssimo et al. ............................................................................ 24 

Figure 2.3 Stereoscopic image system (Huang et al. [18] ) ................................................ 25 

Figure 2.4 2-D images, and reconstruction of a candle flame (Zhou et al [19].) ................ 26 

Figure 2.5 Schematic diagram of a three-camera-based tomographic system (Gilabert et al.

 .............................................................................................................................................. 27 

Figure 2.6   Multi-lens-camera tomography system (a) and (b) reconstructed 3-D image . 28 

Figure 2.7 Multi-projection-based imaging system (Correia et al. ..................................... 29 

Figure 2.8 Schematic diagram of the instantaneous CTC system (a) experimental setup, (b) 

grey-level image, (c) cross-section reconstruction (Floyd et al.[29] ) ................................. 30 

Figure 2.9 The principal diagram of a cone-beam CT scanning system (Yang et al. [34] ) 31 

Figure 2.10 Computed tomography image reconstruction methods (Jung [37] ) ............... 33 

Figure 2.11 Image discretized into pixels (Zeng [39] ) ....................................................... 34 

Figure 2.12 Flow chart of iterative image reconstruction process (Zeng [39] ).................. 34 

Figure 2.13  3-D FCT reconstruction system using CNN (Jin et al.[48] ) .......................... 36 

Figure 2.14  CNN using proper orthogonal decomposition (Huang et al. [49] ) ................ 37 

Figure 2.15  VT-Nets based 3-D flame reconstruction solution (Huang et al. [50] ) ......... 38 

Figure 2.16 Transfer learning framework for 3-D flame reconstruction (Cai et al. [51] ) .. 39 

Figure 2.17  Schematic of the proposed CNN–LSTM model (Huang et al. [52] ) ............. 40 

Figure 3.1 Deep learning in the context of machine learning and artificial intelligence 

(Alzubaidi et al. [53] ) .......................................................................................................... 48 

Figure 3.2 Deep learning vs Machine learning ( Odi et al. [57] ) ....................................... 48 

Figure 3.3 CNN-based image classification ( Aamir et al.  [70] ) ...................................... 51 

Figure 3.4  RGB-based Input layer image (Quddus [71]) ................................................... 52 

Figure 3.5  Schematic description of a dense layer (Kong et al [72]) ................................. 53 

Figure 3.6 Convoluting operation ( Nuzzo [75] )................................................................ 53 



11 

Figure 3.7 Movement of the kernel matrix across an image ( Zahirovic [74] ) .................. 54 

Figure 3.8 Max and Average pooling ( Martinez-Soltero et al. [77] ) ................................ 55 

Figure 3.9 Proposed CNN model ........................................................................................ 58 

Figure 3.10 CNN training process (Wang [85] ) ................................................................. 61 

Figure 3.11 Goggle TPU with four cores [94] .................................................................... 66 

Figure 4.1 3-D surface plot using bivariate Gaussian distribution ...................................... 70 

Figure 4.2 Numerical simulation process ............................................................................ 72 

Figure 4.3 Sample of 2-D projection data images ............................................................... 74 

Figure 4.4 Input image data based on eight 2-D projections. ............................................. 74 

Figure 4.5 Overview of numerical simulation CNN model architecture ............................ 76 

Figure 5.1 Laboratory-scale combustion test rig ................................................................. 84 

Figure 5.2 Flame images generated under six different combustion conditions ................. 85 

Figure 5.3 Generating additional datasets using OpenCV Morphological transformation 

operator ................................................................................................................................ 87 

Figure 5.4  Ground truth generation using SART ............................................................... 89 

Figure 5.5 Overview of the implemented network architecture for 3D flame reconstruction

 .............................................................................................................................................. 91 

Figure 5.6 Network model training metrics ........................................................................ 92 

Figure 5.7 Reconstructed cross-sectional slices .................................................................. 93 

Figure 5.8 Average SSIM of reconstructed slices ............................................................... 95 

Figure 5.9 Average RMSE of reconstructed slices ............................................................. 95 

Figure 5.10 Average PSNR of reconstructed slices ............................................................ 95 

Figure 5.11 2-D Image of the flame .................................................................................... 96 

Figure 5.12 Grey-level distributions of flame cross-sections at different heights .............. 97 

Figure 5.13 Grey-level distributions of longitudinal sections ............................................. 98 

Figure 5.14 Anatomical and RAS coordinate system (John [104]) .................................... 99 

Figure 5.15 Mapping and rotation of the RAS coordinate system ...................................... 99 

Figure 5.16 3-D Reconstructed flame structure ................................................................ 100 

  



12 

Nomenclature 

Symbol Meaning 
  
A Dense layer output 

B Bias 

C1, C2 In the SSIM function, C1 and C2 are constants to ensure stability when the 

denominator becomes zero. 

f(x ,y) 2-D cross-sectional attenuation distribution function 

F (u, v) 2-D Fourier transform 

F This coefficient represents the contribution of pixel j to the projection bin i 

MAXI Maximum possible pixel value in the evaluated image 

N Total number of data points 

P (r, θ) One-dimensional (1-D) X-ray projections  

P Projection measurement 

𝐩(𝐱; µ, ∑) Multivariate Gaussian distribution 

S Input matrix 

𝐒𝐒𝐈𝐌(𝐱, 𝐲) Structural similarity function for image x and y 

µ n-dimensional mean vector 

𝝁𝒙 Average pixel value of image 𝑥 

𝝁𝒚 Average pixel value of image 𝑦 

X Input image pixel values 

𝒙 𝑥  is an n-dimension vector 

yi Actual value 

ŷ Predicted value 

 Activation function 

𝝈𝒙 Variance of image 𝑥 

𝝈𝒚 Variance of image 𝑦 

𝝈𝒙𝒚 Covariance of image 𝑥 and image 𝑦 



13 

List of Abbreviations 

Abbreviation Meaning 
  
1-D One-Dimensional 

2-D Two-Dimensional 

3-D Three-Dimensional 

AI Artificial intelligence 

API Application Programming Interface 

ART Algebraic Reconstruction Technique 

CNN Convolutional Neural network  

CT Computed Tomography 

CCD Charge-coupled Device 

CFD Computational Fluid Dynamics 

CTC Computed Tomography of Chemiluminescence 

CPU Central Processing Unit 

DBN Deep Belief Network 

DL Deep Learning 

FBP Filtered Back-Projection 

FC Fully Connected 

GPU Graphics Processing Unit 

LFBP Logical Filtered Back-Projection 

LSTM  Long Short-Term Memory  

MAE Mean Absolute Error 

MART Multiplicative Algebraic Reconstruction Technique 

MLEM Maximum Likelihood-Expectation Maximisation 

MCP McCulloch and Pitts  

ML Machine Learning 

MSE Mean Squared Error 



14 

MRI Magnetic Resonance Imaging 

NPU Neural Processing Unit 

OST Optical Sectioning Tomography 

OpenCV  Open-Source Computer Vision Library 

PIV  Particle Image Velocimetry 

PLIF  Planar Laser Induced Fluorescence 

POD   Proper Orthogonal Decomposition 

PSNR Peak Signal-To-Noise Ratio 

RAS  Right, Anterior, Superior 

RBM Restricted Boltzmann Machine  

ReLU  Rectified Linear Unit 

RGB Red Green Blue 

RMSE Root Mean Squared Error 

SART Simultaneous algebraic reconstruction technique 

SIRT Simultaneous iterative reconstruction technique 

SSIM Structural similarity index Metric 

TL Transfer Learning 

TPU Tensor Processing Unit 

VT Volumetric Tomography 

VT-Net Volumetric Tomography Network Model 

 



15 

1  

The Importance of Three-Dimensional 

Reconstruction of Burner Flames 

1.1 Introduction  

Combustion systems are widely used globally in many industries to generate electricity and 

thermal energy by burning fossil fuels. For these systems to operate safely, optimal operating 

conditions need to be met. Furthermore, industries are now being required to reduce pollutant 

emissions and maximize combustion efficiency due to increasingly tighter government 

regulations. Combustion monitoring and diagnosis now play a vital role in the control and 

optimisation of combustion processes in industrial combustion systems such as boilers and 

gas turbines.  

In a combustion process, a flame is the central reaction zone. Flame characteristics can be 

represented by several physical parameters including temperature, oscillation frequency, 

size, shape, brightness, and uniformity. By analysing these parameters, it is possible to assess 

the quality and efficiency of the combustion process. Therefore, monitoring, visualizing, and 

characterization of combustion flames has become increasingly important for a deeper 

understanding of combustion conditions. 

With the advances in digital imaging and computing technology, digital imaging-based 

volumetric tomography (VT) has attracted great attention in combustion research. VT is a 

powerful technique for combustion diagnostics due to its capacity to visualize flame 

structures in three-dimension (3-D). The unique features of VT include non-intrusiveness 

and easy implementation, which has made such an optical imaging technique suitable for the 

spatial and temporal monitoring and diagnostics of combustion systems.  
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Traditional iterative methods such as the algebraic reconstruction technique (ART) and 

simultaneous iterative reconstruction technique (SIRT) have been used successfully in the 3-

D reconstruction of burner flames. However, the use of these methods has some limitations 

such as high computational cost and restricting 3-D reconstruction to be conducted offline. 

In recent years, 3-D reconstruction of burner flames through deep learning (DL) has attracted 

increasing interest and demonstrated an impressive performance in terms of reconstruction 

accuracy and computational efficiency in comparison with traditional methods.  

This thesis investigates how DL techniques based on a CNN model can be utilized in 

reconstructing volumetric slices of a burner flame. A convolutional neural network (CNN) is 

used to perform 3-D volumetric reconstruction after training a CNN model. Reconstruction 

is accomplished using ground truth images obtained from both a numerical simulation and 

real flame images as training data.  

 

1.2 Research Questions 

 

The thesis seeks to answer the following research questions: 

 How can the 3-D reconstruction speed and performance of a CNN network model-

based DL 3-D rapid flame monitoring solution be improved? 

 

 Can training data with abundant features of a flame structure be prepared to help 

improve the reconstruction accuracy of a flame? 

 

 How does the performance of DL-reconstructed flames compare with those 

reconstructed using traditional iterative solutions? 

 
 How does the proposed DL-based 3-D flame reconstruction system perform under 

different combustion conditions? 
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 How can the data from the output of the DL network model be used in visualising the 

reconstructed 3D flame structure in real-time? 

 

1.3 Technical Challenges in 3-D Reconstruction of Burner Flames Using 

Deep Learning 

 

The development of a CNN-based network model to perform 3-D volumetric reconstruction 

of a burner flame faces several challenges. The main technical challenges that have been 

identified are as follows: 

 The system should be capable of performing online 3-D reconstruction using DL 

methods. The common approach is to perform reconstruction offline, the capability 

of the CNN model to provide reconstructed images in real-time with good accuracy 

is one of the crucial challenges. 

 The generation of an adequate number of 2-D flame projection data under various 

combustion conditions. For the numerical simulation, some algorithms are required 

to generate the ground truth data. The development of suitable algorithms could be 

challenging for generating data for various flame conditions. 

 

 The implementation of a framework or tools capable of prepossessing a vast amount 

of image data. For the training and validation of CNN models, large datasets of image 

data must be processed. 

 
 The development of algorithms to extract and analyse performance metrics obtained 

from the CNN model during the training and validation phase. This also includes the 

performance evaluation of the reconstructed images. 

 

 The training of a CNN model using a vast amount of data is very time-consuming. 

The use of a high-performance computer is required to reduce the training time. 
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1.4 Aims and Objectives 

 

The research programme aims to develop and train a DL model for the 3-D volumetric 

reconstruction of burner flames. The DL model implemented will be able to reconstruct the 

cross-sectional slices of a burner flame based on the images obtained under various 

combustion conditions.  

 

The objectives of the research programme were defined as follows: 

 To carry out a comprehensive literature review related to this field. 

 To establish a CNN DL model for the 3-D volumetric reconstruction of a burner 

flame. 

 To test and validate the model through numerical simulations. 

 To implement framework and workflow for creating experimental flame datasets 

for training DL network models. 

 To carry out experiments under different combustion operation conditions. 

 To reconstruct flame cross-sections and longitudinal sections using real flame image 

data. 

 To perform 3-D volumetric reconstruction using real flame image data. 

 To implement a solution for visualising the 3-D flame structure using data from the 

output of the established and trained DL network model. 

 

1.5 Summary of Contributions 

 3-D flame reconstruction using DL is introduced to the computer vision community 

with a review of related previous work in combustion, DL, and computer vision. 

 A system has been developed to generate experimental datasets of flame images 

based on numerical simulations. 
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 A CNN network model has been implemented to improve the speed and 

performance of DL-based 3D rapid flame monitoring. 

 An evaluation of the effectiveness of DL in reconstructing 3-D flames has been 

conducted using flame data obtained from a laboratory-scale combustion test rig. 

 A machine learning (ML) hardware accelerator has been used to obtain performance 
results.  

 

1.6 Thesis Structure 

 

The structure of this thesis is organised and presented in a logical way that contributes to the 

set of objectives. The major contributions of this thesis include the development of a DL 

model for the 3-D volumetric reconstruction of a burner flame, the evaluation and validation 

of the system under various operation conditions and the evaluation of the model using a ML 

hardware accelerator. All other relevant contents that are related to this research programme, 

including literature review, conclusions and suggestions for future work are also addressed.  

The thesis is organised into six chapters and a summary of each chapter is depicted as follows: 

 Chapter 1 includes the importance of 3-D flame reconstructions of burner flames. It 

also covers the aim, objectives, and technical challenges of this research programme. 

 

 Chapter 2 presents a comprehensive literature survey on the techniques available for 

3-D reconstruction using DL and traditional methods. Techniques that have 

previously been proposed and developed for this application are reviewed.  

 
 Chapter 3 provides background information for understanding the topic. To begin 

with, DL terms will be introduced, followed by concepts and definitions related to 

CNN. The proposed CNN model is then discussed in detail, including its design and 

implementation. Next, the process used for training the CNN model is described. 
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Following that is a description of the ML framework and performance metrics that 

were used in this study. 

 
 Chapter 4 presents a DL 3-D reconstruction experimental setup based on using data 

generated from a numerical simulation. Then follows the presentation of the results 

and the evaluation of the accuracy of the implemented network model. 

 
 Chapter 5 describes the experimental setup for the 3-D reconstruction of burner 

flames using a DL network model. Then follows the presentation of the results and 

the evaluation of the accuracy of the implemented network model.  

 
 Chapter 6 Summarises the findings and conclusions that have been drawn from this 

research. This also includes recommendations for future work. 

 

  



21 

2  

Literature review 

2.1 Introduction 

 

A comprehensive literature survey has been conducted to review previously published 

research work associated with the subject of 3-D flame visualisation using traditional 

methods and employing deep learning techniques. This is to ascertain the extent of previous 

work in the field. The state-of-the-art in the subject area has been defined, following the 

analysis, and understanding of all relevant reference materials obtained. The review also 

ensures the originality of the proposed research programme, in addition to acquiring any 

useful background knowledge that may contribute to the work. 

Recently, there has been an increasing need for reducing pollutants emanating from a low-

efficient combustion process. Combustion monitoring and diagnosis techniques play a very 

key role in the management and control of combustion systems in industrial environments 

[1-3]. These non-intrusive optical techniques have contributed to the implementation of 

combustion diagnostic solutions for managing air pollution and the combustion efficiency of 

combustion systems [4].  

Also, over the past couple of years, numerous studies have been conducted to investigate 

imaging techniques for 3-D flame monitoring and visualisation. These have included the 

development of various 2-D instrumentation systems for monitoring and characterisation of 

flames. However, these systems have some limitations. They can only visualize a flame from 

one direction and would not be suitable for providing enough information to properly 

characterise a flame for measurement purposes. Due to this limitation, 2-D imaging 

techniques are not included in this review.  

Furthermore, another key area of flame studies is mathematical modelling which is also 

known as CFD (Computational Fluid Dynamics). To understand the fundamentals of flames 

and combustion processes, it is particularly useful to study the research in these areas. 
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However, they are beyond the scope of the research programme and therefore excluded from 

this review.  

A comprehensive review of existing techniques, including deflection photography, light 

scattering, particle image velocimetry (PIV) and direct photography, etc. for the 3-D 

visualisation and characterisation of flames, was previously conducted in [5-7]. This chapter 

only covers available tomographic techniques for the 3-D reconstruction and characterisation 

of flames. This is where a flame tomographic process involves the acquisition of the 2-D 

image projection and the reconstruction of flame cross-sections.  

Also, only a couple of passive optical tomography techniques are discussed in this review as 

the proposed DL-based technique in this study is based on using 2-D images acquired from 

multiple cameras. Laser-based tomography, electrical tomography and ultrasonic 

tomography are therefore excluded from this review. Other visualisation techniques that have 

been combined with tomographic approaches are also included due to their applicability in 

3-D flame visualisation and measurement. The benefits and limitations of each technique are 

described in each case and their real practicability is also addressed.  

Planar imaging and VT are two categories of these non-intrusive optical techniques. 

However, planar imaging techniques have some shortcomings such as optical access 

restriction and not being effective in the measurement of 3-D information in nature [8]. VT 

which is the other technique can overcome these shortcomings and can also provide better 3-

D information for combustion diagnostics [9-10].  

Computed tomography of chemiluminescence (CTC) which is one kind of VT has shown 

satisfactory results in reconstructing 3-D flame structures [11-13]. However, using this 

solution in practice comes with some limitations. The most crucial one is the high 

computational cost, and this is a problem as it is not possible to use the solution for real-time 

measurements or online monitoring.  

The application of DL techniques for CTC has the potential to reconstruct a flame 3-D 

structure with good accuracy in real time. This helps in resolving the limitations highlighted 
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above. Also, the high cost and complex setup of some passive optical techniques make DL 

approach favourable. 

In this chapter, important background concepts for the understanding of this thesis will be 

explained. This includes tomographic and DL techniques for 3-D flame reconstruction. The 

section presents related tomographic and DL techniques such as:  

 Passive optical techniques.  

 Analytic reconstruction.  

 Iterative reconstruction.  

 CNN-based methods. 

 Residual Neural Network (RNN) based methods.  

 Transfer Learning methods.   

 Hybrid DL method. 

 

2.2 Tomographic Techniques for 3-D Flame Visualisation 

 

2.2.1 Passive Optical Tomographic Techniques 

 

In this section, a couple of passive optical-based tomographic techniques are discussed. This 

technique can be divided into two groups based on the camera setup and some other system 

configurations. 

2.2.1.1 Single Camera Systems 
 

A single-camera tomographic system was developed by Brisley et al. [14].  The system can 

perform the 3-D measurement of a burner flame using a two-colour pyrometric technique 

and filtered back-projection (FBP) algorithm for tomographic reconstruction of the grey-

scale sections of the flames obtained from the camera. The schematic of the system is shown 

in Figure 2.1. 



24 

 

Figure 2.1 Schematic diagram of a single camera system for 3-D flame imaging (Brisley et 

al. [14] ) 

A similar approach was also followed by Yan et al. [15] for the 3-D reconstruction of flame 

temperature by applying FBP algorithms and two-colour pyrometry. A single-camera-based 

system was also used for the tomographic reconstruction of a burner flame by Veríssimo et 

al [16]. An image of the system is shown in Figure 2.2(a).  

           

                                         (a)                                                                                               (b)   

Figure 2.2 Experimental setup and example results, (a) system setup and (b) reconstructed 

soot radical distribution (Veríssimo et al. [16]) 

For this approach, a single camera rotating around the flame at different angles was used in 

capturing the flame. Following this, the back-projection (BP) algorithm in addition to ART 
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was then used to reconstruct the C2 (at 515.14 nm) and soot (at 801 nm) radical distributions 

of the flame. This can be seen in Figure 2.2 (b). 

A single camera system for the 3-D reconstruction of steady candle flames based on the 

maximisation of entropy technique (MENT) was implemented by Goyal et al [17]. The 

MENT is suitable for a situation when a very sparse set of image projections is available for 

the reconstruction process. 

A stereoscopic tomographic technique using a single CCD camera was developed by Huang 

et al [18] to reconstruct the soot temperature and concentration distributions for an 

asymmetric diffusive flame. This technique is shown in Figure 2.3, where a CCD camera is 

coupled with a stereoscopic adapter used to capture flame images. Using this setup and an 

algorithm based on the matrix decomposition-based least squares method, it was possible to 

reconstruct the emission intensity distributions in the flame and obtain local soot temperature 

and concentration.  

 

Figure 2.3 Stereoscopic image system (Huang et al. [18] ) 
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An optical sectioning tomography (OST) system for the 3-D monitoring of the flame 

temperature distribution of a steady-state candle flame was developed by Zhou et al. [19]. 

This solution is based on treating the flames as a combination of various numbers of 2-D 

sections. The principle of the OST is shown in Figure 2.4(a) where the original 2-D 

luminosity distribution of each 2-D flame section is retrieved through the supposition of 

section images. This is used to reconstruct the 3-D luminosity distribution of the flame as 

shown in Figure 2.4(b). Following this, using the relationship between the grey-level images 

and the temperature of the flame the 3-D temperature distributions were then reconstructed. 

 

(a) Principle of the OST  

 

(b) Reconstructed grey-level sections of the flame 

Figure 2.4 2-D images, and reconstruction of a candle flame (Zhou et al [19].) 

Gong et al. [20] also used a single CCD camera incorporating the OST and two-colour 

techniques to reconstruct the 3-D temperature distribution of impinging flames in an opposed 

multi-burner gasifier. A single camera was also used in the implementation of tomographic 
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chemiluminescence (TC) [21, 22] and Schlieren tomography (ST) [23] techniques for 3-D 

flame visualisation. 

The single-camera systems discussed in this section are practically easy to set up and install. 

They also can reconstruct a 3-D flame section. However, the single-camera system does come 

with some limitations. The techniques used in these systems can only be used under certain 

conditions which makes them not suitable for the 3D visualisation and motoring of turbulent 

flames [24]. 

 

2.2.1.2 Multi-Camera Systems 
 

The use of various multi-camera-based systems has also been applied to the development of 

solutions for the 3-D visualisation and characterisation of flames. An image-based 

tomographic system using three RGB CCD cameras to capture concurrently six equiangular 

2-D images of a flame was developed by Gilabert et al [25]. The schematic diagram of the 

system is shown in Figure 2.5. 

 

Figure 2.5 Schematic diagram of a three-camera-based tomographic system (Gilabert et al. 
[25] ) 
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A tomographic algorithm which combined the LFBP and ART was proposed for the 3-D 

reconstruction of the luminosity distribution of flames from the six image projections. 

Although a significant improvement was made in the flame reconstruction, the number of 

flame projections (only six) is still too few for a high spatial resolution in the reconstruction. 

In addition, the complexity of the system makes it unsuitable for installation on a large-scale 

furnace. 

A multi-lens camera-based tomography system for reconstructing the 3-D grey-scale 

distributions of a turbulent flame was developed by Ishino et al. [26].  This system used 

propane fuel and was equipped with 40 special camera lenses arranged around one side of 

the burner. The overview of the system can be seen in Figure 2.6(a) and an example of 3-D 

reconstruction results is shown in Figure 2.6(b). 

           

                   (a)                                                            (b) 

Figure 2.6   Multi-lens-camera tomography system (a) and (b) reconstructed 3-D image    
(Ishino et al. [26] ) 

The solution utilized a black-and-white panchromatic negative film which was loaded along 

the circumference behind the lenses. This film was developed after flame images were taken 

and then digitized. However, due to the imaging setup, this solution is not practical in an 

industrial setting. Additionally, the processing of the film used to capture the flame images 

could be time-consuming, making the system not suitable for real-time flame monitoring 

[24]. 
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Zhou et al [27] in their pioneer work which made it possible for the temperature inside the 

furnace to be viewed three-dimensionally, carried out numerical investigations into the 3-D 

visualisation and temperature distribution in large-scale boiler furnaces. This was done using 

eight CCD cameras installed around the boiler furnace to capture radiative energy images 

inside the furnace. The temperature distribution of the furnace sections was then derived 

using the images obtained. However, the solution suffered from some technical difficulties 

which limited its applications. These difficulties include the complexity of the installation of 

the system and synchronization of the eight cameras. 

A multi-projection-based imaging system for the tomographic reconstruction of the 3-D 

temperature distributions of axisymmetric or non-axisymmetric propane flames was 

developed by Correia et al [28]. The system shown in Figure 2.7 can produce eight image 

projections using a technique where four out of the eight images are from four cameras and 

the other four are created virtually. 

 

 

Figure 2.7 Multi-projection-based imaging system (Correia et al. [28]) 

Tomographic techniques for the high-resolution and instantaneous 3-D reconstruction of the 

chemiluminescence intensities from CH∗ in the reaction zone of matrix burner flames [29] 

and a premixed turbulent opposed jet flame [30] was proposed by Floyd et al.  The solution 

was accomplished using ten instantaneous images from five cameras with a set of mirrors. 
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The experimental setup of the CTC techniques and the cross-section reconstruction of the 

flames is shown in Figure 2.8. However, due to the complexity involved with setting up the 

mirrors and cameras, the system is not suitable for practical application in the industry. 

 

 

Figure 2.8 Schematic diagram of the instantaneous CTC system (a) experimental setup, (b) 

grey-level image, (c) cross-section reconstruction (Floyd et al.[29] ) 

 

Following a discussion of some multi-camera-based systems developed for the 3-D 

visualisation and characterisation of flames, it is evident that these setups have been able to 

acquire multiple image projections and perform the 3-D reconstruction of the flame using 

various reconstruction algorithms. 

These systems are capable of reporting more accurate reconstructions and are well-suited for 

unsteady and asymmetric flames. However, these systems suffer from a high cost and 

complex setup due to the increased number of cameras, lenses and mirrors required. 

Therefore, there is a need for a low-cost solution which could be easily installed in practical 

furnaces for the 3-D visualisation and quantitative characterisation of flames [24].  
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2.3 Flame Reconstruction with Computed Tomography 

 

In this section, a brief discussion of Computed tomography (CT) techniques is discussed. 

This technique can be divided into two groups mainly analytical reconstruction and iterative 

reconstruction methods. 

 

2.3.1 Computed Tomography 

 

CT is a highly effective tool capable of examining the external and internal structures of 

many industrial applications as well as providing accurate geometrical information with 

remarkably high accuracy [31].  

 

Figure 2.9 The principal diagram of a cone-beam CT scanning system (Yang et al. [34] ) 
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It is a tomographic imaging tool which uses X-ray transmission through an object for 

providing a non-invasive technique that produces reliable information via a set of 

measurements (projections). This information is then used to reconstruct a cross-sectional (2-

D) or a volumetric (3-D) image to study the interior of a domain [32]. The algorithms used 

for CT image reconstruction are based on the mathematical foundations of the Radon 

theorem. This was published in 1917 by an Austrian mathematician known as Johann Radon 

[33].  

A typical CT system consists of an X-ray source, a detector, a rotary table, and a processing 

unit. (See Figure 2.9). This enables the system to capture the projection data of the object 

under examination from any angle. This data is then processed and used for visualisation and 

data analysis. A volumetric representation of an object can be obtained by acquiring a 

contiguous set of CT slices [35].  

 

The tomographic reconstruction methods used in the CT can be grouped into two groups: 

 Analytical reconstruction methods. 

 Iterative reconstruction methods. 

These methods would be discussed in sections 2.3.2 and 2.3.3. 

 

2.3.2 Analytical Reconstruction 

 

Analytical reconstruction methods treat both images and projections as continuous functions. 

The process of image acquisition using analytical reconstruction methods is represented as a 

linear and continuous operator acting on the space of object functions representing the object 

under examination. The acquisition process gives rise to an integral transform of the 

unknown function describing the object under examination. Image reconstruction is then 

accomplished by inverting the integral transform [36].  
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Figure 2.10 Computed tomography image reconstruction methods (Jung [37] ) 

The diagram in Figure 2.10 shows some examples of CT image reconstruction methods: (a) 

Simple back projection algorithm method, (b) filtered back projection algorithm method, and 

(c) Fourier transform algorithm method. The process of image reconstruction in CT is a 

mathematical one that requires the calculation of the 2-D cross-sectional attenuation 

distribution function f (x, y) from a series of one-dimensional (1-D) X-ray projections P (r, 

θ) s as shown in Figure 2.10.   

A set of parallel X-rays pass through the 2-D object of interest, these attenuated X-rays form 

a projection, P (r, θ). A collection of these projections at different angles during a single 

rotation of the X-ray-based CT system is called a sinogram. The sinogram is a linear 

transform of the cross-sectional image of the object and it displays all the different 

projections for any slices stacked together [37]. 

There are many types of analytical reconstruction methods. The most used analytical 

reconstruction methods are all in the form of filtered back projection (FBP), which uses a 1-

D filter on the projection data before back projecting (2-D or 3-D) the data onto the image 

space.  

In this study, FBP is used for the experimental work on numerical simulation. The following 

are the main steps involved in a filtered back projection image acquisition process [38]: 

1. Data is acquired and forward projected into the sonogram space. 

2. Data is filtered.  

3. Filtered sinograms are back-projected into image space. 
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2.3.3 Iterative Reconstruction   

 

Iterative reconstruction methods are based on discretizing the input image into pixels and a 

system of equations is set up to describe the imaging geometry and physics. The values of 

these pixels are then represented as unknown variables in a set of linear equations which 

are then solved using iterative algorithms [39].  

 

Figure 2.11 Image discretized into pixels (Zeng [39] ) 

The setup of equations can be seen in Figure 2.11. The system of linear equations formed can 

be represented in the matrix form: 

FX = P      (2.1) 

where each element (Xj) in X is a pixel value, each element (Pi) in P is a projection 

measurement, and Fij in F is a coefficient that is the contribution from pixel j to the projection 

bin i. [39].  

 

Figure 2.12 Flow chart of iterative image reconstruction process (Zeng [39] ) 



35 

The diagram shown in Figure 2.12 describes the procedure for using an iterative algorithm. 

In this diagram, each loop represents one iteration. There are several types of iterative 

algorithms such as ART [40], SIRT [41], MART [42] and SART [43]. However, in this study, 

SART is used for generating ground truth data from projection samples.  

 

2.4 Flame Reconstruction with Neural Networks and Deep Learning 

 

DL has recently been gaining a lot of interest due to its impressive performance in extracting 

features and modelling [44]. One of the most widely used DL techniques is CNN which has 

been applied in tomography solutions such as ultra-sonic tomography [45], magnetic 

resonance imaging (MRI) [46] and X-ray CT [47]. The performance of CNN in these 

applications has shown satisfactory results in terms of rapid data processing and image 

quality improvement. In the following sections, a review of some flame reconstruction 

solutions using DL techniques is presented.  

 

2.4.1 Convolutional Neural Network-based Methods  

 

Jin et al. [48] implemented a 3-D rapid flame chemiluminescence tomography (FCT) 

reconstruction system based on CNN as shown in Figure 2.13. The CNN network model was 

established after initial work using numerical simulation where phantoms were used to mimic 

real flames. Following this, twelve colour CCD cameras were used to capture projection data 

of a real flame and this data was used to train the established CNN model.  
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Figure 2.13  3-D FCT reconstruction system using CNN (Jin et al.[48] ) 

The accuracy of the reconstructed 3-D flame structure obtained from this system was 

credible. Additionally, when compared with traditional iterative techniques, this solution 

demonstrated a better performance whilst also accomplishing reconstruction faster. 

To solve the inversion problem in the CTC system, Huang et al. [49] proposed using CNN 

and proper orthogonal decomposition (POD). In this study, a variety of experiments were 

conducted, confirming that this method was capable of reconstructing chemiluminescence 

distributions in three dimensions.  Figure 2.14 illustrates CNN with POD. (a): training. (b): 

dimensionality reduction. 
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Figure 2.14  CNN using proper orthogonal decomposition (Huang et al. [49] ) 

Figure 2-14 shows the training (a), dimensionality reduction (b), and testing processes of 

convolutional neural networks with a POD (c). In addition to the reconstruction accuracy, 

the proposed CNN model had desirable advantages in terms of computational efficiency and 

noise immunity. The reconstruction accuracy obtained was comparable to that of traditional 

inversion methods like the ART algorithm. Therefore, it is suitable for practical applications. 
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2.4.2 Residual Neural Network-based Methods 

 

Huang et al. [50] implemented a VT reconstruction solution based on RNNs to reconstruct 

turbulent flame. For this work, two different network architectures were implemented. One 

was based on a standard CNN model using sequential connections (VT-Net1), and the other 

on RNNs using skipped connections.  

 

 

Figure 2.15  VT-Nets based 3-D flame reconstruction solution (Huang et al. [50] ) 

The diagram in Figure 2.15 shows the architecture of the two kinds of VT-Nets implemented: 

(a) VT-Net1 with sequential connections; (b) VT-Net2 with skip connections; (c) The flow 

chart of the reconstruction process.  Using turbulent flame, nine 2-D projections of the flame 

were captured via a customized fibre bundle and a high-speed camera. This data was then 

used to train both VT-Net models. The trained VT-Net models were able to rapidly 

reconstruct the 3-D flame structure with a high reconstruction accuracy even with a limited 

number of projections. 
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2.4.3 Transfer Learning Methods 

 

Cai et al. [51] investigated the feasibility of using TL for a VT flame reconstruction solution 

(Figure 2.16). In this study, CNN network models were implemented using both transfer 

learning and semi-supervised learning techniques.  

 

Figure 2.16 Transfer learning framework for 3-D flame reconstruction (Cai et al. [51] ) 

This work focused on how to improve the performance of a 3-D flame reconstruction when 

there were limited labels and a small dataset available using TL techniques. Results from this 

work show that it is possible to significantly improve the reconstruction accuracy of a 3-D 

flame reconstruction solution even with the use of limited labels. 

 

2.4.4 Hybrid DL Methods 

 

The authors of Huang et al. [52] utilized a time-resolved VT technique in conjunction with 

DL algorithms to predict a 3-D flame evolution rapidly. An algorithm using a CNN and a 

long short-term memory network (LSTM) hybrid model was used in this study to rapidly 

reconstruct a 3-D flame structure based only on a history of 2-D projection data. Figure 2.17 
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shows the layout of the experimental setup. In this study, nine flame projection images were 

collected from a variety of different angles at various moments in time. 

 

 

Figure 2.17  Schematic of the proposed CNN–LSTM model (Huang et al. [52] ) 

It has been shown that the evolution of a flame in 3-D (for example, t = t11) can be predicted 

by using this model, which comprises a CNN, a LSTM, and a dense layer, based on its history 

of 2-D projections. Training for CNNs consisted of two steps. Initially, the CNN model is 

trained to extract features from projections, and then the LSTMs are trained to model the 

temporal sequence of these features. 

 

2.5 Overview of Deep Learning Flame Reconstruction Methods 

 

In this section, the four DL flame reconstructed methods discussed above are compared. The 

advantages and disadvantages of each method are presented. Following a review of the 

literature referenced in section 2.3, the table below (Table 2.1),  is a summary of the findings. 
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Table 2.1 Advantages and disadvantages of DL flame reconstruction methods 

Method Advantages Disadvantages  

 

Convolutional  

Neural Network 

[49,48] 

 

High computational efficiency.  

 

Fast reconstruction time. Jin et al. 

[48] reported a reconstruction time of 

1.26 seconds on a CPU-based 

platform.  

 

CNN model can retrieve the 3-D 

distribution with credible accuracy 

and structural similarity. Jin et al. [48] 

reported a SSIM value of 0.82 for 

reconstructed flames. 

 

 

 

A large dataset of approximately 10000 

to 15000 is required for training 

purposes [48]. 

 

Long training time. Jin et al. [48] 

reported a training time of  1.3 hrs. 

 

Some small-scale features such as small 

wrinkles in the turbulent flame surface 

could be difficult to reconstruct. 

 

Collecting a vast amount of training data 

for CNN-based methods could be time-

consuming. 

 

Residual  

Neural Network 

[50] 

 

RNN-based methods outperform the 

ART algorithm in reconstructing the 

chemiluminescence intensity among 

the whole flame surface.  

 

Fast reconstruction time. Huang et al. 

[50] reported a reconstruction time of 

4 milliseconds on a CPU and GPU-

based platform.  

 

 

Large datasets are required for training 

the model. Huang et al. [50] used a 

training set of 24,000 samples. 

 

Long training time.  Huang et al. [50] 

reported a training time of  35 mins. 

 

Collecting a vast amount of training data 

for RNN-based methods could be time-

consuming. 
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RNN-based methods have a better 

performance when compared with 

CNN methods in the case of limited 

2-D projection data. 

 

Superb reconstruction capability e.g. 

Some small-scale features such as 

small wrinkles in the turbulent flame 

surface could be reconstructed easily. 

  

 

 

 

 

 
Transfer 
Learning [51] 

 

Significant improvement in the 

reconstruction accuracy of CNN can 

be achieved by using transfer 

learning. According to Cai et al. [51], 

the correlation coefficient between 

the reconstructed flame and ground 

truth was larger than 0.98 for three 

commonly encountered application 

scenarios. 

 

For practical applications, transfer 

learning and semi-supervised 

learning offer promising approaches 

for enhancing the generalization 

performance of CNNs for inversion 

problems in VT.  

 

 

The dataset available for learning is 

smaller. Cai et al. [51] used a dataset of 

1000 samples for training. 

 

A network model previously trained for 

a similar problem is required. 
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The training of a network model from 

scratch is not required and the training 

time is reduced significantly.  

 

Hybrid [52] 

 

 

CNN-LSTM models can determine 

critical parameters of a flame 

structure, such as the flame surface 

density, wrinkle factor, flame normal 

direction, and flame curvature. 

 

Faster reconstruction time when 

compared with other methods. Huang 

et al. [52] reported a reconstruction 

time of approximately 2 milliseconds 

on a CPU and GPU-based platform. 

Improved reconstruction accuracy. 

According to Huang et al. [52], their 

3D flame reconstruction is highly 

similar to the corresponding ground 

truth (Correlation coefficient = 

0.981). 

 

The training time is shorter than that 

of a CNN-based model. Huang et al. 

[52] reported a training time of 30 

mins. 

 

 

Compared to other training methods 

other than transfer learning, smaller 

datasets could be used. Huang et al. [52] 

used a dataset of 8000 samples for 

training. 

 

Knowledge of at least two network 

architectures is required. 

 

 

 

The combination of some network 

architectures might not be suitable for 

certain applications. 
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In the table above (Table 2.1), it is important to note that there are differences between the 

various DL flame reconstruction methods discussed in terms of the flame structure, dataset, 

hardware platform, code optimization and architecture of the DL model. As a result, it may 

be difficult to establish a direct correlation. 

 

2.6 Summary 

 

A review of current strategies for 3-D visualisation and quantitative characterisation of 

flames has been conducted. It has been shown that 3-D flame visualisation and optical 

tomographic techniques can be applied in both industrial and laboratory settings. Combustion 

processes have been improved using those systems. However, it has been shown that none 

of the existing techniques can reconstruct a complete 3-D structure of a flame. 

 

It is not currently possible to perform an accurate 3-D reconstruction using a simple and low-

cost system setup because no efficient algorithm has been developed for this purpose. Several 

techniques that have been reported are preliminary or are only suitable for use in the 

laboratory. Most of them suffer from problems such as low resolution, complex setup, and 

high costs. Due to their fundamental limitations in sensing principles, some are unsuitable 

for turbulent flames. 

 

Among the various methodologies that can be applied to the reconstruction of the 3-D flame, 

passive optical tomography holds many obvious advantages. The main advantages are the 

easy setup of the 3-D flame reconstruction system, the high spatial resolution, and the low 

cost of the system, making it a suitable choice for 3-D flame reconstruction and 

characterisation of practical furnaces. Due to its non-invasive nature, passive optical 

tomography does not alter the natural state of the flame and can be performed either with a 

single camera or with a multi-camera setup.  
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Passive optical tomography can also be performed using either a single or a multi-camera 

setup. Although the single camera system is very straightforward, it is only suitable for steady 

flames and axisymmetric flames and is therefore unsuitable for practical furnace applications. 

It is possible to produce multiple image projections with multi-camera systems, and the flame 

reconstruction is more detailed. Those systems that rotate or scan can produce many 

projections and are therefore better at reconstructing images. It does, however, have the same 

limitation as a single camera system, which is that the flame must be stable while being 

viewed. Additionally, no proven tomography method has been developed that meets the 

requirements of real-time flame monitoring. 

 

A review of the current state-of-the-art in this field indicates that although progress has been 

made in the field of visualisation and characterisation of flames over the past few years, there 

are still technical challenges which remain to be overcome in the field of flames. Specifically, 

it is essential to develop a practical hardware platform that can be used for generating enough 

image projections that will enable better spatial resolution and system reliability.  

 

To enhance the performance of the system in reconstructed and characterised 3-D flames, it 

is also important to use efficient algorithms. Thus, a new technical strategy must be 

implemented in order to help in achieving a higher level of reliability and accuracy with 3-D 

reconstruction and quantitative flame characterisation. In the following chapters, a detailed 

description and discussion of the new technical strategy will be presented. 

 

In addition to this review, a discussion of CT-based tomographic and DL methods and their 

application to the reconstruction of 3-D flames relevant to this study has been provided. 

These methods have been demonstrated to be successful in solving the problem of 3-D flame 

reconstruction from 2-D projection images.  

 

For the CNN-based methods, high computational efficiency and fast reconstruction time 

were achieved. CNN models could also reconstruct a 3-D flame with credible accuracy and 

structural similarity. RNN-based methods outperform the ART algorithm in reconstructing 
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the chemiluminescence intensity among the whole flame surface. They also reported a better 

performance when compared with CNN methods for the case of limited 2-D projection data. 

In addition to this, small-scale features such as small wrinkles in the turbulent flame surface 

could be reconstructed easily using RNN DL methods. The DL methods were also found to 

report satisfactory results. They showed a significant improvement in the reconstruction 

accuracy of CNN and had the advantage of not having to train a network model from scratch. 

As for Hybrid DL methods, the use of a CNN-LSTM-based solution enabled certain key 

parameters of a flame structure - such as flame surface density, wrinkle factor, flame normal 

direction, and flame curvature to be determined.  

 

In summary, DL-based methods can be used to reconstruct 3-D flame structures with better 

performance than traditional iterative methods, and it has the potential to be applied for online 

3-D flame reconstruction, meaning that no offline reconstruction of flames would be 

necessary. Although several DL methods have been discussed, CNN was used in this study 

because of its performance in the reconstruction of 3-D flame structures and due to its 

simplicity of implementing and training a CNN network model. It should be noted that the 

RNN-based methods discussed in this chapter reported fast 3-D flame reconstruction times. 

The use of RNNs is a better choice when processing sequential data, such as speech or natural 

language. CNNs, on the other hand, have shown impressive results on a wide range of 

computer vision problems and are better for image processing and various computer vision 

tasks. Since CNN has shown impressive performance in computer vision tasks such as image 

classification, object detection, segmentation, etc., it has been used for the study. 
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3  

Methodology 

3.1 Introduction 

 

In this chapter, important background concepts for the understanding of this thesis will be 

explained. Initially, DL terms will be introduced, followed by concepts and definitions 

specifically for the subset of ML challenges faced during this study, namely deep 

convolutional network models. This is then followed by a description of the ML framework 

and performance metrics used for this study. 

 

3.1.1 Introduction to Deep Neural Networks 

 

DL is a subset of ML (Figure 3.1), which is essentially a neural network with three or more 

layers. The implementation of a neural network in this way with layers attempts to mimic the 

operations of the human brain. One of the key benefits of DL is the ability to learn enormous 

amounts of data. 

A neural network with a single layer can make approximate predictions, but additional hidden 

layers in the network can help to optimize and improve the accuracy of these predictions. DL 

is at the leading edge of much artificial intelligence (AI) applications and services that 

improve automation, performing analytical and physical tasks without human intervention.  

 

DL technology currently lies behind everyday products and services such as digital assistants, 

medical image analysis, face detection and recognition, credit card fraud detection and self-

driving cars [54]. This is because they have been shown to perform better than established 

techniques in various tasks e.g., audio and speech processing, natural language processing, 

computer vision and medical diagnosis [55], [56].  
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Figure 3.1 Deep learning in the context of machine learning and artificial intelligence 

(Alzubaidi et al. [53] ) 

 

 

Figure 3.2 Deep learning vs Machine learning ( Odi et al. [57] ) 
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The main principle of DL is that certain rules are learned from data examples, and this 

knowledge can then be used to make accurate predictions on new, previously unseen data. 

As shown in Figure 3.2, DL algorithms do not need a human present to identify and extract 

features from data. According to Goodfellow et al, DL enables a computer system to learn 

from experience and understand the world in terms of a hierarchy of concepts, and this 

enables the computer to learn more complicated concepts by building them up out of simpler 

concepts [58].  

The desire to create a system that mimics the human brain drove the initial development of 

deep neural networks. McCulloch and Pitts worked on how the brain used interconnected 

cells known as neurons to produce complex in 1943. This model of a neuron by McCulloch 

and Pitts called a MCP model, contributed significantly to the development of deep neural 

networks [59]. 

Table 3.1 Important milestones in the history of neural networks and machine learning, 

leading up to the era of deep learning ( Voulodimos et al. [60] ) 

 

Table 3.1 above shows some major contributions to the field of deep learning. This includes 
Recurrent Neural Network [61], LeNet [62], LSTM [63] and one of the most significant 
advances came in 2006 when Hinton et al [64] introduced the Deep Belief Network. 
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However, some other factors have also contributed to the rise of deep learning. They include 

the presence of large, high-quality, and publicly available labelled datasets and advances in 

computer hardware architecture. For instance, innovation in computer architecture design has 

enabled the use of advanced computing architecture based on parallel processing units for 

training DL models, this has made it possible to move from traditional CPU-based 

architecture to other hardware accelerators units such as GPUs, TPUs and NPUs [65]. This 

has helped in significantly improving acceleration in DL models’ training. 

Furthermore, the emergence of powerful ML frameworks like TensorFlow [66], Theano [67], 

and PyTorch [68], allows for faster prototyping and implementation of DL solutions. 

DL models can be used for a variety of complex tasks:  

 Deep Belief Network (DBN) for the general classification. 

 RNN for sequence learning and time series. 

 CNN for classification in images, sound, and text. 

 Restricted Boltzmann Machine (RBM) for feature extraction. 

 

As this study is based on the use of CNNs, the next section would briefly describe CNN. 

3.1.2 Convolutional Neural Network 

 

CNN are a specific category of neural networks which consist of convolutional layers, 

pooling layers, activation layers and fully connected layers. They are used to extract features 

from an image or a video input. They are used for various computer vision applications like 

image classification, object detection, semantic segmentation, face recognition etc. 

The architecture of a CNN is analogous to that of the connectivity pattern of neurons in the 

human brain and was inspired by the organization of the Visual Cortex. The work of D. H. 

Hubel and T. N. Wiesel on the functional architecture in the cat’s visual cortex [69] inspired 

work on CNNs. Figure 3.3 shows an example of a CNN used in an image classification 

solution. The CNN model takes in an input image and extracts feature from it using various 

layers. Finally, it can predict the class of the object in the given image. 
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Figure 3.3 CNN-based image classification ( Aamir et al.  [70] ) 

 

In the following sections, the various layers and connections of a convolutional network 

would be discussed.  

 

3.1.2.1 Input Layer 

 

This is the input to the CNN network. It is a video stream or an image which is made up of a 

collection of pixels. An example of this is the input dog image in Figure 3.3. It is usually 

either greyscale or RGB. The pixels which make up this input layer have a numeric value 

between 0 to 255, and these values represent the colour value of the pixels in the input image 

or video. The example in Figure 3.4 below is that of an RGB input image with 3 channels 

and size 4*4. 
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Figure 3.4  RGB-based Input layer image (Quddus [71]) 

 

3.1.2.2 Dense Layer 

 

The dense layer is one of the most used layers in a CNN. It is deeply connected with its 

preceding layer in such a way that every output from the preceding layer is input and the 

outputs from the dense layer are passed out as inputs into the next layer. In Figure 3.5 below, 

the hidden layer is a dense layer. 

  

In feedforward mode operation, computation in the dense layer is performed as shown in 

(3.1): 

 

A = Ø (WTS +B)      (3.1) 

 

where A is the output, Ø refers to the activation function, W is the weights, B is the bias and 

S is the input matrix. The dense layer performs a matrix multiplication between the matrix 

of weights and the input matrix. This is then added to a bias vector before an activation 

function operates on the results  
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Figure 3.5  Schematic description of a dense layer (Kong et al [72]) 

3.1.2.3 Convolutional Layer 

 

The convolutional layer is particularly important in a CNN. The bulk of the computational 

operations occurs in the convolutional layer [73]. Dot product operations are performed by 

the convolutional layer between two matrices which are: 

1. The set of learnable parameters is known as a kernel or filter. 

2. The restricted portion of the receptive field of the image [74]. 

 

 

Figure 3.6 Convoluting operation ( Nuzzo [75] ) 
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From Figure 3.6, the dot product operation between the kernel matrix and the image produces 

a convoluted feature which could be referred to as a feature map. In a forward pass operation, 

the kernel traverses from the left to the right of the image with a certain sliding size called 

stride. This continues until it traverses the whole width of the image after which it moved 

down and starts the process again. This continues until the whole image is traversed. The 

diagram in Figure 3.7 shows the movement of the kernel matrix across the image. The entire 

process described above is called convolution.  

 

 

Figure 3.7 Movement of the kernel matrix across an image ( Zahirovic [74] ) 

3.1.2.4 Pooling Layer 

 

The pooling layer is used to reduce the spatial size of the feature map obtained from a 

convolution operation. This helps in speeding up the computation time and ensuring that 

features of the input image are not lost.  

 

Two types of pooling layers are available in a CNN, they are: 

1. Max Pooling.  

2. Average Pooling.  
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Max pooling is the most used pooling layer in CNNs. The operation of max pooling involves 

selecting the maximum value from a portion of the image covered by the kernel. However, 

average pooling selects the average values from the bit of the image covered by the kernel. 

The diagram in Figure 3.8 shows the operations of both pooling layers. In this study, Max 

pooling has been used due to its high accuracy in image classification tasks [76]. 

 

Figure 3.8 Max and Average pooling ( Martinez-Soltero et al. [77] ) 

 

3.1.2.5 Fully Connected Layers 

 

The fully connected (FC) layer is normally located at the end of the CNN after feature 

extraction has been performed using convolutional and pooling layers. The neurons in this 

layer are usually fully connected to the neurons in the preceding layer. They are used for 

making predictions by the network and collecting the final nonlinear combinations of 

features. 

3.1.3 Activation Functions 

 

Activation functions take an input which is usually a single number and perform 

mathematical operations on this input. They help in deciding if a neuron will fire or not and 

by doing this, they influence the output of layers in a CNN.  
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Table 3.2 Activation functions for CNN (Verdhan [78] ) 

 

Table 3.2 contains details of commonly used activation functions such as ReLU, Tanh and 

Linear. In this study, the linear activation function which is also known as the identity 

function was used in the CNN architecture implemented. It takes the inputs, multiplied by 

the weights for each neuron, and creates an output signal proportional to the input. 

3.2 Deep Learning Approach 

 

The approach used in this study is to establish a CNN model, train the model and then use 

the model to reconstruct cross-sectional slices of a burner flame by taking 2-D projection 

data as input into the model. This is a similar approach to that discussed in section 2.3. To 
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establish an optimal solution for the proposed DL-based 3-D flame reconstruction system, 

several experiments were conducted to determine the required CNN hyperparameters.  

 

In the following section, the CNN architecture used in this study is presented and the 

procedures used in implementing, training, and measuring the performance of the CNN 

model are discussed. 

 

3.2.1 Design and Implementation CNN Network Model  

 

The proposed CNN model architecture is based on the use of seven convolutional layers in 

the hidden layers. The convolutional layers are used in extracting features from the input 

projection data. The choice of seven convolutional layers was determined by experimenting 

with the different number of layers.  

 

For the proposed solution, the use of seven convolutional layers provided the best results in 

terms of reconstruction accuracy. The diagram in Figure 3.9 shows the architecture of the 

proposed CNN model. 
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Figure 3.9 Proposed CNN model 

 

To implement the CNN model, the Keras Conv2D class [79] was used. This class included 

some important parameters that could be tuned during the training process. The purpose of 

this layer is to create a convolution kernel that is convolved with the input of the layer to 

produce a tensor of outputs [80]. This section now describes the configuration used in the 

implementation of the Conv2D layers and some other CNN model parameters. An example 

of the Conv2D layer code implementation using Keras is shown in Appendix 7.  

 

The first parameter required by Conv2D is the number of filters to be learned by the 

convolutional layer. Early in the network architecture (i.e., closer to the actual input image) 

convolutional filters are learned less frequently, while later layers (i.e., closer to the output 

predictions) learn more frequently [81]. For this study, following the experimentation of 

various filter values, the approach used was to start with a small filter size of 8 in the first 

Conv2D layer and increase the values using powers of 2. The range of the filters used was 

[8, 16, 32, 64] with the final layer having a filter size of 64. However, for the CNN model 
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used in the numerical simulation, the filter size was fixed at 32 for all layers. The 

reconstruction of a 3-D bivariate Gaussian distribution plot using this approach produced 

satisfactory results during the reconstruction process. 

 

The next Conv2D parameter is the filter_size parameter. It determines the kernel dimensions 

in Keras. Common kernel dimensions are 1x1, 3x3, 5x5, and 7x7 and this can be passed as 

(1, 1), (3, 3), (5, 5) or (7, 7) combinations of tuples in Keras. A 3x3 kernel size is used in this 

study as it is the most popular choice, and it is being used by every DL practitioner out there 

[82]. The results obtained using the kernel size were satisfactory. Also, larger kernel sizes 

could increase the complexity of the network model and the network model training time.  

The strides parameter is another Conv2D parameter which specifies the "step" the 

convolution takes along the x and y axes of the input volume, it is a two-tuple of integers. 

The default value of (1,1) was used for the value of stride for the implementation of the CNN 

model. The use of this default value implied the following:  

 

  A convolutional filter is applied to the current location of the input volume. 

 

  As the filter moves one pixel to the right, the input volume is once again filtered. 

 
 The process is repeated until the far-right border of the volume is reached, at which 

point the filter is shifted one pixel down and restarted from the far-left border. 

 

Keras Conv2D supports two padding types: valid and same. The valid parameter prevents 

zero padding of the input volume. If a value is set to "same", zeros are evenly distributed 

across both sides of the input, as well as up and down both sides of the input. For most of the 

layers in this CNN model, this value was set to “same,”. Three max pooling layers were 

employed in between the convolutional layers to reduce the spatial size of the feature map 

that was obtained from a convolutional layer.  
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According to section 3.1.3 of this design, the linear activation function is used in each 

Conv2D layer. This activation function was chosen because the 3-D flame reconstruction 

method based on DL was a regression problem. Additionally, the experimentation of several 

other activation functions confirmed that the linear activation function was well suited to this 

problem.  

For the implementation of the CNN model used in the numerical solution, leaky Relu 

activations layers were used in between the Conv2D to ensure fast convergence and avoid 

gradient problems. However, these layers were later removed as they did not seem to affect 

the performance of the CNN model. 

 

A flattening layer is used at the output of the final max pooling layer to convert the output 

data from max pooling into a 1-D array for input into the final layer which is a single dense 

layer. The dense layer in this model is the output of this CNN. Data from this layer is then 

fed into a 3-D visualisation tool to view the cross-sectional slices and render a 3-D image of 

the flame.  

 

As a last step, a learning rate and optimization algorithm had to be chosen. In contrast to the 

classical stochastic gradient descent algorithm that is most commonly used, Adam is a simple 

but powerful optimization algorithm that can be used to update network weights iteratively 

based on training data. Due to the recommendation that the Adam optimizer is the best overall 

choice to use for DL applications [83], this optimizer was used in this design. 

 

For this work, a learning rate of 0.00008 was used for the numerical simulation and 0.001 for 

the experiment based on real flame data. In addition to using information derived from 

performance studies in [84], several learning rate values were also experimented with to 

determine an optimal learning rate value. 
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3.2.2 Training 

 

The training of a CNN model is based on an iterative process of updating and adjusting the 

values of the weights of the CNN neurons. The process starts by initializing all weights to 

small random values and feeding the network with the training dataset of 2-D projection data 

and its corresponding ground truth data.  

 

Figure 3.10 CNN training process (Wang [85] ) 

 

The training then involves a series of forward and backward propagation phases until learning 

stops. An overview of the training process followed in this study is shown in Figure 3.10. 

3.3 Performance Metrics 

 

In this section, the training metrics used during the training and testing of the established 

CNN model are presented. These metrics help to check how well the CNN model has learned. 
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Performance metrics have been used to evaluate the quality of the reconstructed image 

obtained from rendering the data obtained from the CNN model. These performance metrics 

are discussed in this section. 

In this study, the Mean Absolute Error, Mean Square Error, and Root Mean Square Error 

were used to evaluate the performance of the CNN model. Also, two of the most common 

and widely used standard metrics in the computer vision and image processing domain are 

used for comparing the quality of the reconstructed images. These metrics are the structural 

similarity index Metric (SSIM) and peak signal-to-noise ratio (PSNR). 

 

3.3.1 Mean Absolute Error 

 

The mean absolute error (MAE) is the average of the absolute difference between the 

predicted and actual values in the dataset.  

 

𝑀𝐴𝐸 =
1

𝑁
෍|𝑦௜ − 𝑦ො|

ே

௜ୀଵ

                                                                                        (3.2) 

 

In (3.2), the equation for the MAE is shown, where  𝑦ො and 𝑦௜ is the predicted value and actual 

value, respectively. N is the total number of data points. 

 

3.3.2 Mean Squared Error (Loss) 

 

The mean squared error (MSE) shown in (3.3) represents the average of the squared 

difference between the actual and predicted values in the dataset. This is also referred to as 

loss or MSE loss. The smaller the value, the better as this shows that the CNN model has 

improved learning during training.  
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3.3.3 Root Mean Square Error 

 

The root mean squared error (RMSE) is the square root of the mean squared error. It measures 

the standard deviation of residuals. 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸   = ඩ
1

𝑁
෍  

ே

௜ୀଵ

(𝑦௜ − 𝑦ො)ଶ                                                       (3.4) 

 

3.3.4 Structural Similarity Index  

 

The structural similarity (SSIM) index is a common image quality metric used in the image 

processing community. It evaluates the three visual properties of an image: luminance, 

contrast, and structure.  

The structural similarity can be defined as: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
൫2𝜇௫𝜇௬ + 𝑐ଵ൯൫2𝜎௫௬ + 𝑐ଶ൯

൫𝜇௫
ଶ + 𝜇௬

ଶ + 𝑐ଵ൯൫𝜎௫
ଶ + 𝜎௬

ଶ + 𝑐ଶ൯
                                           (3.5) 

 

Where 𝜇௫ is the average pixel value of image 𝑥, 𝜇௬ is the average pixel value of image 𝑦 , σx 

is the variance of image 𝑥 , σy is the variance of image 𝑦, σxy is the covariance of image 𝑥 

and image 𝑦 , c1 and c2 are variables to stabilize the division with weak denominator [86]. 

SSIM index usually has a value that ranges from 0 to 1. A value of 1 implies that the image 

of the reconstructed image perfectly matches the original one. 
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3.3.5 Peak Signal-to-Noise Ratio 

 

Peak Signal-to-Noise Ratio refers to the ratio between the maximum possible power of a 

signal and the power of corrupting noise that affects the fidelity of its representation [87].  

 

PSNR can be defined as:  

 

                             𝑃𝑆𝑁𝑅 =  10 ∗ 𝑙𝑜𝑔ଵ଴  ቆ 
   𝑀𝐴𝑋ூ    

ଶ

  𝑀𝑆𝐸
ቇ                                               (3.6) 

 

where MSE is the mean squared error, and MAXI is the maximum possible pixel value in the 

evaluated image. As the MSE value approached zero, the PSNR value approaches infinity; 

this shows that a higher image quality is obtained when a higher PSNR value is reported [88] 

 

3.4 Machine Learning Toolchain  

 

In this section, a brief description of the ML tools, development environment and framework 

used in this study will be presented. 

 

3.4.1 Python 

 

Python is an open-source high-level general-purpose programming language which was 

developed in 1989 by Guido van Rossum [89]. It is a powerful programming language and 

is one of the most common programming languages used in ML applications as it provides 

various powerful libraries useful for DL. The version of Python used in this master’s thesis 

is Python 3.7.0. 
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3.4.2 TensorFlow  

 

TensorFlow is an open-source platform for ML. It has a collection of tools, libraries, and 

resources in place to speed up the development of ML applications. The APIs provided by 

TensorFlow are based on both the C++ and Python programming languages [66]. The version 

of TensorFlow used in this master’s thesis is 2.8.0. 

 

3.4.3 Keras 

 

Keras is a high-level framework written in Python commonly used for implementing ML 

solutions. The framework is easy to use and learn. It provides an interface to TensorFlow and 

is Python-friendly. Keras was developed to enable faster prototyping of ML solutions [90]. 

The version of Keras used in this master’s thesis is 2.9. 

 

3.4.4 Google Colaboratory 

 

Google Colaboratory, or “Colab” for short, is a cloud computing product from Google 

Research. Colab enables developers to write and execute Python code through a web browser. 

It achieves this using a hosted Jupyter notebook service. Colab enables developers to write 

and execute Python code through a web browser. It achieves this using a hosted Jupyter 

notebook service. The product also provides access to computing resources including CPUs, 

GPUs and TPUs [91].  

The table (Table 3.3) shows the basic Colab CPU hardware specification which was used 

during the generation of additional datasets. However, for training the CNN model 

implemented in this study, a hardware configuration based on the use of on Tensor Processing 

Unit (TPU) was used. TPUs are hardware acceleration units designed by Google to accelerate 

ML applications programmed with TensorFlow [92]. 
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Table 3.3 Google Colaboratory hardware specifications (Kegenbekov et al [93] ) 

Cloud Computer Hardware Specifications 

CPU Model Name Intel(R) Xeon(R) 

CPU Frequency  2.30 GHz 

GPU Model Name  Nvidia K80 

GPU Performance  4.1 TFLOPS 

GPU Memory Clock  0.82 GHz 

No. CPU Cores 2 

CPU Family Haswell 

Available RAM 12GB 

Disk Space  25GB 

 

The TPU board has 64 GB high bandwidth memory and 180 teraflops of floating-point 

performance, Figure 3.11 shows an image of the TPU used in the Colab setup. The use of the 

TPU helped in reducing the time taken to train the implemented CNN network model.  

 

Figure 3.11 Goggle TPU with four cores [94] 
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3.5 Image Processing and 3D Visualisation Tools 

 

In this section, the image processing tools used to generate and prepare experimental datasets, 

as well as for the visualisation of the 3-D structure of the reconstructed flame are presented. 

 

3.5.1 ImageMagick 

 

ImageMagick is free and open-source software provided in either binary or source code 

format. It is used for displaying, creating, converting, editing, and modifying raster images. 

The program was invented in 1987 by John Cristy. It can read and write more than two 

hundred image file formats. It consists of image manipulation utilities that can be accessed 

via a command-line interface. While ImageMagick lacks the robust graphical user interfaces 

of Adobe Photoshop and GIMP to edit images, it does come with a basic native X Window 

GUI (called IMDisplay) for rendering and manipulating images on Unix-like operating 

systems, as well as API libraries for a range of programming languages. Image file formats 

are identified by magic numbers in the program [95]. The version of ImageMagick used in 

this master’s thesis is 7.0.11-9.  

 

3.5.2 Slicer 3D 

 

Slicer 3D is an image-computing software application that allows for the visualisation and 

analysis of medical image-computing datasets in 2-D, 3-D, and 4-D. This software 

application supports all commonly used datasets, including images, segmentations, surfaces, 

annotations, transformations, etc. Visualisation is available on a desktop and in virtual reality. 

The software also has an integrated Python console as well as the ability to function as a 

Jupyter notebook kernel with remote 3-D rendering features [96].  The version of Slicer 3D 

used in this master’s thesis is 4.11.20210226 r29738 / 7a593c8. 
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3.6 Summary 

 

In this chapter, the principles of DL and CNN have been described and discussed. Although 

various DL models were described, the CNN model has been used in this study due to its 

performance in computer vision and image processing applications. A prototype 3D flame 

reconstruction system based on DL has been designed and implemented using a CNN model  

The various parts of the CNN-based network model have been described in detail explaining 

its characteristics and functionality. The implementation of the CNN model was based on the 

use of 2-D convolutional layers. The reasons for choosing the configuration and parameters 

used in the implementation of the CNN model have also been addressed. This was 

accomplished by training and evaluating the implemented network model using several 

parameter settings and configurations. Additionally, optimal values were determined based 

on recommendations for using these parameters in DL applications 

A description of the training process for the CNN model and the performance metrics 

required for analysing and evaluating the accuracy of the established CNN model has also 

been presented. For this study, the CNN model was evaluated using MAE, MSE, and RMSE. 

For evaluating the reconstructed images, two of the most widely used metrics in computer 

vision and image processing are used. This was the SSIM and PSNR. 

 

In addition, a description of the software development environment and the ML framework 

utilized in this study was provided This also includes details of the image processing tools 

used to create and prepare experimental datasets as well as to visualize a 3-D reconstructed 

image.  
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4  

Numerical Simulation 

4.1 Introduction 

 

A series of experiments was conducted using numerical simulations. These simulations were 

used to create two cases of phantoms which were designed to mimic a 3-D conical single 

flame. The images obtained were used in training a DL network model. The objectives of the 

experiments were: 

 to create experimental image datasets from numerical simulations. 

 

 to establish a DL model for the 3-D volumetric reconstruction of a 3-D image which 

was like a 3-D conical single flame. 

 
 To evaluate and validate the established DL model. 

This chapter gives a detailed description of the numerical simulation, dataset collection and 

preparation, and reconstruction results obtained using the established network model 

described in Chapter 3. 

 

4.2 Numerical Simulation 

 

To investigate the performance of the established CNN-based network model for the 3-D 

volumetric reconstruction of flames, simulative studies have been conducted in this section. 

A multivariate Gaussian distribution 3-D plot using Python and Matplotlib was used to create 

ground truth images which had a similar shape to a flame. 

 

The multivariate Gaussian distribution is defined as: 
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𝑝(𝑥; µ, ∑) =
1

ඥ(2𝜋)௡|∑| 
exp ൬−

1

2
(𝑥 − µ) ் ∑  ିଵ(𝑥 −  µ) ൰                                       (4.1) 

 

Where 𝑥  is an n-dimension vector, µ  is the n-dimensional mean vector and ∑ the n x n 

covariance matrix [97]. For this study, the bivariate Gaussian distribution was used, and this 

was the case when n = 2. 

 

Figure 4.1 3-D surface plot using bivariate Gaussian distribution 

The plot in Figure 4.1 is an example of a bivariate Gaussian distribution plot. The ranges (-3 

to 3) for the X and Y axis of the plot are constructed using the meshgrid function from 

NumPy.  
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For the numerical simulation, a uniformly distributed set of random numbers in the 

range from 0.1 to 0.2 were generated for the mean vector (µ). This was done to slightly 

alter the samples generated. The data for the Z domain was then acquired using a bivariate 

Gaussian distribution density function. This was used to produce the Gaussian range over the 

Z-axis. The figure below (Figure 4.2) is an example of a grayscale ground truth data image 

used as a dataset for training the CNN-based network model implemented in this study. 

 

 

Figure 4.2 Greyscale ground truth data image 

 

The diagram in Figure 4.3 below shows the process used in this numerical simulation 

experiment for generating datasets, training, testing, and evaluating the CNN-based network 

model established for the 3-D volumetric reconstruction of a 3-D image which was like a 3-

D conical single flame. 
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Figure 4.2 Numerical simulation process 

In the following sections, the steps involved in the above process such as dataset collection 

and preparation, network model training and evaluation are discussed. 

 

4.3 Data Collection and Preparation 

 

2-D images-based projection datasets were generated from the numerical simulated phantom 

and this dataset was used in training the process. In this section, the collection and preparation 

of the datasets used in training the proposed CNN-based network model are discussed. 

 

4.3.1 Ground Truth Dataset 

 

The ground truth data used in training the network model is a collection of images obtained 

from the numerical simulation process using bivariate Gaussian distribution. Ground truth 

data were generated under two sets of conditions. This meant two sets of ground truth 

samples were generated. In each of these conditions, the parameters of the bivariate Gaussian 
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distribution were altered using constrained random values during the generation of the ground 

truth samples. This helped in ensuring that the samples for the ground truth dataset did not all 

have a similar SSIM value. 

 

Table 4.1 Generated ground truth dataset 

Ground 
Truth 
Sample 

Number of 
Samples 

SSIM 
(Mean) 

SSIM 
(Standard 
deviation) 

MSE 
(Mean) 

MSE 
(Standard 
deviation) 

Total 
Number of 
Samples 

A 1000 0.9 0.13 1088 1853 

B 1000 0.8 0.16 3031 3073 

           2000 

 

The average SSIM value for Sample A was 0.9 and 0.8 for Sample B. Images in Sample A 

and B were all slightly different from each other. Table 4.1 above shows the ground truth 

dataset prepared for this experiment. The total number of ground truth samples used in this 

experiment was 2000.  

 

 

The original dimension of the ground truth image obtained from the numerical simulation 

was (180,60). However, to match the specification of the final dense layer in the output of 

the established CNN model, this ground truth data was converted into a 1-D vector with a 

dimension of (10800). The data shape of the output ground truth data is shown in Table 4.2  

 

4.3.2 Projection Dataset 

 

The projection dataset used in this experiment was generated using ground truth data obtained 

from the numerical simulation. Using ImageMagick, a software tool for displaying, creating, 

converting, modifying, and editing raster images [95], code was written to capture 2-D 

projection images from the numerically simulated image.  
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Figure 4.3 Sample of 2-D projection data images 

 

2-D images of the ground truth data were taken from 8 angles between 00 and 1800 (Figure 

4.3). Using this approach, a total of 1000 projection dataset samples were generated for each 

set of ground truth samples. This data was then used in training, testing, and validating the 

established network model.  

 

Figure 4.4 Input image data based on eight 2-D projections. 

 

To resolve out-of-memory issues in the development environment, the dimensions of the 

projection data image were reduced from (216, 288) to (10,10). This produced input image 

data with a dimension of (8,10,10). Where eight was the number of projections and (10,10), 

the size of each projection data. This input image shown in Figure 4.4 was used as the input 

data for the CNN model. 
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Table 4.2 Numerical simulation dataset composition 

Data Spilt Usage Output Data Shape Input Data Shape 

60% Training  (600,10800) (600, 80,10) 

20% Validation (200,10800) (200, 80,10) 

20% Testing (200,10800) (200, 80,10) 

 

The dataset was also split into three parts: training, validation, and testing. This was done to 

ensure that there was data available for carrying out the performance evaluation of the 

network during training. 20% was set aside for validation during training, 60% was used to 

train the network model and 20% was for testing after training the model. Table 4.2 shows 

the composition of the dataset used for training the established network model. 

 

4.4 Model Establishment  

 

A series of tests were performed using several convolutional layers and different 

hyperparameter values to determine the best architecture for the solution. The CNN model 

was then implemented using seven 2-D convolutional layers with each having a linear 

activation function. The output of the CNN model consists of a flattened layer and a dense 

layer. The network model is described in detail in section 3.2.1.   
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Figure 4.5 Overview of numerical simulation CNN model architecture 

An overview of the actual network architecture used for this experiment is shown in Figure 

4.6. The input dimension shown in the figure for the first Conv2D layer of the network was 

(80, 10) which was derived from the 2-D projection dataset dimension of (8, 10, 10). The 

dense layer output dimension of (10800) was derived from the ground-truth dataset 

dimension of (180,60). The code snippet for implementing this CNN model is shown in 

Appendix 4. 

 

Following the implementation of the CNN model, the next phase involved was training the 

network model. For training the network model, the training dataset was shuffled to mix up 

the samples, and the network was trained with a variety of hyperparameters and iterations to 

determine which one provided the best performance. 

 

For this work, a learning rate of 0.008 and a batch size of 64 were used during the training of 

the network. The network was trained for 100 epochs. As both training and validation losses 

did not seem to reduce further at this point, it implied that the model has reached a steady 

state and is no longer learning. Therefore, 100 was selected as this epoch value for training 

the network model. 
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The CNN model was trained using the Google Colab high-performance computing cloud-

based hardware. The hardware accelerator used during the training was the TPU. The 

hardware specifications of the Google Colab are described in section 3.4.4.  

 

The plots in Figure 4.7 (a) show the training and validation loss across the training time for 

all three sample datasets used in this study. The horizontal axis on the plot represents time in 

epoch units. A complete iteration through the training dataset is referred to as one epoch. The 

vertical axis represents the output of the loss function. The loss function is the MSE and the 

ADAM optimizer [83] is used. This is described in more detail in Section 3. 

 

 

Figure 4.7 CNN Network model training metrics 
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From the plot, the training and validation loss decreases rapidly over the first 60 epochs, 

before flattening out. Also, comparing the value of the first and last epoch, the network has 

improved during training [98].  

 

For Sample A, the validation loss is slightly higher than the training loss. This could indicate 

that the model is overfitting the training data. Generally, overfitting occurs when a model 

matches the training data too closely, to the point where it memorizes noise or other irrelevant 

patterns in the training data which are difficult to generalize to unknown, new data. The 

model may perform well on the training data, but poorly on the validation or test data since 

it has essentially memorized the training data instead of learning generalizable patterns. It is 

also possible that the model is still generalizing well to new data, but that the difference may 

be due to random fluctuations or noise in the training data 

 

Also,  the validation and training MAE drops to an exceedingly small value of ~ 2.6e-5 after 

about 70 epochs for Sample A, whilst that of  Sample B drops to zero after about 70 epochs.  

In general, this is a good sign, as it indicates that the model is becoming more accurate as it 

is trained. As MAE decreases, the model is better at predicting the target variable, which can 

be used to measure performance. 

 

4.5 Model Evaluation 

 

4.5.1 Numerical Simulation Reconstruction Results 

 

The SSIM metric was used to compare the similarity of the reconstructed image with that of 

the ground truth image. The images in Figure 4.8 show the reconstructed and the original 

ground truth images. From Table 4.3, the image reconstructed with Sample A trained CNN 

model reported the highest SSIM value. 
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Figure 4.8 3-D reconstruction accuracy 

 

Table 4.3 Performance metrics 

Ground 
Truth 
Sample 

Test  
MAE 

Test 
Loss 

SSIM MSE 

A 2.70E-05 4.25e-09 0.76 1172.09 

B 2.78E-05 2.83e-09 0.71 2729.56 

 

According to the performance metrics reported in Table 4.3 for Samples A and B, both 

samples have low mean absolute errors (MAEs) and test losses, which indicates that the 

model is performing well. MAE measures the average absolute difference between predicted 

and actual values. The smaller the MAE, the more accurate the predictions. The MAE for 

Sample A is slightly lower than the MAE for Sample B in this case, which indicates that 

Sample A's predictions are slightly more accurate than Sample B's predictions. 

Test loss is a measure of the difference between predicted and actual values for the test 

dataset. Having smaller test losses indicates that the model performs better on the test dataset. 

Sample B has a slightly lower test loss than Sample A, which suggests that the model 

performs slightly better on Sample B's test dataset than Sample A's. 

In summary, the results show that Sample A and Sample B perform well when it comes to 

these specific samples, but further analysis and testing are needed to evaluate the model's 



80 

generalizability and consistency. However, these results demonstrate that the established 

CNN network model could be used to reconstruct 3-D flames. 

The time taken to reconstruct the 3-D bivariate Gaussian distribution using the implemented 

CNN was 0.08 seconds. This was achieved by running the test on the TPU hardware within 

Google Colab. Compared to iterative methods such as ART, and SART, this reconstruction 

time was faster. As an example, Jin et al. [48] reported a reconstruction time of 170.25 

seconds using ART.  

However, as discussed in section 2.5, other flame reconstruction methods differ in flame 

structure, dataset, hardware platform, code optimization, and DL model architecture. As a 

result, direct correlation may be difficult.  
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4.6 Summary 

 

Various experiments have been conducted using a numerical simulation and CNN-based 

network model to evaluate the effectiveness of using DL in reconstructing numerically 

simulated images that had a similar shape to a 3-D flame structure. A detailed description has 

been provided of the design, implementation, and training of the CNN-based network model 

in detail.  

 

In addition, detailed descriptions of the generation and preparation of the experimental 

datasets have been provided. Experimental ground truth datasets which had a similar shape 

to a 3-D flame structure were generated using a mathematical model in the form of a 3-D 

bivariate Gaussian distribution plot. This was achieved using Python programming language 

and third-party libraries which included Matplotlib.  

 

In the experiments conducted, the ground truth datasets were generated under two different 

conditions and, for each of these conditions, the numerical simulation variables were 

manipulated in such a way that all the ground truth datasets in each sample had a similar 

SSIM value. Using this approach, 2 samples of ground truth datasets were made available 

for the experiment. They were samples A and B. The average SSIM value for Sample A was 

0.9 for Sample B and 0.8.  

 

The experiment consisted of 2000 ground truth datasets with 1000 datasets for each sample. 

To generate the projection dataset, code was implemented using ImageMagick APIs to create 

eight 2-D projections from the 3-D bivariate Gaussian distribution-based ground truth image. 

These projections were obtained from 8 angles between 00 and 1800. For each set of ground 

truth samples, 1000 projection datasets were generated. 

 

A CNN model based on seven 2-D convolutional layers with a linear activation function was 

established following a series of tests using different convolutional layers and 
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hyperparameter values. Following the training of the established network model, the 3-D 

bivariate Gaussian distribution was successfully reconstructed using eight 2-D projection 

data. The network model performance was verified under two sets of ground truth samples. 
The obtained results have proven that the implemented and trained network model can 

reconstruct the 3-D bivariate Gaussian distribution with good accuracy and structural 

similarity. 
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5  

3-D Reconstruction of Flames 

5.1 Introduction 

 

A series of experiments was conducted to generate experimental flame images. The flame 

images were then used in training a DL network model. The objectives of the experiments 

were: 

 to generate experimental flame image datasets.  

 

 to investigate the 3-D flame reconstruction accuracy of the developed DL network 

model (described in Chapter 3).  

 
 to investigate the performance of the developed DL network model under a range of 

combustion conditions. 

 

The data used to generate experimental flame images was obtained from the laboratory-scale 

combustion test rig (Figure 5.1) in the Instrumentation Research Laboratory, at the University 

of Kent. The data was originally collected for a research study on 3-D reconstruction and 

characterisation of fossil-fuel-fired burner flames [24]. 

 

A description of the laboratory-scale combustion test rig is presented. Subsequently, the 

dataset collection and preparation are described. This is then followed by the network model 

training procedure. Finally, the reconstruction results are discussed.  
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5.2 Laboratory-scale Combustion Test Rig 

 

 

Figure 5.1 Laboratory-scale combustion test rig 

The combustion rig shown in Figure 5.1 was used in this study. The rig was modified to 

allow the imaging system to access flame from eight different directions, it also had a new 

burner designed for the generation of a stable and luminous flame.  

 

The rig consists of a hexagonal chamber, and a metal circular ring with eight aluminium 

holding stands placed around the combustion chamber. A single burner is positioned 

vertically at the centre of the chamber and eight adjustable mechanisms were designed and 

fixed on the top of the stands for holding the fibre bundles. A detailed description of the rig 

can be found elsewhere in [24]  

 

5.3 Data Collection and Preparation 

Flame datasets generated under six different combustion conditions were used in training the 

network model. This was to establish a robust network model. The flame images are shown 

in Figure 5.2 under six different combustion conditions. 
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Figure 5.2 Flame images generated under six different combustion conditions 

 

To train the network model, a dataset based on only six flame conditions is not sufficient. 

DL network models learn to model patterns in underlying data [98]. To help the network 

learn more effectively, additional datasets were generated using the initial set of flame 

conditions collected from the test rig. In this section, the process used in generating and 

preparing the projection dataset for use in training the network model is presented. 

 

The following table (Table 5.1) outlines the flame conditions used in the study. The 

conditions were obtained by using different fuel flow rates on the combustion test rig 
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Table 5.1 Flame conditions 

Flame Condition Fuel flow rate (L /m)  

1 0.2 

2 0.3 

3 0.4 

4 0.5 

5 0.6 

6 0.7 

 

5.3.1 Projection Dataset 

 

The projection dataset contained six samples of 2-D laminar diffusion flame images obtained 

under different combustion conditions (Figure 5.2). The number of images in each sample 

was eight. These images were obtained from eight different angles.  

 

To generate additional projection datasets, morphological transformations were performed 

on the original 2-D images. Morphology is a technique used in image processing which is 

based on the shape and form of objects. These methods apply a structuring element to an 

input image, creating an output image of the same size [99]. A structuring element is a matrix 

that identifies the pixel in the image being processed and defines the neighbourhood used in 

the processing of each pixel [100].  
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Figure 5.3 Generating additional datasets using OpenCV Morphological transformation 
operator 

 

One of the most basic operations used for morphological transformations is erosion. Erosion 

removes pixels on object boundaries. The number of pixels added or removed from the 

objects in an image depends on the size and shape of the structuring element used to process 

the input image. Morphological erosion removes floating pixels and thin lines so that only 

substantive objects remain [101].  

 

OpenCV morphological transformation operator Erosion was used in transforming the shape 

of the original projection images. Details of the OpenCV operation can be found in the 

OpenCV documentation on morphological transformations [102]. The output of this process 

was a set of projection images which were slightly like the original input image passed into 

the morphological transformation operator (Figure 5.3). This operation was performed on all 

the 2-D flame images obtained from the laboratory-scale combustion test rig. To obtain a 

wide range of images, random values were used in the Open CV Erosion operator for both 

the kernel and iteration values.  
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Using this approach, a total of 100 projection dataset samples were generated for each 

condition. This included ten samples of the original 2-D flame images obtained for each 

condition. These samples were added to help in ensuring that the dataset contained images 

with different shapes and structures. In total 600 dataset samples were made available for 

training, testing, and validating the established network model.  

 

The table below (Table 5.2) shows the number of flame images used in the dataset 

preparation. For each projection dataset sample, there were eight projection images. The 

dimensions of each 2-D image in the projection dataset were (8, 145, 90). Where 8 was the 

number of projections and (145,90), the size of each projection data. Hence, with a dataset 

of 600, these provided a total of 4800 2-D images for the training and evaluation of the 

network model. 

 

Table 5.2 Flame images used in dataset preparation 

Combustion 

conditions 

  

Original 

images 

Transforme

d images 

Number of images from 

each combustion 

condition 

Total number of 

images in the 

dataset 

1 10 90 100  

 

 

 

 

 

600 

2 10 90 100 

3 10 90 100 

4 10 90 100 
5 10 90 100 

6 10 90 100 

 

 

 

Table 5.3 Dataset composition 

Data spilt Usage Output data shape Input data shape 
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60% Training  (360,26100) (360, 200,25) 

20% Validation (120,26100) (120, 200,25) 

20% Testing (120,26100) (120, 200,25) 

 

Also, the dataset was split into three parts: training, validation, and testing. This was done to 

ensure that there was data available for carrying out the performance evaluation of the 

network during training. 20% was set aside for validation during training, 60% was used to 

train the network model and 20% was for testing after training the model. Table 5.3 shows 

the composition of the dataset used for training the network model. 

 

5.3.2 Ground Truth Dataset 

 

The ground truth data used in training the network model is the collection of cross-sectional 

slices of the reconstructed flame data. This data was generated using techniques described in 

Chapter 3. The algorithm used in generating ground truth data was the SART algorithm 

(Figure 5.4).  

 

Figure 5.4  Ground truth generation using SART 

 

In total, 600 ground truth dataset was generated. The dimension of each ground truth dataset 

was (145,90, 90). For each dataset, there are 145 slices each containing a 2-D image with a 

dimension of (90, 90). 
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Prior to training the network model, the training dataset was shuffled to mix up the samples 

and the 2-D projection data images were reduced to a size of (8, 25, 25) and ground truth data 

reduce to (145, 45, 40). This was done to reduce the size of input data to the network model. 

To determine the hyperparameters that provided the best performance, the network was 

trained initially using different values and iterations. For this work, a learning rate of 0.001 

and a batch size of 16 were used during the training of the network. These figures reported 

the best performance results following training [84]. 

 

5.4 Model Establishment 

 

The network model implemented is composed of seven 2-D convolutional layers with each 

having a linear activation function. The output consisted of a flattened layer and a dense 

layer. The code snippet for the implementation of the CNN model is shown in Appendix 3.  

 

The network model is described in detail in section 4.3.3, however, an overview of the actual 

network architecture used for this experiment is shown below in Figure 5.5. The input 

dimension shown in the figure for the first Conv2D layer of the network was (200, 25) which 

was derived from the 2-D projection dataset dimension of (8, 25, 25). The dense layer output 

dimension of (261,000), was derived from the ground-truth dataset dimension of (145, 

45,40).  

 

The network is implemented in Python using Keras under the TensorFlow framework. The 

network was trained for 1000 epochs. This value was chosen as both training and validation 

loss did not seem to reduce further at this stage. This implied that the model has reached a 

steady state. The time taken to train the network was 2 hours on the Google Colab high-

performance computing cloud-based hardware. The hardware accelerator used during the 

training was the TPU. The hardware specifications of the Google Colab are described in 

section 4.4.3.  
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Figure 5.5 Overview of the implemented network architecture for 3D flame reconstruction 

 

During the training, the weights and biases in the network model are adjusted in every 

iteration until the error is minimized, and validation is used to give an estimate of the network 

model performance during training, Finally, the model is evaluated with previously unseen 

data. This helps in detecting overfitting. 

 

The plot in Figure 5.6 (a) shows the training and validation loss. This vertical axis represents 

the output of the loss function, and the horizontal axis is the time in epoch units. 
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Figure 5.6 Network model training metrics 

The smaller the loss value the better the network model has learnt patterns in the underlying 

data. Following a comparison of the first and last epoch during the training, the network has 

improved during training, going from a loss of ~ 1.6e-06 to a smaller value of 0.8e-06.  

 

The plot in Figure 5.6 (b) shows the MAE during training and validation. The MAE is 

described in Chapter 4. The MAE decreased over time for both the training and validation. 

The final training MAE is 5.0e-04 and that for validation is 5.2e-04.  

 

5.5 Model Evaluation 

This section evaluates the CNN model performance according to the performance metrics 

described in Section 3.3. The reconstruction of flame sections and the 3-D volumetric 

reconstruction of the flame are also discussed. In conclusion, the CNN model's 3-D flame 

reconstruction time is discussed. 

In several reconstructed slices, there was insufficient data to allow the 3-D visualisation tool 

described in section 3.5.2 to produce a 3-D representation of the reconstructed flame. As a 

result, a 3-D image of the reconstructed flame could not be created using these slices. This 

was particularly evident at the top of the flame and in some slices just above the middle of 

the flame section.  
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As a result, only the reconstruction results of the bottom 30 slices of the flame have been 

considered in this analysis. In the following figure (Figure 5.7), 44 images of the 

reconstructed slices are displayed to illustrate certain images that could not be utilized by the 

tool for 3-D visualisation 

 

Figure 5.7 Reconstructed cross-sectional slices 

 

The graphs in Figures 5.8, 5.9 and 5.10 show the results of the flame reconstructions using 

the trained network model and the data set aside for testing. The ground truth slices are 

compared with the reconstructed slices. The metrics SSIM, RMSE and PSNR which are 

discussed in section 4 were used in examining the accuracy of the reconstruction. The test 

data contain 120 flame samples.  
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In Figure 5.8 the reconstruction accuracy was evaluated by observing the mean SSIM of the 

reconstructed slices. The mean SSIM value was 0.77 ± 0.07. An average structural similarity 

index (SSIM) value of 0.77 indicates that, on average, the similarity between the ground truth 

image and the images from the reconstructed slices is fairly high.  

It also appears that the reconstruction accuracy was not consistent across the flame samples 

used in the test. This can be explained by the fact the reconstructed slices contained some 

background noise which required filtering. The removal of this background noise before 

comparing the reconstructed slice with the ground truth image could help in increasing the 

reported SSIM value. Additional gains could also be achieved through further modification 

of the network model and the use of different hyperparameters during training.  

The RMSE can be seen in Figure 5.9. According to the analysis, the mean RMSE value was 

9.7e-04 ± 3.0e-4. This indicates that the CNN model made predictions with a relatively small 

error and that error variability across samples is also small.  A PSNR value of 60.9 ± 2.87 

was obtained during the analysis. Figure 5.10 shows the PSNR reported. This indicates that 

the reconstructed flame slices have high quality and relatively low variability in quality 

across samples. The RMSE and PSNR show a relatively high level of reconstruction 

accuracy, which is consistent with the results found in the SSIM. 
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Figure 5.8 Average SSIM of reconstructed slices 

 
Figure 5.9 Average RMSE of reconstructed slices 

 
Figure 5.10 Average PSNR of reconstructed slices 
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5.5.1 Reconstruction of Flame Cross-sections 

 

The cross-sections of the flame were reconstructed using the trained network model. Using 

a 3-D visualisation tool, data obtained from the output of the network model were used in 

viewing the cross-sectional slices. Figure 5.11 shows an example of the grey-level 

reconstructions of flame cross-sections of condition 6. 

 

 

Figure 5.11 2-D Image of the flame 

 

The reconstructions in Figure 5.12 show variations of the grey levels on the different cross-

sections. Some direct observations can be made: cross-sections (a), (b) and (c) appear to be 

more homogenous than that in the lower cross-sections. These cross-sections are further away 

from the burner outlet. The circularity of the cross-section is degraded along the burner axis 

(Z-axis, refer to Figure 5.11) with the lower cross-sections being more circular. 
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Figure 5.12 Grey-level distributions of flame cross-sections at different heights 

 

5.5.2 Reconstruction of Flame Longitudinal Sections 

 

The reconstruction of the flame longitudinal sections can be computed repeatedly for a 

chosen pixel row along Z-axis. The data obtained can also be used to reconstruct the 

longitudinal sections of the flame, as shown in Figure 5.13.  

 

The results presented in Figure 5.13 refer to sections viewed from the direction of 0° (refer 

to Figure 5.11). In Figure 5.13, a radial distance of 0 mm depicts the longitudinal section 

along the burner axis, while radial distances -2 mm and -4 mm present two longitudinal 

sections back-off the burner axis, and 2 and 4 mm present two sections forward the burner 

axis. As the radial distances 0, 2 and -2 mm are close to the burner axis, similar luminous 

profiles have been observed and these agree well with the original 2-D image of the flame 

(Figure 5.2). 
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Figure 5.13 Grey-level distributions of longitudinal sections 

 

5.5.3 Flame Volumetric Reconstruction 

 

Once the grey-level reconstructions of the flame are completed, the 3-D volumetric 

reconstruction was performed using a 3-D visualisation tool. The tool which is known as 3D 

Slicer is widely used for medical, biomedical, and related imaging research.  

 

3D slicer is configured to display images using the anatomical coordinate system (Figure 

5.14). This is the most important coordinate system for medical imaging techniques. The 

anatomical space consists of three planes to describe the anatomical position of a human 

[103].  

 

The three planes are as follows: 

 the axial plane is parallel to the ground and separates the head (Superior) from 

the feet (Inferior). 

 the coronal plane is perpendicular to the ground and separates the front (Anterior) 

and the back (Posterior) [103]. 

 the sagittal plane separates the Left from the Right. 
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Figure 5.14 Anatomical and RAS coordinate system (John [104]) 

 

 

Figure 5.15 Mapping and rotation of the RAS coordinate system 

 

However, most medical applications use different variations of this 3-D view. The actual one 

used in the 3D slicer is the RAS coordinate system (Figure 5.15(b)), where R stands for Right, 

A for anterior and S for Superior [104]. 
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To understand the different views of the 3-D volumetric reconstructions figures shown 

below, the RAS coordinate system used in 3D-Slicer was mapped to the XYZ coordinate 

system. This mapping shown in Figure 5.15(b) is particular to the configuration used in the 

tool for this experiment. For instance, a rotation along the R-axis in the RAS coordinate 

system is equivalent to a rotation along the Z-axis in an XYZ coordinate system. 

 

The images in Figure 5.16 illustrate examples of the 3-D reconstructed flame structure 

obtained from the network model. These images are based on 3 different views which were 

obtained by rotating the image by 45 degrees along the R-axis of the RAS coordinates (Figure 

5.15 (b)). This rotation was in the direction of the Anterior axis along the SA plane. 

 

Starting with the image in Figure 5.16 (a), the view is rotated 45 degrees along the R axis to 

get the image in Figure 5.16 (b) and then rotated again by 45 degrees along the R axis to get 

the image in Figure 5.16 (c). 

 

 

Figure 5.16 3-D Reconstructed flame structure 
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5.5.4 3-D Flame Reconstruction Time 

To carry out a direct comparison with methods used in other studies, there are several 

differences in the flame structure, the hardware platform, the code optimization, and the deep 

learning model architecture which make it impossible to draw any firm conclusions. The 

table below shows the 3-D flame reconstruction time reported in the study. Both CPU and 

TPU hardware were used on the Google Colab to obtain the results. 

Table 5.4 Reconstruction time 

Reconstruction method Hardware platform Reconstruction time ( s ) 

CNN (This study) 

 

TPU  0.24 

Intel(R) Xeon (R) CPU, 

2.30GHz   

1.07 

CNN  (Jin et al. [48] ) Intel Core i7-8750H 

CPU,  2.20 GHz 

1.26 

MART (Jin et al. [48] ) 143 

ART (Jin et al. [48] ) 170.25 

 

The TPU described in section 3.4.4 is a hardware accelerator for ML workloads, so the 3-D 

flame reconstruction time reported is expected to be faster than that reported from the CPU. 

The results from this study demonstrate this. Additionally, the CPU time reported in this 

study is slightly faster than that reported by Jin et al. [48]. These results are expected since 

Xeon CPUs are designed for high-performance and high-reliability server and workstation 

applications. In general, Core i7 CPUs are intended for use by consumers.  

Furthermore, although Google Colab's specific Xeon CPU model is not disclosed publicly, 

the service provides users with access to high-performance computing resources for a variety 

of ML, data science, and other computationally intensive tasks. This may explain why the 

results obtained using Google Colab were faster. 
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5.6 Summary 

 

A series of experiments have been conducted using real flame data obtained from the 

laboratory-scale combustion test rig to evaluate the effectiveness of using DL in 

reconstructing 3-D flames. A detailed description has been provided of the design, 

implementation, and training of the CNN-based network model in detail. Detailed 

descriptions of the generation and preparation of the experimental flame datasets have been 

provided. 

 

In the experiments conducted, the 2-D flame projection images were obtained from eight 

different directions under various combustion conditions using a laboratory-scale 

combustion test rig. This dataset was further augmented using OpenCV morphological 

operators. For the ground-truth dataset, the SART algorithm was used in generating cross-

sectional slices taking the 2-D projection data as inputs. Using this approach, a total of 600 

datasets were made for the real flame 3-D reconstruction experiment.  

 

The flame cross-sectional slices were reconstructed using a CNN-based network model 

implemented in the numerical simulation experiment, and using the ground truth data the 

SSIM, RMSE and PSNR of the reconstructed slices were computed. The obtained results 

have proven that the implemented and trained network model can reconstruct the cross-

sectional slices of a burner flame based on the images obtained under various combustion 

conditions.  

 

Also, using a 3-D visualisation tool, it has been possible to obtain a 3-D volumetric flame 

structure from the reconstructed cross-sectional flame data. This tool was also used to 

visualize the cross-sectional and longitudinal sections of the flame. The result of this study 

is encouraging and shows that DL techniques can be a useful tool for the 3-D reconstruction 

of burner flames.  
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6  

Conclusion & Recommendations for 

Future Work 

6.1 Introduction 

 

The research work presented in this thesis is concerned with the design, implementation, and 

experimental evaluation of a DL-based system for the 3-D reconstruction of and visualisation 

of fossil-fired burner flames.  

To develop an approach and methodology for this study, a review of current techniques for 3-

D visualisation and characterisation of flames has been conducted, as well as an evaluation of 

CT-based tomographic and deep learning methods and their application to 3-D flame 

reconstruction. Following a review of these methods, the objectives and aims of the study were 

developed. Thus, an objective was set to develop a CNN-based DL network model for the 

reconstruction of 3-D volumetric information of a burner flame.  

A prototype system based on DL and tomography reconstruction has been developed for taking 

data of 2-D flame projections from eight different directions around the flame and 

reconstructing cross-sectional slices of the flame. Initially, the CNN model was evaluated using 

a numerical simulation, followed by the implementation of the model using flame data. A set 

of six flame datasets based on six combustion conditions were used to train and evaluate the 

DL system. The results presented have demonstrated that the system can reconstruct a 3-D 

flame with good accuracy and structural similarity under a range of combustion conditions. 

This chapter presents conclusions drawn from the work and outlines recommendations for 

future work. 
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6.2 Conclusions  

 

6.2.1 Deep Learning Model 

As CNN has demonstrated outstanding performance in computer vision tasks such as image 

classification, object recognition, segmentation, etc., it has been used in this study. The CNN 

model designed and implemented in this study has seven 2-D convolutional layers and a dense 

output layer, each with linear activation functions. Datasets of 2-D flame images were used as 

inputs to the model. Ground truth data was generated from 2-D flame images using the SART 

algorithm. However, for the numerical simulation, the CNN model was trained using 

numerically simulated images. 

Detailed information about the CNN training process and the performance metrics needed for 

analysing and evaluating its accuracy has also been provided. PSNR and SSIM, two of the most 

widely used metrics in computer vision and image processing were used to evaluate the 

reconstructed images in this study. Additionally, the performance of the implemented CNN 

model was assessed using MAE, MSE, and RMSE metrics. Also included is a description of 

the software development environment and ML framework employed in this study. As well as 

the tools that were used to create and prepare experimental datasets, this includes the tools used 

to visualize the 3-D flame.  

 

6.2.2 Numerical Simulation 

To evaluate DL's effectiveness in reconstructing numerical simulation images with a similar 

shape to 3-D flames, several experiments were conducted using a numerical simulation and 

CNN-based network model. Detailed information about the CNN-based network model's 

design, implementation, and training is provided. Further, the experimental datasets have been 

described in detail. Using a mathematical model in the form of a 3-D bivariate Gaussian 

distribution plot, experimental ground truth datasets with the shape of a 3-D flame structure 

were generated. The ground truth datasets were generated under two different conditions for 
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the experiments conducted. Two samples of ground truth datasets were provided. SSIM values 

for Samples A and B were 0.9 and 0.8, respectively 

 

In the experiment, 2000 ground truth datasets were generated with 1000 datasets for each 

sample. Code implemented using ImageMagick APIs was used to create eight 2-D projections 

from the 3-D ground truth image based upon a bivariate Gaussian distribution. A total of 1000 

projection datasets were generated for each set of ground truth samples. A CNN model based 

on seven 2-D convolutional layers with a linear activation function was developed following a 

series of tests with different convolutional layers and hyperparameters.  

 

By using eight 2-D projection data sets, the established network model was able to successfully 

reconstruct the 3-D bivariate Gaussian distribution. It has been demonstrated through the 

achieved results that the implemented and trained network model has the capability of 

reconstructing the 3-D bivariate Gaussian distribution with good accuracy and structural 

similarity. The implemented CNN reconstructed the 3-D bivariate Gaussian distribution image 

in 0.08 seconds. Google Colab TPU hardware was used for the test. Reconstruction time was 

faster than iterative methods like ART and SART. 

 

6.2.3 3-D Flame Reconstruction 

 

The effectiveness of DL in reconstructing 3-D flames has also been evaluated through a series 

of experiments utilizing real flame data from a laboratory-scale combustion test rig. Detailed 

descriptions of the design, implementation and training of the CNN-based network model have 

been provided. The generation, preparation, and analysis of experimental flame datasets have 

also been presented. A laboratory-scale combustion test rig was utilized to obtain 2-D flame 

projection images under different combustion conditions during the experiments conducted. 

This dataset was further augmented using OpenCV morphological operators. The 2-D flame 

projection data obtained was used to generate cross-sectional slices for the ground-truth dataset 

using SART. A total of 600 dataset samples were generated for testing, training, and validation 

purposes. 
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With the aid of a CNN network model implemented in the numerical simulation experiment, 

flame cross-sectional slices were reconstructed, and the SSIM, RMSE and PSNR were 

calculated based on the ground truth data. Based on the experimental flame dataset obtained 

under various combustion conditions, the network model was trained, implemented, and used 

to reconstruct cross-sectional slices of a burner flame. From the reconstructed cross-sectional 

flame data, the volumetric 3-D flame structure has also been visualized using a 3-D 

visualisation tool. Additionally, this tool enabled the visualisation of cross-sectional and 

longitudinal flame sections. This study shows that the DL learning technique can be a useful 

tool for the 3-D reconstruction of and visualisation of burner flames.  

 

6.2.4 Dataset  

It has been discussed in section 2.5 that when working on CNN-based DL flame reconstruction 

methods, a large dataset of approximately 10000 to 15000 is usually required for training 

purposes. However, for this study, a small dataset of 360 was used for training the implemented 

CNN model. 

In this case, the use of fewer datasets for 3-D flame reconstruction is justified due to limitations 

in the availability and accessibility of data when the research was undertaken. Moreover, there 

were resource constraints, such as limited storage space and processing power, which made 

data augmentation challenging.  

The effect of using a smaller training dataset may lead to several limitations and drawbacks: 

1. Model accuracy is reduced: Smaller training datasets may not capture the full 

complexity and diversity of the data, resulting in less accurate predictions. Models 

trained on small datasets may not generalize well to new data. 

 

2. Increased overfitting risk: Smaller training datasets increase the likelihood of 

overfitting, where the model memorizes the training data instead of learning its 



107 

underlying patterns and relationships. Consequently, a model may perform well on the 

training dataset but poorly on the new data. 

 

3. Data representation is limited: In real-world applications, the model may run into a 

variety of variations and scenarios that are not covered by a smaller training dataset. As 

a result, a model could be biased towards certain types of data and may not be able to 

handle new, unknown data effectively. 

 

4. Inability to detect outliers: A smaller training dataset makes it more difficult to detect 

outliers or anomalies, which may adversely affect the model's performance. 

However, as discussed in section 6.3, the collection of a larger dataset would be very beneficial 

for future research.  

 

6.2.5 3-D Flame Reconstruction Time 

 

The 3-D flame reconstruction time of the established CNN system was obtained using both 

CPU and TPU hardware on Google Colab. The reconstruction time for the CPU was reported 

as 1.07 seconds and the reconstruction time for the TPU was 0.24 seconds. In general, the 

reconstruction time was faster than iterative methods like ART and SART. 

 

6.3 Recommendations for Future Work 

 

The research work presented in this thesis has demonstrated the viability and potential of the 

DL-based system for the 3-D reconstruction of flames. There are, however, several areas that 

need further research and improvements in the near future. The key areas are identified and 

stated as follows: 
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6.3.1 Larger Dataset  

 

In future studies, the collection of larger datasets would significantly improve the accuracy of 

the deep learning-based 3-D flame reconstruction solution implemented and also enable the 

CNN model to perform better with various flame conditions. Most of the literature reviewed in 

section 2.3 used datasets containing at least 10,000 samples for training and evaluation of the 

network model.  

In this study, 360 samples were used for training and evaluating the CNN network model 

implemented for 3-D flame reconstruction. Hardware limitations contributed to not having the 

capability of collecting larger samples. The availability of a high-performance computer with a 

large memory specification would help in resolving this issue. 

Furthermore, the availability of datasets obtained under more combustion conditions would be 

beneficial for future experiments. In this study, only six combustion conditions were used 

during the generation of datasets. 

 

6.3.2 CNN Model Optimisation 

 

It is recognised that some work was done to improve the network model implemented. This 

was limited to changing the number of convolutional layers and trying different activation 

functions in the CNN network model architecture. Also, some tests were conducted using 

different learning rate values. However, in the future, a more detailed investigation can be 

undertaken. These could include experimenting with proven CNN network architectures and 

modifying them for this solution. Additional changes could also be made by adding more layers 

and updating the properties of these layers in the CNN model. 
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6.3.3 Automation of 3-D flame Visualisation 

 

In addition, in the present study, during the 3-D flame reconstruction, data obtained from the 

output of the CNN network model must be processed offline and rendered using a 3-D 

visualisation tool. This defeats the purpose of using DL methods as one of the benefits was a 

faster reconstruction time which should enable online monitoring of a combustion flame. In 

future, this process could be automated in such a way that the data from the CNN model output 

could be visualized in real-time without the need for a third-party visualisation tool. 

 

6.3.4 Hardware Accelerators and Edge Computing  

Furthermore, DL algorithms in ML applications require large data sets and are computationally 

intensive. To accelerate these algorithms, CPUs, GPUs, and other hardware-accelerated 

processing units have been deployed in edge computing devices. As a part of this study, 3-D 

reconstruction performance results were obtained using Google Colab's TPU hardware which 

is a hardware accelerator for ML workloads. However, further research is needed to investigate 

the use of hardware accelerators and edge computing in DL to reconstruct flames in real-time. 

 Also, edge computing devices tend to have limited power and memory bandwidth while 

requiring extremely fast responses. On edge computing, this limitation may affect the 

performance of the tomographic reconstruction of flames using DL. Nevertheless, future studies 

could focus on exploring ways to optimize the performance of tomographic reconstruction of 

flames through DL on edge computing devices. This will be accomplished by researching novel 

ways of implementing DL algorithms on edge computing devices 
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Appendix 1 Program for generating numerical simulation 

experimental data 

 

# TensorFlow is an open source machine learning library 
import tensorflow as tf 
 
import matplotlib.pyplot as plt 
from matplotlib import cm 
from mpl_toolkits.mplot3d import axes3d 
import os, sys 
import numpy as np 
 
# Pandas is a data manipulation library  
import pandas as pd 
 
# Math is Python's math library 
import math 
import scipy.io 
import scipy.stats  
 
from PIL import Image 
 
# Keras is TensorFlow's high-level API for deep learning 
from tensorflow import keras 
 
 
# Improting Image class from PIL module 
from PIL import Image, ImageOps 
 
from scipy import misc 
from numpy import asarray 
from numpy import array  
from numpy import empty 
from numpy import ones  
from numpy import zeros  
from numpy import save 
 
import imageio 
import io 
import cv2 
import IPython 
import random 
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from keras.preprocessing.image import load_img 
from keras.preprocessing.image import img_to_array 
from keras.preprocessing.image import array_to_img 
from keras.preprocessing.image import save_img 
 
seed = 1 
np.random.seed(seed) 
 
# Number of sample datapoints 
SAMPLES = 200 
NO_OF_PROJECTIONS = 8 
     
# Derive Multivariate normal pdf 
def multivariate_normal_pdf(X, mean, sigma):  
  """Multivariate normal PDF over X (n_samples x n_features)""" 
  P = X.shape[1]  
  det = np.linalg.det(sigma)  
  norm_const = 1.0 / (((2*np.pi) ** (P/2)) * np.sqrt(det))  
  X_mu =  X - mu  
  inv = np.linalg.inv(sigma)  * random.uniform(0.8, 2.6)    
  d2 = np.sum(np.dot(X_mu, inv) * X_mu, axis=1)    
  return norm_const * np.exp(-0.5 * d2) 
 
# Generate ground truth figure 
def get_mvd_image(mvd_val): 
  fig = plt.figure(figsize=(10, 7))  
  ax = fig.gca(projection='3d')  
  ax.set_axis_off()   
  ax.plot_surface(x, y, mvd_val, rstride=3,cstride=3,  
                  cmap=plt.cm.coolwarm,linewidth=1,  
                  antialiased=False)   
  return ax   
   
# Generate a uniformly distributed set of random numbers  
#in the range from  0.1 to 0.6  for mean vector  
u_values = np.random.uniform(low=0.0, high=0.2,  
                             size=SAMPLES).astype(np.float32)     
np.random.shuffle(u_values) 
 
##### TO CREATE A SERIES OF PICTURES 
def make_views(ax,angles,elevation=None, width=4, height = 3, 
                prefix='tmprot_',**kwargs): 
    """ 
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    Makes jpeg pictures of the given 3d ax, with different angles. 
    Args: 
        ax (3D axis): te ax 
        angles (list): the list of angles (in degree) under which to 
                       take the picture. 
        width,height (float): size, in inches, of the output images. 
        prefix (str): prefix for the files created.  
      
    Returns: the list of files created (for later removal) 
    """ 
      
    files = [] 
    ax.figure.set_size_inches(width,height)      
     
    for i,angle in enumerate(angles): 
        ax.view_init(elev = elevation, azim=angle) 
        fname = '%s%03d.jpeg'%(prefix,i) 
        ax.figure.savefig(fname) 
        files.append(fname)      
         
    return files 
  
 
   
##### TO TRANSFORM THE SERIES OF PICTURE INTO AN ANIMATION 
def make_movie(files,output, fps=10,bitrate=1800,**kwargs): 
    """ 
    Uses mencoder, produces a .mp4/.ogv/... movie from a list of 
    picture files. 
    """            
    output_name, output_ext = os.path.splitext(output) 
    command = { '.mp4' : 'C:/Users/dele.ogunjumelo/Documents/mplayer-svn-38151-
x86_64/mencoder  
                         "mf://%s" -mf fps=%d -o %s.mp4 -ovc lavc\ 
                         -lavcopts vcodec=msmpeg4v2:vbitrate=%d' 
                         %(",".join(files),fps,output_name,bitrate)} 
                           
    command['.ogv'] = command['.mp4'] + '; 
                          ffmpeg -i %s.mp4 -r %d %s'%(output_name,fps,output)      
         
    print(command[output_ext]) 
    output_ext = os.path.splitext(output)[1] 
    os.system(command[output_ext]) 
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def make_gif(files,output,delay=100, repeat=True,**kwargs): 
    """ 
    Uses imageMagick to produce an animated .gif from a list of 
    picture files. 
    """ 
    loop = -1 if repeat else 0 
    os.system('C:\Program Files\ImageMagick-7.0.11-Q16-HDRI\imagic_folder\magick  
              convert  -delay %d -loop %d %s %s' 
               
              %(delay,loop," ".join(files),output)) 
   
  
def make_strip(files,output,**kwargs): 
    """ 
   Uses imageMagick to produce a .jpeg strip from a list of 
    picture files. 
    """     
    os.system('C:\Program Files\ImageMagick-7.0.11-Q16-HDRI\imagic_folder\magick  
              montage  -tile 1x -geometry +0+0 %s %s'%(" ".join(files),output)) 
      
          
 
##### MAIN FUNCTION 
def rotanimate(ax, angles, output, **kwargs): 
    """ 
    Produces an animation (.mp4,.ogv,.gif,.jpeg,.png) from a 3D plot on 
    a 3D ax 
      
    Args: 
        ax (3D axis): the ax containing the plot of interest 
        angles (list): the list of angles (in degree) under which to 
                       show the plot. 
        output : name of the output file. The extension determines the 
                 kind of animation used. 
        **kwargs: 
            - width : in inches 
            - heigth: in inches 
            - framerate : frames per second 
            - delay : delay between frames in milliseconds 
            - repeat : True or False (.gif only) 
    """ 
          
    output_ext = os.path.splitext(output)[1]  
    files = make_views(ax,angles, **kwargs) 
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    D = { '.mp4' : make_movie, 
          '.ogv' : make_movie, 
          '.gif': make_gif , 
          '.jpeg': make_strip, 
          '.png':make_strip}         
            
    D[output_ext](files,output,**kwargs) 
 
        
def crop_center(pil_img, crop_width, crop_height): 
    img_width, img_height = pil_img.size 
    return pil_img.crop(((img_width - crop_width) // 1.7, 
                         (img_height - crop_height) // 1.2, 
                         (img_width + crop_width) // 2, 
                         (img_height + crop_height) // 2))         
 
 
 
##### Create projections 
def CreateProjections(sample_num,prj_angle):    
    # convert image to numpy  array 
    img_array = [] 
    prj_image = [] 
 
    # create figure 
    fig = plt.figure(figsize=(10, 7)) 
   
    # setting values to rows and column variables 
    rows = 4 
    columns = 4 
 
    for projection_num in range(0, NO_OF_PROJECTIONS):           
      
prj_image.append(Image.open(r"C:\\Users\\dele.ogunjumelo\\3drecon\\"+f"tmprot_00{project
ion_num}.jpeg"))                                        
                                                   
      # change to grayscale       
      prj_image[projection_num] = ImageOps.grayscale(prj_image[projection_num])       
      
      # remove white background         
      prj_image[projection_num] = ImageOps.invert(prj_image[projection_num])   
            
      # crop image   
      prj_image[projection_num]= crop_center(prj_image[projection_num],130,130)                     
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      # Adds a subplot at the first position 
      fig.add_subplot(rows, columns, (projection_num+1)) 
   
      # showing image 
      plt.imshow(prj_image[projection_num]) 
      plt.axis('off')   
      plt.title(prj_angle[projection_num]) 
 
      # save the image with a new filename 
      prj_filename = 
"C:\\Users\\dele.ogunjumelo\\3drecon\\ssim_data\\input\\"+f"prj_data_{sample_num}_{proje
ction_num}.jpeg"                              
      img_array.append(img_to_array(prj_image[projection_num]))   
      print(img_array[projection_num].shape)     
      save_img(prj_filename, img_array[projection_num]) 
      plt.close() 
 
 
  
if __name__ == '__main__': 
 
   pdf_x_data = [] 
   pdf_y_data = [] 
   pdf_z_data = [] 
   mu_values = []   
 
   for k in range(0, SAMPLES):   
       mu_values.append(np.array([u_values[k],u_values[k]])) 
 
   # Fixed covariance matrix 
   sigma = np.array([[1, -.5], [-.5, 1]]) 
 
   pdf_samples = [] 
   input_samples =[] 
 
   #X, Y ranges are constructed with the “meshgrid” function from numpy. 
   x, y = np.mgrid[-3:3:.1, -3:3:.1]  
 
   X = np.stack((x.ravel(), y.ravel())).T  
 
   for k in range(0, SAMPLES):   
        mu = mu_values[k] 
        #norm = multivariate_normal_pdf(X, list(mu_values[k]), sigma*mu).reshape(x.shape)   
        norm = multivariate_normal_pdf(X, list(mu), sigma).reshape(x.shape)   
        pdf_z_data.append(norm)   
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        pdf_x_data.append(x)  
        pdf_y_data.append(y)  
        ground_truth_3d_data = np.concatenate(( pdf_x_data[k],  pdf_y_data[k],  pdf_z_data[k]))         
        gt_filename = 
"C:\\Users\\dele.ogunjumelo\\3drecon\\ssim_data\\output\\"+f"ground_truth_{k}.jpeg"         
        figit = get_mvd_image(norm)             
        figit.figure.savefig(gt_filename)      
        plt.close() 
        gt_image = imageio.imread(gt_filename)     
        gt_image = cv2.cvtColor(gt_image, cv2.COLOR_BGR2GRAY)      
        gt_image = cv2.bitwise_not(gt_image)  # remove white background               
        image_array = img_to_array(gt_image)   # convert image to numpy array     
        save_img(gt_filename, image_array) 
                 
        # Do projections 
        angles = np.linspace(0,180, 9)[:-1] # Take 8 angles between 0 and  180         
        print("Projection Angles",angles) 
        rotanimate(figit, angles,'movie.jpeg',delay=20)       
        CreateProjections(k,angles) 
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Appendix 2 Program for preparing 3-D flame data 

# TensorFlow is an open source machine learning library 
import tensorflow as tf 
 
import matplotlib.pyplot as plt 
from matplotlib import cm 
from mpl_toolkits.mplot3d import axes3d 
import os, sys 
import numpy as np 
 
# Pandas is a data manipulation library  
import pandas as pd 
 
# Math is Python's math library 
import math 
import scipy.io 
 
import scipy.stats  
 
from PIL import Image 
 
# Keras is TensorFlow's high-level API for deep learning 
from tensorflow import keras 
 

# Improting Image class from PIL module 
from PIL import Image, ImageOps 
 
from scipy import misc 
from numpy import asarray 
from numpy import array  
from numpy import empty 
from numpy import ones  
from numpy import zeros  
from numpy import save 
 
import imageio 
import io 
import cv2 
import IPython 
import random 
import statistics 
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from keras.preprocessing.image import load_img 
from keras.preprocessing.image import img_to_array 
from keras.preprocessing.image import array_to_img 
from keras.preprocessing.image import save_img 
 
from skimage.metrics import structural_similarity as ssim 
from skimage.metrics import mean_squared_error 
from skimage.transform import radon, rescale 
from skimage.transform import iradon_sart 
 
from skimage.transform import resize 
 
 

y=0 
x=15 
h=160 
w=95 
 
box = (180, 138, 550, 450)  
 

 

def crop_center(pil_img, crop_width, crop_height): 
    img_width, img_height = pil_img.size 
    return pil_img.crop(((img_width - crop_width) // 1.7, 
                         (img_height - crop_height) // 1.2, 
                         (img_width + crop_width) // 2, 
                         (img_height + crop_height) // 2))   
 

 

 

 

## Capture projection data for SET1 
PROJECTIONS = 8 
projection_data = [] 
projection_samples = [] 
projection_samples_1 = [] 
 
# setting values to rows and column variables 
row_s = 4 
column_s = 4 
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# create figure 
fig1 = plt.figure(figsize=(10, 7)) 
 
for projection_num in range(0, PROJECTIONS):                   
    fname_in = f"/content/drive/MyDrive/3d_recon/flame_data/Set1/"+f"R{projection_num}.b
mp" 
    input_image = imageio.imread(fname_in);         
    input_image = input_image[5:150,20:110]    #crop image 
     
    # convert image to numpy array 
    projection_data.append(asarray(input_image))    
    projection_samples.append(projection_data[projection_num]) 
    projection_samples_1.append(projection_data[projection_num]) 
         
    # Adds a subplot at the 1st position 
    fig1.add_subplot(row_s, column_s, (projection_num+1)) 
   
    # showing image 
    plt.imshow(projection_samples[projection_num]) 
    plt.axis('off')  
 

 

projection_samples[7].shape 
 
len(projection_samples) 
 

############################################################## 
##generate data sets using Morphological transformations 
##https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html 
############################################################## 
 
###generate projection dataset using original flame data 
def transform_1(reference_image): 
kernel = np.ones((5,5),np.uint8) 
return cv2.erode(reference_image,kernel,iterations = 1 
 
def transform_2(reference_image): 
kernel = np.ones((5,5),np.uint8) 
return cv2.erode(reference_image,kernel,iterations = 2 
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###########################################################################
## 
### generate data for flame condition 1   -  170 samples 
## 
##  [ using projection samples: 0 - 7 ] 
## 
###########################################################################
## 
PROJECTION_DATASET_0_1 = 119  #70% 
for dataset in range(0, PROJECTION_DATASET_0_1): 
for projection_num in range(0, PROJECTIONS): 
generated_samples.append(projection_samples[projection_num]) 
projection_dataset.append(generated_samples) 
generated_samples = [] 
 
PROJECTION_DATASET_0_2 = 26 
for dataset in range(0, PROJECTION_DATASET_0_2): 
for projection_num in range(0, PROJECTIONS): 
generated_samples.append(transform_1(projection_samples[projection_num])) 
projection_dataset.append(generated_samples) 
generated_samples = [] 
 
PROJECTION_DATASET_0_3 = 25 
for dataset in range(0, PROJECTION_DATASET_0_3): 
for projection_num in range(0, PROJECTIONS): 
generated_samples.append(transform_2(projection_samples[projection_num])) 
projection_dataset.append(generated_samples) 
generated_samples = [] 
 
len(projection_dataset) 
 
projection_samples_data = np.asarray(projection_dataset) 
projection_samples_data.shape 
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Appendix 3 Program for CNN model implementation used 
for 3-D flame reconstruction 

 

recon_model =  tf.keras.Sequential() 
recon_model.add(Conv2-
D(8, kernel_size=(3, 3),activation='linear',input_shape=(200,25,1),padding='same')) 
 
recon_model.add(Conv2-D(16, (3, 3), activation='linear',padding='same')) 
recon_model.add(Conv2-D(16, (3, 3), activation='linear',padding='same')) 
recon_model.add(MaxPooling2-D((3, 3),padding='same')) 
 
recon_model.add(Conv2-D(32, (3, 3), activation='linear',padding='same')) 
recon_model.add(Conv2-D(32, (3, 3), activation='linear',padding='same')) 
recon_model.add(MaxPooling2-D((3, 3),padding='same')) 
 
recon_model.add(Conv2-D(64, (3, 3), activation='linear',padding='same')) 
recon_model.add(Conv2-D(64, (3, 3), activation='linear',padding='same')) 
recon_model.add(MaxPooling2-D((3, 3),padding='same')) 
 
recon_model.add(Flatten()) 
 
recon_model.add(Dense(261000, activation='linear'))   
 
optimizer = keras.optimizers.Adam(learning_rate=0.0001)  
recon_model.compile(optimizer=optimizer, loss='mse', metrics=['mae'])  
 
recon_model.summary() 
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Appendix 4 Program for CNN model implementation used 
for numerical simulation  

 

recon_model =  tf.keras.Sequential() 

recon_model.add(Conv2D(8, kernel_size=(3, 3),activation='linear',input_shape=(80,10,1),pad
ding='same')) 
 
recon_model.add(Conv2D(16, (3, 3), activation='linear',padding='same')) 
recon_model.add(Conv2D(16, (3, 3), activation='linear',padding='same')) 
recon_model.add(MaxPooling2D((3, 3),padding='same')) 
 
recon_model.add(Conv2D(32, (3, 3), activation='linear',padding='same')) 
recon_model.add(Conv2D(32, (3, 3), activation='linear',padding='same')) 
recon_model.add(MaxPooling2D((3, 3),padding='same')) 
 
recon_model.add(Conv2D(64, (3, 3), activation='linear',padding='same')) 
recon_model.add(Conv2D(64, (3, 3), activation='linear',padding='same')) 
recon_model.add(MaxPooling2D((3, 3),padding='same')) 
 
recon_model.add(Flatten()) 
 
recon_model.add(Dense(10800, activation='linear'))  ## Used for generating results 
 
optimizer = keras.optimizers.Adam(learning_rate=0.00008)  ## The learning rate. Defaults to 
0.001 
recon_model.compile(optimizer=optimizer, loss='mse', metrics=['mae'])  ## Used for generati
ng results 
 
recon_model.summary() 
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Appendix 5 Program for CNN training and evaluation 

metrics 

# 
#history_1=recon_model.fit(x_train, y_train, epochs=100, batch_size=8, validation_data=(x_
validate, y_validate)) 
 
 
history_1=recon_model.fit(x_train, y_train, epochs=1000, batch_size=16, validation_data=(x
_validate, y_validate)) 
 
 
# Plot a graph of the loss 
train_loss = history_1.history['loss'] 
val_loss = history_1.history['val_loss'] 
 
 
epochs = range(1, len(train_loss) + 1) 
 
 
plt.plot(epochs, train_loss, 'g.', label='Training loss') 
plt.plot(epochs, val_loss, 'b', label='Validation loss') 
plt.title('Training and validation loss') 
plt.xlabel('Epochs') 
plt.ylabel('Loss') 
plt.legend() 
plt.show() 
 

 
plt.plot(epochs[SKIP:], train_loss[SKIP:], 'g.', label='Training loss') 
plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss') 
plt.title('Training and validation loss') 
plt.xlabel('Epochs') 
plt.ylabel('Loss') 
plt.legend() 
plt.show() 
plt.clf() 
 
 
# Plot of a  graph of mean absolute error 
train_mae = history_1.history['mae'] 
val_mae = history_1.history['val_mae'] 



133 

 
 
plt.plot(epochs[SKIP:], train_mae[SKIP:], 'g.', label='Training MAE') 
plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE') 
plt.title('Training and validation mean absolute error') 
plt.xlabel('Epochs') 
plt.ylabel('MAE') 
plt.legend() 
plt.show() 
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Appendix 6 Program for checking the accuracy of 

reconstructed flame 

from skimage.metrics import structural_similarity as ssim 
from skimage.metrics import mean_squared_error 
 
box = (190, 145, 560, 400) 
 

#check accuracy of reconstructed image 
gt_orig_filename = f"/content/drive/MyDrive/3d_recon/mldata_0_100/gt_test.jpeg" 
gt_orig_image.figure.savefig(gt_orig_filename) 
orig_gt_image = Image.open(gt_orig_filename) 
orig_gt_image = orig_gt_image.convert('L') 
orig_gt_image = orig_gt_image.crop(box) 
orig_gt_image = np.array(orig_gt_image) 
 

gt_predicted_filename = f"/content/drive/MyDrive/3d_recon/mldata_0_100/gt_predicted.jpeg
" 
gt_predicted_image.figure.savefig(gt_predicted_filename) 
predicted_image =  Image.open(gt_predicted_filename) 
predicted_image =  predicted_image.convert('L') 
predicted_image =  predicted_image.crop(box) 
predicted_image =  np.array(predicted_image) 
 
mse_none = mean_squared_error(orig_gt_image, orig_gt_image) 
ssim_none = ssim(orig_gt_image, orig_gt_image, 
data_range=orig_gt_image.max() - orig_gt_image.min()) 
 
mse_predicted  = mean_squared_error(orig_gt_image, predicted_image) 
ssim_predicted = ssim(orig_gt_image, predicted_image, 
data_range=predicted_image.max() - predicted_image.min()) 
 
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4), 
sharex=True, sharey=True) 
ax = axes.ravel() 
label = 'MSE: {:.2f}, SSIM: {:.2f}' 
 
ax[0].imshow(orig_gt_image) 
ax[0].set_xlabel(label.format(mse_none, ssim_none)) 
ax[0].set_title('Ground Truth Image') 
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ax[1].imshow(predicted_image) 
ax[1].set_xlabel(label.format(mse_predicted, ssim_predicted)) 
ax[1].set_title('Predicted Image') 
 
plt.tight_layout() 
plt.show() 


